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Analysis of Asymptotic Escape of Strict Saddle Sets in Manifold Optimization\ast 
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Abstract. In this paper, we provide some analysis on the asymptotic escape of strict saddles in manifold
optimization using the projected gradient descent algorithm (PGD). One of our main contributions
is that we extend the current analysis to include nonisolated and possibly continuous saddle sets
with complicated geometry. We prove that the PGD is able to escape strict critical submanifolds
under certain conditions on the geometry and the distribution of the saddle point sets. We also show
that the PGD may fail to escape strict saddles under weaker assumptions even if the saddle point
set has zero measure. We apply this saddle analysis to the phase retrieval problem on the low-rank
matrix manifold, prove that there are only a finite number of saddles, and that in a specific region,
they are strict saddles with high probability. We also show the potential application of our analysis
for a broader range of manifold optimization problems.
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1. Introduction. Manifold optimization has long been studied in mathematics. From
signal and imaging science [43], [46], to computer vision [59], [60] and quantum information
[34], [48], [65], it finds applications in various disciplines. However, it is the field of machine
learning that sees the most diverse applications. Examples include matrix sensing [8] and
matrix completion [61] on the low-rank matrix manifold \{ \bfitZ : \bfitZ \in \BbbR n\times n, rank(\bfitZ ) = r\} ;
independent component analysis on the Stiefel manifold [1]; covariance estimation on the
low-rank elliptope [20]; kernel learning, feature selection, and dimension reduction on the
Grassmannian manifold [62]; dictionary learning on the special orthogonal group manifold
[23]; blind deconvolution [28], [53]; point cloud denoising [43], [66]; tensor completion [11],
[32], [35]; metric learning [51]; and Gaussian mixture [25], just to name a few. Among them,
low-rank matrix recovery problems have drawn the most attention in recent years, mainly
because of the intrinsic low-rank structure that naturally occurs in real-world applications.

Convergence analysis of manifold optimization is similar to that of classical optimization
[55], except that spurious local minima and saddle points might occur due to the possible
nonconvex structure of the manifold. However, numerous previous works on asymptotic con-
vergence analysis reveal that many applications are actually void of spurious local minima [14],
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 841

[18], [41]. More importantly, they point out that the saddle points do not interfere with the
convergence of various first-order algorithms towards a minimum, as long as they are ``strict
saddles,"" even though saddles are first-order stationary points [17], [30]. Intuitively speaking,
a strict saddle point is a stationary point whose tangent space has a direction with negative
curvature. The point series generated by the algorithm tend to ``slip away"" or escape from
strict saddles because of this negative curvature direction. This ``escape and convergence""
property is observed not only for stochastic algorithms but also for deterministic ones, such
as the simplest fixed-stepsize gradient descent.

The current analysis on strict saddles mostly focuses on isolated saddle points in the
Euclidean space [37], [38]. There is a lack of systematic analysis on the Riemannian manifolds,
and even less for the explicit treatment for nonisolated continuous saddle sets, despite their
prevalence. One example is the variational linear eigenvalue problem on the sphere \BbbS n - 1. It
can have infinitely many saddle points if a nonminimal eigenvalue is duplicated. Another is
the Gaussian phase retrieval problem, where the critical points are even more elusive due to
the stochasticity of the model. This motivates us to provide some general analytic tools to
study these algorithms.

One of the main contributions of this paper is that we provide a systematic analysis for
the asymptotic escape of nonisolated and possibly continuous saddle sets with complicated
geometry. Based on the analytic tools that we develop to study optimization on low-rank
manifolds, we prove that the projected gradient descent algorithm (PGD) is able to escape
strict critical submanifolds under certain conditions. These conditions are concerned with
some geometric property of the saddle point set or the distribution of these saddle points.
We argue that these conditions are necessary to guarantee the asymptotic escape of the strict
saddles by the PGD in manifold optimization. However, these conditions are not stringent
and are usually satisfied by familiar applications. We compare our conditions with those of
the recent work [45] and point out that these two are consistent. We also give some examples
that violate the conditions and result in failures of asymptotic escape, for the purpose of
theoretical interest.

What lies at the core of this asymptotic analysis is an interesting interplay of dynamical
systems and nonconvex optimization, and a translation of languages from the Morse theory
[3], [4], [9] into gradient flow lines and further into gradient descents. Although these tools
were initially developed to study homology, they have provided invaluable insight into the
converging/escaping sets of strict saddle points with nontrivial geometry. We draw inspirations
from them and propose a new unified tool to analyze asymptotic convergence and escape from
saddle points.

We are aware that there is a parallel line of research on the stochastic/perturbed version of
gradient descent, as well as its variant on the Riemannian manifold. Recent works including
[10], [17], [30], [58] show that the stochastic/perturbed gradient descent is a powerful tool
to get rid of saddles and does not impose any constraint on the geometry of saddle sets as
we do. The reason our analysis focuses on the unperturbed gradient descent is that only by
eliminating the perturbation effect can we single out the essential property of gradient descent
itself. The development of a thorough asymptotic theory for this simple PGD algorithm is
crucial to the understanding of why simple PGD works sufficiently well in many applications.

As an application of our asymptotic escape analysis for strict saddles, we consider theD
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842 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

phase retrieval problem [15], [19], [29], [52] that has received considerable attention in recent
years. We combine the perspectives of Riemannian manifold optimization [7] and landscape
analysis [41], [57] and derive new results. We analyze the saddle points of the phase retrieval
problem on the low-rank matrix manifold. Surprisingly, we are able to prove that there are
only a finite number of saddles and they are all strict saddles with very high probability. Our
analysis provides a rigorous explanation for the robust performance of the PGD in solving
the phase retrieval problem as a low-rank optimization problem, a phenomenon that has been
observed in previous applications reported in the literature [41].

Although our primary focus is the low-rank matrix manifold, the asymptotic convergence
to the minimum and the escape of strict saddles (strict critical submanifolds) are also valid
on any arbitrary finite dimensional Riemannian manifold. In particular, the properties of the
PGD are well preserved if the manifold is embedded in a Banach space and inherits its metric.
Popular examples of manifold optimization include optimization problems on the sphere, the
Stiefel manifold, the Grassmann manifold, the Wasserstein statistical manifold [40], the flag
manifold for multiscale analysis [64], and the low-rank tensor manifold [24], [42]. They find
applications in many fields, including physics, statistics, quantum information, and machine
learning.

To illustrate this, we consider the optimization on the unit sphere and the Stiefel manifold
as two examples of applications. In the first example, we consider a variational eigenvalue
problem on a sphere. Both linear and nonlinear eigenvalue problems are considered. In the
case of a linear eigenvalue problem, we show that the first eigenvector is the unique global
minimum with a positive Hessian, and all the subsequent eigenvectors are all strict saddles
whose Hessian has at least one negative curvature direction given by the eigenvector itself.
Thus, our asymptotic escape analysis applies to this manifold optimization problem. In the
case of the nonlinear eigenvalue problem, we cannot guarantee by our analysis that the saddles
are all strict saddles. But we can verify this numerically. Our numerical results show that
the PGD gives good convergence for both linear and nonlinear eigenvalue problems. In the
case when we have a cluster of eigenvalues, we further propose an acceleration method by
formulating a simultaneous eigensolver on the Stiefel manifold. We observe a considerable
speedup in the convergence of the PGD method on the Stiefel manifold.

We point out that the analysis of this paper is purely asymptotic. The quantitative study
of convergence rate will be the focus of our future work [27]. Notably, in contrast to the caveat
that gradient descent could take exponential time to escape saddles in the worst-case scenario
[12], empirical evidence in the figures of sections 4 and 5 and many examples reported in the
literature demonstrate that we usually have almost linear convergence to minimizers.

The rest of the paper is organized as follows. Section 2 contains the main results on
asymptotic escape of strict saddles (in particular nonisolated ones) on the Riemannian mani-
folds. In section 3, we explore the geometric structure of the closed low-rank matrix manifold
\scrM r. In section 4, phase retrieval is analyzed as an example of asymptotic escape of saddles
on \scrM r. We extend the application to other manifolds and a broader scope of problems in
section 5. Finally, we make some concluding remarks and discuss future works in section 6.

2. The projected gradient descent and asymptotic escape of nonisolated strict saddles.
In this section, we discuss the optimization technique we use, namely the projected gradientD
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 843

descent algorithm (PGD) with retraction onto the manifold. We will prove an important
property of the proposed technique; namely it is able to escape any strict saddle points and
always converge to minimizers. This may be obvious in the Euclidean spaces but not so
obvious on manifolds.

We stress that although our motivations (and hence notation conventions) are based on
the low-rank matrix manifold, what we discuss in this section can be easily generalized to
arbitrary finite dimensional Riemannian manifolds, as is mentioned in section 1. This works
as long as either (1) \scrM is embedded in an ambient Banach space and inherits its metric
(so that the embedded gradient \nabla is well defined), and there exists a well-defined first-order
retraction R ; or (2) \scrM is ``flat"" so that no retraction R is needed.

The asymptotic escape of strict saddle points combined with a good landscape of the
objective function can lead to asymptotic convergence to minimizers. This could serve as a
fundamental tool for various application tasks. More applications will be discussed section 5.

2.1. Projected gradient descent on the manifold. Assume we are given a function f(\cdot ) :
\scrM \rightarrow R where \scrM can be a general manifold. We start from a proper initial guess \bfitZ 0 \in \scrM .
The iteration points \{ \bfitZ n\} Nn=0 are generated by

(2.1) \bfitZ n+1 = \scrR 
\bigl( 
\bfitZ n  - \alpha nPTZn

(\nabla f(\bfitZ n))
\bigr) 
.

Here \nabla f is the embedded gradient of f in its ambient Banach space , PTZn
is the projection

onto the tangent space of \scrM at point \bfitZ n, \alpha n is the nth stepsize, and \scrR : TZ \rightarrow \scrM is a first-
order retraction. The retraction operation is necessary in that it makes sure the generated
iteration point still stays on the manifold \scrM . Specifically, we define the retraction as follows.

Definition 2.1 (Retraction). Let \| \cdot \| be the norm of the embedded Banach space of \scrM . Let
T\bfitZ be the tangent space (or tangent cone) of \scrM at \bfitZ . We call \scrR \bfitZ : T\bfitZ \rightarrow \scrM a retraction
if, for any \xi \in T\bfitZ ,

lim
\alpha \rightarrow 0+

\| \scrR \bfitZ (\alpha \xi ) - (\bfitZ + \alpha \xi )\| 
\alpha 

= 0.

