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Abstract Adaptive data analysis provides an important tool in extracting hidden physical information from

multiscale data that arise from various applications. In this paper, we review two data-driven time-frequency

analysis methods that we introduced recently to study trend and instantaneous frequency of nonlinear and

nonstationary data. These methods are inspired by the empirical mode decomposition method (EMD) and

the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest

representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of

the form {a(t) cos(θ(t))}, where a is assumed to be less oscillatory than cos(θ(t)) and θ′ > 0. This problem can

be formulated as a nonlinear l0 optimization problem. We have proposed two methods to solve this nonlinear

optimization problem. The first one is based on nonlinear basis pursuit and the second one is based on nonlinear

matching pursuit. Convergence analysis has been carried out for the nonlinear matching pursuit method. Some

numerical experiments are given to demonstrate the effectiveness of the proposed methods.
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1 Introduction

Nowadays we must process a massive amount of data in our daily life and in our scientific research. How

to extract hidden pattern or physical information from these data has become essential in our scientific

discovery. This calls for the need to develop a truly adaptive data analysis method. Traditional data

analysis methods based on pre-determined basis provide an effective tool to process linear and stationary

data. When applying these methods to analyze nonlinear and nonstationary data, they tend to generate

some artificial harmonics. These limitations have been alleviated to some extent with the introduction

of time-frequency analysis which represents a signal with a joint function of both time and frequency.

Wavelet analysis provides an excellent tool for time-frequency analysis by introducing multi-scales to

characterize signals, see [10,23,26,31].

The concept of instantaneous frequency is an important development in time-frequency analysis. It

can be traced back to Van der Pol [42], who introduced the so-called analytic signal method (AS) that
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uses the Hilbert transform to determine instantaneous frequency of a signal. Until very recently, this

method works mostly for monocomponent signals in which the number of zero-crossings is equal to the

number of local extrema [2]. There were other attempts to define instantaneous frequency such as the

zero-crossing method [28,37,39] and the Wigner-Ville distribution method [2,13,24,25,34,36]. The zero-

crossing method does not work well for signals with multiple components and is sensitive to noise. The

methods based on the Wigner-Ville distribution suffer the interference between different components.

The empirical mode decomposition method (EMD) introduced by Huang et al. in [22] represents an

important progress in adaptive data analysis. It provides a truly adaptive method to decompose a signal

into a collection of intrinsic mode functions (IMFs) that give well-behaved Hilbert transforms. Application

of the analytic signal method to each IMF gives physically meaningful instantaneous frequency and its

time-frequency representation. Since its first introduction in 1998, the EMD method has found many

applications, especially in the study of trend, detrend, and the variability of nonlinear and non-stationary

time series, see, e.g., [45].

Inspired by the EMD method and the recently developed compressed (compressive) sensing theory,

we have recently proposed two data-driven time-frequency analysis methods [18, 19]. Our data-driven

time-frequency analysis method is based on looking for the sparsest representation of a multiscale signal

over certain multiscale basis. The multiscale basis is adapted to the signal instead of the determined

a priori. This explains the term “data-driven”. In this sense, our method is very different from the

compressed (compressive) sensing problem in which the basis is assumed to be known a priori. In

our method, we reformulate the problem as a nonlinear optimization. We find the sparse basis and

the decomposition simultaneously by looking for the sparsest decomposition among the largest possible

dictionary consisting of intrinsic mode functions. The adoption of this data-driven basis and the search

for the sparsest decomposition over a highly redundant basis make our time-frequency analysis method

fully adaptive to the signal.

Our nonlinear optimization problem is formulated as follows:

min
(ak)16k6M ,(θk)16k6M

M, subject to f =

M∑
k=1

ak cos θk, ak cos θk ∈ D, (1.1)

where D is the dictionary we use to decompose the signal which will be defined later in the paper.

When the signal is polluted by noise, the equality in the above constraint is relaxed to be an inequality

depending on the noise level.

The above optimization problem can be viewed as a nonlinear version of the l0 minimization problem,

which is known to be very challenging to solve. Inspired by the compressed (compressive) sensing theory

[3, 4, 12, 16], we have proposed two approaches to solve this nonlinear optimization problem. The first

one is based on nonlinear basis pursuit using a TV 3 norm. The second one is based on l1-regularized

nonlinear matching pursuit. The first approach has a close connection to the EMD method in the sense

that the TV 3 minimization produces local mean and the envelope function that are essentially cubic

spline polynomials. The nonlinear matching pursuit has the advantage of being robust to noise and

can be implemented very efficiently by fast Fourier transform (FFT). Moreover, for periodic data that

satisfy certain scale separation conditions, we have proved the convergence of our nonlinear matching

pursuit method. When the signal satisfies certain nonlinear sparsity conditions, our method can give

exact recovery of the original signal [21]. When the sparsity condition is satisfied only approximately, we

prove that our method recovers the IMFs and their instantaneous frequencies accurately [21].

We have performed extensive numerical experiments to test the robustness and the accuracy of our data-

driven time-frequency analysis method for both synthetic data and some real data. We have also tested

our method for sparsely sampled data or incomplete data and applied our method to study some real world

data. In all cases, we have shown that the nonlinear matching pursuit method can decompose a multiscale

signal into a sparse collection of intrinsic mode functions. In one of our recent applications to study

climate data, we have discovered a new nearly annual cycle that has not been revealed previously [40].

Application of a simplified version of our method to study the pressure waveform of a heart patient has

led to a new non-intrusive and highly effective medical index to diagnose heart diseases [32]. We have
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also compared the performance of our method with that of EMD or EEMD (which stands for ensemble

empirical mode decomposition) [44]. For data without noise, our methods give results comparable with

those obtained by the EMD method. For noisy data, our method seems to give more accurate recovery

of the instantaneous frequency and IMFs than EMD and EEMD.

