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Formation of Finite-Time Singularities in
the 3D Axisymmetric Euler Equations:
A Numerics Guided Study∗

Guo Luo†
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Abstract. Whether the three-dimensional incompressible Euler equations can develop a singularity in
finite time from smooth initial data is one of the most challenging problems in mathematical
fluid dynamics. This work attempts to provide an affirmative answer to this long-standing
open question, by first describing a class of potentially singular solutions to the Euler equa-
tions numerically discovered in axisymmetric geometries, and then by presenting evidence
from rigorous analysis that strongly supports the existence of such singular solutions. The
initial data leading to these singular solutions possess certain special symmetry and mono-
tonicity properties, and the subsequent flows are assumed to satisfy a periodic boundary
condition along the axial direction and a no-flow, free-slip boundary condition on the solid
wall. The numerical study employs a hybrid 6th-order Galerkin/finite difference discretiza-
tion of the governing equations in space and a 4th-order Runge–Kutta discretization in
time, where the emerging singularity is captured on specially designed adaptive (moving)
meshes that are dynamically adjusted to the evolving solutions. With a maximum effective
resolution of over (3 × 1012)2 near the point of the singularity, the simulations are able
to advance the solution to a point that is asymptotically close to the predicted singularity
time, while achieving a pointwise relative error of O(10−4) in the vorticity vector and ob-
taining a (3×108)-fold increase in the maximum vorticity. The numerical data are checked
against all major blowup/nonblowup criteria, including Beale–Kato–Majda, Constantin–
Fefferman–Majda, and Deng–Hou–Yu, to confirm the validity of the singularity. A close
scrutiny of the data near the point of the singularity also reveals a self-similar structure
in the blowup, as well as a one-dimensional model which is seen to capture the essential
features of the singular solutions along the solid wall, and for which existence of finite-time
singularities can be established rigorously.
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1. Introduction. The celebrated three-dimensional (3D) incompressible Euler
equations in fluid dynamics describe the motion of ideal incompressible flows in the
absence of external forcing. First written down by Leonhard Euler in 1757, these
equations take the form

(1.1) ut + u · ∇u = −∇p, ∇ · u = 0,

where u = (u1, u2, u3)
T is the 3D velocity vector of the fluid and p is the scalar pres-

sure. Utilized extensively by physicists to model ocean currents, weather patterns,
and other fluid related phenomena, the 3D Euler equations encompass a rich math-
ematical theory, for which the interested readers may consult the excellent surveys
[2, 24, 34] and the references therein. This paper primarily concerns the existence
or nonexistence of globally (in time) regular, finite-energy solutions to the 3D Euler
equations, which is regarded as one of the most fundamental yet most challenging
problems in mathematical fluid dynamics.1

The significance of the global regularity or finite-time blowup of (1.1) manifests
itself in several ways. Mathematically, the question has remained open for over 250

1The existence of infinite-energy, finite-time blowup solutions to the 3D Euler equations has long
been known; see, for example, [35] and the references therein.
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years and has a close connection to the Clay Millennium Prize Problem on the Navier–
Stokes equations [31]. Physically, the formation of a singularity in inviscid (Euler)
flows may signify the onset of turbulence in viscous (Navier–Stokes) flows, and it may
provide a mechanism for energy transfer to small scales. Numerically, the resolution
of nearly singular flows requires special numerical treatments, which presents a great
challenge to computational scientists.

The difficulty associated with the regularity properties of the 3D Euler equations
can be best understood via the so-called vorticity-stream formulation,

(1.2) ωt + u · ∇ω = ω · ∇u,

which can be derived from (1.1) by applying the curl operator ∇× on both sides of
the equation. Here, in (1.2), ω = ∇× u is the vorticity vector of the fluid, and u is
related to ω via a Biot–Savart law. In free space R

3, the Biot–Savart law takes the
form

u(x) =
1

4π

∫
R3

x− y

|x− y|3 × ω(y) dy,

while in domains with solid boundaries, representations of similar natures can also be
written down. Straightforward calculations then reveal that ∇u is related to ω via a
singular integral operator, and standard estimates from the theory of such operators
imply (see, for example, [66])

(1.3) ‖ω‖Lp ≤ ‖∇u‖Lp ≤ Cp‖ω‖Lp , 1 < p <∞.

This heuristic argument shows that the vortex stretching term ω · ∇u scales formally
like ω2, and hence it indeed has the potential to generate a finite-time singularity.2

Considerable efforts have been devoted to the study of the regularity properties of
the 3D Euler equations. As suggested by (1.2)–(1.3), the main difficulty in the analysis
lies in the presence of the nonlinear vortex stretching term and the lack of a regulariza-
tion mechanism, which implies that even the local well-posedness of the equations can
only be established for sufficiently smooth initial conditions (see, for example, [49]).
Despite these difficulties, a few important partial results [4, 62, 32, 64, 25, 26, 36] have
been obtained over the years, which have led to improved understanding of the regu-
larity properties of the 3D Euler equations. More specifically, the celebrated theorem
of Beale, Kato, and Majda [4] and its variants [32, 64] characterize the regularity of
the 3D Euler equations in terms of the maximum vorticity, asserting that a smooth
solution u of (1.1) blows up at t = T if and only if

∫ T

0

‖ω(·, t)‖L∞ dt = ∞.

The nonblowup criterion of Constantin, Fefferman, and Majda [25] focuses on the
geometric aspects of Euler flows instead, and it asserts that there can be no blowup
if the velocity field u is uniformly bounded and the vorticity direction ξ = ω/|ω|
is sufficiently “well behaved” (Lipschitz continuous) near the point of the maximum
vorticity. The theorem of Deng, Hou, and Yu [26] is similar in spirit to the Constantin–
Fefferman–Majda criterion, but confines the analysis to localized vortex line segments.

Besides the analytical results mentioned above, which primarily focus on mathe-
matical conditions under which (smooth) solutions of the 3D Euler equations remain

2It does not, however, guarantee the existence of a finite-time singularity, since no such estimates
as ‖ω · ∇u‖Lp ≥ C‖ω‖Lp‖∇u‖Lp exist.
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globally regular, considerable efforts have also been devoted to the (numerical) search
of a finite-time Euler singularity. Representative work in this direction include [38, 63],
which studied Euler flows with swirls in axisymmetric geometries; the famous compu-
tation of Kerr and his collaborators [50, 10, 51], which studied Euler flows generated
by a pair of perturbed antiparallel vortex tubes; and the viscous simulations of [7],
which studied the 3D Navier–Stokes equations using Kida’s high-symmetry initial
conditions. Other relevant work includes [12, 65], which studied axisymmetric Euler
flows with complex initial data and reported singularities in the complex plane. A
more comprehensive list of interesting numerical results can be found in the recent
review [34].

Although finite-time singularities were frequently reported in numerical studies
of the 3D Euler equations, most such singularities turned out to be false predictions,
as a result of either inadequately resolved computations or incautious data analysis
practices (more to follow on this topic in section 4.4). Indeed, by exploiting the anal-
ogy between the two-dimensional (2D) Boussinesq equations and the 3D axisymmetric
Euler equations away from the symmetry axis, E and Shu [27] studied the potential
development of finite-time singularities in the 2D Boussinesq equations, with initial
data completely analogous to those of [38, 63]. They found no evidence for singular
solutions, indicating that the “blowups” reported by [38, 63], which were located away
from the axis, are likely numerical artifacts. Likewise, Hou and Li [44] repeated the
computation of [50] with higher resolutions, in an attempt to reproduce the singu-
larity observed in that study. Despite some ambiguity in the interpretation of the
initial data used by [50], they managed to advance the solution up to t = 19, which
is beyond the singularity time T = 18.7 alleged by [50]. By using newly developed
analytic tools based on rescaled vorticity moments, Kerr also confirmed in a recent
study [51] that solutions computed from initial data analogous to that used in [50]
eventually converge to superexponential growth, and hence are unlikely to lead to a
singularity. In a later work, Hou and Li [45] also repeated the computation of [7]
and found that the singularity reported by [7] is likely an artifact due to insufficient
resolution. . . . To summarize, the existing numerical studies do not seem to provide
convincing evidence to support the existence of a finite-time Euler singularity, and
the question of whether initially smooth solutions to (1.1) can blow up in finite time
remains wide open.

By focusing on solutions with rotational symmetry and other special properties,
we have discovered, through careful numerical studies, a class of potentially singular
solutions to the 3D axisymmetric Euler equations in a radially bounded, axially pe-
riodic cylinder (see (2.1)–(2.2) below). The reduced computational complexity in the
cylindrical geometry greatly facilitates the computation of the singularity. With a
specially designed adaptive mesh, we are able to achieve a maximum mesh resolution
of over (3 × 1012)2 near the point of the singularity; this allows us to compute the
vorticity vector with four digits of accuracy throughout the simulations, and to ob-
serve a (3×108)-fold amplification in the maximum vorticity. The numerical data are
checked against all major blowup/nonblowup criteria, including Beale–Kato–Majda,
Constantin–Fefferman–Majda, and Deng–Hou–Yu, to confirm the validity of the sin-
gularity. A close scrutiny of the data near the point of the singularity also reveals a
self-similar structure in the blowup, as well as a one-dimensional (1D) model which
is seen to capture the essential features of the singular solutions along the solid wall,
and for which existence of finite-time singularities can be established rigorously. Our
numerical method makes explicit use of the special symmetries built in the blowing-up
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solutions, which eliminates symmetry-breaking perturbations and facilitates a stable
computation of the singularity.

The main features of the potentially singular solutions that we discover are sum-
marized as follows. The point of the potential singularity, which is also the point
of the maximum vorticity, is always located at the intersection of the solid boundary
r = 1 and the symmetry plane z = 0. It is a stagnation point of the flow, as a result of
the special odd-even symmetries of the flow along the axial direction and the no-flow,
free-slip boundary condition on the solid wall (see (2.3)). The vanishing velocity field
at this point could have positively contributed to the formation of the singularity,
given the potential regularizing effect of convection as observed by [43, 42]. When
viewed in the meridian plane, the point of the potential singularity is a hyperbolic
saddle of the flow, where the axial flow along the solid boundary marches toward the
symmetry plane z = 0 and the radial flow marches toward the symmetry axis r = 0
(see Figure 11(a)). The axial flow brings together vortex lines near the solid boundary
r = 1 and destroys the geometric regularity of the vorticity vector near the symmetry
plane z = 0, violating the Constantin–Fefferman–Majda and Deng–Hou–Yu geometric
nonblowup criteria, and hence leading to the breakdown of the smooth vorticity field.

The asymptotic scalings of the various quantities involved in the potential finite-
time blowup are summarized as follows. Near the predicted singularity time ts, the
scalar pressure and the velocity field remain uniformly bounded, while the maximum
vorticity blows up like O(ts − t)−γ where γ roughly equals 5

2 . Near the point of
the potential singularity, namely, the point of the maximum vorticity, the radial and
axial components of the vorticity vector grow roughly like O(ts − t)−5/2 while the
angular vorticity grows like O(ts − t)−1. The nearly singular solution has a locally
self-similar structure in the meridian plane near the point of the singularity, with a
rapidly collapsing support whose diameter scales roughly like O(ts−t)3. When viewed
in R

3, this corresponds to a thin tube on the symmetry plane z = 0 evolving around
the ring r = 1, where the radius of the tube shrinks to zero as the singularity forms.

We emphasize that the 3D axisymmetric Euler equations (2.1) are different from
their free-space counterpart (1.1), in that they have a constant of motion that is
not present in the nonsymmetric case [59]. In addition, it is well known that the
choice of the boundary conditions (periodic vs. no-flow) has a nontrivial impact on
the qualitative behavior of the solutions of the Euler equations, especially near the
solid boundaries [2, 24]. In view of these differences and the fact that the singularity
we discover lies right on the boundary, we stress that the work described in this
paper is not directly relevant to the Clay Millennium Prize Problem on the Navier–
Stokes equations, which is posed either in free space or on periodic domains [31].3

Rather, it should be viewed as an attempt at the understanding of the effect of solid
boundaries in the creation of small scales and, in the case of zero viscosity, the creation
of singularities in incompressible flows.

