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MULTISCALE ANALYSIS AND COMPUTATION FOR THE
THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER–STOKES

EQUATIONS∗

THOMAS Y. HOU† , DANPING YANG‡ , AND HONGYU RAN†

Abstract. In this paper, we perform a systematic multiscale analysis for the three-dimensional
incompressible Navier–Stokes equations with multiscale initial data. There are two main ingredients
in our multiscale method. The first one is that we reparameterize the initial data in the Fourier
space into a formal two-scale structure. The second one is the use of a nested multiscale expansion
together with a multiscale phase function to characterize the propagation of the small-scale solution
dynamically. By using these two techniques and performing a systematic multiscale analysis, we
derive a multiscale model which couples the dynamics of the small-scale subgrid problem to the
large-scale solution without a closure assumption or unknown parameters. Furthermore, we propose
an adaptive multiscale computational method which has a complexity comparable to a dynamic
Smagorinsky model. We demonstrate the accuracy of the multiscale model by comparing with direct
numerical simulations for both two- and three-dimensional problems. In the two-dimensional case
we consider decaying turbulence, while in the three-dimensional case we consider forced turbulence.
Our numerical results show that our multiscale model not only captures the energy spectrum very
accurately, it can also reproduce some of the important statistical properties that have been observed
in experimental studies for fully developed turbulent flows.
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1. Introduction. We develop a systematic multiscale analysis for the three-
dimensional (3D) incompressible Navier–Stokes equations with multiscale initial data.
The understanding of scale interactions for incompressible flows has been a major
challenge. For high Reynolds number flows, the degrees of freedom are so large that
it is almost impossible to resolve all small scales by direct numerical simulations.
Deriving an effective equation for the large-scale solution is very useful for engineering
applications. There have been some well-known large eddy simulation (LES) models
available in the literature; see, e.g., [31, 24, 12, 11, 27, 18, 28]. However, many of the
LES models are based on some closure assumptions which cannot be verified, and they
contain unknown parameters. It would be desirable to derive a more systematic LES
model which does not contain unknown parameters and can be justified by multiscale
analysis. On the other hand, the nonlinear and nonlocal nature of the Navier–Stokes
equations makes it difficult to perform multiscale analysis. One of the important
questions is to understand how small scales are generated and propagate in time and
whether the multiscale structure of the solution is preserved dynamically.
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Our multiscale analysis is motivated by the previous work of McLaughlin–
Papanicolaou–Pironneau (MPP) on the 3D Euler equations using homogenization
techniques [26]. To construct a multiscale expansion for the solution of the Euler
equations, they made an important assumption that the oscillation is convected by
the mean flow. By using multiscale expansion techniques, MPP obtained a periodic
cell problem for the velocity field and the pressure. However, it is not clear whether
the resulting cell problem has a solution that is periodic in both the fast space variable
y and the fast time variable τ . Additional assumptions were imposed on the solution
of the cell problem in order to derive a variant of the k − ε model. Inspired by the
pioneering work of MPP [26], there have been many subsequent contributions in this
area; see, e.g., [3, 8, 30, 2, 6, 7, 5].

In this paper, we generalize the multiscale analysis of MPP to problems with
infinitely many nonseparated scales and develop a novel multiscale analysis for the
incompressible Euler and Navier–Stokes equations. There are two key ingredients in
our multiscale analysis. The first one is to reformulate the solution in the Fourier
space into a formal two-scale structure. The second one is to introduce a multiscale
phase function to characterize the propagation of the small scales. By using this new
multiscale phase function, the two-scale structure of the initial condition is preserved
dynamically. At the end, we derive a multiscale model which couples the dynamics
of the small-scale subgrid problem to the large-scale solution. Further, we develop a
simplified multiscale model in which only the average of the multiscale phase function
is used in the multiscale expansion. This significantly simplifies the computation of
the cell problems.

Based on the multiscale analysis we develop for the incompressible Euler equa-
tions, we have designed an effective multiscale computational method to solve the
3D incompressible Navier–Stokes equations. In order to reduce the computational
cost, we design an effective adaptive method which updates only a small number of
cell problems at each time step. This offers considerable computational savings. The
adaptive multiscale method is much more efficient than a direct numerical simulation
but is slightly more expensive than the Smagorinsky LES model [31, 12]. On the other
hand, with only a modest extra computational cost compared with the LES model,
our multiscale model offers better accuracy for the large-scale solution than the LES
model and has the capability of computing some subgrid statistical properties which
cannot be obtained by a LES model. Most importantly, our multiscale method has
no unknown parameters, and we do not make any heuristic closure assumption.

We demonstrate the accuracy of our multiscale model in both two and three di-
mensions with random initial data. In the two-dimensional case, we test how well our
multiscale model can capture the inverse cascade process from a random initial vortic-
ity distribution. In the three-dimensional case, we test the accuracy of the multiscale
model for the forced homogeneous turbulence. Our numerical experiments show that
our multiscale model captures the large-scale solution as well as the high order mo-
ments very well. In particular, our multiscale model not only captures the correct
energy power spectrum, it also reproduces certain important statistical properties
that have been observed in experimental studies for fully developed turbulent flows.
Moreover, we show that our multiscale method can be used to compute the unknown
parameters in a Smagorinsky type of LES model. It is interesting to note that the
hybrid LES model which combines an existing LES model with our multiscale method
seems to give a better result than the LES model.

The organization of the rest of the paper is as follows. In section 2, we perform
multiscale analysis for the 3D Euler equations with multiscale initial data. We also
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show how to reparameterize a general multiscale initial condition into a formal two-
scale initial condition. Section 3 is devoted to developing the multiscale analysis
for the 3D Navier–Stokes equations. In section 4, we will perform some numerical
experiments in both two and three space dimensions to confirm our analytical results.

2. Formulation. We consider incompressible 3D Navier–Stokes equations with
multiscale solutions:

(a) ∂tu
ε + (uε · ∇)uε + ∇pε = νΔuε + f ,

(b) ∇ · uε = 0,

(c) uε|t=0 = U(x) + W
(
x,

x

ε

)
.

(2.1)

We remark that the system (2.1) contains infinitely many nonseparated scales, even
if it appears in a formal “two-scale” form. We do not consider the boundary effect
in our study. The velocity field is assumed to be periodic with period 2π in all
directions. In general, the fluid contains infinitely many nonseparable scales. The
question of interest is how to derive an averaged equation for the large-scale solution
in a systematic way. As a first step, we need to know how to characterize small
scales and large scales. The notion of large scales and small scales is relative to a
reference scale. From the computation viewpoint, it is more relevant to divide the
scales into resolvable scales, which can be accurately resolved by a computational
grid, and subgrid scales, which we do not wish to resolve by our computational grid.
To capture the large-scale solution accurately, we need to account for or model the
effect of subgrid scales. This is the essential difficulty for all turbulent models. In
this paper, we will develop a systematic multiscale analysis which allows us to model
the subgrid small scales without making any heuristic closure assumption or using
unknown parameters.

2.1. Reparameterization of initial data in two-scale structure. In this
subsection, we show how to reformulate a general initial condition into a form in
which we can apply multiscale analysis. The key idea is to reorganize the scales in
the Fourier space into “large scales” and “small scales.” As we mentioned before, the
large scales are the ones we will resolve by our computational grid, while the small
scales are the ones we will capture on the large scales by solving the cell problems.

