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In many applications, we need to study a linear regression model that consists of a response variable and a
large number of potential explanatory variables, and determine which variables are truly associated with
the response. In Foygel Barber & Candès (2015, Ann. Statist., 43, 2055–2085), the authors introduced
a new variable selection procedure called the knockoff filter to control the false discovery rate (FDR)
and proved that this method achieves exact FDR control. In this paper, we propose a prototype knockoff
filter for group selection by extending the Reid–Tibshirani (2016, Biostatistics, 17, 364–376) prototype
method. Our prototype knockoff filter improves the computational efficiency and statistical power of
the Reid–Tibshirani prototype method when it is applied for group selection. In some cases when the
group features are spanned by one or a few hidden factors, we demonstrate that the Principal Component
Analysis (PCA) prototype knockoff filter outperforms the Dai–Foygel Barber (2016, 33rd International
Conference on Machine Learning (ICML 2016)) group knockoff filter. We present several numerical
experiments to compare our prototype knockoff filter with the Reid–Tibshirani prototype method and the
group knockoff filter. We have also conducted some analysis of the knockoff filter. Our analysis reveals
that some knockoff path method statistics, including the Lasso path statistic, may lead to loss of power for
certain design matrices and a specially designed response even if their signal strengths are still relatively
strong.

Keywords: variable selection; false discovery rate (FDR); group variable selection; knockoff filter; linear
regression..

1. Introduction

In many scientific endeavors, we need to determine from a response variable together with a large
number of potential explanatory variables which variables are truly associated with the response. In
order for this study to be meaningful, we need to make sure that the discoveries are indeed true and
replicable. Thus, it is highly desirable to obtain exact control of the false discovery rate (FDR) within a
certain prescribed level. In [1], Foygel Barber and Candès introduced a new variable selection procedure
called the knockoff filter to control the FDR for a linear model. This method achieves exact FDR control
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2 J. CHEN ET AL.

in finite sample settings and does not require any knowledge of the noise level. A key observation
is that by constructing knockoff variables that mimic the correlation structure found within the existing
variables one can obtain accurate FDR control. The method is very general and flexible. It can be applied
to a number of statistics and has more statistical power (the proportion of true signals being discovered)
than existing selection rules in some cases.

1.1 A brief review of the knockoff filter

Throughout this paper, we consider the following linear regression model: y = Xβ+ε, where the feature
matrix X is an n×p (n ≥ 2p) matrix with full rank, its columns are normalized to be unit vectors in the l2

norm and ε is a Gaussian noise ε ∼ N(0, σ 2In). We first provide a brief overview of the knockoff filter
introduced in [1]. The knockoff filter begins with the construction of a knockoff matrix X̃ that obeys

X̃T X̃ = XTX, X̃TX = XTX − diag(s), (1)

where si ∈ [0, 1]. The positive definiteness of the Gram matrix [XX̃]T [XX̃] requires

diag(s) � 2XTX. (2)

The first condition in (1) ensures that X̃ has the same covariance structure as the original feature
matrix X. The second condition in (1) guarantees that the correlations between distinct original and
knockoff variables are the same as those between the originals. To ensure that the method has good
statistical power to detect signals, we should choose sj as large as possible to maximize the difference

between Xj and its knockoff X̃j. Once diag(s) is obtained, X̃ can be constructed in terms of X, diag(s)

and an orthonormal matrix U ∈ Rn×p with UTX = 0. The existence of U requires n ≥ 2p. The next
step is to calculate a statistic, Wj, for each pair Xj and X̃j using the Gram matrix [X X̃]T [XX̃] and the

marginal correlation [X X̃]Ty. In addition, Wj satisfies a flip-coin property, which implies that swapping

arbitrary pair Xj and X̃j only changes the sign of Wj, but keeps the sign of other Wi (i �= j) unchanged.
The construction of the knockoff features and the symmetry of the test statistic are important to achieve
a crucial property that the signs of the Wj’s are i.i.d. random for the null hypotheses. This property plays
a crucial role in obtaining exact FDR control by using a supermartingale argument.

The final step is to run the knockoff (knockoff+) selection procedure at the target FDR level q. A
large positive Wj gives evidence that variable j is a non-null. Then select the model Ŝ � {j : Wj ≥ T}
using a data-dependent threshold T defined below:

Ti � min

{
t > 0 :

i + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q

}
, i = 0, 1. (3)

T0 and T1 are used in the knockoff and knockoff+ selection procedure, respectively.
There are several ways to construct a statistic Wj. Among them, the Lasso path (LP) statistic

is discussed in detail in [1]. It first fits a Lasso regression of y on [XX̃] for a list of regularizing
parameters λ in a descending order and then calculates the first λ at which a variable enters the model,
i.e. Zj � sup{λ : β̂j(λ) �= 0} for feature Xj and Z̃j = sup{λ : β̃j(λ) �= 0} for its knockoff X̃j. The LP

statistic is defined as Wj = max(Zj, Z̃j) · sign(Zj − Z̃j). If Xj is a non-null, it has a non-trivial effect on y
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A PROTOTYPE KNOCKOFF FILTER FOR GROUP SELECTION 3

and should enter the model earlier than its knockoff X̃j, resulting in a large positive Wj. In this case, the
corresponding feature is likely to be selected by the knockoff filter (3). If Xj is a null, it is likely that Xj
enters the model later, resulting in a small positive or negative Wj. The corresponding feature is likely
to be rejected according to (3).

The main result in [1] is that the knockoff procedure and knockoff+ procedure has exact control of
modified false discovery rate (mFDR) and FDR, respectively,

mFDR � E

[
#{j ∈ Ŝ : βj = 0}
#{j ∈ Ŝ} + q−1

]
≤ q , FDR � E

[
#{j ∈ Ŝ : βj = 0}

#{j ∈ Ŝ} ∨ 1

]
≤ q.

In a subsequent paper [2], Foygel Barber and Candès developed a framework for high-dimensional
linear model with p ≥ n. In this framework, the observations are split into two groups, where the first
group is used to screen for a set of potentially relevant variables, whereas the second is used for inference
over this reduced set of variables. The authors also developed strategies for leveraging information from
the first part of the data at the inference step for greater power. They proved that this procedure controls
the directional FDR in the reduced model controlling for all screened variables.

The knockoff filter has been further generalized to the model-free framework in [7]. Whereas the
knockoffs procedure is constrained to linear models, the model-X knockoffs provide valid inference
from finite samples in settings in which the conditional distribution of the response is arbitrary and
completely unknown. Furthermore, this holds independent of the number of covariates. They achieved
correct inference by constructing knockoff variables probabilistically instead of geometrically. The
rigorous FDR control of the model-free knockoffs procedure is also established.

