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DIFFERENTIAL EQUATIONS
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Abstract. We propose a multiscale model reduction method for partial differential equations. The
main purpose of this method is to derive an effective equation for multiscale problems without scale
separation. An essential ingredient of our method is to decompose the harmonic coordinates into a
smooth part and a highly oscillatory part so that the smooth part is invertible and the highly oscillatory
part is small. Such a decomposition plays a key role in our construction of the effective equation. We
show that the solution to the effective equation is in H2, and can be approximated by a regular coarse
mesh. When the multiscale problem has scale separation and a periodic structure, our method recovers
the traditional homogenized equation. Furthermore, we provide error analysis for our method and show
that the solution to the effective equation is close to the original multiscale solution in the H1 norm.
Numerical results are presented to demonstrate the accuracy and robustness of the proposed method
for several multiscale problems without scale separation, including a problem with a high contrast
coefficient.
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1. Introduction

A broad range of scientific and engineering problems involve partial differential equations (PDE) with mul-
tiscale solutions. Due to the large range of scales in these solutions, it is extremely challenging to solve them
numerically. Tremendous computational resources are required to solve for the small scales of the solution, which
makes it prohibitively expensive. Thus finding an effective equation which governs the large scale solution is very
important in many engineering applications. When the problem has scale separation and a periodic structure,
the classical homogenization theory provides a powerful tool to derive an effective equation. However, in many
engineering applications, the problems usually do not satisfy the scale separation assumption or may not have
periodic structures. In this case, it is very difficult to derive an effective equation since the coupling between
the small scale solution and the large scale solution is in general nonlinear and nonlocal even if the governing
equation is linear.
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In this paper, we propose a multiscale model reduction method which aims to derive an effective equation for
multiscale problems without scale separation. The tool that we use is the harmonic coordinates, which satisfy
the same governing equation with homogeneous source term and linear boundary conditions. An important
ingredient of our method is to design an appropriate decomposition of the harmonic coordinates, denoted as
F , into a large scale component g plus a small scale component χ. To obtain an accurate effective equation, we
require that g be invertible and χ be small. We propose one effective decomposition in which g at the coarse
grid nodal points is defined to be the local average of F near those nodal points and we interpolate g from the
coarse mesh to the entire domain by using a linear interpolation. Once g is defined, χ is determined uniquely
as χ = F − g. One advantage of our approach is that our effective equation can be solved on a regular coarse
mesh by any conventional numerical method. This makes the computational implementation very easy.

We have also performed error analysis for our method. We show that the difference between the effective
solution and the original solution can be bounded in the H1 norm by the maximum norm of the oscillatory part
of the harmonic coordinates. In general, the oscillatory part of the harmonic coordinates is small. The smallness
of the oscillatory part will depend on the regularity of the multiscale coefficient of the problem. In the case
when the problem has scale separation and periodic structure, our method recovers the homogenized equation
from the classical homogenization theory and the oscillatory part of the harmonic coordinates can be proved
to be small in the H1 norm. One important advantage of our method is that we do not require the problem
to have scale separation or periodic structures. This enables us to apply our method to solve more challenging
problems arising from various physical applications.

We use the following elliptic equation as an example to illustrate the main idea of our approach{
−∇ · (a(x)∇u(x)) = f(x) in Ω
u = 0 on ∂Ω.

(1.1)

The multiscale information is described by the multiscale coefficient a(x). We assume that f(x) ∈ L2(Ω) is
smooth and a(x) ∈ L∞(Ω) is a symmetric, positive definite matrix satisfying λmin(x) ≥ γ > 0 (λmin(x) is the
smallest eigenvalue of a(x)) for all x ∈ Ω. For such coefficients, the solutions are only Hölder continuous. If
a is highly oscillatory, the solution will become highly oscillatory as well. We would like to design an effective
equation in the following form {

−∇ · (a∗(x)∇u∗(x)) = f(x) in Ω
u∗ = 0 on ∂Ω.

(1.2)

The key is how to construct a smooth effective coefficient a∗ so that the solution to the above effective equation
approximates the original multiscale solution with some desirable accuracy. As we mentioned above, we will
decompose the harmonic coordinates F into a smooth part g plus a highly oscillatory part χ, F = g + χ.
Our method does not require F to be invertible. But to motivate the derivation of our method, we assume
temporarily that F is invertible. Then we can express u as a function of F . One important property of the
harmonic coordinates is that u as a function of F is about one order smoother than u as a function of x (see
e.g. [29]). Thus, we can write u(x) = ũ(F ) = ũ(g + χ), and formally expand ũ around g by assuming that χ is
small. By taking the leading order terms and substituting them into the original equation, we obtain an effective
equation of form (1.2) after ignoring the high order terms involving χ. The effective coefficient a∗ is defined in
terms of a, g, and χ.

One of the main contributions of this paper is that we can show that the effective equation derived by the
above formal analysis indeed has the desirable smoothness property. Under some conditions, we will show that
the solution to the effective equation is in H2, which is one order smoother than the original multiscale solution.
Thus we can solve the effective equation on a coarse mesh. Moreover, we can show that the error term is small
in the H1 norm under some conditions. From our derivation, we can see that the decomposition of the harmonic
coordinates determines the effective coefficient, a∗. An optimal effective coefficient will determine an optimal
decomposition. The relationship between these two terms helps us to design a nearly optimal decomposition
of F .
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Our method falls into the category of global upscaling methods. To obtain our effective equation, we need to
first solve for the harmonic coordinates, which amounts to solving the original equation n times (n is the space
dimension of the problem). If we just solve the elliptic equation once, our method would not save computational
cost. But if we need to solve the equation with the same a many times but with different source terms, f ,
the cost of constructing the effective coefficient is a small overhead in the offline step. The online step of
solving the effective equation with multiple right hand sides gives considerable computational saving since the
effective equation can be solved on a coarse mesh while the original multiscale problem must be solved on a fine
mesh. For time dependent problems such as parabolic, hyperbolic, and convection-diffusion equations, if the
coefficients are time-independent, our method gives considerable computational saving even for a single forcing
since the overhead of constructing the effective coefficient is negligible compared with the cost of solving the
time dependent equations on a fine mesh at the subsequent time steps.

There have been many multiscale methods in the literature, see e.g. [2,4,5,10–14,16–24,29,30]. Among these
methods, the metric based upscaling method of Owhadi and Zhang [29] shares some common feature with
our approach since both methods use harmonic coordinates (see also [1, 3] for more discussions on harmonic
coordinates). However, there are also some important differences between these two methods. In the metric based
upscaling method, they assume that the harmonic map is invertible and use the harmonic map to construct a
multiscale basis for the original equation by first transforming the original problem from the physical coordinates
to the harmonic coordinates. They then use a standard linear finite element basis in the harmonic coordinates,
and transform them from the harmonic coordinates back to the physical coordinates to obtain their multiscale
basis. The numerical implementation of their method is more complicated than our method since the coarse mesh
in the metric based upscaling method is severely deformed due to the transformation of the harmonic mapping.
In our approach, we are interested in deriving a global upscaling equation without the need of constructing local
multiscale basis. Moreover, we do not require the harmonic map to be invertible and our effective equation can
be solved on a regular coarse mesh using any standard method. This makes our method easier to be implemented
and more efficient.