Let v(x) be any periodic function on the cubic [0, 1]3. By using the Fourier
expansion, we can express v as a Fourier series:

(2.2) v(x) =
∑
k∈Z3

v̂(k) exp{2πik · x}, i =
√
−1, k = (k1, k2, k3),

where v̂(k) are the Fourier coefficients. We choose 0 < ε = 1/E < 1 to be a reference
wavelength, where E is an integer. Let

ΛE =

{
k; |kj | ≤

E

2
, 1 ≤ j ≤ 3

}
, Λ′

E = Z3\ΛE ,

where Z3 = {k; kj is an integer, j = 1, 2, 3}. We refer to those Fourier components
with k ∈ ΛE as large scales, which can be resolved by our computational grid. Simi-
larly, we refer to those Fourier components with k ∈ Λ′

E as small scales, which need
to be captured by solving a cell problem. Based on this consideration, we decompose
a function v into two parts as follows:

(2.3) v = v(l)(x) + v(s)(x),
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where

(a) v(l)(x) =
∑

k∈ΛE

v̂(k) exp{2πik · x},

(b) v(s)(x) =
∑

k∈Λ′
E

v̂(k) exp{2πik · x}.
(2.4)

For each k, we rewrite k as

(2.5) k = Ek(s) + k(l),

where k(s) and k(l) are integers with k(l) ∈ ΛE . Here the superscripts s and l stand
for small-scale and large-scale, respectively. By using (2.5), we have

v(s) =
∑

k∈Λ′
E

v̂(k) exp{2πik · x}

=
∑

Ek(s)+k(l)∈Λ′
E

v̂(Ek(s) + k(l)) exp{2πi(Ek(s) + k(l)) · x}

=
∑

k(s) �=0

⎛
⎝ ∑

k(l)∈ΛE

v̂(Ek(s) + k(l)) exp{2πik(l) · x}

⎞
⎠ exp{2πik(s) · (Ex)}

=
∑

k(s) �=0

v̂(s)(k(s),x) exp
{

2πik(s) · x

ε

}

= v(s)
(
x,

x

ε

)
,

(2.6)

where ε = 1/E and

v̂(s)(k(s),x) =
∑

k(l)∈ΛE

v̂(Ek(s) + k(l)) exp{2πik(l) · x},

which contains the Fourier modes with a wave number less than E/2. Note that
v(s)(x,y) is a periodic function in y with mean zero. This provides a constructive
proof that we can reformulate any periodic function v in the following generic form:

(2.7) v(x) = v(l)(x) + v(s)
(
x,

x

ε

)
,

where v(s)(x,y) is a periodic function in y. We can use a coarse grid with size H to
resolve low frequency components with wavelength larger than ε and a subgrid with
size h to resolve high frequency components with wavelength smaller than ε.

We would like to emphasize that the above two-scale decomposition is different
from the traditional two-scale expansion in the homogenization theory [4]. In the
traditional homogenization theory, the functions v(l) and v(s)(x,y) are independent
of the small-scale parameter ε. The question of interest is to study the homogenized
solution in the limit as ε → 0. Thus, the homogenization theory relies crucially on the
assumption that there is a strong scale separation in the solution. In comparison, we
are dealing with solutions which do not have scale separation and contain infinitely
many nonseparated scales. A major difference between the two-scale expansion in
the homogenization theory and our formal two-scale reparameterization is that the
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functions v(l) and v(s)(x,y) in our case depend on the small-scale parameter ε. If
we let ε → 0 as in the homogenization theory, then the large-scale component v(l)

will pick up more and more small-scale components of the solution, and v(s)(x,y)
will tend to zero in the limit. This actually makes sense since ε corresponds to the
length scale that we would like to resolve by our computational grid. If we let ε → 0,
this means that we are willing to resolve more and more small scales in the solution.
In the limit, it will become a direct numerical simulation method which attempts to
resolve all scales. This is clearly not what we would like to do. In our multiscale
model, we will keep ε fixed. Its value is determined by the computational grid we will
use to resolve the large-scale solution. The challenge for us is to capture the effect of
subgrid scales on the resolvable scales by using a systematic multiscale analysis.

3. Multiscale analysis for the 3D Euler equations. We first review some
previous results on multiscale analysis for the incompressible Euler equations. Based
on the discussion in the previous section, we can formally formulate the multiscale
problem for the 3D Euler equations as a homogenization problem with ε being a
reference wavelength as follows:

(a) ∂tu
ε + (uε · ∇)uε + ∇pε = 0,

(b) ∇ · uε = 0,

(c) uε|t=0 = U(x) + W
(
x,

x

ε

)
,

(3.1)

where uε(t,x) and pε(t,x) are the velocity field and the pressure, respectively. We
may consider U as the mean initial velocity field and W(x,y) as the high frequency
component of the initial velocity field. From our construction in the previous subsec-
tion, we know that W(x,y) is periodic in y with mean zero, i.e.,

(3.2) 〈W〉 ≡
∫

[0,1]3
W(x,y)dy = 0.

However, as we show in the previous subsection, ε is a reference scale, and the high
frequency components U and W(x,y) are ε-dependent. If we take the limit ε → 0,
W(x,y) will tend to zero, and the mean velocity U(x) will become the entire velocity
field which contains all of the scales. Thus, it is important that one should not keep
the function W(x,y) fixed while taking the limit ε → 0, as one usually does in the
homogenization theory.

3.1. MPP model. The homogenization theory of the 3D Euler equations with
highly oscillating data was first studied by MPP in 1985 [26]. They adopted a tra-
ditional homogenization approach by assuming that the initial velocity field has a
two-scale structure as in (3.1)(c). The high frequency component W(x,y) is assumed
to be periodic in y with mean zero and is independent of ε as ε → 0. This assump-
tion implies that there is scale separation in the velocity field. The objective was to
derive a homogenized equation that governs the large-scale velocity field as ε → 0.
To construct a multiscale expansion for the Euler equations, they made an important
assumption that the oscillation is convected by the mean flow. This leads to the
following ansatz for the multiscale expansion in the velocity and pressure:

uε(t,x) = u(t,x) + w

(
t,x,

t

ε
,
θ(t,x)

ε

)
+ εu1

(
t,x,

t

ε
,
θ(t,x)

ε

)
+ · · · ,

pε(x, t) = p(t,x) + q

(
t,x,

t

ε
,
θ(t,x)

ε

)
+ εp1

(
t,x,

t

ε
,
θ(t,x)

ε

)
+ · · · .
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Moreover, w(t,x, τ,y), q(t,x, τ,y), u1(t,x, τ,y), and p1(t,x, τ,y) are assumed to be
periodic in y and τ with zero mean. The phase θ is convected by the mean velocity
field u:

(3.3)
∂θ

∂t
+ u · ∇θ = 0, θ(0,x) = x.

By using multiscale expansion techniques, MPP obtained a periodic cell problem for
w and q. By making additional assumptions on the solution of the cell problem, MPP
derived a variant of the k−ε model. We remark that there have been many subsequent
contributions in using the homogenization techniques to derive a turbulence model
inspired by the pioneering work of MPP [26]; see, e.g., [3, 8, 30, 2, 6, 7, 5].

3.2. A nested multiscale expansion for the 3D Euler equations. In our
recent work in [17, 15, 16], we analyzed the structure of the multiscale solution for
2D and 3D Euler equations from a different viewpoint. A key technique is to use
a nested multiscale expansion to characterize the propagation of small scales. In
order to reveal the multiscale structure of the solution of the 3D Euler equations, we
use the vorticity-stream function formulation. Recall that the vorticity is defined as
ωε = ∇ × uε, and the velocity field is defined as uε = ∇ × ψε, where the stream
function ψε satisfies the following elliptic equation:

(3.4) −Δψε = ωε.

Define a multiscale phase function θε(t,x) as follows:

(a)
∂θε

∂t
+ (uε · ∇)θε = 0,

(b) θε|t=0 = x,
(3.5)

which is also the inverse flow map. By using this multiscale phase function, we can
characterize the evolution of the small-scale vorticity field. In the two-dimensional
case, the vorticity is a scalar and is conserved in time. In the three-dimensional case,
however, the vorticity is no longer conserved in time due to the presence of vortex
stretching in the vorticity equation:

(a) ∂tω
ε + (uε · ∇)ωε = (ωε · ∇)uε,

(b) ωε|t=0 = ωint

(
x,

x

ε

)
,

(3.6)

where ωint is the initial vorticity. Note that θε is the inverse of the flow map. We
have a relatively simple expression of vorticity in terms of θε [9]:

(3.7) ωε(t,x) = (Dθε)−1ωint

(
θε(t,x),

θε(t,x)

ε

)
,

where Dθε is the Jacobian matrix of θε. Further, we can express the initial vorticity
ωint in terms of the initial velocity field as follows:

ωint(x,y) = ∇x × U(x) + ∇x × W(x,y) +
1

ε
∇y × W(x,y).

It is clear from the semianalytic expression (3.7) for vorticity that the small-scale
information is propagated along the characteristic variable θε. However, it is not
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an easy task to characterize the multiscale structure of θε(t,x) since its multiscale
structure is coupled to that of uε. On the other hand, one can see from (3.7) that
the small-scale structure in θε could have an O(1) contribution to the mean velocity
field u.