The research development for the knockoff filter has inspired a number of follow-up works; see e.g.
[9,11,14].

1.2 A prototype knockoff filter for group selection

Group selection is an effective way to perform statistical inference when features within each group
are highly correlated, but the correlation among different groups is relatively weak. Inspired by the
prototype method developed by Reid and Tibshirani in [14], we propose a prototype knockoff filter
for group selection that has exact group FDR control (defined in Theorem 2.1) for strongly correlated
features. Assume that X can be clustered into k groups X = (XC1

, XC2
, ..., XCk

) in such a way that the
within-group correlation is relatively strong. As in [14], we split the data (X, y) by rows into two disjoint
parts (X(1), y(1)) and (X(2), y(2)), and extract prototype XPi

for each group |Ci| using the first part of

the data (X(1), y(1)). We then construct the knockoff matrix X̃(2)
P only for the prototype features in the

second part of the design matrix and run the knockoff selection. Finally, select group i if Pi is selected
by the knockoff filter. We have also developed a Principal Component Analysis (PCA) prototype filter
and proved that both of these prototype knockoff filters have exact group FDR control. We compare
these two prototype filters with a variant of the Reid–Tibshirani prototype method for group selection
and the Dai–Foygel Barber group knockoff filter [9], and provide numerical experiments to demonstrate
the effectiveness of our methods.

1.3 Alternating sign effect

In this paper, we have also performed some analysis of the knockoff filter with certain path method
statistics such as the LP and the forward selection statistics. According to (3), the knockoff filter
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4 J. CHEN ET AL.

threshold T is determined by the ratio of the number of large positive and negative Wj. Large, negative
Wj’s may result in a large T and fewer selected features. For certain design matrix X and a specially
designed response y with strong signal strengths, our analysis shows that for the knockoff filter with
certain path method statistics, e.g. the LP statistic, some knockoff variable X̃j can enter the model
earlier than its original feature Xj. This could lead to large negative Wj and reduce the power. We
discuss some possible mechanism under which the path method statistic may suffer from this potential
challenge for certain design matrices and the response. A possible scenario is when some features are
positively (negatively) correlated, but their contribution to the response y has the opposite (same) sign,
e.g. XT

j Xk > 0, βj > 0, βk < 0. We call this mechanism the alternating sign effect. In general, the
chance that such potential challenge arises is quite rare. But it gives a healthy warning that this potential
challenge could occur for certain statistics and we must use them with care.

1.4 Extension of the sufficiency property

The sufficiency property of a knockoff statistic W in [1] states that W depends only on the Gram matrix
[XX̃]T [XX̃] and the feature–response product [XX̃]Ty. In this definition, only part of the information
of the response variable y, i.e. [XX̃]Ty, is utilized. We generalize the sufficiency property such that W
can depend on the remaining information of y. This generalization maintains the FDR control of the
knockoff procedure. As an application, we show that the classical noise estimate obtained by using the
least squares can be incorporated in the knockoff filter without violating FDR control. We remark that
in a recent work [5], the sufficiency property is also relaxed by allowing W to be a function of ||y||2.
The definition we propose is more general than the one used in [5].

The main motivation for us to study the prototype knockoff filter for group selection is to alleviate
the difficulty in feature selection of highly correlated features. In a related work [8], we have developed
a pseudo knockoff filter in which we relax one of the knockoff constrains. Our numerical study indicates
that the pseudo knockoff filter could give high statistical power for certain statistic when the features
have relatively strong correlation. Although we cannot establish rigorous FDR control for the pseudo
knockoff filter as the original knockoff filter, we provide some partial analysis of the pseudo knockoff
filter with the half Lasso statistic, and establish a uniform False Discovery Proportion(FDP) bound and
an expectation inequality.

The rest of the paper is organized as follows. In Section 2, we introduce our prototype knockoff filter
for highly correlated features. We compare it to other group selection methods and provide numerical
experiments to demonstrate the performance of various methods. In Section 3, we discuss the potential
challenge of the knockoff filter with certain path method statistics due to the alternating sign effect, and
generalize the sufficiency property of a knockoff statistic.

2. Prototype knockoff filters

In this section, we propose two prototype group selection methods with group FDR control to overcome
the difficulty associated with strong within-group correlation. It is well known that the grouping
strategy provides an effective way to handle strongly correlated features. Our work is inspired by
Reid–Tibshirani’s prototype method [14], Dai–Foygel Barber’s group knockoff filter [9] and Foygel
Barber–Candès’ high-dimensional knockoff filter [2]. We provide a brief summary of the first two
methods below before introducing our prototype filters.
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A PROTOTYPE KNOCKOFF FILTER FOR GROUP SELECTION 5

2.1 Reid–Tibshirani’s prototype method

In [14], Reid and Tibshirani introduced a prototype method for prototype selection. It can be applied
directly to group selection and consists of the following steps. First, cluster columns of X into K groups,

{C1, ..., CK}. Then split the data by rows into two (roughly) equal parts y =
(

y(1)

y(2)

)
and X =

(
X(1)

X(2)

)
.

Choose a prototype for each group via the maximal marginal correlation, using only the first part of
the data y(1) and X(1). This generates the prototype set P̂. Next, form a knockoff matrix X̃(2) from X(2)

and perform the knockoff filter using y(2), [X(2)

P̂
X̃(2)

P̂
]. Finally, group Ci is selected if and only if X(2)

P̂i
is

chosen in the filter process. The group FDR control is a direct result of Lemma 6.1 [14]. We remark that
strong within-group correlation results in small difference between the prototype XPi

and its knockoff

pair X̃Pi
. Suppose that XPi

and Xj, j �= Pi are in the same group and strongly correlated, i.e. ||XPi
− Xj||2

is small (Xj and XPi
are normalized). The knockoff constraint (XPi

− X̃Pi
)TXj = 0 implies

||X̃Pi
− Xj||2 = ||XPi

− Xj||2, ||XPi
− X̃Pi

||2 ≤ ||X̃Pi
− Xj||2 + ||XPi

− Xj||2 = 2||XPi
− Xj||2. (4)

Thus, ||XPi
− X̃Pi

||2 is forced to be small. Hence, applying this method directly to group selection may
lose power for strongly correlated features. Our numerical experiments confirm this.