We remark that there has been some recent progress in developing a mathematical framework for

an EMD-like method using synchrosqueezed wavelet transforms by Daubechies et al. [11]. We have

performed some preliminary numerical experiments to compare the synchrosqueezed wavelet approach

with our nonlinear matching pursuit method. For data with good scale separation property, the two

methods give complementary results. We note that the synchrosqueezed wavelet method does not extract

IMFs directly. Some post processing is required to obtain IMFs.

The remaining of the paper is organized as follows. In Section 2, we give a brief review of some existing

data analysis methods such as matching pursuit, basis pursuit and the EMD method. In Section 3, the

first adaptive data analysis method based on nonlinear basis pursuit is introduced. We review the

second data-driven time-frequency analysis method based on nonlinear matching pursuit in Section 4.

In Section 5, we summarize our convergence results for the nonlinear matching pursuit method. Several

numerical results are given in Section 6 to demonstrate the effectiveness of our method and to confirm

our theoretical results. Some concluding remarks are made in Section 7.

2 Brief review of the existing sparse decomposition methods

There has been a growing interest in the signal processing literature on the development of the sparse sig-

nal representations over a redundant dictionary. In particular, matching pursuit [27] and basis pursuit [8]

have attracted a lot of attention in recent years due to the development of compressed (compressive) sens-

ing. These methods have two essential features, a dictionary to decompose the signal and a decomposition

method to select the sparsest decomposition.

2.1 Dictionaries

Finding a good dictionary is essential in obtaining a sparse representation for a family of signals. Roughly

speaking, a dictionary is a collection of parameterized waveforms D = {ϕγ}γ∈Γ. Here we review a few

dictionaries that have been used widely in the literature.

2.1.1 A Fourier dictionary

The Fourier dictionary is perhaps the most well-known dictionary that has been used in many applications.

It consists of a collection of sinusoidal waveforms with γ = (ω, ν), where ω ∈ [0, 2π] is an angular frequency

variable and ν ∈ {0, 1} indicates the phase type: sine or cosine. Specifically, they consist of the following

two families,

ϕω,0(t) = cos(ωt), ϕω,1(t) = sin(ωt), ∀ t ∈ R. (2.1)

For a standard Fourier dictionary, ω runs through the set of all cosines with Fourier frequencies ωk =

2kπ/n, k = 0, 1, . . . , n/2, and all sines with Fourier frequencies ωk = 2kπ/n, k = 1, . . . , n/2− 1, where n

is the number of sample points. Sometimes, we also use an overcomplete Fourier dictionary by sampling

the frequencies more finely. Let l > 1. We may choose ωk = 2kπ/(ln), k = 0, 1, . . . , ln/2 for cosines and

ωk = 2kπ/(ln), k = 1, . . . , ln/2− 1 for sines. This gives rise to an l-fold overcomplete system. As we will

see later, we will use this kind of overcomplete Fourier dictionary to decompose non-periodic data.

2.1.2 A wavelet dictionary

A wavelet dictionary is another widely used dictionary. It consists of a collection of translations and

dilations of the basic mother wavelet ψ and a scaling function φ. Specifically, the waveforms are given as

follows:

ϕa,b,0(t) =
1√
a
ψ

(
t− b

a

)
, ϕa,b,1(t) =

1√
a
φ

(
t− b

a

)
, ∀ t ∈ R. (2.2)
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In this dictionary, the index γ = (a, b, ν), where a ∈ (0,∞) is a scale variable, b ∈ Z indicates location

and ν ∈ {0, 1} indicates gender. In a standard wavelet dictionary, we typically have aj = 2j/n, j =

j0, . . . , log2(n)− 1 which give dyadic scales, bj,k = kaj , k = 0, . . . , 2j − 1 with j0 being the coarse scale.

One can also define an overcomplete wavelet dictionary by sampling the locations more finely.

2.1.3 A time-frequency dictionary

One of the oldest time-frequency dictionaries is the Gabor dictionary [14]. In this dictionary, we take

γ = (ω, τ, θ, δ), where ω ∈ [0, π) is frequency, τ is a location, θ is a phase, and δ is the duration. We

define the waveforms as follows:

ϕγ(t) = exp

(
− (t− τ)2

δ2

)
cos (ω(t− τ) + θ) , ∀ t ∈ R. (2.3)

The frequencies of these waveforms are centered around ω and essentially vanish far away from τ .

2.1.4 An EMD dictionary

The EMD method [22] does not use a dictionary. But we can also define a dictionary as the collection of

all intrinsic mode functions (IMFs). The IMFs are defined by enforcing the following two conditions:

1. The number of the extrema and the number of the zero crossings of the function must be equal or

differ at most by one;

2. At any point of the function, the average of the upper envelope and the lower envelope defined by

the local extrema should be zero (symmetric with respect to zero).

This dictionary is perhaps the largest one among the dictionaries listed here. In fact, any oscillatory

sinusoidal wave multiplied by a smooth envelope function satisfies the definition of IMFs. Many commonly

used dictionaries are included in this dictionary. For example, all the elements of a Fourier dictionary

defined in (2.1) (standard or overcomplete) and the Gabor dictionary are IMFs. Some wavelets, such as

the Morlet wavelet, also satisfy the conditions of IMFs.

2.2 Decomposition methods

Once we have chosen our desired dictionary, we need to select an effective decomposition method to

construct the sparse representation of a signal. Here we review a few decomposition methods that can

be used for this purpose. In recent years, there have been a lot of research activities in looking for the

sparsest representation of a signal over a redundant dictionary, see, e.g., [4, 7, 8, 12, 27]. Specifically, we

look for a decomposition of a signal f over a given dictionary D = {ϕγ}γ∈Γ as follows:

f =

M∑
k=1

αγk
ϕγk

+RM , (2.4)

with the smallestM , whereRM is the residual. How sparse we can represent a signal depends on the choice

of the dictionary that we use to decompose the signal. In general, a more redundant dictionary tends to

give better sparsity of the decomposition. However, if the dictionary is not a basis, the decomposition is

not unique. We need to give a criterion to select the “best” decomposition among all the possible choices.