We also write \scrR (\bfitZ + \alpha \xi ) equivalently for \scrR \bfitZ (\alpha \xi ).

We will refer to (2.1) as the first-order retraction property .

Remark 2.2. It is worth mentioning that there exist other manifold optimization tech-
niques, e.g., without the projection step T\bfitZ n . We choose the current PGD here mainly for
two reasons:

(1) Most of the operations we list here rely heavily on tangent bundles. For example,
the first-order retraction (2.1) only holds for \xi \in T\bfitZ . The embedded gradient \nabla f
is not always in T\bfitZ ---only PT\bfitZ 

(\nabla f(\bfitZ )) is. In fact, only the projected embedded
gradient corresponds to the true Riemannian gradient: PT\bfitZ 

(\nabla f(\bfitZ )) = gradf(\bfitZ ),
where gradf(\bfitZ ) is the Riemannian gradient of f on \scrM at point \bfitZ .

(2) Retraction\scrR \bfitZ can be computed more efficiently when the increment lies in the tangent
space. For example, on the low-rank matrix manifold it involves a smaller-scale SVD
[50], [61], [63].D
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844 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

2.2. Asymptotic escape of isolated saddle points. Consider the PGD method with a
fixed stepsize \alpha . Let \varphi be the iteration operation and

\bfitZ n+1 = \varphi (\bfitZ n) := R(\bfitZ n  - \alpha PT\bfitZ n
(\nabla f(\bfitZ n))).

Let \bfitX \ast be a critical point of f . The most common nonminimizer critical point is a
``strict saddle."" Intuitively speaking, a strict saddle point \bfitZ \ast is a point around which there
is a strictly decreasing direction (Hessf(\bfitZ \ast ) has a negative eigenvalue) and no flat direction
(Hessf(\bfitZ \ast ) has no zero eigenvalue). To rigorously define strict saddle points we need the
following definitions.

Definition 2.3 (Levi-Civita connection). The Levi-Civita connection \widetilde \nabla \xi \eta , acting on two vec-
tors or vector fields \eta , \xi in the tangent bundle T\scrM , is the unique affine connection on \scrM 
that preserves the metric and is torsion-free.

Note that this is not to be confused with the operator \nabla in (2.1), which is used to denote
the gradient in the ambient space.

Definition 2.4 (Riemannian gradient). Given f : \scrM \rightarrow \BbbR , the Riemannian gradient of f is
the vector field gradf , such that for any vector field Y on \scrM ,

\langle gradf, Y \rangle = Y (f),

where \langle \cdot , \cdot \rangle is the metric on \scrM and Y (\cdot ) is the vector field action, i.e., Y (f) =
\sum 

i Yi
\partial f
\partial Ei

for
a basis \{ Ei\} .

Remark 2.5. The Riemannian gradient is equivalent to the tangent space projection of
the embedded gradient in the ambient space, i.e.,

grad f(\bfitZ ) = PT\bfitZ 
(\nabla f(\bfitZ )).

Further, if the metric of \scrM is inherited from the ambient space, then the Levi-Civita connec-
tion on \scrM is the tangent space projection of the Levi-Civita connection (natural gradient) of
the ambient space. Specifically, for \eta , \xi \in T\scrM , we have\widetilde \nabla \xi \eta = PT\bfitZ 

(\nabla \eta [\xi ]).

Definition 2.6 (Hessian). Given a function f : \scrM \rightarrow \BbbR , the Riemannian Hessian of f at
point \bfitZ is Hess f(\bfitZ ) : T\bfitZ \scrM \rightarrow T\bfitZ \scrM defined by

(2.2) Hess f(\bfitZ )[\xi ] = \widetilde \nabla \xi grad f(\bfitZ ),

where \widetilde \nabla (\cdot )(\cdot ) is the Levi-Civita connection on \scrM .

Proposition 2.7. If the retraction is second-order, i.e.,

PT\bfitZ 

\biggl( 
d2

d\alpha 2
\scrR \bfitZ (\alpha \xi ) | \alpha =0

\biggr) 
= 0,

then

(2.3) Hess f(\bfitZ ) = Hess (f \circ \scrR \bfitZ )(0).D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 845

In particular, (2.3) is true for the low-rank matrix manifold, and this gives a more com-
putable definition of Hessian; see also [61]. It is proved in [2] that in the case of the low-rank
matrix manifold, the above expression recovers Definition 2.6.

Definition 2.8 (Strict saddle point). We call \bfitZ \in \scrM a strict saddle point of f(\cdot ) : \scrM \rightarrow \BbbR 
if

1. PT\bfitZ 
(\nabla f(\bfitZ )) = 0;

2. Hess f(\bfitZ ) as a linear operator has at least one positive eigenvalue, at least one negative
eigenvalue, and no zero eigenvalue.

In contrast to Definition 2.8, we call a point \bfitZ \in \scrM a local minimizer if Hess f(\bfitZ ) is
positive semidefinite. Note that this is only legitimate in the broader sense, as the PGD does
not distinguish between local minima and degenerate saddles, i.e., saddles that only have
higher than second-order negative curvature.

Then we have the following main result.

Theorem 2.9 (PGD asymptotically only converges to a local minimum). Let f(\cdot ) : \scrM \rightarrow \BbbR 
be a C2 function on \scrM . Suppose that f has either finitely many saddle points (denoted as set
S), or countably many saddle points in a compact submanifold of \scrM , and all saddle points
of f are strict saddles as defined in Definition 2.8. Let C be set of all local minimizers and
\{ \bfitZ n\} be the series of points generated by the projected gradient descent algorithm on \scrM ; then
we have

1. Pr(limn\rightarrow \infty \bfitZ n \in S) = 0;
2. if limn\rightarrow \infty \bfitZ n exists, then Pr(limn\rightarrow \infty \bfitZ n \in C) = 1.

In other words, the PGD with a random initialization is unlikely to converge to a saddle
point \bfitZ \ast as long as \bfitZ \ast is a strict saddle.

To prove this result, the main tool is the stable manifold theorem on low-rank matrix
manifolds, which is an extension of similar results in the Euclidean spaces.

Definition 2.10 (Definition 4.13 in [4]). A fixed point p \in \scrM of a smooth diffeomorphism
\varphi : \scrM \rightarrow \scrM is called hyperbolic iff none of the complex eigenvalues of D\varphi p : Tp\scrM \rightarrow Tp\scrM 
have length 1, where D\varphi is the Riemannian gradient of \varphi at point p.

For a fixed point p of \varphi , there is a splitting of Tp\scrM that is preserved by \varphi :

(2.4) D\varphi p : T
s
p\scrM \oplus T u

p \scrM \rightarrow T s
p\scrM \oplus T u

p \scrM ,

where \varphi is contracting on T s
p\scrM and expanding on T u

p \scrM . Since the manifold \scrM is finite
dimensional, for a hyperbolic fixed point p on \scrM , we can always find a \lambda \in (0, 1) such that

\| D\varphi | T s
p\scrM \| < \lambda , \| (D\varphi | Tu

p \scrM ) - 1\| < \lambda .

Theorem 2.11 (Theorem 4.15 in [4]). If \varphi : \scrM \rightarrow \scrM is a smooth diffeomorphism of a
finite dimensional smooth manifold \scrM , and p is a hyperbolic fixed point of \varphi , then

W s
p (\varphi ) := \{ x \in \scrM | lim

n\rightarrow \infty 
\varphi n(x) = p\} D
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846 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

is an immersed submanifold of \scrM with TpW
s
p (\varphi ) = T s

p\scrM . Moreover, W s
p (\varphi ) is the surjective

image of a smooth injective immersion

Es : T s
p\scrM \rightarrow W s

p (\varphi ) \subseteq \scrM .

Hence, W s
p (\varphi ) is a smooth injectively immersed open disk in \scrM . We call it the stable manifold

of p with respect to \varphi . The unstable manifold W u
p (\varphi ) of p can also be defined accordingly.

Proof of Theorem 2.9. From Theorem 2.11, if \varphi is a diffeomorphism and\bfitZ \ast is a hyperbolic
point of \varphi , then WS

\bfitZ \ast (\varphi ), the stable set of \bfitZ \ast , will be a lower dimensional submanifold in \scrM .
Then, the converging set of \bfitZ \ast will have measure 0 with respect to the manifold, and any
random initialization of PGD will escape such a strict saddle point almost surely.

We first prove that \bfitZ \ast is a hyperbolic point. The diffeomorphic property of \varphi is actually
contained in the proof of the former.

Given \xi \in T\bfitZ \ast \scrM , for any \~\xi that satisfies \bfitZ \ast + \~\xi \in \scrM , PT\bfitZ \ast (\~\xi ) = \xi , we have

Hessf(\bfitZ \ast )[\xi ] +\scrO (\| \xi \| 2) = \widetilde \nabla \xi gradf(\bfitZ \ast )

= PT\bfitZ \ast (\nabla gradf(\bfitZ \ast )[\xi ])

= PT\bfitZ \ast (gradf(\bfitZ 
\ast + \~\xi ) - gradf(\bfitZ \ast )) +\scrO (\| \xi \| 2)

= PT\bfitZ \ast (gradf(\bfitZ 
\ast + \~\xi )) +\scrO (\| \xi \| 2).

Note that gradf(\bfitZ \ast ) = 0 since Z\ast is a critical point. Therefore, for \varphi (\bfitZ n) = R(\bfitZ n  - 
\alpha PT\bfitZ n

(\nabla f(\bfitZ n))),

D\varphi \bfitZ \ast [\xi ] = PT\bfitZ \ast (\varphi (\bfitZ 
\ast + \~\xi ) - \varphi (\bfitZ \ast )) + o(\| \xi \| )

= PT\bfitZ \ast (R(\bfitZ \ast + \~\xi  - \alpha gradf(\bfitZ \ast + \~\xi )) - \bfitZ \ast ) + o(\| \xi \| )
= PT\bfitZ \ast (\bfitZ 

\ast + \~\xi  - \alpha gradf(\bfitZ \ast + \~\xi ) + o(\| \xi \| ) - \bfitZ \ast )

= PT\bfitZ \ast (\~\xi  - \alpha gradf(\bfitZ \ast + \~\xi )) + o(\| \xi \| )
= \xi  - \alpha Hessf(\bfitZ \ast )[\xi ] + o(\| \xi \| ).