2.2 Dai–Foygel Barber’s group knockoff filter

In [9], Dai and Foygel Barber introduced a group-wise knockoff filter, which is a generalization of the
knockoff filter. Assume that the columns of X can be divided into k groups {XG1

, XG2
, ..., XGk

}. The

authors construct the group knockoff matrix according to X̃T X̃ = XTX, X̃TX = Σ − S and Σ = XTX,
where S 	 0 is group-block-diagonal, i.e. SGi,Gj

= 0 for any two distinct groups i �= j. In the equi-

correlated construction, S = diag(S1, S2, ..., Sk), Si = γΣGi,Gi
= γ XT

Gi
XGi

and i = 1, 2, ..., k. The
constraint S � 2Σ implies γ · diag(ΣG1,G1

, ΣG2,G2
, ..., ΣGk ,Gk

) = S � 2Σ . In order to maximize the

difference between X and X̃, γ is chosen as large as possible: γ = min{1, 2 · λmin(DΣD)}, where D =
diag(Σ

−1/2
G1,G1

, Σ−1/2
G2,G2

, ..., Σ−1/2
Gk ,Gk

). In the later numerical experiments, we will also use the semidefinite

programming (SDP) construction, which was not considered in [9], by solving max
∑k

i γi subject to S =
diag(S1, S2, ..., Sk) � 2Σ , Si = γiΣGi,Gi

and 0 ≤ γi ≤ 1. This construction can be viewed as an
extension of the SDP knockoff construction in [1]. Due to the extra cost in solving the optimization
problem, the SDP construction is more expensive than the equi-correlated construction.

The group-wise statistic introduced in [9] can be obtained after the construction of the group
knockoff matrix. The construction above guarantees the group-wise exchangeability. Finally, group

FDR control, i.e. FDRgroup � E

[
{#{i:βGi=0,i∈Ŝ}

(|Ŝ|∨1)

]
≤ q, is a result of the group-wise exchangeability.

Here Ŝ = {j : Wj ≥ T} is the set of selected groups for a chosen group statistic Wj.

2.3 Prototype knockoff filters

2.3.1 Prototype using the data In this subsection, we propose a prototype knockoff filter that takes
advantage of the prototype features, and improves the computational efficiency in the construction of
knockoffs and statistical power of the Reid–Tibshirani prototype method. We assume that X can be
clustered into k groups X = (XC1

, XC2
, ..., XCk

) in such a way that within-group correlation is relatively
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6 J. CHEN ET AL.

strong. We select the prototype features using a procedure similar to Reid–Tibshirani’s prototype
method.

Step 1 Split the data by rows into two parts y =
(

y(1)

y(2)

)
and X =

(
X(1)

X(2)

)
, where y(1) ∈ Rn1 , y(2) ∈

Rn2 , X(1) ∈ Rn1×p and X(2) ∈ Rn2×p, and then choose a prototype Pi for each group via the marginal

correlation Pi = arg maxj∈Ci
|X(1)T

j y(1)|, using the first part of the data.

Step 2 Let Q = {1, 2, . . . , p}\P. The knockoff matrix X̃(2) =
(

X̃(2)
P, X(2)

Q

)
obeys

X̃(2)
T
PX̃(2)

P = X(2) T
P X(2)

P , X(2) T
P X(2)

P − X(2) T
P X̃(2)

P = diag(sP), sP ∈ R|P|, (5)

(
X̃(2)

Pi
− X(2)

Pi

)T
X(2)

Cc
i

= 0, for i = 1, 2, . . . , k, (6)

where XCc
i
= (XC1

, . . . , XCi−1
, XCi+1

, . . . , XCk
). The construction of Reid–Tibshirani’s prototype method

[14] requires
(
X̃(2)

Pi
− X(2)

Pi

)T
X(2)

Pc
i

= 0, which implies
(
X̃(2)

Pi
− X(2)

Pi

)T
X(2)

Ci\Pi
= 0. If the within-group

correlation is strong, X̃(2)
Pi

is forced to be close to X(2)
Pi

(see (4)). For group selection, the within-group

constraints are not necessary, and we do not impose the constrains between X̃(2)
Pi

and X(2)
Ci\Pi

in (6).

Thus, we can construct X̃(2)
Pi

that can maximize its difference with the original feature X(2)
Pi

:

X(2)
Pi

= X(2)
Pi

− X(2)

Cc
i

(
X(2) T

Cc
i

X(2)

Cc
i

)−1
X(2) T

Cc
i

X(2)
Pi

, Wi = X(2)
Pi

/||X(2)
Pi

||22, W ∈ Rn2×k. (7)

We consider two constructions of sP: the equi-correlated construction sPi
= 2λmin((W

TW)−1)∧||X(2)
Pi

||22
for all i and the SDP construction

maximize
∑k

i=1
sPi

subject to diag(sP) � 2(WTW)−1, 0 ≤ sPi
≤ ||X(2)

Pi
||22. (8)

We then construct X̃(2)
P = X(2)

P − Wdiag(sP) + UC; where U ∈ Rn2×k is an orthonormal matrix with
UTX(2) = 0 and CTC = 2diag(sP) − diag(sP)WTWdiag(sP), C ∈ Rk×k is the Cholesky decomposition.
The existence of U and C requires n2 ≥ p + k and diag(sP) � 2(WTW)−1.

Step 3 Recycle the first part data and select features with recycling. We concatenate the original design

matrix on the first part with the knockoff matrix on the second part X̃ =
(

X(1)

X̃(2)

)
and X̃P =

(
X(1)

P

X̃(2)
P

)
.

One can verify that (5) still holds true for (X, X̃) with the same sP

X̃T
P X̃P = XT

P XP, XT
P XP − XT

P X̃P = diag(sP), sP ∈ R|P|. (9)

Finally, run the knockoff filter on y and (XP, X̃P) as (3) to obtain Ŝ, and select group i if Pi ∈ Ŝ.
The recycling procedure in knockoff filter was developed in [2], in which the authors showed that it

could raise the power substantially. We also observed this improvement in our numerical simulation. In
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A PROTOTYPE KNOCKOFF FILTER FOR GROUP SELECTION 7

order to select the prototype in step 1 efficiently and retain a large difference between XPi
and X̃Pi

, we
choose n1 = 0.2n ∨ 5 maxi |Ci| and n2 = n − n1. The requirement n2 ≥ p + k implies n ≥ 1.25(p + k).

The main result of the prototype knockoff filter is that it controls the group FDR.

Theorem 2.1 For any q ∈ [0, 1], the prototype knockoff filter using the knockoff and knockoff+ filter
controls the group mFDR and group FDR, respectively,

mFDRgroup � E

[
#{i : βCi

= 0, i ∈ Ŝ}
#{i : i ∈ Ŝ} + q−1

]
≤ q, FDRgroup � E

[
#{i : βCi

= 0, i ∈ Ŝ}
#{i : i ∈ Ŝ} ∨ 1

]
≤ q.

The result is a consequence of the lemma below and the super-martingale argument [1].

