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STABLE NEARLY SELF-SIMILAR BLOWUP OF THE 2D
BOUSSINESQ AND 3D EULER EQUATIONS WITH SMOOTH DATA

II: RIGOROUS NUMERICS\ast 

JIAJIE CHEN\dagger AND THOMAS Y. HOU\ddagger 

Abstract. This is Part II of our paper in which we prove finite time blowup of the two-
dimensional Boussinesq and three-dimensional axisymmetric Euler equations with smooth initial data
of finite energy and boundary. In Part I of our paper [Chen and Hou, preprint, arXiv:2210.07191,
2022], we establish an analytic framework to prove the nonlinear stability of an approximate self-
similar blowup profile using a combination of weighted L\infty and weighted C1/2 energy estimates. We
reduce proving nonlinear stability to verifying several inequalities for the constants in the energy
estimate which depend on the approximate steady state and the weights in the energy functional
only. In Part II of our paper, we construct approximate space-time solutions with rigorous error con-
trol, which are used to obtain sharp stability estimates of the linearized operator in Part I. We also
obtain sharp estimates of the velocity in the regular case using numerical integration with computer
assistance. These results enable us to verify that the constants in the energy estimate obtained in
Part I [Chen and Hou, preprint, arXiv:2210.07191, 2022] indeed satisfy the inequalities for nonlin-
ear stability. The nonlinear stability further implies the finite time singularity of the axisymmetric
three-dimensional Euler equations with smooth initial data and boundary.

Key words. 3D Euler singularity, approximate space-time solution, computer-assisted proof,
numerical integral

MSC codes. 35Q31, 65G50

DOI. 10.1137/23M1580395

1. Introduction. The three-dimensional (3D) incompressible Euler equations
are one of the most fundamental nonlinear partial differential equations that govern
the motion of the ideal inviscid fluid flow. They are closely related to the incompress-
ible Navier--Stokes equations. Due to the presence of nonlinear vortex stretching, the
global regularity of the 3D incompressible Euler equations with smooth initial data
and finite energy has been one of the longstanding open questions in nonlinear par-
tial differential equations. Let u be the divergence free velocity field and we define
\bfitomega =\nabla \times u as the vorticity vector. The 3D Euler equations governing the vorticity \bfitomega 
are given by

\bfitomega t + u \cdot \nabla \bfitomega =\bfitomega \cdot \nabla u,(1.1)

where u is related to \bfitomega via the Biot--Savart law. The velocity gradient \nabla u formally
has the same scaling as vorticity \bfitomega . Thus the vortex stretching term, \bfitomega \cdot \nabla u, has a
nonlocal quadratic nonlinearity in terms of vorticity. Although many experts tend to
believe that the 3D Euler equations would form a finite time singularity from smooth
initial data, the nonlocal nature of the vortex stretching term could lead to dynamic
depletion of nonlinearity, thus preventing a finite time blowup (see, e.g., [20, 23, 36]).
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26 JIAJIE CHEN AND THOMAS Y. HOU

The interested readers may consult the excellent surveys [19, 30, 34, 38, 43] and the
references therein.

Our work is inspired by the computation of Luo and Hou [41, 42], in which they
presented some convincing numerical evidence that the 3D axisymmetric Euler equa-
tions with smooth initial data and boundary develop a potential finite time singularity.
In Part I of our paper [13], we establish an analytic framework and obtain the es-
sential stability estimates to prove finite time singularity of the 2D Boussinesq and
3D axisymmetric Euler equations with smooth initial data and boundary. The main
results of this paper are stated by the two informal theorems below. The more precise
and stronger statement of Theorem 1 can be found in Theorem 3 in section 2.

Theorem 1. Let \theta , u, and \omega be the density, velocity, and vorticity in the 2D
Boussinesq equations (2.3)--(2.5), respectively. There is a family of smooth initial data
(\theta 0, \omega 0) with \theta 0(x, y) being even and \omega 0(x, y) being odd in x, such that the solution
of the 2D Boussinesq equations develops a singularity in finite time T < +\infty . The
velocity field u0 has finite energy. The blowup solution (\theta (t), \omega (t)) is nearly self-similar
in the sense that (\theta (t), \omega (t)) with suitable dynamic rescaling is close to an approximate
blowup profile (\=\theta , \=\omega ) up to the blowup time. Moreover, the blowup is stable for initial
data (\theta 0, \omega 0) close to (\=\theta , \=\omega ) in some weighted L\infty and C1/2 norm.

Theorem 2. Consider the 3D axisymmetric Euler equations in the cylinder r, z \in 
[0,1]\times \BbbT . Let u\theta and \omega \theta be the angular velocity and angular vorticity, respectively. The
solution of the 3D Euler equations (2.1)--(2.2) develops a nearly self-similar blowup
(in the sense described in Theorem 1) in finite time for some smooth initial data \omega \theta 

0,
u\theta 0 supported away from the symmetry axis r = 0. The initial velocity field has finite
energy, and u\theta 0 and \omega \theta 

0 are odd and periodic in z. The blowup is stable for initial data
(u\theta 0, \omega 

\theta 
0) that are close to the approximate blowup profile (\=u\theta , \=\omega \theta ) after proper rescaling

subject to some constraint on the initial support size.

We first review some main ideas in our stability analysis of the linearized operator
presented in Part I [13]. We use the 2D Boussinesq system as an example. Let \=\omega ,
\=\theta be an approximate steady state of the dynamic rescaling formulation. We denote
W = (\omega , \theta x, \theta y) and decompose W = W + \widetilde W with W = (\=\omega , \=\theta x, \=\theta y). We further

denote by \scrL the linearized operator around W that governs the perturbation \widetilde W in
the dynamic rescaling formulation (see section 2):

\widetilde Wt =\scrL (\widetilde W ).(1.2)

We decompose the linearized operator \scrL into a leading order operator \scrL 0 plus a finite
rank perturbation operator \scrK , i.e., \scrL = \scrL 0 + \scrK . The leading order operator \scrL 0 is
constructed in such a way that we can obtain sharp stability estimates using weighted
estimates and sharp functional inequalities.

In Part I [13], we have performed the weighted energy estimates using a combi-

nation of weighted L\infty and C1/2 norm. In our analysis, we decompose \widetilde W =\widetilde W1+\widetilde W2,
where \widetilde W1 is the main part of the perturbation, which is essentially governed by the
leading order operator \scrL 0 with a weak coupling to \widetilde W2 through nonlinear interaction.
The perturbation \widetilde W2 captures the contribution from the finite rank operator. The
key is to show that the energy estimate of the main part \widetilde W1 satisfies the inequalities
stated in our stability Lemma 2.1 (see section 2). For this purpose, we need to obtain
relatively sharp energy estimates for the leading order operator \scrL 0 by subtracting a
finite rank operator \scrK . Without subtracting the finite rank operator, we would not be
able to obtain the linear and nonlinear stability of the approximate self-similar profile.
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STABLE BLOWUP OF 3D EULER EQUATIONS 27

The constants in the weighted energy estimates obtained in Part I [13] depend
on the approximate self-similar profile that we constructed numerically in section 7 of
Part I [13] and the singular weights we use. In this paper and in the supplementary
material (supplement.pdf [local/web 1.43MB]), we will provide sharp and rigorous
upper bounds for these constants by estimating the higher order derivatives and then
using interpolation estimates from numerical analysis. We also obtain sharp esti-
mates of the regular part of the velocity, which is more regular than the vorticity,
by bounding various integrals using numerical integration with computer assistance.
These sharp estimates of the constants enable us to prove that the inequalities in our
stability lemma hold for our approximate self-similar profile. Thus we can complete
the stability analysis of the approximate self-similar profile and complete our blowup
analysis for the 2D Boussinesq and 3D Euler equations. See section 2.2 for more
discussion of the main steps in our blowup analysis.