We have

D\varphi \bfitZ \ast [\xi ] = \xi  - \alpha Hess(f)(\bfitZ \ast )[\xi ],

i.e.,

D\varphi \bfitZ \ast = I  - \alpha Hess(f)(\bfitZ \ast ).

Thus \bfitZ \ast being strict saddle implies that, by choosing \alpha sufficiently small (but only depending
on the eigenvalues of Hess(f)(\bfitZ \ast )), \bfitZ \ast is hyperbolic with respect to \varphi .

Now, \varphi is a diffeomorphism at\bfitZ \ast because, if we choose \alpha small enough so that \| Hess(f)(\bfitZ \ast )\| 
< 1

\alpha , then D\varphi is always invertible and bounded. If there are only finitely many strict saddle
points, or there are a countably infinite number of them in a compact region, \| Hess(f)(\bfitZ \ast )\| 
shall be upper bounded, and such an \alpha is always attainable.D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 847

Using Theorem 2.11, the set of points on \scrM that converge to \bfitZ \ast is a lower dimensional
submanifold in \scrM , which has measure 0. We could safely deduce that, by randomly sampling
a start point \bfitZ 0 in \scrM , the probability of converging to a strict saddle point is 0, i.e.,

Prob( lim
k\rightarrow \infty 

\bfitZ k = \bfitZ \ast ) = 0.

Since there are only countably many strict saddle points, \cup \bfitZ \ast \in SW
S
\bfitZ \ast (\varphi ) still has measure

0. So the PGD with a randomly sampled starting point converges to any point in S with
probability 0. This proves the first argument.

As for the second argument, since the stepsize is a constant \alpha , the only stationary points
of the algorithm are first-order critical points of the loss function. The local maximizers are
ruled out by the descent property of gradient descent. So if the limit point exists, it is a local
minimizer with probability 1.

Remark 2.12. As is mentioned at the beginning of this section, another case is when the
manifold \scrM is ``flat"" and no retraction is needed, i.e., \bfitZ + \xi \in \scrM for any \bfitZ \in \scrM and
\xi \in T\bfitZ \scrM . If no embedding Banach space is present, the optimization technique might be
reduced to using the Riemannian gradient directly. The above proof is also reduced to applying
D directly to \bfitZ  - grad f(\bfitZ ) and is trivially true.

The natural question to ask is ``What if Hess(f)(X\ast ) has zero eigenvalue(s) in addition to
negative eigenvalues?"" In this case, D\varphi has center directions that are neither expanding nor
contracting. This can be taken into account by extending the stable manifold theorem to a
slightly stronger version, which is the following.

Theorem 2.13. Let \varphi : \scrM \rightarrow \scrM be a smooth diffeomorphism of a finite dimensional smooth
manifold \scrM , and p is a fixed point of \varphi . Assume that

(2.5) Tp\scrM = T s
p\scrM \oplus T c

p\scrM \oplus T u
p \scrM ,

which is the invariant splitting of Tp\scrM into contracting, centering, and expanding subspaces
corresponding to eigenvalues of magnitude less than, equal to, and greater than 1. Let

T cs
p \scrM := T s

p\scrM \oplus T c
p\scrM .

Then we have that

W s
p (\varphi ) := \{ x \in \scrM | lim

n\rightarrow \infty 
\varphi n(x) = p\} 

is an immersed submanifold of \scrM and TpW
s
p (\varphi ) \subseteq T cs

p \scrM . We call it the (generalized) stable
manifold of p with respect to \varphi .

For those who are interested in the proof, a detailed one for the Euclidean case can be
found in Theorem III.7 in [54], and the extension to the manifold is similar to Theorem 2.11.

Definition 2.14 (Strict saddle point, the general definition). We call \bfitZ \in \scrM a strict saddle
point to f(\cdot ) : \scrM \rightarrow \BbbR if

1. PT\bfitZ 
(\nabla f(\bfitZ )) = 0;D
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848 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

2. Hess f(\bfitZ ) has at least one negative eigenvalue.

Thus, for a strict saddle point \bfitZ \ast where Hess(f) possibly has zero eigenvalue(s), we
still have dim(W s

p (\varphi )) \leq dim(T cs
p \scrM ) < dim \scrM , and we have Prob(limk\rightarrow \infty \bfitZ k = \bfitZ \ast ) = 0.

Therefore, we have the following theorem.

Theorem 2.15. Let f(\cdot ) : \scrM \rightarrow \BbbR be a C2 function on \scrM . Suppose that f(\cdot ) : \scrM \rightarrow \BbbR has
either finitely many saddle points, or countably many saddle points in a compact submanifold
of \scrM , and all saddle points of f are strict saddles as defined in Definition 2.14. Then the
results of Theorem 2.9 still hold, i.e.,

1. Pr(limn\rightarrow \infty \bfitZ n \in S) = 0;
2. if limn\rightarrow \infty \bfitZ n exists, then Pr(limn\rightarrow \infty \bfitZ n \in C) = 1.

2.3. A closer look at the critical points: Nonisolated case. As is mentioned in section
1, it is very common that there are more than a countable number of strict saddle points, e.g.,
when they form a submanifold, or a more complicated set, with Lebesgue measure 0. Empirical
evidence shows satisfactory convergence of the PGD to its minimum, which indicates successful
escape from these strict saddles. But there is a lack of theoretical analysis to confirm this
observation. In the following, we will use some further results from the Morse theory and its
extensions to provide an analytical tool for this purpose.

Definition 2.16 (Critical submanifold). For f : \scrM \mapsto \rightarrow \BbbR , a connected submanifold \scrN \subset \scrM 
is called a critical submanifold of f if every point \bfitZ in \scrN is a critical point of f , i.e.,
grad f(\bfitZ ) = 0 for any \bfitZ \in \scrN .

Definition 2.17 (Strict critical submanifold). A critical submanifold \scrN of f is called a strict
critical submanifold if, for all \bfitZ \in \scrN ,

\lambda min(Hess f(\bfitZ )) \leq c < 0,

where \lambda min(\cdot ) takes the smallest eigenvalue, and c = c(\scrN ) is a uniform constant for all \bfitZ \in \scrN 
depending only on \scrN .

Analogous to the stable/unstable manifolds of critical points in Theorems 2.11 and 2.13,
we may define stable/unstable manifolds of critical submanifolds.1

Definition 2.18 (Generalized stable/unstable manifold). Let \varphi : \scrM \rightarrow \scrM be a smooth
diffeomorphism of \scrM . Then for a submanifold of \scrN \subset \scrM , the stable manifold and unstable
manifold of \scrN with respect to \varphi are defined as

W s
\scrN (\varphi ) := \{ x \in \scrM | lim

n\rightarrow \infty 
\varphi n(x) \in \scrN \} ,

W u
\scrN (\varphi ) := \{ x \in \scrM | lim

n\rightarrow  - \infty 
\varphi n(x) \in \scrN \} .

Given a nontrivial strict critical submanifold \scrN of f , at every point p \in \scrN , the tangent
space is split as

Tp\scrM = Tp\scrN \oplus \nu p\scrN ,

1The reader shall be careful while distinguishing different ``manifolds"": the domain of the function f is a
manifold, and the critical set of f is now a submanifold, but the names of stable/unstable manifolds are given
regardless of the domain of f .D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 849

where \nu p\scrN is the normal space of \scrN at p immersed in \scrM . Similar to (2.5), it is further split
into

Tp\scrM = Tp\scrN \oplus (\nu sp\scrM \oplus \nu cp\scrM \oplus \nu up\scrM ).

To arrive at a result similar to that stated in Theorem 2.13, it suffices to define

T cs
p \scrM := Tp\scrN \oplus (\nu sp\scrM \oplus \nu cp\scrM )

and notice that TpW
s
\scrN (\varphi ) \subseteq T cs

p \scrM for any p \in \scrN . Since T cs
p \scrM is dimension deficient by

the definition of a strict critical submanifold, any random initialization still falls into the
converging set of \scrN with probability 0. Because the union of a finite number of 0-measure
sets still has measure 0, the above result works well with countably many critical submanifolds.
To sum up, we have the following theorem.

Theorem 2.19. Let f(\cdot ) : \scrM \rightarrow \BbbR be a C2 function on \scrM . Suppose that the saddle set S
of f(\cdot ) : \scrM \rightarrow \BbbR consists of finitely many critical submanifolds, or countably many critical
submanifolds in a compact region of \scrM , and all of them are strict critical submanifolds as
defined in Definition 2.18. Then the results of Theorem 2.9 still hold, i.e.,

1. Pr(limn\rightarrow \infty \bfitZ n \in S) = 0;
2. if limn\rightarrow \infty \bfitZ n exists, then Pr(limn\rightarrow \infty \bfitZ n \in C) = 1.

For situations more complicated than those stated in the above theorem, it is conjectured
that the transversality relationship of submanifolds can be exploited to find out the succession
relationship of critical sets. We refer the reader to Appendix A for some useful tools and
interesting insights in this direction.

Finally, we point out that the number of critical submanifolds being countable is an
essential condition, but not a binding one. Of course, one reason for this statement is that it
is often satisfied in practice. Namely, in the known applications with very complicated saddle
geometries, e.g., matrix factorization and nonlinear eigenproblems, the saddles can still be
grouped into countably many points or submanifolds. In those cases, Theorem 2.9, Theorem
2.15, or Theorem 2.19 is applicable.

But even from a purely theoretical point of view, the number of strict critical submanifolds
being uncountable is unlikely. This is in accordance with the result of a recent work [45].
The result explicitly includes the case of ``uncountably many critical points,"" but from the
viewpoint of submanifolds, such a result belongs to the case of ``countably many submanifolds""
in our Theorem 2.19. (A submanifold can contain uncountably many points but is still a single
object to escape.) This can also be inferred from the use of a countable subcover in Theorem
10 of [45] and the subsequent proof of the main theorem, where the convergence set to any
saddle is categorized into a countable number of stable manifolds.

To further illustrate this point, here we give some interesting examples. The saddle sets
in Example 2.20 occupy a zero measure set in the whole manifold. They cannot be assembled
into countably many connected submanifolds. We will analyze and see why they cannot be
almost surely avoided.