Lemma 2.2 (i.i.d. signs for the null clusters). Let η ∈ {±1}k be a sign sequence independent of WP,

with ηj = +1 for all non-null clusters j and ηj
i.i.d.∼ {±1} for null clusters j. Conditional on y(1),

(WP1
, ..., WPk

)
d= (WP1

η1, ..., WPk
ηk).

Proof. Recall that the features in the final knockoff screening process (step 3) is (XP, X̃P). The statistic
WP can be written as WP = W([XP, X̃P]T [XP, X̃P], [XP, X̃P]Ty). Since the true model is y = Xβ + ε,
ε ∼ N(0, σ 2In), we have y(i) = X(i)β + ε(i), i = 1, 2, where ε(1) is the first n1 components of ε and
ε(2) consists of the remaining components. In particular, the prototype set P and y(1) are independent of
ε(2) and conditional on y(1); the randomness of WP comes from ε(2) only. Following the analysis for the
original knockoff filter [1], we just need to verify the exchangeability for the features and the response.
The exchangeability for the features comes from (9). Conditional on y(1), the exchangeability for the
response is guaranteed by the invariance of Var([XP X̃P]T

swap(S′)y | y(1)) for any S′, which is a result of

(5), (9) and E[(XPi
− X̃Pi

)Ty | y(1)] = 0 for null clusters i:

E
[
(XPi

− X̃Pi
)Ty

∣∣ y(1)
] = E

[
(X(2)

Pi
− X̃(2)

Pi
)Ty(2)

∣∣ y(1)
] = E

[(
X(2)

Pi
− X̃(2)

Pi

)T
(X(2)β + ε(2))

∣∣ y(1)
]

=E
[(

X(2)
Pi

− X̃(2)
Pi

)TX(2)β
∣∣ y(1)

] = (X(2)
Pi

− X̃(2)
Pi

)TX(2)β = (X(2)
Pi

− ˜X(2)
Pi

)T(X(2)

Cc
i
βCc

i
) = 0.

The first equality holds because XPi
agrees with X̃Pi

in the first n1 components. The third equality holds
due to the fact that the first part of the data, y(1), is independent of ε(2), which generates the second part
of the data, y(2), and has zero mean. The final equality follows from (6). �

2.3.2 A PCA prototype filter In this subsection, we propose a PCA prototype filter for group selection
for some special cases. The PCA prototype filter works well under the following assumptions: (i) the
within-group correlation is relatively strong; (ii) the features within each group are positively correlated;
and (iii) we know a priori that the signals in each group have the same sign. Assume that X can be
clustered into k groups X = (XC1

, XC2
, ...XCk

) as in the previous subsection. The PCA prototype filter
follows steps similar to those described in the previous subsection. First of all, we calculate the first
principal component Vi for each group XCi

, 1 ≤ i ≤ k. Secondly, we construct the knockoff matrix
following a similar procedure

V̄i = Vi − X(2)

Cc
i
(X(2) T

Cc
i

X(2)

Cc
i
)−1X(2) T

Cc
i

Vi, Wi = V̄i/||V̄i||22, Ṽ = V − Wdiag(sP) + UC, (10)
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8 J. CHEN ET AL.

where P = {1, 2, . . . , k} and sP is obtained from the equi-correlated construction or the SDP (8) with a
slightly different constraint 0 ≤ si ≤ 1. U is an orthonormal matrix with UTX = 0 and C is obtained by
the same formula. Finally, we run the knockoff filter on y and [V , Ṽ] to obtain Ŝ and select group i if
i ∈ Ŝ. Theorem 2.1 holds true for the PCA prototype filter and the proof is similar.

Remark 2.3 In this paper, we focus on selecting one prototype for each group. The prototype knockoff
filter can also be generalized to include a few prototypes for each group.

2.3.3 Computing the projection For X ∈ Rn×p, n > p, we design a recursive procedure to calculate
X̄Ci

= XCi
− XCc

i
(XT

Cc
i
XCc

i
)−1XT

Cc
i
XCi

for all i with O(np2) flops. As a result, we can obtain W in (7) with

O(np2) flops. Similar result holds true for (10). For simplicity, we assume |Ci| = l for all i.
Algorithm: Projection (X, k, l)

1. If k = 1, return X.

2. Else: divide X into two parts a = �k/2
, X1 = X(:, 1 : al) and X2 = X(:, (al + 1) : kl).
Then compute the projection recursively: W1 = X1 − X2(X

T
2 X2)

−1XT
2 X1 and W2 = X2 −

X1(X
T
1 X1)

−1XT
1 X2. X̄1 = Projection(W1, a, l), X̄2 = Projection(W2, k − a, l), return (X̄1, X̄2).

For fixed n and l, let ak be the total flops. From the recursion, we have a1 ≤ C and
a2m ≤ 2a2m−1 + C2n(2m−1l)2 for some universal constant C. Simple calculation yields a2m ≤ Cn(2ml)2.
The monotonicity of ak implies ak ≤ 4Cn(kl)2 = O(np2). Similar algorithm and analysis can be applied
to X with different size of groups.

2.4 Numerical comparison study of different knockoff group selection methods

In this subsection, we perform several numerical experiments to compare Reid–Tibshirani’s prototype
method, the prototype knockoff filter, the PCA prototype filter and Dai–Foygel Barber’s group knockoff
filter. Throughout the section, the group size is 5, the noise level is 1, the nominal FDR is 20% and we
use the adaptive threshold T1 defined in (3) and the knockoff+ selection procedure.

Simulated signals with no cancelation. We use the numerical example in [9] to compare several
methods. The design matrix X ∈ R3000×1000 is clustered into 200 groups with 5 features in each group.
The rows of X follow the N(0, Σ) distribution with columns normalized, where Σii = 1 and Σij = ρ for
i �= j in the same group and Σij = γ ·ρ for i �= j in a different group. We choose 20 groups (l = 20) with
one signal in each group. Specifically, we first choose l groups i1, i2, ..., il randomly and then generate

the signals βj at indices j = Ci1,1, Ci2,1, . . . , Cil,1 (the first feature in the selected groups)
i.i.d.∼ {±M} and