We use the following toy model to illustrate the main ideas of our stability analysis
by considering \scrK as a rank-one operator \scrK (\widetilde W ) = a(x)P (\widetilde W ) for some operator P

satisfying (i) P (\widetilde W ) is constant in space; (ii) \| P (\widetilde W )\| \leq c\| \widetilde W\| . Given initial data \widetilde W0,
we decompose (1.2) as follows:

\partial t\widetilde W1(t) =\scrL 0
\widetilde W1, \widetilde W1(0) =\widetilde W0,

\partial t\widetilde W2(t) =\scrL \widetilde W2 + a(x)P (\widetilde W1(t)), \widetilde W2(0) = 0.
(1.3)

It is easy to see that \widetilde W = \widetilde W1 + \widetilde W2 solves (1.2) with initial data \widetilde W0 since \scrL =
\scrL 0 + a(x)P . By construction, the leading operator \scrL 0 has the desired structure that

enables us to obtain sharp stability estimates. The second part \widetilde W2 is driven by the
rank-one forcing term a(x)P (\widetilde W1(t)). Using Duhamel's principle and the fact that

P (\widetilde W1(t)) is constant in space, we get

\widetilde W2(t) =

\int t

0

P (\widetilde W1(s))e
\scrL (t - s)a(x)ds.(1.4)

If \widetilde W1 is linearly stable in some L\infty (\varphi ) space, by checking the decay of e\scrL (t)a(x) in

the energy space for large t, we can obtain the stability estimate of \widetilde W2. Note that
e\scrL (t)a(x) is equivalent to solving the linear evolution equation vt = \scrL (v) with initial
data v0 = a(x). We can solve this initial value problem by constructing a space-time
solution with rigorous error control.

We remark that our stability analysis is performed mainly for \widetilde W1 since \widetilde W2 is
driven by\widetilde W1. The approximation errors in constructing the space-time approximation
to \widetilde W2 can be controlled by the decay estimate of \widetilde W1. Moreover, the region where we
need to modify the linearized operator by a finite rank operator is mainly located in
a small sector near the boundary where we have the smallest amount of damping.
The total rank is less than 50. In our construction of an approximate solution to \widetilde W2,
we need to solve the linear PDE (1.2) in space-time with a number of initial data,
which can be implemented in full parallel.

There has been a lot of effort in studying 3D Euler singularities. The most
exciting recent development is Elgindi's breakthrough result in which he proved the
finite time singularity of the axisymmetric Euler equation with no swirl for C\alpha initial
vorticity [24] (see also [25]). In [12], we established the finite time blowup of the
2D Boussinesq and the 3D axisymmetric Euler equations with C1,\alpha velocity, large
swirl, and boundary in a setting similar to the Hou--Luo scenario [41, 42]. See also [9]
for further developments. Earlier efforts include the Constantin--Lax--Majda (CLM)
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28 JIAJIE CHEN AND THOMAS Y. HOU

model [21], the De Gregorio model [22], the generalized CLM (gCLM) model [50],
and the Hou--Li model [35]. See also [5, 6, 7, 8, 15, 21, 26, 28] for the De Gregorio
model and for the gCLM model with various parameters. Inspired by their work on
the vortex sheet singularity [4], Caflisch and Siegel have studied complex singularity
for the 3D Euler equation; see [3, 54] and also [51] for the complex singularities for
the 2D Euler equation.

In [17], the authors proved the blowup of the Hou--Luo model proposed in [42].
In [16], Chen, Hou, and Huang proved the asymptotically self-similar blowup of the
Hou--Luo model by extending the method of analysis established for the finite time
blowup of the De Gregorio model by the same authors in [15]. In [18, 31, 32, 33, 39],
the authors proposed several simplified models to study the Hou--Luo blowup scenario
[41, 42] and established finite time blowup of these models. In [27, 29], Elgindi and
Jeong proved finite time blowup for the 2D Boussinesq and 3D axisymmetric Euler
equations in a domain with a corner using \r C0,\alpha data.

The rest of the paper is organized as follows. In section 2, we review the analytic
framework that we established in Part I [13] and state the key lemmas which we use to
prove the finite time blowup of the 2D Boussinesq and 3D Euler equations with smooth
initial data. In section 3, we discuss the construction of the approximate space-time
solution to the linearized operator \scrL . This is crucial to obtain sharp estimates of
the perturbed operator \scrL  - \scrK in the stability analysis. In section 4, we show how to
estimate the L\infty and H\"older norms of the regular part of the velocity. Some technical
estimates and derivations are deferred to the appendix.

2. Review of the analytic framework from Part I [13]. In this section, we
will review some main ingredients in our analytic framework to establish the stability
analysis that we presented in Part I [13]. We will mainly focus on the 2D Boussinesq
equations since the difference between the 3D Euler and 2D Boussinesq equations is
asymptotically small. As in our previous works [12, 15, 16], we will use the dynamic
rescaling formulation for the 2D Boussinesq equations to study the linear stability for
the linearized operator around the approximate steady state of the dynamic rescaling
equations. Passing from linear stability to nonlinear stability is relatively easier by
treating the nonlinear terms and the residual error as small perturbations to the linear
damping terms.

Denote by \omega \theta , u\theta , and \phi \theta the angular vorticity, angular velocity, and angular
stream function, respectively. The 3D axisymmetric Euler equations are given below,

\partial t(ru
\theta ) + ur(ru\theta )r + uz(ru\theta )z = 0,(2.1)

\partial t

\biggl( 
\omega \theta 

r

\biggr) 
+ ur

\biggl( 
\omega \theta 

r

\biggr) 
r

+ uz
\biggl( 
\omega \theta 

r

\biggr) 
z

=
1

r4
\partial z((ru

\theta )2),

where the radial velocity ur and the axial velocity u\theta are given by the Biot--Savart
law:

 - 
\biggl( 
\partial rr +

1

r
\partial r + \partial zz

\biggr) 
\phi \theta +

1

r2
\phi \theta = \omega \theta , ur = - \phi \theta z, uz = \phi \theta r +

1

r
\phi \theta ,(2.2)

with the no-flow boundary condition \phi \theta (1, z) = 0 on the solid boundary r = 1 and a
periodic boundary condition in z. For 3D Euler blowup that occurs at the boundary
r = 1, we know that the scaling properties of the axisymmetric Euler equations are
asymptotically the same as those of the 2D Boussinesq equations [43]. Thus, we also
study the 2D Boussinesq equations on the upper half space:
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STABLE BLOWUP OF 3D EULER EQUATIONS 29

\omega t + u \cdot \nabla \omega = \theta x,(2.3)

\theta t + u \cdot \nabla \theta = 0,(2.4)

where the velocity field u = (u, v)T : \BbbR 2
+ \times [0, T ) \rightarrow \BbbR 2

+ is determined via the Biot--
Savart law

 - \Delta \phi = \omega , u= - \phi y, v= \phi x,(2.5)

where \phi is the stream function with the no-flow boundary condition \phi (x,0) = 0 at
y= 0. By making the change of variables \~\theta \triangleq (ru\theta )2, \~\omega = \omega \theta /r, we can see that \~\theta and
\~\omega satisfy the 2D Boussinesq equations up to the leading order for r\geq r0 > 0.

