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a b s t r a c t

Mechanistic modeling of water resources systems is a broad field with abundant challenges. We consider
classes of model formulations that are considered routine, the focus of current work, and the foundation
of foreseeable work over the coming decade. These model formulations are used to assess the current and
evolving state of solution algorithms, discretization methods, nonlinear and linear algebraic solution
methods, computational environments, and hardware trends and implications. The goal of this work is
to provide guidance to enable modelers of water resources systems to make sensible choices when devel-
oping solution methods based upon the current state of knowledge and to focus future collaborative work
among water resources scientists, applied mathematicians, and computational scientists on productive
areas.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A focus of work appearing in Advances in Water Resources since
its inception has been on the development of improved mechanis-
tic models of water resources systems and solution approaches to
solve such models. Mechanistic models are considered the gold
standard for the description of water resources systems and as
our fundamental understanding of such systems evolves so too
has the formulation of such models. Mechanistic models of water
resources systems typically consists of some set of partial differen-
tial algebraic equations (PDAEs), which usually are solved approx-
imately using numerical methods. The 35-year history of the
journal has documented a remarkable advancement in the sophis-
tication of both the mathematical formulations of mechanistic
models of water resources systems and the methods used to
approximate the solution of such models.

The water resources field is quite broad in scope, and research
of a particular individual, or research group, is often focused on a
specific problem—perhaps just an aspect of a single problem. The

most interesting and compelling problems in the water resources
field are complex and multidisciplinary in nature, often highly so.
The range of expertise needed to fundamentally understand,
mathematically formulate, and elegantly solve mechanistic repre-
sentations of advanced applications in water resources at a state-
of-the-art level is often beyond the limits of a single researcher
or group. Because of the scope and complexity associated with
developing a state-of-the-art numerical model of a water resources
system, corners are often cut, either because of ignorance on the
part of the research team regarding the latest numerical methods
or out of a desire for expediency to implement something that
gives a solution, even if the approach taken is far from optimally
efficient. Scientists might explain such approaches as not being
the focus of their work. Motivation aside, the net result of many
water resources modeling efforts is an inefficient numerical simu-
lator of a water resources system. Such inefficiency can impact the
utility of the model developed and impede the maturation of
understanding and application of the approach.

On the other hand, applied mathematicians and computational
scientists often find challenging and compelling water resources
problems to motivate their work. When this happens, efficient sim-
ulators often result that may contribute important advancements
in numerical methods. Specialists in numerical methods may not
however be focused on the most critical problems of importance
to the water resources field or understand subtle features of a
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Nomenclature

Roman letters
A channel cross-sectional area
A bilinear form
a generic constant
A coefficient matrix
Â constitutive coefficient for interface velocity
b right hand side of stationary iterative method update
C species concentration
c generic constant
D deposition sink
D dispersion tensor
D tensor of eddy viscosity coefficients
D̂ second-order tensor related to dispersion (non-dilute

TCAT species transport model)
De;x eddy viscosity coefficient tensor
De;y eddy viscosity coefficient tensor
E erosion source
Ems multiscale map
e solution error
e unit vector
F nonlinear residual
F0 Jacobian matrix of F
f general function
fc Coriolis parameter
G Geometric tensor
g gravitational acceleration magnitude
g gravitational acceleration vector
H hydraulic head
H1 continuous approximation space
H1

0 continuous approximation space of functions with zero
trace

H Heaviside function
h fluid depth
he measure of spatial grid length scale
I identity tensor
I matrix identity
Jwn
w curvature of the wn interface
Icj index set of phases that can exchange mass with phase j
If index set of fluid phases
If index set of phases
Is index set of species
K coarse grid cell
Krve representative volume element
K Krylov subspace
K hydraulic conductivity tensor
Kd diffusive wave equation coefficient
k permeability tensor
k̂ interfacial area generation rate parameter
L differential algebraic operator
LU lower–upper decomposition factorization
M iteration matrix

M
ij!ij0

mass transfer process for species i from the j phase to
the j0 phase

MW molecular weight
m diffusive wave flow rate exponent
N computational degrees of freedom
N wave action density
n generic identifier for number of values
n unit outer normal
ne number of elements or cells
nS number of reacting chemical species
ns number of split components in operator splitting
nsf number of split components solved over full interval
nsh number of split components solved over half interval

niso number of components solved in one iterative split
operator step

Ph multiscale finite element space
Pk complete polynomials of degree less than or equal to k
P number of processors
P preconditioner
p fluid pressure
pc capillary pressure
Q flow rate
qb bed flux
qs suspended sediment flux
R ideal gas constant
R̂ resistance tensor
R̂d resistance closure relation due to variations in density
R̂p resistance closure relation due to variations in pressure
r general reaction term
r residual vector
Sv momentum sources and sinks
S fluid source term
Si support of the i-the basis function
S wave action source term
Ss specific storage
Sh volumetric source of water
s saturation
s Newton increment
sd DG method selection parameter, sd 2 f�1;0;1g
T h partitioning of a domain
T endpoint of temporal domain
t time
ti start of solution time interval
u generic dependent variable
~u approximate solution in iterative split operator step
u� exact solution
vh discrete test function
Vh test space
v velocity, ðvx;vy;vzÞ
v depth-averaged fluid velocity
vxy horizontal fluid velocity, ðvx; vyÞ
Wh discrete test space
w test function
w velocity of the interface or common curve
x spatial coordinate, ðx; y; zÞ
X: partial mass ratio
x: mole fraction
y generic vector variable
z vertical dimension aligned with gravitational accelera-

tion
zb bed elevation
ẑ unit vector in the vertical direction

Greek letters
a diffusive wave flow-rate parameter
al line-search algorithmic parameter
c interfacial tension
~c Cahn–Hilliard infiltration scaling parameter
ĉ activity coefficient
dij Kronecker delta function
~d small number
� porosity
�i specific entity measure of the i entity
g linear solver tolerance
ga absolute linear tolerance
gr relative linear tolerance
h temperature
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mechanistic model. When the focus is entirely on numerical effi-
ciency, there is a tendency to consider simplified model problems
and to demonstrate efficiency on problems removed from the class
of most compelling applications of the day.

Either of these two common approaches to advancing models of
water resources systems has shortcomings and results in either a
model that is relatively inefficient from a numerical methods per-
spective or a numerical model that is insufficiently founded mech-
anistically to be of optimal benefit to those wishing to apply such a
model. While the situation seems somewhat hopeless, steps can be
taken to close the gap between the state-of-the-art and the state-
of-the-practice and to hasten the rate of advancement of improved
methods and approaches. For example, truly collaborative work
among scientists, mathematicians, and computational scientists
should be encouraged in which no discipline is allowed to cut

corners but rather the focus is on elegant, and efficient solutions
to the most pressing problems of the day. It is also important to in-
crease understanding of appropriate methods for standard ac-
cepted models, and to introduce potentially fruitful methods for
currently challenging problems and model formulations for which
no current solver exists. It is also worth considering the role of the
evolution in computational tools and computer hardware, to en-
sure that each successive generation of model anticipates future
developments rather than rests on aging technology.

The overall goal of this work is to assess the current state of
numerical modeling of water resources systems and speculate on
potential future trends. The specific objectives of this work are:
(1) to highlight an example set of water resources model applica-
tions that can drive advancements in computational approaches;
(2) to consider algorithmic approaches for approximating

# wave direction
j wave number
jc condition number
jd LDG auxiliary variable
kxi

l l-th eigenvalue in xi

l̂ dynamic viscosity
n free surface elevation
q mass density
q0 reference mass density
r penalty parameter
r stress tensor
s viscous and Reynolds stresses
ŝA capillary pressure dynamic coefficient
sa absolute nonlinear tolerance
sr relative nonlinear tolerance
u contact angle
/ level set function
/j j-the multiscale basis function (defined on KE)
vss

js fraction of the solid surface in contact with the j entity,
where j is a fluid phase

W pressure head
wj j-th multiscale basis function (defined on K)
wxi

l l-th eigenvector in xi

X spatial domain
Xj local element or cell j
x mass fraction

Subscripts and superscripts
A species qualifier
B species qualifier
eq equilibrium value
i species qualifier
i generic vector index (subscript)
j generic vector index (subscript)
k iteration index (subscript)
n iteration index (subscript)
t partial derivative with respect to t (subscript)
x partial derivative with respect to x (subscript)
up upwinded value
w phase qualifier
b phase qualifier
j phase qualifier
i phase qualifier
± one-sided limit, w�ðxÞ ¼ lim�!0�wðxÞ

Symbols
� above a superscript refers to a density weighted macro-

scale average
= above a superscript refers to a uniquely defined macro-

scale average

st jump, swðxÞt ¼ w�ðxÞ �wþðxÞ
{} average, fwðxÞg ¼ 1

2 ½w�ðxÞ þwþðxÞ�

Abbreviations and acronyms
AWR Advances in Water Resources
API application program interface
BDF backward difference formulas
Bi-CGSTAB bi-conjugate gradient stabilized
CG conjugate gradient
CGNR conjugate gradient normal equations
CPU central processing unit
DAE differential algebraic equation
DG discontinuous Galerkin
DWE diffusive wave equation
FAS full approximation schemes
FMM fast multipole method
GCS geological carbon storage
GMRES generalized minimum residual method
GPU graphics processing unit
GRK Gauss Runge–Kutta
IE integral equation
IIPG incomplete interior penalty Galerkin
ILU incomplete lower upper factorization
IP interior penalty
JFNK Jacobian-free Newton Krylov
JIT just in time
KDC Krylov deferred correction
KWE kinematic wave equation
LDG local discontinuous Galerkin
LES large eddy simulation
MPI message passing interface
MsFEM multiscale finite element method
MsFVEM multiscale finite volume element method
NIPG nonsymmetric interior penalty Galerkin
ODEs ordinary differential equations
OS operator splitting
PCG preconditioned conjugate gradient
PDAEs partial differential algebraic equations
PDEs partial differential equations
RANS Reynolds averaged Navier Stokes
RE Richards’ equation
RKDG Runge–Kutta discontinuous Galerkin
RVE representative volume element
SDC spectral deferred correction
SIPG symmetric interior penalty Galerkin
SSO sequential split-operator
SWE shallow water equations
TCAT thermodynamically constrained averaging theory
TFQMR transpose free quasi-minimum residual
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mechanistic models; (3) to detail some promising developed and
evolving discretization methods; (4) to summarize modern ap-
proaches for solving large-scale systems of nonlinear and linear
algebraic equations; (5) to review beneficial trends and approaches
in computational software environments; and (6) to examine
trends in computational hardware and assess the implications
these trends may have on the simulation of mechanistic water re-
sources models over the coming decade. These objectives are
accomplished in turn in the sections that follow.

2. Motivating applications

2.1. Overview

As the water resources field evolves, so too do the forms of the
mechanistic models of focus to researchers and practitioners. The
challenging mechanistic problems of a decade ago are now routine
models. The theoretical musings of days gone by are the models of
focus today. And, the latest theoretical advancements are fodder
for the next generation of models and simulators that will be
developed and evaluated over the coming decade and beyond.
Such is the nature of scientific advancement. If the situation were
different, the scientific field would be stagnant and uninteresting.

Because the focus of this work is on numerical solution ap-
proaches to water resources problems, a set of mechanistic models
of interest will be summarized to guide the discussion of numerical
solution methods of primary interest in this work. The field of
water resources is sufficiently broad that only a few illustrative
examples of model formulations from subsurface and surface
water hydrology will be considered. Furthermore, we will make a
distinction between routine models and evolving model formula-
tions. In the former case, guidance will be offered on efficient solu-
tion strategies. In the latter case, potential solution approaches and
challenges will be considered in subsequent sections.

2.2. Subsurface system model formulations

2.2.1. Established models
Single-phase flow. Perhaps the most frequently solved ground-

water model is a single-phase fluid flow model based upon Darcy’s
law as an approximate momentum equation and linear, reversible
compressibility theory to describe the combined changes in stor-
age effects due to the compressibility of water, the solid media,
and the changes in porosity due to rearrangement of the media.
The single-phase flow model may be formulated as [78]

Ss
@H
@t
¼ r Æ ðK ÆrHÞ þ Sw; ð1Þ

where Ss is specific storage, H is hydraulic head, t is time, K is a sec-
ond-rank symmetric hydraulic conductivity tensor, and Sw is a
source term.

Eq. (1) is a linear parabolic PDE, which is elliptic under steady-
state conditions. While the solution of this model is trivial in many
instances, circumstances exist that can make the solution more
challenging. For example, K usually varies in space, and to a lesser
extent Ss, and over several orders of magnitude and short spatial
scales. While the data typically does not exist to represent this var-
iation precisely, representation of variability in a statistical sense
conditioned on known values of K and evaluated over many real-
izations can be used to evaluate the effects of heterogeneity and
uncertainty, leading to computational challenges, especially as
the scale of domain relative to the scale of discretization level be-
comes large [229,308,360]. The natural desire to discretize finely
domains of increasing size leads to discrete problems that will con-
tinue to tax even the most advanced high-performance computers

for the foreseeable future. Another complicating consideration
arises when this model is applied to an unconfined aquifer. Uncon-
fined aquifers are more faithfully represented by a variable satu-
rated flow formulation that accounts for partial drainage and
filling of the pore space while representing the multi-fluid nature
of the flow system above the water table. An approximate ap-
proach is to treat the unconfined system as a nonlinear moving
boundary problem, where the top boundary moves as a function
of the solution of the model [78]. This approach must approximate
the effect of the unsaturated zone above the system being mod-
eled. A third complicating consideration with this standard model
is the desire to produce a solution that is locally conservative,
which is a property of importance when differentiating the solu-
tion to obtain a velocity field for use in a species transport solution
[129,280]. The routine nature of the application of this model along
with the complicating features that can pose computational chal-
lenges and affect numerical method approximation choices com-
bine to make this a model worth considering to ensure good
choices are being made in the selection of discretization methods,
solvers, and high-performance computing implementation strate-
gies. Over the last decade, solutions of most of the problems above
have been proposed by many researchers using a combination of
rigorous finite volume or finite difference methods and multiscale
approaches, see for example [42,136,209,284].

Single-phase flow, species transport, and reactions. Water re-
sources problems that involve chemical composition are often for-
mulated as a combination of a fluid flow problem and some system
of equations that describes species transport and reactions. Species
transport and reaction problems for saturated flow systems occur
routinely, and the combination of biogeochemical reactions and
resultant formulations leads to a large set of models in this general
class [84,89,256]. Contributing to the cardinality are variations in
ways in which mass transfer processes can be represented and
the nature of the biogeochemical reactions of concern that can in-
clude chemical kinetics, precipitation-dissolution, complexation,
enzyme reactions, biological transformations, and particle trans-
port and interactions with solid phases [175,243,244,312]. While
many variants of the single-phase flow, species transport, and reac-
tion models exist, many of these models are based upon a general
form of the advective–dispersive-reactive equation model that
may be given as [73]

@ð�CiwÞ
@t

¼ r Æ ð�Diw ÆrCiwÞ � r Æ ð�viwCiwÞ þ �riw þ
X
j2Icw

M
ij!iw

; ð2Þ

where superscript i is a species qualifier for a macroscale quantity
and w is a phase qualifier for a macroscale quantity, C is a species
concentration, � is the porosity, D is a second-rank dispersion ten-
sor, v is the fluid velocity vector, r represents all reactions that af-
fect the concentration of species i in the water phase, which is

denoted by the superscript w, M
ij!iw

represents mass transfer pro-
cesses from the j phase to the water phase, and Icw is the index
set of phases that can exchange mass with the water phase, which
could include various types of solid phases for the saturated flow
case being considered. When mass transfer cannot be assumed to
be in equilibrium, a separate conservation of mass equation is re-
quired for each type of solid phase in the system [256,268].

The number of species of concern in the model will influence
the size of the system needing to be solved. Solid phases that are
not in equilibrium with the water phase will also increase the size
of the system. If the reactions or mass transfer expression is non-
linear, so too will the resultant model. The nature of the processes
being modeled will determine the coupling of the set of transport
equations [175,329].

While models of this class are varied and numerous, see for
example [296], they are routine in nature. Still, computational
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challenges remain, such as: (1) many problems are advective dom-
inated, leading to sharp fronts in space and time; (2) multi-species
reactive problems can lead to large coupled systems; (3) varying
time scales can exist from species to species and for operators
within a given species; (4) when spatial heterogeneity is finely re-
solved in three spatial dimensions, large-scale discrete problems
result; and (5) the large number of potential specific model formu-
lations complicates the development of efficient simulators
[154,181,184,214,244,309,313,316]. The large number of potential
model formulations becomes especially complicated when infiltra-
tion and surface water flow are included in so-called integrated
hydrologic models [94,299]. While we do not discuss these specific
hydrologic formulations further in this paper, the sections below
on multiphase flow, surface water, and solution algorithms are di-
rectly relevant to integrated hydrologic modeling.

Richards’ equation. Cases of variably saturated flow occur rou-
tinely in water resources systems for applications that range from
coupled basin-scale hydrological processes to local-scale drainage
and irrigation problems. When the pore space in a porous medium
can be occupied by a gas phase and a water phase, a common mod-
eling approach is Richards’ equation (RE). RE is a single equation
model that results from ignoring the pressure gradient needed to
induce flow of the gas phase because of the large contrast that ex-
ists between the mobility of the gas and the water phases. RE can
be formulated as [337]

Sssw @W
w

@t
þ @�

w

@t
¼ r Æ ½Kw � rðWw þ zÞ� þ Sw; ð3Þ

where sw ¼ �w=� is the saturation of the water phase, Ww is the pres-
sure head of the water phase, �w is the volume fraction of the water
phase, Kw is conductivity that depends upon sw, and z is the vertical
dimension aligned with the gravitational acceleration vector. Solu-
tion of RE requires specification of closure relations of the general
form

�w ¼ �w½WwðtÞ�; and ð4Þ
Kw ¼ Kw½swðtÞ�: ð5Þ

These general relational forms note a dependence on time, meaning
that these relations are hysteretic in nature. Several specific forms
of these closure relations typically occur, and they may vary
spatially within a given problem [272].

The solution of RE has received considerable attention in the
literature. The areas addressed include mass conservative time
discretizations [e.g. 97,218], adaptive time discretizations [e.g.
216,218,337,353,354], space discretizations [e.g. 222,234,253,
254,270,271,354], and solvers [e.g. 213,219]. Production simula-
tors are commonplace [e.g. 258,326,352,361]. The considerable
attention to the solution of RE supports its importance as a popular
hydrologic model of significant importance. This effort also sup-
ports the notion that the solution of RE can be computationally
challenging and expensive, making the selection of appropriate
methods important.

Multiphase flow. The simultaneous flow of two, or three, immis-
cible fluids through porous medium systems is a class of problem
that occurs in applications such as drainage and irrigation, as the
flow component of problems involving the movement of immisci-
ble fluid contaminants in subsurface systems, and carbon seques-
tration. The standard model used to model such systems is often
written as [272]

@ð�iqiÞ
@t

¼ r Æ
qiki

l̂i � rðp
i � qigÞ

� �
for i 2 If ; ð6Þ

where qi is the density, ki is the permeability tensor, l̂i is the
viscosity, g is the gravitational acceleration vector, i is a phase qual-
ifier, and If is the index set of fluid phases.

Closure of the model given by Eq. (6) requires specification of
the equations of state, for which the isothermal case can be speci-
fied generally as

qi ¼ qiðpi;xiiÞ; ð7Þ

where xii is the mass fraction of the i species in the i phase, and the
density depends in general on the mass fraction of all species i 2 Is

with Is the index set of species. In addition, closure of a multiphase
flow model requires relations among fluid pressures, saturations,
and permeabilities, which may be specified generally as

si ¼ si½pbðtÞ� for i;b 2 If ð8Þ
ki ¼ ki½siðtÞ� for i 2 If ; ð9Þ

which are in general nonlinear, hysteretic relations. The saturation
si may depend upon capillary pressures between all fluid pairs,
which are typically approximated as the difference in volume aver-
age fluid pressures. Simplified forms of these closure relations re-
sult under certain conditions of wettability.