βj = 0 for other indices. The signal amplitude M is 3.5.
For Reid–Tibshirani’s prototype method and our prototype knockoff filter, we choose n1 = 0.2 and

n = 600, and split the data y and X into two parts as described in both methods. Apply the first part
of the data to obtain the prototype for each group and then construct the SDP knockoffs on X̃(2). For
these two methods and the PCA prototype filter, we use the orthogonal matching pursuit (OMP) statistic
[1,13] and use the following short-hand notations Reid–Tibshirani knockoff+, Prototype knockoff+ and
PCA knockoff+ in the following figures. For the group knockoff filter, the first method is to construct
the equi-correlated group knockoffs and then apply the group LP (GLP) statistic, which is the method
discussed in [9]. We also consider two other group selection methods based on the SDP group knockoffs
and the OMP statistic. After constructing the SDP group knockoffs X̃g, we extract the first principal
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A PROTOTYPE KNOCKOFF FILTER FOR GROUP SELECTION 9

component of each group XCi
, X̃g

Ci
, i = 1, 2, . . . , k, which form V , Ṽ ∈ Rn×k. We then run the knockoff

filter on y and [V , Ṽ] with the OMP statistic. This method is an analog of the PCA prototype filter
with a different construction on Ṽ . Meanwhile, it is equivalent to the group knockoff with a special
group knockoff statistic and thus the group FDR control follows from [9]. The other method uses a
group version of the OMP statistic defined below. After selecting group jt, t ≥ 0, we define rt to be the
residual of the least square regression of y onto {XCj1

, XCj2
, ..., XCjt

} (r0 = y) and choose group jt+1 via

jt+1 = arg maxj ||rT
t XCj

||2. Let Zj and Z̃j be the reversed order when the variable XCj
or X̃Cj

enters the

model, e.g. Zj (Z̃j) = 2k if XCj
(X̃Cj

) enters the first, where k is the number of groups. We then define the

group OMP statistic as Wj = max(Zj, Z̃j) ·sign(Zj − Z̃j), j = 1, 2, . . . , k. We use the following short-hand
notations Group knockoff+ GLP, PCA Group knockoff+ and Group knockoff+ OMP to stand for these
three group knockoff methods in the following figures.

To study the effect of within-group correlation, we fix the between-group correlation factor
γ = 0 and vary ρ = 0, 0.1, ..., 0.9. To study the effect of between-group correlation, we choose the
within-group correlation factors ρ = 0.5 and ρ = 0.9 while varying γ = 0, 0.1, ..., 0.9. Each experiment
is repeated 100 times. The GLP is calculated via the gglasso package [15] in R with number of λ equal
to 1000.

For each design matrix X and its knockoff X̃, we consider the following measurements: average
of ||XPi

− X̃Pi
||22/2 = sPi

over all prototype features for the Reid–Tibshirani’s prototype knockoff, the

prototype knockoff, the PCA prototype knockoff, ||Xi −X̃g
i ||22/2 = 2λmin(DΣD) uniformly for the equi-

correlated group knockoff and average of ||Xi − X̃g
i ||22/2 (i.e. average γi) over all features for the SDP

group knockoff. In three experiments, the mean values of this average (s̄RT
Pi

, s̄Prototype
Pi

, s̄PCA
Pi

, λgroup
min ,γ̄ g

i )

(10 design matrices in each experiment) are (0.14, 0.50, 0.79, 0.36, 0.38), (0.13, 0.39, 0.49, 0.29, 0.31)

and (0.03, 0.30, 0.44, 0.26, 0.28). We have performed numerical experiments for a general class of
design matrices and found that the PCA prototype knockoff has the largest average difference,
and the average difference ||XPi

− X̃Pi
||22 of the prototype knockoff is slightly larger than

that of the group knockoff. These two prototype methods overcome the problem of strong
within-group correlation and improve the power of the Reid–Tibshirani’s prototype method
significantly.

The performance of the prototype knockoff filter is comparable to that of the group knockoff with
the GLP and the OMP statistics. When the within-group correlation is strong and the between-group
correlation factor γ is relatively small (the left and the right subfigures), the first principal component
captures most of the information, and the PCA prototype filter outperforms the group knockoff filter
with the GLP or the OMP statistic due to the larger difference between the prototype feature and
its knockoff. In the middle subfigure where the within-group correlation is 0.5, the PCA prototype
filter offers slightly less power than that of the group knockoff filter with the OMP statistic due
to the relatively weak within-group correlation. Comparing the performance of the PCA knockoff+
and the PCA group knockoff+ in Fig. 1, we find that the PCA knockoff+ consistently offers more
power than that of the PCA group knockoff+, which justifies that the knockoff construction that we
propose indeed increases the power. The advantage of larger sPi

in the PCA prototype knockoff can
be exploited if we know a priori that the signals in each correlated group have the same sign. We
have also constructed the equi-correlated group knockoff and then applied the group OMP statistic.
It offers power similar to that of the Group knockoff+ OMP; see Fig. 1. For the later numerical
experiments, we only focus on the power of different methods since these methods are guaranteed to
control FDR.
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10 J. CHEN ET AL.

Fig. 1. Testing Reid–Tibshirani’s prototype method, the prototype knockoff filter, the PCA prototype filter and the group knockoff
filter with varying within-group correlation or between-group correlation. Here, we use the knockoff+ selection procedure.

Fig. 2. Comparing the powers of the prototype knockoff filter, the PCA prototype knockoff filter and the group knockoff filter
using signals with cancelation.

Simulated signals with cancelation. In the second example, we first generate X ∼ N(0, Σ) with
within-group correlation ρ = 0, 0.1, . . . , 0.9 and between-group correlation 0 as in the previous
example. We then generate signals with cancelations in the first 20 correlated groups. We consider
two settings of signal amplitude: (a) partial cancelation: βCi

= (ai, −0.5ai, 0, 0.., 0); (b) complete

cancelation: βCi
= (ai, −ai, 0, 0.., 0), where aj

i.i.d.∼ {±5}, i = 1, 2, . . . , 20. Other settings remain the
same as in the previous example. We construct the SDP knockoff for the prototype knockoff filter and
the SDP group knockoff, and focus on the prototype knockoff filter, the PCA prototype knockoff filter
and the group knockoff filter with the OMP statistic.

In Fig. 2, when the within-group correlation is weak, the group knockoff filter captures more signals,
and offers more power than that of the prototype knockoff filter and the PCA prototype knockoff
filter. For large ρ, two signals almost merge into one signal and the prototype knockoff filter slightly
outperforms the group knockoff. The PCA prototype filter loses considerable power in this case since
the projection of the signals within the group onto the first principal component direction suffers from
the cancelation. Without any prior knowledge about the signal, the first principal component may not be
a good prototype, and we recommend to construct a data-dependent prototype via marginal correlation
for the prototype knockoff filter.

In the following numerical experiments, without specification, we use the SDP construction for
prototype knockoff filters and the group knockoff. We focus on the prototype knockoff filter, the PCA
prototype knockoff filter, the group knockoff filter with the associated OMP statistic and the group
knockoff filter with the GLP statistic.
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A PROTOTYPE KNOCKOFF FILTER FOR GROUP SELECTION 11

Fig. 3. Comparing the powers of the prototype knockoff filter, the PCA prototype knockoff filter and the group knockoff filter
by varying within-group correlation and signal amplitude. Here, the group features are generated by one hidden factor.