2.1. Dynamic rescaling formulation. Following [12, 15, 16], we consider the
dynamic rescaling formulation of the 2D Boussinesq equations. Let \omega (x, t), \theta (x, t),
u(x, t) be the solutions of (2.3)--(2.5). Then it is easy to show that

\~\omega (x, \tau ) =C\omega (\tau )\omega (Cl(\tau )x, t(\tau )), \~\theta (x, \tau ) =C\theta (\tau )\theta (Cl(\tau )x, t(\tau )),

\~u(x, \tau ) =C\omega (\tau )Cl(\tau )
 - 1u(Cl(\tau )x, t(\tau ))

(2.6)

are the solutions to the dynamic rescaling equations

\~\omega \tau (x, \tau ) + (cl(\tau )x+ \~u) \cdot \nabla \~\omega = c\omega (\tau )\~\omega + \~\theta x, \~\theta \tau (x, \tau ) + (cl(\tau )x+ \~u) \cdot \nabla \~\theta = c\theta \~\theta ,

(2.7)

where \~u= (\~u, \~v)T =\nabla \bot ( - \Delta ) - 1\~\omega , x= (x, y)T ,

C\omega (\tau ) = exp

\biggl( \int \tau 

0

c\omega (s)d\tau 

\biggr) 
, Cl(\tau ) = exp

\biggl( \int \tau 

0

 - cl(s)ds
\biggr) 
, C\theta = exp

\biggl( \int \tau 

0

c\theta (s)d\tau 

\biggr) 
,

(2.8)

t(\tau ) =
\int \tau 

0
C\omega (\tau )d\tau and the rescaling parameters cl(\tau ), c\theta (\tau ), c\omega (\tau ) satisfy [12]

c\theta (\tau ) = cl(\tau ) + 2c\omega (\tau ).(2.9)

To simplify our presentation, we still use t to denote the rescaled time in (2.7)
and simplify \~\omega , \~\theta as \omega , \theta 

\omega t + (clx+ u) \cdot \nabla \omega = \theta x + c\omega \omega , \theta t + (clx+ u) \cdot \nabla \theta = c\theta \theta .(2.10)

Following [16], we impose the following normalization conditions on c\omega , cl:

cl = 2
\theta xx(0)

\omega x(0)
, c\omega =

1

2
cl + ux(0), c\theta = cl + 2c\omega .(2.11)

For smooth data, these two normalization conditions play the role of enforcing

\theta xx(t,0) = \theta xx(0,0), \omega x(t,0) = \omega x(0,0)(2.12)

for all time.
We remark that the dynamic rescaling formulation was introduced in [40, 45] to

study the self-similar blowup of the nonlinear Schr\"odinger equations. This formulation
is closely related to the modulation technique in the literature and has been developed
by Merle, Raphael, Martel, Zaag, and others (see, e.g., [1, 2, 37, 44, 46, 47, 48]).
Moreover, it is related to the method of modulation equations developed by Soffer
and Weinstein [55, 56, 57]. Recently, this method has been applied to study singularity
formation in incompressible fluids [12, 24] and related models [6, 7, 8, 15]. The more
precise statement of our Theorem 1 is stated as follows.
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30 JIAJIE CHEN AND THOMAS Y. HOU

Theorem 3. Let (\=\theta , \=\omega , \=u, \=cl, \=c\omega ) be the approximate self-similar profile constructed
in section 7 of Part I [13] and E\ast = 5 \cdot 10 - 6. For initial data \theta 0(x, y) even in x and
\omega 0(x, y) odd in x of (2.10) satisfying E(\omega 0  - \=\omega , \theta 0,x  - \=\theta x, \theta 0,y  - \=\theta y)<E\ast , we have

| | \omega  - \=\omega | | L\infty , | | \theta x  - \=\theta x| | L\infty , | | \theta y  - \=\theta y| | \infty < 200E\ast ,(2.13)

| ux(t,0) - \=ux(0)| , | \=c\omega  - c\omega | < 100E\ast 

for all time. In particular, we can choose smooth initial data \omega 0, \theta 0 \in C\infty 
c in this

class with finite energy | | u0| | L2 <+\infty such that the solution to the physical equations
(2.3)--(2.5) with these initial data blows up in finite time T .

The energy E is quite complicated, and we refer to section 2.3 in Part I [13] for
its formula.

Nearly self-similar blowup and the blowup time. Based on the main theo-
rem, Theorem 3, the vorticity in the physical space ((2.3), (2.4)) \omega phy has the following
form:

\omega phy(x, t(\tau )) =C - 1
\omega (\tau )\omega ss(Cl(\tau )

 - 1x, \tau ), | | \omega ss(\tau ) - \=\omega | | L\infty \ll 1,

where \omega ss is the self-similar variable (\~\omega in (2.6)). We can generalize the rescaling
parameters C\omega ,Cl,C\theta (2.8) to C\omega (\tau ) = C\omega (0) exp(

\int \tau 

0
c\omega (s)ds),Cl(\tau ) = Cl(0) exp(

\int \tau 

0

 - cl(s)ds), C\theta =C2
\omega C

 - 1
l , t(\tau ) =

\int \tau 

0
C\omega (\tau )d\tau . Using the estimates (2.13) and cl(\tau )\equiv \=cl

(2.11), (2.12), we obtain

| | \omega phy(\tau )| | L\infty \approx C - 1
\omega (\tau )| | \=\omega | | L\infty , C\omega (\tau )\approx C\omega (0)e

\=c\omega \tau , Cl(\tau ) =Cl(0)e
 - \=cl\tau ,

T = t(\infty )\approx C\omega (0)| \=c\omega |  - 1 =
| | \=\omega | | L\infty 

| | \omega phy(0)| | L\infty | \=c\omega | 
, T  - t(\tau )\approx C\omega (\tau )| \=c\omega |  - 1,

Cl(\tau )
 - 1 \approx C(T  - t(\tau ))\=cl/\=c\omega , \omega phy(\tau )\approx (T  - t(\tau )) - 1| \=c\omega |  - 1\=\omega (Cx(T  - t(\tau ))\=cl/\=c\omega )

with \=cl/\=c\omega \approx  - 2.92< 0, for some C > 0 depending on \=cl, \=c\omega ,Cl(0),C\omega (0). The notation
\approx means that the relation holds approximately. The exact relation can be inferred
from (2.13), (2.6), (2.8). The blowup time is approximately inversely proportional to
| | \omega phy(0)| | L\infty . Since we only prove that \omega ss(\tau ) is sufficiently close to the approximate
profile \=\omega and do not prove the convergence of \omega ss(\tau ) as \tau \rightarrow \infty , Theorem 3 does not
imply an asymptotically self-similar blowup.

2.2. The main steps in the proof of Theorem 3. We will follow the frame-
work in [12, 15, 16] to establish finite time blowup by proving the nonlinear stability
of an approximate steady state to (2.10). We divide the proof of Theorem 3 into prov-
ing the following lemmas. The energy norm below is defined in section 5 in Part I
[13] for energy estimates, and the requirement of smallness is incorporated into the
conditions (2.17), e.g., the term aij,3, in Lemma 2.5.