The rest of this paper is organized as follows. In Section 2 we derive our effective equations for several types
of equations. Section 3 is devoted to error analysis of our method. We compare our method with homogenization
in Section 4. In Section 5, we discuss some numerical implementation issues and present some numerical results
to demonstrate the accuracy and effectiveness of our method. Some concluding remarks are given in Section 6.

2. Derivation of effective equations

2.1. Elliptic equations

In this section, we present the derivation of our effective equations. We first consider the elliptic equa-
tion (1.1). Let F (x) = (F1(x), . . . , Fn(x)) be the harmonic coordinates associated to (1.1) in dimension n. Then
Fk (k = 1, . . . , n) satisfies the following elliptic equation{

−∇ · (a(x)∇Fk(x)) = 0 in Ω
Fk = xk on ∂Ω,

(2.1)

where x = (x1, . . . , xn). Write ũ0 = u ◦F−1. It is known that the solution u is smooth in terms of the harmonic
coordinates, i.e. ũ0 is in H2 (see e.g. [29]). If we could make a decomposition F = g + χ such that g is smooth
and χ is small with zero boundary conditions, then we obtain by applying a formal Taylor expansion to ũ0 and
ignoring the high order terms,

ũ0(F ) = ũ0(g + χ) ≈ ũ0(g) + χT∇gũ0(g). (2.2)

Let u0(x) = ũ0(g(x)), then we get

u(x) = ũ0(F ) ≈ u0(x) + χT ∂x

∂g
∇u0(x). (2.3)
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Furthermore, we have

∇u(x) ≈ ∇u0(x) +
∂χ

∂x

∂x

∂g
∇u0(x) + χT∇

(
∂x

∂g
∇u0(x)

)
. (2.4)

By substituting (2.4) into (1.1) and eliminating the high order terms involving O(χ), we get a new PDE for u0{
−∇ ·

(
a(x)

(
I + ∂χ

∂x
∂x
∂g

)
∇u0(x)

)
= f(x) in Ω

u0 = 0 on ∂Ω,
(2.5)

where I is the identity matrix.
We will show in the next section that u0 is in H2 so that we can solve (2.5) accurately on a coarse mesh.

Moreover, we can show that the H1 norm of the error, u−(u0+χT ∂x
∂g∇u0), is small. Thus we can approximate u

by u0 +χT ∂x
∂g∇u0 with a reasonable accuracy. This suggests the following steps of the model reduction method.

1. Solve (2.1) on a fine mesh to get F .
2. Decompose F = g + χ, here g is smooth and χ is small with χ = 0 on ∂Ω.
3. Solve (2.5) on a coarse mesh to get u0.
4. Approximate u by u0 + χT ∂x

∂g∇u0.

The first and second steps are ‘offline’ steps. We can store the information of g and χ so that we could compute
u0 efficiently for different f . The remaining ‘online’ steps can be solved very efficiently on a coarse mesh. So far
we have not defined what we mean by g being ‘smooth’ and χ being ‘small’. We will discuss the guideline in
defining g and χ, and give one effective construction later in the paper.

2.2. Parabolic equation

We can apply the similar idea to derive an effective equation for time-dependent equations, such as parabolic
and convection-diffusion equations. We first consider a parabolic equation of the form⎧⎪⎨

⎪⎩
ut −∇ · (a(x)∇u(x)) = f(x) in (0, T ]×Ω

u = 0 on ∂Ω
u = 0 at t = 0.

(2.6)

We can define the harmonic coordinates F in exactly the same way as we did for the elliptic equation. We then
decompose F = g + χ and solve the following effective equation on a coarse mesh⎧⎪⎨

⎪⎩
(u0)t −∇ · (a(x)(I + ∂χ

∂x
∂x
∂g )∇u0(x, t)) = f(x) in (0, T ]×Ω

u0 = 0 on ∂Ω
u0 = 0 at t = 0.

(2.7)

Again, we approximate u by u0 + χT ∂x
∂g∇u0.

2.3. Convection-diffusion equation

Next, we consider the convection-diffusion equation with multiscale velocity field (see also [27])⎧⎪⎨
⎪⎩
vt + u · ∇v = ∇ · (α∇v) in (0, T ]×Ω

v = 0 on ∂Ω
v = φ(x) at t = 0,

(2.8)

where u is a velocity field which satisfies ∇ · u = 0 and α is a positive diffusion coefficient.
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We define the corresponding harmonic coordinates as follows{
u · ∇Fk = ∇ · (α∇Fk) in Ω
Fk = xk on ∂Ω.

(2.9)

By decomposing F = g + χ as before, we obtain the following effective equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v0)t + u · ∇v0 = ∇ ·
((
α∂F

∂x − uχT
)

∂x
∂g∇v0

)
in (0, T ]×Ω

or equivalently

(v0)t =
n∑

i,j,k=1

(
α∂F

∂x − uχT
)
ij

∂gk

∂xi

∂2v0
∂gj∂gk

in (0, T ]×Ω

v = 0 on ∂Ω
v = φ(x) at t = 0.

(2.10)

Finally, v is approximated by v0 + χT ∂x
∂g∇v0.

2.4. Generalization to elliptic equations with parameters

We can also generalize our method to solve the multiscale problems with a family of parameters. To illustrate
this idea, we consider the following elliptic equation with a parameter θ ∈ Θ ⊂ R

d

{
−∇ · (a(x, θ)∇u(x)) = f in Ω
u = 0 on ∂Ω.

(2.11)

The dimension of the multiscale solution could be very large due to the large parametric space induced by θ.
However, in many cases, the effective ‘dimension’ of the solution space could be small. That is to say, we can
find a set of parameters {θi}M

i=1 so that every solution (with parameter θ) can be approximated by a linear
combination of the solutions associated with θi to reasonable accuracy. For more discussions on how to choose
this sample parameter set in the context of reduced order basis methods, we refer to [9, 18, 25, 31].

We can easily generalize our method to such problems. During the offline stage, we need to find a subset
{θi}M

i=1 such that the solutions {F(i)}M
i=1 to the following equations
{
∇ · (a(x, θi)∇F(i)) = 0 in Ω
F(i) = x on ∂Ω

(2.12)

form a basis for all the harmonic coordinates F . This is all we need to do for the offline part and we store all
the F(i).

At the online stage, we can approximate F(θ) for any θ as a linear superposition of F(i)

F(θ) =
M∑
i=1

βiF(i). (2.13)

To find the coefficients βi, we multiply the equation by some test functions φj and perform integration by parts
to get

M∑
i=1

βi

∫
Ωj

∇φja∇F(i)dx = 0, (2.14)

where Ωj is the support for φj . Note that if we choose φj = F(j), then Ωj = Ω, and the integration will be
carried out in the whole domain, which makes the computation very expensive. To reduce the computational
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cost, we can choose some locally supported test functions φj , for example the linear hat functions supported
in {|x − xj | ≤ δj}. We only need M − 1 such equations and the last equation is determined by the boundary
conditions, i.e.