2.2.1 Matching pursuit

Matching pursuit introduced by Mallat and Zhang in [27] is a general decomposition method to obtain a

sparse decomposition of a signal. Matching pursuit builds up a sequence of sparse approximations step

by step. At stage k, the method searches for an atom that gives the best match to the residual and adds

it to the current approximation. When stopped after a few steps, one obtains an approximate sparse

representation of the form (2.4) using only a few atoms. A similar algorithm was proposed for the Gabor

dictionary by Qian and Chen [35].

When the dictionary is orthogonal, the method works perfectly. To improve the performance of match-

ing pursuit, several algorithms have been proposed, including the orthogonal matching pursuit (OMP)



Hou T Y et al. Sci China Math 5

which was analyzed by Tropp and Gilbert [41], compressive sampling matching pursuit by Needell and

Tropp [29], regularized orthogonal matching pursuit (ROMP) by Needell and Vershynin [30], etc.

2.2.2 Basis pursuit

Basis pursuit introduced by Chen et al. [8] is another important class of decomposition methods. Suppose

we have a discrete dictionary of p waveforms and we collect all these waveforms as columns of an n by p

matrix Φ. We can reformulate the decomposition problem (2.4) as follows:

s = Φα, (2.5)

where α = (αγ) is the vector of coefficients in (2.4). The main idea of basis pursuit is to find a sparse

representation of the signal by minimizing the discrete l1 norm of the coefficients. Thus, the decomposition

is obtained by solving the following optimization problem,

min ∥α∥l1 , subject to Φα = s. (2.6)

An important property of basis pursuit is that it can recover the exact solution of the original l0

minimization problem under some sparsity condition on the data [7, 12]. Basic pursuit has been applied

to a variety of applications. Although basic pursuit reduces an l0 minimization problem to a convex l1

minimization problem, the computational cost of solving the l1 minimization is more expensive than that

of the least-square problem in matching pursuit. We remark that several powerful algorithms have been

introduced to speed up the l1 minimization problem, such as the split Bregman method [15] and proximal

algorithms [1, 9]. The split Bregman method is also known as the augmented Lagrangian technique and

can be derived from Douglas-Rachford algorithm [38] or PPXA+ [33].

2.2.3 The EMD decomposition via a sifting process

Although the EMD method was not designed as a sparse decomposition method, it can be used for this

purpose. Like matching pursuit, the EMD method decomposes a signal to its IMFs sequentially. The

basic idea of EMD is to remove the local median from a signal by using a sifting process. For a given

signal f , a cubic spline polynomial is used to interpolate all the local maxima (minima) to obtain an

upper (lower) envelope. One then averages the upper and lower envelopes to obtain an approximate

median, m(t). If f(t) − m(t) satisfies the two conditions in the definition of an EMD dictionary, then

we accept f(t)−m(t) as the first IMF. If not, we treat f(t)−m(t) as a new signal and construct a new

candidate for the IMF by using the same procedure described above. This sifting process continues until

we obtain a satisfactory IMF, which we denote as fn(t). To find the remaining IMFs, we treat f(t)−fn(t)
as a new signal, and apply the same procedure to generate the second IMF, fn−1(t). This procedure

continues until f0(t) is either monotone or contains at most one extreme, see [22] for more details of the

sifting process.

3 Data-driven time-frequency analysis

Inspired by the EMD method and the recently developed compressed sensing theory, we proposed two

data-driven time-frequency analysis methods in [18, 19]. The first method uses a nonlinear basis pursuit

approach, while the second one uses a nonlinear matching pursuit approach. Both methods are based on

finding the sparsest decomposition of a signal by solving a nonlinear optimization problem. The nonlinear

matching pursuit has the advantage of being robust to noise. It can be implemented very fast via fast

Fourier transform. In this section, we will review both methods in some details.

3.1 A nonlinear basis pursuit approach

We first describe our nonlinear basis pursuit approach. As we mentioned before, we need to construct a

large dictionary that can be used to obtain a sparse decomposition of the signal. The dictionary consists
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of a collection of waveforms of the form a(t) cos(θ(t)) with a(t) being less oscillatory than cos(θ(t)) in

some sense. To quantify this statement, we introduce a TV 3 norm to measure the degree of oscillation.

We say that a(t) is less oscillatory than b(t) if TV 3(a) 6 λTV 3(b) for some small positive parameter λ,

where the TV n norm is defined as follows:

TV n(g) =

∫ b

a

|g(n+1)(x)|dx, (3.1)

where g(n+1)(x) is the (n+ 1)-th derivative of g. This leads to the definition of the following dictionary:

D = {a(t) cos θ(t) : θ′(t) > 0, a(t) is less oscillatory than cos θ(t)} . (3.2)

In some sense, the above dictionary can be seen as a collection of all possible IMFs, which makes our

method as adaptive as the EMD method.

The choice of the dictionary D is inspired by the definition of the intrinsic mode functions (IMFs) in the

EMD method. The element of dictionary D is a signal with amplitude modulation (AM) and frequency

modulation (FM). Here a(t) plays the role of amplitude modulation. It is supposed to be less oscillatory

than the corresponding cos θ(t) from the physical consideration. From a mathematical perspective, if this

restriction is violated, we may get a trivial decomposition, such as a(t) = f(t), θ(t) = 0. We remark

that θ′(t) is the instantaneous frequency of the signal. The physical meaning of frequency implies that it

must be positive. Otherwise, we may set a(t) = maxt |f(t)| and θ(t) = arccos(f(t)/a(t)). Obviously, we

cannot obtain any useful information from this decomposition.

Since the dictionary D is highly redundant, the decomposition over this dictionary is not unique.

We need a criterion to select the “best” one among all possible decompositions. We assume that the

data we consider have an intrinsic sparse structure in the time-frequency plane in some nonlinear and

nonstationary basis. However, we do not know this basis a priori and we need to derive (or learn) this

basis from the data. Based on this consideration, we adopt sparsity as our criterion to choose the best

decomposition. This criterion yields the following nonlinear optimization problem:

(P0) min M, subject to f(t) =
M∑
k=1

ak(t) cos θk(t), ak(t) cos θk(t) ∈ D, k = 1, . . . ,M. (3.3)

After this optimization problem is solved, we get a very clear time-frequency representation:

Instantaneous frequency: ωk(t) = θ′k(t), Amplitude : ak(t). (3.4)

The nonlinear optimization (P0) stated above is too difficult to solve numerically. We have introduced

a recursive scheme to solve the nonlinear optimization problem (P0) approximately.