Group features spanned by one hidden factor. For j = 1, 2, . . . , 100, we generate group features
XCj

(ξ) = (1, 1, . . . , 1) · cos jξ ∈ R5 with group size 5. In total, we have p = 500 features. We then gen-
erate n = 3p = 1500 i.i.d. realizations of ξ , ξ ∼ Unif [0, 2π ], assemble XCj

(ξ) by rows and normalize

the columns to obtain XCj
∈ Rn×5 and X0 = (XC1

, XC2
, . . . , XC100

) ∈ Rn×p. To avoid linear dependence,

we perturb X0 by some white noise: X0 + σ · G̃, where G̃ ∈ Rn×p is obtained by normalizing the

columns of G ∈ Rn×p, Gij
i.i.d.∼ N(0, 1). We then normalize the columns of X0 + σ · G̃ to obtain the

design matrix X and the modified group features matrix XCj
. We select the last 15 groups (group with

high frequency features) and generate the signal βCj
in the selected group via one of the settings of

signal amplitude (a) βCj
= (aj, 0, 0, 0, 0)T , aj

i.i.d.∼ {±3.5}; (b) βCj
= (aj, −aj, 0, 0, 0)T , aj

i.i.d.∼ {±6};
(c) βCj

= (aj, aj, −aj, 0, 0)T , aj
i.i.d.∼ {±3.5}. We then generate y as follows: y = ∑100

j=86 XCj
βCj

+ ε,
ε ∼ N(0, In). Note that the noise level is 1 and in setting (b) and (c), there are cancelations
in the signals.

By definition of XCj
, the within-group correlation mainly depends on σ . Smaller σ results in larger

within-group correlation. We vary σ = 1, 0.9, . . . , 0.1 and repeat 100 times for each experiment to
compare the performance of several methods. The results are plotted in Fig. 3.

In the case of signal setting (a) and of signal setting (c) with small σ (σ ≤ 0.7), the PCA prototype
filter offers significantly more power than that of the group knockoff filter with both statistics. The
performance of the prototype knockoff filter is comparable to that of the group knockoff filter and it
offers more power in the case (b). The equi-correlated group knockoff with both statistics (not plotted)
offers power similar to that of the SDP group knockoff.

Group features spanned by two hidden factors. We first generate k = 100 low frequencies ωL,j
i.i.d.∼

Unif [0, 10] and k high frequencies ωH,j
i.i.d.∼ Unif [100, 200]. The feature in group j is a convex

combination of cos ωL,jξ and cos ωH,jξ :

XCj
(ξ , τj) = (τj,1 cos ωL,jξ + (1 − τj,1) cos ωH,jξ ..., τj,5 cos ωL,jξ + (1 − τj,5) cos ωH,jξ) ∈ R5,

where ξ ∼ Unif [0, 100] and τj,i
i.i.d.∼ Unif [0, τ ] for a parameter τ ∈ [0, 1]. By definition, the within-

group correlation mainly depends on τ . If τ = 0, the features in group j are spanned by one factor
cos ωH,jξ . Applying a procedure similar to the one used in the previous example, we can generate
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12 J. CHEN ET AL.

Fig. 4. Comparing the powers of the prototype knockoff filter, the PCA prototype knockoff filter and the group knockoff filter
by varying within-group correlation and signal amplitude. Here, the group features are generated by two hidden factors.

X0 ∈ R1500×500. To avoid linear dependence, we perturb X0 by some white noise and normalize
X0 + 0.3 · G̃ to obtain the design matrix X. Other settings, including 3 signal amplitudes and the sparsity
(15 selected groups), remain the same as in the previous example. Due to the randomness in generating
τj and the within-group correlation of X, we generate 5 Xτ ∈ Rn×p for each τ = 1, 0.9, . . . , 0.1 and
consider the average results. For each Xτ , we construct simulated data and repeat the experiment 100
times to obtain an average power and FDR. We plot the power averaged over five Xτ in Fig. 4.

In the case of (a) and (c), the PCA prototype filter outperforms the group knockoff filter and the
prototype filter offers more power than that of the group knockoff filter almost in all cases. We can see
that the equi-correlated group knockoff with the GLP or the OMP statistics (Equi Group knockoff+
GLP and OMP in Fig. 4) only offers about 50% power of the SDP group knockoff. In this example, the
average of ||Xi − X̃g

i ||22/2 over all features of the equi-correlated group knockoff is 0.1402 and is much
smaller than that of the SDP group knockoff, which is 0.3581. This explains the loss of considerable
power.

From the last two examples, we observe that when the group features are spanned by one or a
few hidden factors and the signals within each group are not canceled completely, the PCA prototype
filter could offer more power than that of the group knockoff filter. If the within-group correlation is
relatively strong and the signals are canceled completely as in the case (b) with σ ≤ 0.8 in Figs 3 and 4,
the information is lost in the measurement y and it is challenging to perform group selection in this case.

Computational efficiency. The computational cost of the prototype knockoff filter or the group
knockoff mainly consists of the knockoff construction and the feature selection process. We can apply
the equi-correlated or the SDP construction. In the equi-correlated construction, computing the smallest
eigenvalue λmin((W

TW)−1) or λmin(DΣD) is relatively cheap and both methods construct knockoffs
in O(np2) flops (the computation of XTX is one of the bottlenecks). In the SDP construction of the
prototype knockoff, (8) is a k-dimensional SDP (k is the number of groups). If k � p, the SDP
construction of the prototype knockoff can be solved efficiently by exploiting its special structure [6].
We remark that the construction of the SDP knockoffs in [14] solves a p-dimensional problem of the
same type. By default, we use the SDP construction in the prototype knockoff filter. The performance
of the equi-correlated group knockoff depends on the amplitude of λmin(DΣD), which is exactly the
average ||Xi − X̃i||22/4 and could be much smaller than the corresponding average of the SDP group
knockoff. In this case, the equi-correlated group knockoff could lose significant power as we have
demonstrated in the last example, and one may have to construct the SDP group knockoff, which is
more expensive.
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A PROTOTYPE KNOCKOFF FILTER FOR GROUP SELECTION 13

The prototype knockoff filter constructs the knockoff statistic using y, (XP, X̃P) ∈ Rn×2k. The
computational cost of many useful statistics, e.g. the LP, the OMP, the ridge regression and the Lasso
statistics, is O(nk2), is relatively small compared with the cost in the knockoff construction.