M∑
i=1

βi = 1. (2.15)

After getting F(θ), we decompose it as F(θ) = g(θ) + χ(θ), and solve{
−∇ · (a(I + ∂χ(θ)

∂x
∂x

∂g(θ)
)∇u0) = f in Ω

u0 = 0 on ∂Ω.
(2.16)

Then u is approximated by u0 + χT
(θ)

∂x
∂g(θ)

∇u0.

3. Analysis

In this section, we will perform error analysis to show that the H1 norm of the difference between the effective
solution and the original solution is small provided that the L∞ norm of χ is small. We will also prove that the
solution to the effective equation is in H2 under some conditions. We first perform our analysis for the elliptic
equation and then the time-dependent equations. Before presenting the general analysis, we will start with a
simple 1D elliptic equation to illustrate the main idea.

3.1. A 1D example

Consider a 1D elliptic equation on a unit interval [0, 1]:{
(a(x)u′(x))′ = f(x) in (0, 1)
u(0) = u(1) = 0.

(3.1)

The corresponding harmonic map F is defined as{
(a(x)F ′(x))′ = 0 in (0, 1)
F (0) = 0, F (1) = 1.

(3.2)

Our effective equation is given by{
a(x)F ′(x)(u′0(x)/g

′(x))′ = f(x) in (0, 1)
u0(0) = u0(1) = 0.

(3.3)

We can solve these equations analytically and get

u(x) = C0

(
F (x)

∫ x

0

f(s)ds−
∫ x

0

F (s)f(s)ds+ C1F (x)
)
, (3.4)

F (x) =
1
C0

∫ x

0

ds
a(s)

, (3.5)

u0(x) = C0

(
g(x)

∫ x

0

f(s)ds−
∫ x

0

g(s)f(s)ds+ C2g(x)
)
, (3.6)

where C0 =
∫ 1

0
ds

a(s) , C1 = − ∫ 1

0 f(s)ds +
∫ 1

0 F (s)f(s)ds and C2 = − ∫ 1

0 f(s)ds +
∫ 1

0 g(s)f(s)ds. Since f ∈ L2

and g is smooth, we can see that u0 is smooth. Let u1 = χu′0/g′, direct computations give

(u− u0 − u1)′ = C0 ((C1 − C2)F ′ − χf) . (3.7)
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We also have

C1 − C2 =
∫ 1

0

χ(s)f(s)ds, (3.8)

and

F ′ =
1
C0

1
a(x)

· (3.9)

By the assumption a(x) ≥ γ > 0, we know that F ′ is bounded. Thus we can bound ‖u− u0 − u1‖H1 in terms
of ‖χ‖L∞. This implies that as long as we can decompose F so that the oscillatory part χ is small and g is
smooth, then ‖u− u0 − u1‖H1 is small and we can solve u0 on a coarse grid. In the next section, we will show
that this result is true for general multi-dimensional elliptic equations as well.

3.2. An error estimate for the general case

The main result of this section is the following theorem.

Theorem 3.1. Suppose u, F and u0 are weak solutions to (1.1), (2.1) and (2.5), respectively. Let u1 =
χT ∂x

∂g∇u0, F = g + χ, and χ = 0 on ∂Ω. Then we have

‖u− u0 − u1‖H1(Ω) ≤ C‖χ‖L∞(Ω)

∥∥∥∥∂g∂x
∥∥∥∥

L∞(Ω)

∥∥∥∥det
(
∂x

∂g

)∥∥∥∥
L∞(Ω)

|ũ0|H2(Ω), (3.10)

where C is a constant that depends on n, Ω and a, ũ0 = u0 ◦ g−1.

Our goal is to estimate the H1 norm of z = u − u0 − u1. Zero boundary condition of χ implies zero boundary
condition of z, i.e. z ∈ H1

0 (Ω). Since a is a positive definite matrix whose eigenvalues have a positive lower
bound, we conclude that ||z||H1

0(Ω) is equivalent to the energy norm, < a∇z,∇z >, where < . > is the L2 inner
product. Thus, it is sufficient to perform our estimate using the energy norm.

Proof. Define
z = u− u0 − u1 ∈ H1

0 (Ω),

p = a∇u− a
∂F

∂x

∂x

∂g
∇u0,

η = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ.

Then we have

∇ · p = ∇ · (a∇u) −∇ · (a∂F
∂x

∂x

∂g
∇u0) = f − f = 0, (3.11)

and

a∇z − p = a∇u− a∇u0 − a∇u1 − a∇u+ a
∂F

∂x

∂x

∂g
∇u0 = a

∂χ

∂x

∂x

∂g
∇u0 − a∇u1.

Further, we note that

∇u1 =
∂χ

∂x

∂x

∂g
∇u0 +

∂

∂x

(
∂x

∂g
∇u0

)
χ.

As a result, we get

a∇z − p = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ = η.
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Thus, we obtain

〈a∇z,∇z〉 =
∫

Ω

∇z · a∇zdx

=
∫

Ω

(a∇z − p) · ∇zdx+
∫

Ω

p · ∇zdx

=
∫

Ω

η · ∇zdx−
∫

Ω

(∇ · p)zdx

=
∫

Ω

η · ∇zdx,

where we have used (3.11). By using the ellipticity assumption of a, we get

C1‖∇z‖2
L2(Ω) ≤ 〈a∇z,∇z〉 ≤ ‖η‖L2(Ω)‖∇z‖L2(Ω),

which implies
C1‖∇z‖L2(Ω) ≤ ‖η‖L2(Ω).

Since z vanishes on ∂Ω, Poincaré’s theorem gives

‖z‖H1
0(Ω) ≤ C2‖∇z‖L2(Ω).

Thus, we get
‖z‖H1

0(Ω) ≤ C‖η‖L2(Ω),

where C is a constant that depends on n, Ω and a only.
Let y = g(x) and ũ0(y) = ũ0(g(x)) = u0(x), then we have

η = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ

= −a∂g
∂x

∂x

∂g

∂

∂x

(
∂x

∂g
∇u0

)
χ

= −a
(
∂g

∂x
∇2

yũ0

)
χ.

As a result, we obtain

‖η‖L2 ≤ C‖a‖L∞(Ω)‖χ‖L∞(Ω)

∥∥∥∥∂g∂x
∥∥∥∥

L∞(Ω)

∥∥∥∥det
(
∂x

∂g

)∥∥∥∥
L∞(Ω)

|ũ0|H2(Ω).

The determinant of ∂x
∂g enters the last step of the above estimate due to a change of variables from x to y.

Combining all the results, we get

‖z‖H1
0(Ω) ≤ C‖χ‖L∞(Ω)

∥∥∥∥∂g∂x
∥∥∥∥

L∞(Ω)

∥∥∥∥det
(
∂x

∂g

)∥∥∥∥
L∞(Ω)

|ũ0|H2(Ω).