First of all, we observe that after extracting the highest frequency IMF, a1(t) cos θ1(t), the local me-

dian would become much less oscillatory than the original signal, f(t). Based on this observation, we

propose the following alternative method to solve the original nonlinear optimization problem: looking

for a1(t) cos θ1(t) ∈ D that gives the least oscillatory local median, a0(t) = f(t) − a1(t) cos θ1(t). This

idea yields the following TV 3-based optimization problem:

(P ) min TV 3(a0) + TV 3(a1), subject to a0(t) + a1(t) cos θ(t) = f(t), θ′(t) > 0. (3.5)

We note that minimizing the third order total variation of a function g tends to produce a piecewise

constant approximation to the third order derivative of g. Thus our TV 3-based minimization tends to

produce a cubic spline approximation for a0 and a1. In this sense, our method shares some property

similar to that of the EMD method.

In order to solve the above optimization problem, we use following Newton type of iteration:

Initialization: r0 = f , k = 0.

While ∥rk∥2 > ϵ0

• Give the Initial value of the phase function θ0k, set n = 1.
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• While ∥θnk − θn−1
k ∥2 > ϵ1

– Update an0 , a
n
1 , b

n
1 by solving the following linear optimization problem:

min TV 3(an0 ) + TV 3(an1 ) + TV 3(bn1 ), (3.6)

subject to an0 + an1 cos θ
n−1
k (t) + bn1 sin θ

n−1
k (t) = rk(t). (3.7)

– Update the phase function θ:

θnk = θn−1
k − µ arctan

(
bn1
an1

)
, (3.8)

where µ ∈ [0, 1] is chosen to enforce that θn is an increasing function:

µ = max

{
α ∈ [0, 1] :

d

dt

(
θn−1
k + α arctan

(
bn1
an1

))
> 0

}
. (3.9)

• End While

• Set θk = θnk , a1,k = an1 , r
k+1 = an0 . Also set k = k + 1.

End While

3.2 A nonlinear matching pursuit approach

In our nonlinear matching approach, we choose our dictionary as follows:

D = {a(t) cos θ(t) : a(t) and θ′(t) are less oscillatory than cos θ(t), θ′(t) > 0, ∀ t ∈ R}. (3.10)

Let V (θ, λ) be the collection of all the functions that are less oscillatory than cos θ(t). Unlike our nonlinear

basis pursuit approach, we quantify the degree of oscillation by constructing V (θ, λ) as an overcomplete

Fourier basis given below:

V (θ, λ) = span

{
1,

(
cos

(
kθ

2Lθ

))
16k62λLθ

,

(
sin

(
kθ

2Lθ

))
16k62λLθ

}
, (3.11)

where Lθ = ⌊ θ(1)−θ(0)
2π ⌋, ⌊µ⌋ is the largest integer less than µ, and the parameter λ 6 1/2 is to control

the degree of oscillation of V (θ, λ). In our computations, we typically choose λ 6 1/2. The dictionary D
can be written as

D = {a(t) cos θ(t) : a(t) ∈ V (θ, λ), θ′(t) ∈ V (θ, λ), and θ′(t) > 0,∀ t ∈ R} . (3.12)

The dictionary D used in this approach is essentially similar to the dictionary we used in the previous

section. The difference is that we explicitly construct a linear space V (θ) which is dependent on the phase

function θ, to quantify the degree of the oscillation. From a mathematical perspective, the dictionary

given in (3.2) is not well defined, since the term “less oscillatory” does not have a rigorous definition. To

remove this ambiguity, we give the terminology “less oscillatory” a rigorous definition by constructing

the space V (θ) and defining that “a(t) is less oscillatory than cos θ(t)” if and only if a(t) ∈ V (θ).

The space V (θ) consists of the functions which are less oscillatory than cos θ(t). The idea to construct

V (θ) is based on two observations:

(1) cosλt, sinλt are less oscillatory than cos t as long as λ < 1;

(2) θ′(t) > 0 which implies that θ(t) can be used as a coordinate.

In our definition, we require that λ 6 1/2. This parameter can be tuned in different problems to

control the degree of oscillation of V (θ).

V (θ) may also be constructed by the wavelet transform instead of the Fourier modes used above. For

more details, we refer to [20].

As before, we adopt sparsity as our criterion to choose the best decomposition among all possible

decompositions. This criterion yields the following nonlinear optimization problem:

(P ) min
(ak)16k6M ,(θk)16k6M

M, subject to f =
M∑
k=1

ak cos θk, ak cos θk ∈ D, k = 1, . . . ,M, (3.13)
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or

(Pδ) min
(ak)16k6M ,(θk)16k6M

M, subject to

∥∥∥∥f −
M∑
k=1

ak cos θk

∥∥∥∥
l2
6 δ, ak cos θk ∈ D, k = 1, . . . ,M, (3.14)

if the signal has noise with noise level δ.

The above optimization problem can be seen as a nonlinear l0 minimization problem. Matching pursuit

has been shown to be a powerful method to solve the l0 minimization problem. We have proposed a

nonlinear matching pursuit method to solve this optimization problem. Since we use the overcomplete

Fourier basis to construct V (θ, λ), the above nonlinear least square problem may be ill-conditioned.

Moreover, the simple least square method would introduce severe interference among different IMFs. In

order to stabilize the above optimization problem and remove the interference, we proposed to add an l1

term to regularize the nonlinear least square problem. This would give us the following algorithm based

on the l1-regularized nonlinear least square:

• r0 = f, k = 1.

