


where for simplicity we have used subscripts after commas to
denote partial differentiations. The incompressibility condition
∇ · u = 0 implies the existence of a stream function:

ψðr; zÞ=ψ rðr; zÞer +ψθðr; zÞeθ +ψ zðr; zÞez;

for which u = ∇ × ψ and ω = −Δψ . Taking the θ component of
the velocity equation (Eq. 1), the vorticity equation

ω;t + u ·∇ω=ω ·∇u;

and the Poisson equation −Δψ = ω gives an alternative formu-
lation of the 3D Euler equations:

u1;t + uru1;r + uzu1;z = 2u1ψ1;z; [2a]

ω1;t + urω1;r + uzω1;z =
�
u21
�
;z; [2b]

−
�
∂2r + ð3=rÞ∂r + ∂2z

�
ψ1 =ω1; [2c]

where u1 = uθ/r, ω1 = ωθ/r, ψ1 = ψθ/r are transformed angular
velocity, vorticity, and stream functions, respectively. The ra-
dial and axial components of the velocity can be recovered
from ψ1 as follows:

ur =−rψ1;z;     uz = 2ψ1 + rψ1;r; [2d]

for which the incompressibility condition

1
r
ðrurÞ;r + uz;z = 0

is satisfied automatically. As shown by ref. 24, (uθ, ωθ, ψθ) must
all vanish at r = 0 if u is a smooth velocity field. Thus, (u1, ω1,
ψ1) are well defined as long as the corresponding solution to
Eq. 1 remains smooth. The reason we choose to work with the
transformed variables (u1, ω1, ψ1) instead of the original vari-
ables (uθ, ωθ, ψθ) is that the equations satisfied by the latter
have a formal singularity at r = 0, which is inconvenient to work
with numerically.
We numerically solve the transformed equations (Eqs. 2) on

the cylinder:

Dð1;LÞ=fðr; zÞ : 0≤ r≤ 1; 0≤ z≤Lg;
with the initial condition:

u01ðr; zÞ= 100  e−30
�
1− r2

�4
sin
�
2π
L

z
�
; [3a]

and ω0
1ðr; zÞ=ψ0

1ðr; zÞ= 0. The solution is subject to a periodic
boundary condition in z and a no-flow boundary condition ψ1 = 0
on the solid boundary r = 1. The pole condition

u1;rð0; z; tÞ=ω1;rð0; z; tÞ=ψ1;rð0; z; tÞ= 0 [3b]

is also enforced at the rotation axis r = 0 to ensure the smooth-
ness of the solution. The initial condition (Eq. 3a) describes a
purely rotating eddy in a periodic cylinder and it satisfies spe-
cial odd–even symmetries at the planes zi = i

4L, i = 0, 1, 2, 3.
Specifically, u01 is even at z1, z3, odd at z0, z2, and ω0

1;ψ
0
1 are both

odd at all zi’s. These symmetry properties are preserved by the
equations (Eqs. 2), so instead of solving the problem (Eqs. 2
and 3) on the entire cylinder D(1, L), it suffices to consider the
problem on the quarter cylinder D

�
1; 14L

�
, with the periodic

boundary condition replaced by appropriate symmetry boundary
conditions. It is also interesting to notice that the boundaries of
D
�
1; 14L

�
behave like “impermeable walls”:

ur = 0 on r= 1; uz = 0 on z= 0;
1
4
L;

which is a consequence of the no-flow boundary condition and
the odd symmetry of ψ1.
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Fig. 1. The vorticity jωj on the 1,024 × 1,024 mesh at τ2 = 0.003505, in (A)
rz coordinates and (B) ρη coordinates, where for clarity only 1/10th of the
mesh lines are displayed along each dimension.
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Fig. 2. The double logarithm of the maximum vorticity log(logkωk∞)
computed on the 1,024 × 1,024 and the 2,048 × 2,048 mesh. The two
curves overlap and are virtually indistinguishable from each other.
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Numerical Method
The discretization of Eqs. 2 is carried out on a fixed-sized non-
uniform mesh