This completes the proof of Theorem 3.1. �

The error estimate given by Theorem 3.1 provides us with some insight how to choose our decomposition
F = g + χ. If ‖χ‖L∞(Ω) is small and g is smooth in the sense that both ‖ ∂g

∂x‖L∞(Ω) and ‖ det(∂x
∂g )‖L∞(Ω) are
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bounded, then the approximation is accurate provided that |ũ0|H2(Ω) is bounded. To evaluate |ũ0|H2(Ω), we
make a change of variables from x to y = g(x) in equation (2.5), which has a non-divergence form

−
n∑

i,j=1

Bij(y)
∂2ũ0

∂yi∂yj
= f̃(y), (3.12)

where

B(y) =

(∣∣∣∣det
(
∂x

∂g

)∣∣∣∣
(
∂g

∂x

)T

a
∂F

∂x

)
◦ g−1(y) (3.13)

and

f̃(y) =
(∣∣∣∣det

(
∂x

∂g

)∣∣∣∣ f
)
◦ g−1(y). (3.14)

Note that the determinant term comes from the change of variables in the integral since we consider weak
solutions.

If the matrix B satisfies the Cordes condition (see e.g. [26]),∑n
i,j=1 B

2
ij(y)

(
∑n

i=1 Bii(y))2
≤ 1
n− 1 + ε

in Ω, (3.15)

for some ε > 0 and M = sup
( ∑n

i=1 Bii(y)∑n
i,j=1 B2

ij(y)

)
<∞, we can apply Theorem 1.2.1 in [26] to conclude that

|ũ0|H2(Ω) ≤ M

1 −√
1 − ε

‖f‖L2(Ω). (3.16)

In general, the condition (3.15) is hard to verify. For n = 2, we have a more concrete version for ε and M .
Suppose λmax(y) and λmin(y) are the maximum and minimum eigenvalues of B(y), if η1 = sup λmax(y)

λmin(y) <∞ and
η2 = inf λmin(y) > 0, then we can pick ε = 1

η1
and M = 1

η2
.

We remark that Theorem 3.1 is an error estimate for the analytical solutions. One should not use it to study
the convergence rate of the numerical method. It does not imply that the smaller ‖χ‖L∞(Ω) is, the smaller the
numerical error would become. On one hand, if we choose χ to be 0, in which case g = F , the error is zero in
theory. However, g is no longer smooth and we will have to use a fine mesh to solve the effective equation, which
is not what our method is designed for. Similarly, if we let χ decay to zero, g will pick up more small scales and
the derivative of g increases. In this case, we will not be able to obtain a small overall error if we use a coarse
mesh.

From a view point of numerical implementation, it is usually the case that F may become degenerated in
some localized region. The ‘smoothness’ of g depends on the size of the numerical grid. To avoid degeneracy in
constructing g, we can use a finer mesh locally to capture some important information in certain local region,
and use a coarser mesh in other regions. By doing this, g is smooth when using a non-uniform mesh, and we can
guarantee that χ is small. How to choose an optimal decomposition which would lead to the smallest overall
error requires a delicate balance in our decomposition of F . We will discuss more about this issue in Section 5.

3.3. Parabolic and convection-diffusion case

For the parabolic equation, we have the following theorem.

Theorem 3.2. Suppose u, F and u0 are weak solutions to (2.6), (2.1) and (2.7), respectively. Let u1 =
χT ∂x

∂g∇u0, F = g + χ, and χ = 0 on ∂Ω. Then we have

max
(0,T ]

‖u− u0 − u1‖L2(Ω) + ‖u− u0 − u1‖L2(0,T ;H1(Ω))

≤C‖χ‖L∞(Ω)

∥∥∥∥∂g∂x
∥∥∥∥

L∞(Ω)

∥∥∥∥det
(
∂x

∂g

)∥∥∥∥
L∞(Ω)

(|ũ0|H2,1(0,T ;Ω) + ‖(ũ0)t‖L2(0,T ;H1(Ω))

)
, (3.17)
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where C is a constant that depends on n, Ω and a, ũ0(y, t) = ũ0(g(x), t) = u0(x, t) and ‖u‖2
L2(0,T ;H1(Ω)) :=∫ T

0

∫
Ω

(u2 + |∇u|2)dxdt, |u|2H2,1(0,T ;Ω) :=
∫ T

0

∫
Ω

((ut)2 + |∇∇u|2)dxdt.

Proof. Let z = u− u0 − u1, then z = 0 at t = 0 and on ∂Ω. We define

p = a∇u− a
∂F

∂x

∂x

∂g
∇u0,

η1 = −a ∂
∂x

(
∂x

∂g
∇u0

)
χ,

η2 = −χT ∂x

∂g
∇(u0)t.

Then we have

a∇z − p =a∇u− a∇u0 − a∇u1 − a∇u+ a
∂F

∂x

∂x

∂g
∇u0

= − a∇u0 − a∇u1 + a
∂F

∂x

∂x

∂g
∇u0

= − a
∂

∂x

(
∂x

∂g
∇u0

)
χ = η1,

and
∇ · p = (ut − f) − ((u0)t − f) = ut − (u0)t = zt + (u1)t = zt − η2.

Then for any τ ∈ (0, T ] we have∫ τ

0

∫
Ω

∇z · a∇zdxdt

=
∫ τ

0

∫
Ω

∇z · (a∇z − p)dxdt +
∫ τ

0

∫
Ω

∇z · pdxdt

=
∫ τ

0

∫
Ω

∇z · η1dxdt−
∫ τ

0

∫
Ω

z(∇ · p)dxdt

=
∫ τ

0

∫
Ω

∇z · η1dxdt−
∫ τ

0

∫
Ω

(zzt − zη2)dxdt

=
∫ τ

0

∫
Ω

∇z · η1dxdt−
∫

Ω

(
z2(τ, x)

2
− z2(0, x)

2

)
dx+

∫ τ

0

∫
Ω

zη2dxdt

=
∫ τ

0

∫
Ω

∇z · η1dxdt− 1
2

∫
Ω

z2(τ, x)dx +
∫ τ

0

∫
Ω

zη2dxdt.

Rearranging the above equation, we get

1
2

∫
Ω

z2(τ, x)dx +
∫ τ

0

∫
Ω

∇z · a∇zdxdt =
∫ τ

0

∫
Ω

∇z · η1dxdt+
∫ τ

0

∫
Ω

zη2dxdt

≤
∫ τ

0

∫
Ω

|∇z · η1|dxdt+
∫ τ

0

∫
Ω

|zη2|dxdt

≤
∫ T

0

∫
Ω

|∇z · η1|dxdt+
∫ T

0

∫
Ω

|zη2|dxdt.
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Taking the maximum over τ ∈ (0, T ], we have

max
(0,T ]

1
2

∫
Ω

z2(τ, x)dx +
∫ T

0

∫
Ω

∇z · a∇zdxdt ≤
∫ T

0

∫
Ω

|∇z · η1|dxdt+
∫ T

0

∫
Ω

|zη2|dxdt
≤‖∇z‖L2(0,T ;Ω)‖η1‖L2(0,T ;Ω) + ‖z‖L2(0,T ;Ω)‖η2‖L2(0,T ;Ω).

where the second inequality is due to the Hölder’s inequality.
Application of the Poincaré’s inequality gives

(
max
(0,T ]

‖z‖L2(Ω) + ‖z‖L2(0,T ;H1(Ω))

)2

≤C
(

max
(0,T ]

1
2

∫
Ω

z2(τ, x)dx +
∫ T

0

∫
Ω

∇z · a∇zdxdt
)

≤C
(
‖∇z‖L2(0,T ;Ω)‖η1‖L2(0,T ;Ω) + ‖z‖L2(0,T ;Ω)‖η2‖L2(0,T ;Ω)

)
≤C
(

max
(0,T ]

‖z‖L2(Ω) + ‖z‖L2(0,T ;H1(Ω))

)(
‖η1‖L2(0,T ;Ω) + ‖η2‖L2(0,T ;Ω)

)
.