Step 1. Solve the following l1-regularized nonlinear least-square problem (P2):

(P2) (ak, θk) ∈ Argmin γ∥â∥l1 + ∥rk−1 − a cos θ∥2l2 ,
a,θ

subject to a ∈ V (θ, λ), θ′ > 0, ∀ t ∈ R,
(3.15)

where γ > 0 is a regularization parameter and â is the representation of a in the overcomplete Fourier

basis previously detailed in (3.11).

Step 2. Update the residual

rk = f −
k∑

j=1

aj cos θj . (3.16)

Step 3. If ∥rk∥l2 < ϵ0, stop. Otherwise, set k = k + 1 and go to Step 1.

If signals are periodic, we can use the standard Fourier basis to construct V (θ, λ) instead of the

overcomplete Fourier basis. The l1 regularization term is not needed (i.e., we can set γ = 0) since the

standard Fourier basis are orthogonal to each other. In the next section, we will use this property to

further simplify the above algorithm for periodic signals.

3.2.1 An l1-regularized nonlinear least square solver

Our l1-regularized nonlinear least square problem is non-convex since the basis is not known a priori.

We need to find the basis and the decomposition simultaneously. In the following, we propose a Gauss-

Newton type method to solve the l1-regularized nonlinear least square problem. In our iterative method,

we gradually enlarge the space V (θ, η) to update θ′ by increasing η during the iterations. Note that

V (θ, η = 0) for the first iteration consists only constants while V (θ, η = λ) during the final iteration is

the space in which our nonlinear optimization is defined. This procedure makes our method very robust

and is insensitive to our initial condition. Throughout our computations, we choose λ = 1/2 and the

increment ∆η = λ/20.

• θ0k = θ0, η = 0.

Step 1. Solve the following l1-regularized least-square problem:

(P2,l2) (an+1
k , bn+1

k ) ∈ Argmin γ(∥â∥l1 + ∥b̂∥l1) + ∥rk−1 − a cos θnk − b sin θnk∥2l2 ,
a,b

subject to a ∈ V (θnk , λ), b ∈ V (θnk , λ),

where â, b̂ are the representations of a, b in the V (θnk , λ) space.

Step 2. Update θnk :
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∆θ′ = PV (θn; η)

(
d

dt

(
arctan

(
bn+1
k

an+1
k

)))
, ∆θ =

∫ t

0

∆θ′(s)ds, θn+1
k = θnk − β∆θ, (3.17)

where β ∈ [0, 1] is chosen to make sure that θn+1
k is monotonically increasing:

β = max

{
α ∈ [0, 1] :

d

dt
(θnk − α∆θ) > 0

}
, (3.18)

where PV (θn
k ; η) is the projection operator to the space V (θnk ; η) and V (θnk ; η) is the space defined in (3.11).

Step 3. If ∥θn+1
k − θnk∥2 > ϵ0, set n = n+ 1 and go to Step 1. Otherwise, go to Step 4.

Step 4. If η > λ, stop. Otherwise, set η = η +∆η and go to Step 1. λ is the parameter we choose in

(3.11).

3.2.2 A fast algorithm for periodic data

In the iterative algorithm described in the previous subsection, we need to solve an l1-regularized least

square problem in each step. This is the most expensive part of the algorithm especially when the number

of the data points is large. In this subsection, we introduce a method based on fast Fourier transform

(FFT) for periodic data.

An important advantage of our algorithm for periodic data is that we can use a standard Fourier basis

to construct the V (θ, λ) space instead of the overcomplete Fourier basis given in (3.11).

Vp(θ, λ) = span

{
1,

(
cos

(
kθ

Lθ

))
16k6λLθ

,

(
sin

(
kθ

Lθ

))
16k6λLθ

}
, (3.19)

where λ 6 1/2 is a parameter to control the degree of oscillation of functions in Vp(θ, λ) and Lθ =

(θ(T ) − θ(0))/2π is a positive integer. We use the subscript p to denote this space is for the periodic

signal. Since the standard Fourier basis is an orthogonal basis, the l1-regularized term is not necessary

in our nonlinear optimization. As a result, the nonlinear least-square problem is reduced to the following

optimization problem (by setting γ = 0):

min
a,b

∥rk − a cos θnk − b sin θnk∥2l2 , subject to a, b ∈ Vp(θ
n
k , λ). (3.20)

Notice that in the iterative process, the derivative of the phase function θnk is always monotonically

increasing. Thus, we can use θnk as a new coordinate. In this new coordinate, cos θnk , sin θ
n
k and the

bases of Vp(θ
n
k , λ) are simple Fourier modes, then the least-square problem can be solved by using the

fast Fourier transform. For more details, we refer to our paper [19].

There are two important advantages of this nonlinear matching pursuit approach. The first one is

that this method is very stable to noise perturbation. The second one is that it can be implemented

very efficiently. For periodic data, our method can be solved by FFT which gives a complexity of order

O(N logN), where N is the number of data sample points that we use to represent the signal. The

low computational cost and the robustness to noise perturbation make this method very effective in

many applications. Moreover, for data that satisfy certain scale separation conditions, we prove that our

method recovers the IMFs and their instantaneous frequencies accurately.

4 Convergence of nonlinear matching pursuit for periodic data

In a recent paper by Hou et al. [21], we have proved convergence and stability of the nonlinear matching

algorithms proposed in the previous section for periodic data. We summarize our main findings in this

section.

4.1 Convergence analysis for well-resolved signals

We first focus on well-resolved signals. By well-resolved signals, we mean that these signals are measured

over a uniform grid and can be interpolated to any grid with very little loss of accuracy. In the analysis,
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we assume that the signal is periodic in the sample domain. Without loss of generality, we assume that

the signal f is periodic over [0, 1]. We consider a periodic signal f(t) that has the following decomposition:

f(t) = f0(t) + f1(t) cos θ(t), f1(t) > 0, θ′(t) > 0, t ∈ [0, 1], (4.1)

where f0, f1 and θ are the exact local mean, the envelope and the phase function that we want to recover

from the signal, respectively.