Based on a careful multiscale analysis in the Lagrangian coordinate, which we
derive in the appendix, we obtain the following nested multiscale expansion for θε:

(3.8) θε = θ̄(t,x, τ) + εθ̃(t, θ̄, τ,θε/ε),

where τ = t/ε. The stream function ψε can be expanded similarly. Note that the
multiscale structure of θε is defined implicitly through the fast variable y = θε/ε.
By using this nested multiscale expansion, we can account for many scales which are
present in the multiscale solution.

3.3. A change of variables to simplify the computation of the cell prob-
lem. The use of the fast variable y defined above can introduce some difficulty in the
numerical implementation. In particular, the elliptic (and the diffusive) part of the
cell problem would contain variable coefficients, and these coefficients can undergo
severe deformation dynamically. To simplify the computation of the cell problem, we
introduce a change of variables from y to z as follows:

(3.9) z = y − θ̃(t, θ̄, τ,y) ≡ G(y), y = G−1(z),

where t, θ̄, and τ are considered as parameters. Let ĝ = g(y) = g ◦G−1(z). Note that

z + 1 = y + 1 − θ̃(t, θ̄, τ,y + 1),

where 1 = (1, 1, 1)�. This implies that G−1(z + 1) = y + 1. For each 1-periodic
function g = g(y), we have

ĝ(z + 1) = g(y + 1) = g(y) = ĝ(z).

Therefore, ĝ is also a 1-periodic function in z. Let us consider the physical meaning
of the transformation of (3.9). From (3.8) and (3.9) and the fact that y = θε/ε, we

can easily deduce that z = θ̄/ε. This implies that θ̃ can also be written as

(3.10) θ̃ =
̂̃
θ

(
t, θ̄, τ,

θ̄

ε

)
.

To simplify the presentation, we still denote
̂̃
θ by θ̃. Based upon this observation, we

can expand θε and ψε in the following form:

(a) θε = θ̄(t,x, τ) + εθ̃(t, θ̄, τ, z),

(b) ψε = ψ̄(t,x, τ) + εψ̃(t, θ̄, τ, z),
(3.11)

where z and τ are defined as

(3.12) z =
θ̄

ε
, τ =

t

ε
,

respectively, θ̄ and ψ̄ are averages of θε and ψε, respectively, with respect to z over
one period, and θ̃ and ψ̃ are 1-periodic functions in z with zero mean. Now direct
calculations give

(3.13) uε = ∇x × ψ̄ + (Dxθ̄
�∇z) × ψ̃ + ε∇x × ψ̃,
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which implies that the velocity has the following multiscale expansion:

(3.14) uε = ū(t,x, τ) + ũ(t, θ̄, τ, z),

where ũ is periodic in z and has zero mean. Note that ū is the total mean velocity
field which contains higher order terms in the expansion.

4. Multiscale analysis of Navier–Stokes equations. Based on the under-
standing we gain from the multiscale analysis for the Euler equations, we are now
ready to perform multiscale analysis for the Navier–Stokes equations. Motivated by
the analysis from the previous section, we perform multiscale expansion for (uε, pε)
in the form:

(a) uε = ū(t,x, τ) + ũ(t, θ̄, τ, z),

(b) pε = p̄(t,x, τ) + p̃(t, θ̄, τ, z),
(4.1)

where z = θ̄
ε , τ = t

ε , (ū, p̄) and θ̄ are total mean components including higher order
terms, and ũ and p̃ are periodic in z with zero mean.

4.1. Averaged equations. In this subsection, we derive the averaged equations
for ū and θ̄. Let us denote by ∂̄t = ∂t + ε−1∂τ the total derivative in time. By
substituting the expansion (4.1) into the Navier–Stokes equations, we get

∂̄tū +

(
∂t +

1

ε
∂τ

)
ũ +

1

ε
Dzũ∂̄tθ̄ +

(
∇x +

1

ε
Dxθ̄

�∇z

)
· ((ū + ũ) ⊗ (ū + ũ))

+ ∇xp̄ +

(
∇x +

1

ε
Dxθ̄

�∇z

)
p̃− ν

(
Δx +

1

ε
∇x · (Dxθ̄

�∇z)

+
1

ε
∇z · (Dxθ̄∇x) +

1

ε2
∇z · (Dxθ̄Dxθ̄

�∇z)

)
(ū + ũ) = f ,

(4.2)

and

(4.3)

(
∇x +

1

ε
Dxθ̄

�∇z

)
· (ū + ũ) = 0,

where u ⊗ u is defined as a 3 × 3 symmetric matrix whose (i, j)th entry is given by
ujui, u = (u1, u2, u3), i, j = 1, 2, 3. By averaging (4.2) with respect to z, we get

(4.4) ∂̄tū + ∇x · (ū ⊗ ū) + ∇x · 〈ũ ⊗ ũ〉 + ∇xp̄ = νΔū + f .

By averaging (3.13) with respect to z, we obtain ū = ∇x × ψ̄, which implies that

(4.5) ∇x · ū = 0.

Next, we substitute the expansion (3.11) into (3.5), and we obtain

(4.6) ∂̄tθ̄ + ∂τ θ̃ + Dzθ̃∂̄tθ̄ + ε∂tθ̃ +

(
∇x +

1

ε
Dxθ̄

�∇z

)
· ((θ̄ + εθ̃) ⊗ (ū + ũ)) = 0.

By averaging (4.6) with respect to z, we get

(4.7) ∂̄tθ̄ + ∇x · (θ̄ ⊗ ū) + ε∇x · 〈θ̃ ⊗ ũ〉 = 0.
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The additional term 〈ũ⊗ ũ〉 in the averaged equations (4.4) is called the Reynolds
stress. How to model the Reynolds stress is important in both theoretical understand-
ing and engineering applications. In many LES models, the Reynolds stress is modeled
by making some closure assumption with unknown parameters to be determined from
experimental data. In comparison, our multiscale analysis gives a self-consistent sys-
tem which couples the large-scale dynamics to the subgrid-scale dynamics in a natural
way without unknown parameters. To simplify our multiscale model further, we will
study the leading order terms of (ũ, p̃). To this end, we expand (ũ, p̃) and θ̃ in the
form:

(a) ũ = w(t, θ̄, τ, z) + O(ε),

(b) p̃ = q(t, θ̄, τ, z) + O(ε),

(c) θ̃ = Θ(t, θ̄, τ, z) + O(ε).

(4.8)

It follows from (4.3) and (4.5) that

(ε∇x + Dxθ̄
�∇z) · ũ = 0,

which implies that

(4.9) Dxθ̄
�∇z · w = 0.

It follows from (4.2) and (4.4) that

1

ε

(
∂τ ũ + Dzũ∂̄tθ̄ + (Dxθ̄

�∇z) · (ū ⊗ ũ) + (ũ ⊗ ū + ũ ⊗ ũ) + Dxθ̄
�∇z p̃

)
− ν

ε2
∇z · (Dxθ̄Dxθ̄

�∇zũ)

+ ∂tũ + ∇x · (ū ⊗ ũ + ũ ⊗ (ū + ũ)) −∇x · 〈ũ ⊗ ũ〉

+ ∇xp̃−
ν

ε
(∇x · (Dxθ̄

�∇zũ) + ∇z · (Dxθ̄∇xũ)) = 0.

(4.10)

Note that

1

ε
[(Dxθ̄

�∇z) · (ū ⊗ ũ + ũ ⊗ ū + ũ ⊗ ũ) ]

+ ∇x · (ū ⊗ ũ + ũ ⊗ (ū + ũ))

=
1

ε
[DzũDxθ̄(ū + ũ) + (ū + ũ)(Dxθ̄

�∇z) · ũ ]

+ (ū · ∇x)ũ + (ũ · ∇x)ū + (ũ · ∇x)ũ + (ū + ũ)∇x · ũ

=
1

ε
DzũDxθ̄(ū + ũ) + (ū · ∇x)ũ + (ũ · ∇x)ū + (ũ · ∇x)ũ.

By using the above equation and multiplying (4.10) by ε, we obtain

∂τ ũ + DzũDxθ̄ũ + Dxθ̄
�∇z p̃ =

ν

ε

(
∇z · (Dxθ̄Dxθ̄

�∇zũ)

+ ε(∇x · (Dxθ̄
�∇zũ) + ∇z · (Dxθ̄∇xũ))

)
+ O(ε).