It is also worth mentioning that since the publication of our original work on the
current title in [57, 58], great interest has been generated in the field, as a result of
which a number of important developments have been subsequently witnessed. In [16],
a 2D incompressible active scalar equation which has the same scaling as the inviscid
surface quasi-geostrophic (SQG) equation is proposed and studied, along with other
well-known equations in fluid dynamics. It is shown that this active scalar admits

3Indeed, according to the partial regularity result of Caffarelli, Kohn, and Nirenberg [11], any
finite-time singularity of the 3D axisymmetric Navier–Stokes equations, if it exists, must lie on the
symmetry axis.
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solutions that blow up in finite time, which seems to be the first known result along
this direction. In [54], an initial condition possessing symmetry properties similar to
those proposed by [57, 58] is constructed for the 2D Euler equations on a disk. It leads
to a smooth solution for which the gradient of vorticity exhibits double exponential
growth—the fastest possible growth rate—in time for all times, thereby solving a long-
standing open problem in the theory of 2D Euler equations. In [21], a simplified 1D
model that captures the essential features of the 3D Euler blowup scenario is proposed
and studied. For a certain class of initial data that possesses symmetry properties
similar to those considered in [57, 58], it is shown that a singularity forms in finite
time, thus providing further supporting evidence for the discoveries of our study. In
[53], a family of models that interpolates between the 2D Euler equations and the
inviscid SQG equation is proposed and studied. For initial data consisting of disjoint,
smoothly bounded vortex patches, it is shown that the 2D Euler solutions remain
globally regular, while any model that is slightly more singular than the 2D Euler
admits solutions that develop a singularity in finite time. These singular solutions,
again, originate from initial data that possess symmetry properties similar to those
considered in [57, 58], and their loss of regularity in finite time relies crucially on
the presence of a solid boundary, much like what has been observed in our study
and [54]. Similar studies have also been carried out for the 2D inviscid Boussinesq
equations, which are known to be qualitatively similar to the 3D axisymmetric Euler
equations away from the symmetry axis and which, therefore, are expected to admit
solutions with similar singular behaviors. The related results, together with other
recent progress, can be found in the excellent surveys [55, 52].

The blowup results described in the above-mentioned work primarily concern
(1D or 2D) model equations that provide some form of approximations to the original
3D Euler or 2D Boussinesq equations near the point of the hypothetical singularity.
In a series of recent studies [28, 29], a different line of attack is followed, where
the original 2D Boussinesq and 3D (axisymmetric) Euler equations are studied in
a cornered domain, and where the existence of finite-time singularities is explicitly
established for a class of strong, locally scale-invariant solutions (see also [30] for a
related study that follows a different philosophy). While these results are interesting
and significant in their own right, we remark that they do not seem to be directly
related to the blowup scenario described here, and thus may not be viewed as rigorous
justifications of the latter.

The rest of this paper is devoted to the study of the potentially singular solutions
of the 3D Euler equations and is organized as follows. Section 2 briefly reviews the 3D
Euler equations in axisymmetric form and defines the problem to be studied, while
section 3 describes the numerical method to be used. After examining the numerical
data in great detail and presenting evidence supporting the existence of a finite-time
singularity in section 4, we conclude the paper in section 5, with a brief discussion
on potential implications of our findings and a description on possible directions for
future explorations.

2. Description of the Problem. The 3D Euler equations (1.1) with axial sym-
metry can be conveniently described in the so-called vorticity-stream form (cf. (1.2)).
To derive these equations, recall first that in cylindrical coordinates (r, θ, z), an axi-
symmetric flow u can be described by the decomposition

u(r, z) = ur(r, z) er + uθ(r, z) eθ + uz(r, z) ez,
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where er = (cos θ, sin θ, 0)T , eθ = (− sin θ, cos θ, 0)T , and ez = (0, 0, 1)T are coordi-
nate axes. The vorticity vector ω = ∇× u has a similar representation,

ω(r, z) = ωr(r, z) er + ωθ(r, z) eθ + ωz(r, z) ez,

ωr = −uθz, ωθ = urz − uzr , ωz = 1
r (ru

θ)r ,

where for simplicity we have used subscripts to denote partial differentiations. The
incompressibility condition∇·u = 0 implies the existence of a (vector) stream function

ψ(r, z) = ψr(r, z) er + ψθ(r, z) eθ + ψz(r, z) ez,

which, without loss of generality, can be assumed to satisfy the divergence-free con-
dition ∇ · ψ = 0 and for which there hold the representations

u = ∇× ψ, ω = ∇× (∇× ψ) = −Δψ.

Taking the θ-components of the velocity equation (1.1), the vorticity equation (1.2),
and the Poisson equation −Δψ = ω gives an alternative formulation of the 3D Euler
equations [59, 43]

u1,t + uru1,r + uzu1,z = 2u1ψ1,z,(2.1a)

ω1,t + urω1,r + uzω1,z = (u21)z,(2.1b)

−
[
∂2r + (3/r)∂r + ∂2z

]
ψ1 = ω1,(2.1c)

where u1 = uθ/r, ω1 = ωθ/r, and ψ1 = ψθ/r are transformed angular velocity,
vorticity, and stream functions, respectively.4 The radial and axial components of the
velocity can be recovered from ψ1 as

(2.1d) ur = −rψ1,z , uz = 2ψ1 + rψ1,r ,

for which the incompressibility condition

1
r (ru

r)r + uzz = 0

is satisfied automatically. As shown by [56], (uθ, ωθ, ψθ) must all vanish at r = 0 if u is
a smooth velocity field. Thus (u1, ω1, ψ1) are well defined as long as the corresponding
solution to (1.1) remains smooth. The reason we choose to work with the transformed
variables (u1, ω1, ψ1) instead of the original variables (uθ, ωθ, ψθ) is that the equations
satisfied by the latter,

uθt + uruθr + uzuθz = − 1
r u

ruθ,

ωθt + urωθr + uzωθz = 2
r u

θuθz +
1
r u

rωθ,

−
[
Δ− (1/r2)

]
ψθ = ωθ,

have a formal singularity at r = 0, which is inconvenient to work with numerically.
We shall numerically solve the transformed equations (2.1) on the cylinder

D(1, L) =
{
(r, z) : 0 ≤ r ≤ 1, 0 ≤ z ≤ L

}
,

4These variables should not be confused with the components of the velocity, vorticity, and
stream vector functions.
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with the initial condition

(2.2a) u01(r, z) = 100 e−30(1−r2)4 sin
(2π
L
z
)
, ω0

1(r, z) = ψ0
1(r, z) = 0.

The solution is subject to a periodic boundary condition in z,

(2.2b) u1(r, 0, t) = u1(r, L, t), ω1(r, 0, t) = ω1(r, L, t), ψ1(r, 0, t) = ψ1(r, L, t),

and a no-flow, free-slip boundary condition on the solid wall r = 1:

(2.2c) ψ1(1, z, t) = 0.

The pole condition

(2.2d) u1,r(0, z, t) = ω1,r(0, z, t) = ψ1,r(0, z, t) = 0

is also enforced at the symmetry axis r = 0, which ensures the smoothness of the
solution.

The initial condition (2.2a) describes a purely rotating eddy in a periodic cylinder,
and it satisfies special odd-even symmetries at the planes zi = i

4L, i = 0, 1, 2, 3.
Specifically, u01 is even at z1, z3, it is odd at z0, z2, and ω

0
1 and ψ0

1 are both odd at
all zi’s. These symmetry properties are preserved by equations (2.1), so instead of
solving the problem (2.1)–(2.2) on the entire cylinder D(1, L), it suffices to consider
the problem on the quarter cylinder D(1, 14L), with the periodic boundary condition
(2.2b) replaced by appropriate symmetry boundary conditions. It is also interesting
to notice that the boundaries of D(1, 14L) behave like “impermeable walls”:

(2.3) ur = −rψ1,z = 0 on r = 1, uz = 2ψ1 + rψ1,r = 0 on z = 0, 1
4L,

which is a consequence of the no-flow boundary condition (2.2c) and the odd symmetry
of ψ1.

3. Outline of the Numerical Method. The potential formation of a finite-time
singularity from the initial condition (2.2a) makes the numerical solution of the initial-
boundary value problem (2.1)–(2.2) a challenging and difficult task. In this section,
we describe a special mesh adaptation strategy (section 3.1) and a B-spline-based
Galerkin Poisson solver (section 3.2), which are essential to the accurate computation
of the nearly singular solutions. The overall algorithm is outlined in section 3.3.

3.1. The Adaptive (Moving) Mesh Algorithm. Singularities (blowups) are abun-
dant in mathematical models of physical systems. Examples include the semilinear
parabolic equations describing the blowup of the temperature of a reacting medium,
such as a burning gas [33], the nonlinear Schrödinger equations describing the self-
focusing of electromagnetic beams in a nonlinear medium [60], and the aggregation
equations describing the concentration of interacting particles [48]. Often, singular-
ities occur on increasingly small length and time scales, which necessarily requires
some form of mesh adaptation. Further, finite-time singularities usually evolve in a
“self-similar” manner when singularity time is approached. An adaptive mesh de-
signed for singularity detection must correctly capture these behaviors when applied
to problems that are known to admit singular solutions.

Several methods have been proposed to capture (self-similar) singularities in nu-
merical computations. In [60], a dynamic rescaling algorithm is used to solve the
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cubic Schrödinger equation. The main advantage of the method is that the rescaled
equation is nonsingular and the rescaled variable is uniformly bounded in appropriate
norms. The disadvantage is that the fixed-sized mesh is spread apart by rescaling, so
accuracy is inevitably lost away from the singularity.

In [5], a rescaling algorithm is proposed for the numerical solution of the semi-
linear heat equation, based on the idea of adaptive mesh refinement [6]. The method
repeatedly refines the mesh in the “inner” region of the singularity, while rescaling the
solution on refined meshes so that it remains uniformly bounded. The main advantage
of the method is that it achieves uniform accuracy across the entire computational do-
main and is applicable to more general problems. The disadvantage is that it requires
a priori knowledge of the singularity, and is not easily adaptable to elliptic equations
(especially in multiple space dimensions) due to the use of irregular (nested) mesh.

The moving mesh method [47] provides a very general framework for mesh adap-
tation and has been applied in various contexts, for example, in the solution of the
semilinear heat equation [9] and the solution of the nonlinear Schrödinger equation
[8]. The main idea of the method is to construct the mesh based on a certain equi-
distribution principle, for example, the equipartition of the arc length function. In one
space dimension this completely determines the mesh, while in multiple space dimen-
sions, additional constraints are needed to specify mesh shapes and orientations. The
meshes are automatically evolved with the underlying solution, typically by solving a
moving mesh partial differential equation (MMPDE).

While being very general, the “conventional” moving mesh method has the follow-
ing issues when applied to singularity detection. First, it requires explicit knowledge
of the singularity, for example, its scaling exponent, in order to correctly capture the
singularity [46]. Second, it tends to place too many mesh points near the singularity
while leaving too few elsewhere, which can cause instability. Third, mesh smoothing,
an operation necessary for maintaining stability, can significantly limit the maximum
resolution power of the mesh. Finally, the moving mesh method computes only a dis-
crete approximation of the mesh mapping function, which can result in catastrophic
loss of accuracy in the computation of a singularity (see section 3.3).

For the particular blowup candidate considered in this paper, preliminary uniform
mesh computations suggest that the vorticity function tends to concentrate at a single
point. In addition, the solution appears to remain slowly varying and smooth outside
a small neighborhood of the singularity. These observations motivate the following
special mesh adaptation strategy.

The adaptive mesh covering the computational domain D(1, 14L) is constructed
from a pair of analytic mesh mapping functions,

r = r(ρ), z = z(η),

which are defined on [0, 1], are infinitely differentiable, and have a density that is even
at both 0 and 1. The even symmetries of the mesh density ensure that the resulting
mesh can be extended smoothly to the full cylinder D(1, L). The mesh mapping
functions contain a small number of parameters, which are dynamically adjusted so
that a certain fraction of the mesh points (e.g., 50% along each dimension) is placed
in a small neighborhood of the singularity. Once the mesh mapping functions are
constructed, the computational domain D(1, 14L) is covered with a tensor-product
mesh:

G0 =
{
(rj , zi) : 0 ≤ i ≤M, 0 ≤ j ≤ N

}
,
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where

rj = r(jhr), zi = z(ihz), hr = 1/N, hz = 1/M.

The precise definition and construction of the mesh mapping functions can be found
in [58, Appendix A].

The mesh is evolved using the following procedure. Starting from a reference
time t0, the “singularity region” S0 at t0 is identified as the smallest rectangle in the
rz-plane that encloses the set

Dδ0(t0) :=
{
(r, z) ∈ D(1, 14L) : |ω(r, z, t0)| ≥ δ0‖ω(·, t0)‖∞

}
, δ0 ∈ (0, 1).

Once S0 is determined, an adaptive mesh G0 is fit to S0 and the solution is advanced
in the ρη-space by one time step to t1. The singularity region S1 at t1 is then
computed and compared with S0. If the ratios between the sides of S1 and S0 (in either
dimension) drop below a certain threshold (e.g., 80%), which indicates the support of
the maximum vorticity has shrunk by a sufficient amount, or if the maximum vorticity
at t1 is “too close” to the boundaries of S0,

(3.1) max
(r,z)∈∂S0

|ω(r, z, t1)| ≥ δ1‖ω(·, t1)‖∞, δ1 ∈ (δ0, 1),

which indicates the maximum vorticity is about to leave S0, then a new mesh G1

is computed and adapted to S1. In the event of a mesh update, the solution is
interpolated from G0 to G1 in the ρη-space using an 8th-order piecewise polynomial
interpolation in ρ and a spectral interpolation in η. The whole procedure is then
repeated with G0 replaced by G1 and t0 replaced by t1.