Multiphase flow modeling using the standard model is rou-
tinely applied using established production-level simulators
[121,297,352]. The nonlinear and hysteretic nature of the model
pose challenges as do desires to model domains in which the mod-
el parameters vary over fine spatial scales relative to the domain
size of interest, leading to large discrete simulations [74,286].
Commonly used approaches in production codes rely upon fixed
grid, low-order methods in space and time [198]. Higher order
methods have been shown to result in efficient solution methods
for some cases [141,218]. Challenges also exist regarding the solu-
tion of problems with discontinuous material properties, which
lead to discontinuities at element or cell boundaries in fluid satu-
rations, volume fractions, and permeabilities [145,191,199,300].

Multiphase flow, species transport, and reactions. Multiphase flow
and species transport and reaction problems in porous medium
systems are among the most challenging applications that are
commonly performed in the water resources field. The formulation
of such models involves a multiphase flow model, of the type out-
lined above, coupled with a system of species transport and reac-
tion equations that account for changes in the composition of
each individual phase. A general form of the transport equations
can be written as [272]

@ð�iqixiiÞ
@t

¼ r Æ ð�iqiDii ÆrxiiÞ � r Æ ð�iqixiiviÞ þ �irii

þ
X
j2Ici

M
ij!ii

for i 2 IP; ð10Þ

where IP is the index set of phases.
The situation with multiphase flow and transport processes is

similar to the situation with single-fluid phase flow and transport
processes. Variations in the number of species, biogeochemical
reactions, and interphase mass transfer processes—and the associ-
ated sub-models used to represent these features—combine
combinatorially to result in a large number of potential model for-
mulations [182]. Due to the importance of multiphase and multi-
component models in petroleum reservoir simulation, there exists
rich and highly relevant literature on both models and numerical
methods in that community, and we direct the reader to a few
canonical texts [59,99,247] and recent articles on advanced numer-
ics for challenging porous media problems [48,53,169]. Several
production codes exist that can simulate a set of frequently occur-
ring cases, but many specialty research code variants exist for spe-
cial cases as well [121,357]. Low-order methods in space and time
are standard and fixed grid codes are most commonly used,
although some attention has been given to codes that adapt in time
or space and time [155,350].
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2.2.2. Evolving models
Evolving subsurface models include recently formulated models

for which mature simulators do not yet exist. Evolving subsurface
models also include instances of formulations based upon existing
models but which pose special challenges, such as multiscale
behavior. The examples included below are intended to illustrate
the frontiers of subsurface modeling, but the list is not intended
to be exhaustive.

Cahn–Hilliard infiltration model. An evolving model in the area of
variably saturated flow is an extension of the standard Richards’
equation to include higher order terms based on the Cahn–Hilliard
phase-field approach [91]. This model was first proposed in [111]
and can be written as

@ð�swÞ
@t

þr Æ KwðswÞ � rzþrWwðswÞ þ
~c
qg
rðr2swÞ

� �� �
¼ 0;

ð11Þ
where WwðswÞ is the capillary head-saturation relation, ~c is a scaling
parameter, and g is the magnitude of gravitational acceleration. The
last term on the right-hand side results in a fourth-order differential
operator that, combined with the well-known nonlinearity in the
low-order terms, produces a wetting front instability that is a pre-
condition for reproducing gravity fingering.

Multiscale geochemical models. Multiscale geochemical models
are of growing interest. One such model involves the precipitation
or dissolution of carbonate species. These processes occur when a
subsurface geochemical system is out of equilibrium, which can
occur for example when supercritical CO2 is injected during a geo-
logical carbon storage (GCS) process or through other changes that
bring a system out of equilibrium [239]. The injection of an acidic
solution lowers the pH of the water, dissolving minerals, and alter-
ing the pore morphology and topology and the associated macro-
scale properties. As the pH changes away from the injection
region, precipitation can occur, also changing the pore structure.
The net results alters the flow system, perhaps markedly. Such
problems are interesting and challenging for a variety of reasons.
First, the precipitation or dissolution can occur over very small
length scales, much smaller than a typical grid block size in a
field-scale simulator. Second, the process can change the local pore
morphology and topology and consequently averaged properties
such as porosity and permeability. Third, the changes that occur
in hydraulic properties can dramatically influence both fluid flow
and species transport, making it necessary to resolve these pro-
cesses accurately in space and time to produce reliable simula-
tions. These factors combine to make multiscale simulation of
such processes essential in some cases.

A related example of a multiscale geochemical problem of
growing importance is also related to GCS. When CO2 dissolves
in a brine the brine becomes more dense [303]. This change in den-
sity can lead to gravity fingering. As gravity fingering occurs the
CO2 is transported vertically downward, diffuses and disperses,
and can locally result in geochemical systems that are out of equi-
librium and hence precipitation can occur. The local flow systems
are complex and multiscale approaches appear to be the most reli-
able way of modeling fate and transport processes associated with
GCS, although approximate solutions will certainly play a role.

Depending upon the geochemical conditions, the model formu-
lation is typically some subset of the standard models already sum-
marized, either a geochemical model within a single-fluid-phase
flow and transport model for the carbonate dissolution/precipita-
tion case, or a multiphase flow and transport formulation for the
supercritical CO2 case [292,311]. The challenge comes in resolving
the multiple length and time scales involved and evolving the
model parameters that depend upon the pore morphology and
topology [75,335]. Much work remains to be accomplished before
the modeling of such systems become mature.

Multiscale biological reaction models. Biological sciences are
maturing rapidly and so too are the models used to represent
operative biological processes. Standard approaches of
representing biological reactions have been based upon kinetic
models that represent enzyme utilization, Michaelis–Menten
growth models, first-order degradation approximations, or
instantaneous rates of reaction [73]. It has long been understood
that such kinetic models are simplifications of more complex
underlying mechanisms, but the hope has been that the tradi-
tional models provide a sufficiently accurate representation of
the true behavior to be of use. This assertion is difficult to
support in the absence of a more mature understanding of the
mechanisms involved.

Recent advances in proteomics and genetics have enabled the
development of much more sophisticated, and presumably realis-
tic, simulations of biologically reactive systems. Microbial commu-
nities can be sampled, proteins and peptides identified, and genes
associated with detailed reaction mechanisms [92]. Such
approaches can provide true-to-mechanism details of reaction
pathways and promise to deliver more realistic models of biologi-
cally mediated reactions [152]. However, with increased mecha-
nistic realism comes increased complexity. It is expected that
true-to-mechanism biological models for processes such as ura-
nium reduction involve more than a hundred species and several
hundred reactions. The advancement of sophisticated models of
this nature will require special considerations for algorithms and
data structures and detailed analysis to determine ways in which
fully mechanistic models can be represented faithfully, while
neglecting unnecessary detail. Such an advancement will require
a detailed collaboration of experimentalists, mechanistic modelers,
and computational scientists.

TCAT non-dilute species transport model. Single-fluid-phase flow
and species transport of concentrated species has received recent
attention in the literature [347,348]. Traditional Fickian models
are not capable of describing the experimentally observed break-
through profiles, with the observed fronts significantly sharper in
space and time than the breakthrough profile for a conservative di-
lute species.

Approaches to modeling such non-dilute, non-ideal systems
have been advanced and are based upon the thermodynamically
constrained averaging theory (TCAT) [162]. TCAT is a theoretical
framework for deriving models of transport phenomena that are
consistent across scales and posed in terms of precisely described
variables [161,274]. Specifically, two different approaches have
been considered, one in which momentum equations are written
for each species in each entity in the system and a second approach
in which an entity momentum equation is written and closure
relations for deviation velocities are posited based upon an entropy
inequality. A simulator has yet to be published and compared to
experimental data based upon either approach.

Because the entity-based momentum formulation is simpler,
we summarize this model as a suggested target for subsurface
modeling and numerical methods advancement. Details on the
development of this instance of the general class of model are
available in the literature [162].

The non-dilute TCAT species model consists of a conservation of
mass equation for the w phase

@ð�wqwÞ
@t

þr Æ ð�wqwvwÞ ¼ 0; ð12Þ

a conservation of momentum equation for the w phase

rpw � qwgw þ �wðR̂w � R̂dÞvw;s þ R̂pr�w ¼ 0; ð13Þ

a species conservation of mass equation for species A in a two-
species w phase in material derivative form
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�wqw DwxAw

Dt
�r Æ �w xAwxBw

xAwxBw

 !
XAw �xAw

� �
D̂ABwe Ærpw

�(

þ qw Rhw

MWw
D̂ABwe ÆrxAw þ qw RhwxAw

MWwĉAw
D̂ABwe ÆrĉAw

þ R̂p XAw �xAw

� �
D̂ABwe Ær�w

#)
¼ 0; ð14Þ

where

D̂ABwe ¼ I� �
wR̂dxAwxBw

qwxAwxBw
D̂ABw

 !�1

Æ D̂ABw ð15Þ

and functional forms of the equations of state for the activity
coefficient

ĉAw ¼ ĉAwðpw; hw;xAwÞ; ð16Þ

the fluid density

qw ¼ qwðpw; hw;xAwÞ; ð17Þ

and the fluid viscosity

l̂ ¼ l̂ðpw; hw;xAwÞ ð18Þ

are required. In addition, complete closure also requires functional
forms for R̂p and R̂d, which while scalars in this example formulation
may be tensors more generally. In this model formulation, R̂w is a
resistance coefficient, R̂d is a closure relation coefficient related to
density and a gradient in density, R̂p is a closure relation related
to fluid pressure, x: is a mole fraction, X : is a partial mass ratio,
MW is a molecular weight, D̂ABw is second-order tensor related to
dispersion, h is the temperature, and R is the ideal gas constant.

TCAT two-phase flow model. The TCAT approach has been used to
derive a two-fluid-phase flow model that includes a consistent
thermodynamic basis that is averaged from the microscale [205],
evolution equations for interfacial area and common curve extents
based upon averaging theorems to aid in resolving the closure
problem [163], and an analysis of capillary pressure terms for sys-
tems away from equilibrium, which is derived from the entropy
inequality [164]. The TCAT approach results in a potential hierar-
chy of closed models to describe two-fluid-phase flow through a
porous medium system. We consider a simple instance of a model
from this hierarchy to illustrate the challenges that lie ahead in
modeling such systems.

The system of concern includes two fluid phases and a rigid so-
lid phase under isothermal, non-reactive conditions in the absence
of inter-entity mass transfer and where the interfaces and common
curve are massless. Under these restrictive conditions, a simple
model from the TCAT hierarchy of models can be formulated,
which includes mass conservation equations for the fluid phases
of the form

@ð�iqiÞ
@t

þr Æ ð�iqiviÞ ¼ 0 for i 2 fw;ng: ð19Þ

The driving force for flow is the sum of chemical and gravitational
potentials. If we approximate this sum of potentials as the sum of
a pressure gradient and gravity term then the momentum equa-
tions for the fluids can be written as

R̂i
w Ævw þ R̂i

n Æ vn ¼ �rpi þ qig for i 2 fw; ng; ð20Þ

where the resistance tensors R̂i
j depend upon the morphology and

topology of the fluid distributions, including the measures of fluid
saturations and interfacial areas. Equations of state are required
and since compositional effects are not considered and the system
is isothermal, the general form is

qi ¼ qiðpiÞ for i 2 fw;ng: ð21Þ

Eqs. (19)–(21) consist of 10 equations and 13 unknowns. Closure re-
quires conditions for capillary pressure and evolution equations for
interfacial areas, which cannot generally be derived from conserva-
tion principles. For the case in which pressure differences equilibrate
more quickly than interface motion occurs, when interfacial tension
is constant, and where fluid pressures averaged over interfaces are
approximated by intrinsic volume average pressures, an expression
for the rate of approach to capillary pressure equilibrium is

ŝA �
@sw

@t
þ cwn

pn � pw
k̂wn

1 ð�wn � �wn
eq Þ

� �
¼ pw � pn þ pc; ð22Þ

where

pc ¼ �cwnJwn
w ; ð23Þ

k̂wn ¼ pc

pn � pw
� 1

� �
k̂wn

1 ; ð24Þ

ŝA is a capillary pressure dynamic coefficient, cwn is the interfacial
tension, and k̂wn is an interfacial area generation rate parameter.

Model closure is complete by specifying an evolution equation
for the wn interfacial area

@�wn

@t
þr Æ ð�wnwwnÞ � Jwn

w �
@sw

@t
þ k̂wnð�wn � �wn

eq Þ

� @�
ws

@t
cos uws;wn � 0; ð25Þ

and functional forms for the curvature of the wn interface

Jwn
w ¼ Jwn

w ðsw; �wn; �wsÞ; ð26Þ

the wetted fraction of the solid phase at equilibrium

vss
ws ¼ vss

wseqðsw; �wnÞ; ð27Þ

the wetting fluid–solid interfacial area

�ws ¼ �ssvss
wseqðsw; �wnÞ; ð28Þ

the velocity of wn interface

wwn ¼ Gwn Æ ðÂwvw þ ÂnvnÞ; ð29Þ

and functional forms for the coefficients Âwð�wn; swÞ; Ânð�wn; swÞ;
k̂wnð�wn; swÞ; �wn

eq ð�wn; swÞ; cosuws;wn, and Gwn. For a system with iso-
tropic interfaces Gwn ¼ I=3.

2.3. Surface water model formulations

2.3.1. Established models
Like subsurface flow, there are several established models rou-

tinely used to describe surface water hydrodynamics. The most
common models are fully two-dimensional or weakly three-
dimensional flow models. These models are derived based on sev-
eral approaches including both depth-averaging (integration) or
asymptotic methods using a fixed vertical datum. The common for-
mulation approaches used for this class of models are described in
the sections that follow.

Two-Dimensional Shallow Water Equations. The two-dimensional
shallow water equations (SWE) are the most commonly considered
model for surface water currents and free surface elevation. The
SWE are derived from the incompressible Navier–Stokes equations
under the assumption that the water column is vertically well-
mixed and that pressure is hydrostatic, leading to the formulation
@p
@z
¼ �qg; ð30Þ

where q is water density and g is gravitational acceleration. Integrat-
ing the continuity and horizontal momentum equations in the
Navier–Stokes equations over the depth of the water column, and
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applying kinematic boundary conditions at the free surface along
with additional assumptions on surface and body stresses, one ar-
rives at the SWE, see [343] for a complete derivation. They can be
written in conservative form in two (horizontal) space dimensions as

@h
@t
þr Æ ðhvÞ ¼ Sh; ð31Þ

@ðhvÞ
@t
þr Æ hv � v þ 1

2
gh2

I

� �
¼ fcv 	 ẑ� ghrzb þr Æ sþ Sv ; ð32Þ

where h is the depth of the flow, v is the depth-averaged velocity, Sh

is a volumetric source of water, zb is the elevation of the bed
(bathymetry), fc is the Coriolis parameter, ẑ is the unit vector in
the vertical direction, s represents Reynolds (and possibly viscous)
stresses, and Sv is the vector of momentum sources and sinks,
which typically includes bottom drag losses and wind/wave gains.

Diffusive Wave Equation. The diffusive wave equation (DWE) is a
simplification of the SWE that is primarily used in modeling over-
land flow or flow in wetlands. The model can be derived by neglect-
ing the first two terms in the SWE momentum equation, equating
the free surface and bottom gradients ðrh � rzbÞ, and using an alge-
braic bottom drag such as the Manning or Chezy formula for Sv . Alge-
braic manipulations then lead to a scalar flow equation [257,293]

@n
@t
¼ r Æ ½Kdðn;rnÞrn�; ð33Þ

where n ¼ hþ zb is the water free surface elevation with respect to
some datum and, Kd is a nonlinear function of both n and rn. The
DWE shares many similarities with subsurface multiphase flow in
both the nonlinearity and possible degeneracy of the spatial operator.

Kinematic Wave Equation. The Kinematic Wave Equation (KWE)
is the simplest shallow water model and is often used in modeling
open channel flow or watersheds under heavy rainfall events. This
model neglects the local acceleration, convective acceleration and
pressure terms in the momentum equation. For open channel
flows, the continuity and momentum equations combine into a
single equation of the form [257,293]

@A
@t
þ @Q
@x
¼ 0; ð34Þ

Q ¼ aAm
; ð35Þ

where A is the channel cross-sectional area, Q is the flow rate, and a
and m are determined by Manning’s or Chezy’s friction law.

Contaminant Transport in Surface Waters. Transport of contami-
nants in surface water is governed essentially by a two-dimen-
sional form of Eq. (2) so we do not repeat it here. A range of
significant transport processes in surface water are of interest.
The specific mathematical formulations and numerical methods
are highly dependent on the details of a given transport modeling
application. For example, the transport of oil and chemical disper-
sants following the Deepwater Horizon accident in the Gulf of
Mexico was a massive, dynamic contamination scenario affected
by wind, waves, currents, and chemical/biological degredation
reactions, and a range of Lagrangian and Eulerian transport meth-
ods have already been investigated to date [125,260].

Morphodynamics. Modeling erosion and deposition is often re-
quired in surface water resources and represents a distinct form
of the coupled flow and transport. We consider

@h
@t
þr Æ ðhvÞ ¼ Sh; ð36Þ

@ðhvÞ
@t
þr Æ hv � v þ 1

2
gh2

I

� �
¼ �ghrzb þ Sv ; ð37Þ

@ðh�sÞ
@t

þr Æ qs ¼ E� D; ð38Þ

@ðzb�bÞ
@t

þr Æ qb ¼ D� E; ð39Þ

where in addition to the water depth h, we have the suspended sed-
iment volume fraction �s, suspended sediment flux qs, erosion
source E, deposition sink D, bed volume fraction constant �b, and
bed flux qb. Note that the Reynolds and viscous stress, and Coriolis
terms have been neglected in Eq. (37) for simplicity. See for exam-
ple [277] for similar formulations and numerical simulations.

Wave Action. Surface wind-waves can impart significant wave
radiation stresses in the SWE momentum equations. In turn, the
currents and depths computed by the SWE can affect the transport
of surface waves. Thus wave-current interaction can be important in
many coastal ocean problems, especially during hurricane events.

In the coastal ocean, away from the surf zone, a governing equa-
tion for wind waves can be derived as a wave action density bal-
ance, which is a hyperbolic balance law in a five dimensional
domain where the coordinate directions can be taken as time (t),
space (x and y), wave number (j), and wave direction (#). The ini-
tial-boundary value problem can be described as: find the wave ac-
tion density Nðt;x;j; #Þ satisfying

@N
@t
þr Æ ðvNÞ þ @ðv

jNÞ
@j

þ @ðv
#NÞ
@#

¼ S; ð40Þ

where Sðt;x;j; #;NÞ is the sum of wave action sources (potentially
nonlinear in N ), and vðt;x;j; #Þ is the five-dimensional propagation
velocity, which does not depend on N . The left-hand side of Eq. (40)
is a linear wave equation with spatially variable velocity, which
lends itself to specialized numerical methods. Furthermore, the do-
main is the tensor product of a cube ð½0; T� 	 ½jmin;jmax�	
½#min; #max�Þ with a potentially irregular two-dimensional spatial
domain X. See [206,242] for derivations.