The upper bar notation is reserved for the approximate steady state, e.g., \=\omega , \=\theta .
Given the approximate steady state \=\omega , \=\theta , \=cl, \=c\omega , we denote by \scrF i and \=F\omega , \=F\theta the residual
error

\=F\omega = - (\=clx+ \=u) \cdot \nabla \=\omega + \=\theta x + \=c\omega \=\omega , \=F\theta = - (\=clx+ \=u) \cdot \nabla \=\theta + \=c\theta \=\theta ,

\scrF 1 \triangleq \=F\omega , \scrF 2 \triangleq \partial x \=F\theta , \scrF 3 \triangleq \partial y \=F\theta , \=c\theta = \=cl + 2\=c\omega .
(2.14)

We have the following nonlinear stability lemma for an L\infty -based energy estimate,
which is proved in Appendix A.1 of Part I [13].
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STABLE BLOWUP OF 3D EULER EQUATIONS 31

Lemma 2.1. Suppose that fi(x, z, t) :\BbbR 2
++ \times \BbbR 2

++ \times [0, T ]\rightarrow \BbbR ,1\leq i\leq n, satisfies

\partial tfi + vi(x, z) \cdot \nabla x,zfi = - aii(x, z, t)fi +Bi(x, z, t) +Ni(x, z, t) + \=\varepsilon i,(2.15)

where vi(x, z, t) are some vector fields Lipschitz in x, z with vi| x1=0 = 0, vi| z1=0 = 0.
For some \mu i > 0, we define the energy

E(t) = max
1\leq i\leq n

(\mu i| | fi| | L\infty ).

Suppose that Bi,Ni, and \=\varepsilon i satisfy the following estimate:

\mu i(| Bi(x, z, t)| + | Ni(x, z, t)| + | \=ei| )(2.16)

\leq 
\sum 
j \not =i

(| aij(x, z, t)| E(t) + | aij,2(x, z, t)| E2(t) + | aij,3(x, z, t)| ).

If there exists some E\ast , \varepsilon 0,M > 0 such that

aii(x, z, t)E\ast  - 
\sum 
j \not =i

(| aij | E\ast + | aij,2| E2
\ast + | aij,3(x, z, t)| )> \varepsilon 0,\sum 

j \not =i

(| aij | E\ast + | aij,2| E2
\ast + | aij,3(x, z, t)| )<M

(2.17)

for all x, z, and t\in [0, T ]. Then for E(0)<E\ast , we have E(t)<E\ast for t\in [0, T ].

Lemma 2.2. There exists a nontrivial approximate steady state (\=\omega , \=\theta , \=cl, \=c\omega ) to
(2.10), (2.11) with \=\omega , \=\theta \in C4,1 and residual errors \=\scrF i, i = 1,2,3 (2.14) sufficiently
small in some energy norm.

The construction of an approximate self-similar profile with a small residual error
stated in Lemma 2.2 is provided in section 7 of Part I [13] and the properties of
(\=\omega , \=\theta , \=cl, \=c\omega ) are described in section 2.4 of Part I [13]. We will estimate the local part
of the residual error in Appendix C.4. We linearize (2.10) around (\=\omega , \=\theta , \=cl, \=c\omega ) and
perform an energy estimate of the perturbation W = (\omega , \theta x, \theta y) in section 5 in Part I
[13]. In our estimates, we need to control a number of nonlocal terms.

Lemma 2.3. Let \omega be odd in x1. Denote \delta (f,x, z) = f(x) - f(z). There exists finite
rank approximations \^u,\widehat \nabla u for u(\omega ),\nabla u(\omega ) with rank less than 50 such that we have
the following weighted L\infty and directional H\"older estimate for f = u, v, \partial lu,\partial lv,x, z \in 
\BbbR ++

2 , i= 1,2, \gamma i > 0:

| \rho f (f  - \^f)(x)| \leq Cf,\infty (x,\varphi ,\psi 1, \gamma )max
\Bigl( 
| | \omega \varphi | | \infty , sf max

j=1,2
\gamma j [\omega \psi 1]C1/2

xj
(\BbbR +

2 )

\Bigr) 
,

| \delta (\psi f (f  - \^f), x, z)| 
| x - z| 1/2

\leq Cf,i(x, z,\varphi ,\psi 1, \gamma )max
\Bigl( 
| | \omega \varphi | | \infty , sf max

j=1,2
\gamma j [\omega \psi 1]C1/2

xj
(\BbbR +

2 )

\Bigr) 
(2.18)

with x3 - i = z3 - i, where sf = 0 for f = u, v, sf = 1 for f = \partial lu,\partial lv, the functions
C(x),C(x, z) depend on \gamma , the weights, and the approximations, the singular weights
\varphi =\varphi 1,\varphi g,1,\varphi elli,\psi \partial u =\psi 1,\psi u are defined in (A.2), and the weight \rho 10 for u and the
weight for \rho ij for \nabla u with i+ j = 2 are given in (A.2). In the estimate of f = u, v,
we do not need the H\"older seminorm and we set sf = 0. Moreover, C(x),C(x, z) are
bounded in any compact domain of \BbbR ++

2 . We have an additional estimate for \rho 4(u - \^u)
similar to the above with \rho 4 (A.2) singular along x1 = 0.
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32 JIAJIE CHEN AND THOMAS Y. HOU

Furthermore, we have the following estimate using the localized norm. There exist
D1,D2, ..Dn \subset \BbbR ++

2 and DS \in \BbbR +
2 depending on x in the L\infty estimate and x, z in the

C
1/2
xi estimate, such that

| \rho f (f  - \^f)(x)| \leq 
\sum 
j

Cf,\infty ,j(x,\varphi ,\psi 1, \gamma )| | \omega \varphi | | L\infty (Dj)

+ Cf,\infty ,S(x,\varphi ,\psi 1, \gamma )max
l=1,2

\bigl( 
\gamma l[\omega \psi 1]C1/2

xl
(DS)

\bigr) 
,

| \delta (\psi f (f  - \^f), x, z)| 
| x - z| 1/2

\leq 
\sum 
j

Cf,i,j(x, z,\varphi ,\psi 1, \gamma )| | \omega \varphi | | L\infty (Dj)

+ Cf,i,S(x, z,\varphi ,\psi 1, \gamma )max
l=1,2

\bigl( 
\gamma l[\omega \psi 1]C1/2

xj
(DS)

\bigr) 
for x3 - i = z3 - i,\varphi = \varphi elli and the same notation as above, where Cf,\infty ,S ,Cf,i,S = 0
for f = u, v. Similarly, we have an estimate for \rho 4(u - \^u) using a localized norm with
Cf,\infty ,S = 0 similar to the above.

Since the weights \rho 10 \sim | x|  - 3,\psi 1 \sim | x|  - 2,\psi u are singular near x = 0, without
subtracting the approximation \^f from f , \rho ff is not bounded near x= 0. We design

the finite rank approximations \^u,\widehat \nabla u in section 4.3 in Part I [13].
Based on these finite rank approximations, we can decompose the perturbations.