Example 2.20. Let \scrM = [ - 1, 2] \times [ - 1, 1] \subset \BbbR 2 be a rectangular region, viewed as a 2-
dimensional submanifold of \BbbR 2. Then the tangent space T\scrM equals \scrM . To construct theD
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850 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

function f on \scrM , we need the 1-dimensional Smith--Volterra--Cantor (``fat Cantor"") set V in
[0, 1]. The construction is as follows:

(1) Remove the middle interval of length 1
4 from [0, 1], and the remaining set is [0, 38 ]\cup [

5
8 , 1];

(2) Remove 2 middle subintervals of length 1
42

from the 2 remaining intervals, and the
remaining set is [0, 5

32 ] \cup [ 732 ,
3
8 ] \cup [58 ,

25
32 ] \cup [2732 , 1];

(3) Remove 4 middle subintervals of length 1
43

from the 4 remaining intervals;
(4) . . .

A visualization of the construction is given in Figure 1a. The construction is different from
that of the classical Cantor set in that we remove proportionally shorter subintervals, instead
of subintervals proportional to the mother interval. Therefore, V has positive measure in \BbbR ,
meas(V ) = 1

2 , while the classical Cantor set has zero measure. Still, V is nowhere dense.
We look for a synthetic objective function on \scrM in the form

f : \scrM \rightarrow \BbbR , f(x, y) =  - p(x) + y2,

where p(x) is a function of certain regularity on the 1-dimensional interval x \in [ - 1, 2]. Con-
sider two examples:

(A) Define pA(x) = 0 for x \in V . As V is a closed set, write V c = [ - 1, 2]\setminus V =
(
\bigcup 

\alpha (a\alpha , b\alpha ))\cup [ - 1, 0)\cup (1, 2] as the disjoint union of intervals. On each interval (a, b),
let

pA(x) =

\left\{     
(x - a)2 for a < x \leq a+ (b - a)

4 ,

C1(x - a+b
2 )4 + C2(x - a+b

2 )2 + C3 for a+ (b - a)
4 < x \leq b - (b - a)

4 ,

(b - x)2 for b - (b - a)
4 < x < b,

where C1 =
8

(b - a)2
, C2 =  - 2, C3 =

5(b - a)2

32 . See a visualization in Figures 1b and 1c.

(B) Similar to (A), but on each interval (a, b), let

pB(x) =

\left\{     
(x - a)4 for a < x \leq a+ (b - a)

4 ,

C1(x - a+b
2 )6 + C2(x - a+b

2 )4 + C3 for a+ (b - a)
4 < x \leq b - (b - a)

4 ,

(b - x)4 for b - (b - a)
4 < x < b,

where C1 =
512

3(b - a)4
, C2 =  - 24

(b - a)2
, C3 =

11(b - a)2

96 .

It is easy to see that both functions pi(x), i = A or B, satisfy p(x) \geq 0 and p(x) = 0 iff
x \in V . Thus for fi(x, y) =  - pi(x) + y2, the saddle set of f is S = V \times [0]. Viewed in the 2-
dimensional manifold, it has zero measure. But the converging set of S is W s

S(\varphi ) = V \times [ - 1, 1].
It has positive measure in \scrM : meas(W s

S(\varphi )) = 1. If we start the PGD with a uniform random
initialization, the probability that \{ \bfitZ n\} \infty n=0 end up towards a saddle is

Pr( lim
n\rightarrow \infty 

\bfitZ n \in S) =
1

6
> 0.

So what happens? The reason that gradient descent fails to escape such a saddle set is
well hidden. Specifically, in example (A), pA(x) is only C1 but not C2. For each x \in V , theD
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 851

second derivatives of pA(x) on two sides are not equal. One side of x is an open interval in
V c, so the second derivative is 2; while on the other side x is the limit point of a sequence
\{ xj\} \infty j=1 \subset V , and the second derivative is not well defined. As for example (B), pB(x) is C

3

over [ - 1, 2] and thus fB(x, y) satisfies the regularity requirements. However, p\prime \prime B(x) = 0 for
all x \in V , so x \in V are not strict saddles.

A loosely relevant discussion of the above constructions can be found in [49, Exercise
5.21]. This example is purely synthetic, but it raises a healthy warning as to how much the
assumptions can be relaxed while the escape from saddle sets is still valid.

(a) Construction of Smith--
Volterra--Cantor set for the first 5
steps.

(b) Example of pA(x) on a single in-
terval.

(c) Visualization of f(x, y) =  - pA(x) + y2, where
the saddle set is the middle of the ``plateaus.""

Figure 1. Illustration of Example 2.20.

3. Exploring the low-rank matrix manifold structure. The low-rank matrix manifold
\scrM r := \{ \bfitX : rank(\bfitX ) = r\} has long been studied in low-rank recovery problems, and there has
been a glossary of previous works on various applications. Some real-world applications carry
an intrinsic low-rank matrix structure with them, e.g., matrix sensing and matrix completion,
while others were originally formulated as the optimization in the Euclidean space, e.g., the
phase retrieval problem to be discussed in section 4. One obvious advantage of manifold
optimization in this case is that, instead of finding \bfitU \in \BbbR n\times r such that \bfitX = \bfitU \bfitU \top , solving
\bfitX directly on the manifold \scrM r itself helps avoid the duplication of spurious critical points
(i.e., \bfitU \bfitU \top versus (\bfitU \bfitR )(\bfitU \bfitR )\top , \bfitR unitary). Another more important advantage is that
replacing \bfitU \bfitU \top with \bfitX changes the form of the objective function, and it will drastically
improve the convergence rate of a first-order method. The latter will be the topic of our
upcoming paper [27].

This section is a self-contained discussion of some essential properties of the low-rank
matrix manifold \scrM r and its closure \scrM r.D
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852 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

3.1. Manifold setting. First, it is necessary to point out that most previous works are
based on the fixed-rank manifold \scrM r, but the following reasons show that the fixed-rank
manifold is not rigorous enough:

(1) The fixed-rank manifold \scrM r is not closed. Optimization techniques like the gradient
descent generate a sequence of points towards the ground truth, and closedness is
naturally necessary for asymptotic convergence analysis.

(2) It is possible that at some step (\bfitZ n  - \alpha PT\bfitZ n
(\nabla f(\bfitZ n))) happens to have rank lower

than r and falls out of \scrM r.
(3) The fixed-rank manifold \scrM r also rules out the possibility that the ground truth matrix

has (intrinsic) rank \~r < r. This prohibits overapproximation, i.e., when prior knowl-
edge on \~r is not available and people choose a larger guess attempting to capture more
information.

Therefore, we propose considering \scrM r = \{ \bfitZ : rank(\bfitZ ) \leq r\} instead. This closure is
obtained by taking the union of all lower-rank manifolds \scrM s (s < r) together with the rank-r
manifold. On the one hand, the essential definitions and properties of \scrM r only need to be
slightly modified to accommodate \scrM r, for example by introducing the ``tangent cone"" to be
defined below. On the other hand, this poses no actual challenge to numerical computation, as
in practice the randomly generated points would fall into \scrM r\setminus \scrM r with probability 0, unless
overapproximation is involved.

The following lemmas validate that the closure \scrM r is a nice domain to consider. Note
that the structure of the manifolds can be different on the real/complex field, or with/without
symmetry, as they take different subsets of the Euclidean space \BbbR m\times n. So they are listed
separately.

Lemma 3.1 (Real, asymmetric case). Let \scrM r = \{ \bfitZ \in \BbbR m\times n : rank(\bfitZ ) \leq r\} and \scrM s =
\{ \bfitZ \in \BbbR m\times n : rank(\bfitZ ) = s\} . Then

(1) \scrM r is dense in \scrM r;
(2) \scrM r is connected;
(3) the local dimension of \scrM s is (m+ n - s)s;
(4) the boundary of \scrM r is \scrM r \setminus \scrM r = \cup 0\leq s<r\scrM s.

Proof.
(1) For \bfitZ \in \scrM r \setminus \scrM r, it can be approached by a sequence of rank-r matrices \{ \bfitZ k\} \subset \scrM r

such that limk\rightarrow \infty \bfitZ k = \bfitZ .
(2) Consider \widetilde \Phi r : SO(m,\BbbR )\times \BbbR r

+ \times SO(n,\BbbR ) \rightarrow \BbbR m\times n,

( \widetilde \bfitU ,\bfitsigma r, \widetilde \bfitV ) \mapsto \rightarrow \widetilde \bfitU \widetilde \Sigma \widetilde \bfitV \top ,

where SO(m,\BbbR ) is the real orthogonal group in dimension m, \bfitX = \widetilde \bfitU \widetilde \Sigma \widetilde \bfitV \top is the full
SVD of \bfitX , \bfitsigma r \in \BbbR r, \bfitsigma r(i) \not = 0, i = 1, . . . , r, and

\widetilde \Sigma =

\biggl( 
diag(\bfitsigma r)

0(m - r)\times (n - r)

\biggr) 
.

Since SO(m,\BbbR ) \times \BbbR r
+ \times SO(n,\BbbR ) is connected and \widetilde \Phi r is continuous, its orbit \scrM r is

connected.D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 853

(3) Consider the compact SVD \bfitX = \bfitU diag(\bfitsigma s)\bfitV 
\top , where \bfitU \in \BbbR m\ast s, \bfitV \in \BbbR n\ast s, and \bfitsigma s

is properly ordered. The local dimension is s+ (2m - s - 1)s
2 + (2n - s - 1)s

2 = (m+ n - s)s.
(4) It is obviously true.

Lemma 3.2 (Complex, non-Hermitian case). Let \scrM r = \{ \bfitZ \in \BbbC m\times n : rank(\bfitZ ) \leq r\} and
\scrM s = \{ \bfitZ \in \BbbC m\times n : rank(\bfitZ ) = s\} . Then

(1) \scrM r is dense in \scrM r;
(2) \scrM r is connected;
(3) the local dimension of \scrM s is (2m+ 2n - s)s;
(4) the boundary of \scrM r is \scrM r \setminus \scrM r = \cup 0\leq s<r\scrM s.

Proof.
(3) Consider the compact SVD \bfitX = \bfitU diag(\bfitsigma r)\bfitV 

\ast . The local dimension is s+ (4m - s - 1)s
2 +

(4n - s - 1)s
2 = (2m+ 2n - s)s.

The Hermitian low-rank matrix manifold is also used very often as it fits the assumptions
of many applications. But its structure is somewhat different from general non-Hermitian
case because it has branches; see also [21]. The real symmetric case is very similar, and we
omit the details.