We remark that the mesh update criterion (3.1) is designed to prevent the peak
vorticity from escaping the singularity region, as is the case in one of our earlier
computations where the singularity keeps moving toward the symmetry axis. Since
in the current computation the singularity is fixed at the corner q̃0 = (1, 0)T , the
criterion (3.1) has practically no effect.

The mesh adaptation strategy described above has several advantages compared
with the conventional moving mesh method. First, it can automatically resolve a
self-similar singularity regardless of its scalings, provided that the singularity has a
bell-shaped similarity profile, which is what we observe in our case (see Figure 1(b)).
This is crucial to the success of our computations, because the (axisymmetric) Eu-
ler equations allow for infinitely many self-similar scalings (see section 4.7), which
means that the scaling exponent of the singularity cannot be determined a priori.
Second, the method always places enough mesh points (roughly 50% along each di-
mension) outside the singularity region, ensuring a well-behaved and stable mesh (see
section 4.1). Third, the explicit control of the mesh mapping functions eliminates
the need of mesh smoothing, which allows the mesh to achieve arbitrarily high res-
olutions. Finally, the analytic representation of the mesh mapping functions ensures
accurate approximations of space derivatives, hence greatly improving the quality of
the computed solutions (see section 3.3).

3.2. The B-Spline-Based Galerkin Poisson Solver. A key observation we made
from our computations is that the overall accuracy of the numerical solution of the
initial-boundary value problem (2.1)–(2.2) depends crucially on the accuracy of the
Poisson solver. Among the methods commonly used for solving Poisson equations,
namely, finite difference, finite element Galerkin, and finite element collocation, we
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have chosen the Galerkin method both for its high accuracy and for its rigorous
theoretic framework, which makes the error analysis much easier.

We have designed and implemented a B-spline-based Galerkin method for the
Poisson equation (2.1c). Compared with the “conventional” Galerkin methods based
on piecewise polynomials, the B-spline-based method requires no mesh generation and
hence is much easier to implement. More importantly, the method can achieve arbi-
trary global smoothness and approximation order with relative ease and few degrees of
freedom, in contrast to the conventional piecewise-polynomial-based methods. This
makes the method a natural choice for our problem.

The Poisson equation (2.1c) is solved in the ρη-space using the following proce-
dure. First, the equation is recast in the ρη-coordinates:

− 1

r3rρ

(
r3
ψρ
rρ

)
ρ
− 1

zη

(ψη
zη

)
η
= ω, (ρ, η) ∈ [0, 1]2,

where for clarity we have written ψ for ψ1 and ω for ω1. Next, the equation is
multiplied by r3rρzηφ and is integrated over the domain [0, 1]2, where φ ∈ V (to be
defined below) is a suitable test function. After a routine integration by parts, this
yields the desired weak formulation of (2.1c), which reads as follows: Find ψ ∈ V
such that

a(ψ, φ) :=

∫
[0,1]2

(ψρ
rρ

φρ
rρ

+
ψη
zη

φη
zη

)
r3rρzη dρ dη

=

∫
[0,1]2

ωφr3rρzη dρ dη =: f(φ) ∀φ ∈ V,(3.2a)

where (recall the odd symmetry of ψ at η = 0, 1)

V = span
{
φ ∈ H1[0, 1]2 : φ(−ρ, η) = φ(ρ, η),

φ(1, η) = 0, φ(ρ, 
 − η) = −φ(ρ, 
+ η) ∀
 ∈ Z

}
.

To introduce Galerkin approximation, we define the finite-dimensional subspace
of weighted uniform B-splines [41] of even order k:

Vh := V kw,h = span
{
w(ρ)bkj,hr (ρ)b

k
i,hz(η)

}
∩ V,

where w(ρ) is a nonnegative weight function of order 1 vanishing on ρ = 1,

w(ρ) ∼ (1 − ρ), ρ→ 1−,

and bk�,h(s) = bk((s/h)− (
−k/2)) are shifted and rescaled uniform B-splines of order
k. The Galerkin formulation then reads as follows: Find ψh ∈ Vh such that

(3.2b) a(ψh, φh) = f(φh) ∀φh ∈ Vh.

With suitably chosen basis functions of Vh, this gives rise to a symmetric, positive
definite linear system Ax = b which can be solved to yield the Galerkin solution ψh.
A detailed construction of the linear system can be found in [58, Appendix B].

The parameters used in our computations are k = 6 and w(ρ) = 1− ρ2.
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Using the theory of quasi-interpolants [41], it can be shown that

(3.3)

∫
[0,1]2

|∇ψ −∇ψh|2r3 dr dz ≤ C0Crz(hrhz)
k−1

∫
[0,1]2

∑
|α|≤k−1

|∂̃α∇ψ|2r3 dr dz,

where ∇ = (∂r, ∂z)
T , ∂̃α = ∂α1

ρ ∂α2
η are differential operators in rz- and ρη-planes,

respectively, Crz is a mesh mapping dependent constant, and C0 is an absolute con-
stant. In our computations, the constant Crz is observed to be very close to 1 for all
times, which confirms the stability of the Galerkin solver.

3.3. The Overall Algorithm. Given an adaptive mesh G0 and the data (u1, ω1)
defined on G0, the solution is advanced using the following procedure. First, the Pois-
son equation (2.1c) is solved for ψ1 in the ρη-space using a 6th-order B-spline-based
Galerkin method (section 3.2). Second, the 2D velocity ũ = (ur, uz)T is evaluated at
the grid points using (2.1d). Third, an adaptive time step δt is computed on G0 so
that the CFL condition is satisfied with a suitably small CFL number ν (e.g., 0.5),
and the relative growth of the solution in one step does not exceed a small threshold
εt (e.g., 5%). Finally, the solution (u1, ω1) is advanced according to (2.1a)–(2.1b) by
δt using an explicit 4th-order Runge–Kutta method, and the mesh G0 is adapted to
the new solution if necessary (section 3.1).

In the last step of the algorithm, the evolution equations for u1 and ω1 are
semidiscretized in the ρη-space, where the space derivatives are expressed in the
ρη-coordinates and are approximated using 6th-order centered difference formulas,
e.g.,

vr(rj , zi) =: (vr)ij =
(vρ)ij
(rρ)j

≈ 1

(rρ)j
(Qρ,6vi,·)j , v = u1 or ω1.

Here, as usual,

Qρ,6 := Dρ,0

(
I − 1

6h
2
rDρ,+Dρ,− + 1

30h
4
rD

2
ρ,+D

2
ρ,−

)

denotes the standard 6th-order centered approximation to ∂ρ, and

(Dρ,±vi,·)j := ± 1

hr
(vi,j±1 − vi,j), (Dρ,0vi,·)j :=

1

2hr
(vi,j+1 − vi,j−1)

denote the standard forward, backward, and centered difference operators, respec-
tively. Note that the derivative rρ of the mesh mapping function is computed directly
from the analytic representation of r without any difference approximation. This is
crucial for the accurate evaluation of vr, especially in “singularity regions” where the
inverse mesh density rρ is close to 0 and is nearly constant [58, Appendix A]. When rρ
is small and nearly constant, a high-order difference approximation of rρ tends to be
contaminated by catastrophic cancellation, and the discretely approximated values of
rρ can have large relative errors or even become negative, causing failures of the adap-
tive mesh algorithm and hence the entire computation. By computing rρ directly from
the analytic representation of r, this problem is avoided and the solution is ensured to
be accurately approximated even in regions where the singularity is about to form and
where rρ ≈ c 
 1. This also explains why the conventional moving mesh method is
not suitable for singularity computations where high accuracy is demanded, because
the method computes only a discrete approximation of the mesh mapping function,
which necessarily requires a difference approximation of rρ in the evaluation of a space
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derivative vr. Without mesh smoothing, this can cause instability, while with mesh
smoothing the mesh resolution will inevitably be limited, which is undesired.

The centered difference formulas described above need to be supplemented by
numerical boundary conditions near ρ, η = 0, 1. Along the η-dimension, the symmetry
condition

v−i,j = −vi,j , vM+i,j = ±vM−i,j , 1 ≤ i ≤ 3, 0 ≤ j ≤ N,

is used near η = 0 and η = 1, where the + sign applies to u1 and the − sign applies
to ω1. Along the ρ-dimension, the symmetry condition

vi,−j = vi,j , 0 ≤ i ≤M, 1 ≤ j ≤ 3,

is used near the axis ρ = 0 and the extrapolation condition

(D7
ρ,−vi,·)N+j = 0, 0 ≤ i ≤M, 1 ≤ j ≤ 3,

is applied near the solid boundary ρ = 1.5 The extrapolation condition is known to be
GKS (Gustafsson–Kreiss–Sundstrom) stable for linear hyperbolic problems [39, The-
orem 13.1.3], and it is expected to remain stable when applied to the Euler equations
as long as the underlying solution is sufficiently smooth.

4. Numerical Results. The initial-boundary value problem (2.1)–(2.2) is numer-
ically solved on the quarter cylinder D(1, 1

24 ) (with L = 1
6 ), and the results strongly

suggest the formation of a finite-time singularity in the computed solutions. The
purpose of this section is to provide, through careful analysis, convincing evidence to
support the existence of such a singularity. The presentation begins with an overview
of the computations in sections 4.1–4.2, where the effectiveness of the adaptive mesh
is demonstrated and the first sign of a finite-time singularity is displayed. After a
careful resolution study of the computed solutions in section 4.3, we proceed to sec-
tions 4.4–4.5, where the asymptotic scalings of the vorticity moments are analyzed and
the divergence of the time integral of the maximum vorticity, and hence the blowup
of the computed solutions, is confirmed. This conclusion is further strengthened in
section 4.6, where the geometric structures of the vorticity direction field are investi-
gated and the consistency between the blowing-up solutions and the various geometric
nonblowup criteria is demonstrated. Once the existence of a finite-time singularity
is confirmed, we move on to sections 4.7–4.8, where the locally self-similar structure
of the blowing-up solutions is examined and a physical interpretation of the finite-
time singularity is attempted. The discussion is concluded in section 4.9, where a 1D
model featuring some of the essential properties of the blowup is investigated, and
where existence of finite-time singularities for this 1D model is rigorously established.

4.1. Effectiveness of the Adaptive Mesh. We have numerically solved the prob-
lem (2.1)–(2.2) on meshes of size 256k × 256k, where k = 4, 5, 6, 7, 8. In each com-
putation, the solution is initialized on a uniform mesh, which is then adjusted to the
initial condition using the adaptive mesh algorithm described in section 3.1. Once
an “optimal” mesh is obtained, the solution is advanced indefinitely in time using
the method described in section 3, until either the time step drops below 10−12, or
the minimum mesh spacing drops below εr = 10−15 (in r) or εz = 10−15(14L) (in z),
whichever happens first.

5While a 6th-order extrapolation condition (D6
ρ,−vi,·)N+j = 0 suffices to maintain a formal 6th-

order accuracy for the overall scheme, we choose the higher-order extrapolation condition for better
accuracy.
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Table 1 Stopping time te and cause of termination, where (δr , δz) denote the minimum mesh spac-
ing in r and z, respectively.

Mesh size te Cause of termination

1024 × 1024 0.0035055667206 δr < εr and δz < εz
1280 × 1280 0.0035055581996 δz < εz
1536 × 1536 0.0035055522856 δz < εz
1792 × 1792 0.0035055523092 δr < εr and δz < εz
2048 × 2048 0.0035055472037 δr < εr and δz < εz
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Fig. 1 The vorticity function |ω| on the 1024 × 1024 mesh at t = 0.003505, in (a) rz-coordinates
and (b) ρη-coordinates, where for clarity only one-tenth of the mesh lines are displayed along
each dimension.