To the leading order approximation, we neglect the O(ε) terms associated with the
diffusion operator. This gives

(4.11) ∂τw + DzwDxθ̄w + Dxθ̄
�∇zq =

ν

ε
∇z · (Dxθ̄Dxθ̄

�∇zw).
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Note that ν
ε corresponds to the cell viscosity coefficient. It follows from (4.6) that

(4.12) ∂τ θ̃ + Dzθ̃Dxθ̄ũ + Dxθ̄ũ = 0.

This implies that

(4.13) ∂τΘ + (I + DzΘ)Dxθ̄w = 0.

Thus we obtain the following multiscale model which governs the leading velocity field
and the subgrid velocity field:

Multiscale model I.
(1) Averaged equations for the leading order velocity:

(a) ∂̄tū + (ū · ∇x)ū + ∇xp̄ + ∇x · 〈w ⊗ w〉 = νΔū + f ,

(b) ∇x · ū = 0,

(c) ū|t=0 = U(x),

(4.14)

where f is a coarse scale forcing.
(2) Averaged equations for the leading order Lagrangian map:

(a) ∂̄tθ̄ + (ū · ∇x)θ̄ + ε∇x · 〈Θ ⊗ w〉 = 0,

(b) θ̄|t=0 = x.
(4.15)

(3) Leading order equations for the fluctuation of the velocity:

(a) ∂τw + DzwDxθ̄w + Dxθ̄
�∇zq =

ν

ε
∇z · (Dxθ̄Dxθ̄

�∇zw);

(b)
(
Dxθ̄

�∇z

)
· w = 0,

(c) w|τ=t=0 = W(x, z).

(4.16)

(5) Leading order equations for the fluctuation of the Lagrangian map:

(a) ∂τΘ + (I + DzΘ)Dxθ̄w = 0.

(b) Θ|τ=t=0 = 0.
(4.17)

The above multiscale model provides a systematic multiscale model for the Reyn-
olds stress. An important feature of our multiscale model is that there is no clo-
sure assumption and there are no unknown parameters to be determined. It is a
self-consistent multiscale model which captures the dynamic interaction between the
large-scale solution and the small-scale solution. In the next subsection, we will discuss
some numerical implementation issues in discretizing the above multiscale model.

4.2. Numerical implementation. In this subsection, we will give a computa-
tional algorithm to compute the averaged equations. Take Δt as the time step for the
averaged solution. For m ≥ 0, let tm = mΔt and τm = mΔt/ε. Let Δ = Δt/ε, and
define [f ]∗ to be the local time average given by

(4.18) [fm]∗Δ =
1

Δ

∫ τm

τm−1

fdτ.

Note that ū still depends on the fast time scale τ . In order to derive a multiscale
model for the large-scale solution which is independent of the fast time scale, we
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perform a local time average to eliminate the dependence of the mean velocity field
on the fast time scale. Observe that the large-scale solution ū has the form

ū(t,x, τ) = u(t,x) + εu1(t,x, τ).

By integrating the cell problem (4.16) in τ from τm−1 to τm while keeping x and t fixed
as parameters, we obtain the following one-step explicit computational algorithm.

Algorithm. For m ≥ 0, let tm = mΔt and τm = mΔt/ε.
Step 1. At t = 0 and τ = 0, we set

(4.19) θint = x, uint = U, wint = W, Θint = 0, A = I.
Then start the iteration for m = 0, 1, . . . as follows:
Step 2 (update the small-scale solution). Solve for (w, q) from the following

system for τm < τ ≤ τm+1 with a subgrid time step size Δτ while keeping x and t
fixed as parameters:

(a) ∂τw + DzwAw + A�∇zq −
ν

ε
∇ · (AA�∇zw) = 0;

(b)
(
A�∇z

)
· w = 0,

(c) w|τ=τm = wint

(4.20)

and

(a) ∂τΘ + (I + DzΘ)Dxθ̄w = 0.

(b) Θ|τ=t=0 = Θint.
(4.21)

Step 3 (update the large-scale solution). Solve for (u, p) and θ from the following
system for tm ≤ t ≤ tm+1:

(a) ∂tu + (u · ∇x)u + ∇xp + ∇x · 〈[w ⊗ w]∗Δ〉 − νΔu = f ,

(b) ∇x · u = 0,

(c) u|t=tm = uint,

(4.22)

and

(a) ∂tθ + (u · ∇x)θ + ε∇x · 〈[Θ ⊗ w]∗Δ〉 = 0,

(b) θ|t=tm = θint.
(4.23)

Step 4 (restart the next time step). Let

θint = θ|t=tm+1 , uint = u|t=tm+1 , wint = w|τ=τm+1 ,
(4.24)

Θint = Θ|τ=τm+1 , A = Dxθ|t=tm+1 .

Return to step 2 to restart the next time step.
Remark 4.1. Note that we have neglected the O(ε) term in the θ equation. The

above one-step algorithm can be easily generalized to a high order algorithm.
Remark 4.2. In our numerical implementation, the cell problem (4.20) can be

further simplified by making the following change of variables from w to w̃ by letting
w̃ = Aw. Then w̃ satisfies the following modified cell problem:

(a) ∂τ w̃ + w̃ · ∇zw̃ + AA�∇zq −
ν

ε
∇ · (AA�∇zw̃) = 0;

(b) ∇z · w̃ = 0,

(c) w̃|τ=τm = Awint.

(4.25)

The above modified cell problem can be solved more easily.
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5. Numerical experiments. In the previous section, we performed a system-
atic multiscale analysis for the incompressible Navier–Stokes equations and proposed
a new multiscale model which captures the dynamic interplay between the large-scale
solution and the small-scale cell problem. In this section, we will perform detailed
numerical experiments in both two and three space dimensions to demonstrate the
accuracy of our multiscale model.

5.1. Numerical experiments for the 2D Navier–Stokes equations. We
first perform numerical experiments in two space dimensions. Specifically, we solve
the 2D incompressible Navier–Stokes equations in a doubly periodic box of size 2π×2π.
For the multiscale problem, we solve the averaged equations given in section 3 but
with a simplified cell problem for w by ignoring the cell viscosity term. In this case,
we can solve for the cell problem by using the stream function vorticity formulation;
see section 4.1 of [15].

A pseudospectral method is used to solve both the averaged equations and the
subgrid cell problem. We use the second order Runge–Kutta method to discretize the
equation in time. In our computations, we solve the averaged equation by using a
coarse grid and large time step Δt. For each coarse grid point within the time interval
from tn to tn+1, with tn = nΔt, we solve the cell problem with the periodic boundary
condition in the z variable from τn = tn/ε to τn+1 = tn+1/ε by using a subgrid Δz and
a subgrid time step Δτ . Note that each cell problem is decoupled from the others.
We then average the cell solution from τn to τn+1 to evaluate the Reynolds stress
term and update the mean velocity at tn+1. To eliminate the aliasing error in the
pseudospectral method, we use a 15th order Fourier smoothing function to damp the
high frequency modes. Specifically, the Fourier smoothing function we use is given
by ρ(ki) = exp(−10(ki/N)15) for |ki| ≤ N , k = (k1, k2) is the wave number in the
Fourier transform, and 2N is the number of Fourier modes in each dimension. This
smoothing function is multiplied to the kth Fourier coefficient of a physical variable
in each dimension.

Below we present some numerical results on the decay of 2D homogeneous tur-
bulence and compare our multiscale model with the well-resolved direct numerical
simulation (DNS). The DNS uses a 512× 512 fine grid. The simulation starts with a
random initial condition, where the initial distribution of the stream function in the
Fourier space is given by

(5.1) |ψ̂(k)| =
k

k4 + δ
, k = |k|,

with random phases. This choice of initial velocity field is similar to the earlier
work of Henshaw, Kreiss, and Reyna [13] (see also [10]). In the computation, we
choose δ = 10−5. The initial vorticity distribution is plotted in Figure 5.1. We
choose ν = 10−4 in our computations. The corresponding Reynolds number based
on the initial rms (root mean square) velocity is about 31,000. At t = 5.0, coherent
vortices emerge from the random initial condition, which is denoted as the “vortex
generation period.” At later stages, the flow is dominated by the mutual interactions
of coherent vortices. The number of vortices decreases, and the averaged vortex radius
and circulation increase.