Lemma 3.3 (Complex, Hermitian case). Let \scrM r = \{ \bfitZ \in \BbbS n(\BbbC ) : rank(\bfitZ ) \leq r\} and \scrM s =
\{ \bfitZ \in \BbbS n(\BbbC ) : rank(\bfitZ ) = s\} . Then

(1) \scrM r is dense in \scrM r;
(2) \scrM r has r + 1 disjoint branches and each branch is connected;

(3) the local dimension of \scrM s is (4m - s+1)s
2 ;

(4) the boundary of \scrM r is \scrM r \setminus \scrM r = \cup 0\leq s<r\scrM s.

Proof.
(2) Consider the set of matrices that has p positive eigenvalues and q negative eigenvalues,

p+ q = r. Define

\Psi p,q : GL+(n,\BbbC ) \rightarrow \BbbS n,
\bfitP \mapsto \rightarrow \bfitP \bfitI p,q\bfitP 

\ast ,

where GL+(n,\BbbC ) is the complex positive-determinant group in dimension n, and

\bfitI r =

\left(  \bfitI p
 - \bfitI q

0(n - r)\times (n - r)

\right)  .

Thus, the orbit of each \Psi p,q is connected. The tuple (p, q) is called the signature of
the matrix. However, matrices with different signatures are not path-connected on
\scrM r (they are path-connected only on \scrM r). So \scrM r has r+ 1 branches corresponding
to the orbits of \Psi r,0,\Psi r - 1,1, . . . ,\Psi 0,r.

(3) Consider \bfitX \in \scrM s, and let \bfitX = \bfitU \bfitD s\bfitU 
\ast be its compact eigenvalue decomposition

with eigenvalues properly ordered. Consider the mapping

\Phi s : (\bfitU ,\bfitsigma s) \mapsto \rightarrow \bfitU \bfitD s\bfitU 
\ast .D
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The local dimension is s+ (4m - s - 1)s
2 = (4m - s+1)s

2 .

3.2. Geometric properties of the manifold. Recall that the PGD is defined as

(3.1) \bfitZ n+1 = \scrR 
\bigl( 
\bfitZ n  - \alpha nPTZn

(\nabla f(\bfitZ n))
\bigr) 
,

which involves the embedded gradient \nabla f , the tangent space projection PTZn
, and the retrac-

tion \scrR back onto the manifold.
For the low-rank matrix manifold, let it inherit the metric from its ambient Euclidean

space, i.e., \langle A,B\rangle = trace(A\top B) and \| A\| = \| A\| F . The tangent space is defined as follows.

Definition 3.4 (Tangent space, non-Hermitian case). Let \bfitX \in \scrM r and \bfitX = U\Sigma V \top (or
\bfitX = U\Sigma V \ast ). Let \scrU = Col(U), \scrV = Col(V ) be the column spaces of U and V , respectively.
Then the tangent space of \scrM r at \bfitX is

TX\scrM r = (\scrU \otimes \scrV )\oplus (\scrU \otimes \scrV \bot )\oplus (\scrU \bot \otimes \scrV ).

The projection operator onto the tangent space is

PTX
= P\scrU \otimes I + I \otimes P\scrV  - P\scrU \otimes P\scrV .

Definition 3.5 (Tangent space, Hermitian case). Let \bfitX \in \scrM r, \bfitX = UDU\top (or \bfitX =
UDU\ast ), and \scrU = Col(U). Then the tangent space of \scrM r at \bfitX is

TX\scrM s = (\scrU \otimes \scrU )\oplus (\scrU \otimes \scrU \bot )\oplus (\scrU \bot \otimes \scrU ).

The projection onto the tangent space is

PT\bfitX \scrM r = P\scrU \otimes I + I \otimes P\scrU  - P\scrU \otimes P\scrU .

Since \scrM r is constructed by ``gluing together"" all lower-rank matrix manifolds, it needs
some special treatment at \scrM s (s < r) in order to make up for the deficient dimension. In
addition to the classical tangent space [61], [33], we need the tangent cone at these lower
dimensional instances [50].

Definition 3.6 (Tangent cone, non-Hermitian case). Let \bfitX \in \scrM s \subset (\scrM r) where s < r,
\bfitX = U\Sigma V \top (or \bfitX = U\Sigma V \ast ), \scrU = Col(U), and \scrV = Col(V ). Then the tangent cone of Mr

at \bfitX is

TX\scrM r = TX\scrM s \oplus \{ \eta : \eta \in \scrU \bot \otimes \scrV \bot , rank(\eta ) = r  - s\} .

The projection onto the tangent cone is the projection onto the tangent space plus a rank (r - s)
principal component, i.e.,

PT\bfitX \scrM r
(Y ) = PT\bfitX \scrM s(Y ) + Yr - s,

where Yr - s is a best rank (r  - s) approximation of Y  - PT\bfitX \scrM s(Y ) in the Frobenius norm.D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 855

Definition 3.7 (Tangent cone, Hermitian case). Let \bfitX \in \scrM s \subset (\scrM r) where s < r, \bfitX =
UDU\top (or \bfitX = UDU\ast ), and \scrU = Col(U). Then the tangent cone of Mr at \bfitX is

TXMr = TX\scrM s \oplus \{ \eta : \eta \in \scrU \bot \otimes \scrU \bot , rank(\eta ) = r  - s\} .

The projection onto the tangent cone is

PT\bfitX \scrM r
(Y ) = PT\bfitX \scrM s(Y ) + Yr - s,

where Yr - s is a best rank (r  - s) approximation of Y  - PT\bfitX \scrM s(Y ) in the Frobenius norm.

The retraction, or the projection onto the manifold as it appears in some literature, is
defined as follows.

Definition 3.8 (Retraction). The natural retraction on \scrM r is defined as

\scrR N (\bfitZ + \xi ) = argmin
\bfitY \in \scrM r

\| \bfitZ + \xi  - \bfitY \| F .

In other words, \scrR N (\bfitZ + \xi ) is the best rank-r approximation of \bfitZ + \xi . Such a retraction not
only satisfies the first-order retraction property (2.1) but is actually second-order, i.e.,

\scrR (\bfitZ + \alpha \xi ) = \bfitZ + \alpha \xi +\scrO (\alpha 2).

Vandereycken in [61] provides an explicit second-order approximation\scrR (2)
N to this second-order

retraction \scrR N (\cdot ) and shows that \scrR N (\bfitZ + \xi ) = \scrR (2)
N (\bfitZ + \xi ) +\scrO (\| \xi \| 3).

It can also been seen from the above definition that the projected version of the gradient
descent is also cheaper in computation. Namely, solving \scrR N (\bfitZ n - \alpha n\nabla f(\bfitZ n)) involves solving
the SVD of a rank-n matrix, while \scrR N (\bfitZ n - \alpha nPT\bfitZ n

(\nabla f(\bfitZ n))) only involves that of a rank-2r
matrix. The latter is more favorable when r \ll n.

The above discussion of the low-rank matrix manifold lays the foundation for our analysis
both in section 4 about phase retrieval and in the upcoming paper [27] on more general
problems. While section 4 mainly focuses on \scrM 1 and studies the asymptotic convergence,
the upcoming paper will make heavier use of \scrM r and look at the convergence rate side of the
problem. We will put multiple problems into the same framework and give a complete picture
of the landscape of these optimization problems.

4. Asymptotic escape on the low-rank matrix manifold. In this section, we consider the
phase retrieval problem [7], [41], [57] on the rank-1 matrix manifold. This serves both as an
application of our asymptotic escape analysis for strict saddles and as a demonstration of the
possibility of treating such problems rigorously on the manifold as opposed to the Euclidean
space.

Since the phase retrieval problem involves a large number of stochastic measurements (i.e.,
random coefficient matrices \{ Aj(\omega )\} that constitute the objective function f\omega , \omega indicating
the random event), we will approach this problem in two steps. First, a crude analysis will
be performed on its expectation \BbbE \omega f . In this case we will locate a strict critical submanifold
in the shape of a ``hyper ring."" Then, for the nonexpectation case f = f(\omega ), we will prove aD
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856 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

rather surprising result that it almost surely has only a finite number of saddle points. We
will then show that with high probability, these saddles are strict saddles, and we know they
are located near the above ``hyper ring,"" so our asymptotic escape analysis is also applicable.
The asymptotic escape is further supported by numerical experiments.

4.1. Phase retrieval on manifold: The expectation. The problem of phase retrieval in
the case of real values aims to retrieve the information about x \in \BbbR n from the phaseless
measurements

yj = | a\top j x| 2, j = 1, . . . ,m,

where the entries of \{ aj(\omega )\} mj=1 are drawn from i.i.d. Gaussian. Usually a large m is needed
to ensure successful recovery of x.

Let \bfitX = xx\top , Aj = aja
\top 
j ; then yj = \langle Aj ,\bfitX \rangle . The problem can be posed on the rank-1

matrix manifold \scrM 1 as

min
\bfitZ \in \scrM 1

f(\bfitZ ) :=
1

2m

m\sum 
j=1

| \langle Aj ,\bfitZ  - \bfitX \rangle | 2.

We can apply the PGD to solve this problem on\scrM 1. We refer the reader to [7] in which the
authors discussed the practical aspects of the PGD applied to phase retrieval. It is easily seen
that \bfitZ = \bfitX is the unique global minimizer. To ensure asymptotic convergence of the PGD to
the global minimizer, it remains to rule out local minimizers and identify other critical points
as strict saddles. Previous works [41], [57] have shown that phase retrieval has no spurious
local minimum at least with high probability in the Euclidean setting. The analysis of saddles
has been more complicated because of the stochasticity and Euclidean space parameterization.

It helps to take the expectation of f(\bfitZ ) and look into its landscape on the manifold. Note
that

\=f(\bfitZ ) := \BbbE \omega f(\bfitZ ) =
3

2
\| \bfitZ \| 2F +

3

2
\| \bfitX \| 2F  - \| \bfitZ \| F \| \bfitX \| F  - 2\langle \bfitZ ,\bfitX \rangle ,

and the Riemannian gradient (i.e., projected gradient) is

grad \=f(\bfitZ ) = PT\bfitZ 
(\nabla \=f(\bfitZ )) = PT\bfitZ 

\biggl( \biggl( 
3 - \| \bfitX \| F

\| \bfitZ \| F

\biggr) 
\bfitZ  - 2\bfitX 

\biggr) 
.

The first-order condition is satisfied if either \bfitZ = \bfitX or

\| \bfitZ \| F =
1

3
\| \bfitX \| F , \langle \bfitZ ,\bfitX \rangle = 0.