Table 1 shows the stopping time te and the cause of termination for each resolution
run. For all the computations shown in the table, the total number of remeshing steps
is about 130, and this number depends on the choice of the parameters δ0, δ1 (cf. (3.1))
but is relatively insensitive to the particular choice of the mesh mapping functions.
As indicated by the mostly decreasing stopping time (with respect to the increasing
resolution) and the vanishing minimum mesh spacings, the solution seems to develop
a very singular structure in finite time. To determine the nature of the singular
structure and to see how well the adaptive mesh resolves it, we plot in Figure 1
the vorticity function |ω| computed on the 1024 × 1024 mesh at t = 0.003505, in
both the rz-coordinates (Figure 1(a)) and the ρη-coordinates (Figure 1(b)). The rz-
plot suggests that the singular structure could be a point-singularity at the corner
q̃0 = (1, 0)T , which corresponds to a ring-singularity on the solid boundary due to the
axial symmetry. The ρη-plot, on the other hand, shows that a good portion of the
mesh points (roughly 50% along each dimension) are consistently placed in regions
where |ω| is comparable with the maximum vorticity ‖ω‖∞, hence demonstrating the
effectiveness of the adaptive mesh. To quantitatively measure the maximum resolution
power achieved by the adaptive mesh, we define the mesh compression ratios

p∞ :=
L

4z′(η∞)
, q∞ :=

1

r′(ρ∞)
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Table 2 Mesh compression ratios (p∞, q∞) and effective mesh resolutions (M∞, N∞) at the location
of the maximum vorticity at t = 0.003505.

t = 0.003505
Mesh size

p∞ M∞ q∞ N∞

1024× 1024 1.9456 × 109 1.9923 × 1012 1.6316 × 109 1.6708 × 1012

1280× 1280 1.9530 × 109 2.4999 × 1012 1.6285 × 109 2.0844 × 1012

1536× 1536 1.9444 × 109 2.9866 × 1012 1.6328 × 109 2.5079 × 1012

1792× 1792 1.9504 × 109 3.4951 × 1012 1.6344 × 109 2.9288 × 1012

2048× 2048 1.9503 × 109 3.9942 × 1012 1.6330 × 109 3.3444 × 1012

Table 3 Time step δt at selected time t.

δt
Mesh size

t = 0† t = 0.003 t = 0.0034 t = 0.0035 t = 0.003505

1024 × 1024 1× 10−6 2.8754 × 10−7 4.9502 × 10−8 2.8831 × 10−9 2.4240 × 10−10

1280 × 1280 1× 10−6 2.3120 × 10−7 3.9636 × 10−8 2.2983 × 10−9 2.5772 × 10−10

1536 × 1536 1× 10−6 1.9165 × 10−7 3.2907 × 10−8 1.9165 × 10−9 2.2223 × 10−10

1792 × 1792 1× 10−6 1.6578 × 10−7 2.8451 × 10−8 1.6418 × 10−9 1.9122 × 10−10

2048 × 2048 1× 10−6 1.4509 × 10−7 2.4046 × 10−8 1.4367 × 10−9 2.0272 × 10−10

†The maximum time step allowed in our computations is 10−6.

Table 4 Maximum vorticity ‖ω‖∞ at selected time t.

‖ω‖∞
Mesh size

t = 0 t = 0.003 t = 0.0034 t = 0.0035 t = 0.003505

1024 × 1024 3.7699× 103 9.0847× 104 4.3127× 106 5.8438× 109 1.2416× 1012

1280 × 1280 3.7699× 103 9.0847× 104 4.3127× 106 5.8423× 109 1.2407× 1012

1536 × 1536 3.7699× 103 9.0847× 104 4.3127× 106 5.8417× 109 1.2403× 1012

1792 × 1792 3.7699× 103 9.0847× 104 4.3127× 106 5.8415× 109 1.2401× 1012

2048 × 2048 3.7699× 103 9.0847× 104 4.3127× 106 5.8413× 109 1.2401× 1012

and the effective mesh resolutions

M∞ := p∞M =
LM

4z′(η∞)
, N∞ := q∞N =

N

r′(ρ∞)

at the location (ρ∞, η∞)T ≡ (1, 0)T of the maximum vorticity ‖ω‖∞. The values of
these quantities computed at t = 0.003505 are summarized in Table 2, from which
the power of the adaptive mesh can be clearly observed.

The above analysis confirms the effectiveness of the adaptive mesh in the “inner
region” where the vorticity function |ω| is most singular. The quality of the mesh
outside the inner region, as well as the stability and convergence of the Poisson solver
(cf. section 3.2) on the highly nonuniform adaptive mesh, can be ensured from a
separate analysis. Interested readers are referred to [58, section 4.1] for details.

4.2. First Sign of Singularity. To examine more closely the nature of the singular
structure observed in Figure 1, we report in Tables 3–4 the (variable) time steps δt
and the maximum vorticity ‖ω‖∞ recorded at selected time instants t. We also plot in
Figure 2 the double logarithm of the maximum vorticity, log(log‖ω‖∞), computed on
the coarsest 1024× 1024 and the finest 2048× 2048 meshes. It can be observed from
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Fig. 2 The double logarithm of the maximum vorticity log(log‖ω‖∞) computed on the 1024 × 1024
and the 2048 × 2048 meshes. The two curves overlap and are virtually indistinguishable
from each other (see section 4.3 below for a detailed resolution study on the nearly singular
solutions).

these results that, for each computation, there exists a short time interval right before
the stopping time te in which the solution grows tremendously. This can be readily
inferred from the sharp decrease in time step δt (Table 3) as well as the super-double-
exponential growth of the maximum vorticity ‖ω‖∞ (Table 4, Figure 2). In addition,
the nearly singular solution seems to converge under mesh refinement (Table 4). These
behaviors are characteristic of a blowing-up solution and may be viewed as the first
sign of a finite-time singularity looming on the horizon.

4.3. Resolution Study. Of course, neither a rapidly decreasing time step nor a
fast growing vorticity can be used alone as evidence for a finite-time singularity. To
investigate the issue of finite-time blowup more closely, a much more thorough analysis
is needed which, in the first place, requires a careful examination of the accuracy of
the computed solutions.

There are several well-established “standard” methods in the literature to gauge
the quality of an Euler computation:

(i) Energy conservation. It is well known that, under suitable regularity as-
sumptions, the solutions of the Euler equations conserve the kinetic energy

E =
1

2

∫
D(1,L)

|u|2 dx =
1

2

∫ 1

0

∫ L

0

(
|u1|2 + |ψ1,r|2 + |ψ1,z|2

)
r3 dr dz.

Thus a widely used “quality indicator” for Euler computations is the relative change
of the energy integral E over time.

(ii) Enstrophy and enstrophy production rate. Another widely accepted “error
indicator” for Euler computations is the enstrophy integral

E =

∫
D(1,L)

|∇u|2 dx =

∫
D(1,L)

|ω|2 dx

and the enstrophy production rate integral

Ep :=
dE
dt

= 2

∫
D(1,L)

ω · Sω dx, S =
1

2

(
∇u+∇uT

)
.
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These quantities are not conserved over time, but their convergence under mesh re-
finement provides partial evidence on the convergence of the underlying numerical
solutions.

(iii) Energy spectra. For problems defined on periodic domains, it is also a
common practice to perform convergence analysis on the energy spectra of the periodic
velocity field u,

Ep(k) =
∑

|�|∈(k−1/2,k+1/2]

|û�|2,

and use the results as a measure of the quality of the underlying solutions. Here,
as usual, û� denotes the vector Fourier coefficients of the velocity u, which on an
L1 × L2 × L3 periodic box B is defined by

û� =
1

|B|

∫
B

ue−i�·x dx

=
1

L1L2L3

∫ L3

0

e−i�3x3

∫ L2

0

e−i�2x2

∫ L1

0

ue−i�1x1 dx1 dx2 dx3.

(iv) Maximum vorticity. Perhaps one of the most important quantities in the
regularity theory of the Euler equations, the maximum vorticity

‖ω‖∞ := ‖ω‖L∞(D(1,L)) = max
(r,z)∈D(1,L)

|ω(r, z)|

is closely monitored in most Euler computations, and its convergence under mesh
refinement is also frequently used as a “quality indicator” for the underlying numerical
simulations.

(v) Conservation of circulation. In a more recent work [10], the relative change
of the circulation

Γ =

∮
C

u · ds

around selected material curves C is proposed as an “error indicator” for Euler com-
putations. The idea is that, according to Kelvin’s circulation theorem, the circulation
around any closed material curve C is conserved by an Euler flow, and hence the same
should be expected for a numerical solution as well. While conservation of circulation
is a physically important principle, its numerical confirmation is not always plausible,
because it is not always clear how to choose the “representative” material curves C.
In addition, it is generally not easy to follow a material curve in an Euler flow, since
most such simulations are performed on Eulerian meshes, while tracking a material
curve requires the use of a Lagrangian mesh.

We argue that none of the above “quality indicators” is adequate for the purpose of
singularity detection. Admittedly, energy, enstrophy, and circulation are all physically
significant quantities, and without a doubt they should all be accurately resolved in
any “reasonable” Euler simulations. On the other hand, it is also important to realize
that these quantities are global quantities and do not measure the accuracy of a
numerical solution at any particular point or even in any particular subset of the
computational domain. Since blowing-up solutions of the Euler equations must be
characterized by rapidly growing vorticity [4], and in most cases such intense vorticity
amplification is realized in spatial regions with rapidly collapsing support [50, 44], it
is crucial that the accuracy of a numerically detected blowup candidate be measured
by local error metrics such as the pointwise (sup-norm) error. When restricted to
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bounded domains, the pointwise error is stronger than any other global error metrics
in the sense that the latter can be easily bounded in terms of the former, while the
converse does not hold true in general. Consequently, the pointwise error provides the
most stringent measure for the quality of a blowup candidate, both near the point of
blowup and over the entire (bounded) computational domain.

Arguing in a similar manner, we see that neither energy spectrum nor maximum
vorticity gives an adequate measure of error for a potentially blowing-up solution. On
the one hand, the construction of an energy spectrum removes the phase information
and reduces the dimension of the data from three to one, leaving only an incomplete
picture of a solution and hence of its associated error. On the other hand, maximum
vorticity, albeit significant in its own right, does not tell us anything about a solution
except at the point where the vorticity magnitude attained its maximum.

In view of the above considerations, we shall gauge the quality of our Euler simu-
lations at any fixed time instant t using the sup-norm relative errors of the computed
solutions (u1, ω1, ψ1). More specifically, we shall estimate the error of a given solution,
say u1, by comparing it with a “reference solution,” say û1, that is computed at the
same time t on a finer mesh. The reference solution û1 is first interpolated to the
coarse mesh on which u1 is defined. Then the maximum difference between the two
solutions is computed and the result is divided by the maximum of |û1| (measured on
the finer mesh) to yield the desired relative error.

We check the accuracy of our computations in five steps.

4.3.1. Code Validation on Test Problems. First, we apply the numerical method
described in section 3 to a test problem with known exact solutions and artificially
generated external forcing terms [58, Appendix C]. The exact solutions are chosen to
mimic the behavior of the blowing-up Euler solution computed from (2.1)–(2.2), and
numerical experiments on successively refined meshes confirm the 6th-order conver-
gence of the overall method [58, Table 7].

4.3.2. Resolution Study on Transformed Primitive Variables. Second, we per-
form a resolution study on the actual solutions of problem (2.1)–(2.2) at various time
instants t, up to the time t = 0.003505 shortly before the simulations terminate. For
each 256k× 256k mesh except for the finest one, we compare the solution (u1, ω1, ψ1)

computed on this mesh with the reference solution (û1, ω̂1, ψ̂1) computed at the same
time t on the finer [256(k+1)]× [256(k+1)] mesh, and compute the sup-norm relative
error using the procedure described above. For each 256k× 256k mesh except for the
coarsest one, we also compute, for each error ek defined on this mesh, the numerical
order of convergence

(4.1) βk = logk/(k−1)

(ek−1

ek

)
.

Here, the error ek is understood as a function of the (uniform) mesh spacing hr =
hz = 1/(256k) in the ρη-space, and it is assumed to admit an asymptotic expansion in
powers of hr and hz. Under suitable regularity assumptions on the underlying exact
solutions and with suitable choices of time steps, it can be shown that βk converges
to its theoretical value (6 in this case) as k → ∞.

The results of the resolution study on the primitive variables (u1, ω1, ψ1) among
the five mesh resolutions are summarized in Figure 3. To examine more closely the
errors at the times when the solutions are about to “blow up,” we also report in
Table 5 the estimated sup-norm errors and numerical orders at t = 0.003505. It can
be observed from these results that, for small t, specifically for t � 0.0015, the solutions
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Fig. 3 Resolution study in space: (a), (c), (e) sup-norm relative error and (b), (d), (f) numerical
order in sup-norm of the transformed primitive variables (u1, ω1, ψ1). The last time instant
shown in the figure is t = 0.003505.

are well resolved even on the coarsest 1024× 1024 mesh, and further increase in mesh
size does not lead to further improvement of the sup-norm errors. For 0.0015 � t �
0.0033, the errors first grow exponentially in time and then level off after t ≈ 0.0028.
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Table 5 Sup-norm relative error and numerical order of convergence of the transformed primitive
variables (u1, ω1, ψ1) at t = 0.003505. The absolute size of each variable, measured on the
finest 2048 × 2048 mesh, is indicated in the last row of the table, “Sup-norm.”