Since our multiscale analysis is developed for well-mixed flows, we start the mul-
tiscale computation by using our multiscale model starting at t = 5.0 when the flow
completes the vortex generation period. We use the technique presented in section 2.1
to prepare the velocity obtained from the DNS at t = 5.0 in the form of a two-scale
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Fig. 5.1. Vorticity contour at t = 0.

Fig. 5.2. Vorticity contours at t = 5. The picture on the left is obtained by DNS, and the
picture on the right is obtained by our multiscale method.

initial condition so that we can apply our multiscale model to solve the multiscale
problem. The dimension of the coarse grid (slow variables) is 64 × 64, and that of
the small scale (fast variables) is 32 × 32. This gives ε = 1/64. The time step for
the multiscale model is Δt = 0.01, and the subgrid time step for the cell problem is
Δτ = 0.01. Figures 5.2–5.4 compare the vorticity distribution of the multiscale model
with the DNS result at t = 5.0, 10.0, and 20.0, respectively. We reconstruct the fine
grid vorticity by adding the mean vorticity field to the subgrid vorticity field; see
(5.2). The plots show that there is a strong shearing and stretching of the vorticity
contours by the mean flow. In addition, the size of the vortices grows due to the
merger of vorticity of the same sign, which is one of the mechanisms that contributes
to the inverse energy cascade. The vorticity distribution from the multiscale model is
in excellent agreement with the DNS, suggesting that the multiscale model captures
the vortex interactions at both large scales and small scales.
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Fig. 5.3. Vorticity contours at t = 10. The picture on the left is obtained by DNS, and the
picture on the right is obtained by our multiscale method.

Fig. 5.4. Vorticity contours at t = 20. The picture on the left is obtained by DNS, and the
picture on the right is obtained by our multiscale method.

The accuracy of the solution can be examined by studying whether the solution
dissipates the correct amount of energy and enstrophy, which are two statistical global
quantities of turbulent flows. For a high Reynolds number flow, the kinetic energy
does not change much dynamically. On the other hand, there exists a cascade of
enstrophy from large scales to small scales [1, 23], which causes the total enstrophy
to decay in time. Specifically, vorticity gradients are amplified with the formation of
thin filaments. These fine structures evolve until they reach the very small dissipa-
tion scales, so that the enstrophy and all positive-order vorticity moments decay. In
Figure 5.5, we show the temporal evolution of the total kinetic energy and the total
enstrophy by using three different approaches, which are (i) the DNS, (ii) the sim-
ulation using our multiscale model, and (iii) the simulation of the multiscale model
ignoring the Reynolds stress term. With very small viscosity, the energy decay from
all 3 simulations is negligible. On the other hand, enstrophy decays continuously,
with the maximum decay rate occurring during the initial vortex formation period
for t ≤ 5. The decay rate becomes smaller during the vortex merger stage which
takes place after t = 5. We can see that the simulation with a coarse grid using
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Fig. 5.5. Temporal evolution of kinetic energy (||u1||2L2 + ||u2||2L2 )
1
2 and enstrophy ||ω||L2 .

(�), DNS (N = 512); ( ◦), multiscale model; (�), without Reynolds stress terms.

approach (iii) leads to much slower enstrophy decay because it could not capture the
enstrophy cascade from large scales to the dissipation scale. On the other hand, the
enstrophy decay rate of the simulation using our multiscale model is very close to that
of the DNS, suggesting that the dissipation mechanism is well resolved within each
cell.

We also compare the spectra obtained by the DNS with those obtained by solving
our multiscale model at t = 20.0. We reconstruct the fine grid velocity field by using
the leading order approximation

(5.2) uε(t,x) ≈ u(t,x) + w

(
t,θ, τ,

θ(t,x)

ε

)
,

where the fine grid phase function is obtained by using the spectral interpolation. The
result is shown in Figure 5.6. The agreement is very good at low wave numbers. At
high wave numbers, the DNS spectra decay faster than the spectra of the simulation
using the multiscale model. This explains the difference in the enstrophy decay rate
between the two simulations. The difference is partly due to neglecting the higher
order terms in our multiscale model and the cell problem. Another more important
reason is that there is viscous dissipation in all of the scales in the DNS, whereas
we neglect viscosity in the cell problem in the multiscale model. Nonetheless, our
multiscale model accurately captures the dynamics of the large scale as well as the
averaged effect from the small scales.

5.2. Numerical experiments for the 3D Navier–Stokes equations. In this
subsection, we perform a careful DNS of the 3D Navier–Stokes equations to check the
accuracy of the multiscale analysis presented in the previous sections. Given the
number of grid points and the size of the computational domain, the smallest re-
solved length scale or, equivalently, the largest wave number kmax is prescribed. In
a three-dimensional turbulent flow, the kinetic energy cascades in time to smaller,
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Fig. 5.6. Spectrum of velocity component u1. (Dashed line), t = 0.0; (solid line), DNS,
t = 20.0; (dashed-dotted line), multiscale model, t = 20.0.

more dissipative scales. The scale at which the viscous dissipation becomes domi-
nant, and which represents the smallest scales of turbulence, is characterized by the
Kolmogorov length scale η. In a fully resolved DNS, the condition kmaxη < 1 is nec-
essary for the small scales to be adequately represented. Consequently, kmax limits
the highest achievable Reynolds number in a direct numerical simulation for a given
computational box.

There are three main characteristic length scales in an isotropic turbulent flow:
the integral scale I characterizing the energy containing scales is defined as

(5.3) I =
3π

4

∫ kmax

0
E(k)
k dk∫ kmax

0
E(k)dk

,

where E(k) is the energy spectrum function at the scalar wave number k; the Kol-
mogorov microscale η representative of dissipative scale is

(5.4) η =

(
ν3

ε

)1/4

,

where ε is the volume averaged energy-dissipation rate; and the Taylor microscale λ
characterizing the mixed energy dissipation scales is defined as [11]

(5.5) λ2 =
u2
rms

〈(∂x1u1)2〉
,

where 〈(∂x1u1)
2〉 is the ensemble average of (∂x1u1)

2 and urms is the root mean square
value of each component of velocity defined as

(5.6) u2
rms =

2

3

∫ kmax

0

E(k)dk.

The time scale of the energy-containing eddies is the large-eddy-turnover time T
defined as T = I/urms. The Taylor Reynolds number is

(5.7) Re =
urmsλ

ν
.
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Forced isotropic turbulence in a periodic box can be considered as one of the most
basic numerically simulated turbulent flows. Forced isotropic turbulence is achieved
by applying isotropic forcing to the low wave number modes so that the turbulent
cascade develops as the statistical equilibrium is reached. Statistical equilibrium is
signified by the balance between the input of kinetic energy through the forcing and
its output through the viscous dissipation. Isotropic forcing cannot be produced in a
laboratory, and therefore forced isotropic turbulence is an idealized flow configuration
that can be achieved only via a controlled numerical experiment; nevertheless, forced
isotropic turbulence represents an important test case for studying basic properties
of turbulence in a statistical equilibrium.

In the statistically stationary state, the average rate of energy addition to the
velocity field is equal to the average energy-dissipation rate. The Reynolds number
attainable for a given size of simulation is substantially higher for forced turbulence
than for the case of decaying turbulence.

We apply forcing over a spherical shell with shell walls of unit width centered at
wave number one, such that the total energy injection rate is constant in time. This
forcing procedure was used by Misra and Pullin in [27]. The forcing amplitude is
adjustable via the parameter δ, while the phase of forcing is identical to that of the
velocity components at the corresponding wave vectors. The Fourier coefficient of the
forcing term is written as

(5.8) f̂ =
δ

K

û√
ûkû∗

k

,

where f̂ and û are the Fourier transforms of the forcing vector and velocity, respec-
tively, and K is the number of wave modes that are forced. The above form of forcing
ensures that the energy injection rate

∑
f̂ · û is a constant which is equal to δ. We

chose δ = 0.1 for all of our runs. The forcing is added at the large scales (|k| between
1 and 2).