The latter are spurious critical points, and they form an (n - 2)-dimensional submanifold on
\scrM 1. To see whether they are strict saddles, we look into their Hessian.

Let \bfitZ = zz\top , u = z/\| z\| 2; then u \bot x. Any element \xi \in T\bfitZ can be represented as \xi =
wuu\top +uv\top +vu\top , where w \in \BbbR , v \in \BbbR n, and v \bot u. From [61], RN (\bfitZ +\xi ) = \bfitZ +\xi +\eta +\scrO (\| \xi \| 3)
where \eta = vv\top /\| \bfitZ \| F . Using the formula that Hessf(\bfitZ ) = Hess(f \circ \scrR \bfitZ )(t\xi ) | t=0, we have

f \circ \scrR \bfitZ (\xi ) = f(\bfitZ + \xi + \eta ) +\scrO (\| \xi \| 3)

= f(\bfitZ ) + \langle \nabla f(\bfitZ ), \xi \rangle + \langle \nabla f(\bfitZ ), \eta \rangle + 1

2
\langle \nabla 2f(\bfitZ )[\xi ], \xi \rangle +\scrO (\| \xi \| 3),

D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 857

and collecting second-order terms gives

\langle Hess \=f(\bfitZ )[\xi ], \xi \rangle = 2\langle \nabla \=f(\bfitZ ), \eta \rangle + \langle \nabla 2 \=f(\bfitZ )[\xi ], \xi \rangle 

=

\biggl( 
6 - 2

\| \bfitX \| F
\| \bfitZ \| F

\biggr) 
\langle \bfitZ , \eta \rangle  - 4\langle \bfitX , \eta \rangle +

\biggl( 
3 - \| \bfitX \| F

\| \bfitZ \| F

\biggr) 
\| \xi \| 2F +

\| \bfitX \| F
\| \bfitZ \| 3F

\langle \bfitZ , \xi \rangle 2

=  - 4\langle \bfitX , \eta \rangle + 3

\| \bfitZ \| 2F
\langle \bfitZ , \xi \rangle 2

=  - 4
| x\top v| 2

\| \bfitZ \| F
+ 3w2.

Let \xi = ux\top +xu\top ; then \langle Hess \=f(\bfitZ )[\xi ], \xi \rangle =  - 12\| \bfitX \| F < 0. Therefore, these spurious critical
points are strict saddles. In fact they form a strict critical submanifold\scrN = \{ \bfitZ \in \scrM | \| \bfitZ \| F =
1
3\| \bfitX \| F , \langle \bfitZ ,\bfitX \rangle = 0\} . For p \in \scrN , Tp\scrM = dim(Tp\scrN ) = n - 2, dim(\nu sp\scrM ) = dim(\nu up\scrM ) = 1,
PGD will escape the strict critical submanifold and converge to the minimum of \=f almost
surely by Theorem 2.19.

Note that although we focus on the real case (i.e., \scrM 1(\BbbR )) here, the above results can
be generalized to the complex case easily, and the only change is in the constants concerning
Gaussian moments.

4.2. Phase retrieval: Dive into specific realizations. Specific realizations of phase re-
trieval may have a much more complicated landscape than the expectation case. However,
in the previous work [41] the authors have shown that for a slightly modified objective func-
tion, with high probability, the saddles of a specific realization of phase retrieval lie in the
neighborhood of the above \scrN , the so-called hyper ring.

Consider

f(\bfitZ ) =
1

2m

m\sum 
j=1

| \langle Aj ,\bfitZ  - \bfitX \rangle | 2

for a specific realization of \{ Aj(\omega )\} mj=1. The Riemannian gradient is

gradf(\bfitZ ) = PT\bfitZ 
(\nabla f(\bfitZ )) =

1

m

m\sum 
j=1

\langle Aj ,\bfitZ  - \bfitX \rangle PT\bfitZ 
(Aj),

and the Riemannian Hessian is

\langle Hessf(\bfitZ )[\xi ], \xi \rangle = 2\langle \nabla f(\bfitZ ), \eta \rangle + \langle \nabla 2f(\bfitZ )[\xi ], \xi \rangle 

=
1

m

m\sum 
j=1

(2\langle Aj ,\bfitZ  - \bfitX \rangle \langle Aj , \eta \rangle + \langle Aj , \xi \rangle 2).

The first result is a rather surprising one showing the finite number of critical points for
phase retrieval.

Lemma 4.1. When m \geq n, the above f(\bfitZ ) almost surely has only a finite number of critical
points on the manifold \scrM 1.D
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858 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

The proof of Lemma 4.1 is quite neat; it uses the following result from [16] that is restated
in [39].

Lemma 4.2. For a polynomial system P (x) = (p1(x), . . . , pn(x)) with x = (x1, . . . xn) and
di = degree pi(x), let pi(x) = p1i (x)+ p2i (x), where p1i (x) consists of all the terms of pi(x) with
degree di. If the homogeneous polynomial system P 1(x) = (p11(x), . . . , p

1
n(x)) = 0 has only the

trivial solution x = 0, then the original system P (x) = 0 only has a finite number of solutions.
Moreover, the number of solutions is exactly \Pi n

i=1di.

Proof of Lemma 4.1. The first-order condition gradf(\bfitZ ) = 0 is equivalent to

1

m

m\sum 
j=1

\langle Aj ,\bfitZ  - \bfitX \rangle PT\bfitZ 
(Aj) = 0.

Let \~U \in \BbbR n\times (n - 1) be the orthonormal complement of u. Then we have

PT\bfitZ 
(Aj) = uu\top Ajuu

\top + uu\top Aj
\~U \~U\top + \~U \~U\top Ajuu

\top 

= u(a\top j u)
2u\top + u(a\top j u \cdot a\top j \~U) \~U\top + \~U(a\top j u \cdot \~U\top aj)u

\top .

Applying a basis transform (u, \~U) to the first-order condition, by symmetry, it is equivalent
to \Biggl\{ 

1
m

\sum m
j=1\langle Aj ,\bfitZ  - \bfitX \rangle \cdot a\top j u \cdot a\top j u = 0,

1
m

\sum m
j=1\langle Aj ,\bfitZ  - \bfitX \rangle \cdot a\top j u \cdot a\top j \~U = 0,

which is equivalent to
\sum m

j=1\langle Aj ,\bfitZ  - \bfitX \rangle (a\top j u)aj = 0, i.e., finding z \in \BbbR n such that

m\sum 
j=1

(| a\top j z| 2  - | a\top j x| 2)(a\top j z)aj = 0.(4.1)

This is a third-order heterogeneous polynomial system of n equations for n unknowns. The
homogeneous part of the system is

m\sum 
j=1

| a\top j z| 2(a\top j z)aj = 0.

This system almost surely only has the trivial solution z = 0. To see this, note that it requires\sum m
j=1 | a\top j z| 4 = 0, i.e.,

a\top j z = 0, j = 1, . . . ,m.

Since \{ aj\} are i.i.d. Gaussian, when m \geq n this linear system is almost surely nondegenerate.
Now we can apply Lemma 4.2 and deduce that the original system only has a finite number
of solutions, i.e., f(\bfitZ ) only has a finite number of critical points on the manifold.D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 859

Remark 4.3. From (4.1), we can see that the first-order condition on the manifold \scrM 1 is
equivalent to that in the parameterized Euclidean space. This means that their critical points
match. Still, a critical point \bfitZ = zz\top corresponds to at least two critical points \pm z in the
parameterized Euclidean space. Also, their Hessian can be very different.

Remark 4.4. The result of Lemma 4.1 only applies to the case z \in \BbbR n. In the case z \in \BbbC n,
we conjecture that there would be a finite number of critical submanifolds instead. Each
critical submanifold consists of \{ ei\theta z\ast : \theta \in [0, 2\pi )\} , the family of phaseless vectors. To see
this, we can impose the constraints aHj z \in \BbbR to the above equations (this is always possible
by letting aj absorb the phase information, which does not alter Aj). Now we can replace
| \cdot | with (\cdot ) and again get a polynomial system. Lemma 4.2 is still applicable, and we get the
finiteness of solutions on this constrained subset. To remove the constraints, we put the phase
information back and obtain the submanifolds.

The Hessians of saddle points in phase retrieval are treated in the next lemma. Note that
the condition m \geq n in Lemma 4.1 only ensures the finite number of saddles. To make sure
that saddles are strict, we need m \gtrsim n log n, which is consistent with recovery guarantees from
previous works (see, e.g., [7] and references therein).

Theorem 4.5. Given \delta 0, \delta 1 > 0. If m \geq C(\delta 1)n log n, then with high probability no less
than 1 - C1

m  - e - C2n, for all \bfitZ that satisfy the conditions\left\{     
\langle \bfitZ ,\bfitX \rangle \leq \delta 0\| \bfitZ \| F \| \bfitX \| F ,
1
3  - \delta 0 \leq \| \bfitZ \| F

\| \bfitX \| F \leq 1
3 + \delta 0,

PT\bfitZ 
(\nabla f(\bfitZ )) = 0,

we have

\lambda min(Hess f(\bfitZ )) \leq \Lambda (\delta 0, \delta 1) < 0.

Here C1, C2 are absolute constants, C(\delta 1) depends only on \delta 1, and \Lambda depends only on \delta 0 and
\delta 1. If we further require \delta 0 <

1
6 , \delta 1 <

5
36 , then \lambda min(Hessf(\bfitZ )) <  - 1.

Proof of Theorem 4.5. The construction of a negative curvature direction is similar to
that in the previous subsection. Let \xi = xu\top + ux\top ; then \xi \in T\bfitZ . Since now x and z are not
orthogonal, \xi = wuu\top + uv\top + vu\top , where w = 2u\top x and v = x - uu\top x. The Hessian is

\langle Hessf(\bfitZ )[\xi ], \xi \rangle = 1

m

m\sum 
j=1

(2\langle Aj ,\bfitZ  - \bfitX \rangle \langle Aj , \eta \rangle + \langle Aj , \xi \rangle 2)

=
1

m

m\sum 
j=1

\biggl( 
2\langle Aj ,\bfitZ  - \bfitX \rangle 

\biggl\langle 
Aj ,

xx\top 

\| \bfitZ \| F
+

\biggl( 
\eta  - xx\top 

\| \bfitZ \| F

\biggr) \biggr\rangle 
+ \langle Aj , \xi \rangle 2

\biggr) 
.