Sup-norm relative error at t = 0.003505
Mesh size

u1 Order ω1 Order ψ1 Order

1024 × 1024 9.4615 × 10−6 − 6.4354× 10−4 − 2.8180× 10−10 −
1280 × 1280 3.6556 × 10−6 4.26 2.4201× 10−4 4.38 4.7546× 10−11 7.97
1536 × 1536 1.5939 × 10−6 4.55 1.1800× 10−4 3.94 1.0873× 10−11 8.09
1792 × 1792 7.5561 × 10−7 4.84 6.4388× 10−5 3.93 2.9518× 10−12 8.46

Sup-norm 1.0000 × 102 − 1.0877× 106 − 2.1610 × 10−1 −

The numerical orders estimated on this time interval roughly match their theoretical
values 6, confirming the full-order convergence of the computed solutions. For t �
0.0033, the exponential growth of the sup-norm errors resumes at an accelerated
pace, in correspondence with the strong, nonlinear amplifications of the underlying
solutions observed in this stage. The numerical orders estimated for u1 and ω1 decline
slightly from 6 to 4, as a result of the rapidly growing discretization error in time
(Figure 5), while the ones for ψ1 increase slightly from 6 to 8, thanks most likely
to the superconvergence property of the B-spline-based Poisson solver at grid points
(section 3.2). Based on these observations, we conclude that the primitive variables
computed on the finest two meshes have at least four significant digits up to and
including the time t = 0.003505 shortly before the singularity forms. To the best of
our knowledge, this level of accuracy has never been observed in previous numerical
studies (see also Table 11).

4.3.3. Resolution Study on Vorticity Vector. Since the Beale–Kato–Majda cri-
terion suggests that the vorticity vector ω controls the blowup of smooth Euler solu-
tions, we next perform a resolution study on ω to see how well it is resolved in our
computations. The procedure is almost identical to that described for the primitive
variables (u1, ω1, ψ1), except that the difference between a vorticity vector ω and its
reference value ω̂ needs to be measured in a suitable vector norm. By choosing the
usual Euclidean norm, we have

|ω − ω̂| =
{
(ωr − ω̂r)2 + (ωθ − ω̂θ)2 + (ωz − ω̂z)2

}1/2

=
{
(ru1,z − rû1,z)

2 + (rω1,z − rω̂1,z)
2 + (2u1 + ru1,r − 2û1 − rû1,r)

2
}1/2

.

The resulting sup-norm errors and numerical orders are summarized in Figure 4 and
Table 6. These results will be used below in section 4.4 in the computation of the
asymptotic scalings of the nearly singular solutions.

4.3.4. Resolution Study on Global Quantities. The next step in our resolution
study is to examine the “conventional” error indicators defined using global quantities
such as energy E, enstrophy E , enstrophy production rate Ep,6 maximum vorticity
‖ω‖∞,7 and circulation Γ. As we already pointed out, conservation of circulation is

6All these integrals are discretized in the ρη-space using the 6th-order composite Boole’s rule.
7We define ‖ω‖∞ simply as the maximum value of |ω| on the discrete mesh points (i.e., no

interpolation is used to find the “precise” maximum). In view of the highly effective adaptive mesh,
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Fig. 4 Resolution study in space: (a) sup-norm relative error and (b) numerical order in sup-norm
of the vorticity vector ω. The last time instant shown in the figure is t = 0.003504.

Table 6 Sup-norm relative error and numerical order of convergence of the vorticity vector ω at
selected time t. The absolute size of ω, measured on the finest 2048×2048 mesh, is indicated
in the last row of the table, “Sup-norm.”

Sup-norm relative error of ω
Mesh size

t = 0.003504 Order t = 0.003505 Order

1024 × 1024 8.5671 × 10−4 − 1.1352 × 10−3 −
1280 × 1280 3.6084 × 10−4 3.87 4.5801 × 10−4 4.07
1536 × 1536 1.6929 × 10−4 4.15 2.3050 × 10−4 3.77
1792 × 1792 8.9837 × 10−5 4.11 3.3212 × 10−4 −†

Sup-norm 1.2209 × 1011 − 1.2401 × 1012 −
†Round-off error begins to dominate.

physically important but is difficult to check in practice, because it requires selection
and tracking of representative material curves, which is not always easy. On the other
hand, in axisymmetric flows the total circulation along the circular contours

C =
{
(x, y, z) ∈ R

3 : x2 + y2 = r2 < 1, z a constant
}

is easily found to be Γ = 2πr2u1. Thus as an alternative to conservation of circulation,
we choose to monitor the extreme circulations

Γ1 = 2π min
(r,z)∈D(1,L)

r2u1(r, z), Γ2 = 2π max
(r,z)∈D(1,L)

r2u1(r, z),

which must be conserved over time according to Kelvin’s circulation theorem.
We study the errors of the above-mentioned global quantities as follows. For

conserved quantities such as kinetic energy and extreme circulations, the maximum
(relative) change

‖δQ‖∞,t = max
s∈[0,t]

|δQ(s)|

this does not cause any loss of accuracy. In addition, for the specific initial condition (2.2a), ‖ω‖∞
is always attained at q̃0 = (1, 0)T , which is always a mesh point.
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Table 7 Maximum (relative) change of kinetic energy E, minimum circulation Γ1, and maximum
circulation Γ2 over the time interval [0, 0.003505]. The initial value of each quantity,
measured on the finest 2048 × 2048 mesh, is indicated in the last row of the table, “Init.
value.”

t = 0.003505
Mesh size ‖δE‖∞,t ‖δΓ1‖∞,t ‖δΓ2‖∞,t

1024 × 1024 1.5259 × 10−11 4.3525× 10−17 1.2485 × 10−14

1280 × 1280 4.1730 × 10−12 3.3033× 10−17 7.7803 × 10−15

1536 × 1536 2.0787 × 10−12 3.1308× 10−17 9.9516 × 10−15

1792 × 1792 6.4739 × 10−13 2.7693× 10−17 2.1351 × 10−14

2048 × 2048 6.6594 × 10−13 2.5308× 10−17 3.4921 × 10−14

Init. value 55.9309 0.0000 6.2832 × 102

Table 8 Relative error of enstrophy E, enstrophy production rate Ep, and maximum vorticity ‖ω‖∞
at t = 0.003505. The absolute size of each quantity, measured on the finest 2048 × 2048
mesh, is indicated in the last row of the table, “Ref. value.”

Relative error at t = 0.003505
Mesh size E Order Ep Order ‖ω‖∞ Order

1024× 1024 4.6075× 10−6 − 4.6565 × 10−5 − 7.7593 × 10−4 −
1280× 1280 1.4946× 10−6 5.05 1.4488 × 10−5 5.23 3.0099 × 10−4 4.24
1536× 1536 5.6161× 10−7 5.37 5.3275 × 10−6 5.49 1.2927 × 10−4 4.64
1792× 1792 2.3385× 10−7 5.68 2.0314 × 10−6 6.25 6.1010 × 10−5 4.87

Ref. value 7.0254× 105 − 1.4270× 1010 − 1.2401× 1012 −

over the time interval [0, t] is computed, where

δQ(t) =

{
Q(0)−1

[
Q(t)−Q(0)

]
if Q(0) �= 0,

Q(t)−Q(0) if Q(0) = 0.

For other nonconservative quantities, the relative error

1

Q̂(t)
|Q(t)− Q̂(t)|

is computed where Q denotes global quantities computed on a 256k × 256k mesh
and Q̂ represents reference values obtained on the finer [256(k + 1)] × [256(k + 1)]
mesh. The resulting errors and numerical orders at t = 0.003505 are summarized in
Tables 7–8.

As a side remark, we note that the error of the maximum vorticity ‖ω‖∞ is always
a lower bound of the error of the vorticity vector ω. This is a direct consequence of
the triangle inequality ∣∣‖ω‖∞ − ‖ω̂‖∞

∣∣ ≤ ‖ω − ω̂‖∞

and is readily confirmed by the results shown in Tables 6 and 8. In addition, note
that global errors such as the error of the enstrophy E can significantly underestimate
the pointwise error of the vorticity vector ω. This confirms the inadequacy of the
“conventional” error indicators in the context of singularity detection.
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Fig. 5 Resolution study in time: sup-norm relative error of (a)–(c) the transformed primitive vari-
ables (u1, ω1, ψ1) and (d) the vorticity vector ω, computed on the 1792 × 1792 mesh. The
last time instant shown in the figure is t = 0.003505.

4.3.5. Resolution Study in Time. Finally, we perform a resolution study in time
by repeating the 1792× 1792 mesh computation using smaller time steps δt. This is
achieved by reducing the CFL number from ν = 0.5 to 0.4, 0.3 and the relative growth
threshold from εt = 5% to 4%, 3% (section 3.3). For each reduced time step compu-

tation, the resulting solution (û1, ω̂1, ψ̂1, ω̂) is taken as the reference solution and is
compared with the original solution (u1, ω1, ψ1, ω) computed using (ν, εt) = (0.5, 5%).
The corresponding sup-norm errors are summarized in Figure 5 and Table 9. Note
that the error between the computations (ν, εt) = {(0.3, 3%), (0.5, 5%)} is roughly
the same as that between the computations (ν, εt) = {(0.4, 4%), (0.5, 5%)}, which is
smaller than the error between the 1792 × 1792 and the 2048 × 2048 mesh compu-
tations. This indicates that the solutions computed on the 1792 × 1792 and all the
coarser meshes with (ν, εt) = (0.5, 5%) are well resolved in time up to t = 0.003505.

4.4. Asymptotic Scaling Analysis I: Maximum Vorticity. With the pointwise
error bounds derived in the previous section, we are ready to examine the numerical
data in greater detail and apply the mathematical criteria reviewed in section 1 to
assess the likelihood of a finite-time singularity.
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Table 9 Sup-norm relative error of the transformed primitive variables (u1, ω1, ψ1) and the vorticity
vector ω, computed on the 1792 × 1792 mesh with (ν, εt) = (0.5, 5%) and compared with
different reference solutions. The absolute size of each variable, measured on the finest
2048 × 2048 mesh, is indicated in the last row of the table, “Sup-norm.”

Sup-norm relative error at t = 0.003505
Ref. solution

u1 ω1 ψ1 ω

2048 × 2048 7.5561 × 10−7 6.4388 × 10−5 2.9518 × 10−12 3.3212× 10−4

(ν, εt) = (0.4, 4%) 3.3350 × 10−7 5.1609 × 10−5 6.8713 × 10−14 9.7514× 10−5

(ν, εt) = (0.3, 3%) 2.4197 × 10−7 7.7720 × 10−5 1.7776 × 10−13 1.3800× 10−4

Sup-norm 1.0000 × 102 1.0877 × 106 2.1610 × 10−1 1.2401 × 1012

The basic tool that we shall employ is the well-known Beale–Kato–Majda (BKM)
criterion [4]. According to this criterion, a smooth solution of the 3D Euler equations
blows up at time ts if and only if

∫ ts

0

‖ω(·, t)‖∞ dt = ∞,

where ‖ω(·, t)‖∞ is the maximum vorticity of the flow at time t. The BKM criterion
was originally proved in [4] for flows in free space R

3, and it was later generalized by
[32, 64] to flows in smooth bounded domains subject to no-flow, free-slip boundary
conditions. In view of this criterion, a “standard” approach to singularity detection in
Euler computations is to assume the existence of an appropriate asymptotic scaling
for ‖ω‖∞, typically in the form of an inverse power law

(4.2) ‖ω(·, t)‖∞ ∼ c(ts − t)−γ , c, γ > 0;

then an estimate of the (unknown) singularity time ts and the scaling parameters
(c, γ) is obtained from a line fitting procedure. Normally, the line fitting is computed
on some interval [τ1, τ2] prior to the predicted singularity time ts, and the results are
extrapolated forward in time to yield the desired estimates.

Although seemingly straightforward, the above procedure must be applied with
great caution. Indeed, there are examples where inadvertent line fitting has led to
false predictions of finite-time singularities. As we shall demonstrate below, the key to
the successful application of the line fitting procedure lies in the choice of the fitting
interval [τ1, τ2]. One must realize, upon the invocation of (4.2), that the applicability
of this form fit is not known a priori and must be determined from the line fitting
itself. In order for the line fitting to work, the interval [τ1, τ2] must be placed within
the asymptotic regime of (4.2) if scalings of that form indeed exist. If such an asymp-
totic regime cannot be identified, then the validity of (4.2) is questionable and any
conclusions drawn from the line fitting are likely to be false.