Lemma 2.4. There exist m< 50 approximate solutions \^Fi to the linearized equa-
tions \partial tW = \scrL W of (2.10) around (\=\omega , \=\theta , \=cl, \=c\omega ) in Lemma 2.2 from given initial data
\=Fi(0) with residual error \scrR small in the energy norm. Further we can decompose the

perturbation W =W1 +\widehat W2 with the following properties. (a) \^W2 is constructed based
on \widehat Fi; see section 4.2.4 of Part I [13]. (b) W1 satisfies the equations with the leading
order linearized operator (\scrL  - \scrK )W1 up to the small residual error \scrR for some finite

rank operator \scrK , and W1 depends on \widehat W2 weakly at the linear level via \scrR . The func-
tionals ai(W1), anl,i(W ) in the construction of \widehat W2 and \scrK (see section 4.2.4 of Part I
[13]) are related to the finite rank approximations in Lemma 2.3.

Moreover, there exists an energy E4(t) for W1,W (see section 5.6.3. of Part I
[13]) that controls the weighted L\infty and C1/2 seminorm of W1 such that under the
bootstrap assumption E4(t) < E\ast 0 with E\ast 0 > 0, we can establish nonlinear energy
estimates for E4(t) using the estimates in Lemma 2.3.

If the bounds in Lemma 2.3 are tight, and the residual error in the constructions
of (\=\omega , \=\theta ), \widehat Fi are small enough, we can use Lemma 2.1 to obtain nonlinear stability.

Lemma 2.5. For E\ast = 5 \cdot 10 - 6, the coefficients in the nonlinear energy estimates
of E4(t) satisfy the conditions (2.17), and the statements in Theorem 3 hold true.

The main purpose of Part II of our paper is the following. First, we construct
the approximate \^Fi(t) in Lemma 2.4 numerically, and estimate its piecewise deriva-
tives and the local residual error in section 3. Second, in section 4, we obtain sharp
estimates of the constants in Lemma 2.3, which only depend on the weights. Third,
we estimate piecewise bounds of the approximate steady state in Appendix C, the
singular weights in Appendix A, and some explicit functions related to the approxi-
mate solutions in Appendix D. We remark that all of these estimates and constants
depend on the given weights, some operators, and functions, e.g., the approximate
steady state and the specific initial conditions. With these estimates and constants,
we obtain the concrete values of the inequalities in (2.17) and Lemma 2.5, which are
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STABLE BLOWUP OF 3D EULER EQUATIONS 33

given in Appendix D in Part I [13]. We further verify the inequalities for the stability
conditions in Lemma 2.5.

Let us make a few comments on the above lemmas. First, our energy estimate is
based on weighted L\infty functional spaces, which is crucial for extracting the damping
terms for the energy estimate. See section 2.7 of Part I [13] for the motivations. Given
\omega \in C1/2, we have u\in C3/2,\nabla u\in C1/2. To establish the nonlinear stability conditions
(2.17) in Lemma 2.5, we need sharp constants in the estimates in Lemma 2.3. We
use some techniques from optimal transport to obtain a sharp C1/2 estimate of \nabla u
in section 3 of Part I [13]. This corresponds to the limiting case in the C

1/2
xi estimate

in Lemma 2.3 for a fixed x with | x - z| \rightarrow 0 and captures the most singular part in
the estimates in Lemma 2.3. The constants in the sharp C1/2 estimate established in
Part I [13] are given by several integrals. In section 5 of the supplementary material
(supplement.pdf [local/web 1.43MB]), we estimate these integrals.

Other parts of the estimates in Lemma 2.3 are more regular since we work with
the regular part of the velocity integral with a desingularized kernel. Given \omega \in C1/2,
we can reduce the estimates of these more regular terms to estimate some explicit L1

integrals. We can obtain sharp estimates of these more regular integrals using some
numerical quadrature with computer assistance. See section 4.

By designing \scrK to approximate the nonlocal terms, we can obtain much better
linear stability estimates for \scrL  - \scrK . After we have shown that the stability conditions
(2.17) are satisfied, we have nonlinear stability estimate E4(t) < E\ast for all t > 0
using Lemma 2.1, which implies the bounds in Theorem 3. The remaining steps of
obtaining finite time blowup from smooth initial data and finite energy follow [15]

and a rescaling argument. We remark that the variable \widehat W2 in Lemma 2.4 (see the
full definition in section 4.2.4 of Part I [13]) plays an auxiliary role, and we do not

perform an energy estimate on \widehat W2 directly.
Note that all the nonlocal terms in the linearized equations are not small. Without

the sharp C1/2 estimate, with the choice of energy E4, the stability conditions in
(2.17) and Lemma 2.5 fail in the weighted H\"older estimate. Without the finite rank
approximations for the nonlocal terms in Lemmas 2.3, 2.4, the stability conditions for
weighted L\infty estimate also fail.

Rigorous numerics. We need to track two types of errors for rigorous numerics.
The first type is the discretization error, e.g., the error terms in the trapezoidal rule
and in the interpolating polynomials. The second type is the round-off error in the
computation. We use numerical analysis to estimate all the discretization errors and
use only the basic interval arithmetic [49, 53] (see, e.g., (A.4), (A.5)) in the INTLAB
package [52] from MATLAB to track the round-off error.

In our nonlinear estimates, we use a singular weight \varphi like | x|  - 3 near x = 0 to
measure the residual error \=\scrF i. To obtain a small weighted residual error | \varphi \=\scrF i| near
x = 0, we choose the mesh yi (C.2) representing the approximate profile to be exact
floating point numbers to reduce the round-off error near x= 0.

The codes for the computations are implemented in MATLAB and can be found
in [10]. The estimates of the constants in Lemma 2.3, integrals in section 4, and
constructions and estimates of the approximate space-time solutions in Lemma 2.4 and
in section 3 are performed in parallel using the Caltech high Performance Computing.1

Other computer-assisted estimates and the main part of the verifications are done on

1See more details for Caltech HPC Resources: https://www.hpc.caltech.edu/resources.
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34 JIAJIE CHEN AND THOMAS Y. HOU

a Mac Pro (Rack,2019) with 2.5 GHz 28-core Intel Xeon W processor and 768 GB
(6x128 GB) of DDR4 ECC memory.

2.3. Dependency tree. The following tree schematizes various intermediate
steps and related sections that lead to the main stability result, Theorem 3, which
implies the blowup result, Theorem 1, for the 2D Boussinesq equations. The blowup
for the Euler equations in Theorem 2 is proved by a perturbative argument in section 6
in Part I [13].

Below, Thm, Lem, App, Sec, P1, P2, Supp1, Supp2 are short for theorem, lemma,
appendix, section, paper I [13], paper II (the current paper), and the supplementary
material for paper I [14] and this paper (supplement.pdf [local/web 1.43MB]), respec-
tively. We present a few more detailed derivations in the supplementary materials
[14], (supplement.pdf [local/web 1.43MB]), which expand and generalize discussions
in the main papers and are less essential. Moreover, we present several explicit for-
mulas we used in our computer-assisted estimates for the quantities derived in the
main papers.