The DNS is performed by using a 5123 mesh in a periodic 3D cube of sides L = 2π.
We solve the incompressible Navier–Stokes equations for the velocity field, by using a
pseudospectral code. A second order explicit Runge–Kutta scheme is used for time-
marching. To eliminate the aliasing error in the pseudospectral method and achieve
maximum resolution, we use a 36th order Fourier smoothing function to damp the
high frequency modes. Specifically, the smoothing function in this case is given by
ρ(ki) = exp(−36(ki/N)36) for |ki| ≤ N . Compared with the 2/3 dealiasing method,
this carefully designed high order Fourier smoothing scheme can resolve significantly
more high frequency Fourier modes than the traditional 2/3 dealiasing method for a
given resolution; see [14].

5.2.1. DNS results. In our 3D computations, we choose the initial condition as
a random field with a spectrum peaked around |kp|=30. For this initial condition, the
equilibrium Taylor Reynolds number is approximately 223, and the Reynolds num-
ber based on the integral length scale is 1056. The equivalent viscosity coefficient
is ν = 0.0005. To present the results in a nondimensional form, we use the integral
length scale I and the root mean square of velocity urms. Throughout the forced simu-
lations, these two quantities vary significantly; however, as equilibrium is approached,
the integral length scale for the simulation approaches the value of approximately
I = 0.56, and the root mean square of velocity is urms = 0.61. It follows that the
corresponding eddy-turnover time is T = I/urms = 0.91. The computations are con-
tinued for more than 30 eddy-turnover times. The plots of the total kinetic energy
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Fig. 5.7. Temporal evolution of total kinetic energy.

Fig. 5.8. Isosurface plot of vorticity.

and energy spectrum indicate that, after 10 eddy-turnover times the flow reaches an
equilibrium state; see Figure 5.7. Figure 5.8 shows the isosurface of the magnitude
of the vorticity at equilibrium (t = 30), at a value two standard deviations above the
mean value. The intense vorticity is organized into tubelike structures; see also [19].

5.2.2. Solving the multiscale model. At time t = 5.0 of the DNS simulation,
small scales have developed due to energy cascade. We use the DNS data at t = 5 as
the initial condition for the multiscale model and reparameterize the initial condition
by using the scheme outlined in section 2.1. By following the numerical algorithm
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outlined in section 4.2, we solve the averaged equations for the velocity field:

(a) ∂̄tu + (u · ∇x)u + ∇xp + ∇x · 〈w ⊗ w〉 = νΔu + f ,

(b) ∇x · u = 0,

(c) u|t=0 = U(x).

(5.9)

In the meantime, we solve the averaged equations for the inverse of the Lagrangian
map (we ignore the O(ε) term and apply the high order Fourier filtering to the solution
at each time step):

(a) ∂̄tθ + (u · ∇x)θ = 0,

(b) θ|t=0 = x.
(5.10)

For the cell problem, we solve

(a) ∂τw + (Dxθw · ∇z)w + Dxθ
�∇zq −

ν

ε
∇z · (DxθDxθ

�∇zw) = 0,

(b) (Dxθ
�∇z) · w = 0,

(c) w|τ=t=0 = W(x, z).

(5.11)

Since we force only the low wave numbers, the forcing term does not enter the
cell equations, which govern the flow of subgrid scales. The energy cascade between
the resolved scales and the subgrid scales is caused by the convection terms. In
the averaged equations, the effect of small scales influences the large-scale solution
through the subgrid stress term 〈w ⊗ w〉. The net effect of this term is to dissipate
the energy in the large scale. In the cell equations, the large-scale solution is coupled
to the small-scale solution through the term DzwDxθw.

In principle, the forcing will enter the cell problem through the next order term of
order ε, which we neglect in this simulation. If we compute the solution for 1/ε order
in time, this lower order term will be important. Since we compute the cell problem
for about five local eddy-turnover times, the correction term can be neglected.

The multiscale analysis provides a multiscale computational method to calculate
the Reynolds stress terms from the cell problem. However, for the 3D problem it is
not practical to solve the cell equation and take the average on each cell. Instead, we
need to design an adaptive numerical scheme that utilizes the homogeneous property
of turbulence, i.e. a scheme that captures the large-scale effect of the Reynolds stress
by solving the cell equations on a limited number of cells.

5.2.3. Adaptive multiscale model. In this subsection, we will demonstrate
that, by using an adaptive strategy, we can compute our multiscale model at a cost
comparable to the eddy viscosity model but with better accuracy and without any
unknown parameters to be fitted. To design an effective adaptive strategy, we note
that, when the turbulent flow field approaches the statistical stationary state, the
variation of the Reynolds stress tensor becomes small both in space and in time.
Therefore it is not necessary to update every cell problem. Instead, we need only
to compute those cells that are disturbed from the equilibrium state. From the cell
equation (5.11), we notice that the disturbance to the cell equation comes from the
term Dxθ, which represents the influence from the local gradient of the mean flow. If
the value of Dxθ remains constant in time, the cell will stay in the equilibrium stage.
However, if the value of Dxθ changes due to the shearing of the mean flow map, the
cell will be disturbed away from the equilibrium stage and will evolve until it reaches
a new equilibrium state.
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Based on this consideration, we propose an adaptive multiscale model, which
we will describe below. At each time step t = tn, we compute the matrix norm
G = ‖(Dxθ)

T
n (Dxθ)n−I‖ on each coarse grid. This term measures the deformation of

the unit cell, which represents the magnitude of the local disturbance from the large-
scale flow to the subgrid flows. If there is no cell deformation, e.g., a rigid motion,
then we have (Dxθ)

T
n (Dxθ)n = I. We compare the values of G among all of the coarse

grids and update a total of P cells that have the largest value of G. The number of
cells to be updated at each time step P is the parameter that controls the accuracy
of the multiscale model. When P = 643, i.e, we update every cell at each time step,
the cost of the scheme is the same as the DNS. On the other extreme, if P = 1, i.e.,
we update only one cell in the computational domain, this is equivalent to the eddy
viscosity model. In our study, we test P = 32, 64, 128. The cell equations are solved
with a 323 grid, and the averaged equations are solved with a 643 grid.

Although we do not need to update every cell solution at each time step, we need
to save the flow field of each cell as the initial condition at a later time when that
cell needs to be updated. In this case the memory usage is equivalent to a grid of
323 × 643 = 20483, which exceeds the capacity of the cluster we use. To alleviate this
difficulty, after solving the cell equations and obtaining the Reynolds stress, we save
only the first 16 Fourier modes in each direction. When the flow field of a cell needs to
be updated, these first 16 modes are used as the initial condition, with higher modes
being set to zero. During the computation of the cell equations, the higher modes will
grow due to the nonlinear interaction. In addition, the turbulence within a cell has its
own time scale, the eddy-turnover time tcell, which is about 1/64 of the eddy-turnover
time of the averaged flow T . Our numerical experiments show that it is enough to
solve the cell equations for 5tcell, and the cell flow field will reach a quasi-equilibrium
state. This scheme has substantial savings in the computation time compared with
DNS and yet has accuracy comparable with DNS.

Figure 5.9 plots the comparison of energy spectrum at t = 30.0. We can see that
the energy spectra obtained with P = 64 and 128 agree very well with those obtained
by the DNS; even with very small cell numbers P = 32, the solution agrees well at
low wave numbers, and the energy spectrum at the cutoff wave number is higher than
the DNS, due to smaller energy dissipation from the small scales.

The comparison in energy spectrum shows only that the subgrid-scale model
(SGS) captures the total energy dissipation at the cutoff wave number. It is more
important to study basic structural properties of subgrid stresses with respect to the
large-scale characteristics of the flow field. A comprehensive knowledge of the fine-
scale motions is essential in the development of a proper turbulent theory and any
turbulent model. These coherent fine-scale structures have been observed in other
types of turbulent flows, such as turbulent mixing layers and turbulent channel flows,
where they exhibit similar characteristics.

Three-dimensional measurement techniques have been used to study the align-
ment of the eigenvectors of actual and modeled components of the subgrid stresses
as well as the alignments between eigenvectors of the rate of strain tensor and vortic-
ity vector [21, 32, 20]. The studies confirm that there is a preferred local alignment
between the second eigenvector of the rate of strain tensor with the vorticity vector,
which was previously observed by using the pointwise DNS data. There is also a
preferred relative angle between the most compressive eigendirection of the rate of
strain tensor and the most extensive eigendirection of the SGS tensor. By following
the previous work of experimental study and LES, we will discuss the statistics of
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Fig. 5.9. Comparison of energy spectra. The black curve corresponds to the energy spectrum at
t = 0. The other curves correspond to the energy spectra at t = 30, which are DNS (blue); P = 128
(red); P = 64 (green); P = 32 (light blue).

alignment between the eigenvectors of the SGS tensor τ and both the eigenvectors of
the rate of strain tensor D and the unit vorticity vector ω.