Three-Dimensional Shallow Water Equations. Three-dimensional
shallow water (3D-SWE) models can be derived for cases where
there is a three-dimensional flow structure, due for example to
density or eddy viscosity variations, but the hydrostatic pressure
relation still holds. There are a number of ways to formulate the
3D-SWE equations. Here, we follow [119] and write the fluid con-
tinuity and momentum equations as

r Æv ¼ 0; ð41Þ
@vxy

@t
þr Æ ðv � vxy �DrvxyÞ ¼ fcvxy 	 ẑ� grxynþ Sv

� 1
q0
rxypa � g

q0

Z n

z
rxyqdz; ð42Þ

where rxy ¼ @
@x ;

@
@y

� �
;v ¼ ðvx; vy;vzÞ is no longer depth-averaged,

vxy ¼ ðvx; vyÞ is the horizontal velocity, q0 is a reference density,
pa is the atmospheric pressure, and density variations outside grav-
itational terms have been neglected (Boussinesq approximation).
The Drvxy term represents a turbulence closure model where the
tensor of eddy viscosity coefficients D is block 2	 2 with positive
semi-definite 3	 3 matrices along the diagonal. The tensor of eddy
viscosity coefficients is given by

D ¼
De;x 0

0 De;y

� �
; ð43Þ

where De;x and De;y are 3	 3 positive semi-definite matrices [119].
In addition to Eqs. (41) and (42), either the free surface kinematic
boundary condition or the depth-integrated continuity equation

@n
@t
þ @

@x

Z n

zb

vxdzþ @

@y

Z n

zb

vydz ¼ 0 ð44Þ

is typically used to resolve the free surface elevation, n.

2.3.2. Evolving models
The transition from established to evolving surface water

formulations is spanned by a class of free surface hydrodynamic
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models that dispense with the hydrostatic assumption, Eq. (30), and
take the two-fluid phase formulation as their point of departure.
This class of models has been studied widely over the last 30 years,
proceeding from early work on the basic volume-of-fluid and level
set methods for regular grids [189,298,304,318,334] to more recent
hybrid and unstructured methods [282,285,287,332,338]. These
approaches are now considered standard in some contexts. On
the other hand, the use of such formulations for water resources
investigations has been less common, and developing efficient
numerical methods for complex environmental flows remains a
challenge [220,336]. To be more specific, these formulations are
based on the assumption of incompressible, Newtonian flow of both
the air and water phase

r Ævi ¼ 0; ð45Þ
@ðqiviÞ
@t

þr Æ ðqivi � vi � riÞ ¼ Si
v ; ð46Þ

� piIþ 2l̂irsvi ¼ ri; i 2 fw; ag; ð47Þ

and a sharp fluid–fluid interface across which the boundary
conditions

ðvw � vaÞ Æ nwa ¼ 0; and ð48Þ

ðrw � raÞ Æ nwa ¼ fwa ð49Þ

hold. Here, r is the stress tensor, rs is the symmetric gradient, and
nwa is the interface unit normal. No mass is assumed to cross the
fluid–fluid interface in Eq. (49), and fwa represents interfacial forces
due to surface tension [318]. Depending on the application, Eqs.
(45)–(49) can be simplified by neglecting air-phase dynamics and
assuming constant pa. For turbulent flows, various closure relations
can be introduced to Eqs. (46) and (47) with possibly additional
evolution equations (e.g. k–� or k–x Reynolds averaged Navier
Stokes (RANS) formulations [201,259]).

3D Air/Water. Eqs. (45)–(49) require accounting for the evolu-
tion of the air–water interface. Different choices lead to level set,
volume of fluid, interface tracking, or even hybrid approaches
[139,220,334,340]. For instance, a minimal level set formulation
can be written

r Æv ¼ 0; ð50Þ
@ðqvÞ
@t

þr Æ ðqv � v � 2l̂rsvÞ ¼ �rpþ qSv ; ð51Þ
@/
@t
þ v Ær/ ¼ 0; ð52Þ

½1�Hð/Þ�qa þHð/Þqw ¼ q; ð53Þ
½1�Hð/Þ�l̂a þHð/Þl̂w ¼ l̂; ð54Þ

where the fluid–fluid interface is described by the zero contour of
/; H is the Heaviside function, fwa ¼ 0, and nwa ¼ r/=kr/k
[322,333].

3D Morphodynamics. A promising approach for modeling sedi-
ment dynamics is the use of mixture theory to derive fully three-
dimensional models of turbulent, incompressible free surface flow,
including sediment phase mass and momentum balances. We
present a slightly simplified formulation of a model recently stud-
ied for coastal sand dynamics [63–65]:

@ðqf�f Þ
@t

þr Æ ðqf �f vf Þ ¼ 0; ð55Þ

@ðqf�f vf Þ
@t

þr Æ ½qf �f vf � vf � ef rf � ¼ qf�f g� f fs
; ð56Þ

@ðqs�sÞ
@t

þr Æqs�svs ¼ 0; ð57Þ
@ðqs�svsÞ

@t
þr � ½qs�svs � vs � �srs� ¼ qs�sgþ f fs

; ð58Þ

@/aw

@t
þ �f vf Ær/aw ¼ 0; ð59Þ

where qf and qs are the fluid and sediment densities, �f and �s are
the fluid and sediment volume fractions ð�f þ �s ¼ 1Þ; vf and vs are
the fluid and sediment velocities, rf and rs are the fluid and sedi-
ment stress tensors, and f fs is the fluid-to-sediment interphase
momentum exchange. Model formulations [63–65] also include a
ðk� �Þ turbulence closure model, which accounts for sediment ef-
fects (and introduces two additional evolution equations for the
turbulent kinetic energy and its rate of dissipation).

Unsteady and fully turbulent conditions are widely encountered
in surface water flows (and even in some subsurface problems like
flows in fractured media). Several of the models listed above in-
clude standard terms for parameterizing turbulence effects. This
is far from a settled issue, however. In environmental applications
it is often the transport of dissolved or suspended components that
is the ultimate goal of modeling, and transport in flow regimes
from transitional to fully turbulent conditions continues to be a
challenge from both a fundamental modeling and numerical
approximation perspective. Indeed, the past decade has seen par-
ticular growth in the theory and usage of large eddy simulation
(LES) approaches and turbulence closure relations for RANS equa-
tions, and such issues are considered an important, evolving re-
search topic across many disciplines [77,190,278].

3. Solution algorithms

The models outlined in Section 2 represent systems of PDAEs,
which may contain elliptic, parabolic, or hyperbolic components,
and these models may be either linear or nonlinear in nature. For
example, compositional problems include components to deter-
mine the velocity field of the phases present and components to
determine the makeup of each phase, which in turn involves
advective, dispersive, and reactive operators. The range and math-
ematical character of these models is broad. The development of
sound solution approaches requires consideration of the algorithm
to be used to compute the approximate solution, the most appro-
priate choice of which in turn is influenced by the particular model
formulation of interest.

By solution algorithm, we mean the basic approach taken to re-
solve coupling in a given PDAE system. It represents decomposition
of the solution of the full system into component parts (or subsys-
tems) and the means for recovering the overall solution from the
individual parts. This algorithm is independent of the spatial and
temporal discretization techniques used to approximate the com-
ponent subsystems, and the methods used to solve the resultant
nonlinear or linear algebraic systems that arise from a discretiza-
tion procedure. Individual components may also be subject to
decomposition or splitting, since they can be PDAE systems them-
selves, and algorithmic considerations in the broader sense cer-
tainly exist within the subsystems as well (e.g. adaption
algorithms used in temporal or spatial approximations or multigrid
solution of linear systems). These component-wise considerations
are discussed in the sections that follow. Here we focus on the
overall solution algorithm for the full PDAE system.

Standard solution algorithms either treat a model as one fully
coupled system at each discrete time step, or follow a natural
sequential decoupling of the model. Fully coupled solves can be
linear or nonlinear in nature depending upon the PDAE model,
and the solution can be of high dimension when a domain is finely
discretized and many unknowns exist at each discrete grid point.
This solution of large coupled systems can be expensive and chal-
lenging to solve efficiently in parallel.

Natural sequential decoupling can be applied, for example, if
the flow field is changing on a different time scale than the one
on which transport and reaction processes operate. A limit of this
notion is when the flow field is steady state or quasi-steady state.
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Sequential decoupling is intuitive when the coupling is one sided;
for example, when the transport and reaction system depends
upon the flow solution, but the flow solution does not depend upon
the transport and reaction solve. Such one-sided coupling occurs
physically when the density and viscosity are not compositionally
dependent, and in the case of multiphase porous medium systems
when the volume fractions are not affected by transport and reac-
tion. Sequential decoupling can also be applied even with systems
that are formally coupled in both directions, but a separation of
time scales occurs. An example of such a case is the dissolution
of a trapped organic phase into water in a porous medium system
[202,273]. Similar notions apply to other multiphase mass transfer
problems in porous medium systems, such as problems that in-
volve precipitation and dissolution.

More complex models of subsurface and surface water flow and
transport contain a sufficient number of unknowns and/or a dispa-
rate set of operators, which are not amenable to the standard algo-
rithms discussed above. In this case, operator splitting (OS)
approaches are of use. We broadly define OS as the solution of a
model by a sequence of component solves with each component
consisting of some subset of the operators in the original model.
The splitting may decompose the model based upon complete
equations that are a subset of the entire model or some subset of
the operators within an individual equation. The splitting may also
decompose an operator into components using, for example, sub-
sets of the dimensions of a spatial operator, or into scales in a mul-
tiscale method, which is a class of method described in detail
below. OS may include an arbitrary number of steps, and it may
be iterative or non-iterative in nature.

OS methods are well-documented in the applied mathematics
and water resources literature and a topic of sustained and contin-
uing interest [e.g. 70–72,80,95,146,147,214,325]. There are three
primary motivations for the use of OS methods. First, OS can result
in smaller component solves. If the component solves scale less
favorably than linearly in the number of unknowns, then dividing
the solution into components can reduce the computational ex-
pense of the solution, substantially in some cases. Second, OS
methods can subdivide a problem into pieces that are each natu-
rally suited to a particular solution method. For example, an advec-
tive operator can be approximated by a high-resolution numerical
method developed for hyperbolic conservation laws, while a reac-
tion solve can be solved efficiently by a DAE solver for stiff systems
of equations. Such approaches have merit because each of the com-
ponent solves can be done with high efficiency by methods that are
well-suited to the component being solved. Third, OS methods are
often used to allow component solves to be processed in parallel to
take advantage of modern high-performance computing systems.
While such approaches can lead to simple parallel algorithms, load
balancing issues can arise in naive implementations.

Consider a general model formulation of the form

Aut ¼ LðuÞ for t 2 ½ti; ti þ Dt�; ð60Þ

where A is coefficient matrix, u is a vector of dependent variables, L
denotes a vector of differential–algebraic operators, the subscript t
denotes temporal differentiation, ti is an initial time, and Dt is a
time step. Expressing water resources models of interest in this
form abstracts away the physical details and allows for a focus on
algorithmic approaches.

OS algorithms can be characterized by the order of the trunca-
tion error that they introduce and the means used to control this
truncation error. The sequential split-operator (SSO) method is
common and can be written as

Aut ¼ LiðuÞ for i ¼ 1; . . . ;ns; t 2 ½ti; ti þ Dt�; ð61Þ

where

uiðtiÞ ¼ ui�1ðti þ DtÞ for i > 1; ð62Þ

ns is the number of split components in the algorithm, and ui de-
notes the solution vector from the ith component solve. In Eq.
(61), a given equation from the vector system is advanced a time
step Dt in component solves. Because all components are not
approximated simultaneously, an OS error of order ðDtÞ is intro-
duced. The only means to control this error is through a reduction
in the OS step Dt. Naive SSO algorithms neither estimate nor control
the OS error introduced into the solution as a formal part of the
algorithm.

OS accuracy can be improved through the use of a Strang strat-
egy [330], which can be summarized as

Aut ¼ LiðuÞ for i ¼ 1; . . . ;nsh; t 2 ½ti; ti þ Dt=2�;
Aut ¼ LiðuÞ for i ¼ nsh þ 1; . . . ;nsh þ nsf ; t 2 ½ti; ti þ Dt�;
Aut ¼ LiðuÞ for i ¼ 1; . . . ;nsh; t 2 ½ti þ Dt=2; ti þ Dt�;

ð63Þ

where nsh is the number of operators that are computed over a half
time step, nsf is the number of operators that are computed over a
full time step, and the initial conditions for all component solves
are assigned based upon the solution from the previous component
solve, similar to the strategy given by Eq. (62). Strang splitting can
reduce the splitting to order ðDtÞ2 in certain cases with additional
expense compared to the SSO approach [157]. Alternating the order
of splitting to advance a time step can reduce the performance pen-
alties for Strang splitting and lead to an equivalent order of accuracy
[275,341]. Neither Strang splitting nor the alternating OS method is
typically implemented to either estimate or control OS error.

Another algorithm that has received some attention in recent
years is the iterative split-operator (ISO) algorithm [158,214],
which may be summarized as

Aut ¼ Lð~uiÞ for i ¼ 1; . . . ;niso; t 2 ½ti; ti þ Dt�; ð64Þ

where ~ui denotes a vector that includes some values of u that are
solved for over a time step and other entries of u that are approxi-
mated, and niso is the number of ISO component solves in one iter-
ation of the algorithm. The ISO algorithm can be iterated until
suitable convergence is obtained. It has been proven, subject to suf-
ficiently accurate component solves, that the ISO method converges
quadratically [214]. Open issues exist for the ISO algorithm, includ-
ing conditions under which a given splitting approach convergences
and how to best preserve the quadratic convergence rate.

As mentioned above, relatively little has been done for temporal
error control and adaption within the context of OS methods [73],
although there have been a few recent efforts to develop adaptive
approaches for estimating and controlling error due to operator
splitting [146,147,157]. Specifically, the approaches from
[146,147] extend residual-based a posteriori techniques [79,148]
to control splitting error. These approaches are elegant and prom-
ising but do require solution of a linearized dual problem. More-
over, unlike more traditional elliptic and parabolic PDEs for
which they have been quite successful [142,143,301], the adjoint
for a split formulation can differ significantly from the adjoint of
the fully coupled problem and take care to derive [146]. The work
in [157] takes a different path and estimates splitting error using
either variable order splittings or step doubling in a Richardson
extrapolation approach. Even though it is simpler and less tailored
to the operators in a given splitting than adjoint-based techniques,
the resulting method is relatively straightforward and generic. In
either case, the resulting error estimate can in turn be used to en-
sure that a specified error criterion has been met and to estimate
the next time step size to meet a user-specified error tolerance.

In short, fully coupled and OS solution procedures of long stand-
ing continue to be relevant today. In our view, the models solved
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by the water resources community are growing in complexity, and
so the tradeoffs between fully coupled and OS solutions will also
continue. Increased computational resources make fully coupled
solutions to problems of the size common in the past more tenable.
On the other hand, the desire to solve still more complex (and lar-
ger) problems means that there will continue to be a demand for
OS techniques. The need for improved OS methods with error con-
trol and adaption seems clear, whether for established or evolving
models.

4. Evolving discretization methods

A wide variety of discrete approximation methods for the PDAE
systems outlined in Section 2 exist. Since many of these methods
are well established, and well documented elsewhere, a review
of routine discretization methods is not necessary. Rather, the fo-
cus of this section is on a set of evolving methods that are espe-
cially promising but which are not yet routinely used in
production-level simulators of water resources systems. Applica-
tions of these evolving discretization methods to established mod-
els could result in more efficient simulators than those currently
used for production simulations. These evolving discretization
methods are also applicable to the evolving water resources mod-
els summarized in Section 2.

The unifying theme among these evolving discretization tech-
niques is based upon three goals: subscale resolution, qualitative
correctness, and a posteriori error control. Under resolution is a
continuing challenge in modeling of water resources systems.
Water resource modeling is replete with problems where solutions
at the spatial and temporal scales of interest are either controlled
or heavily influenced by physical processes and solution dynamics
at a much smaller scale. Unfortunately, resolving these small-scale
processes using a direct approximation at the small scale is usually
impractical if not impossible. Responding to this challenge is a cen-
tral goal of multiscale methods, but even high-resolution advection
schemes can be seen as efforts to approximate steep transitions
accurately without recourse to underlying boundary layers.

The idea of monotonicity in scalar hyperbolic PDEs leads to the
second theme, which is qualitative correctness. By this we mean
that there are solution properties beyond absolute measures of
truncation error that a discretization scheme should honor. Besides
monotonicity, where appropriate, clear examples include global
and local mass conservation, particularly as related to velocity
fields in transport problems.

A third theme of importance is the control of discretization error.
Most water resources simulators currently in use neither measure
nor control error resulting from discretization methods. As numer-
ical simulation methods continue to evolve, explicit control of error
will become an increasingly desirable feature. The importance of er-
ror control was discussed in Section 3, and it is clearly important
when considering discretization methods. Unfortunately, providing
an adequate review of relevant a posteriori error estimation meth-
ods is beyond our scope here. Rather, we refer readers to existing re-
views [79] and example applications in water resources
[76,238,246,254,328,339,345]. We also note that recent efforts have
brought residual-based error estimation techniques [142,143,301]
to bear on nonlinear multiphysics problems [146–148].

4.1. Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods have been developed
extensively over the past two decades for a wide variety of problems
in water resources and many other applications. Recent publica-
tions that describe DG methods in significant detail are
[105,186,305]. As opposed to the more standard continuous Galer-

kin finite element method, which uses H1 approximating spaces, the
DG method allows the freedom of using completely discontinuous
approximating spaces; i.e., polynomials defined on each element
without any requirements on continuity at element boundaries.
Along faces between elements, quantities such as advective and dif-
fusive fluxes are approximated by so-called ‘‘numerical fluxes,’’
which may be based on Riemann solvers in the case of nonlinear
hyperbolic problems, or may be as simple as averages or one-sided
values. In addition, jumps in the solution across element faces are
controlled through ‘‘penalty’’ terms, which must be judiciously
added to make the methods well-defined and stable.

The advantages of the DG method over continuous Galerkin
methods are the ability: (1) to preserve local conservation proper-
ties, such as conservation of mass; (2) to easily refine the mesh lo-
cally within an element without the difficulty of dealing with
hanging nodes (h adaptivity); (3) to use different polynomials on
each element (p adaptivity) depending on the smoothness of the
problem; (4) to treat boundary and other external conditions
weakly; and (5) to produce efficient parallel implementations, as
most of the work is done at the element level and the stencil usu-
ally involves only neighboring elements.

The primary disadvantage of the DG method is that it can be
significantly more computationally expensive than continuous
Galerkin methods in terms of the number of degrees of freedom
per variable on a given mesh. A fairer comparison, however, may
be computational effort vs. accuracy. For example, in Kubatko et
al. [245], a comparison is made between DG and continuous Galer-
kin methods for the shallow water equations on a computational
effort vs. accuracy basis, and there are numerous cases where the
DG method outperforms its continuous Galerkin counterpart.
There are also applications when preserving local conservation
properties is essential, such as when coupling flow and transport
[118], and here DG methods have clear advantages. It is also possi-
ble to mix discontinuous and continuous approximating spaces in
various ways, again depending on the application, see [49,120] for
discussion of so-called hybrid approaches.

DG methods appear to have been first introduced in the 1970’s
for stationary neutron transport problems by Reed and Hill [302].
Lesaint and Raviart analyzed this method and named it the ‘‘dis-
continuous Galerkin’’ method [252]. Around the same time a sim-
ilar idea, the interior penalty (IP) methods, were developed in a
series of papers by several authors [55,62,127,349]. These methods
allowed for solutions to have discontinuities across element edges,
with ‘‘penalty’’ terms used to control jumps in the solution and/or
the first derivatives of the solution. Despite extensive analysis for
parabolic, elliptic, and hyperbolic problems, IP methods fell out
of favor at the time because they seemed to have little computa-
tional advantage over continuous Galerkin methods.