G0 =
��

rj; zi
�
: 0≤ i≤M; 0≤ j≤N

	
;

where

rj = rð jhrÞ; zi = zðihzÞ;     hr = 1=N; hz = 1=M;

and r = r(ρ), z = z(η) are analytic mesh mapping functions de-
fined on [0, 1]. The mesh mapping functions contain a small
number of parameters, which are dynamically computed from
the numerical solution so that a certain fraction of the mesh
points (e.g., 50% along each dimension) is always placed in a
small neighborhood of the singularity. The precise definition
and construction of the mesh mapping functions are outlined in
Supporting Information.
Given an adaptive mesh G0 and the data (u1, ω1) defined on

G0, the solution of Eqs. 2 is advanced using the following pro-
cedure. First, the Poisson equation (Eq. 2c) is solved for ψ1 in the
ρη-space using a sixth-order B-spline based Galerkin method,
where solutions of the weak problem

aðψ1;ϕÞ :=
Z

½0;1�2

�
ψ1;ρ

r;ρ

ϕ;ρ

r;ρ
+
ψ1;η

z;η

ϕ;η

z;η

�
r3r;ρ z;η   dρ  dη

=
Z

½0;1�2
ω1ϕr3r;ρz;η   dρ  dη=: f ðϕÞ; ∀ϕ∈V ;

with

V = span
n
ϕ∈H1½0; 1�2 : ϕð−ρ; ηÞ=ϕðρ; ηÞ;
ϕð1; ηÞ= 0;   ϕðρ; ℓ− ηÞ=−ϕðρ; ℓ+ ηÞ;   ∀ℓ∈Zg;

are sought in the finite-dimensional subspace of weighted uniform
B-splines (25) of order k = 6:

Vh :=Vk
w;h = span

n
wðρÞbkj;hr ðρÞbki;hzðηÞ

o
∩V ;

where w(ρ) = 1 − ρ2 and bkℓ;hðsÞ= bk
�ðs=hÞ− ðℓ− k=2Þ� are shifted

and rescaled uniform B-splines of order k. Second, the 2D velocity

~u= ður; uzÞT is evaluated at the grid points using Eq. 2d, and a suit-
ably small time step δt is computed on G0. Finally, the solution (u1,
ω1) is advanced according to Eqs. 2a and 2b by δt using an explicit
fourth-order Runge–Kutta method, where the space derivatives in
Eqs. 2a and 2b are discretized in the ρη-space using a sixth-order
centered difference formula. The difference scheme is comple-
mented by symmetry boundary conditions near η = 0, 1 (symmetry
planes) and ρ = 0 (rotation axis), and by extrapolation boundary
conditions: �

D7
ρ;−vi; ·

�
N+j

= 0;     0≤ i≤M; 1≤ j≤ 3;

near the solid boundary ρ = 1, where Dρ,− denotes the standard
backward difference operator. Once the solution (u1, ω1) is ad-
vanced to the next time level, the mesh G0 is adapted to the new
solution and the whole procedure is repeated until one of the
stopping criteria is met (see below).

Numerical Results
The numerical solutions of Eqs. 2 are computed using five mesh
resolutions with mesh size ranging from 1,024 × 1,024 to 2,048 ×
2,048. In each resolution run, the solution is advanced indefi-
nitely in time until either the time step drops below 10−12 or the
minimummesh spacing drops below 10−15 (in r) or 10−15

�
1
4L
�
(in z),

whichever happens first. In all five runs, the computation stops at
te ∼ 0.00350555 and the vorticity jωj rapidly develops a singular
structure in finite time. Fig. 1 shows the vorticity jωj computed at
τ2 = 0.003505 in both the rz coordinates (Fig. 1A) and the ρη
coordinates (Fig. 1B). The rz plot suggests that the singular
structure could be a point singularity at the corner ~q0 = ð1; 0ÞT ,
which corresponds to a ring singularity on the solid boundary due
to the rotational symmetry. The ρη plot, on the other hand, shows
that a good portion of the mesh points (roughly 50% along each
dimension) are consistently placed in regions where jωj is
comparable with the maximum vorticity kωk∞, hence demon-
strating the effectiveness of the adaptive mesh. The rapid growth
of the vorticity is further confirmed in Fig. 2, where the maxi-
mum vorticity kωk∞ is seen to grow much faster than double
exponential, and in Fig. 3, where the nearly linear decay of the
inverse logarithmic time derivative