In most existing studies, the choice of the fitting interval [τ1, τ2] is based on dis-
cretionary manual selections, which tend to generate results that lack clear interpre-
tations and that are difficult to reproduce. To overcome these difficulties, we propose
to choose τ1, τ2 using an automated procedure, which in ideal situations should place
τ2 at ts and τ1 at a point “close enough” to ts, in such a way that [τ1, τ2] is enclosed in
the asymptotic regime of (4.2). In reality, such a choice can never be made, because a
singularity time ts, if it exists, can never be attained by a numerical simulation. Thus
as a compromise, we propose to place τ1, τ2 close enough to the stopping time te, in
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such a way that the computed solutions are still “well resolved” on [τ1, τ2] and that
an asymptotic scaling of the form (4.2) exists and prevails in [τ1, τ2]. To this end, we
shall choose τ2 to be the first time instant at which the sup-norm relative error of the
vorticity vector ω exceeds a certain threshold ε2, and choose τ1 so that [τ1, τ2] is the
interval on which the line fitting yields the “best” results (in a sense to be made pre-
cise below). Note that the accuracy of the computed solutions is measured in terms
of the error of ω, not that of (u1, ω1, ψ1), because ω is the quantity that controls the
blowup.

We consider a line fitting “successful” if both τ2 and the line-fitting predicted
singularity time t̂s converge to the same finite value as the mesh is refined. The
convergence should be monotone, i.e., τ2 ↑ ts, t̂s ↓ ts, where ts is the common limit,
the true singularity time. In addition, τ1 should converge to a finite value that is
strictly less than ts as the mesh is refined. The reason that the convergence of τ2, t̂s
to the singularity time ts should be monotone is twofold: first, the finer the mesh,
the longer it takes the error to grow to a given tolerance, and hence the larger the
τ2 is; second, as τ2 gets increasingly closer to ts, the strong, singular growth of the
blowing-up solution is better captured on [τ1, τ2], which then translates into an earlier
estimate t̂s of the blowup time.

If the interval [τ1, τ2] can be chosen to satisfy all the above criteria, and the
scaling parameters (c, γ) estimated on this interval converge to some finite values
cs > 0, γs ≥ 1 as the mesh is refined, then the existence of a finite-time singularity is
confirmed.

We apply the above ideas to our numerical data and estimate the parameters in
(4.2) from the linear regression problems

y(t) :=
{ d

dt
log‖ω(·, t)‖∞

}−1

∼ − 1

γ
(t− ts) =: at+ b,(4.3)

ỹ(t̃) := log‖ω(·, t)‖∞ ∼ −γ log(t̂s − t) + log c =: ãt̃+ b̃,(4.4)

where t̂s is an estimate of the singularity time ts computed from (4.3), and

a = −1/γ, b = ts/γ, and ã = −γ, b̃ = log c, t̃ = log(t̂s − t).

The model parameters (a, b, ã, b̃) of these regression problems are estimated from a
standard least-squares procedure, and the fitness of the models is assessed using the
fraction of variance unexplained (FVU), where a value of FVU close to 0 indicates
good fitness. The fitting interval [τ1, τ2] is chosen so that τ2 is the first time instant
at which the sup-norm relative error of ω exceeds a certain threshold ε2, and τ1 is the
time instant at which the FVU of the line fitting computed on [t, τ2], when viewed as
a function of t, attains a local minimum. The detailed description of the algorithm,
as well as the precise definition of the quality measure FVU, can be found in [58,
sections 4.4.1–4.4.2].

To see whether the above procedure applies to the maximum vorticity ‖ω‖∞, we
first plot in Figure 6 the inverse log t-derivative of the maximum vorticity (cf. (4.3))

y(t) =
{ d

dt
log‖ω(·, t)‖∞

}−1

computed on the 2048×2048 mesh. Intuitively, the inverse log t-derivative approaches
a straight line after t ≈ 0.0032, which suggests that the maximum vorticity indeed
admits an inverse power law of the form (4.2). Motivated by this observation, we
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Fig. 6 Inverse log t-derivative of the maximum vorticity computed on the 2048 × 2048 mesh. The
dashed line box represents the best fitting interval [τ1, τ2].

Table 10 The best line fittings (4.3) and (4.4) computed on the interval [τ1, τ2] with n data points.

Mesh size n τ1 τ2 t̂s γ̂1 γ̂2 ĉ

1024 × 1024 58 0.003306 0.003410 0.0035070 2.5041 2.5062 4.8293× 10−4

1280 × 1280 47 0.003407 0.003453 0.0035063 2.4866 2.4894 5.5362× 10−4

1536 × 1536 20 0.003486 0.003505 0.0035056 2.4544 2.4559 7.4912× 10−4

1792 × 1792 27 0.003479 0.003505 0.0035056 2.4557 2.4566 7.4333× 10−4

2048 × 2048 32 0.003474 0.003505 0.0035056 2.4568 2.4579 7.3273× 10−4

apply the line fitting to the data y and report the resulting estimates in Table 10.
It can be observed from this table that all estimated parameters converge to a finite
limit as the mesh is refined, where in particular both τ2 and t̂s tend to a common limit
in a monotonic fashion.8 In addition, it can be seen that the limit of τ1 is strictly less
than the common limit of τ2 and t̂s, indicating the existence of an asymptotic regime.
Moreover, both estimates γ̂1, γ̂2 of γ (computed from (4.3) and (4.4), respectively)
approach a common limit with a value close to 5

2 ≥ 1, and the limit of ĉ is strictly
positive. Based on these observations and the BKM criterion, we conclude that the
solution of problem (2.1)–(2.2) develops a singularity at ts ≈ 0.0035056.

It is interesting to compare at this point the two estimates γ̂1, γ̂2 of the scaling
exponent γ computed from the regression problems (4.3) and (4.4). As can be observed
from Table 10, the estimate γ̂2 computed from (4.4) is always slightly larger than that
γ̂1 computed from (4.3). This is expected, because the singularity time t̂s estimated
from (4.3) decreases monotonically as the mesh is refined, indicating that t̂s is always
an overestimate of the true singularity time ts. Consequently, the inverse power law
(t̂s− t)−γ necessarily underestimates the maximum vorticity ‖ω‖∞ ∼ (ts− t)−γ when
t is sufficiently close to ts, and the scaling exponent γ̂2 estimated from (4.4) has to
be artificially magnified to compensate for this discrepancy. This explains the larger
value of γ̂2 compared with γ̂1.

8The small discrepancy between the limits of τ2 and t̂s is due to the fact that the sup-norm
errors of ω are computed only at a discrete set of time instants. This restricts the definition of τ2 to
a discrete set of values.
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Table 11 Comparison of our results with other representative numerical studies. τ2: the last time
at which the solution is deemed “well resolved.”

Studies τ2 ts Effec. res. Vort. amp.

[50] 17 18.7 ≤ 5123 23
[7] 1.6† 2.06 10243 180
[37] 1.32 1.355 20483 21
[61] 2.72 2.75 10243 55
Ours 0.003505 0.0035056 (3 × 1012)2 3× 108

†According to [45].

The computation of γ̂1 from (4.3), on the other hand, does not suffer from this
problem and is expected to yield a more accurate estimate of γ. Thus in what follows,
we shall always choose γ̂1 as the estimated value of γ.

The quality of the line fittings computed in Table 10 can be assessed using several
metrics, including the FVU computed on the fitting interval [τ1, τ2], the “extrapolated
FVU” computed on the extrapolation interval [τ2, te], and the errors of the line fittings
computed on the extrapolation interval [τ2, te]. The results, as reported in [58, section
4.4.3], demonstrate that both linear models (4.3) and (4.4) fit the data very well, and
that the line fittings provide an excellent approximation to the data even in the
extrapolation interval. Based on these observations, we conclude that the estimates
obtained in Table 10 are trustworthy.

We conclude this section with a brief comparison of our results with other repre-
sentative numerical studies (Table 11). As is clear from the table, our computation
offers a much higher effective mesh resolution, and it advances the solution to a point
that is significantly closer to the time predicted for singularity formation. It also pro-
duces a much stronger vorticity amplification, thus yielding much more convincing
evidence for the existence of a finite-time singularity compared with other numerical
studies.

4.5. Asymptotic Scaling Analysis II: Vorticity Moments. Given the existence
of a finite-time singularity as indicated by the blowing-up maximum vorticity ‖ω‖∞,
we turn to the interesting question of whether the vorticity moment integrals

Ω2m =
(∫

D(1,L)

|ω|2m dx
)1/2m

, m = 1, 2, . . . ,

blow up at the same time as ‖ω‖∞ does, and if so, what type of asymptotic scalings
they satisfy. According to Hölder’s inequality, higher vorticity moments “control” the
growth of lower vorticity moments, in the sense that

Ω2m ≤ Ω2n|D(1, L)|(n−m)/(2mn), 1 ≤ m < n.

Thus the blowup of any vorticity moment Ω2m implies the blowup of all higher mo-
ments Ω2n (n ≥ m). In particular, since ‖ω‖∞ = Ω∞, the blowup of any finite-order
vorticity moment implies the blowup of the maximum vorticity, hence providing ad-
ditional supporting evidence for the existence of a finite-time singularity.

We have carried out a detailed analysis of the vorticity moments and discovered
that all moments of order higher than 2 blow up at a finite time.9 For the purpose of

9The enstrophy integral, Ω2
2, is observed to grow rapidly (faster than double-exponential), but

careful analysis indicates that it is likely to remain bounded as the singularity time ts is approached.
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Table 12 The line fitting (4.5) of the 2mth vorticity moment Ω2m, m = 2, 3, 4, computed on the
interval [τ1, τ2]. For comparison, the singularity time t̂s estimated from (4.3) is also
included.

t̂2m,s γ̂2m,1
Mesh size t̂s from (4.3)

m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

1024× 1024 0.0035070 0.0035231 0.0035124 0.0035097 1.2542 1.6129 1.8176
1280× 1280 0.0035063 0.0035115 0.0035074 0.0035067 1.1306 1.5383 1.7658
1536× 1536 0.0035056 0.0035056 0.0035056 0.0035056 1.0019 1.4857 1.7289
1792× 1792 0.0035056 0.0035057 0.0035056 0.0035056 1.0039 1.4855 1.7285
2048× 2048 0.0035056 0.0035057 0.0035056 0.0035056 1.0062 1.4857 1.7285

illustration, we report in Table 12 the singularity time t̂2m,s and the scaling exponent
γ̂2m,1 estimated from the line fitting

(4.5) y(t) :=
{ d

dt
logΩ2m(t)

}−1

∼ − 1

γ2m
(t− ts) =: at+ b

for m = 2, 3, 4, where Ω2m is assumed to satisfy the scaling law

Ω2m(t) ∼ c2m(ts − t)−γ2m , c2m, γ2m > 0.

It can be observed from this table that all Ω2m with m > 1 satisfy an inverse power
law, with an exponent γ̂2m,1 monotonically approaching γ̂ ≈ 5

2 , and that they all blow

up at a finite time t̂2m,s approximately equal to the singularity time t̂s estimated from
(4.3). This confirms the blowup of ‖ω‖∞ at the predicted singularity time ts, and
hence the existence of a finite-time singularity.

4.6. Vorticity Direction and Spectral Dynamics. The BKM criterion charac-
terizes the finite-time blowup of the 3D Euler equations in terms of the maximum
vorticitymagnitude |ω|, but makes no assumption on the vorticity direction ξ = ω/|ω|.
It turns out that, when less regularity is demanded for the vorticity magnitude, say
boundedness in Lp (p <∞) instead of boundedness in L∞, the regularity of the vor-
ticity direction can also play a role in controlling the blowup of the Euler solutions
[23]. To see more precisely how the direction vector ξ enters the analysis, recall the
vorticity amplification equation

|ω|t + u · ∇|ω| = α|ω|,(4.6a)

α = ξ · ∇u · ξ = ξ · Sξ, S = 1
2

(
∇u +∇uT

)
,(4.6b)

which can be derived from (1.2) by applying the scalar product ω· on both sides
of the equation. The vorticity amplification factor α can be shown to admit the
representation [23]:

α(x) =
3

4π
P.V.

∫
R3

D(ŷ, ξ(x + y), ξ(x))|ω(x + y)| dy|y|3 ,(4.6c)

where ŷ = y/|y| is the unit vector pointing in the direction of y and

D(e1, e2, e3) = (e1 · e3) det(e1, e2, e3).

Note that the quantity D(e1, e2, e3) is small when e2 and e3 are nearly aligned or
antialigned, so a smoothly varying vorticity direction field ξ near a spatial point x
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Fig. 7 The geometry of the vorticity direction: (a) the 2D vorticity direction ξ̃ = (ξr , ξz)T and
(b) the z-direction component ξz computed on the 1024 × 1024 mesh at t = 0.003505. All
plots in this figure are defined on the region [rl, 1]× [0, zr ], where rl = 1− 5.99× 10−11 and
zr = 2.09× 10−12.

can induce strong cancellation in the vorticity amplification α(x), thus preventing
the vorticity |ω(x)| at x from growing unboundedly. The most well-known nonblowup
criteria in this direction are those of Constantin, Fefferman, and Majda [25] and Deng,
Hou, and Yu [26]. Under the assumption that the vorticity direction ξ is “not too
twisted” near the location of the maximum vorticity, they show that a suitable upper
bound can be obtained for α and hence for ‖ω‖∞, establishing the regularity of the
solutions to the 3D Euler equations.