In the 1980’s and 1990’s, DG methods were studied extensively
for the solution of hyperbolic conservation laws in a series of pa-
pers by Cockburn and Shu [104,106,108–110]. They combined
DG spatial discretization with Runge–Kutta time stepping, result-
ing in the so-called RKDG method. This general approach has been
extended for solving hyperbolic systems in complex geometries,
including Maxwell’s equations, acoustics, elasticity, shallow water
equations, free surface waves, plasma physics and gas dynamics
[50,58,107,110,119,140,187].

DG and IP methods were revived in the 1990’s for elliptic
boundary value problems, leading to numerous papers and an
alphabet soup of methods, including the nonsymmetric interior
penalty Galerkin (NIPG), the symmetric interior penalty Galerkin
(SIPG), the incomplete interior penalty Galerkin (IIPG) and local
discontinuous Galerkin (LDG) methods. See Arnold et al. [56] for
a unified description of these and other DG and IP methods. With
improved computational power, h and p adaptive methodologies,
and improved linear and nonlinear solvers, DG methods are now
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competitive with traditional methods [195,215,245,295], and over
the past decade there has been an explosion of research in DG
methods across a wide spectrum of science and engineering prob-
lems [186,305].

Because of their success at solving hyperbolic problems, there
has been extensive research in extending the DG methods to
advective-dominated advection–diffusion equations, essentially
by combining the ideas of the RKDG methods with DG or IP meth-
ods for elliptic boundary value problems. As a simple example to
demonstrate the basic ideas of the DG method in this case, we con-
sider a one-dimensional advection diffusion equation, which is an
instance of Eq. (2)

ut þ aux � cuxx ¼ f ; t > 0; 0 < x < 1; ð65Þ

where subscripts denote partial differentiation, uðx; 0Þ ¼ u0ðxÞ, and
for simplicity uð0; tÞ ¼ uð1; tÞ ¼ 0. The interval ½0; 1� is divided into
elements Xj ¼ ½xj�1=2; xjþ1=2� of length he;j, with xj denoting the
midpoint of the element, j ¼ 1; . . . ;ne. We consider a test space
Vh of functions that are in H2 inside each element, but are not con-
tinuous at the interior element interface points xjþ1=2. Notationally,
let

w�ðxjþ1=2Þ ¼ lim
�!0�

wðxjþ1=2 þ �Þ; ð66Þ

wþðxjþ1=2Þ ¼ lim
�!0þ

wðxjþ1=2 þ �Þ; ð67Þ

swðxjþ1=2Þt ¼ w�ðxjþ1=2Þ �wþðxjþ1=2Þ; and ð68Þ

fwðxjþ1=2Þg ¼
1
2
½w�ðxjþ1=2Þ þwþðxjþ1=2Þ�: ð69Þ

Multiplying Eq. (65) by w 2 Vh, integrating over a single
element Xj and integrating by parts we arrive atZ

Xj

½utw� auwx þ cuxwx�dxþ auwjxjþ1=2
xj�1=2

� cuxwjxjþ1=2
xj�1=2

¼
Z

Xj

f vdx:

ð70Þ
Summing over all Xj:Xne

j¼1

Z
Xj

½utw� auwx þ cuxwx�dxþ
Xne�1

j¼1

auswtjxjþ1=2
�
Xne�1

j¼1

cuxswtjxjþ1=2

¼
Z

Xj

fwdxþ auwjx¼0 � auwjx¼1 � cuxwjx¼0 þ cuxwjx¼1: ð71Þ

Notice that we have not applied any of the boundary conditions to
the test space or to the weak formulation at this point. Now, in
order to define a DG method, we add several ‘‘zero’’ terms to Eq.
(71). These terms are zero because they involve jumps in the true
solution, which we assume to be smooth. First, define the ‘‘upwind’’
value of u at xjþ1=2 as

uup ¼
u�; a > 0
uþ; a < 0

�
ð72Þ

and define

Aðu;wÞ ¼ �
Xne

j¼1

Z
Xj

½auwx � cuxwx�dxþ
Xne�1

j¼1

auupswtjxjþ1=2

�
Xne�1

j¼1

cfuxgswtjxjþ1=2
þ auwjx¼1 þ cuxwjx¼0 � cuxwjx¼1

þ
Xne�1

j¼1

rsutswtjxjþ1=2
þ ruwjx¼0 þ ruwjx¼1

� sd

Xne�1

j¼1

csutfwxgjxjþ1=2
� cuwxjx¼0 þ cuwxjx¼1

" #
: ð73Þ

The last six terms in Eq. (73) are zero since sut ¼ 0 and
uð0; tÞ ¼ uð1; tÞ ¼ 0. The parameter sd multiplying the last three
terms can be set to 1 (SIPG method), 0 (IIPG method), or �1 (NIPG
method). The parameter r is called the penalty parameter and must
be chosen to be sufficiently large in the SIPG or IIPG methods for
stability, and must be at least positive in the NIPG method. Note
that the first choice results in a symmetric operator A when a ¼ 0
and the latter two result in a nonsymmetric operator. Thus Eq.
(71) can be rewritten succinctly as

Xne

j¼1

Z
Xj

utwdxþAðu;wÞ ¼
Xne

j¼1

Z
Xj

fwdx: ð74Þ

The LDG formulation follows a different path and rewrites Eq. (71)
in a mixed formulation by introducing an auxiliary variable

jd ¼ �cux: ð75Þ

Next define an approximating space

Wh ¼ fw : w 2 PkðXjÞ; j ¼ 1; . . . ;neg; ð76Þ

which is a finite dimensional subspace of Vh, where Pk denotes the
set of all polynomials of degree less than or equal to k; k P 1. Final-
ly, the continuous time DG formulation of Eq. (74) is to find uh 2Wh

such that

Xne

j¼1

Z
Xj

@uh

@t
whdxþAðuh;whÞ ¼

Xne

j¼1

Z
Xj

fwhdx; 8wh 2Wh: ð77Þ

This equation can now be integrated in time using any number of
temporal discretization methods.

The applications of DG methods to systems of advection–diffu-
sion-reaction equations, shallow water, and Navier–Stokes flow
equations, are very active areas of research. These problems are
typically advective-dominated, can give rise to shocks and/or sharp
fronts in the solution, require unstructured grids to resolve com-
plex geometric and/or solution features, and are thus well-suited
for solution by DG methods. While there has been substantial re-
search at applying DG methods to subsurface flow problems, the
methods have not generally been adopted in this community, pri-
marily because of their expense and the traditional use of low-or-
der finite difference methods. The transfer of DG technology into
production or operational codes is still years away, primarily be-
cause of questions of cost and efficiency. However, as computing
architectures continue to evolve, requiring new paradigms in algo-
rithms and solvers, and with the requirements of multiphysics and
multiscale modeling, DG methods may well prove to be a founda-
tional method for solving PDEs on the computing platforms of the
future [117,237].

4.2. Multiscale methods

Many problems in water resources involve multiple length
scales. Several examples of such problems were discussed in
Section 2. The direct numerical solution of multiscale problems is
difficult, and frequently impossible, even with modern high-
performance computers because of both computational effort
and memory limitations. However, from an application perspec-
tive, it is often sufficient to predict the properties of a multiscale
system on a scale that is much coarser than the small length scale
that influences the behavior. Therefore, it is desirable to develop a
method that captures the small-scale effect on the large scales, but
does not require resolving all the small-scale features.

In response to this need, multiscale methods have received
considerable attention over the last several years. Theory has been
advanced to support multiscale methods and analyze their
behavior, and a growing body of comparisons among different
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candidate multiscale methods has been reported. It is clear that
multiscale methods, broadly speaking, will be an important area
of both research and application in the applied mathematics and
water resources fields for the foreseeable future.

We summarize some aspects of multiscale methods in the sec-
tions that follow: general concepts of the multiscale finite element
method (MsFEM) [136,193], approaches to improve multiscale ba-
sis functions, the multiscale finite volume method (MsFVM) [210],
generalization of MsFEM to nonlinear problems, coarse grid
choices, systematic enrichment of multiscale spaces, multiscale
methods for stochastic problems, mixed MsFEM [45,100], and an
application to multiphase flow and transport processes. The broad
scope of this treatment is indicative of both the body of work that
has been performed and the prominence of multiscale methods in
modern science.

4.2.1. General concepts of MsFEM
MsFEM represents small-scale behavior through the calculation

of localized basis functions that depend upon small-scale aspects
of the PDAE model. These basis functions contain essential multi-
scale information embedded in the solution and are coupled
through a global formulation to provide a faithful approximation
of the solution. The MsFEM originated from [60,61] where oscilla-
tory basis functions were constructed for elliptic equations with
special heterogeneous coefficients. There are now several ap-
proaches to capture the effect of small scales on the large-scale
solution. In this section we focus on a simple MsFEM to introduce
some basic notions, which are covered in more detail in the litera-
ture [e.g. 136,193].

Consider a Galerkin finite element method formulation for a lin-
ear elliptic PDE of the form

Lp ¼ f in X; ð78Þ

where X is a domain in Rdðd ¼ 2;3Þ; L is a differential operator,
Lp :¼ �r � ðk � rpÞ; k ¼ kijðxÞ is a heterogeneous permeability ten-
sor with multiple scales and is assumed to be symmetric and satis-
fies ajnj2 6 kijninj 6 bjnj2, for all n 2 Rd with 0 < a < b. We note that
L can be a different operator, e.g. representing other water resources
models.

MsFEM consists of two major ingredients: (1) multiscale basis
functions, and (2) a global formulation that couples the multiscale
basis functions. Important multiscale features of the solution are
incorporated into these localized basis functions that can contain
information about the scales that are both smaller and larger than
the local scale defined by the localized basis functions. A global for-
mulation couples these localized basis functions to approximate
the solution.

The basis function construction for the Galerkin MsFEM is
straightforward for the common case of resolving sub-scale detail.
Let T h be a usual partition of X into simplices (e.g. triangles, quad-
rilaterals). We call this partition the coarse grid and assume that
the coarse grid is resolved with a fine grid, which is depicted in
Fig. 1. Let xi be the interior coarse nodes of the mesh corresponding
to T h and /0

i be the nodal basis of a standard finite element space
Wh. To formulate the equation describing multiscale basis func-
tions, we denote by Si ¼ supportð/0

i Þ. Next, we define /i with sup-
port in Si as follows

L/i ¼ 0 in K; /i ¼ /0
i on @K; 8K 2 T h: ð79Þ

Note that @K represents all edges of the coarse grid block (see
Fig. 1). Solution of Eq. (79) for each basis function /i yields the finite
element space spanned by /i, which is denoted

Ph ¼ spanf/ig: ð80Þ

The solution of Eq. (79) depends upon the operator L, the structure
of the coefficients that appear in L, and the spatial dimensionality of
the problem. For the elliptic operator defined above, an analytical
solution may be possible and is trivial in one spatial dimension
[e.g. 136]. Note that multiscale basis functions are constructed
off-line and can be used to solve the global problem for any source
terms and right-hand sides. In particular, for multiphase flow sim-
ulations, multiscale basis functions are constructed based on sin-
gle-phase flow information and this reduces the computational
cost of the computations.

Our main assumption is that the basis functions satisfy the lead-
ing order homogeneous equations when the right hand side f of Eq.
(78) is a smooth function. This assumption allows the MsFEM for-
mulation to represent systems that have a separation of length
scales. If the scale of variations are small compared to the length
scale of the simplices, one can choose K to have a length scale smal-
ler than the coarse grid. The exact shape of multiscale basis func-
tions will depend upon the sub-scale field being resolved.

The global formulation of MsFEM is analogous to the approach
taken in standard Galerkin finite element methods with conform-
ing basis functions ðPh 
 H1

0ðXÞÞ. For MsFEM the global formula-
tion requires finding ph 2 Ph such thatZ

X
rvh Æ k Ærphdx ¼

Z
X

f vhdx 8vh 2 Ph: ð81Þ

Test functions can be chosen from Wh (instead of Ph). This will lead
to the Petrov–Galerkin version of multiscale finite element method
as introduced in [192]Z

X
rvh Æ k Ærphdx ¼

Z
X

f vhdx 8vh 2Wh: ð82Þ

In both Eqs. (81) and (82), the test functions correspond to the
coarse scale T h. The computation of the global coefficient matrix
corresponding to either Eq. (81) or Eq. (82) requires an appropriate
integration, which may be analytically performed in simple cases or
require an appropriate quadrature scheme for more complicated
cases. Note the computation of the global coefficient matrix can
be performed off-line thus there is no need to do integration over
the fine mesh if multiscale basis functions do not change.

If the local computational domain is chosen to be smaller than
the coarse grid block, then one can use an approximation of ph in a
representative volume element (RVE) to represent the left-hand
side of Eq. (82). Since the RVE within each coarse grid block repre-
sents the small-scale features of the media, one can approximate
k Ærph by a periodic function. In this case, there is no need to com-
pute the integral over the entire coarse grid block K and one can
approximate these integrals via the integrals over the RVE by
evaluating

Boundaries of K

Fine−gridOversampled
  domain

K

KE

Coarse−grid

Fig. 1. Schematic description of an oversampled region.
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Z
X
rvh Æ k Ærphdx �

X
K

jKj
jKjloc

Z
Kloc

rvh Æ k Ærphdx; ð83Þ

where Kloc refers to a local computational region (RVE). One can
approximate the right hand side of Eq. (82) similarly yielding

X
K

jKj
jKjloc

Z
Kloc

rvh Æ k Ærphdx ¼
X

K

jKj
jKjloc

Z
Kloc

f vhdx 8vh 2Wh:

ð84Þ

The choice of boundary conditions in defining the multiscale ba-
sis functions plays an important role in approximating the solution.
The boundary condition imposed for the multiscale basis function
needs to reflect the multiscale oscillations of the solution on the
boundaries of coarse regions. If we choose a linear or any other
‘‘artificial’’ boundary condition for the basis function, a mismatch
is created between the exact solution and the multiscale finite ele-
ment approximation along the boundaries of coarse-grid blocks
that can result in large errors. We will briefly discuss this issue
and approaches to reduce the subgrid capturing errors.

4.2.2. Improving multiscale basis functions
The boundary conditions for the basis functions play an impor-

tant role in the accuracy of MsFEMs. Without proper oscillatory
boundary conditions, MsFEM can have large errors. These errors
are mainly due to the resonance between the coarse grid size
and the characteristic length scale of the problem. For the case
where kðxÞ is a periodic function varying over e scale
ðkðxÞ ¼ kðx=eÞÞ, the convergence rate of MsFEM is e=h. This error
is large when h � e. By a judicious choice of boundary conditions,
these errors can be reduced.

To reduce the influence of linear boundary conditions, Hou and
Wu [194] proposed using larger sampling regions in the construc-
tion of the multiscale trial space. Specifically, let wj be the basis
functions (or local solutions) satisfying the homogeneous elliptic
equation in the larger domain KE � K (see Fig. 1). Then, the actual
basis /i are formed by using the linear combination of wj given by

/i ¼
Xd

j¼1

cijwj: ð85Þ

The coefficients cij are calculated by the condition /iðxjÞ ¼ dij, where
xj are the locations of the coarse-grid nodal points, and dij is the Kro-
necker delta function. Numerical experiments have demonstrated
that the oversampling technique reduces the numerical error; how-
ever, the oversampling technique results in a non-conforming
MsFEM method [e.g. 137].

In a number of approaches [e.g. 135,288], a limited number of
global solutions are computed and used to construct multiscale ba-
sis functions. This improves the accuracy of the method when
there are global features that need to be represented on a coarse
grid; refer to [136] for further discussion.

4.2.3. Comparison to other multiscale methods
MsFEM shares similarities with other multiscale methods. In

this section, we briefly discuss the similarity to flow-based upscal-
ing techniques and refer to [136] for comparisons to other methods
such as variational multiscale methods and heterogeneous multi-
scale methods.

One of the early approaches is the flow-based upscaling tech-
nique in the context of porous media [e.g. 128,356]. The main idea
of flow-based upscaling techniques is to form a coarse-scale
equation and pre-compute the effective coefficients based on off-
line simulations similar to the construction of multiscale basis
functions. For linear elliptic equations, the coarse-scale equation
has the same form but with modified coefficients. The effective
coefficients are computed using local solutions in a representative

volume (i.e., the upscaling is based on the flow equation). We note
that there are many other upscaling techniques where various
averaging techniques are used to compute the upscaled permeabil-
ity field. Here, we focus on the comparisons to flow-based upscal-
ing techniques that are rigorous from the point of view of
averaging small scales.

We consider local solutions described by

r Æ ðk Ær/eÞ ¼ 0 in K ð86Þ

with /eðxÞ ¼ x Æ e on @K , where e is a unit vector. Here K denotes a
coarse grid block, as before. The effective coefficients are computed
in each K as

k� Æ e ¼
Z

K
k Ær/edx: ð87Þ

Note that k� is a symmetric matrix provided k is symmetric. One can
employ various boundary conditions that include periodic bound-
ary conditions and oversampling techniques as well as the use of
limited global information. We refer to [128,356] for the discussion
on the use of various boundary conditions. Once the effective coef-
ficients are calculated, the global coarse-scale equation

r Æ ðk� Ærp�Þ ¼ f ð88Þ

is solved over the entire region.
To show the similarity to MsFEM, the discretization of Eq. (88)

using a Petrov–Galerkin finite element method isZ
X
rvh Æ k� Ærp�hdx ¼

Z
X

f vhdx; 8vh 2Wh; ð89Þ

where p�h 2Wh. Next, we substitute Eq. (87) into Eq. (89). If we as-
sume that the coarse grid consists of linear triangle simplices, thus,
rp�h is constant within each coarse grid block, then it follows that

k� Ærp�h ¼
Z

K
k Ær/rp�

h
dx; ð90Þ

where /rp�
h

solves the local problem withrp�h Æ x Dirichlet boundary
conditions. In summary, we have the following formulation for the
coarse-scale equationX
K2T h

Z
K
rvh Æ k Ær/rp�

h
dx ¼

Z
X

f vhdx; 8vh 2Wh: ð91Þ

Since /rp�
h

can be written as a linear combination of multiscale fi-
nite element basis functions /i, this shows that MsFEM can be de-
rived from flow-based upscaling methods. However, MsFEM
differs from traditional upscaling methods, since the local informa-
tion can be recovered adaptively. Moreover, in MsFEM methods,
one can enforce limited global information and enrich multiscale
spaces that are not, in general, possible, for flow-based upscaling
techniques.

4.2.4. Multiscale finite volume method (MsFVM)
Mass conservative schemes play a central role in subsurface

applications. Next, we consider methods that can provide a mass
conservative approximation for the flux defined by k Ærp. Above,
we presented a general concept of MsFEM that can be used to de-
velop mass-conservative schemes. In particular, the global formu-
lation can be changed and we can use various global formulations
based on finite volume, mixed finite element, DG methods, etc.
Some of these approaches have been studied in the literature
(see [136]).

One of these methods within a finite volume context was first
proposed in [210]. The main idea of this method is to use a mass
conservative finite volume global coupling for multiscale basis
functions. In the latter approach, MsFVM is used as a global cou-
pling for multiscale basis functions. In particular, as a test function,
piecewise constant function supported on a target coarse-grid
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block are used to couple multiscale basis functions that are defined
on a dual coarse-grid block. Denoting the control volume corre-
sponding to a coarse node xi by Vi, we consider the coarse space
spanned by multiscale finite element basis functions defined in
Vi (Vi replaces K in (79)). The global formulation of MsFVM is de-
fined asZ
@K

n Æ k Ærphdl ¼
Z

K
f dx; ð92Þ

for every control volume K 
 X, where n denotes the outward nor-
mal vector on the boundary. The resulting multiscale method differs
from MsFEM since it employs the finite volume element method as
a global solver. Note that the coarse-scale velocity field obtained
using MsFVM is conservative in T h.