�
d
dtlogkωk∞

�−1
suggests a

power law growth of the maximum vorticity (see Eq. 4 below).
The quality of the solution is ensured by a careful convergence
study, which shows that ω has a pointwise relative error of 3.3212 ×
10−4 at τ2 = 0.003505 (Fig. 4), at which time the kinetic energy is
conserved almost up to machine precision with a relative error of
6.6594 × 10−13. The maximum and minimum circulations along
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x 10−3

0

0.5

1

1.5

2

2.5

x 10−4

Fig. 3. Inverse logarithmic time derivative of the maximum vorticity com-
puted on the 2,048 × 2,048 mesh. The dashed line box represents the time
interval [τ1, τ2] on which the line fitting (Eq. 4) is computed.
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Fig. 4. Sup-norm relative error of the vorticity vector ω. The solution on all
but the finest mesh is compared with the one computed on the next finer
mesh. The last time instant shown in the figure is t = 0.003504.
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circular contours, which are known to be conserved by inviscid
axisymmetric flows (22), are also monitored, and show a relative
error of 3.4921 × 10−14 and 2.5308 × 10−17 at τ2 = 0.003505. The
conservation of circulation along other closed material curves C
is not checked, mainly due to the lack of a clear guidance in the
choice of C, but resolution studies on the velocity field in-
dicate that the circulation is well conserved along any closed
material curve, with a relative error of no more than O(10−7).
Note that this error was derived from the pointwise error of
the velocity field and hence is likely an overestimate of the
true error.
The existence of a finite-time singularity is confirmed using the

well-known Beale–Kato–Majda (BKM) criterion (4, 6, 7). It
asserts that a smooth solution of the 3D Euler equations blows
up at time ts if and only if the maximum vorticity kωk∞ accumulates
so fast in time that

Zts
0



ωð · ; tÞ

∞dt=∞:

To apply the criterion, the maximum vorticity kωk∞ is assumed to
satisfy an inverse power law:



ωð · ; tÞ

∞ ∼ cðts − tÞ−γ ;     c;  γ > 0; [4]

with unknown singularity time ts and scaling parameters (c, γ). A
careful line fitting with prudential selections of fitting intervals
shows that Eq. 4 holds with γ ∼ 2.46 and ts ∼ 0.0035056 (Fig. 5),
confirming the existence of a singularity. A similar blowup criterion
of Ponce (5) applies to the strain tensor S := 1

2ð∇u+∇TuÞ and
asserts that the divergence of the integral

R ts
0 kSk∞dt implies the

blowup of the solution. For the nearly singular solution dis-
played in Fig. 1, it can be shown that kSk∞ ≥ 1

2kωk∞, and hence
the blowup of

R ts
0 kSk∞dt follows. Another useful way to check

the BKM criterion is to apply the Hölder inequality Ω2m ≤
Cmkωk∞ where

Ω2m := ð Z
Dð1;LÞ

jωj2mdxÞ1=2m;    m= 1; 2; . . . ;

are the vorticity moment integrals (21). Clearly, the diver-
gence of the time integral of any finite-order Ω2m implies the
blowup of

R ts
0 kωk∞dt, and in our case Ω4 = O(ts − t)−1, which

fulfills the criterion.† Additional supporting evidence of a sin-
gularity can also be obtained from the geometric nonblowup
criterion of Deng–Hou–Yu‡ (9). It asserts that no blowup can
occur along a vortex line segment Lt at time ts provided, among
other things, that