Finally we have

max
(0,T ]

‖z‖L2(Ω) + ‖z‖L2(0,T ;H1(Ω))

≤C
(
‖η1‖L2(0,T ;Ω) + ‖η2‖L2(0,T ;Ω)

)
≤C‖χ‖L∞(Ω)

∥∥∥∥∂g∂x
∥∥∥∥

L∞(Ω)

∥∥∥∥det
(
∂x

∂g

)∥∥∥∥
L∞(Ω)

(|ũ0|H2,1(0,T ;Ω) + ‖(ũ0)t‖L2(0,T ;H1(Ω))

)
,

where C is a constant that depends on n, Ω and a.
�

For the convection-diffusion equation, we have the following theorem.

Theorem 3.3. Suppose v, F and v0 are weak solutions to (2.8), (2.9) and (2.10), respectively. Let v1 =
χT ∂x

∂g∇v0, F = g + χ, and χ = 0 on ∂Ω. Then we have

max
(0,T ]

‖v − v0 − v1‖L2(Ω) + ‖v − v0 − v1‖L2(0,T ;H1(Ω))

≤C‖χ‖L∞(Ω)

∥∥∥∥∂g∂x
∥∥∥∥

L∞(Ω)

∥∥∥∥det
(
∂x

∂g

)∥∥∥∥
L∞(Ω)

(|ṽ0|H2,1(0,T ;Ω) + ‖(ṽ0)t‖L2(0,T ;H1(Ω))

)
, (3.18)

where C is a constant that depends on n, Ω, u, and α, ṽ0(y, t) = ṽ0(g(x), t) = v0(x, t).

The proof of the above theorem is analogous to that of Theorem 3.2. We omit the proof here.
In Theorems 3.2 and 3.3, the quantities |ũ0|H2,1(0,T ;Ω) and |ṽ0|H2,1(0,T ;Ω) could be bounded since the equations

in both cases can be written in non-divergence forms in variable y = g(x).
For the parabolic equation, the equation has a form similar to that of the elliptic equation

(ũ0)t −
n∑

i,j=1

Bij(y)
∂2ũ0

∂yi∂yj
= f̃(y), (3.19)

where B and f̃ are the same as those in (3.13) and (3.14).
For the convection-diffusion equation, the effective equation is

(v0)t + u · ∇v0 = ∇ ·
((

α
∂F

∂x
− uχT

)
∂x

∂g
∇v0

)
. (3.20)
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Note that

∇ ·
((

α
∂F

∂x
− uχT

)
∂x

∂g
∇v0

)

=∇ ·
((

α
∂F

∂x
− uχT

))
∂x

∂g
∇v0 +

n∑
i,j,k=1

(
α
∂F

∂x
− uχT

)
ij

∂gk

∂xi

∂2v0
∂gj∂gk

=
(
αΔF − u · ∂χ

∂x

)
∂x

∂g
∇v0 +

n∑
i,j,k=1

(
α
∂F

∂x
− uχT

)
ij

∂gk

∂xi

∂2v0
∂gj∂gk

=
(
u · ∂F

∂x
− u · ∂χ

∂x

)
∂x

∂g
∇v0 +

n∑
i,j,k=1

(
α
∂F

∂x
− uχT

)
ij

∂gk

∂xi

∂2v0
∂gj∂gk

=u · ∂g
∂x

∂x

∂g
∇v0 +

n∑
i,j,k=1

(
α
∂F

∂x
− uχT

)
ij

∂gk

∂xi

∂2v0
∂gj∂gk

=u · ∇v0 +
n∑

i,j,k=1

(
α
∂F

∂x
− uχT

)
ij

∂gk

∂xi

∂2v0
∂gj∂gk

·

So the equation can be written as

(ṽ0)t −
n∑

i,j=1

Bij(y)
∂2ṽ0
∂yi∂yj

= 0, (3.21)

where

B(y) =
(∣∣∣∣det

(
∂x

∂g

)∣∣∣∣
(
α
∂F

∂x
− uχT

)
∂g

∂x

)
◦ g−1(y). (3.22)

In both cases, if the corresponding coefficient matrix B satisfies∑n
i,j=1 B

2
ij + 1

(
∑n

i=1Bii + 1)2
≤ 1
n+ ε

, (3.23)

where n is the dimension and ε is a positive number, we can prove that |ũ0|H2,1(0,T ;Ω) ( or|ṽ0|H2,1(0,T ;Ω)) is
bounded (see e.g. [26]).

As for the terms ‖(ũ0)t‖L2(0,T ;H1(Ω)) and ‖(ṽ0)t‖L2(0,T ;H1(Ω)), we cannot provide an analytical bound based
on the assumptions we have so far. Since these terms contain the spacial gradient of (ũ0)t (or (ṽ0)t), we need
stronger requirements on the coefficients as well as the source terms. We will monitor these terms in the numerical
experiments. As we will see in Section 5, these terms are bounded in the examples that we consider.

4. Comparison with the homogenization method

In this section, we compare our method with the classical homogenization method. To simplify our presenta-
tion, we will restrict our comparison to elliptic equations. The analysis can be also applied to other equations.

First we briefly review the homogenization theory [8]. Consider{
−∇ · (a(x

ε )∇u(x)) = f(x) in Ω
u = 0 on ∂Ω,

(4.1)

where a(y) is a symmetric, positive definite matrix, and f ∈ L2. Furthermore, aij(y) are periodic smooth
functions in y in a unit cube Y .
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The homogenized coefficients are given by

a∗ij =
1
|Y |

∫
Y

aik(y)(δkj +
∂

∂yk
χj

h)dy, (4.2)

where χj
h (we use the notation χj

h to distinguish from χj) is the solution to the periodic cell problem

∇y · (a(y)∇yχ
j
h(y)) = − ∂

∂yi
aij(y) (4.3)

with zero mean, i.e.
∫

Y χ
j
hdy = 0.

Let u0 be the solution to the homogenized equation{
−∇ · (a∗(x)∇u0(x)) = f(x) in Ω
u0 = 0 on ∂Ω.

(4.4)

Then we have
||u − u0||L2(Ω) ≤ Cε||u||H2(Ω). (4.5)

Further, we define

u1(x) = χj
h

(x
ε

) ∂u0

∂xj
(x). (4.6)

Note that u0 + εu1 �= 0 on ∂Ω, we introduce a first order correction term θε satisfying{
−∇ · (a(x

ε )∇θε(x)) = 0 in Ω
θε = u1 on ∂Ω.