Thm 3: Proved by
Nonlinear stability
lems: App A, P1
(or Lem 2.1, P2),
& inequalities:
App D, P1 (sum-
marized in Lem
2.5, P2)

Approximate
profile:
Lem 2.2, P2

Estimate residual error:
Sec 3.6(ideas),
App C.4, D & E P2

Estimate profile:
App C.2, C.3, D, P2

Construct profile:
Sec 7, P1,
App C.1 & App D, P2

Nonlinear
estimates

Estimate nonlinear
terms: Sec 5.6-5.9, P1

Estimate similar
nonlinear & error terms:
Sec 8 Supp1

Estimate finite rank
part Ŵ2, Sec 5.7, P1

Estimate the residual
error for Ŵ2

Sec 3.6 (ideas),
App C.4, D & E P2

Construct finite rank
part Ŵ2: Lem 2.4,
Sec 3 & App D, P2

Linear
stability

Estimate nonlocal terms:
Lem 2.3,
Sec 4 & App B, P2

A few more similar cases
and explicit formulas:
Sec 6-7 Supp2

Linear energy estimates:
Sec 5.1-5.5, P1

Finite rank perturbation:
Sec 4, P1

:setamitseredlöHprahS
Sec 4 & App B, P1

Compute the sharp
constant: Sec 5 Supp2

In section 8 in Supp2, we generalize the standard interpolation estimate in numer-
ical analysis to derive higher order interpolation estimates, which are used to estimate
the residual error effectively. See the discussion in section 3.6. In Appendix A, we de-
rive piecewise bounds for various weights, which are used in the weighted estimates of
the nonlocal terms, the residual error, and the linear, nonlinear estimates for stability.

In Appendix F, we collect the main notation used in this paper.
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3. Construct and estimate the approximate solution to the linearized
equations. As we described in section 2 of Part I [13] (see also the Introduction), we
need to construct the approximate solutions to e\scrL tF0 for several initial data \=Fi, \=F\chi ,i.
In this section, we discuss how to construct these space-time solutions numerically
with some vanishing properties at the origin with rigorous error control.

The linearized equations associated with \scrL read

\partial t\omega = - (\=clx+ \=u) \cdot \nabla \omega + \eta + \=c\omega \omega  - u \cdot \nabla \=\omega + c\omega \=\omega =\scrL 1(\omega ,\eta , \xi ),

\partial t\eta = - (\=clx+ \=u) \cdot \nabla \eta + (2\=c\omega  - \=ux)\eta  - \=vx\xi  - ux \cdot \nabla \=\theta  - u \cdot \nabla \=\theta x + 2c\omega \=\theta x =\scrL 2(\omega ,\eta , \xi ),

\partial t\xi = - (\=clx+ \=u) \cdot \nabla \xi + (2\=c\omega + \=ux)\xi  - \=uy\eta  - uy \cdot \nabla \=\theta  - u \cdot \nabla \=\theta y + 2c\omega \=\theta y =\scrL 3(\omega ,\eta , \xi )

(3.1)

with normalization condition

c\omega = ux(0), cl \equiv 0.(3.2)

Although \eta , \xi represent \theta x, \theta y in the Boussinesq equations, we will consider initial
data (\omega 0, \eta 0, \xi 0) with \partial y\eta 0 \not = \partial x\xi 0. Thus, we do not have the relation \partial y\eta = \partial x\xi and
will treat \eta , \xi as two independent variables. The solutions \omega (x), \eta (x) are odd in x1,
and \xi (x) is even in x1 with \xi (0, y) = 0. We consider initial data (\omega 0, \eta 0, \xi 0) =O(| x| 2)
near x = 0. Using a direct calculation, we can show that these vanishing conditions
are preserved in time

\omega (t, x), \eta (t, x), \xi (t, x) =O(| x| 2).(3.3)

We introduce the bilinear operator Bop,i((u,M),G) for (u,M),G= (G1,G2,G3)

\scrB op,1 = - u \cdot \nabla G1 +M11(0)G1, \scrB op,2 = - u \cdot \nabla G2 + 2M11(0)G2  - M11G2  - M21G3,

\scrB op,3 = - u \cdot \nabla G3 + 2M11(0)G3  - M12G2  - M22G3.

(3.4)

If M =\nabla u,M11 = ux,M12 = uy,M21 = vx,M22 = vy, then we drop M to simplify the
notation

\scrB op,1(u,G) = - u \cdot \nabla G1 + ux(0)G1, \scrB op,2 = - u \cdot \nabla G2 + 2ux(0)G2  - uxG2  - vxG3,

\scrB op,3 = - u \cdot \nabla G3 + 2ux(0)G3  - uyG2  - vyG3.

(3.5)

The main result in this section is the following. Given n initial data \=Gi =
( \=Gi,1, \=Gi,2, \=Gi,3) and n functions ci(t)(i= 1,2, .., n) which are Lipschitz and bounded
in t, we construct an approximate space-time solution \^Wi = ( \^Wi,1, \^Wi,2, \^Wi,3), \^G =
( \^G1, \^G2, \^G3) and the approximate stream functions \^\phi Ni ,

\^\phi N and the error \^\varepsilon associated
with \^Wi,1, \^G1

\^G=
\sum 
i\leq n

\int 
ci(t - s) \^Wi(s)ds, \^\phi N =

\sum 
i\leq n

\int 
ci(t - s)\^\phi Ni (s)ds,(3.6)

\^\varepsilon =
\sum 
i\leq n

\int 
ci(t - s)( \^Wi,1 +\Delta \^\phi Ni )(s)ds

with residual error

\scrR =
\sum 
i\leq n

ci(t)( \^Wi(0) - \=Wi) +

\int t

0

c(t - s)(\partial t  - \scrL ) \^Wi(s)ds,(3.7)
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36 JIAJIE CHEN AND THOMAS Y. HOU

vanishing O(| x| 3) near x = 0. Moreover, we can decompose \scrR = (\scrR 1,\scrR 2,\scrR 3) as
follows:

\scrR j(t) =\scrR loc,0,j(t) +\scrR nloc,j(t),(3.8)

\scrR loc,0,j =
\sum 
i\leq n

\int t

0

ci(t - s)\scrR num,i,j(s)ds,\scrR num,i,j =O(| x| 3),

\scrR nloc,j = Pj  - D2
jPj(0)\chi j,2, Pj = - \scrB op,j(u(\=\varepsilon ), \^G) - \scrB op,j(u(\^\varepsilon ), (\=\omega , \=\theta x, \=\theta y),

where \chi j2 is given in (D.5), and \=\varepsilon = \=\omega  - ( - \Delta )\=\phi N is the error of the approximate
stream function for ( - \Delta ) - 1\=\omega , and \scrR num,j(t, x) depends on \^Wi, \^\phi i in x locally. We
have absorbed the initial error in \scrR num. We derive the above decompositions and
estimates of \scrR loc,0,j , \^G, \^\phi 

N , \^\varepsilon , in sections 3.5--3.7. See (3.37), (3.35). The error in
constructing the stream function \^\phi Ni associated with \^Wi,1 leads to a nonlocal error,
e.g., u(\^\varepsilon ), in constructing the velocity. We combine the estimate of the nonlocal
error in Pj and perturbation in section 5.8 in Part I [13]. Furthermore, we track the
piecewise bounds of the following quantities:

\int \infty 

0

| \partial kx\partial lyF (t)| dt, F = \^Wi,j , F = \^\phi Ni , F = \^\phi Ni  - \partial xy\phi 
N
i (0)xy, F = \^Wi,1 +\Delta \phi Ni ,

F = cj \^Wi,j  - x\partial x \^Wi,j + y\partial y \^Wi,j  - D2
j
\^Wi,j(0)f\chi ,j , D

2 = (\partial xy, \partial xy, \partial xx), c= (1,1,3)

(3.9)

for j = 1,2,3, i = 1,2, .., n, where f\chi ,j is defined in (D.6). We track the C2 bound of
\^Wi,j and C4 bounds for others following (3.37) and use these bounds to control \widehat W2

in Lemma 2.4 and use them in the nonlinear energy estimates in section 5 in Part I
[13].