MðtÞLðtÞ≤C0; LðtÞ≥ cBðts − tÞB;  B∈ ð0; 1Þ; [5]

where L(t) is the length of Lt and

MðtÞ=max
n

∇ · ξ




L∞ðLtÞ;



κ

L∞ðLtÞ
o
;

where κ = jξ · ∇ξj is the curvature of Lt. Our numerical data
suggest that the two conditions listed in Eq. 5 cannot be satis-
fied simultaneously, because the first condition implies L(t) ≤
C0M

−1(t) but M−1(t) is observed to scale like c(ts − t)2.92, which
violates the second condition.§ As is clear from Fig. 6, the z
component ξz of the vorticity direction changes rapidly along
the z dimension near the point of the maximum vorticity, in-
dicating the formation of bundles of “densely packed” vortex
lines near z = 0 and explaining the rapid growth of M(t) observed
in Eq. 5.
The question of existence of a self-similar blowup is also of

interest and is investigated numerically. In rotationally symmetric
flows, a (meridian-plane) self-similar solution naturally takes
the form

u1ð~x; tÞ∼ ½ts − t�γuU
 

~x−~x0
½ts − t�γl

!
; [6a]

ω1ð~x; tÞ∼ ½ts − t�γωΩ
 

~x−~x0
½ts − t�γl

!
; [6b]

ψ1ð~x; tÞ∼ ½ts − t�γψΨ
 

~x−~x0
½ts − t�γl

!
; [6c]

where ~x= ðr; zÞT is a point on the rz plane and (U, Ω, Ψ) are self-
similar profiles. With ~x0 = ð1; 0ÞT , the location of the maximum
vorticity, the above ansatz describes a thin-tube “singularity sur-
face” near the solid boundary of the cylinder, which shrinks to
a “singularity ring” as the singularity time is approached. This is
different from a Leray-type self-similar solution, which contracts
along all three dimensions and which becomes a point at the
singularity time. The existence of solutions of the form (Eq. 6)
is partly confirmed by Fig. 7, which shows the level curves
jωj= 1

2kωk∞ at nine different time instants (Fig. 7A) and the
same nine curves after rescaling (Fig. 7B). Clearly, the level
curves all have similar shapes, indicating the existence of
a self-similar solution. Additional supporting evidence of
a self-similar solution can also be obtained from the primitive
variables (u1, ω1, ψ1) and the details are omitted here for brev-
ity. Using a standard line fitting, the scaling exponents of the
self-similar solution (Eq. 6) can be estimated from the numer-
ical data, which gives γl ∼ 2.91, γu ∼ 0.46, γω ∼ −1, and γψ ∼
4.83. In particular, it implies that kωk∞ ∼ c(ts − t)−2.45, con-
firming again the existence of a finite-time singularity.

Fig. 5. Maximum vorticity kωk∞ and its inverse power law fit computed on
the 2,048 × 2,048 mesh. The two curves are virtually indistinguishable from
each other.

†The enstrophy integral, Ω2
2, is observed to grow rapidly (faster than double-exponential),

but careful analysis indicates that it is likely to remain bounded as the singularity time ts
is approached.

‡The nonblowup criterion of Constantin–Fefferman–Majda (8) has only been proved in
free space and thus does not apply to our case.

§Resolution study shows that M(t) has a relative error of 4.7223 × 10−3 at τ2 = 0.003505,
confirming that it has sufficient accuracy to warrant the scaling analysis performed in Eq. 5.
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Understanding the Blowup
For the specific initial condition (Eq. 3a) considered in our
study, it is observed that ru01 is monotonically increasing in both r
and z within the quarter cylinder D

�
1; 14L

�
. It turns out that this

property is preserved by the equations (Eqs. 2) (for reasons yet
to be determined), thus u1,z and consequently ω1 (Eq. 2b) remain
positive for as long as the solution is smooth. The positivity of ω1
and the homogeneous boundary condition of ψ1 together imply
the positivity of ψ1 (Eq. 2c), which in turn implies that

uz = 2ψ1 + rψ1;r =ψ1;r ≤ 0 on r= 1; z∈
�
0;
1
4
L
�
:

This shows that the flow has a compression mechanism near the
corner ~q0 = ð1; 0ÞT (recall uz is odd at z = 0), which seems to be
responsible for the generation of the finite-time singularity ob-
served at ~q0. From a physical point of view, the blowup can be
deduced from vorticity kinematics applied to the initially rotating
eddy. The gradient of circulation down the tube, 2πruθ,z, creates
a θ component of vorticity (Eq. 2b). This component in turn
creates the flow (ur, uz) (Eqs. 2c and 2d), which advects toward
the symmetry plane z = 0 on the solid wall r = 1. Because vortex
lines threading through the wall are carried by this flow, their
points of intersection with the wall move toward the symmetry
plane z = 0 and then collapse onto z = 0 in finite time (Fig. 8).

This is similar to what was observed in ref. 26 in the study of a model
problem, which was derived as the leading-order approximation to
a stretched version of the Taylor–Green initial value problem for the
3D Euler equations. The model closely resembles the axisymmetric
Euler equations except that the fluid inertia (Dtur) in the radial
transport equation is missing. Because the variable uθ studied in
ref. 26 occurs as coefficients of the asymptotic expansions, the
blowup of its z derivatives merely indicates the breakdown of
the expansions and the return of the flow to 3D-ity. It does not
imply the loss of regularity of the underlying solutions.

Conclusion and Future Work
We have numerically studied the 3D axisymmetric Euler equa-
tions in a periodic cylinder and have discovered a class of poten-
tially singular solutions from carefully chosen initial data. By using
a specially designed yet highly effective adaptive mesh, we have
resolved the nearly singular solution with high accuracy and have
advanced the solution to a point asymptotically close to the pre-
dicted singularity time. Detailed analysis based on rigorous math-
ematical blowup/nonblowup criteria provides convincing evidence
for the existence of a singularity. Local analysis also suggests the
existence of a self-similar blowup in the meridian plane.
Besides providing a promising candidate for the finite-time

blowup of the 3D Euler equations, our computations also suggest
a possible route to the finite-time blowup of the 2D Boussinesq
equations. The Boussinesq equations describe the motion of
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Fig. 6. The geometry of the vorticity direction: (A) the 2D vorticity di-
rection ~ξ= ðξr ,ξzÞT and (B) the z-direction component ξz computed on the
1,024 × 1,024 mesh at τ2 = 0.003505, shown on the region [rl, 1] × [0, zr],
where rl = 1 − 5.99 × 10−11 and zr = 2.09 × 10−12. The through-plane (θ)
component of ξ has a magnitude of order O(10−6) in the plotting region
and hence is negligible.
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Fig. 7. The level curves jωj= 1
2kωk∞ at nine different time instants: (A) be-

fore rescaling, (B) after rescaling. In A, only the first three curves are visible
and the other six all shrink to a point at the lower-right corner. In B, the nine
rescaled curves collapse almost perfectly to a single curve.
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variable-density, stratified flows under the influence of gravi-
tational forces, and like the 3D Euler equations, the exis-
tence or nonexistence of globally regular solutions to the 2D
Boussinesq equations is a well-known open problem in fluid
dynamics (see, for example, ref. 27). Because the 2D Boussinesq
equations are known to be qualitatively similar to the 3D axi-
symmetric Euler equations away from the rotation axis (22),
and the singularity discovered in our Euler computations lies
on the solid boundary of the cylinder, the solution of the 2D
Boussinesq equations resulting from similar initial data are
likely to develop a singularity in finite time. This has been

confirmed in a separate computation and will be the subject of
a forthcoming paper.
Motivated by the observation that the Euler/Boussinesq sin-

gularity is likely a consequence of a compression flow along the
solid wall, we have derived a 1D model:

θ;t + uθ;z = 0;     z∈ ð0;LÞ; [7a]