First, we introduce some notation. Let L = θ(1)−θ(0)
2π be the number of period of the signal which is a

measurement of the scale of the signal. θ = θ−θ(0)
2πL is the normalized phase function, which is used as a

coordinate in our numerical method and analysis. f̂0,θ(k), f̂1,θ(k) are the Fourier coefficients of f0, f1 in

the θ-coordinate, i.e.,

f̂0,θ(k) =

∫ 1

0

f0 e−i2πkθdθ, f̂1,θ(k) =

∫ 1

0

f1 e−i2πkθdθ. (4.2)

We also use the notation Fθ(·) to represent the Fourier transform in the θ-space and F(·) to represent

the Fourier transform in the original t-coordinate.

Now we can state the theorem as follows:

Theorem 4.1. Assume that the instantaneous frequency θ′ is M0-sparse over the Fourier basis in the

physical space, i.e.,

θ′ ∈ VM0 = span{ei2kπt/T , k = −M0, . . . , 1, . . . ,M0}. (4.3)

Furthermore, we assume that the local mean f0 and the envelope f1 are M1-sparse over the Fourier basis

in the θ-space, i.e.,

f̂0,θ(k) = f̂1,θ(k) = 0, ∀ |k| > M1. (4.4)

If the initial guess of θ0 satisfies

∥F((θ0 − θ)′)∥1 6 πM0/2, (4.5)

then there exists η0 > 0 such that

∥F((θm+1 − θ)′)∥1 6 1

2
∥F((θm − θ)′)∥1, (4.6)

provided that L > η0.

Remark 4.2. We remark that classical time-frequency analysis methods, such as the windowed Fourier

transform or wavelet transform, in general cannot extract the instantaneous frequency exactly for any

signal due to the uncertainty principle. For a single linear chirp signal without amplitude modulation, the

Wigner-Ville distribution can extract the exact instantaneous frequency, but it fails if the signal consists

of several components. Theorem 4.1 shows that our data-driven time-frequency analysis method has the

capability to recover the exact instantaneous frequency for a larger range of signals.

If the signal does not have an exact sparsity structure in the θ-space as required by Theorem 4.1,

our method cannot reproduce the exact decomposition. But our analysis shows that we can still get an

approximate result and the accuracy is determined by the truncated error of the signal. The main result

is stated below.

Theorem 4.3. Assume that the instantaneous frequency θ′, has a sparse representation, i.e., there

exists M0, such that

θ′(t) ∈ VM0 = span{ei2kπt/T , k = −M0, . . . , 1, . . . ,M0}, (4.7)

and the Fourier coefficients of the local mean f0 and the envelope f1 in the θ-space have a fast decay, i.e.,

there exists C0 > 0, p > 4 such that

|f̂0,θ(k)| 6 C0|k|−p, |f̂1,θ(k)| 6 C0|k|−p. (4.8)

Then, there exists η0 > 4 such that if L > η0 and the intial guess satisfies
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∥F((θ0 − θ)′)∥1 6 πM0/2, (4.9)

then we have

∥F((θm+1 − θ)′)∥1 6 Γ0(L/4)
−p+2 +

1

2
∥F((θm − θ)′)∥1, (4.10)

where Γ0 > 0 is a constant determined by C0, p, M0 and f1.

This theorem shows that our iterative method will converge to the exact solution up to the truncation

error determined by the scale separation property. We further consider a more general case: the instan-

taneous frequency is also approximately sparse instead of exactly sparse as we assume in Theorems 4.1

and 4.3. In this case, we can prove that the iterative algorithm also converges to an approximate result.

4.2 Convergence analysis for sparsely sampled signals

In this subsection, we consider a more challenging case, the sample points are too few to resolve the

signal. In this case, the algorithm presented in last section does not apply directly. The reason is that

the Fourier transform in the θm-space, Fθm(·), cannot be computed accurately by the FFT-based method.

Thanks to the recent development of compressive sensing, we know that if the Fourier coefficients are

sparse, then l1 minimization would give an approximate solution from very few sample points. Hence,

we can use an l1 minimization problem to generate the Fourier coefficients in the θm-space.

Suppose the sample points tj , j = 1, . . . , Ns are selected at random from a set of uniform grid l/Nf , l =

0, . . . , Nf − 1, we solve the following l1 minimization problem to get the Fourier transform of the signal

f in the θm-coordinate:

min ∥x∥1, subject to Φθm · x = f̃ , (4.11)

where f̃ = Dθm · f and Dθm = diag(
√

(θ
m
)′

Nf
) is an Ns ×Ns diagonal matrix, Φθm = Dθm ·Ψθm and Ψθm

is an Ns × Nb matrix which is obtained by selecting Ns rows from an Nf × Nb matrix Uθm , Nb is the

number of Fourier modes used in the algorithm which has to be determined a priori, Uθm is a matrix

whose columns are Fourier modes in θm-space. More specifically, (j, k)-th entry of Uθm is

Uθm(j, k) = ei2πkθ
m
(tj), j = 1, . . . , Nf , k = −Nb/2 + 1, . . . , Nb/2,

θ
m

= θm−θm(0)
θm(T )−θm(0) is the normalized phase function.

Notice that the columns of the matrix Uθm are approximately orthogonal to each other. This property

will play an important role in our convergence and stability analysis. We remark that our problem is

more challenging than the compressive sensing problem in the sense that we need not only to find the

sparsest representation but also a basis parametrized by a phase function θ over which the signal has the

sparsest representation.

Theorem 4.4. Under the same assumption as in Theorem 4.1, there exist η0 > 0, η1 > 0, such that

∥F((θm+1 − θ)′)∥1 6 1

2
∥F((θm − θ)′)∥1, (4.12)

provided that L > η0 and S > η1, where S is the largest number such that δ3S(Φθm) + 3δ4S(Φθm) < 2.

Here δS(A) is the S-restricted isometry constant of matrix A given in [6], which is the smallest number

such that (1−δS)∥c∥2l2 6 ∥AT c∥2l2 6 (1+δS)∥c∥2l2 , for all subsets T with |T | 6 S and coefficients sequences

(cj)j∈T .