In practice, we choose the initial data \=Fi given in Appendix C.2.1 in Part I
[13] and ci(t) some functionals of the perturbation W1, \^W2 related to the finite rank
perturbation.

Numerical methods. We solve (3.1) using the numerical method outlined in
section 7 of Part I [13] to obtain the solution (\omega k, \eta k, \xi k) at discrete time tk. Since \xi is
even with \xi (0, y) = 0, we write \xi = x\zeta for an odd function \zeta . We use the adaptive mesh
discussed in Appendix C.1 to discretize the spatial domain. Then we represent \omega ,\eta , \zeta 
using the piecewise sixth order B-spline (C.6). See Appendix C.1. To solve the stream
function  - \Delta \phi = \omega numerically, we use the B-spline based finite element method and
obtain the numerical approximation \phi N for ( - \Delta ) - 1\omega . Then we can construct the
velocity uN =\nabla \bot \phi N .

The gradients of several initial conditions \=Fi are relatively large and the linearized
equations (3.1) involve \nabla \^W . To obtain a better approximation of the solution, we
represent \omega ,\eta , \zeta using a mesh Y \times Y with Y refining the mesh y (C.2) in Appendix C.1
by a factor of three:

Y3i+j = yi + (yi+1  - yi)j/3, 0\leq j \leq 3.

Since solving the Poisson equation is the main computational cost in each time step,
we still represent \phi N using the coarse mesh y\times y and solve it from a source term with
the grid points value \omega (yi, yj).

In the temporal variable, we use a third order Runge--Kutta method to update
the PDE. To reduce the round-off error near x = 0, where we require a very small
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STABLE BLOWUP OF 3D EULER EQUATIONS 37

error in solving the linear PDE, we use a multilevel representation. We defer more
details to section 7 in Part I [13]. To keep the residual error smooth near x = 0,
we apply a weak numerical filter near x = 0 every three steps. We do not add the
semianalytic part in constructing (\omega k, \eta k, \xi k) for efficiency consideration and that the
far-field behavior of the solutions is changing over time.

After we obtain the numerical solution (\omega k, \eta k, \xi k, \phi 
N
k,1) at discrete time, we will

perform two rank-one corrections and interpolate the solution in time using a cubic
polynomial to obtain the approximate space-time solution \^W and estimate residual
error in the energy space a posteriori.

3.1. A posteriori error estimates: Decomposition of errors. Since we
cannot solve the Poisson equation exactly, we decompose the stream function \=\phi ,\phi as
follows:

\=\phi = ( - \Delta ) - 1\=\omega = \=\phi N + \=\phi e, \phi = ( - \Delta ) - 1\omega = \phi N + \phi e,(3.10)

where \=\phi N , \phi N constructed using the finite element method are the numeric approx-
imation of the stream function, and the shorthand N,e denote numeric, error, re-
spectively. We use similar notation below for other nonlocal terms since we cannot
construct them exactly. We will construct \=\phi N , \phi N numerically and treat \=\phi e, \phi e as
error. The reader should not confuse \phi N with the Nth power of \phi . We will never use
the power of \phi throughout the paper. Similarly, we denote by uN ,ue the velocities
corresponding to \phi N , \phi e. For example, we have

uN =\nabla \bot \phi N , ue =\nabla \bot \phi e =\nabla \bot ( - \Delta ) - 1(\omega  - ( - \Delta )\phi N ), cN\omega = uNx (0), ce\omega = uex(0).

(3.11)

The above decomposition leads to the following decomposition of the operator \scrL :

\scrL 1 =\scrL N
1 +\scrL e

1 +\scrL \=e
1, \scrL 2 =\scrL N

2 +\scrL e
2 +\scrL \=e

2, \scrL 3 =\scrL N
3 +\scrL e

3 +\scrL \=e
3,

\scrL N
1 = \eta + \=cN\omega \omega  - (\=clx+ \=uN ) \cdot \nabla \omega + cN\omega \=\omega  - uN \cdot \nabla \=\omega ,

\scrL e
1 = ce\omega \=\omega  - ue \cdot \nabla \=\omega , \scrL \=e

1 = \=ce\omega \omega  - \=ue \cdot \nabla \omega ,
\scrL N
2 = - (\=clx+ \=uN ) \cdot \nabla \eta + (2\=cN\omega  - \=uNx )\eta  - \=vNx \xi  - uN

x \cdot \nabla \=\theta  - uN \cdot \nabla \=\theta x + 2cN\omega 
\=\theta x,

\scrL e
2 = - ue

x \cdot \nabla \=\theta  - ue \cdot \nabla \=\theta x + 2ce\omega 
\=\theta x, \scrL \=e

2 = - \=ue \cdot \nabla \eta + (2\=ce\omega  - \=uex)\eta  - \=vex\xi ,

\scrL N
3 = - (\=clx+ \=uN ) \cdot \nabla \xi + (2\=cN\omega  - \=vNy )\xi  - \=uNy \eta  - uN

y \cdot \nabla \=\theta  - uN \cdot \nabla \=\theta y + 2cN\omega 
\=\theta y,

\scrL e
3 = - ue

y \cdot \nabla \=\theta  - ue \cdot \nabla \=\theta y + 2ce\omega 
\=\theta y, \scrL \=e

3 = - \=ue \cdot \nabla \xi + (2\=ce\omega  - \=vey)\xi  - \=uey\eta ,

(3.12)

where \scrL e
i ,\scrL \=e

i denote the errors from \psi e, \=\psi e, respectively. These operators depend on
\omega ,\eta , \xi , and we drop the dependence in (3.12) to simplify the notation.

3.2. First correction and the construction of \bfitphi \bfitN . According to the nor-
malization condition and (3.3), the solution to (3.1) satisfies \omega x(0, t) = \eta x(0, t) = 0.
To obtain an approximate solution with this condition, we make the first correction

\omega k \rightarrow \omega k  - \omega k,x(0,0)\chi 11, \eta k \rightarrow \eta k  - \eta k,x(0,0)\chi 21,(3.13)

where \chi ij are cutoff functions defined in (3.17) with \chi ij = x + O(| x| 4) near 0. We
do not modify \xi k since \xi k already vanishes quadratically near (0,0). We remark that
the first correction does not change the second order derivatives of the solution near
0 and c\omega since

\partial xy\chi 11(0) = \partial xy\chi 21(0) = 0, c\omega (\chi 11) = - \partial xy\phi 1(0) = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

31
.2

15
.2

20
.1

65
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



38 JIAJIE CHEN AND THOMAS Y. HOU

where \phi 1 is defined below:

\phi 1 = - xy
2

2
\kappa \ast (x)\kappa \ast (y),(3.14)

where \kappa \ast (x) is the cutoff function chosen in (D.5) in Appendix D.2 satisfying \kappa \ast (x) =
1 +O(| x| 4) near x= 0, and \phi 1 satisfies  - \Delta \phi 1 = x+O(| x| 4). For the numeric stream
function \phi Nk,1 constructed at the beginning of section 3, we correct it as follows:

\phi Nk,1 \rightarrow \phi Nk,1 + \partial x\Delta \phi 
N
k,1(0)\phi 1 \triangleq \phi Nk .