(4.7)

Then it can be shown that (see e.g. [28])

||u− u0 − ε(u1 − θε)||H1(Ω) ≤ Cε||u0||H2(Ω). (4.8)

The constant C is independent of u0 and ε.
One important advantage of our method is that we could take care of a continuum of scales and do not

require periodicity on the microstructure while homogenization theory usually requires scale separation and
periodic structures. Moreover, one must include a boundary correction term θε to achieve H1 convergence in
the homogenization method. This correction term must be solved on a fine mesh and is expensive to compute.
In comparison, there is no need to compute a correction term in our method since we require χ = 0 on ∂Ω.

If only L2 convergence is needed, both methods do not need correction terms, and the homogenized coefficients
are easier to compute (see (4.2) and (4.3)). Our method requires two global solutions on a fine mesh. However,
under the conditions for homogenization (periodic smooth a(y)), we could modify our method easily so that we
can compute the harmonic map with the same cost as the homogenization method. Specifically, the harmonic
map F satisfies ∇ · (a(x

ε )∇F (x)) = 0 and F = g + χ. If we set g = x, we get the equation for χ as follows

∇ ·
(
a
(x
ε

)
∇χj(x)

)
= −1

ε

∂

∂yi
aij

(x
ε

)
· (4.9)

Now we do not require χ = 0 on the boundary, assume χj to be periodic in Y and impose the constraint∫
Y χ

j(x)dx = 0. Equation (4.9) is still global, but comparing (4.9) with (4.3) gives χ(x) = εχh(x
ε ). So we can

solve (4.3) instead of (4.9). Following the proof in Theorem 3.1, we could obtain the same error estimate as (4.5).
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5. Numerical results

5.1. Decomposition of the harmonic coordinates

In this section, we discuss how to construct the decomposition of the harmonic coordinates. As we know from
the previous sections, the decomposition F = g+χ plays an essential role in our method. Here we discuss some
guideline in choosing such decomposition and how to construct it numerically.

The first criterion in choosing our decomposition is to make sure that g is smooth and invertible. We need
to define what we mean by g being smooth. The smoothness is relative to the coarse mesh that we will use to
solve the effective equation. In our numerical implementation, we use the standard linear finite element method
to solve the effective equation. Thus, any linear combination of the nodal basis on the coarse mesh could be
considered as a smooth function, and we can choose g in this form.

The second criterion of our decomposition is to make χ small. If we choose the nodal values of g close to
those of F , then we expect that the difference between the two would be small. This suggests a natural way to
define g, i.e. we can choose the nodal values of g at the coarse mesh points to be the same as F at these coarse
mesh points. We can then interpolate g from the coarse mesh points to the fine mesh points using the linear
interpolation. Once we have defined g globally through linear interpolation, we have also determined χ = F −g.
Since F is linear on the boundary, such decomposition guarantees that g = F on the boundary, which implies
that χ = 0 on ∂Ω.

The decomposition method described above seems to work very well from our numerical experiments. One
advantage of this approach is that it is very easy to implement. However, such decomposition may not work
in all cases and may not give the optimal result especially when the harmonic map, F , is not invertible. To
overcome this difficulty, we are currently investigating an alternative approach based on optimization. More
specifically, we would like to find a smooth g that lives in the linear finite element space generated by the coarse
grid mesh and minimizes the difference between g and F in some appropriate norm subject to the constraint
that g is invertible. How to formulate this problem as a convex optimization problem would be the key to make
this method efficient. We will report the result of this study in a subsequent paper.

We also have another guideline to determine whether the decomposition is effective or not from the view
point of numerical implementation. Note that ug = g solves the following equation exactly:

{
−∇ · (a(x)

(
I + ∂χ

∂x
∂x
∂g

)
∇ug(x)) = 0 in Ω

ug = x on ∂Ω.
(5.1)

If g is smooth enough, we should be able to solve (5.1) accurately on a coarse mesh. Thus, we can use the
difference between the numerically computed ug and g to determine whether we obtain a good decomposition
for F . The smaller the difference is, the better the method would perform.

5.2. Elliptic equations

The first example that we use to test the performance of our method is an elliptic equation. We perform
several numerical experiments to test our method for the elliptic equation (1.1). We take Ω = [0, 1] × [0, 1] in
two space dimensions. Since it is difficult to construct a general enough test problem with an analytic solution,
we use well resolved numerical solutions in place of exact solutions. In our computations, we use the standard
linear finite element method, and choose a 256 × 256 mesh as the well-resolved solution. To implement our
method, the coarse meshes are chosen to be 8× 8, 16× 16 and 32× 32, respectively, and we compare the results
on different meshes and calculate the convergence rate.
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(a) Coefficient a (b) ∂F1
∂x1

(c) ∂g1
∂x1

(h = 1
16

) (d) χ1 (h = 1
16

)

Figure 1. Example 1.

Example 1. We consider the case when the elliptic coefficient is a scalar defined below

a =
1

2 + 1.6 sin(2π(x− y)/ε1)
+

1
4 + 1.8(sin(2πx/ε2) + sin(2πy/ε2))

+
1

10(2 + 1.8 sin(2π(x− 0.5)/ε3))(2 + 1.8 sin(2π(y − 0.5)/ε3))
,

where ε1 = 1/5, ε2 = 1/13, ε3 = 1/17 and f = 1, x4 − y3 + 1, 1
x2+y2+1 .

In Figure 1, we plot the coefficient and the decomposition. Relative errors are shown in Tables 1–3. From these
figures, we can see that the coefficient oscillates very rapidly, which generates small scale features in the solution
(e.g. ∂F1

∂x1
). The smooth part of F , g, is a summation of some piecewise linear nodal functions, see Figure 1c. The

magnitude of χ is indeed small (around 10−2), see Figure 1d. Thus, the conditions of Theorem 3.1 are satisfied.
In Tables 1−3, we document the convergence of our method for three different f . We observe convergence in
both L2 and H1 norms.

We remark that Theorem 3.1 does not give a specific rate of convergence. It is worthwhile to make the
following observations on the convergence property of our method. Denote the exact solution as ue, the solution
constructed from the effective equation as um and its numerical approximation as un. Then the error consists
of two parts, i.e. ||ue − um|| + ||um − un||. The first part is controlled by Theorem 3.1, and it gets smaller
as we use a finer size. For fixed um, the second part converges at order O(h2) (L2 norm) or order O(h1) (H1

norm). However, as the mesh size h varies, we have different decompositions, and so um is not fixed. Thus,
the overall rate of convergence is not necessarily O(h2) or O(h1). In all our numerical experiments, we observe
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Table 1. Example 1 – Relative L2 and H1 errors, f = 1.

L2 Convergence order H1 Convergence order

h = 1
8

2.38 × 10−2 0 1.66 × 10−1 0

h = 1
16

7.13 × 10−3 1.74 8.11 × 10−2 1.03

h = 1
32

3.46 × 10−3 1.04 4.02 × 10−2 1.01

Table 2. Example 1 – Relative L2 and H1 errors, f = x4 − y3 + 1.