In Theorem 4.4, we assume that in each step, the condition δ3S(Φθm) + 3δ4S(Φθm) < 2 is satisfied.

Using the definition of δS , it is easy to see that δ3S 6 δ4S . Thus, a sufficient condition to satisfy

δ3S(Φθm) + 3δ4S(Φθm) < 2 is to require δ4S(Φθm) < 1/2.

In compressive sensing, there is a well-known result by Candes and Tao in [7]. This result states that

if the matrix Φ ∈ RM×N is obtained by selecting M , rows at random from an N ×N Fourier matrix U ,

where U = (Uj,k) and Uj,k = 1√
N
ei2πjk/N , j, k = 1, . . . , N , then the condition δS(Φ) < 1/2 is satisfied

with an overwhelming probability provided that S 6 C M
(logN)6 , where C is a constant.
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In our formulation, the matrix Φθm also consists of Ns rows of an Nf × Nb matrix Uθm . The main

difference is that the matrix Uθm is not a standard Fourier matrix. Instead it is a Fourier matrix in

the θm-space which makes it non-orthonormal. As a result, we cannot apply the result of Candes and

Tao in [7] directly. Fortunately, we have been able to prove a generalized result which can be applied

to matrix Uθm . This generalized result basically shows that if the columns of Uθm are approximately

orthogonal to each other, it has a property similar to the standard Fourier matrix. Consequently, we

need only to estimate the mutual coherence of the columns of the matrix Uθm for θm ∈ VM0 . Using

this result, we can show that the condition ν0 = maxk,j |U∗
θmUθm − I)k,j | 6 1

16Nb
is satisfied as long as

Nf > C∥F((θ
m
)′)∥1Nb, where C is a constant determined by Nb. Our analysis shows that if the sample

points are selected at random, in each step, with probability 1− δ, we can get the right answer.

5 Numerical results

In this section, we present several numerical results to demonstrate the effectiveness of our data-driven

time-frequency analysis methods. We mainly focus on the nonlinear matching pursuit method. Numerical

examples for the nonlinear basis pursuit method can be found in [18]. First we will present numerical

results for the FFT-based algorithms for periodic data or data with a good scale separation property.

We also present numerical results for non-periodic signals to demonstrate the effectiveness of our l1-

regularized least square algorithm. Finally, we present some numerical results for periodic data that

validate our convergence results presented in the previous section.

5.1 Numerical results for the FFT-based algorithms

In this subsection, we present a number of numerical experiments to demonstrate the accuracy and

robustness of our FFT-based algorithms. Throughout this section, we denote X(t) as white noise with

zero mean and variance σ2 = 1. The signal-to-noise ratio (SNR, measured in dB) is defined by

SNR[dB] = 10 log10

(
varf

σ2

)
. (5.1)

We will apply our data-driven time-frequency analysis method to several different signals with increasing

level of difficulty.

Example 1. First, we consider a signal that consists of three IMFs [19]. The signal is given by the

following analytic formula:

f(t) =
1

1.5 + cos(2πt)
cos(60πt+ 15 sin(2πt)) +

1

1.5 + sin(2πt)
cos(160πt+ sin(16πt))

+ (2 + cos(8πt)) cos(140π(t+ 1)2). (5.2)

In Figure 1, we study the accuracy of the instantaneous frequencies obtained by our method with the

exact instantaneous frequencies. The upper row corresponds to the signal without noise. As we can see,

it is hard to tell any hidden structure from this signal even without noise. Our method recovers the three

components of the instantaneous frequencies (blue) that match the exact instantaneous frequencies (red)

very well. In the case when noise is added to the original signal, we cannot recognize any hidden pattern

from the polluted signal. It is remarkable that our method could still recover the three components of the

instantaneous frequencies with accuracy comparable to the noise level, see the bottom row of Figure 1.

Example 2 (Length-of-day data). Next, we apply our method to the length-of-day data [19], see

Figure 2. The data we adopt here was produced by Gross [17], covering the period from January 20,

1962 to January 6, 2001, for a total of 14,232 days (approximate 39 years). Figure 3 displays the first

5 IMFs extracted by the FFT-based method. These IMFs are ordered by their frequencies from high to

low. Each component is enforced to be an IMF by the construction of our dictionary. As a result, we do

not need to do shifting or post-processing as was done in the EMD or the EEMD method [44]. The IMFs

that we obtained match qualitatively those obtained by EEMD with post-processing [44]. Furthermore,
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we note that the results obtained by our method do not suffer from the mode mixing phenomenon that

is presented in the EMD decomposition.

We observe that each IMF we obtained has a clear physical interpretation. For example, the period

of C1 is around 14 days, corresponding to the semi-monthly tides. The period of C2 is about 28 days,

corresponding to the monthly tides. Similarly, the period of C4 is about half a year, corresponding to

the semi-annual cycle and C5 corresponds to the annual cycle.

5.2 Numerical results for the l1-regularized nonlinear matching pursuit

The nonlinear matching pursuit method based on the fast Fourier transform does not work well for non-

periodic data or data with poor scale separation. For this kind of data, the FFT-based method tends to

produce some oscillations near the boundary due to the use of the standard Fourier basis. This so-called

“end effect” is also present in the EMD method and other data analysis methods. To remove this “end

effect” error, we need to use the l1-regularized nonlinear matching pursuited described in Subsection 3.2

with V (θ, λ) being the overcomplete Fourier basis defined in (3.11).

To test the performance of our l1-regularized nonlinear matching pursuit, we apply our method to the

following data [19]:

θ1 = 20π(t+ 1)2 + 1, θ2 = 161.4πt+ 4(1− t)2 sin(16πt),

f(t) =
1

1.5 + sin(1.5πt)
+ (2t+ 1) cos θ1 + (2− t)2 cos θ2.
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Figure 1 Upper row: (a) The signal defined in (5.2) without noise; (b) Instantaneous frequencies. Red: exact frequencies;

blue: numerical results. Lower row: the same as the upper row except that white noise 2X(t) was added to the original

signal, the corresponding SNR is −0.8 dB
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Figure 3 The first 5 IMFs with highest frequencies given by our FFT-based method

In this numerical example, the l1-regularizing parameter γ is chosen to be 1. From Figure 4, we observe

that the l1-regularized nonlinear matching pursuit seems to produce considerably smaller error (see the

blue curve) near the boundary compared with that produced by the FFT-based algorithm (see the black

curve).