One can modify basis functions and take into account oversam-
pling or limited global information. This has been tested for two-
phase flow and transport where the single-phase flow solution is
used to construct multiscale basis functions (see [135] for the re-
sults when control volumes are chosen in the global formulation
(92)). The construction guarantees that the basis functions span
the single-phase flow solution. We have observed substantial
improvement in the simulation results by incorporating limited
global information in the construction of multiscale basis functions.

4.2.5. Generalization of MsFEM to nonlinear problems
MsFEMs can be generalized to nonlinear problems without

involving a linearization step. Next, we briefly discuss it in the con-
text of an abstract nonlinear equation

Lp ¼ f ; ð93Þ

where L : X ! Y is a nonlinear differential operator for which L and f
are known and the solution involves finding p. Examples of L can
include Richards’ equation, coupled fluid–structure interaction,
nonlinear monotone operators that arise in Forchheimer flow and
other nonlinear systems of coupled equations, in general. Let Wh

be a finite dimensional space with an approximation property
[358], and h is the coarse-grid mesh size. For the nonlinear MsFEM,
multiscale basis functions are replaced by multiscale maps defined
as Ems : Wh ! Vh, which are defined for each element vh 2Wh;

v r;h ¼ Emsvh where

Lmapv r;h ¼ 0 in K; ð94Þ

where Lmap can be different from L and captures the effects of the
small scales. Moreover, domains different from the target coarse
block K can be used to compute local solutions. Boundary condi-
tions are needed to solve Eq. (94) where we refer to earlier discus-
sions on concepts of selecting boundary conditions. We seek a
solution of Eq. (93) in Vh as follows. Find ph 2Wh (consequently
pr;h 2 Vh) such that

hLglobalpr;h;vhi ¼ hf ;vhi; 8vh 2Wh; ð95Þ

where hu; vi denotes the duality between X and Y, and Lglobal can be
different from L. The correct choices of Lmap and Lglobal are needed for
the accuracy and convergence of MsFEM. For linear elliptic equa-
tions, Lmap is a linear map, and thus, Vh is a linear space spanned
by Ems/, where / 2Wh.

We note that the general concept of MsFEM is used for nonlin-
ear problems, such as Richards’ equation, coupled pore-scale and
Darcy-scale models for deformable porous media, and pseudo-
monotone operators (see [136] for further details). In all these
cases, various Lmap and Lglobal are constructed and convergence of
the methods are studied. In coupled pore-scale and Darcy-scale
models, Lmap consists of local fluid–structure interaction problem
given pressure and displacements at the coarse nodes, while
Lglobal consists of coupled Darcy and elasticity equations. For stea-

dy-state Richards’ equation, Lp ¼ r � ðkðx; pÞ � rpÞ; Lmap is de-
scribed by Lmap/ ¼ r � ðkðx;g/Þ � r/Þ ¼ 0, where g/ ¼ 1

jKj
R

K /dx,
while Lglobal is obtained by taking the test functions to be piecewise
linear functions as in Petrov–Galerkin formulation of MsFEM. Note
that when there is a separation between nonlinearities and heter-
ogeneities, kðx;g/Þ ¼ kðxÞkrðg/Þ, then one can use the same solu-
tion / of Lmap/ ¼ 0 for all g/ provided krðg/Þ is a smooth
function. This allows reuse of the multiscale basis functions
throughout the simulations. Otherwise, multiscale basis functions
need to be re-computed if the changes in heterogeneities due to
g/ is large. As for the global formulation, we seek the coarse-grid
solution, ph, such thatZ

X
rvh Æ kðx;gph Þ Ærphdx ¼

Z
X

f vhdx 8vh 2Wh: ð96Þ

One can also use finite volume framework to obtain mass-conserva-
tive solution.

4.2.6. Coarse grid choice
MsFEM can be applied not only to regularly spaced grids, but to

unstructured grids. The only gridding requirement is that every
coarse grid consists of a connected union of fine-grid blocks. In
[44], the authors developed a gridding technique that used the sin-
gle-phase flow information to construct a coarse grid. The coarse
grid was chosen such that it minimized the global single-phase
velocity vector field. This automatic coarse-grid generator allows
one to use an optimal coarse grid for simulation purposes. Finally,
the fine-grid blocks in neighboring coarse grid blocks do not need
to match along the interface.

4.2.7. Systematic enrichment of multiscale spaces
One can systematically enrich coarse spaces by adding new ba-

sis functions. The construction of these basis functions depends on
initial multiscale basis functions [134]. With a careful choice of ini-
tial multiscale basis functions, a small dimensional coarse space
can be achieved. The enrichment of the coarse spaces uses local
spectral problems with the weight function depending on initial
multiscale basis functions. We briefly review the results of [134].
Consider the eigenvalue problem

r Æ ðk Ærwxi
l Þ ¼ kxi

l
~kwxi

l ; ð97Þ

where kxi
l (or simply ki

l) and wxi
l (or simply wi

l) are eigenvalues and
eigenvectors in xi and ~k is defined by

~k ¼
X

j

r/j Æ k Ær/j; ð98Þ

where /j are initial multiscale basis functions as discussed earlier
and a sum is taken over all coarse nodes. The eigenvalue problem
formulated above is solved with zero Neumann boundary condition,
and it is solved in a discrete setting. Assume eigenvalues are given
by

0 ¼ kxi
1 6 kxi

2 6 . . . : ð99Þ

Basis functions are computed by selecting a number of eigenvalues
(starting with small ones) and multiplying the corresponding eigen-
vectors by /i. Thus, the multiscale space is defined for each i as the
span of /iw

xi
l ; l ¼ 1; . . . ; Li, where Li is the number of selected

eigenvectors.
The dimension of the coarse space depends on the choice of ~k

and thus it is important to have a good choice of ~k when solving
local eigenvalue problem. The essential ingredient in designing ~k
is to guarantee that there are fewer small, asymptotically
vanishing (when contrast increases) eigenvalues of Eq. (97). With
an initial choice of multiscale basis functions that contain many
small-scale localizable features of the solution, one can reduce
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the dimension of the coarse space as demonstrated in [134]. In par-
ticular, we note that the eigenvectors corresponding to small,
asymptotically vanishing (when contrast increases) eigenvalues
represent the local features of the solution. These features typically
are not captured by the initial multiscale basis functions. This gives
a natural way to complement the initial coarse space. The initial
multiscale spaces are important because a poor choice of initial ba-
sis functions can result in a large dimensional coarse space. Thus,
the use of advanced multiscale techniques in constructing initial
basis helps reduce the dimension of the coarse space that is needed
to achieve contrast-independent two-level domain decomposition
preconditioners and more accurate coarse-grid solutions. In [134],
the authors showed that under some conditions the convergence
rate is inversely related to the smallest eigenvalue whose eigen-
vector is not included in the coarse space.

We note that with an appropriate choice of coarse space one can
achieve optimal preconditioners that converge independent of
physical parameters such as small scales and high contrast. In par-
ticular, choosing coarse spaces as above is needed for obtaining ro-
bust preconditioners. We refer to [160] where advantages of using
multiscale basis functions in domain decomposition methods are
demonstrated. The multiscale basis functions are further improved
to take into account high-contrast coefficients in the work [103].

The success of MsFEMs depends whether the space of local
snapshots can be represented with fewer basis functions. This
can be successfully done for many elliptic and parabolic problems.
However, how much model reduction can achieved for other pro-
cesses, e.g. convection or reaction dominated processes, needs fur-
ther study.

4.2.8. Multiscale methods for stochastic problems and parameter-
dependent problems

In many subsurface applications, the media properties contain
uncertainties. After parameterizing these uncertainties, one faces
a challenging task of solving many forward problems where each
of these forward problems contains multiple scales. Because the
multiscale basis construction can require elaborate procedures to
identify reduced-order local models, we can consider constructing
multiscale basis functions for an ensemble of realizations. In
[43,133], MsFEMs have been generalized and applied to stochastic
and parameter-dependent problems. In these problems, multiscale
basis functions are constructed in the off-line stage by selecting a
number of random realizations of the permeability fields. These lo-
cal multiscale basis functions are orthogonalized and used in the
online stage to solve the flow problem for a randomly selected
realization of the permeability field. In particular, in [133], new
multiscale basis functions are computed in the online stage by
solving a small local problem that consists of projecting the local
solution onto an existing set of multiscale basis functions. In
[43], the authors use limited global information in multiscale basis
construction. In this case, all local basis functions are kept in the
online stage to compute the solution of flow problems. Both ap-
proaches show that via the off-line computations of multiscale ba-
sis functions, one can reduce the computational cost at the online
stage involving the construction of multiscale basis functions for a
wide range of stochastic and parameter-dependent flow problems.

4.2.9. Mixed multiscale finite element method
MsFVEM provides a mass conservative velocity field (defined as

v ¼ �k Ærp) on the coarse grid. However, the fine-scale velocity
field reconstructed using multiscale basis functions is no longer
conservative on the fine grid. For multiphase flow and transport
simulations, the conservative fine-scale velocity field is often
needed. A mixed MsFEM can be formulated to provide such a con-
servative fine-scale velocity field [42,52,100].

To present the mixed MsFEM (following [100]), we re-write the
elliptic equation in the form

k�1 Æv þrp ¼ 0 in X

r Æ v ¼ f in X
ð100Þ

with non-homogeneous Neumann boundary conditions v Æ n ¼ 0 on
@X. In the mixed multiscale finite element method, the basis func-
tions for the velocity field, v ¼ �k Ærp, are needed. As in the case of
MsFEM, one can use known mixed finite element spaces to con-
struct these basis functions. We consider multiscale basis functions
corresponding to the lowest order Raviart–Thomas elements
[52,100]. The basis functions for the velocity in each coarse block
K are given by

r Æ ðk ÆrwK
i Þ ¼

1
jKj in K

n Æ k ÆrwK
i ¼

gK
i on eK

i

0 else;

� ð101Þ

where gK
i ¼ 1

jeK
i
j and eK

i are the edges of K. We define the finite dimen-

sional space for velocity by

Vh ¼ spanfWK
i g; ð102Þ

where WK
i ¼ k ÆrwK

i . The basis functions for the pressure are piece-
wise constant functions over each K. We denote the span of these
basis functions by Qh. The basis functions for the velocity field,
WK

i , are conservative on both the fine and coarse grids if the local
problems are solved using a conservative scheme. The mixed finite
element framework couples the velocity and pressure basis func-
tions. This provides an approximation of the global solution for both
pressure and velocity.

Multiscale basis functions can be constructed using information
from the global fields or fields defined in larger regions, v1; . . . ;vN ,
which can be obtained from the solutions of single-phase flow
equations. The basis function for velocity can be constructed as

r Æ k Ær/K
ij

� �
¼ 1
jKj in K

nK
el

Æ k Ær/K
ij ¼ djl

vi Æ nK
elR

el
vi Æ nel

ds
on @K

Z
K

/K
ij dx ¼ 0;

ð103Þ

where i ¼ 1; . . . ;N and j ¼ 1;2;3 (assuming K is a triangle), djl is the
Kronecker delta function, and el denotes an edge of the triangle. One
can see that for each edge, there are N basis functions with the nor-
mal flux equal to the normalized v i Æ n. The normal flux along other
edges is zero. Because of the latter, a source term is required for Eq.
(103). We define wK

ij ¼ k Ær/K
i;j and the finite dimensional space

spanned by these basis functions by

Vh ¼ spanfwK
ijg: ð104Þ

We denote by V0
h the span of wK

ij that satisfies homogeneous Neu-
mann boundary conditions. Let Qh be piecewise constant basis
functions that are used to approximate p. Note that for each edge,
we have N basis functions and we assume that v1; . . . ;vN are line-
arly independent and j

R
el

vi Æ ndsj is bounded below to avoid the
possibility of

R
el

vi Æ nds ¼ 0.
The mixed formulation is to find fv; pg such that v Æ n ¼ g on @X

andZ
X
w Æ ðkkÞ�1 Ævdxþ

Z
X
r Æwpdx ¼ 0; 8w 2 H0ðdiv ;XÞ

�
Z

X
r Æ vqdx ¼

Z
X

fqdx; 8q 2 L2ðXÞ=R;
ð105Þ
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where L2ðXÞ=R is L2 space factorized by constants. One can easily
generalize the method to handle non-homogeneous boundary
conditions.

To formulate the mixed multiscale finite element method, we
use conforming basis functions, e.g. basis functions associated with
the lowest order Raviart–Thomas mixed multiscale finite element.
The global formulation is to find fvh; phg 2 Vh 	 Qh such that
vh Æ n ¼ 0 on @X. We can formZ

X
wh Æ k�1 Ævhdx�

Z
X
r Æ ðwhÞphdx ¼ 0; 8wh 2 V0

hZ
X
r Æ vhqhdx ¼

Z
X

fqhdx; 8qh 2 Q h;

ð106Þ

where V0
h is a subspace of Vh with elements that are homogeneous

on the boundary. The above formulation is the mixed multiscale fi-
nite element method introduced in [100]. This method was modi-
fied later by Aarnes in [42] when applied to porous media flow
simulations.

4.2.10. An application to multiphase flow and transport processes
MsFEM and their modifications are used in multiphase flow and

transport simulations through heterogeneous porous media in the
presence of gravity, compressibility, and so on. The main idea of
these approaches is to compute multiscale basis functions for flow
equations and re-use or adaptively re-compute multiscale basis
functions in some selected regions. The methods are tested for chal-
lenging heterogeneous cases and extended to transport equations.
We refer to a vast literature [e.g. 42,45,136,179,180,209,210,251,
263–265] and the references therein.

The discussion about the performance, accuracy, and speed-up
can be found in the literature [e.g. 136]. For multiphase flow and
transport simulations, the main computational speed-up is due
to off-line computations of multiscale basis functions. Multiscale
basis functions can be re-used at every step of two-phase flow sim-
ulations and thus the pressure equation is solved on the coarse
grid. This can provide a substantial speed-up.

4.3. Krylov deferred correction methods in geochemical applications

For temporal discretizations, the most commonly used schemes
include linear multistep methods (e.g. backward difference formu-
las) and Runge–Kutta methods; existing packages include DASPK
[85,266] and RADAU5 [177,178]. In recent years, spectral and
pseudospectral formulations have been ‘‘re-searched’’ for initial
differential equation problems requiring high-accuracy results
[170,176], and they are often solved accurately and efficiently
using the Picard type integral equation formulations, Gaussian
quadrature, and deferred correction accelerations [130,197]. This
evolving class of methods has potential, but unrealized, application
to water resources problems.

4.3.1. Krylov deferred correction methods
Consider the pseudospectral Legendre–Gauss collocation meth-

od for integrating a simple first-order ODE system in one time step
from 0 to Dt,

y0ðtÞ ¼ fðt; yÞ; yð0Þ ¼ y0: ð107Þ

Let c1; . . . ; cs be the linearly scaled Gaussian nodes on ½0;1�. The col-
location polynomials uðtÞ of degree s over ½0;Dt� satisfy

uð0Þ ¼ y0; u0ðciDtÞ ¼ f½ciDt;uðciDtÞ�; i ¼ 1; . . . ; s; ð108Þ

and the numerical solution at t ¼ Dt is given by uðDtÞ. In [168,355],
Eq. (108) is shown to be equivalent to the s-stage Runge–Kutta
method, and is therefore often referred to as the Gauss Runge–Kutta
(GRK) method. Numerical properties of the GRK method have been

well-studied [e.g. 170,176], and it is well-known that the GRK
method with s nodes for the ODE system given by Eq. (107) is order
2s (super-convergent), A-stable, B-stable, symplectic (structure-pre-
serving), symmetric (time reversible), and the error decays expo-
nentially when s increases for fixed time step size.

Despite these excellent properties, notice that the unknowns in
the GRK formulation given by Eq. (108) are coupled and the solu-
tion at the current time depends on future times, while in the ori-
ginal system given by Eq. (107), the solution only depends on data
in the past. For a system of N nonlinear equations, direct Gauss
elimination of the linearized equations at each Newton iteration
requires prohibitive OðN3s3Þ work for each time marching step.
Therefore, a higher order GRK formulation is seldom used due to
efficiency considerations, the excellent mathematical properties
notwithstanding.

In 2000, Dutt et al. introduced an iterative spectral deferred cor-
rection (SDC) method [130] for the efficient solution of Eq. (108), or
the corresponding discretized Picard integral equation

yðtÞ ¼ yð0Þ þ
Z t

0
f½s; yðsÞ�ds: ð109Þ

In the SDC method, using an existing low-order scheme (e.g. Euler’s
method), a provisional solution is first obtained at the Gaussian
nodes in one time step ½0; Dt� and the corresponding interpolating
polynomial, which is constructed using the numerically stable least
squares based Legendre polynomials and Gaussian quadrature, is
denoted as ~uðtÞ. Second, as the low order ~uðtÞ does not satisfy the
higher order discretization in Eq. (108), an equation for the error
dðtÞ ¼ yðtÞ � ~uðtÞ is defined by plugging ~uðtÞ þ dðtÞ in place of yðtÞ
in Eq. (107). Third, the low-order scheme is applied to the error
equation to derive a lower order approximation ~dðtÞ of the error
dðtÞ, and ~d is then added to the provisional solution ~y in order to
form a better approximation. This iteration continues for a pre-
scribed number of times or until a prescribed error tolerance is
achieved. Clearly, if the iterations converge, the solution will satisfy
the collocation formulation in Eq. (108).

Unfortunately, for general DAEs of higher-index, it has been
demonstrated numerically that the analogous SDC iteration proce-
dure becomes divergent for many systems [196]. Analysis in [197]
shows that for linear problems, the SDC is equivalent to a precon-
ditioned Neumann series expansion, where the preconditioner is
the low-order deferred correction procedure. When there exist a
few ‘‘bad’’ eigenvalues in the series expansion, one observes order
reduction for stiff problems or divergence for certain DAEs. To im-
prove the convergence, in [197], the Krylov deferred correction
(KDC) method was introduced. Instead of simply adding the low
order ~dðtÞ to ~y, one considers the provisional solution ~y as the input
variable and ~d as the output variable, and defines an ‘‘implicit’’
function as

~d ¼ Hð~yÞ: ð110Þ

Notice that when ~y solves the GRK formulation, ~d ¼ 0. Therefore, in-
stead of simply accepting the Neumann series solution as in the ori-
ginal SDC methods, in the KDC method, the Jacobian-Free Newton
Krylov (JFNK) method [240] is applied to solve Hð~yÞ ¼ 0, and each
function evaluation of Hð~yÞ in the JFNK iteration is nothing more
than one SDC iteration. Unsurprisingly, Hð~yÞ ¼ 0 is better condi-
tioned compared with the original collocation formulation since
the low-order method provides an approximation of the collocation
formulation.

The KDC scheme has also been generalized to solve PDAE sys-
tems as discussed in [90,211]. In this approach, discretization is
first performed in the temporal direction using Gaussian nodes.
For the resulting coupled elliptic equation system, similar to the
KDC methods for ODEs and DAEs, a lower order time stepping
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method is used to precondition the system, and the JFNK method is
then applied to find the zero of the better conditioned system. For
the elliptic equation at each time step in the low-order method, an
integral equation based fast elliptic equation solver can be applied
if high accuracy solutions are required [e.g. 149,250]. The fast ellip-
tic solver is often accelerated by fast convolution type matrix vec-
tor multiplication algorithms [166], or by fast direct inversion
algorithms utilizing the ‘‘low separation rank’’ property in the lin-
ear system [165].