L2 Convergence order H1 Convergence order

h = 1
8

2.65 × 10−2 0 1.80 × 10−1 0

h = 1
16

7.75 × 10−3 1.77 8.83 × 10−2 1.03

h = 1
32

3.59 × 10−3 1.11 4.35 × 10−2 1.02

Table 3. Example 1 – Relative L2 and H1 errors, f = 1
x2+y2+1 .

L2 Convergence order H1 Convergence order

h = 1
8

2.39 × 10−2 0 1.67 × 10−1 0

h = 1
16

6.81 × 10−3 1.81 7.99 × 10−2 1.06

h = 1
32

3.51 × 10−3 0.96 4.03 × 10−2 0.99

Table 4. Example 2 – Relative L2 and H1 errors, f = 1.

L2 Convergence order H1 Convergence order

h = 1
8

2.23 × 10−2 0 1.46 × 10−1 0

h = 1
16

5.78 × 10−3 1.95 7.12 × 10−2 1.04

h = 1
32

2.17 × 10−3 1.41 3.28 × 10−2 1.12

different rates of convergence for different mesh sizes, especially for the L2 norm. On the finest mesh, the error
will eventually converge to zero (if we take the numerical solution on the finest mesh to be the true solution).
But we want to perform our method on a coarse mesh instead of a fine one. Our main objective is not to find
the optimal convergence rate, but to reduce the error on a given coarse mesh. So we are more interested in the
error itself rather than the convergence rate. It is important not to be confused with these two issues.

Example 2. We choose a random and anisotropic field a, and f = 1. In this case, a =
[ |ã| + 0.5 0

0 1

]
, where

ã is normally distributed on the mesh (See Fig. 2a). The multiscale coefficient, a, is very rough and does not
satisfy scale separation or has any periodic structure. Compared with the first example, both the coefficient and
the solution are more singular. This presents a challenging test problem for our method. As we can see from the
convergence study presented in Table 4, our method still gives a satisfactory convergence rate and the relative
errors are quite small.

Example 3. a =

{
104 in the channel
1 otherwise,

and f = x4 − y3 + 1.

Next, we consider an example that has a discontinuous and high contrast coefficient, see Figure 3. The
channel is 0.02 wide in both x and y directions, and 0.4 long in x direction and 0.3 long in y direction. There
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(a) Coefficient a (b) ∂F1
∂x1

(c) ∂g1
∂x1

(h = 1
16

) (d) χ1 (h = 1
16

)

Figure 2. Example 2.

Table 5. Example 3 – Relative L2 and H1 errors, f = x4 − y3 + 1.

L2 Convergence order H1 Convergence order

h = 1
8

3.24 × 10−2 0 1.72 × 10−1 0

h = 1
16

7.47 × 10−3 2.12 7.49 × 10−2 1.20

h = 1
32

2.92 × 10−3 1.36 3.53 × 10−2 1.09

has been a lot of interest in studying multiscale problems with high contrast coefficients in recent years, see
e.g. [12, 14, 18, 20]. Inside the channel, the coefficient is very large, while the coefficient is small outside the
channel. This is known to be a very difficult problem. As we can see, the solution along the channel is quite
singular due to the discontinuity and high contrast of the coefficient. Even for such a challenging test problem,
our method still captures the important feature of the solution accurately. As we can see from Table 5, the
convergence rate remains to be very robust and the relative errors are very small.

Example 4. In this example, we will test our method for an elliptic equation with a parameter. We choose
the coefficient to be in the following form (see also [18]) a = (1 − μ)a1 + μa2, where a1 and a2 are both elliptic
(plotted in Figs. 4a and 4b) and 0 ≤ μ ≤ 1. We choose μ = 0, 0.5, 1 as three representative parameters and
solve for the corresponding harmonic coordinates F . We express the general solution as a linear combination of
such F as described before. Table 6 shows the errors for different μ. As we can see, the method works very well
for several choices of the parameter. In Table 7, we show the convergence rate for different h with μ = 0.63,
which is consistent with what we observed previously for multiscale coefficients without parameters.



466 M. CI ET AL.

(a) Coefficient a (b) ∂F1
∂x1

(c) ∂g1
∂x1

(h = 1
16

) (d) χ1 (h = 1
16

)

Figure 3. Example 3.

Table 6. Example 4 – Relative L2 and H1 errors at h = 1
16 , f = 1.

μ = 0.11 μ = 0.23 μ = 0.61 μ = 0.86

L2 2.90 × 10−2 2.82 × 10−2 2.07 × 10−2 1.37 × 10−2

H1 1.33 × 10−1 1.20 × 10−1 9.33 × 10−2 1.12 × 10−1

Table 7. Example 4 – Relative L2 and H1 errors, f = 1, μ = 0.63.

L2 Convergence order H1 Convergence order

h = 1
8

6.07 × 10−2 0 1.94 × 10−1 0

h = 1
16

2.01 × 10−2 1.59 9.32 × 10−2 1.06

h = 1
32

1.16 × 10−2 0.79 4.94 × 10−2 0.92

5.3. Parabolic and convection-diffusion equations

In this section, we perform numerical experiments to test the convergence of our method for parabolic and
convection-diffusion equations in two space dimensions.

Example 5. A parabolic equation. a = 2+sin(2πx/ε1)
2+sin(2πy/ε1)

+ 2+sin(2πy/ε2)
2+sin(2πx/ε2)

+ x2 + y2 + 1 in Ω = [0, 1] × [0, 1], with
ε1 = 1

5 , ε2 = 1
13 and f = 1. We choose a 128×128 mesh for the well-resolved solution, and compute the solution

to T = 0.1. Table 8 shows the errors versus time with different coarse grid meshes. As we can see from Table 8,
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(a) a1 (b) a2

(c) Coefficient a (d) ∂F1
∂x1

(e) ∂g1
∂x1

( )h = 1
16

(f) χ1 (h = 1
16

)

Figure 4. Example 4 (μ = 0.63).

Table 8. Example 5 – Relative L2 and H1 errors at T = 0.1.

L2 Convergence order H1 Convergence order

h = 1
8

2.27 × 10−2 0 1.40 × 10−1 0

h = 1
16

5.93 × 10−3 1.94 6.60 × 10−2 1.08

h = 1
32

2.44 × 10−3 1.28 2.75 × 10−2 1.26

our method gives qualitatively the same performance as for the case of the elliptic equation. In Figure 6, we
show the quantity

∫
Ω |∇(ũ0)t|2dx as time varies. Although we do not have an analytical bound for it based on

the limited assumptions, we can see that it remains bounded.

In order to gain better understanding on the boundedness of the term ∇(ũ0)t, we study several cases for
different a and f and monitor the quantity

∫ T

0

∫
Ω |∇(ũ0)t|2dxdt. In all cases, we choose a 128 × 128 mesh for
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(f) Relative H1 errors at h = 1
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Figure 5. Example 5.

the well-resolved solution and a 16× 16 mesh for the coarse grid, and Ω = [0, 1]× [0, 1], T = 0.1. In the Table 9,
a1 = 1

2+1.6 sin( 2π(x−y)
ε1

)
+ 1

4+1.8(sin( 2πx
ε2

)+sin( 2πy
ε2

))
, a2 = |ã| + 0.5, f1 = x4 − y3 + 1, f2 = 1

x2+y2+1 , where ε1 = 1
5 ,

ε2 = 1
13 and ã is normally distributed on the mesh. As we can see from the table, the error is small and the

quantity
∫ T

0

∫
Ω |∇(ũ0)t|2dxdt also remains bounded.