ω;t + uω;z = θ;z; [7b]

where the nonlocal velocity u is defined by the following:

uðzÞ= 1
π

ZL
0

ωðyÞlogsin½μðz− yÞ�dy;     μ= π=L: [7c]

This 1D model can be viewed as the “restriction” of the 3D
axisymmetric Euler equations (Eqs. 2) to the wall r = 1, with
the identifications:

θðzÞ∼ u21ð1; zÞ; ωðzÞ∼ω1ð1; zÞ; uðzÞ∼ψ1;rð1; zÞ:

The detailed derivation and analysis of the model (Eqs. 7) will be
reported in a separate paper.
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arrows indicate vortical circulation. See also figure 5 in ref. 26.
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SI Methods: Construction of the Adaptive Mesh
The mesh mapping functions r(ρ), z(η) are defined through an
analytic function μ,

rðρÞ= μðρ; αr; σrÞ; zðηÞ= μðη; αz; σzÞ;

where αr, σr, etc., are parameters and

μ;sðs; α; σÞ= α0 + α1e−πs
2=σ21 + α2e−πðs− 1Þ2=σ22 ; [S1]

where 0 ≤ s ≤ 1. The particular form of μ is chosen to meet the
following goals. First, it should map the interval [0, 1] onto
another interval, say [0, L], in a one-to-one manner. Second,
given any subset [a, b] of [0, L] and any δ ∈ (0, 1), it should
place at least δ fraction of the mesh points in [a, b] and main-
tain a uniform mesh on [a, b]. In our computations, the interval
[0, L] will be the entire computational domain along either the
r or the z dimension, and ½a; b�=Pfðr; zÞ : jωj≥ δ0kωk∞g a small
neighborhood of the maximum vorticity along that dimension
where P is the projection to r or to z and δ0 ∈ (0, 1) is a small
parameter. The mesh mapping functions constructed this way
will always place enough points near the maximum vorticity,
provided that the vorticity blows up in a self-similar fashion
with a bell-shaped similarity profile. This is what we observe in
our case.
The one-to-one correspondence of the map generated by μ is

equivalent to the positivity of μ,s, which can be ensured provided
that α0 > 0 and α1, α2 ≥ 0. To place the required amount of mesh
points in the interval [a, b] and ensure a uniform mesh on [a, b],
we observe that

μ;sðs; α; σÞ= α0 + α1e−πs
2=σ21 + α2e−πðs− 1Þ2=σ22 ≈ α0;

for 2σ1 ≤ s ≤ 1 − 2σ2 in view of the rapid decay of the Gaussians
away from their centers. Therefore, if we choose (σ1, σ2) such that
1 − 2σ1 − 2σ2 = δ and map the interval [2σ1, 1 − 2σ2] onto [a, b],
the resulting mesh will have the desired properties.
The mapping function μ defined by Eq. S1 is constructed using

the following procedure. First, the parameters (σ1, σ2), which
specify the amount of points to be distributed to the intervals
[0, a](2σ1), [a, b](1 − 2σ1 − 2σ2), and [b, L](2σ2), are supplied by
the users and are fixed throughout the computations. To ensure
a proper mesh, these parameters must satisfy

0< σ1; σ2 <
1
4
: [S2a]

Next, the parameters (α0, α1, α2) are determined from the fol-
lowing equations:

μð0Þ= 0; μð2σ1Þ= a; μð1− 2σ2Þ= b; μð1Þ=L; [S2b]

which ensure that [0, 1] is mapped onto [0, L] and [2σ1, 1 − 2σ2] is
mapped onto [a, b]. The values of αi computed from Eq. S2bmay
be further adjusted in case the monotonicity constraints α0 > 0,
α1, α2 ≥ 0 are not satisfied. In our computations, the resulting
mesh consistently places 40% points in the inner region where
jωj is most singular, 50% points in the outer region where jωj
varies smoothly, and 10% points in between. Detailed studies
show that the adaptive mesh generates a nearly uniform repre-
sentation of the computed solutions across the entire computa-
tional domain, hence confirming its efficacy.
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