This example shows that the l1-regularized nonlinear matching pursuit can be used to decompose non-

periodic data with reasonable accuracy. On the other hand, the computational cost of the l1-regularized
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nonlinear matching pursuit is considerably higher than that of the FFT-based algorithm due to the extra

cost of solving an l1-regularized least square problem in each iteration. There are several ways to speed

up the l1 optimization. A more efficient l1 solver could reduce the computational cost significantly. One

effective way to reduce the computational cost is to use a hybrid method by applying the FFT-based

algorithm in the majority of the interior domain and using the l1 minimization only near the boundary

of the signal. This would lead to considerable saving.

5.3 Numerical validation of convergence results

In this subsection, we will perform several numerical experiments to confirm our theoretical results

presented in the previous section.

Example 3 (Exact recovery for a well-resolved signal). The first example is a well-resolved periodic

signal [21]. In this example, the mean and the envelope have a sparse Fourier representation in the

θ-space and the instantaneous frequency has a sparse Fourier spectrum in the physical space. The signal

we use is generated by the following formulae:

θ = 20πt+ 2 cos 2πt+ 2 sin 4πt, θ = θ/10,

a0 = 2 + cos θ + 2 sin 2θ + cos 3θ, a1 = 3 + cos θ + sin 3θ, f = a0 + a1 cos θ.

This signal is sampled over a uniform mesh of 256 points. There are about 12 samples in each period of

the signal on average.

The numerical results are shown in Figure 5. In Figure 5, we can see that our algorithm indeed recovers

the exact decomposition of this signal. This is also consistent with the theoretical result we obtained in

Theorem 4.1.

Example 4 (Exact recovery for a signal with sparse random samples). The second example is designed

to confirm the result of Theorem 4.4 [21]. This example shows that for a signal with a sparse structure,

our algorithm is capable of producing the exact decomposition even if it is poorly sampled. The signal is

given below in (5.3),

θ = 200πt− 10 cos 2πt− 2 sin 4πt, θ = θ/(100),

a0 = cos θ, a1 = 3 + cos θ + sin 2θ, f = a0 + a1 cos θ.

The number of sample points is equal to 120. These sample points are selected at random over 4096

uniformly distributed points. On average, there are about 1.2 points in each period of the signal. We
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Figure 4 IMF (a) and instantaneous frequency (b) of the signal in (5.3) obtained from different methods. Red: exact;

blue: l1 regularized nonlinear matching pursuit; black: FFT-based algorithm.
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test 100 independent samples and our algorithm is able to recover the signal for 97 samples, which gives

97% success rate. Figure 6 gives one of the successful samples.

The right panel of Figure 6 shows that the order of error is 10−2 for IMF and 10−3 for the phase

function. In the computation, the l1 optimization problem is solved approximately in each step of the

iteration. This is the reason that the error is much larger than the round-off error of the computer. By

increasing the accuracy in solving the l1 optimization problem, we can increase the accuracy for both

the IMF and the phase function, which confirms our convergence result. However, by imposing a higher

accuracy in solving our optimization problem, we also increase the computational cost as a consequence.

From practical viewpoint, controlling the error below 10−2 seems to be sufficient.

6 Concluding remarks

In this paper, we have reviewed two recently introduced data-driven time-frequency analysis methods for

anaylzing nonlinear and nonstationary data. These methods are based on looking for a sparse representa-

tion over a highly redundant time-frequency dictionary. The adaptivity of the decomposition is obtained

by looking for the sparsest representation of a signal in the time-frequency domain from a largest possi-

ble dictionary that consists of all possible candidates for intrinsic mode functions (IMFs). Solving this

nonlinear optimization problem is in general very difficult. We have proposed two methods to solve this

nonlinear optimization roblem. The first method is based on nonlinear basis pursuit by minimizing the

TV 3 norm of the local mean and the envelope function. The second method is based on nonlinear match-

ing pursuit by generalizing matching pursuit for solving the l0 optimization problem. One important

advantage of our nonlinear matching pursuit method is it can be implemented very efficiently. Moreover,

this approach is very stable to noise. It can be applied to sparsely sampled data or even incomplete data.

Our data-driven methods can be used to extract some hidden pattern or physical information from the

data while traditional data analysis methods tend to introduce many artificial harmonics or suffer from

interference of different components. Applications of our data-driven time-frequency analysis methods to

some real world data have led to some new scientific discoveries [32, 40].

We have also carried out convergence analysis for the nonlinear matching pursuit method. In the case

when the signal satisfies certain scale separation conditions, we have shown that our iterative algorithm

converges and gives exact recovery of the IMF and the instantaneous frequency. When the scale separation

condition is not satisfied exactly, we have shown that our method still gives an approximate decomposition

with the accuracy determined by the scale separation factor of the signal. This remains true even for
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Figure 5 (a) Original signal; (b) Error of the IMF and the phase function
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Figure 6 (a) Original signal and the sample points; (b) Error of the IMF and phase function

sparsely sampled data as long as we generate the sampling points at random.

There are some remaining issues to be studied in the future. Currently, our method requires the data

to satisfy certain scale separation property. In real world applications, the physical data may not satisfy

the scale separation condition required by our convergence analysis. It is desirable to design an improved

algorithm that can handle data with poor scale separation property and reduce the the “end effect” of

the data. Another important problem is to decompose data with intra-wave frequency modulation. This

type of data is known to be very challenging. Naive application of traditional data analysis methods

tends to introduce many harmonics. Recently, we have made some progress in decomposing this type of

data. A key idea is to use a more general shape function [43] instead of using cos(θ) in our dictionary.

We will further propose a new method to look for the appropriate shape function that gives rise to the

sparsest decomposition of the signal. This work will be reported in our future publication.
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