Example 6. A convection-diffusion equation. In this experiment, we choose the stream function ψ = (1 +
sin(2πx/ε))(1 + cos(2πy/ε)) + xy(ε = 1

13 ) to generate the velocity filed. u0 = (ψy,−ψx) and u = u0
ε||u0||L∞ . The

initial condition is φ = xy(1 − x)(1 − y), and α = 0.05. The domain is Ω = [0, 1] × [0, 1] as before and the
end time is T = 0.1. A 128 × 128 mesh grid is used for the well-resolved solution. Figure 7 shows the errors
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Figure 6.

∫
Ω
|∇(ũ0)t|2dx in Example 5.

Table 9.

∫ T

0

∫
Ω
|∇(ũ0)t|2dxdt for different a and f .

L2 error H1 error
∫ T

0

∫
Ω
|∇(ũ0)t|2dxdt

a1, f1 8.27 × 10−3 8.77 × 10−2 6.52 × 10−1

a1, f2 7.99 × 10−3 7.97 × 10−2 4.30 × 10−1

a2, f1 8.03 × 10−3 7.94 × 10−2 6.09 × 10−1

a2, f2 6.83 × 10−3 7.22 × 10−2 4.06 × 10−1

Table 10. Example 6 – Relative L2 and H1 errors at T = 0.1.

L2 Convergence order H1 Convergence order

h = 1
8

2.60 × 10−2 0 1.41 × 10−1 0

h = 1
16

1.09 × 10−2 1.25 9.23 × 10−2 0.61

h = 1
32

5.43 × 10−3 1.01 6.91 × 10−2 0.42

versus time with different coarse grid meshes. Figure 8 shows the boundedness of
∫

Ω |∇(ṽ0)t|2dx. Table 10 shows
the error at T = 0.1. In this case, we observe that the errors are larger than those presented in the previous
examples for the elliptic and the parabolic equations. The reason for this behavior is due to a mild degeneracy
of ellipticity since the diffusion coefficient α is relatively small in this convection diffusion problem. From our
convergence analysis, the error will be amplified by the smallest eigenvalue of the elliptic coefficient. In this
case, the smallest eigenvalue is α, which is smaller than the ones we consider in the previous example. Given
that the convection diffusion equation presents a tougher test problem for our method, the performance of our
method is still quite encouraging.

5.4. Hyperbolic equations

The multiscale model reduction method proposed in this paper can be extended to study hyperbolic partial
differential equations with multiscale coefficients. Specifically, we consider the following hyperbolic equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
utt −∇ · (a(x)∇u(x)) = f(x) in (0, T ]×Ω

u = 0 on ∂Ω
u = 0 at t = 0
ut = 0 at t = 0.

(5.2)
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(f) Relative H1 errors at h = 1
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Figure 7. Example 6.

It is straightforward to generalize the derivation of our effective equation for an elliptic equation to this hyper-
bolic equation. The effective equation takes the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(u0)tt −∇ · (a(x)(I + ∂χ

∂x
∂x
∂g )∇u0(x, t)) = f(x) in (0, T ]× Ω

u0 = 0 on ∂Ω
u0 = 0 at t = 0
(u0)t = 0 at t = 0,

(5.3)

where F = g + χ is defined in the same way as before.
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Figure 8.

∫
Ω |∇(ṽ0)t|2dx in Example 6.

Table 11. Example 7 – Relative L2 and H1 errors at T = 1.

L2 Convergence order H1 Convergence order

h = 1
8

2.23 × 10−2 0 1.15 × 10−1 0

h = 1
16

7.03 × 10−3 1.67 5.64 × 10−2 1.03

h = 1
32

2.87 × 10−3 1.29 2.70 × 10−2 1.06

We remark that the convergence analysis of the effective equation for the hyperbolic equation is more com-
plicated than that for the equations that we have considered so far. A straightforward generalization of our
previous convergence analysis to the hyperbolic equation would require a stronger regularity assumption on the
effective solution. We are currently investigating an alternative approach to perform the convergence analysis
of the effective equation. On the other hand, our numerical results seem to indicate that our effective equation
still gives a very accurate approximation to the multiscale solution of the hyperbolic PDE in both L2 and H1

norms.

Example 7. A hyperbolic equation. In this numerical experiment, we choose a = 1
1+| sin(2πx/ε1)|+| cos(2πy/ε2)| ,

where ε1 = 1
5 , ε2 = 1

13 , and f = 1. The domain is still the same as before with Ω = [0, 1] × [0, 1] and the end
time is T = 1. A 128 × 128 fine mesh is used for the well-resolved solution. Figure 9 shows the errors versus
time with different coarse grid meshes, and Table 11 shows the error at T = 1. As we can see from Figure 9 and
Table 11, our method gives first order convergence in the H1 norm and better than first order of convergence in
the L2 norm, which is consistent with the convergence rates that we observed earlier for elliptic and parabolic
equations.

6. Concluding remarks

We have proposed a multiscale model reduction method for several standard types of elliptic, parabolic,
hyperbolic, and convection-diffusion equations. A key ingredient of this method is to decompose the harmonic
map into a smooth and invertible part, g, and a small remainder, χ. The effective equation is derived by taking
into the account of the interaction between the multiscale coefficient of the governing equation and χ. One
advantage of this approach is that we do not require scale separation or periodic structures as in traditional
homogenization theory. In the case when the multiscale coefficient has the scale separation property and a
periodic structure, our method recovers the homogenized equation. Another advantage is that our effective
equation can be solved on a regular coarse mesh and it is easy to implement. An efficient decomposition method
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Figure 9. Example 7.

has been proposed to decompose the harmonic map into a smooth part plus a small remainder. Under some
assumptions on the multiscale coefficient, we analyze the error between the effective solution and the original
multiscale solution and show that the error is small in the H1 norm as long as χ is small and g is smooth.
Several numerical examples have been given to demonstrate the robustness and the accuracy of the proposed
method. Our numerical results seem to indicate that our method gives an accurate and efficient approximation
to the multiscale solution even when the multiscale coefficient does not have the scale separation property or a
periodic structure.

There are still some limitations of the current method. One most challenging issue is how to perform the
decomposition of the harmonic map when the harmonic map is not invertible due to irregular geometries or
three dimensionality. Although our method does not require the harmonic map, F , to be invertible, finding an
optimal decomposition, F = g + χ, such that g is smooth and invertible while keeping χ small becomes more
challenging when F is not invertible in some local region. One way to overcome this difficulty is to apply our
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model reduction method locally instead of globally. By using a local mesh refinement, we can capture some
nearly singular behavior of F by a locally well-resolved g and still keep the remainder χ small. Another way
is to develop an optimization method to generate the optimal g iteratively as we indicated in the numerical
section. We can also use a residual error correction to further reduce the error if χ is not small in some localized
region due to the degeneracy of F . These issues will be further investigated in our future work.
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