3. Some observations of the knockoff filter

3.1 Alternating sign effect

In this section, we will perform some analysis for the knockoff filter and illustrate a potential challenge
that we may encounter for some path method statistics, including the LP statistic and the forward
selection statistic [1,10] for certain implementation procedure to update the residual. After performing
l steps in one of the path methods (or at λ for the LP), we denote by E the set of features that have
entered the model. Assume that Xj, X̃j /∈ E at the lth step, but at the next step either Xj or X̃j will enter

the model. After l steps, the residual is rl = y − XEβ̂E = Xβ − XEβ̂E + ε. Since Xj, X̃j /∈ E, we have

XT
j Xi = X̃jXi, ∀Xi ∈ E. The same equality holds for X̃i. For Xj and X̃j, their marginal correlation with rl

determines which one of these two features will enter into the model first at the (l + 1)st step:

XT
j rl = XT

j (Xβ − XEβ̂E) + XT
j ε, X̃T

j rl = X̃T
j (Xβ − XEβ̂E) + X̃T

j ε,

(Xj − X̃j)
Trl = (Xj − X̃j)

Ty = sjβj + (Xj − X̃j)
Tε.

Assume that the noise level is relatively small. If

sign(βj) �= sign(XT
j (Xβ − XEβ̂E))and |XT

j (Xβ − XEβ̂E)| > |sjβj|, (11)

then X̃j will enter into the model at the (l + 1)th step since

|X̃T
j rl| − |XT

j rl| ≈ |XT
j (Xβ − XEβ̂E) − sjβj| − |XT

j (Xβ − XEβ̂E)|
= sign

(
XT

j (Xβ − XEβ̂E)
) [(

XT
j (Xβ − XEβ̂E) − sjβj

)
−

(
XT

j (Xβ − XEβ̂E)
)]

= |sjβj| > 0.

This may reduce the power of the knockoff filter.
To understand under what condition the assumption (11) could be satisfied, we simply replace Xβ −

XEβ̂E by y. Then this assumption can be reformulated as sign(XT
j y) �= sign(βj) and |XT

j y| > |sjβj|.
Suppose that the correlation between the features is relatively strong. The direction Xj can capture more

signals from y and thus it is likely that the marginal correlation |XT
j y| is larger than |βj| > |sjβj|. This

could occur if some features are positively (negatively) correlated, but their contribution to the response
y has the opposite (same) sign, e.g. XT

j Xk > 0, βj > 0 and βk < 0. We call this mechanism that could
lead to (11) the alternating sign effect.

A numerical example. We generate the design matrix X ∈ R900×300 ∼ N(0, Σ), where Σij = 0.9|i−j|,
and construct its SDP knockoffs. Since some columns of X are strongly correlated, the knockoff factor
s ∈ R300 (defined in (1)) obtained in the SDP construction can be very small. Hence, some Xi is very
close to its knockoff X̃i, which may lead to the degeneracy of the augmented design matrix [X X̃].
Denote S � {i : si ≤ 0.01} and L � {i : si > 0.01}. We pick k = 30 features i1, i2, . . . , ik randomly
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14 J. CHEN ET AL.

Fig. 5. Testing different knockoff statistics using example with positive correlated features and signals with different sign. In the
left figure, for each σ , the power and the FDR are averaged over five cases. In the right figure, the minimal power over five cases
and its associated FDR are presented.

in the set L and then generate the signal amplitude βij = 0.75
sij

. We then pick half of the signals βij

randomly and change their signs. By construction, 50% of the signals are positive. We construct y =∑k
j=1 Xijβij + ε, ε ∼ N(0, σ 2In) and run the knockoff+ filter with the LP, the forward selection and

the Lasso statistics with tuning parameter λ = σ on y, [XL, X̃L, XS] to obtain the statistic WL. We set
WS = 0. For the forward selection statistic, initializing r0 = y, we iteratively choose Xil (l ≥ 1) via
il = arg maxj |〈rl−1, Xj〉|. According to [1], we can apply two different procedures to update the residual
at step l. In the first procedure, the residual rl is simply updated by eliminating the effect of the selected
variable Xil from the previous residual rl−1, while in the second procedure rl is updated by eliminating
the effect of all selected variables from y, i.e.

r(1)
l = r(1)

l−1 − 〈r(1)
l−1, Xil〉Xil , r(2)

l = y − Ply, (12)

where Pl is the orthogonal projector onto the space spanned by the l selected variables. For the forward
selection statistic with these two procedures, we use short-hand notations FS and OMP since the latter
uses OMP. The FS and OMP statistics can be computed by the knockoff package [1] directly. We also
apply the Benjamini–Yekutieli (BHq) procedure [4] that first calculates the least-squares estimate β̂LS =
(XTX)−1XTy and set Zj = β̂LS

j /(σ
√

(G−1)jj) to yield the z-scores, where G = XTX is the Gram matrix.

Note that marginally Zj ∼ N(0, 1). Variables are then selected by the threshold T � min{t : 300 ·
P(|N(0, 1)| ≥ t)/#{j : |Zj| ≥ t} ≤ 20%}.

Due to the randomness in generating the signal β, we generate five signals for each noise level
σ = 1.4, 1.2, . . . , 0.2 and consider the average and the extreme results. For each signal and σ , we repeat
the experiment 100 times to obtain an average power and FDR. For each σ , we calculate the power, the
FDR averaged over five cases with different signals, the minimal power and its associated FDR over
five cases. The results are plotted in Fig. 5.

Remark 3.1 In the selection procedure, we effectively turn off the knockoff X̃i for i ∈ S, i.e. si is small.
If we run the knockoff process on y and the whole augmented design matrix M, the degeneracy of M
can lead to significant numerical instability and the loss of FDR control. Note that WS = 0 implies that
the features in set S will not be selected by the knockoff filter. Since the signals are from L by the design
of the response y, setting WS = 0 will not lead to the loss of power.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article-abstract/doi/10.1093/im
aiai/iaz012/5531018 by guest on 06 August 2019



A PROTOTYPE KNOCKOFF FILTER FOR GROUP SELECTION 15

In our computation, we use the knockoff package in Matlab to calculate the LP and the FS statistics.
This package uses the glmnet package in Matlab [12] to solve the Lasso problem, and we also use the
glmnet package to obtain the Lasso statistic. In an earlier example (not included in the current paper)
where the features are strongly correlated, we obtained a somewhat unexpected result, i.e. the LP statistic
fails to control FDR. To gain some understanding what went wrong, we found that the numerical solution
of the Lasso problem (β̂, β̃) = arg min

(b̂,b̃)
1
2 ||y−Xb̂− X̃b̃||22 +λ||(b̂, b̃)||1 is significantly different from

the numerical solution of (β̂, β̃) = arg min
(b̂,b̃)

1
2 ||y − X̃b̃ − Xb̂||22 + λ||(b̂, b̃)||1, which is the same

Lasso problem, except that we have swapped the order of the input variables (X, X̃). Therefore, when
the features of the design matrix [XX̃] are strongly correlated, the result of the Lasso-related methods
obtained by the glmnet package could suffer from a large numerical error, which may lead to the loss
of FDR control. The problem may be addressed by significantly increasing the precision of the solver,
e.g. using the option thresh = 10−12. To avoid this problem, we simply exclude X̃S when we run the
knockoff selection procedure.