4.3.2. A geochemical system application
To illustrate the ideas and demonstrate the performance of the

KDC scheme in a water resources application, we consider a simple
instance of calcite dissolution which is of frequent concern in car-
bon capture and geological storage in geochemical systems
[313,331]. There are eight species: the three primary species (in-
dexed 1–3) are Ca2þ; HCO�3 , and OH�, and the secondary species
(indexed 4–8) include Hþ; CO2; H2CO�3; CO2�

3 , and CaHCOþ3 . We as-
sume that the dissolution/precipitation is the only rate controlled
reaction, cation exchange is neglected, and changes in the pore
structure are considered insignificant. Furthermore, to simplify
the discussion and focus on the KDC approximation we extract a
local set of geochemical reactions in the form of a system of DAEs
in the absence of flow and transport operators, such as would re-
sult from using an operator splitting approach. With these assump-
tions, the corresponding PDAE system becomes a (relatively)
simple DAE system consisting of three differential equations and
five algebraic constraints, which can be obtained by applying a pre-
processing procedure to the original eight-species reaction system
[101,153]. Specifically, we have

d
dt
ðy2 þ y5 þ y6 þ y7 þ y8Þ ¼ r; ð111Þ

d
dt
ðy2 � y3 þ y4 þ 2y5 þ 2y6 þ y8Þ ¼ 0; and ð112Þ

d
dt
ðy2 þ y5 þ y6 þ y7 � y1Þ ¼ 0; ð113Þ

where yi is the concentration of species i for i ¼ 1; . . . ;8 and r de-
scribes the rate-limited precipitation and dissolution of calcite

r ¼ ð1�XsÞ=10: ð114Þ

In Eq. (114) Xs is a saturation index that is a measure of whether the
aqueous phase is subsaturated or supersatured with respect to cal-
cium and carbonate, and we have fixed the product of the rate con-
stant and specific reactive surface area of calcite for simplicity.

The remaining five algebraic constraints are given by

y6 ¼ ðK1 þ 1Þy5; ð115Þ
y6 ¼ ~a2~a4=K2; ð116Þ
~a2 ¼ ~a7~a4=K3; ð117Þ
~a8 ¼ ~a1~a2=K4; ð118Þ
~a3~a4 ¼ Kw; ð119Þ
where Ki ði ¼ 1; . . . ;4Þ and Kw are relevant equilibrium constants, ~ai

is the activity of species i given by the relation ~ai ¼ ĉiyi, and the
activity coefficient ĉi is a function of the ionic strength of the solu-
tion, computed using the extended DeBye-Hückel relation

�log10ĉi ¼
AZ2

i l1=2

1þ Bail1=2 : ð120Þ

In the formula,

l ¼ 1
2

X
i2I s

yiZ
2
i ; ð121Þ

Is is the index set of species, Zi is the charge of species i, and A and B
are properties of the solvent that depend upon temperature. Lastly,
the saturation index is given by

Xs ¼
~a1~a7

Ksp
; ð122Þ

where Xs ¼ 1 at equilibrium, Xs < 1 when the aqueous phase is
subsaturated with respect to calcite, and Xs > 1 when the aqueous
phase is super-saturated with respect to calcite. Values for the var-
ious constants are given in Table 1.

Using Picard type integral, we symbolically denote the DAE sys-
tem as

F y0 þ
Z t

0
YðsÞds;YðtÞ; t

� �
¼ 0; ð123Þ

where YðtÞ ¼ ½Y1ðtÞ; Y2ðtÞ; . . . ;Y8ðtÞ� ¼ y0ðtÞ ¼ d
dt ½y1ðtÞ; y2ðtÞ; . . . ; y8ðtÞ�

is introduced as the new unknown function, y0 is the initial
condition, and yiðtÞ can be recovered using Gaussian quadrature
integration.

Introducing the spectral integration matrix S (which maps the
function values at the Gaussian nodes to its integral at the same
node points using orthogonal polynomial approximation and
Gaussian integration, see [196]), the KDC scheme solves the
discretized collocation (pseudospectral) formulation for Eq. (123)
given by

Fðy0 þ DtS� Y;Y; tÞ ¼ 0; ð124Þ

where t ¼ ½t1; t2; . . . ; ts�T represents the Gaussian nodes, y0 is the
vector of initial values, Y ¼ ½Y1;Y2; . . . ;Y8�T with each vector Yi the
desired collocation formulation solution approximating YiðtÞ at
the discretized points t, and � is the tensor product (i.e., DtS is ap-
plied to each component of Y). Clearly, the direct solution of the col-
location formulation when s is large is in general computationally
inefficient as the matrix S is dense. Instead, in the KDC scheme,
the deferred correction technique is applied to precondition Eq.
(124). The resulting nonlinear system for the error’s equation is
solved using the JFNK method, as detailed next.

We first assume provisional solutions ~Yi ¼ ½~Yiðt1Þ; ~Yiðt2Þ; . . . ;
~YiðtsÞT � at the nodes t are available (derived using a low order time
stepping method or simply using the initial values), and define an
equation for the error diðtÞ ¼ YiðtÞ � ~YiðtÞ by

F y0 þ
Z t

0

~YðsÞ þ dðsÞ
� �

ds; ~YðtÞ þ dðtÞ; t
� �

¼ 0; ð125Þ

where ~YiðtÞ is the interpolating polynomial of ~Yi. Notice that the er-
ror equation is similar to the original system, therefore an existing
low-order method can be adapted to obtain ~d that approximates the
error and improves the provisional solution ~Yi for i ¼ 1;2; . . . ;8. In
our implementation, for stiff DAE systems, a backward Euler meth-
od is applied when marching from tm to tmþ1 as in

F y0 þ ½DtS� ~Y�ðmþ1Þ þ
Xmþ1

l¼1

Dtld
ðlÞ; ~Yðmþ1Þ þ dðmþ1Þ; tmþ1

 !
¼ 0;

ð126Þ

Table 1
Parameter values for calcite dissolution example.

Parameter Value

Ay 5:00	 10�1

By 3:26	 10�1

K1 1:58	 10�3

K2 3:80	 10�7

K3 3:72	 10�11

K4 5:50	 10�2

Kw 4:57	 10�15

Ksp 3:98	 10�9

Ion activity constants ai are taken from [331] 15 �C
[331].
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where Dtlþ1 ¼ tlþ1 � tl; t0 and d0 ¼ ½d1ðt0Þ; d2ðt0Þ; . . . ; d8ðt0Þ� are set to
0. In matrix form, we have

Fðy0 þ DtS� ~Y þ Dt~S� ~d; ~Y þ ~d; tÞ ¼ 0; ð127Þ

where Dt~S is the corresponding lower triangular representation of
the rectangle rule approximation of the spectral integration opera-
tor S. Specifically,

Dt~S ¼

Dt1 0 Æ s 0 0
Dt1 Dt2 Æ s 0 0
Æ Æ Æ s 0 0

Dt1 Dt2 Æ s Dts�1 0
Dt1 Dt2 Æ s Dts�1 Dts

2
6666664

3
7777775
: ð128Þ

Further notice that the approximate error ~d can be considered as a
function of the given provisional solution ~Y from the ‘‘implicit’’
function in Eq. (127), and when the ‘‘input’’ variable ~Y solves the
original collocation formulation in Eq. (124), the ‘‘output’’ is ~d ¼ 0.
Using the same notation as in Eq. (110) and applying the implicit
function theorem, one can show that this new function ~d ¼ Hð~YÞ
is better conditioned (which is not surprising as the low order
method solves a ‘‘nearby’’ problem), and existing JFNK methods
[225,240] can be applied directly for its efficient solution. We omit
the details of the JFNK approximation.

In Fig. 2, we compare the accuracy and efficiency of the KDC
method with the DASPK package. The current KDC solver was
implemented in Matlab, with options for either a fixed time step
size or a simple adaptive marching strategy. To test the accuracy
of the methods, we use a manufactured analytical solution
yiðtÞ ¼ cosði � tÞ by adding source terms to the original system. In
(a), we consider a set of parameters Ki ði ¼ 1; . . . ;4Þ;Kw, and Ksp

such that the DAE system is non-stiff. Specifically, we set
K1 ¼ 1:58; K2 ¼ 3:80; K3 ¼ 3:72; K4 ¼ 4:57, and Ksp ¼ 3:98. For
the KDC method, we plot the number of nonlinear solves for differ-
ent choices of step sizes (uniform step sizes are used) and number
of nodes s ¼ 3;4; . . . ;11. For DASPK, we plot results for different er-
ror tolerances. In DASPK, we count each attempted marching step
as one nonlinear solve (plus any nonlinear solver failures), and in
KDC, one nonlinear solve is required when marching from tk to
tkþ1 using the backward Euler method. In (b), we consider the ori-
ginal set of parameters Ki; Kw, and Ksp for the physical system (gi-
ven in Table 1), numerical calculation shows that the Jacobian
matrix has eigenvalues with large imaginary part in this setting.
For both cases, we march from t ¼ 0 to t ¼ 0:4. Numerical results
show that for the non-stiff case and for low accuracy requirements

(3 to 4 significant digits), DASPK outperforms KDC. However, as the
solutions are smooth, the KDC accelerated collocation formulation
allows larger time step sizes for the same accuracy requirement,
and hence is more efficient for higher accuracy requirements. For
the stiff case, due to stability region properties, DASPK becomes
less efficient when compared with KDC even for low accuracy
requirements (see (b)). Also, we noticed that for both stiff and
non-stiff systems and for the same accuracy requirements, the
KDC methods using more node points (higher order) are more effi-
cient than lower order KDC methods with smaller time step sizes,
which is not surprising as the KDC method indeed solves the pseu-
do-spectral formulation in one big time step.

Finally, we want to mention that as an evolving numerical
scheme, the KDC time stepping scheme requires further detailed
study in order to better understand its applicability and numerical
properties. First, for non-smooth data, the convergence of the spec-
tral or pseudo-spectral discretization will deteriorate. In many
water resources models, such discontinuities or sharp fronts may
require special treatment in order to make the SDC or KDC acceler-
ated PDAE solver applicable. Second, it was also observed and ana-
lytically validated that an ‘‘artificial’’ boundary layer will appear in
the elliptic equation system after temporal discretization of the
PDAE, whose magnitude is bounded by the temporal discretization
error. It is therefore unnecessary for the elliptic equation solver to
resolve this layer to an accuracy higher than necessary. This phe-
nomenon was referred to as the ‘‘controlled stiffness’’ in [359].
Compared with the stiffness for ODEs, the boundary layer presents
a different type of challenge for existing elliptic equation solvers.
Last but not least, in order to fully explore the efficiency of KDC
methods, the current MATLAB based KDC solver needs to be opti-
mized. In particular, we are studying strategies for better selections
of adaptive step-size, order of the method, proper Newton–Krylov
methods, simplified Newton approximations, semi-implicit low-or-
der preconditioners, and parameter choices within the algorithm.

4.4. Other notable, evolving discretization methods

While it is clearly not possible to give them full attention, or
even fully enumerate them, there are other spatial discretization
methods that have seen considerable interest over the last ten
years. For example, the multipoint flux approximation method
(MPFA) is an extension of block-centered finite difference methods
for Darcy flow problems to non-rectangular and, more generally,
non-orthogonal grids [47,131,132,284]. The basic idea behind
these methods is to preserve the properties of block-centered finite
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Fig. 2. Accuracy and efficiency comparison of the KDC method and DASPK for (a) non-stiff and (b) stiff settings.
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differences: (1) the pressure unknown is defined at the center of
the element, (2) the normal Darcy fluxes are continuous across ele-
ment boundaries, (3) the method is locally mass conservative, and
(4) the fluxes can be eliminated in terms of the pressure variable
only. In addition to these properties, the pressure and fluxes should
be at least globally first-order accurate, although in some cases
second-order superconvergence can be proven at certain points
(i.e., super-convergence points) in the mesh. MPFA methods have
been under development for nearly two decades; we refer to
[46,235] for discussion of the early developments of the MPFA
methods and their relationship to other discretization schemes like
control-volume finite element and mixed finite element methods.
Since that time, interest and research into these methods has con-
tinued to develop. Closely related approaches like mimetic finite
differences [86,93] and multipoint-flux mixed finite element meth-
ods [351] have shown promise as well.

5. Modern algebraic solution approaches

Many of the algorithmic descriptions in this section are taken
from [224,225], both of which cover theory and implementation
in more detail than we do here.

Discretization (see Section 4) produces a finite-dimensional lin-
ear or nonlinear system of equations. Our discussion of solvers is
aimed at these kinds of applications. We will let u 2 RN denote
the vector of N unknowns. For example, after discretizing Eq. (1)
in three space dimensions on an n	 n	 n mesh, the vector u could
be the nodal values of H with N ¼ n3. If there are also nS reacting
chemical species described nonlinearly in the flow, the system of
algebraic equations is nonlinear and there are 1þ nS degrees of
freedom for each of the N ¼ n3 spatial mesh points.

Solver technology and computing power have evolved to the
point where substantial problems in one or two space dimensions
can be solved on laptop computers using environments like MAT-
LAB and Python. Problems in three space dimensions, as well as
many real-world applications in two space dimensions, often re-
quire implementations that exploit distributed-memory parallel
computers and more specialized software environments. Such
problems require parallel computing to meet both the memory
requirements of the models and to return an accurate solution in
a reasonable amount of wall clock time. Precise notions of scalabil-
ity are useful for evaluating solver technology for parallel
computing.

To fix ideas, we describe a simple abstract model of a parallel
machine and application to the solution of problems in water re-
sources. A parallel machine consists of P processors, each with a
fixed amount of memory and capable of a fixed rate of floating
point operations per second. A typical algebraic system encoun-
tered in water resources modeling arises from a discretization of
a PDE and results in N computational degrees of freedom, with
each degree of freedom requiring a fixed amount of memory. As-
sume we are able to solve the N degree of freedom problem on a
set of P processors and find that the wall clock time required is T.
Two common problems are that the computation ran too long (N
is acceptable but T is too large) or the solution was not accurate
(N is too small but T is acceptable). Resolving these problems re-
quires that we have some estimate of how the computation scales
as P and possibly N are increased. In the first scenario we evaluate
‘‘how T varies as P increases given fixed N’’, and the solver is said to
be strongly scalable if wall clock time T decreases linearly as the
number of processors P increases linearly. In the second scenario
we evaluate ‘‘how T changes as N increases for a fixed ratio N=P’’,
and the solver is said to be weakly scalable if the wall clock time
T is fixed as N increases. This terminology is odd in the sense that
weak scalability is the more critical notion for most challenging

applications in water resources and requires careful implementa-
tion and numerical analysis to achieve. After all, computational
water resources is primarily concerned with expanding the accu-
racy, scales, and range of processes—thus increasing the degrees
of freedom of the models.

An issue related to weak scalability is how a method performs
as the discretization is refined. For example, one might show that
an iterative method can reduce the residual at a rate that does
not depend on the spatial mesh width. We will refer to this inde-
pendence of convergence on the discretization as mesh-indepen-
dence. Mesh-independent algorithms are a necessary, but not
sufficient, condition for scalable parallel performance, since many
additional considerations other than operation counts alone deter-
mine parallel performance.

5.1. Linear equations

We will write linear systems as

Au ¼ f: ð129Þ

We will assume throughout that Eq. (129) has a unique solution for
all right-hand side vectors f. We will think of A as a linear operator,
rather than a matrix, because some methods (the matrix-free algo-
rithms) only need the product of A with a vector, which is often
much less expensive to compute than a matrix representation of A.

We distinguish between direct methods, which in infinite preci-
sion will return the solution in finitely many operations, and iter-
ative methods, which produce a sequence of approximations to the
solution.

The performance and accuracy of linear solvers depends on the
condition number of the operator

jcðAÞ ¼ kAkkA�1k: ð130Þ

If, for example, jcðAÞ is very large (>108) then the residual norm
kf � Auk can be a poor indicator of the error, and any solver can pro-
duce poor results [122,224].

5.1.1. Direct methods
Even in one space dimension, the discretizations of interest for

water resources models can have too many unknowns to use sim-
ple Gaussian elimination [122] without exploiting the sparsity of
the problem. Sparse direct solvers [114] apply Gaussian elimina-
tion using the pattern of non-zeros in the coefficient matrix. These
methods must compute and store the matrix representation of the
discrete operator, and then perform a sparse matrix factorization.
This cost is often prohibitive in three space dimensions. However
in one or two dimensions, these methods are often practical and
efficient. Table 2 gives a list of software implementing direct solv-
ers. Using sparse solvers efficiently typically only requires that a
user provides the matrix in a sparse format—most solvers are de-
signed to have an application program interface (API) quite similar
to dense direct solvers. To extract optimal performance and robust-
ness additional algorithm-dependent parameters may also require
tuning (e.g. approximating required fill, drop tolerance, etc.). The
packages in Table 2 are written in Fortran, C, and C++. Some of
these sparse direct solvers are also conveniently available in MAT-
LAB and Python (http://www.mathworks.com/products/matlab,
scipy.sparse.linalg).

5.1.2. Iterative method fundamentals
For problems in three spatial dimensions, iterative methods are

a compelling choice. However, iterative methods require more pro-
gramming, design, and analysis. The most fundamental new
requirement relative to sparse direct solvers is that termination
criteria need to be selected appropriately for the application in or-
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der for iterative solvers to be efficient. Selecting termination crite-
ria can be quite complex in practice as it involves balancing accu-
racy with performance and robustness of the overall computation,
which may include feedback from time step selection and nonlin-
ear iteration performance. There are many other considerations for
the large family of existing iterative methods including generic
considerations such as efficient parallel sparse matrix–vector prod-
ucts as well as algorithm-specific details such as restart strategies
for methods that require the preservation of a sequence of solu-
tions over multiple iterations, which we will refer to as iteration
history.

In stationary solution methods, it is common to terminate iter-
ative methods when the relative residual is sufficiently small. Gi-
ven a tolerance g, the termination criterion is

kf � Auk 6 gkf � Au0k; ð131Þ

where u0 is the initial guess of the solution, which is often taken as
zero. In time-dependent problems, the solution at the previous time
step, or an extrapolation of it, may provide a very good u0. Then a
relative criterion can be too strict, and the absolute residual is often
more relevant for terminating the iterations:

kf � Auk 6 g: ð132Þ

Here, the tolerance g must match the characteristic size of elements
in u. To allow the flexibility of both relative and absolute criteria
many implementations require a relative tolerance gr and an abso-
lute tolerance ga and terminate the iterations when

kf � Auk 6 ga þ grkf � Au0k: ð133Þ

In many iterative methods, it is natural to terminate based on a pre-
conditioned residual, which can be viewed as an approximation of
the error, that is

ku� u�k � kPf � PAuk 6 ga þ grkPf � PAu0k: ð134Þ

where u� is the exact solution vector, and P is the preconditioner
matrix. Clearly the preconditioner and the tolerances must be care-
fully chosen in order for this test to yield reliable and/ or efficient
iterative methods.

5.1.3. Stationary iterative methods
Stationary iterative methods convert Eq. (129) to a linear fixed

point problem

u ¼Muþ b; ð135Þ

where M is called the iteration matrix. The iteration is

unþ1 ¼Mun þ b: ð136Þ

The classical stationary iterative methods use a matrix representa-
tion of A to construct M. More modern (and more efficient) station-

ary iterative methods, such as multigrid methods [87], do not
necessarily require a matrix representation of A. Stationary iterative
methods converge if the largest eigenvalue of M is smaller than 1 in
magnitude, and their analysis is based on an estimate of that eigen-
value [87].

The prototypical stationary iterative method is the Jacobi itera-
tion [122,224]. This method requires a matrix representation of A,
and solves the ith equation in Eq. (129) for ui to obtain the iteration

ðunÞi ¼
1
aii

fi �
X
j–i

aijðun�1Þj

 !
; ð137Þ

where ðunÞi is the ith coordinate of iteration n. For this example, if
we split A into diagonal and strictly upper and lower triangular
parts

A ¼ D� L � U ð138Þ

then

b ¼ D�1f and M ¼ D�1ðL þ UÞ: ð139Þ

The classical stationary iterative methods perform poorly (in terms
of the number of floating point operations needed to produce a
solution of a given accuracy) for discretizations of differential equa-
tions, and the performance becomes worse as one refines the grid
[122]. However, they can be very efficient in terms of storage and
can, for some problems (like finite difference discretizations of dif-
ferential equations), be implemented in a matrix-free way. These
methods are also the basis for some useful preconditioners.