In the DNS, the mean velocity is obtained by filtering the full velocity field v
with a cutoff filter, and the SGS tensor is defined by

(5.12) τij = vivj − v̄iv̄j ,

where v̄i is some low pass filter of vi. In the multiscale computation, τ = 〈w ⊗ w〉 is
obtained by solving the cell equations.

We denote the eigenvectors of D by [e1, e2, e3], ordered according to the corre-
sponding eigenvalues (λ1, λ2, λ3), with λ1 > λ2 > λ3. The eigenvectors of τ are
(t1, t2, t3) with eigenvalues (γ1, γ2, γ3) such that γ1 > γ2 > γ3. Thus, for example,
we refer to e1 as the most extensional eigendirection of D and to t3 as the most
compressive eigendirection of τ .

We first compute the distribution of the energy transfer function εsgs = τ : D
between the filtered scales and subgrid scales. The segment with εsgs < 0 corresponds
to energy backscatter. Figure 5.10 shows that the LES computation with P = 64 cells
captures the probability density function accurately. The computation with P = 32
cells is less accurate; however, it still captures some amount of energy backscattering.

By using the same data sets we compute the distributions of the alignment, rep-
resented by the cosine of the angles, between the eigenvectors of the rate of strain
tensor and vorticity vector as well as the SGS tensor. Figure 5.11 demonstrates that
the probability is the highest when the cosine of the angle between the vorticity vector
and the eigendirection of the rate of strain tensor corresponding to the intermediate
eigenvalue is close to one. Thus the probability is the highest if the angle between
these two vectors is close to zero. This is true for both the DNS and the LES computa-
tions. This demonstrates the preferential alignment between the vorticity vector and
the eigendirection of the rate of strain tensor corresponding to the intermediate eigen-
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Fig. 5.10. Probability distribution of εsgs = τ : D; solid line: forced DNS; dashed line:
multiscale model with P = 64; dashed-dotted line: multiscale model with P = 32. The scaling is
based on the energy transfer δ, number of samples N3, and bin size Δεsgs.

value. In addition, Figure 5.12 presents the alignment between the eigenvectors of the
SGS stress tensor and the rate of strain tensor D of the resolved scale. The eigenvec-
tors of the subgrid tensor τ solved from the cell equations display qualitatively similar
alignment as that computed from DNS data. We can see that the probability is the
highest when the cosine of the angle between e3 and t1 is around 0.8. This confirms
the experimental observation that there is a preferred angle between e3 and t1.

5.2.4. A hybrid Smagorinsky eddy viscosity model. Our multiscale model
can potentially give accuracy comparable to the DNS if we solve cell equations on each
grid point. As we reduce the number of cells to be solved, the accuracy decreases. In
one extreme case, we solve only a few cell problems to obtain one averaged coefficient
to be used in the averaged equation. In this case, the coefficient to be computed is the
dynamic eddy viscosity, when we assume that the Reynolds stress tensor is aligned
with the local rate of strain tensor of the filtered scale [12].

Let B = 〈w ⊗ w〉, which is the SGS. If we assume that the deviatoric part of the
SGS tensor is locally aligned with the rate of strain tensor D of the mean flow, with
D = 1

2 (∇u + ∇uT ) [31, 24, 12, 11], this gives

(5.13) B =
1

3
kI − 2νkD,

where k = tr(B) is the SGS kinetic energy and νk the eddy viscosity. The Smagorinsky
model [31] can be derived from the k−5/3 spectra. This gives

(5.14) k = cIΔ
2||D||2, νk = cDΔ2||D||,

where ||D|| is the norm of the rate of strain matrix D, defined as

(5.15) ||D||2 =
∑
i,j

DijDij ,
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Fig. 5.11. Probability distribution of ω · eα from DNS (the top figure) and the multiscale model
(the bottom figure); solid line: ω · e1; dashed line: ω · e2; dashed-dotted line: ω · e3. The x-axis
represents the cosine of the angle between the two vectors.

and Δ is typically taken to be the coarse grid size. For isotropic turbulence, cI = 0.404
and cD = 0.042; see [25].

The weakness of the Smagorinsky model is that the effect of the subgrid flow on
the mean flow is always dissipative and is uniform in both time and space. To relax
these constraints, the dynamic model of Germano filters the governing equation a
second time [12]. By minimizing the residual error throughout the domain, cI and
cD can be determined dynamically. They vary in time and can be negative but are
uniform in space. Numerical simulations show that, at large Reynolds numbers, cI
and cD become close to 0.4 and 0.04.

By using our multiscale model, we can also design a dynamic model to determine
the eddy viscosity. Specifically, cI can be determined from

(5.16) k = cIΔ
2||D||2 = tr(B),
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Fig. 5.12. Probability distribution of eα · tβ from DNS (the top figure) and the multiscale model
(the bottom figure); solid line: e3 · t1; dashed line: e2 · t2; dashed-dotted line: e1 · t3. The x-axis
represents the cosine of the angle between the two vectors.

and cD can be determined by minimizing the error term locally

(5.17) e =

∥∥∥∥B − 1

3
kI + (2cDΔ2||D||)D

∥∥∥∥ .
This is equivalent to minimizing the quadratic function

(5.18) ||e||2 = 4c2DΔ4||D||2D2 + 4cDΔ2||D||DBD + B2
D,

where BD = B − 1
3 tr(B)I, which leads to

(5.19) cD = − BD : D

2Δ2||D||3 ,

where BD : D =
∑

i,j BijDij , and B = 〈w ⊗ w〉 is obtained by solving the cell
equations. Thus cI and cD can vary both in time and in space. In the case of
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Fig. 5.13. Temporal evolution of computed eddy viscosity cD.

homogeneous isotropic turbulence, we assume that the eddy viscosity is uniform in
space. We solve the cell equation at 4 grid points on each dimension, i.e., a total of
64 cells. For each cell we solve on a grid of 323. The averaged equation is solved with
a grid number of 643. On each cell, we calculate cI and cD with (5.16) and (5.19), and
use (5.14) to compute the SGS kinetic energy k and the eddy viscosity νk. The overall
eddy viscosity and the SGS kinetic energy are taken to be the average of all cells, and
this is plugged into the averaged equation with the Reynolds stress given by (5.13).
This process repeats at each large time step. In Figure 5.13, we plot the evolution
of cD. Since the turbulent flow is isotropic and homogeneous, the value of cI relaxes
to the Smagorinsky value of 0.04. In Figure 5.14, we plot the comparison of energy
spectra at t = 30.0. An inertia range is established which has slope k−5/3 [22]. This
improved eddy viscosity model shows good agreement with the DNS at the resolved
wave numbers.

5.2.5. Comparison of complexity in different multiscale models. Before
concluding this section, we make some comparison of complexity among different
multiscale models. Let N be the number of coarse grid points along each dimension
for both our adaptive multiscale model and the Smagorisky model. Further, we assume
that we need to solve for P a number of cell problems by using M number of grid
points along each direction. Then the complexity of our adaptive multiscale model is

CAMS = N3 + PM3.

The complexity for the traditional Smagorinsky model is given by

CLES = N3.

In a näıve implementation of a dynamic Smagorinsky model, one uses two grids to
solve for the Smagorinsky model to determine the eddy viscosity. Therefore, the
complexity of a dynamic Smagorinsky model is of the order

CDLES = N3 + (2N)3.
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Fig. 5.14. The comparison of energy spectra between the DNS and the multiscale model. (Solid
line) DNS; (red) at t = 0, (blue) at t = 30. (Dashed line) Multiscale model at t = 30.

Finally, the complexity of a DNS method is of the order

CDNS = (N ∗M)3.

In our numerical experiments, we used N = 64, P = 64, and M = 32. Thus, we
have the following comparison of the complexity of various methods:

CDNS = (64 × 32)3 = 20483,

CAMS = 643 + 64 ∗ 323 = 643 + 1283,

CLES = 643,

CDLES = 643 + 1283.

As we can see from the above comparison, our adaptive multiscale model gives a
significant savings compared with the DNS. It has the same complexity as the näıve
implementation of a dynamic Smagorinsky model but is about 9 times more expensive
than the traditional Smagorinsky model.