The Constantin–Fefferman–Majda (CFM) and Deng–Hou–Yu (DHY) nonblowup
criteria are useful for excluding false blowup candidates, but they cannot be used
directly to verify a finite-time singularity. The reason is that these criteria provide
only upper bounds for the amplification factor α, while a blowup estimate requires a
lower bound. Nevertheless, a careful examination of our numerical data against these
criteria provides additional evidence for the existence of a finite-time singularity. It
also offers additional insights into the nature of the blowup.

By carefully checking our numerical data against the CFM and DHY criteria,
we confirm, as shown in [58, sections 4.6.1–4.6.2], that the conditions stated in these
theorems are not satisfied; as a result, none of the criteria excludes the possibility
of a finite-time singularity from our data. To better appreciate the local geometric
structure of the vorticity direction ξ near the location of the maximum vorticity, we
also include in Figure 7 a plot of the 2D vorticity direction ξ̃ = (ξr , ξz)T and a plot
of the z-direction component ξz, both defined at t = 0.003505 on the set

D̃∞ = [1− 5.99× 10−11, 1]× [0, 2.09× 10−12].

Note that the through-plane (θ) component of ξ has a maximum absolute value of
2.1874 × 10−6 in D̃∞ and hence is negligible there. It can also be observed from
Figure 7 that the z-direction component ξz experiences an O(1) change in D̃∞ along
the z-dimension, which has a length scale of order O(10−12). This indicates the
formation of bundles of “densely packed” and “fast twisting” vortex lines near the
location of the maximum vorticity, hence explaining the breakdown of the smooth
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vorticity direction ξ and that of the nonblowup criteria in that region.
The analysis carried out above suggests that the growth of the vorticity ampli-

fication factor α depends on the local geometric structures of the vorticity vector.
Alternatively, the dynamics of the vorticity amplification can also be investigated
algebraically, using the defining relation (cf. (4.6b))

α = ξ · ∇u · ξ = ξ · Sξ, S = 1
2

(
∇u +∇uT

)
,

where the eigenstructure of the symmetric strain tensor S plays a central role. To
see more clearly the connection between α and S, consider the velocity vector in
cylindrical coordinates:

u = urer + uθeθ + uzez,

where the three Cartesian components of u can be expressed in terms of the trans-
formed variables (u1, ψ1):

v1 = −rψ1,z cos θ − ru1 sin θ,

v2 = −rψ1,z sin θ + ru1 cos θ,

v3 = 2ψ1 + rψ1,r .

The entries of the deformation tensor ∇u can be readily computed:

∂xv1|θ=0 = −ψ1,z − rψ1,rz, ∂yv1|θ=0 = −u1, ∂zv1|θ=0 = −rψ1,zz,

∂xv2|θ=0 = u1 + ru1,r, ∂yv2|θ=0 = −ψ1,z, ∂zv2|θ=0 = ru1,z,

∂xv3|θ=0 = 3ψ1,r + rψ1,rr, ∂yv3|θ=0 = 0, ∂zv3|θ=0 = 2ψ1,z + rψ1,rz,

where the computation need only be done on the meridian plane θ = 0 thanks to the
axial symmetry. When further restricted to the point q̃0 = (1, 0)T , the location of the
maximum vorticity, the above expressions reduce to

∇ũ =

⎛
⎝ −ψ̃1,rz 0 0

0 0 ũ1,z
0 0 ψ̃1,rz

⎞
⎠ , S̃ =

⎛
⎝ −ψ̃1,rz 0 0

0 0 1
2 ũ1,z

0 1
2 ũ1,z ψ̃1,rz

⎞
⎠ ,

where for simplicity we have written ∇ũ = ∇u(q̃0), S̃ = S(q̃0), etc. Now the eigen-
values of S̃ can be easily found to be

λ̃1,3 = 1
2

{
ψ̃1,rz ±

(
ψ̃2
1,rz + ũ21,z

)1/2}
, λ̃2 = −ψ̃1,rz,

with corresponding eigenvectors

w̃1 =

⎛
⎝ 0

1
2 ũ1,z
λ̃1

⎞
⎠ , w̃2 =

⎛
⎝ 1

0
0

⎞
⎠ , w̃3 =

⎛
⎝ 0

1
2 ũ1,z
λ̃3

⎞
⎠ .

On the other hand, the vorticity vector ω at q̃0 takes the form

ω̃ =

⎛
⎝ −ũ1,z

0
0

⎞
⎠ , with ξ̃ =

ω̃

|ω̃| =

⎛
⎝ −1

0
0

⎞
⎠ .



FINITE-TIME SINGULARITY OF 3D EULER 31

Thus the vorticity direction ξ̃ at the location of the maximum vorticity is perfectly
aligned with w̃2, the second eigenvector of S̃, and the corresponding amplification
factor becomes

α∞ := α̃ = ξ̃ · S̃ξ̃ = λ̃2 = −ψ̃1,rz.

It is worth noting that, when viewed in R
3, the eigenvectors {w̃1, w̃2, w̃3} restricted

to the “singularity ring”

C =
{
(x, y, z) ∈ R

3 : x2 + y2 = 1, z = 0
}

form an orthogonal frame, with w̃2 pointing in the radial direction and w̃1, w̃3 pointing
in directions tangential to the lateral surface of the cylinder r = 1.

Finally, by making use of the relations (cf. (4.6a))

α∞ = −ψ̃1,rz =
d

dt
log‖ω‖∞, ‖ω‖∞ = |ω̃| = |ũ1,z|,

we may also express the first and third eigenvalues of S̃ in the form

λ̃1,3 = 1
2

{
−α∞ ±

(
α2
∞ + ‖ω‖2∞

)1/2}
.

Since α∞ and ‖ω‖∞ both satisfy an inverse power law with an exponent roughly equal
to −1 (for α∞; cf. (4.3)) and − 5

2 (for ‖ω‖∞), it follows that

λ̃1,3 ∼ ± 1
2‖ω‖∞, t→ t−s .

This is confirmed by a line fitting similar to (4.4), which yields (cf. Table 10)

λ̃1 ∼ c1(t̂s − t)−2.4582, c1 = 3.6514× 10−4,

λ̃3 ∼ c3(t̂s − t)−2.4576, c3 = −3.6759× 10−4,

where t̂s is the singularity time estimated from (4.3).

4.7. Locally Self-Similar Structure. The 3D Euler equations (1.1) possess the
well-known scaling property that if u(x, t) is a solution of the equations, then

uλ(x, t) := λαu(λx, λα+1t) ∀λ > 0, ∀α ∈ R

is also a solution. A natural question is then whether the 3D Euler equations admit
self-similar solutions of the form

(4.7a) u(x, t) =
1

[T − t]γ
U
( x− x0
[T − t]β

)
,

where U is a self-similar velocity profile and β, γ are scaling exponents. By substi-
tuting (4.7a) into (1.1), it is easily found that

(4.7b) β =
1

α+ 1
, γ =

α

α+ 1
∀α �= −1,

which in particular implies that

(4.7c) ∇u(x, t) = 1

T − t
∇U

( x− x0
[T − t]β

)
.
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In [13, 14], the existence of global self-similar solutions of the form (4.7c) is ex-
cluded under one of the following conditions: either [14]

lim sup
t→T−

(T − t)‖∇u(·, t)‖∞ = ‖∇U‖∞ < 1

or [13]

Ω := ∇× U �= 0 and Ω ∈ Lp(R3) ∀p ∈ (0, p1)

for some p1 > 0. Note that the first condition is not easy to interpret physically,
while the second is too strong, effectively requiring that Ω decay exponentially fast at
infinity or have compact support. These nonexistence results were generalized later
in [14] to α-asymptotically global self-similar solutions Ū of the form

(4.7d) lim
t→T−

[T − t]1−(3β/p)
∥∥∥∇u(·, t)− 1

T − t
∇Ū

( · − x0
[T − t]β

)∥∥∥
Lp(R3)

= 0,

where β = (α+1)−1 and p ∈ (0,∞]. Similar nonexistence results for local self-similar
solutions were also obtained in [15].

In axisymmetric flows, self-similar solutions10 naturally take the form

u1(x̃, t) ∼ [T − t]γuU
( x̃− x̃0
[T − t]γl

)
,(4.8a)

ω1(x̃, t) ∼ [T − t]γωΩ
( x̃− x̃0
[T − t]γl

)
,(4.8b)

ψ1(x̃, t) ∼ [T − t]γψΨ
( x̃− x̃0
[T − t]γl

)
, x̃→ x̃0, t→ T−,(4.8c)

where x̃ = (r, z)T is a point on the rz-plane and (U,Ω,Ψ) are self-similar profiles.
Note that this ansatz does not correspond to a Leray-type self-similar solution (which
contracts to a single point in R

3; cf. (4.7a)) when viewed in R
3; rather, it describes

a tube-like anisotropic singularity due to the axial symmetry. In addition, the ansatz
induces a scaling law (see section 4.7.3)

‖∇u(·, t)‖∞ = O(T − t)min{γu−γ�,−1},

which is very different from the “standard” law ‖∇u(·, t)‖∞ = O(T − t)−1 assumed
by the nonexistence theorems [13, 14, 15]. In view of these observations, it is desirable
to examine more closely the blowup solutions discovered in previous sections and look
for clues for the existence of a (meridian-plane) self-similar solution.11

In what follows, we shall carry out a careful study of the numerical solution near
the location of the maximum vorticity q̃0 = (1, 0)T and demonstrate the existence of a
locally self-similar blowup. By applying a line fitting similar to (4.4), we also deduce
the scaling law ‖∇u(·, t)‖∞ = O(T − t)−2.4529 satisfied by the self-similar solution,
confirming again the existence of a finite-time singularity.

10In what follows, whenever we say “self-similar solutions” for an axisymmetric flow, we always
mean “self-similar solutions in the meridian plane.”

11Note that in [17], two nonexistence results are proved which exclude the existence of nontrivial
self-similar solutions of the form (4.8) to the 3D axisymmetric Euler equations under suitable decay
conditions. It is to be observed that these results do not apply to the self-similar solutions described
here, because the decay conditions are not satisfied.
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Fig. 8 The level curves C∞(t) at various time instants in (a) linear-linear and (b) log-log scale
(against the variables (1 − r) and z). The rescaled level curves and their zoom-in view are
shown in (c) and (d).

4.7.1. Existence of Self-Similar Neighborhood. The identification of a locally
self-similar solution requires the identification of its three basic ingredients: first,
the center of self-similarity, x̃0, around which the self-similar structure is developed;
second, a neighborhood of x̃0 in which the self-similar behavior is exhibited; and
third, a self-similar profile based on which the self-similar solution is determined. In
our computations, the center of self-similarity must be q̃0 = (1, 0)T , the location of
the maximum vorticity, since this is the point at which the solution is about to blow
up. To identify a “self-similar neighborhood” of q̃0, we define, for each fixed time
instant t, the neighborhood of the maximum vorticity,

(4.9) D∞(t) =
{
(r, z) ∈ D(1, 14L) : |ω(r, z, t)| ≥

1
2‖ω(·, t)‖∞

}
,

and plot in Figure 8(a) the boundary curves of D∞(t),

(4.10) C∞(t) =
{
(r, z) ∈ D(1, 14L) : |ω(r, z, t)| =

1
2‖ω(·, t)‖∞

}
,
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Fig. 9 The 1D self-similar profiles of ω1 (a) near the r-axis and (b) along the wall r = 1, obtained
by rescaling the solutions at the nine time instants given by (4.11).

at the nine time instants

Ts =
{
0.00347, 0.00348, 0.00349, 0.0035,

0.003501, 0.003502, 0.003503, 0.003504, 0.003505
}
.(4.11)

It can be observed from the figure that the level curves C∞(t) shrink rapidly toward
q̃0 and have very similar shapes at the first few time instants when they are still
visible in the figure. To reveal more clearly the asymptotic behavior of C∞(t) at the
later times, we plot the same nine curves in Figure 8(b) in log-log scale against the
variables (1 − r) and z. The results show that the shape of C∞(t) indeed remains
roughly the same at all nine time instants. Motivated by this observation, we rescale
each curve C∞(t) according to the rule

r̃ = 1− 1− r

dr(C∞(t))
, z̃ =

z

dz(C∞(t))
,

where

dr(C∞(t)) = max
(r,z)∈C∞(t)

|1− r|, dz(C∞(t)) = max
(r,z)∈C∞(t)

|z|.