An important observation is

1

m

m\sum 
j=1

\biggl( 
2\langle Aj ,\bfitZ  - \bfitX \rangle 

\biggl\langle 
Aj ,

\biggl( 
\eta  - xx\top 

\| \bfitZ \| F

\biggr) \biggr\rangle \biggr) 
= 0.
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860 THOMAS Y. HOU, ZHENZHEN LI, AND ZIYUN ZHANG

This is because

\eta \cdot \| \bfitZ \| F  - xx\top = vv\top  - xx\top = (x - uu\top x)(x - uu\top x)\top  - xx\top 

=  - uu\top xx\top  - xx\top uu\top + uu\top xx\top uu\top \in T\bfitZ ,

and the first-order condition gives 1
m

\sum m
j=1\langle Aj ,\bfitZ  - \bfitX \rangle \langle Aj , \zeta \rangle = 0 for any \zeta \in T\bfitZ .

Therefore, we have

\langle Hessf(\bfitZ )[\xi ], \xi \rangle 
\| \xi \| 2F

=

1
m

\sum m
j=1(2\langle Aj ,\bfitZ  - \bfitX \rangle \langle Aj ,

xx\top 

\| \bfitZ \| F \rangle + \langle Aj , \xi \rangle 2)
\| \xi \| 2F

=
1
m

\sum m
j=1(2(| a\top j z| 2  - | a\top j x| 2)| a\top j x| 2 + 4| a\top j z| 2| a\top j x| 2)

2(\| z\| 2\| x\| 2 + \langle x, z\rangle 2)

=
1
m

\sum m
j=1(3| a\top j z| 2| a\top j x| 2  - | a\top j x| 4)

\| z\| 2\| x\| 2 + \langle x, z\rangle 2
.

Using the concentration inequalities from section 4 in [27], with high probability no less than
1 - C1

m  - e - C2n, we have

\langle Hessf(\bfitZ )[\xi ], \xi \rangle 
\| \xi \| 2F

\leq 
3(1 + \delta 1)(\| \bfitZ \| F \| \bfitX \| F + 2\langle \bfitX ,\bfitZ \rangle ) - (3 - \delta 1)\| \bfitX \| 2F

\| \bfitZ \| F \| \bfitX \| F + \langle \bfitX ,\bfitZ \rangle 

\leq 
3(1 + \delta 1)(

1
3 + \delta 0 + 2\delta 0(

1
3 + \delta 0)) - (3 - \delta 1)

(13 + \delta 0) + \delta 0(
1
3 + \delta 0)

:= \Lambda (\delta 0, \delta 1).

If \delta 0 <
1
6 , \delta 1 <

5
36 , then we get \Lambda (\delta 0, \delta 1) <  - 1.

The above results give us a good idea of the critical points in the ``hyper ring"" region
\{ 1
3  - \delta 0 \leq \| \bfitZ \| F

\| \bfitX \| F \leq 1
3 + \delta 0\} on the manifold. Specifically, Lemma 4.1 tells us that there are

only a finite number of critical points, and Theorem 4.5 asserts that these critical points are
all strict saddles on the manifold since they have a common negative curvature direction. We
are particularly interested in the ``hyper ring"" region because Theorem 2.2 of [41] shows (with
a slightly modified objective function) that all the critical points lie in this region with high
probability, except the unique global minimum. From Theorem 2.9, we now know that the
PGD will avoid saddles and converge to the global minimum.

Figure 2 shows the log10 error convergence of the PGD for phase retrieval on the manifold
\scrM 1. The left figure is about the mean case, also called the population problem, while the right
one is a specific case with a certain group of \{ Aj\} mj=1, wherem = 12n. In both experiments, we

take n = 256, learning rate \alpha = 1
3 ; draw 100 z0 from i.i.d. Gaussian distribution (\bfitZ 0 = \bfitz 0\bfitz 

\top 
0 );

and minimize \BbbE f(\bfitZ ) or f(\bfitZ ) starting from these random initializations. The darker central
line is the average, and the band shows the deviation. In general, it can be seen that the PGD
is hardly affected by the possible existence of saddle points and converges to the minimum.

This experiment has also demonstrated the curious phenomenon mentioned at the begin-
ning of section 3, namely a first-order method such as PGD converges exponentially quickly
(i.e., linearly), even though in the Euclidean space it does not (i.e., only sublinearly). This
will be explained in the upcoming work [27].D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 861

(a) log10 error for the mean case. (b) log10 error for a specific realization.

Figure 2. Convergence (visualized as error band) of PGD for phase retrieval.

5. Applications beyond the low-rank matrix manifold. As is mentioned in section 2,
although our primary setting is the low-rank matrix manifold \scrM r, the asymptotic convergence
to the minimum and escape of strict saddles (strict critical submanifolds) is valid on arbitrary
finite dimensional Riemannian manifold \scrM . In particular, the properties of the PGD are
well preserved if the manifold is embedded in a Banach space and inherits its metric. Below
we discuss the optimization on the unit sphere and the Stiefel manifold as two examples of
applications.

5.1. Variational eigenproblem on a sphere. Consider \scrM = \BbbS n - 1, the sphere embedded
in the Euclidean space \BbbR n. We consider the following eigenvalue problem:

g(z) = \lambda z, z \in \BbbR n.

Note that g(z) may or may not be linear in z. Assume that it admits eigenpairs (\lambda 1, v1), (\lambda 2, v2),
. . . , (\lambda k, vk), 0 < \lambda 1 < \lambda 2 \leq \cdot \cdot \cdot \leq \lambda k. If g(z) = \nabla f(z) for some function f(z), then to find
(\lambda 1, v1) is to solve the following optimization problem:

min
z

f(z) s.t. z \in \scrM = \BbbS n - 1.

Viewed as an embedded Riemannian manifold, the tangent space, tangent space projec-
tion, and retraction on \scrM = \BbbS n - 1 are given as follows:

Tz = \{ \xi \in \BbbR n : \xi \top z = 0\} ,
PTz = I  - zz\top ,

R(y) =
y

\| y\| 2
.

Note that R(y) is a second-order retraction, because for any z \in \scrM , \xi \in Tz, we have

R(z + \alpha \xi ) =
z + \alpha \xi 

\| z + \alpha \xi \| 2
= (z + \alpha \xi )(1 + \alpha 2\| \xi \| 22) - 

1
2 = z + \alpha \xi +\scrO (\alpha 2).
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The Levi-Civita connection on \scrM is the projection of the Levi-Civita connection of the am-
bient space (which is the directional gradient in \BbbR n)

\widetilde \nabla \xi z\eta = PTz(\nabla \xi z\eta ) = (I  - zz\top )(\nabla \xi z\eta ), \eta \in T\scrM , \xi z \in Tz.

The Riemannian gradient on \scrM is

gradf(z) = PTz(\nabla f(z)).

So z is a critical point on \scrM if and only if z is an eigenvector of the eigenproblem g(z) = \lambda z.
The Riemannian Hessian on \scrM is

Hessf(z)[\xi ] = PTz(\nabla 2f(z)[\xi ]) - (z\top \nabla f(z))\xi .

If g(z) is linear in z, then f(z) is quadratic. With the positiveness assumption, we have
f(z) = z\top Az, where A is an SPD matrix. Then f(xi) = \lambda i, gradf(z) = Az  - (z\top Az)z, and
\xi \top Hessf(z)[\xi ] = \xi \top A\xi  - (z\top Az)\xi \top \xi . It is easy to see that v1 is the unique (up to sign) global
minimum with a positive Hessian, and vs(s > 1) are all strict saddles whose Hessian has at
least one negative curvature direction \xi = vs.

It is interesting to look at the case where a nonminimal eigenvalue has multiplicity greater
than 1. Assume that \lambda s = \lambda s+1 = \cdot \cdot \cdot = \lambda s+t; then the submanifold \scrN = \{ y \in \BbbR n | y =
csvs + \cdot \cdot \cdot + cs+tvs+t, c

2
s + \cdot \cdot \cdot + c2s+t = 1\} is an immersed submanifold of \scrM , and it is a strict

critical submanifold of f if s \geq 2. Since the number of such submanifolds is finite, escape
from these submanifolds towards x1 is ensured by the tools in section 2.3.

When g(z) is not linear in z, as f(z) now contains nonquadratic terms, it is not immediately
clear from the algebraic expression whether Hessf(xs), s > 1, has negative curvature direction,
though it can be verified numerically.

The first numerical example is from the discretized 1-dimensional Schr\"odinger eigenprob-
lem  - \Delta u + V (x)u = \lambda u with periodic boundary condition, where V (x) is taken to be
the smoothed 1-dimensional Kronig--Penney (KP) potential describing free electrons in 1-
dimensional crystal [36], [44]. Figure 3a shows the profile of the KP potential defined on
D = [0, 50] with 5 energy wells and periodic boundary condition. Figure 3b shows the first 30
eigenvalues of the operator  - \Delta + V (x). We can see that the first 5 eigenvalues are clustered
(but not identical).

We discretize D into n = 27 grids and solve the discretized problem on \scrM = \BbbS n - 1 with the
PGD starting from a random initialization. The stepsize is \alpha = 0.01. In Figure 3c, we observe
that the generated point series first seem to ``stagnate"" near a nonminimal eigenstate but
then escape and converge towards the minimum. Figure 3d shows the profile of the computed
ground energy state v1, which is quite close to the true ground state but slightly deformed.
An improvement will be proposed in the next subsection.

The second example is the nonlinear Schr\"odinger eigenproblem  - \Delta u+ V (x)u+ \beta | u| 2u =
\lambda u, or the so-called Gross--Pitaevskii eigenvalue problem for the Bose--Einstein Condensate
(BEC) [47]. It gives a more accurate description of the dynamics of Bosonic gases at ultra
low temperature. With the presence of the nonlinear term \beta | u| 2u, linear eigensolvers would
fail, and the optimization of its variational form becomes the state-of-art solver; see, e.g., [22].D
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(a) Profile of V (x). (b) First 30 eigenvalues of  - \Delta + V (x).

(c) Error decay in PGD. (d) Profile of the first eigenstate v1.

Figure 3. Solving the linear Schr\"odinger eigenproblem on the sphere.

Apart from the PGD based on the L2 metric, there can be other PGD algorithms based on
other types of metrics and with different convergence theories, whose analysis is beyond the
scope of this paper.