6. Conclusion and discussion. By using a systematic multiscale analysis, we
derived a multiscale model to solve incompressible Navier–Stokes equations. An im-
portant feature of our multiscale model is that it does not require any closure assump-
tion and has no unknown parameters. Our numerical experiments demonstrated that
our multiscale model not only obtained good agreement with a high resolution DNS
result in the energy spectrum and kinetic energy evolution but also correctly captured
the higher order turbulence statistics, including the probability distribution function
of subgrid energy transfer, correlation between the eigenvectors of the SGS tensor,
the rate of strain tensor, and the unit vorticity vector.

We can compare our multiscale model with the available LES models. All LES
schemes are based on some assumed correlation about the subgrid stresses and the
local rate of strain of the resolved flow. However, the DNS results and more recent high
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resolution experimental results did not show any obvious correlation between those
two tensors. The advantage of our multiscale model is that the averaged equations
and the cell equations are derived directly from the governing equations based on
a systematic multiscale analysis, so the mathematical formulation can be justified
formally by ignoring higher order terms in the averaged and cell equations.

One of the important contributions in this paper is that we introduce an adap-
tive strategy which allows us to reduce the number of cell problems to be updated
dynamically. This provides us with an adaptive multiscale model at a cost compara-
ble to a dynamic LES model but with better accuracy and no free parameters. Our
adaptive strategy takes advantage of some properties of turbulent flows. When the
turbulent flow reaches the state of statistical equilibrium, most subgrid scales become
statistically stationary; therefore, they do not need to be recalculated. However, due
to turbulence intermittency, some subgrid scales will be disturbed by the large-scale
flow. We need only to compute those subgrid cells that are disturbed away from the
equilibrium. For fully developed turbulent flows, the number of cells that need to be
recalculated is relatively small. This is how our adaptive multiscale model saves com-
putation time. We noticed that the large-scale flow disturbs the cell flow through the
convection term DzwDxθw, and the regions with large value of DzwDxθw coincide
with regions of high shears. In our numerical experiments, we solved 64 cells with
323 subgrid points and obtained excellent agreement with the DNS results using 5123

grid points. In effect, the adaptive multiscale model gives a factor of 128 savings in
the number of computational points. This shows that our adaptive multiscale model
can achieve a level of accuracy comparable to that of DNS but at a cost comparable
to that of a dynamic LES model.

Currently, we are investigating the Reynolds stress term and its structure by
studying the cell problem carefully. By exploring the intrinsic coupled between the
cell problem and the large-scale equation, we would like to characterize the Reynolds
stress term in terms of the large-scale solution through its coupling to the term Dxθ,
which accounts for the local deformation and shearing due to the mean flow. We
remark that there have been some previous efforts in using the MPP techniques and
the structure of the Reynolds stress term to construct a more systematic turbulence
model; see, e.g., [30, 7, 29].

Appendix. Derivation of the nested multiscale expansion. In this ap-
pendix, we will derive the nested multiscale expansion for θε. First, we define the
flow map xε(t,α) as follows:

(a)
dxε

dt
= uε(t,xε),

(b) xε|t=0 = α.
(A.1)

It is easy to show that θε is the inverse of the flow map xε. It is well known that one
can express the vorticity field in terms of the flow map as follows [9]:

(A.2) ωε(t,xε(t,α)) = Dαxε(t,α)ωint

(
α,

α

ε

)
.

From (A.2), we can see that the small-scale solution in vorticity essentially propagates
along its flow map. The effect of vortex stretching is accounted for by the deformation
of the Jacobian matrix of the flow map with respect to the Lagrangian variable α. By
using the Lagrangian formulation, we can see that the microscopic periodic structure
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is preserved under the Lagrangian coordinate. This important feature provides us
with a critical guideline in performing our multiscale analysis.

Let x = xε(t,α) and Bε = Dxθ
ε = (Dαxε)−1. Since the flow is incompressible,

the flow map xε(t,α) is volume-preserving, i.e., det(Dαxε) = 1. On the other hand,
since DαxεDxθ

ε = I (I is the identity matrix), we get det(Bε) = 1. By direct
calculations, we can show that

(A.3) Bε = (Dαxε)−1 = (∇α × (xε
2∇αx

ε
3), ∇α × (xε

3∇αx
ε
1), ∇α × (xε

1∇αx
ε
2)),

where xε
1, xε

2, and xε
3 are the three components of the flow map xε. Moreover, in

terms of the Lagrangian variable, we have

(A.4) Δψε = ∇α · (BεBε�∇αψ
ε)

and

∇x×ψε = [(∇α×(ψε
1∇αx

ε
1+ψε

2∇αx
ε
2+ψε

3∇αx
ε
3))·∇α] xε = Dαxε[∇α×

(
(Dαxε)�ψε

)
].

Thus, we can express the velocity field uε as

(A.5) uε =
(
∇α × ((Dαxε)�ψε) · ∇α

)
xε.

By putting everything together, we can now summarize the stream function-vorticity
formulation under the Lagrangian coordinate system. The stream function ψε and
Lagrangian map xε satisfy the following coupled system:

(a) −∇α · (BεBε�∇αψ
ε) = Dαxεωint

(
α,

α

ε

)
,

(b) ∂tx
ε =

(
∇α × ((Dαxε)�ψε) · ∇α

)
xε, t > 0, xε(0,α) = α .

(A.6)

By using the stream function-vorticity formulation in the Lagrangian variable, we can
treat the nonlinear convection exactly. We now turn the convection dominant trans-
port problem, which is hyperbolic in nature, into an elliptic problem for the stream
function and a quasi-linear convection equation for the Lagrangian flow map. The
velocity field can be recovered from these two variables. The system (A.6) is a non-
linear coupling system of the elliptic and the transport equations. From this system,
we can see that the multiscale periodic structure is convected by the full velocity field.
The solution of this system is a periodic function of α/ε. This formulation plays a
fundamental role in our multiscale analysis.

The objective of our study is to obtain an averaged equation for the well-mixed
long time solution of incompressible flow. We look for multiscale expansions in the
stream function and the flow map of the form:

(a) ψε(t,α) = ψ̄(t,α, τ) + εψ̃(t,α, τ,y),

(b) xε(t,α) = x̄(t,α, τ) + εx̃(t,α, τ,y),
(A.7)

where τ = t/ε and y = α/ε, with α = θε. We assume that ψ̃ and x̃ are periodic
functions in y with zero mean.

The expansion (A.7) is along the exact Lagrangian map for both a “slow variable”
and “fast variable.” For engineering applications, it is more convenient to study the
macroscopic behavior of the fluid flow in the Eulerian coordinate for the slow variable.
For this reason, we consider a new expansion which uses the Eulerian coordinate
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for the large-scale solution but still uses the Lagrangian coordinate to describe the
propagation of the small-scale solution. Let α = θ̄(t,x, τ) be the inverse map of
x = x̄(t,α, τ), i.e., x = x̄(t, θ̄(t,x, τ), τ). By applying θ̄ to the flow map

x = x̄(t,θε, τ) + εx̃

(
t,θε,

t

ε
,
θε

ε

)
,

we get

θ̄(t,x, τ) = θ̄

(
t, x̄(t,θε, τ) + εx̃

(
t,θε,

t

ε
,
θε

ε

)
, τ

)
.

By expanding around ε = 0 and using the identity θε = θ̄(t, x̄(t,θε, τ), τ), we obtain

θε = θ̄(t,x, τ) − εDxθ̄(t, θ̄, τ)x̃

(
t, θ̄,

t

ε
,
θε

ε

)
+ · · ·

= θ̄(t,x, τ) + εθ̃

(
t, θ̄, τ,

θε

ε

)
.(A.8)

This gives a nested multiscale expansion for θε.

Acknowledgments. We thank Professors George Papanicolaou, Olivier Piron-
neau, and Dale Pullin for many stimulating discussions and helpful suggestions re-
garding this work. We also express our gratitude to the referees for their valuable
comments on our original manuscript and for suggesting a better norm to use in our
adaptive multiscale algorithm.

REFERENCES

[1] K. G. Batchelor, Computation of the energy spectrum in homogeneous two-dimensional tur-
bulence, Phys. Fluids Suppl. II, 12 (1969), pp. 233–239.
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