The rescaled curves C̃∞(t), as shown in Figure 8(c), collapse almost perfectly to a
single curve, which confirms the existence of a self-similar neighborhood of q̃0. The
small variations among the different rescaled curves are shown in Figure 8(d), which
can be viewed as manifestations of the local (inexact) nature of the self-similarity.

4.7.2. Existence of Self-Similar Profiles. By employing a procedure completely
similar to that described in the previous section, we examine the solution (u1, ω1, ψ1)
in the self-similar neighborhood D∞(t) and confirm the existence of self-similar pro-
files. For purposes of illustration, we plot in Figure 9 the 1D self-similar profiles of
ω1 along selected 1D r- and z-mesh lines, and in Figure 10 we show the 2D contour
plots of ω1 near the location of the maximum vorticity at t = 0.0034 and 0.003505.
Similar plots are also obtained for u1, ψ1 and are omitted here for the sake of brevity.
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Fig. 10 The 2D contour plot of ω1 near the location of the maximum vorticity at (a) t = 0.0034
and (b) t = 0.003505, both computed on the 1024 × 1024 mesh.

Table 13 Scaling exponents of the self-similar solution (4.8).

Mesh size γ̂l γ̂u γ̂ω γ̂ψ −1 + 1
2
γ̂l −1 + 2γ̂l γ̂u − γ̂l

1024 × 1024 2.7359 0.4614 −0.9478 4.7399 0.3679 4.4717 −2.2745
1280 × 1280 2.9059 0.4629 −0.9952 4.8683 0.4530 4.8118 −2.4430
1536 × 1536 2.9108 0.4600 −0.9964 4.8280 0.4554 4.8215 −2.4508
1792 × 1792 2.9116 0.4602 −0.9966 4.8294 0.4558 4.8232 −2.4514
2048 × 2048 2.9133 0.4604 −0.9972 4.8322 0.4567 4.8266 −2.4529

4.7.3. Self-Similar Analysis. Given the existence of self-similar profiles in the
self-similar neighborhood D∞(t), we conclude that the solution (u1, ω1, ψ1) develops
a locally self-similar structure near the point of blowup q̃0. This motivates the rep-
resentation formula (4.8) with x̃0 = q̃0 = (1, 0)T . Upon the substitution of (4.8) into
the 3D Euler equations (2.1), we obtain the dominant balance

γu − 1 = γu + γψ − 2γl,

γω − 1 = γω + γψ − 2γl = 2γu − γl,

γψ − 2γl = γω,

which, after simplification, yields the one-parameter family of scaling laws

(4.12) γu = −1 + 1
2γl, γω = −1, γψ = −1 + 2γl.

Table 13 summarizes the scaling exponents estimated from the numerical data, where
γ̂u − γ̂l roughly equals γ, the scaling exponent of the maximum vorticity ‖ω‖∞
(cf. (4.2); recall that ‖ω‖∞ = |u1,z(q̃0)|). It is clearly seen that (4.12) is approxi-
mately satisfied, which confirms the existence of a self-similar solution. In addition to
(4.12), it is also known that, for a blowup to occur, the scaling exponent γl must sat-
isfy γl ≥ 2

5 in view of energy conservation [23]. If the velocity u is uniformly bounded,
which is the case in our computation, γl must also satisfy γl ≥ 1 [23]. It is clear from
Table 13 that both constraints are satisfied by our numerical data.
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The leading-order equations resulting from the dominant balance take the form

−γuU + γl(r̃, z̃) · ∇U +
[
−Ψz̃Ur̃ +Ψr̃Uz̃

]
= 0,

−γωΩ + γl(r̃, z̃) · ∇Ω+
[
−Ψz̃Ωr̃ + Ψr̃Ωz̃

]
= 2UUz̃,

−
[
Ψr̃r̃ +Ψz̃z̃

]
= Ω,

where (r̃, z̃) are the rescaled coordinates. In principle, one can solve these equations
numerically and compare the solutions to those obtained from rescaling (cf. (4.8)),
which would provide additional supporting evidence for the existence of a self-similar
solution. This has not been done in the current study, but may be considered in a
future work.

Finally, the fitting results shown in Table 13 imply that

ωr = −ru1,z = O(ts − t)−2.45, ωθ = rω1 = O(ts − t)−1,

ωz = 2u1 + ru1,r = O(ts − t)−2.45,

which confirms the scaling law ‖ω(·, t)‖∞ = O(ts − t)−2.45 and hence the existence of
a finite-time singularity.

4.8. Understanding the Blowup. For the specific initial condition (2.2a) consid-
ered in our study, it is observed that ru01 is monotonically increasing in both r and
z within the quarter cylinder D(1, 14L). It turns out that this property is preserved
by equations (2.1) (for reasons yet to be determined); thus u1,z and consequently ω1

(cf. (2.1b)) remain positive for as long as the solution is smooth. The positivity of ω1

and the homogeneous boundary condition of ψ1 together imply the positivity of ψ1

(cf. (2.1c)), which in turn implies that

uz = 2ψ1 + rψ1,r = ψ1,r ≤ 0 on r = 1, z ∈ [0, 14L].

This shows that the flow has a compression mechanism near the corner q̃0 = (1, 0)T

(Figure 11(a); recall that uz is odd at z = 0), which seems to be responsible for
the generation of the finite-time singularity observed at q̃0. Indeed, as far as the
formation of a singularity is concerned, the precise form of the initial data seems to be
immaterial. As long as ru01 has the desired symmetry properties and is monotonically
increasing in both r and z in the quarter cylinder D(1, 14L), the solution of the initial-
boundary value problem (2.1)–(2.2) should develop a singularity in finite time, in
much the same way as the solution described in this paper does.

From a physical point of view, the blowup can be deduced from vorticity kine-
matics applied to the initially rotating eddy [19]. The gradient of circulation down
the tube, 2πruθz , creates a θ-component of vorticity (cf. (2.1b)). This component in
turn creates the flow (ur, uz) (cf. (2.1c)–(2.1d)) which advects toward the symmetry
plane z = 0 on the solid wall r = 1. Since vortex lines threading through the wall
are carried by this flow, their points of intersection with the wall move toward the
symmetry plane z = 0 and then collapse onto z = 0 in finite time (see Figure 11(b)).
This is similar to what was observed by [19] in the study of a model problem, which
was derived as the leading-order approximation to a stretched version of the Taylor–
Green initial value problem for the 3D Euler equations. The model closely resembles
the axisymmetric Euler equations, except that the fluid inertia (Dtu

r) in the radial
transport equation is missing. Since the variable uθ studied in [19] occurs as coeffi-
cients of the asymptotic expansions, the blowup of its z-derivatives merely indicates
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Fig. 11 Understanding the blowup: (a) local velocity field near the point of the maximum vorticity;
(b) global vorticity kinematics of the 3D Euler singularity. In (b), the vortex lines (curved
solid arrows) end at the wall and are brought to sections of zero circulation by the axial
flow (straight dashed arrows). The curved dash arrows indicate vortical circulation. See
also Figure 5 in [19] and Figure 7 in [20].

the breakdown of the expansions and the return of the flow to three-dimensionality.
It does not imply the loss of regularity of the underlying solutions.

Despite the apparent similarity between our computations and the model studied
by [19], there is a fundamental difference between the two scenarios. More precisely, in
[19], it was observed that the absence of radial momentum transfer creates a favorable
pressure gradient, which sets up an axial flow near the solid wall toward the symmetry
plane z = 0. In our case, however, it is observed that the pressure gradient near the
solid wall r = 1 and the symmetry plane z = 0 is unfavorable, in the sense that it
tends to push fluids away from z = 0 (Figure 12). Thus unlike the scenario described
in [19], it must be the radial fluid inertia, not the pressure gradient, that is responsible
for the finite-time blowup observed at the corner q̃0 = (1, 0)T .12

4.9. A 1D Model. Motivated by the observation that the Euler singularity is
likely a consequence of a compression flow along the solid wall, we propose a 1D
model

θt + vθz = 0, z ∈ (0, L),(4.13a)

ωt + vωz = θz,(4.13b)

where the nonlocal velocity v satisfies the Biot–Savart law

(4.13c) v(z) =
1

π

∫ L

0

ω(y) log
∣∣sin[μ(z − y)]

∣∣ dy, μ = π/L.

Heuristically, (4.13a)–(4.13b) can be obtained directly from their full 3D counterparts
(2.1a)–(2.1b), by restricting the latter equations to the solid wall r = 1, by observing

12There exist, however, interesting alternative views which attribute the formation of the singu-
larity to the mismatch of the second derivatives prr and pzz of the pressure p at the point of the
singularity; see the very recent work of [3] for details.
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Fig. 12 The contour plot of the pressure p near the location of the maximum vorticity at t =
0.003505. Note the unfavorable axial pressure gradient near z = 0.

(cf. (2.2c))
ψ1|r=1 = 0, ur|r=1 = −rψ1,z|r=1 = 0,

and then by introducing the identifications

θ(z) ∼ u21(1, z), ω(z) ∼ ω1(1, z), v(z) ∼ uz(1, z) = ψ1,r(1, z).

The Biot–Savart law (4.13c), on the other hand, can be (formally) derived from its
full 3D analogue, by observing that ω1 is essentially supported in a narrow strip near
the solid wall r = 1, and by assuming that it is approximately constant in r in its
support (see [21] for details).13 For the initial condition

(4.13d) θ0(z) = 104 sin2
(2π
L
z
)
, ω0(z) = 0,

which is simply the restriction of (2.2a) to r = 1, the solution of (4.13) is observed
to exhibit singular behaviors in finite time, in much the same way as the singular
solution described in this paper does (Figure 13). Motivated by these observations,
we prove, together with our collaborators, in [21] the existence of a finite-time singu-
larity for this 1D model, where the initial data leading to the blowup have symmetry
properties completely analogous to those possessed by (4.13d). This provides further
supporting evidence for the existence of an Euler singularity, and the generalization
of the argument to the full 3D case offers an interesting direction for future study.

5. Conclusions and Future Work. In this paper, we have numerically studied
the 3D axisymmetric Euler equations in a periodic cylinder and have discovered a
class of potentially singular solutions from carefully chosen initial data. By employ-
ing a specially designed yet highly effective adaptive mesh, we have resolved the nearly
singular solution with high accuracy and have advanced the solution to a point asymp-
totically close to the predicted singularity time. Detailed analysis based on rigorous

13Although ω1 is not really nearly constant in r near the solid wall r = 1, numerical studies show
that solutions of (4.13) do exhibit behaviors very similar to those observed in solutions of (2.1); see
below.
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Fig. 13 Comparison of numerical solutions of the 1D model (4.13) with those of the 3D axisym-
metric Euler equations (2.1): (a) maximum vorticity, (b) angular velocity, (c) angular
vorticity, and (d) axial velocity. In all the plots the solution of the 1D model is computed
at t = 0.003447 and that of the 3D Euler is computed at t = 0.003505.

mathematical blowup/nonblowup criteria, including Beale–Kato–Majda, Constantin–
Fefferman–Majda, and Deng–Hou–Yu, provides convincing evidence for the existence
of a singularity. Local analysis near the point of the singularity also reveals a self-
similar structure in the blowup, as well as a 1D model which is seen to capture the
essential features of the singular solutions along the solid wall, and for which existence
of finite-time singularities can be established rigorously.

Besides providing a promising candidate for the finite-time blowup of the 3D Euler
equations, our computations also suggest a possible route to the finite-time blowup
of the 2D Boussinesq equations. The Boussinesq equations describe the motion of
variable-density, stratified flows under the influence of gravitational forces, and like
the 3D Euler equations, the existence or nonexistence of globally regular solutions to
the 2D Boussinesq equations is a well-known open problem in fluid dynamics (see,
for example, [67]). Since the 2D Boussinesq equations are known to be qualitatively
similar to the 3D axisymmetric Euler equations away from the symmetry axis [59],
and since the singularity discovered in our Euler computations lies right on the solid
boundary, the solution of the 2D Boussinesq equations resulting from similar initial
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data is expected to develop a singularity in finite time, in much the same way as the
solution described in this paper does. The existence of such a singularity has been
confirmed numerically in a separate computation (unpublished), and it can also be
partly justified by the analysis of the 1D model (4.13), as suggested in [21], as well
as by that of other related models as suggested in [52]. Very recently, the finite-time,
self-similar blowup of a De Gregorio model for the 3D Euler equations and that of the
1D model (4.13) are established using a computer-assisted approach [18]. It is hoped
that the same idea can be applied to the 3D Euler and 2D Boussinesq equations,
and that the existence of a finite-time singularity, as suggested by this work, can be
established rigorously.
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[40] P. Hénon, P. Ramet, and J. Roman, PaStiX: A high-performance parallel direct solver for
sparse symmetric definite systems, Parallel Comput., 28 (2002), pp. 301–321. (Not cited)
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