As the noise level σ decreases, the signal becomes relatively strong and we expect that the power
increases. For σ ≤ 1, the power of the BHq method is over 90% and its FDR is under control, which is
a good indicator that the signal is strong enough. For σ = 0.2, 0.4, the minimal power of the knockoff
with the LP (53%, 60%) and the FS (85%, 75%) statistics are significantly less than that of the BHq
method (100%, 100%), which suggests that these two statistics suffer from the alternating sign effect
and lose significant power in this example. The power of the knockoff with the OMP or the Lasso
statistic is comparable to that of the BHq method. A possible explanation of the robust performance of
the OMP and the Lasso statistics in this example is that the OMP statistic can detect strong signals and
then eliminate the effect of all selected variables before finding the next strong signal, and the Lasso
statistic jointly estimates the effect of all regressors. Compared with the OMP, the forward selection with
the first procedure in (12) (FS) fails to eliminate the effect of all selected variables, which may lead to
the loss of considerable power. In strongly correlated cases, the OMP or the Lasso statistic is less likely
to suffer from this effect. We have also implemented a similar test where the features are only weakly
correlated: X ∼ N(0, Σ), Σij = 0.5|i−j|. The power of the knockoff with the LP and the FS statistics
is comparable or more than that of the BHq method. Thus, it is unlikely that these statistics would lose
power for weakly correlated features.

3.2 Extension of the knockoff sufficiency property

Let U ∈ Rn×(n−2p) be an orthonormal matrix such that [X X̃]TU = 0 and [X X̃ U] admits a
basis of Rn. (1) implies (X + X̃)T(X − X̃) = XTX − X̃T X̃ = 0. Hence, Rn can be decomposed
as follows:

Rn = span(X + X̃) ⊕ span(X − X̃) ⊕ span(U).

Our key observation is that swapping each pair of the original Xj and its knockoff X̃j does not modify

these spaces: span(X + X̃), span(X − X̃) and span(U). Therefore, the probability distributions of the
projections of the response y onto these spaces are independent and invariant after swapping arbitrary
pair Xj and X̃j. Inspired by this observation, we can generalize the sufficiency property of knockoff

statistic [1] which states that the statistic W depends only on the Gram matrix [XX̃]T [XX̃] and the
feature–response product [XX̃]Ty.

Definition 3.2 (Generalized sufficiency property). The statistic W is said to obey the generalized
sufficiency property if W depends only on the Gram matrix [XX̃]T [XX̃] and the feature–response
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16 J. CHEN ET AL.

[X X̃ U]Ty; that is, we can write W = f ([XX̃]T [XX̃], [X X̃ U]Ty) for some f : S+
2p × Rn → Rp and

an orthonormal matrix U ∈ Rn×(n−2p) that satisfies UT [XX̃] = 0.

The definition of the antisymmetry property remains the same: swapping Xj and X̃j has the same
effect as changing the sign of W, i.e.

Wj([XX̃]swap(Ŝ)
, U, y) = Wj([XX̃], U, y) ·

{
+1 j /∈ Ŝ,

−1 j ∈ Ŝ,

for any Ŝ ⊂ {1, 2, . . . , p}. For any knockoff matrix X̃ and the associated statistic W that satisfies the
above definition, we call W the generalized knockoff statistic. Following the proof of Lemmas 1, 2 and
3 in [1], one can verify the pairwise exchangeability for the features and the response.

Lemma 3.3 For any generalized knockoff statistic W and a subset Ŝ of nulls, we have

Wswap(Ŝ)
= f ([XX̃]T

swap(Ŝ)
[XX̃]swap(Ŝ)

, [ [XX̃]swap(Ŝ)
U]Ty)

d= f ([XX̃]T [XX̃], [X X̃ U]Ty) = W.

Moreover, we can show that the ‘i.i.d. signs for the nulls’ property still holds true for the generalized
knockoff statistic.

Lemma 3.4 (i.i.d. signs for the nulls) Let η ∈ {±1}p be a sign sequence independent of W, with ηj = +1

for all non-null j and ηj
i.i.d.∼ {±1} for null j. Then (W1, ..., Wp)

d= (W1η1, ..., Wpηp).

Based on these lemmas, we can apply the same super-martingale as in [1] to establish rigorous FDR
control.
Estimate of the noise level. A natural estimate of the noise level is σ̂ = ||y − Xβ̂ ls − X̃β̃ ls||2/

√
n − 2p

provided n > 2p, where β̂ ls and β̃ ls are the least-squares coefficients. Let U ∈ Rn×(n−2p) be an
orthonormal matrix such that UT [XX̃] = 0. It is straightforward to show that

σ̂ = ||y − Xβ̂ ls − X̃β̃ ls||2/
√

n − 2p = ||UTy||2/
√

n − 2p.

Note that σ̂ depends on UTy only. As an application of the generalized knockoff statistic, we can
incorporate this noise estimate into the knockoff statistic without violating the FDR control.

4. Concluding remarks

In this paper, we proposed a prototype knockoff filter for group selection by extending Reid–Tibshirani’s
prototype method. Our prototype knockoff filter improves the computational efficiency and statistical
power of the Reid–Tibshirani prototype method when it is applied for group selection. We demonstrated
that when the group features are spanned by one or a few hidden factors, the PCA prototype filter
can offer more power than that of the group knockoff filter. On the other hand, the PCA will not
work well if the signals within each group have opposite signs and the signals in each group are
canceled almost completely. Due to the improved statistical power and computational efficiency, the
prototype knockoff filter with the SDP construction of the knockoff is especially attractive when the
equi-correlation construction of the group knockoff gives small λmin for certain design matrices. In this
case, one may need to use the SDP construction for the group knockoff, which could be expensive.
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We have also performed some analysis of the knockoff filter. Our analysis reveals that certain path
method statistics for the knockoff filter may suffer from loss of power for certain design matrices
and a specially designed response even if the signal strengths are relatively strong. We provided
some partial understanding of this special phenomena and identified the alternating sign effect that
could generate this phenomena. Our numerical results have confirmed that several statistics could lose
significant power for certain design matrices and a specially constructed response due to the alternating
sign effect.
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