The performance of iterative methods is often a function of the
condition number of the matrix. Before moving onto Krylov sub-
space methods and preconditioning, it is useful to provide a more
precise statement of why performance of classical stationary iter-
ative methods perform poorly as one refines the grid of a discrete
approximation of a PDAE, which implies that they are not weakly
scalable. We take as an example the linear, steady-state version
of the advection–diffusion equation, Eq. (2), in a three-dimensional
domain X. We use the shorthand LðuÞ for the linear differential
operator applied to the solution u. After discretizing this equation
with any standard method we obtain a linear algebra problem of
the same form as Eq. (129) with the matrix A being the discrete
approximation to the operator L. Discretizations of L based on
localized approximations (i.e., finite elements with locally sup-
ported basis functions and finite difference/volume methods) have
the property that [144]:

jcðAÞ 6 ch2
e ; ð140Þ

where c is some constant independent of the discretization and he is
a parameter describing the grid, for example, the maximum cell
length scale. This upper bound is asymptotically correct and implies
that mesh independence (more generally weak scalability) cannot
be attained for any iterative method with a convergence rate
depending on the condition number. The essential problem is con-
nected with the properties of the elliptic linear operator L: it has an
unbounded set of eigenvalues, and the Green’s functions have glo-
bal support [150]. The discretization must either include globally
supported approximations, resulting in dense matrices A, which re-
sult in large storage and expensive matrix–vector products, or one
must devise iterative algorithms that are independent of the condi-
tion number [144]. In the direction of iterative algorithms are the
geometric and algebraic multigrid methods (as solvers, or as pre-
conditioners for Krylov methods), which achieve mesh-independent
convergence rates for a large class of discrete problems arising from
the discretization of PDEs. Practical applications of multigrid meth-
ods have demonstrated both weak scalability and robust conver-
gence for a wide range of applications, but this improvement
comes at the cost of increased algorithmic complexity [172].

Table 2
Parallel software for sparse direct solvers.

Name URL References

Amesos http://trilinos.sandia.gov/packages/amesos [314,315]
SuperLU http://crd-legacy.lbl.gov/�xiaoye/SuperLU [123,124,255]
UMFPACK http://www.cise.ufl.edu/research/sparse/

umfpack
[112,113,115,116]

MATLAB http://www.mathworks.com/products/
matlab

[188]

MUMPS http://graal.ens-lyon.fr/MUMPS [51]
PARADISO http://www.pardiso-project.org [319,320]
SPOOLES http://www.netlib.org/linalg/spooles/

spooles.2.2.html
[57]

PSPASES http://www.cs.umn.edu/�mjoshi/pspases [171]
TAUCS http://www.tau.ac.il/�stoledo/taucs/ [307]
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5.1.4. Krylov subspace methods
Krylov methods are not stationary iterative methods. The kth

iteration will minimize some measure of error over the kth shifted
Krylov subspace

Kk ¼ spanðr0;Ar0; . . . ;Ak�1r0Þ ð141Þ

for k P 1. Here r0 ¼ f � Au0 is the initial residual vector.
There are many Krylov methods. Complete theory exists for the

conjugate gradient (CG) [185] method, which is designed for sym-
metric positive definite A, as you will get for example from the dis-
crete solution of Eq. (1), and GMRES [310], which is for general
operators. These methods differ in the measure of error that exists
after a given iterate [224].

The kth CG iteration minimizes ku� u�kA over u0 �Kk, where
u� ¼ A�1f is the solution and the A-norm is defined by

ku� u�kA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� u�ÞT Aðu� u�Þ

q
: ð142Þ

The kth GMRES iteration minimizes kf � Auk2 over u0 �Kk. We will
not discuss implementation here and, particularly for any method
more complex than CG, encourage the reader to use one of the
many Krylov solvers written by experts [66,183,224] or those in-
cluded, for example, in MATLAB. CG codes terminate the iteration
when the l2 residual norm is sufficiently small, and hence the termi-
nation criterion is not coupled to the minimization problem the
Krylov iteration solves. This is not a problem for the differential
equation problems of interest here.

A very useful heuristic, which can be justified for CG and
GMRES, is that Krylov methods perform very well when A is close
to the identity matrix or if A has a few small clusters of eigenvalues
(and is diagonalizable). One can also say that if jcðAÞ is even mod-
erately large (>103) the Krylov methods will converge very slowly.
Discretizations of differential operators lead to poorly conditioned
linear systems, and one must apply a preconditioner (see Section
5.1.5) to make Krylov methods perform well.

CG is very efficient in terms of storage, needing only five vectors
for the entire iterative method, plus any storage used for A. GMRES,
on the other hand, must store a basis of k orthonormal vectors for
the Krylov subspace, and for very large problems, it can be impos-
sible to meet this demand. This requirement basically means that
to preserve the convergence proven for GMRES, one must store
an additional basis vector for each iterate and use the entire stored
basis in operations needed to produce the kþ 1 approximation—
leading to a linear growth in both storage and operations needed
for each successive GMRES iterate. Low-storage alternatives to
GMRES attempt to address this, but all have limitations.

One might think that replacing Au ¼ f with AT A ¼ AT f and
using CG would work. However, this approach, called CGNR
[224] squares the condition number of the discrete problem, and
hence dramatically reduces the convergence rate, and it also re-
quires two matrix–vector products per iteration, with one trans-
pose-vector product. Methods like CGNR are too inefficient for
the computational water resources models considered here.

Other non-symmetric Krylov solvers, such as Bi-CGSTAB [342]
and TFQMR [156], have fewer problems. Neither of these methods
requires a transpose-vector product, but both do need two matrix–
vector products and neither has a complete convergence theory.
Bi-CGSTAB and TFQMR can, and do, completely fail in certain situ-
ations. So the user of these methods must be prepared to do things
like reinitialize a failed iteration. Finally, one may consider limiting
GMRES to an m-dimensional Krylov subspace, and then restarting
the iteration when the storage is exhausted. This method is called
GMRES(m), and most GMRES codes allow one to limit the storage
in this way. GMRES(m) does not share the rigorous convergence
theory of full GMRES, and can fail to converge, but also performs
well in many cases typical of the applications considered here.

5.1.5. Preconditioning
A preconditioner for Eq. (129) is an operator P that is inexpen-

sive to apply to a vector and for which PA or AP converges more
economically than Krylov solvers based on A. If A is symmetric
and positive definite and one wants to use CG, then P must also
be symmetric and positive definite. The preconditioned conjugate
gradient method (PCG) use matrix–vector products and precondi-
tioner–vector products to replace Eq. (129) with

P1=2AP1=2y ¼ P1=2f; ð143Þ

and solves Eq. (143) with CG, and then recovers u ¼ P1=2y. Here P1=2

is the unique symmetric positive definite square root of P. PCG does
not compute a matrix square root, and the solve of Eq. (143) is done
indirectly [122,224].

For non-symmetric methods, one can apply P to either the right
or the left of A without having to worry about maintaining symme-
try. Left preconditioning replaces Eq. (129) with

PAu ¼ Pf; ð144Þ

and applies the Krylov method to Eq. (144). Right preconditioning
replaces Eq. (129) with

APy ¼ f; ð145Þ

applies the Krylov method to Eq. (145), and recovers u ¼ Py after
the solve. Left preconditioning has the advantage that the
preconditioned residual will be used to control the iteration. If PA
is better conditioned than A, then the preconditioned residual
should be a better predictor of error. Right preconditioning has
f � APy ¼ f � Au for the residual, which is the same as the unpre-
conditioned residual. This is an advantage in cases where reducing
the residual of the discrete problem is the objective or when one
wants to compare preconditioners.

The simplest preconditioner is Jacobi or diagonal precondition-
ing. Here P ¼ D�1, the inverse of the diagonal part of A. It is often
possible to extract the diagonal entries of A from the discretization
directly, without building a matrix representation of A. Other clas-
sical stationary iterative methods usually provide more efficient
preconditioners, especially if formulated in a block version, where
the unknowns are grouped in blocks, and where all unknowns
inside a block are treated implicitly. Such iteration methods are
closely related to domain decomposition. Typically, the domain
for the PDAE is partitioned into subdomains and the problem is
solved on each subdomain. One can show that such a strategy is
a good starting point for an effective preconditioner for Krylov
methods [327]. Domain decomposition methods can be formulated
either via the physical domain for the PDAE or by appropriate par-
titioning of a matrix representation of A. Many domain decompo-
sition methods are nearly mesh-independent and scale well.
Examples of successful application of domain decomposition tech-
niques can be found across the water resources field
[207,208,219,339]. The PETSc package [69] was originally devel-
oped for research on domain decomposition methods and offers
basic functionality for utilizing such methods.

Choosing P�1 ¼ LU, where LU is the lower–upper decomposi-
tion factorization of the matrix representation of A, yields a pre-
conditioner that is optimal in the sense that PA ¼ I, and Krylov
solvers would converge in one iteration. However, L and U are
much less sparse than the matrix representation of A, and there-
fore expensive and memory intensive to compute; computing L
and U is equivalent to solving Au ¼ f by a sparse direct method.
One idea is to drop all fill-in generated by the factorization proce-
dure such that L and U are as sparse as the original coefficient ma-
trix. These approximate L and U factors provide a preconditioner,
called incomplete LU factorization (ILU). The method can also al-
low a certain degree of fill-into improve the preconditioner. Unfor-
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tunately, the ILU preconditioner is not mesh-independent, and it
cannot be parallelized well. However, for problem sizes relevant
on serial computers the method is trivial to apply, mostly with ro-
bust behavior and significant speed up of Krylov solvers.

If the high-order differential term in the PDAE model is simple
enough, it may be much easier to write a solver (multigrid, for
example) for the high-order term than to write one for the entire
equation. Preconditioning with a solver for the high-order term
is, if one gets the boundary conditions right, in many cases prov-
ably mesh-independent [267]. Even a single multigrid cycle for
the high-order term will suffice in many cases. Multigrid precondi-
tioning based on the higher-order term is an example of so-called
physics-based preconditioning where expert knowledge of the
structure of the problem is leveraged to design effective precondi-
tioners. Knowledge of the modeling objectives and the relative
importance of both temporal and spatial differential operators for
the problem can sometimes yield a simple and effective precondi-
tioning strategy, but the range of approaches is beyond the scope of
this article. We note that many of the solver frameworks available,
and cited below, include explicit support for block and incomplete
factorizations schemes, approximation of the Schur complement,
and multilevel and domain decomposition strategies for tailoring
physics-based solvers. One application of the latter type of precon-
ditioning, applied to poroelastic models, appears in [174] using a
high-level supporting software framework [173].

5.2. Nonlinear equations

We will write systems of nonlinear algebraic equations as

FðuÞ ¼ 0: ð146Þ

The default recommendations for a solution strategy are based on
Newton’s method. In its simplest form Newton’s method is a four-
step process from a current iteration un to the next iterate unþ1.
One typically terminates the nonlinear iteration when

kFðunÞk 6 sa þ srkFðu0Þk; ð147Þ

where u0 is the initial iterate and the relative and absolute toler-
ances sr and sa play the role that gr and ga do in Eq. (133).

The steps are


 Evaluate: Compute FðunÞ and test for termination.

 Evaluate: Compute F0ðunÞ.

 Step: Solve (or approximately solve) the linearized problem

F0ðunÞs ¼ �FðunÞ.

 Update: Set unþ1 ¼ un þ s.

Here F0ðunÞ is the Jacobian matrix of F at the point un. Variations
of Newton’s method differ in the way one solves the linearized
problem and related modifications (relaxation) of the Newton step,
s. The basic Newton iteration is usually written as

unþ1 ¼ un � F0ðunÞ�1FðunÞ: ð148Þ

The theory for Newton’s method says that if the initial iteration u0

is near a solution u� for which F0ðu�Þ is nonsingular, and F0 is Lips-
chitz continuous, then the iteration converges to u� and the conver-
gence is fast. By fast we mean q-quadratic [224],

enþ1 ¼ Oðkenk2Þ; ð149Þ

where en ¼ un � u� is the error in the solution for iteration level n.
Eq. (149) means that the number of significant figures of accuracy
will roughly double with each iteration, at least up to the limits
of floating point accuracy.

If one solves the linearized problem with a direct method, a
costly part of the algorithm is evaluating and factoring the

Jacobian, while for iterative methods construction of a precondi-
tioner can likewise be costly. Evaluating the Jacobian itself and
solving the linearized problem (back substitution or application
of an iterative method) represent other significant expenses that
must be weighed in constructing an optimally efficient nonlinear
solver.

If F is expensive to evaluate and one approximates the Jacobian
with a forward difference, at a cost of N additional calls to the func-
tion computing F, the Jacobian computation can be far more costly
than the matrix factorization. For discretizations of PDEs comput-
ing, F0 is often comparable to the cost of computing F, so the choice
of the optimal balance of Jacobian updates and factorizations or
formations of preconditioners must be determined on a case-by-
case basis.

Most nonlinear solver codes give users the option of computing
and factoring the Jacobian less frequently. The price for this is that
the solution will usually take more iterations, but generally those
iterations are much less expensive. The chord method only com-
putes and factors F0 at the initial iterate, so the iteration is

unþ1 ¼ un � F0ðu0Þ�1FðunÞ: ð150Þ

The convergence of the nonlinear iteration is not as fast as for New-
ton, with the rate given as

enþ1 ¼ Oðke0kkenkÞ; ð151Þ

but the reduction in cost per iteration may increase the overall effi-
ciency compared to a full Newton solve. Many implicit temporal
integration codes [88,291] carry this idea further, and keep Jacobian
information for several time steps.

Newton-iterative methods solve the linearized problem with an
iterative method, and the preconditioning issues are the same as
for linear problems, with the added question of how often to com-
pute preconditioning information. Typically one terminates the
linear solver when the relative residual is small, that is

kF0ðunÞsþ FðunÞk 6 gnkFðunÞk: ð152Þ
Note that there is no absolute error test in Eq. (152). The reason is
that the absolute termination test is applied in the nonlinear itera-
tion before invoking any linear solve. The linear solver may use the
tolerances for the nonlinear solver in computing gn (see [224] for an
example). In some ODE and DAE codes, for example DASPK
[85,266], the linear solver inherits both a relative and absolute error
tolerance from the nonlinear solver, which, in turn, is inherited
from the local truncation bounds imposed by the integrator.

In the context of nonlinear solvers, the termination tolerance gn

is called the forcing term. The convergence of the nonlinear (or
outer) iteration depends on the tolerance gn one imposes on the
linear (inner) iteration:

enþ1 ¼ Oðgnkenk þ kenk2Þ: ð153Þ

So, making gn ! 0, for example, will make the nonlinear iteration
converge rapidly, but at the cost of very expensive linear iterations.
Most nonlinear solver software packages have a sophisticated forc-
ing term selection algorithm [e.g. 138], and users can typically
accept the choice in the code.

Most nonlinear solver codes use Krylov methods to solve the
linearized problem. The Jacobian-vector product F0y (for a vector
y) can then be approximated with a forward difference [66,183,
224]: F0ðuÞy ¼ ðFðuþ ~dyÞ � FðuÞÞ=~d for some small ~d. This is a
feasible approach if evaluating F is much faster than evaluating
F0, or if it is complicated and tedious to derive F0 from F. If the
forward difference increment is chosen carefully, the performance
of the iteration will not be affected by the approximation of
the matrix–vector product.

The convergence theory we have discussed so far is local. This
means that the theory requires that the initial iterate be near the
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solution. If the initial iterate is not near the solution, a line search
may be used. For Newton’s method one replaces Eq. (148) with
[54]

unþ1 ¼ un � 2�mF0ðunÞ�1FðunÞ; ð154Þ

where m is the smallest non-negative integer such that the suffi-
cient decrease condition holds

kFðunþ1Þk 6 ð1� al2
�mÞkFðunÞk: ð155Þ

Here al is an algorithmic parameter; al ¼ 10�4 is standard. The the-
ory for this algorithm is that if the iteration does not become un-
bounded and the smallest eigenvalue (in magnitude) of F0 remains
bounded away from zero, then fung will converge to a solution at
which the local convergence theory is valid. Line searches are a
common way for nonlinear solver codes to manage convergence
from arbitrary starting points, and more sophisticated line searches,
such as the popular cubic line search in [294], are available.

Many nonlinear problems in water resources arise from quasi-
linear differential operators, for example we may write the discrete
PDE boundary value problem as

LðuÞ ¼ f: ð156Þ

For such problems, a natural approach is a fixed point iteration of
the form

unþ1 ¼ L�1ðunÞf: ð157Þ

This approach can be viewed as ‘‘lagging’’ the nonlinearity in the
operator L, and the characteristics of the resulting iterative meth-
ods, while typically unable to achieve the local quadratic conver-
gence of the classical Newton method, can be attractive. For
example, the method known as Picard iteration for the nonlinear
Richards’ equation for unsaturated flow has been reported to have
more robust convergence for inaccurate initial guesses than New-
ton’s method [82,289]. Lagging nonlinearities are also common in
dealing with the Navier–Stokes equations due to the relatively sim-
ple quadratic nonlinearity arising from the inertial terms in the
momentum equation. Nonlinear multigrid methods such as the full
approximation schemes (FAS) can also be viewed as fixed-point
iterations that do not require formation and/or inversion of the glo-
bal Jacobian F0, and which may achieve robust, mesh-independent
convergence [217], though this class of methods has not been
widely studied in the context of large-scale three-dimensional com-
putational models. Recent work on Anderson acceleration for fixed-
point iterations provides one route to improving on the slow rate of
convergence of fixed-point methods [344]. Finally we note that an-
other useful approach to nonlinear problems is applying Newton’s
method directly to the PDE before discretization. This approach
can provide some additional flexibility and insight into the discrete
approximations, F, and F0; for example multiscale methods and
nonlinear iterations for Richards’ equation have been derived using
this formalism [222].

The final issue to address is non-uniqueness. The theory for
Newton’s method with a line search says that the iteration will
either converge to a solution or fail in one of two ways, both easy
to detect. The theory does not say that the solution Newton’s
method finds is physically significant. This issue can be partially
addressed by continuation methods [159,223,226,317,346], which
vary natural or artificial parameters to move from a known physi-
cally useful solutions to solutions of the equations with different
values of the parameters.

5.3. Software for algebraic solution approaches

Design and implementation of software for large algebraic sys-
tems is a significant undertaking that typically requires a dedicated

team of developers and a large user base. Table 3 provides a listing
of software packages for iterative methods and preconditioners.
Many of these packages also include interfaces to direct solver
packages.

Most of the software in Table 3 is written in Fortran, C, or C++
and is not easily accessible in user-friendly programming environ-
ments such as MATLAB. However, PETSc can be quite easily oper-
ated from Python with aid of the petsc4py package (http://
code.google.com/p/petsc4py), and a similar interface, PyTrilinos
(http://trilinos.sandia.gov/packages/pytrilinos/) also exists for
Trilinos. PyAMG provides easy-to-use Python constructions for
calling up Krylov solvers with algebraic multigrid preconditioning.

Direct methods and Krylov solvers are offered as ‘‘black boxes’’
by most software frameworks and are hence easy to apply. How-
ever, a Krylov solver needs a preconditioner, which must be pro-
vided by the user, either as a matrix or as an action Pv on some
vector v. Preconditioners based on classical stationary iterations
are easy to construct directly from A, algebraic multigrid precondi-
tioners are to some extent available as ‘‘black boxes’’ (Hypre
through PETSc, ML through Trilinos, and PyAMG), and ILU precon-
ditioners are also offered by many linear algebra libraries. Other
types of preconditioners may require substantial implementation
work from a user.