We use the same potential function V (x) and discretization size as above. The nonlinear
term has the weight \beta = 1. The objective function is

f(z) =
1

2
z\top Az +

\beta 

4

n\sum 
j=1

z(j)4, A =  - L+ V.

For an eigenstate vs, the eigenvalue associated to it is

\lambda s = 2f(s) +
\beta 

2

n\sum 
j=1

z(j)4.

We compute the first two eigenstates of the nonlinear Schr\"odinger problem using the PGD
with stepsize \alpha = 0.01. Figure 4c shows their profiles. Figures 4a and 4b demonstrate the
convergence of the PGD towards the computed eigenvalues.D
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To verify that v2 is a strict saddle point, we numerically compute the smallest eigenvalue of
Hessf(v2) and \lambda \mathrm{m}\mathrm{i}\mathrm{n}(Hessf(v2)) =  - 0.0024 < 0. Figure 4d shows a profile of the corresponding
eigenvector \xi \mathrm{m}\mathrm{i}\mathrm{n}, i.e., a negative curvature direction.

(a) Error decay of PGD when
computing v1.

(b) Error decay of PGD when
computing v2.

(c) Profile of eigenstates v1 and v2. (d) A negative curvature direction.

Figure 4. Solving the nonlinear Schr\"odinger eigenproblem on the sphere.

Apart from physical problems like BEC eigenstates, linear and nonlinear eigenproblems
also find applications in image processing and machine learning. For example, the Max-
Cut problem corresponds to a linear eigenproblem, while the optimization of the Ginzburg--
Landau-type functional in image segmentation and learning tasks corresponds to a nonlinear
eigenproblem; see, e.g., [5], [26]. Although there are many algorithms tailored for linear eigen-
problems, their nonlinear relatives often lack a rigorous convergence guarantee. Manifold
optimization thus provides a more versatile point of view for them.

5.2. Simultaneous eigensolver on the Stiefel manifold. Subspace iteration is a common
technique for accelerating the convergence of smallest eigenstates in linear eigenproblems,
especially when the ground states are clustered, as in the previous examples.

From the viewpoint of manifold optimization, solving the first m eigenstates simultane-D
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ESCAPE OF STRICT SADDLE SETS ON MANIFOLD 865

ously can be posed as the optimization on the Stiefel manifold\scrM = \{ \bfitZ \in \BbbR n\times m : \bfitZ \top \bfitZ = Im\} :

min
\bfitZ 

trace(f(\bfitZ )) s.t. \bfitZ \in \scrM = \{ \bfitZ \in \BbbR n\times m : \bfitZ \top \bfitZ = Im\} .

The Stiefel manifold [13], [31] is the set of all m-frames in \BbbR n. When m = 1, it reduces
to the sphere \BbbS n - 1. With the Euclidean metric, its tangent space, tangent space projection,
and retraction are given as follows:

T\bfitZ = \{ \xi \in \BbbR n\times m : \xi \top \bfitZ +\bfitZ \top \xi = 0\} ,
PT\bfitZ 

(Y) = Y  - Z sym(Z\top Y),

R(Y ) = qf (Y ),

where sym takes the symmetric part and qf takes the Q factor of QR decomposition. Similar
to the case of the sphere manifold, the Riemannian connection and gradient are defined by
the projection onto the tangent space. When f(\bfitZ ) = \bfitZ \top A\bfitZ , we have

gradf(\bfitZ ) = PT\bfitZ 
(A\bfitZ ),

\langle \xi ,Hessf(\bfitZ )[\xi ]\rangle = tr(\xi \top A\xi  - (\xi \top \xi )(\bfitZ \top A\bfitZ )).

It is easily verified that the minimum is achieved when span\bfitZ = span\{ v1, . . . , vm\} , and all \bfitZ 
that span other eigensubspaces are strict saddles if all the eigenvalues are distinct.

We compute the first 5 eigenstates simultaneously for the linear Schr\"odinger eigenproblem
with the same potential as in Figure 3a. The stepsize is \alpha = 0.01. Figures 5a and 5b
compare the computed eigenstates extracted from \bfitZ and the true eigenstates, which are
almost identical. In Figure 5c, we can see that the subspace iteration on the Stiefel manifold
achieves much better convergence in fewer steps than the optimization on the sphere.

Application of the Stiefel manifold optimization can also be extended to data science,
e.g., frame construction and dictionary learning [6], [56], if the frame/dictionary satisfies
orthonormal assumptions.

6. Conclusion and future works. We have studied the asymptotic escape of strict saddle
points of the PGD on the Riemannian manifolds. The first main contribution of this paper is
that it pushes the boundary of current analysis to nonisolated saddle sets, proving when the
PGD can escape and indicating when it cannot. As a general tool, it can be applied to various
settings as long as the manifold of interest satisfies certain smoothness conditions. This is
demonstrated by several representative examples from different fields.

The saddle analysis of phase retrieval on the low-rank matrix manifold serves as an ap-
plication of the above asymptotic escape result, but it also stands as an insightful result by
itself. We have shown that it always has a finite number of critical points, and the saddles
are strict saddles with high probability. Essentially, the low-rank matrix manifold sheds light
on the intrinsic quadratic (instead of quartic) structure of this problem.

In addition to the asymptotic convergence behavior of the PGD, the convergence rate is
also an important issue. Empirical linear convergence rates in many low-rank matrix recovery
problems are already observed but have yet to be explained. This will be the topic of ourD
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(a) Computed eigenstates. (b) True eigenstates.

(c) Error decay of PGD. (d) Accumulated energy of the first 5
eigenstates.

Figure 5. Simultaneously solving the first 5 eigenstates of the linear Schr\"odinger problem on the Stiefel
manifold.

future work [27], where we prove the linear convergence rate using the quadratic nature of
those problems on the manifold \scrM r.

Appendix A. As we mentioned in section 2.3, when there are a bunch of self-connected
critical submanifolds (generalization of critical points), the escape of strict critical subman-
ifolds (generalized strict saddles) and convergence to a minimum rely on the number or the
structure of such critical submanifolds. When the number is uncountable, the situation can
be quite complicated.

In this appendix, we discuss some structural properties of critical submanifolds that may
help untangle their successive relations. We introduce the concepts of index and transversality,
point out the transversality properties of certain functions and their consequences, and link
the stable manifolds of the gradient flow to that of the gradient descent.

Definition A.1 (Index). For f : \scrM \mapsto \rightarrow \BbbR , let p be a critical point of f ; then the index of p
is

\lambda p := dimT u
p \scrM .D
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Remark A.2. All critical points in the same connected critical submanifold \scrN have the
same index, which is defined as the index \lambda \scrN of the submanifold \scrN . An equivalent way to
define strict critical submanifold is \lambda \scrN > 0.

Definition A.3 (Transversality). (1) For smooth maps f : \scrN 1 \mapsto \rightarrow \scrM and g : \scrN 2 \mapsto \rightarrow \scrM , we
say that f is transverse to g iff for any X1, X2 such that f(X1) = g(X2) = Y ,

df(TX1\scrN 1) + dg(TX2\scrN 2) = TY \scrM ,

where df and dg are gradient vector fields of f and g.
(2) If \scrN 1 and \scrN 2 are immersed submanifolds of \scrM , then \scrN 1 is transverse to \scrN 2 iff for

any X \in \scrN 1 \cap \scrN 2,

TX\scrN 1 + TX\scrN 2 = TX\scrM .

Two immersed submanifolds vacuously transverse if they do not intersect.

Remark A.4. A function f : \scrM \mapsto \rightarrow \BbbR is called Morse--Bott if all its critical points lie in
some disjoint union of connected and nondegenerate critical submanifolds; f is called Morse--
Smale if it satisfies the Morse--Smale transversality condition, i.e., for any two critical sub-
manifolds \scrN 1, \scrN 2, their stable and unstable manifolds intersect transversally.

The transversality condition for immersed manifolds simply means that two manifolds
``cross"" each other and do not ``overlap."" Figure 6 is a vivid illustration of transversality on a
2-dimensional manifold. If the objective function f is a Morse--Smale function, transversality
implies more favorable properties.

Figure 6. An illustration of transversality.

Theorem A.5 (Corollary 6.27 in [4]). For a Morse--Smale function f , any critical point p
of f satisfies

W u(p) =
\bigcup 
p\succeq q

W u(q),

W s(p) =
\bigcup 
r\succeq p

W s(r),

where W s(p) (resp., W u(p)) is the stable (resp., unstable) manifold of p defined by gradient
flow line, and p \succeq q means W u(p) \cap W s(q) \not = \emptyset .D
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Theorem A.6. For a Morse--Smale function f , if two critical submanifolds \scrN 1 and \scrN 2 have
the same index, then they vacuously transverse, i.e., W u(\scrN 1) \cap W s(\scrN 2) = \emptyset .

Proof. By Proposition 6.2 in [4], if W u(\scrN 1) \cap W s(\scrN 2) \not = \emptyset , then their intersection is an
embedded submanifold of dimension (\lambda \scrN 1  - \lambda \scrN 2). But \lambda \scrN 1  - \lambda \scrN 2 = 0, which is a contradic-
tion.

Both Theorem A.5 and Theorem A.6 are helpful when taking the union of stable man-
ifolds of infinitely many critical submanifolds. Theorem A.5 shows that the closure of the
stable/unstable manifold of one critical set is the union of the stable/unstable manifolds of
the sets that have successive relations with it. On the other hand, Theorem A.6 shows that
the successive relations are strictly limited by the indices (i.e., negative curvature dimensions)
of the critical sets. This successive relation simply cannot happen between sets of the same
index.

It should be stressed that the above results are on the stable/unstable manifold of gradient
flows, not gradient descents. Whether this can be generalized to gradient descents is still
unclear. We know that with the first-order retraction property, as \alpha \rightarrow 0, the projected
gradient descent on the manifold approximates the gradient flow line. It can be proved that
the respective stable/unstable manifolds also converge as long as the retraction is at least
first-order and the domain is compact. However, the transversality concerns the ``angles"" at
the intersection of these submanifolds. Even the uniform convergence of submanifolds cannot
ensure the preservation of their intersection angles along the convergence.

This discussion aims to draw interest to the vast possibilities that Morse theory has to
offer. They point out a way to deal with complex geometries of critical point sets. We plan
to conduct further studies along this direction to quantify the above relations.

Acknowledgment. We would like to thank the anonymous referees for their insightful
comments, which improved the quality of our manuscript.
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