6. General computational environments

The nature of scientific software implementations has changed
considerably over the last few decades. During this period, the aim
has been to create software that is simple (easy to use), general (can
solve a wide set of physical problems if the mathematical formula-
tions are similar), efficient (utilizes the hardware to run optimally
fast), and reliable (a high-quality answer is guaranteed). These
goals are unfortunately contradictory. The limited computing re-
sources in the early years after the invention of the computer de-
manded a strict focus on efficiency and to a lesser extent
reliability. Generality and simplicity were unaffordable properties,
and much of the programming tradition that lasted for decades
among scientists reflected this view. Reliable, well-tested codes re-
quired many years of development, resulting in software life-times
on the scale of decades. These codes were also normally hard to
modify and extend to new problems, thus slowing the speed of
research.

A clear shift appeared in the 1990s with the increased popular-
ity of C++ for scientific computing. The implementation techniques
offered by C++, object-oriented programming and generic (tem-
plate) programming, naturally encouraged generality in that com-
mon mathematics and numerics could more easily be ‘‘factored
out’’ of the applications and offered in general, reusable libraries.
For example, while older finite element packages were formulated
in terms of a heat conduction element and a porous medium trans-
port element, software favoring generality splits the physics and
mathematics, where feasible, and casts a finite element as a geo-
metric entity attached with a set of basis functions and degrees
of freedom. This may allow one element in the library to be used
for both heat conduction and porous medium transport.

Table 3
Parallel software for solving algebraic equations.

Name URL References

PETSc http://www.mcs.anl.gov/petsc [67–69]
Trilinos http://trilinos.sandia.gov [183]
HYPRE http://computation.llnl.gov/casc/software.html [102]
pARMS http://www-users.cs.umn.edu/saad/software/

pARMS/index.html
MTL4 http://www.simunova.com/de/node/24 [324]
PyAMG http://code.google.com/p/pyamg/ [81]
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Many C++ libraries of this type have appeared during the last
two decades, mostly accompanied by a large set of diverse physical
applications and by some sort of computational environment for
easily implementing and exploring models. A non-exhaustive list
of notable environments for finite element programming includes
Diffpack [6,248], GetDP [10], Getfem++[11], FreeFEM++ [11], lib-
mesh [17], deal.II [5], Sundance [36], FEniCS [261,262,279], Proteus
[31,221], DUNE [7,155], and COMSOL Multiphysics [2]. Applica-
tions built on these packages are coded in C++, or (for some of
the packages) alternatively in a high-level scripting language. Sim-
ilar environments supporting finite volume methods are Open-
FOAM [28], FiPy [9], Clawpack and its derivative PyClaw
[83,227]. Two notable software projects aimed specifically at com-
prehensive water resources simulation while maintaining some as-
pects of the modularity and abstraction in the environments above
include [126,241].

Many investigators in environmental sciences who intend to
develop new models may benefit greatly from basing their coding
on one of the mentioned comprehensive packages. Choosing the
appropriate package is, unfortunately, a non-trivial task as there
are major differences with respect to learning curves, numerical
methods supported, existing application gallery, dependencies on
third-party libraries, documentation, support for rapid prototyp-
ing, and performance on parallel computers.

Another major trend that gained widespread popularity in the
1990s was the use of high-level languages for scientific computing.
The term high-level points to clear, compact syntax, close to the
mathematical notation of the problem. One statement in a high-le-
vel language will typically reflect many statements in Fortran, C,
and even in C++. Moreover, high-level languages usually support
dynamic typing, which means that a variable is not declared with
a special type and can therefore hold any type of object. This gives
substantial programming convenience and flexibility. Popular
high-level languages for scientific computations include MATLAB
[20], Octave [25], R [33], IDL [16], Maple [18], Mathematica [19],
Scilab [35], Sage [34], and Python [32]. MATLAB, Maple, Mathemat-
ica, Sage, and Python enable both symbolic and numerical
computing.

High-level languages are usually very easy to learn, and techni-
cally much simpler to work with than C++. They are particularly
well suited for rapid prototyping of new ideas as there is a compre-
hensive collection of standard numerical libraries that can be
called to perform standard tasks such as linear system solution,
eigenvalue computations, singular value decomposition, curve fit-
ting, integration, optimization, and solving ordinary differential
equations. Although code in high-level languages usually runs
much slower than corresponding code in compiled languages (For-
tran, C, and C++), the loss of efficiency might be minimal if the
majority of the numerical computations are delegated to standard
libraries, since these libraries feature highly optimized code in
compiled languages. When some numerical operations must be
hand-coded in the high-level language itself, one can resort to vec-
torization, which means replacing explicit loops over large arrays
by an appropriate set of array operations. Each array operation will
invoke highly optimized compiled code. Vectorization usually
requires a rewrite of the loop-based computational algorithm.

MATLAB has gained a key position in the scientific community
and simplified access to numerical computing for the masses of
researchers and engineers. Python is an increasingly popular open
source computing platform, having much in common with MAT-
LAB, but is also a full-fledged programming language supporting
all major programming styles, including ‘‘flat scripts’’ to
procedural, object-oriented, generic, and functional programming.
Contrary to MATLAB, plain Python is not suitable for scientific com-
puting without a range of additional packages. By ‘‘Python’’ we
shall mean the standard Python distribution and a collection of

numerical packages—at least numpy [24], scipy [212], and mat-
plotlib [200].

The support for developing PDE-based models in MATLAB and
Python is limited. Finite difference schemes on structured grids
are very straightforward to code, but the nested loops over large
arrays can potentially lead to very slow code. For many investiga-
tions the speed may be acceptable, but usually special techniques
must be invoked to increase performance. MATLAB has a just-
in-time (JIT) compiler that typically can reduce the loss of
performance down to a factor of 2–3 compared with hand-written
Fortran, C, or C++. Python has an extension called Cython, which
allows declaring variables with type and compiling the Python
code to C. Finite difference schemes can then reach almost the
speed of a hand-written C code. Vectorization in terms of dis-
placed slices of arrays can also be utilized, resulting in significant
speed-up, yet not comparable to what is gained by JIT compilation
or Cython. Python supports migration of loops to native C, C++ or
Fortran by various tools [249].

When it comes to finite element methods, there are numerous
simpler codes in MATLAB and Python, typically developed for
teaching purposes. Speed is also an issue for these applications,
and it has proven to be difficult to match the performance and rich-
ness in methodology offered by the comprehensive C++ packages
listed above. An ideal combination is to combine a high-level lan-
guage with such a package. This is realized in the FreeFEM++and
FEniCS projects. The former applies its own specialized high-level
language, while FEniCS applies Python. With FEniCS, a finite ele-
ment problem can be expressed in compact Python code, with a
syntax that resembles the mathematical formulation. This code
triggers a domain-specific compiler to generate corresponding
C++ code, tailored to the problem, and linked to various compiled
libraries (including PETSc and Trilinos) [231,232]. The resulting
fast code is imported back in Python for execution. This use of code
generation is a promising way to combine the ease and conve-
nience of high-level languages and the high performance of com-
piled languages. The domain-specific compilation step may also
feature optimizations that are hard or impossible to perform by
hand [230,233].

FiPy and PyClaw are packages for finite volume discretizations,
using Python as the interface language for setting up the problem
and controlling the work flow. The combination of Fortran, PETSc,
and Python in PyClaw has made it possible to conveniently define
PDE problems in Python and still obtain very high performance and
scalability with over 60,000 processors [228].

Reliability of scientific codes has traditionally been ensured by
careful comparison of computed results with deep mathematical
and physical insight into the problem at hand. Recently, the field
of a posteriori error estimation has helped to implement error con-
trol thus improving the reliability in scientific codes. Moreover, er-
ror estimation enables optimal use of computation resources
through adaptive meshing according to the estimated distribution
of errors. The FEniCS project has taken this approach one step fur-
ther with automatic generation of code for error estimation and er-
ror control, for any given (stationary) PDE model. This feature
offers reliability and optimal use of resources to non-experts in
the mathematics of error estimation and adaptivity [306].

To solve a PDE using one of the finite element packages dis-
cussed above a computational mesh is required. The level of
sophistication of internally supported meshing varies, although
Delaunay-based algorithms are often used for generating unstruc-
tured simplicial meshes. Widely used, stand-alone Delaunay tri-
angulators include Triangle [323] and TetGen [37]. These tools
can provide quality simplicial meshes in an automated way with
user-specified quality measures. Even though Delaunay-based
methods are applicable to complex domains there are classes of
problems where semi-structured hexahedral or quadrilateral
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elements are preferable (e.g. for better grading in boundary layers).
In this case, packages like Netgen [23], Cubit [3], and Gmsh [12]
provide more comprehensive coverage of algorithms (e.g. advanc-
ing front techniques) and meshes with mixed element types. A
long, but likely not exhaustive list of available software can be
found at [22].

Many codes, like Triangle and Tetgen, are based on a command-
line interface. While succinct, this interface is less than optimal in
some cases. Some packages like Cubit and Gmsh provide a level of
scripting support for building domains using geometric and topo-
logical primitives (e.g. using a boundary representation formalism)
as well as an interface to various solid modeling software and tri-
angulation techniques. Beyond this, they include a graphical inter-
face with mesh and geometry creation and editing capabilities,
which becomes more and more valuable as the complexity of the
mesh generation problem increases and iteration with user input
is needed to achieve necessary quality.

Mesh generation is a very broad field, and one that receives less
attention in the water resources community than in other disci-
plines like mechanical or aerospace engineering. On the other
hand, there are particular challenges in our field, like meshing frac-
ture networks or resolving complex bathymetry and coastlines,
that are non-trivial. Specific-purpose algorithms for such problems
exist [269,281,321], but the availability of general, robust software
is limited. We believe more attention is needed, and more progress
could be made with the involvement of meshing expertise from the
wider field. One such effort is the Department of Energy’s Interop-
erable Technologies for Advanced Petascale Simulations (ITAPS)
center [204], which aims to produce integrated software for mesh,
geometry, and field manipulation for use directly in scientific
applications.

The development of visualization in scientific computing has
followed a similar arc as software for modeling PDEs. Consider a
point of departure archiving simulation data for off-line visualiza-
tion using tools like Gnuplot [13] or MATLAB. This approach is
straightforward and for simple file formats can be handled easily
using formatted I/O statements that are available in Fortran 77 or
C. For more complex data formats like the XML-based XDMF [41]
a higher level interface is preferable if not necessary. In any event,
saving data to disk for off-line visualization works well when the
solution data is not extremely large or when simulation turn-
around times in a development phase are not too long. High-per-
formance portable binary data formats such as HDF5 [14] or
more domain specific formats that use it for array data (e.g. XDMF
or NetCDF [283]) are recommended for extremely large data sets.
The paradigm continues to be quite useful today, whether using
Gnuplot or more sophisticated visualization environments and
applications like Advanced Visualization Systems (AVS) [1], IBM’s
Data Explorer (now OpenDX) [27], EnSight [8], or ParaView [29]
that have emerged since the 1990s.

For increasingly complicated problems and numerical algo-
rithms, run-time visualization (either on screen or with off-screen
rendering) has been recognized as a useful tool for development of
more sophisticated numerical methods. To be efficient, some inte-
gration of graphical capabilities in a simulation code is required,
which naturally increases code complexity. This integration is
not particularly natural in a procedural Fortran 77 program but is
more manageable using C or C++ given the availability of both
low-level and high-level graphical libraries in these languages.
An example at the time of the 25th anniversary AWR review can
be seen in the patch-based, parallel AMR code from [339], which
incorporated X11-based visualization using object-oriented data
structures for multilevel grids and solution data.

While much more tractable using object-oriented techniques in
C++, this approach requires fairly detailed understanding of graph-
ical programming and tight integration into the simulation code.

The evolution of higher level interpreted languages like Python
has improved scientific visualization in both post-processing and
run-time modes, since they can provide interfaces that are more
intuitive and simpler to use for scientists and engineers. Two such
examples are MayaVi [21] and matplotlib which, as a point of ref-
erence, is used for visualization in the recently developed GeoClaw
AMR code from [83]. Moreover, a high-level language makes explo-
ration of data in an interactive shell environment like IPython
[290] much easier.

Visualization for distributed applications is obviously more
challenging, but the emergence of VTK [40] and VTK-based soft-
ware like ParaView and ViSit [39] has made this more approach-
able both for integrating visualization into a simulation code or
in post-processing large, distributed data sets. For extremely large
problems with terabytes of data, straightforward visualization of
solution data becomes impractical to impossible. Rather, co-pro-
cessing, or in situ visualization, [30,151] is emerging as a preferable
technique. Here, data is not just extracted during a simulation for
(off-screen) rendering. Using high-level tools like ParaView or Vis-
It, rendered views can be composited pipelines that provide tar-
geted data representations (e.g. streamlines, multiple cut planes,
iso-volumes, etc). These views can also be controlled by the user
during the simulation.

7. Hardware trends and implications

Even today’s small laptops allow a wide range of interesting
PDE-based models in science and engineering to be computation-
ally analyzed within feasible execution times. In this sense, serial
computing on cheap, personal devices has become the most wide-
spread and important way to explore such models. On the other
hand, there has always been a drive among scientists and engineers
to target the most complex models and the highest possible resolu-
tion that the most powerful accessible computers can manage.
Supercomputers and institutional clusters have, during the last
two decades, largely been based on interconnecting single-proces-
sor compute nodes (PCs), and thereby offering computational
power through parallel computing. Exploiting parallel computing
has up to now been a niche technique for a small number of
researchers, but this picture will soon have to change.

There are two clear hardware trends at the time of this writing.
First, the architecture of the most powerful computers seems to be
based on four ingredients: (1) interconnected, physically indepen-
dent compute nodes, (2) a set of CPUs on each compute node, (3) a
set of cores within each CPU, and (4) a set of specialized hardware
accelerators such as general-purpose graphic processing units,
known as GPUs. Second, the economically viable limit of CPU clock
speed seems to have been approached, implying that further in-
crease of the computational power in personal computers will rely
on adding additional cores and GPUs, whose utilization requires
parallel computing. The conclusion is therefore that the efficiency
of serial computers has approached its limit, and increased hard-
ware efficiency will be primarily based on parallel computing.

A good portion of the software environments mentioned in the
previous section work in parallel, but the requirements on the end
user differ widely. Some packages run trivially on a parallel com-
puter, while others will need expert knowledge in parallelization
from the user. Most of the developments of parallel computing
techniques and software have been based on the cluster architec-
ture with distributed memory, where MPI [167] is used for com-
munication between a set of connected single-CPU compute
nodes. MPI will most likely continue its domination at the com-
pute-node level, while techniques and tools for communication
at the multicore level and between cores and GPUs are still subject
to intensive research. GPUs are normally utilized through
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programming tools like CUDA [4] or OpenCL [26]. Since memory is
shared between the cores, OpenMP [98] can be used as an alterna-
tive to MPI on a given CPU. Determining an optimal communica-
tion pattern and implementing a parallel code in easily
maintainable and reusable software remain ongoing challenges.

Consider the case of solving PDEs by the finite element method.
There are two standard parallelization approaches to this type of
problem. The first approach applies domain decomposition: the
domain is divided into many subdomains, and the PDEs with
approximate boundary conditions can be solved concurrently on
all the subdomains. The approximate conditions at internal subdo-
main boundaries hopefully converge to the correct values using
iteration strategies like the additive Schwarz method. The other
approach consists in computing element matrices and vectors in
parallel and assembling these into a global, distributed coefficient
matrix and a right-hand side vector. The linear system can then be
solved using libraries for parallel linear system solution. The distri-
bution of element matrices and vectors as well as the parts of the
global linear system can be based on a physical partitioning of the
domain into subdomains or on non-physical data partitioning
algorithms.

The challenge is to effectively map either of these two ap-
proaches onto new hardware architectures. For example, should a
subdomain be distributed as one per compute node or one per core?
The first case requires multicore parallelization of the subdomain
computations, while the latter implies fine-grained parallelism
and small subdomains. Such questions show that the paralleliza-
tion itself has become significantly more complex, and since it will
be needed for all computing devices in the future, effective software
solutions must be found. The goal of these solutions is to bring
models and computing power into the hands of the practitioners
without requiring them to gain expert knowledge of modern paral-
lel computing in heterogeneous hardware environments.

Development of tools that abstract this complexity from end
users is still at an early stage. For example, PETSc now has the abil-
ity to manage communication between an MPI process and a single
GPU with its own memory through the use of derived vector and
matrix classes that can be selected by a user at run time [276]. A
similar capability exists in Trilinos through the Kokkos package
[38], and similar abstract tools are being developed by the hard-
ware makers themselves, though typically only generating code
for their own hardware [96,203]. The primary design goal of the
PETSc implementation is to speed up sparse matrix vector opera-
tions during Krylov linear system solves, rather than fine-grained
coordination of a finite element assembly process. Hedge [15] is,
in contrast, an example of an effort to provide a high-level interface
for explicit DG assembly on GPUs [237] using run-time code gener-
ation and a Python-based interface to CUDA (PyCUDA) [236]. But
again, identifying appropriate algorithms for exploiting GPUs and
implementing them in high-quality software remains a challenge.

8. Conclusions

Both routine and evolving water resources models have been
documented and used to consider broadly computational aspects
that bear upon the solution of these models. The objectives of this
work were to give guidance for the selection of appropriate meth-
ods and to highlight evolving and emerging methods that have the
promise to impact the modeling water resources systems. Based
upon this work several conclusions are drawn:

1. Modeling of water resources systems is a vibrant field with clas-
ses of newly developed models prime candidates for interdisci-
plinary efforts aimed at numerical simulator development and
validation.

2. Many of the challenges in modeling of water resources systems
come from the desire for ever increasing resolution in space and
time, often originating in the desire to resolve multiscale
phenomena.

3. High-level algorithms will continue to play a central role in
modeling of water resources systems with the desirable proper-
ties of error estimation, error control, and parallel processing
efficiency being driving considerations.

4. While low-order fixed grid discretization methods are routine
and widely used, several alternative and evolving methods hold
promise for water resources systems, including discontinuous
Galerkin methods, multiscale finite element methods, and Kry-
lov deferred correction methods.

5. Each promising new class of discretization method has both
areas of application in water resources modeling where impor-
tant advancements could likely be made from immediate appli-
cation as well as open issues that require further work to
mature into new, important areas of application and to ensure
efficiency.

6. Most mechanistic models of water resources systems require
the solution of a system of nonlinear and linear algebraic equa-
tions. Many aspects of these solution methods are reasonably
mature, and resources exist to aid the model developer in the
application of appropriate, efficient methods. Challenges will
continue to exist in developing methods that scale well on the
parallel computing platforms of the future and care in general
is needed to ensure choices are made that enable efficient
scaling.

7. Significant effort is needed to develop an efficient, scalable sim-
ulator for a sophisticated water resource model. The emergence
of computational environments, tool kits, solver packages,
meshing software, and graphics rendering software can ease
the development and application process and help ensure that
any modeling effort leverages available resources for jobs that
have already been done well, while enabling the focus on the
critical, novel tasks that remain. For more routine applications,
the development of a state-of-the-art simulator can be simpli-
fied by using these available resources in which much of the
heavy lifting has already been done.

8. Computer hardware trends include increasing numbers of
nodes, cores, and special processing units. In short, increases
in computing power will come primarily from an increase in
core counts and not from the speed at which individual cores
operate. This trend will have profound implications for all
involved in large-scale modeling of water resources systems,
and the need to produce simulators that are scalable on the
machines of tomorrow will pose a continuing challenge for
the foreseeable future.
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