Since \partial x\Delta \phi 1(0) = - 1, this allows us to obtain

\partial x( - \Delta )\phi Nk (0) = - \partial x\Delta \phi Nk,1(0) + \partial x\Delta \phi 
N
k,1(0) = 0,

\Delta \phi Nk =O(| x| 2), \omega k  - ( - \Delta )\phi Nk =O(| x| 2).
(3.15)

We further extend it to Lipschitz continuous solutions \widehat W (1) \triangleq (\^\omega (1)(t), \^\eta (1)(t),
\^\xi (1)(t)), \^\phi N,(1) in time using a cubic polynomial interpolation in t. See section 3.4 for
more details. Here, we use \^f (1) to denote the solution with the first correction.

3.3. The second correction. The error

(\partial t  - \scrL i)(\^\omega 
(1)(t), \^\eta (1)(t), \^\xi (1)(t))

may not vanish to the order O(| x| 3), which is a property that we require in the energy
estimate. Then we add the second correction

(\^\omega (1)(t), \^\eta (1), \^\xi (1)(t), \^\phi N,(1))\rightarrow (\^\omega (1)(t) + a1(t)\chi 12, \^\eta 
(1) + a2(t)\chi 22, \^\xi 

(1)(t)

+ a3(t)\chi 32, \^\phi 
N,(1) + a1(t)\phi 2),

so that the error satisfies

\varepsilon 
(2)
i \triangleq (\partial t  - \scrL i)(\^\omega 

(1)(t) + a1(t)\chi 12, \^\eta 
(1)(t) + a2(t)\chi 22, \^\xi 

(1)(t) + a3(t)\chi 32) =O(| x| 3)
(3.16)

near x= 0. We use the following functions for these two corrections:

\chi 11 = - \Delta \phi 1, \phi 1 = - xy
2

2
\kappa \ast (x)\kappa \ast (y), \chi 21 = x\kappa \ast (x)\kappa \ast (y),

\chi 12 = - \Delta \phi 2, \phi 2 = - xy
3

6
\kappa \ast (x)\kappa \ast (y), \chi 22 = xy\kappa \ast (x)\kappa \ast (y), \chi 32 =

x2

2
\kappa \ast (x)\kappa \ast (y),

(3.17)

where \kappa \ast (x) is chosen in (D.5), \chi \cdot ,1 is used for the first correction, and \chi \cdot ,2 for the
second correction. We do not have \chi 31 since we do need the first correction for \xi 
(3.13). Since \kappa \ast (x) satisfies \kappa \ast (x) = 1+O(| x| 4) near x= 0, the behaviors of the above
functions near x= 0 are given by

\chi 11 = y+ l.o.t., \chi 21 = x+ l.o.t., \chi 12 = xy+ l.o.t., \chi 22 = xy+ l.o.t., \chi 32 = x2/2 + l.o.t.

We choose \chi 1j =  - \Delta \phi j for the correction of \omega so that its associated velocity
\nabla \bot ( - \Delta ) - 1\chi 1j can be obtained explicitly. We do not need such a form for the correc-
tion of \eta , \xi since we do not compute the velocity of \eta , \xi .
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STABLE BLOWUP OF 3D EULER EQUATIONS 39

For cutoff functions \chi 1, \chi 2, \chi 3 with

c\omega (\chi 1) = - \partial xy( - \Delta ) - 1\chi 1 = 0,(3.18)

e.g., \chi i = \chi i2 chosen above, we have the following formulas of \scrL i(a1(t)\chi 1, a2(t)\chi 2,
a3(t)\chi 3) (3.1):

\scrL 1(a1\chi 1, a2\chi 2, a3\chi 3) = a1(t)
\Bigl( 
 - (\=clx+ \=u) \cdot \nabla \chi 1 + \=c\omega \chi 1  - u(\chi 1) \cdot \nabla \=\omega 

\Bigr) 
+ a2(t)\chi 2,

\scrL 2(a1\chi 1, a2\chi 2, a3\chi 3) = a2(t)
\Bigl( 
 - (\=clx+ \=u) \cdot \nabla \chi 2 + (2\=c\omega  - \=ux)\chi 2

\Bigr) 
 - a3(t)\=vx\chi 3  - a1(t)

\Bigl( 
u(\chi 1) \cdot \nabla \=\theta 

\Bigr) 
x
,

\scrL 3(a1\chi 1, a2\chi 2, a3\chi 3) = a3(t)
\Bigl( 
 - (\=clx+ \=u) \cdot \nabla \chi 3 + (2\=c\omega + \=ux)\chi 3

\Bigr) 
 - a2(t)\=uy\chi 2  - a1(t)

\Bigl( 
u(\chi 1) \cdot \nabla \=\theta 

\Bigr) 
y
,

where u(\chi 1) is the velocity associated with \chi 1. We want to apply the above formulas
to the second corrections \chi i2, i= 1,2,3 in (3.17). We use the Hadamard product

(A \circ B)i =AiBi(3.19)

and (3.12) to simplify the notation as follows:

\scrL i(a \circ \chi ) =Corij(x;\chi )aj(t), Corij(x;\chi ) =CorNij (x;\chi ) +Cor\=eij(x;\chi ),

\scrL N
i (a \circ \chi )\triangleq CorNij (x;\chi )aj(t), \scrL \=e

i (a \circ \chi )\triangleq Cor\=eij(x;\chi )aj(t).
(3.20)

Note that \scrL e
i (a \circ \chi ) = 0 since we can obtain u(\chi 1) explicitly for \chi 1 = \chi 11, \chi 12

(3.17).
Next, we derive the equations for ai(t), i= 1,2,3. Using (3.1) and the condition

\partial xy\varepsilon 
(2)
1 (0) = \partial xy\varepsilon 

(2)
2 (0) = \partial xx\varepsilon 

(2)
3 (0) = 0,

from (3.16), we obtain the following ODEs for a(t), b(t), c(t):

\.a1(t) = ( - 2\=cl + \=c\omega )a1(t) + a2(t) - F1(t),

\.a2(t) = ( - 2\=cl + 2\=c\omega  - \=ux(0))a2(t) - F2(t),

\.a3(t) = ( - 2\=cl + 2\=c\omega  - \=ux(0))a3(t) - F3(t),

(3.21)

where F (t) = (F1(t), F2(t), F3(t))
T is the error associated to the second order deriva-

tives of (\partial t  - \scrL ) \^W (1) near 0. More precisely, we have

F1(t) = \partial xy(\partial t  - \scrL 1)\widehat W (1)(0) =
d

dt
\^\omega (1)
xy (t,0)

 - ( - 2\=cl + \=c\omega )\^\omega 
(1)
xy (t,0) - \^\eta (1)xy (t,0) - c\omega (t)\=\omega xy(0),

F2(t) = \partial xy(\partial t  - \scrL 2)\widehat W (1)(0) =
d

dt
\^\eta (1)xy (t,0)

 - ( - 2\=cl + 2\=c\omega  - \=ux(0))\^\eta 
(1)
xy (t,0) - c\omega (t)\=\theta xxy(0),

F3(t) = \partial 2x(\partial t  - \scrL 3)\widehat W (1)(0) =
d

dt
\^\xi (1)xx (t,0)

 - ( - 2\=cl + 2\=c\omega  - \=ux(0))\^\xi 
(1)
xx (t,0) - c\omega (t)\=\theta xxy(0).

(3.22)
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40 JIAJIE CHEN AND THOMAS Y. HOU

Denote

D2 = (D2
1,D

2
2,D

2
3) = (\partial xy, \partial xy, \partial 

2
x)

T .(3.23)

Then we can simplify (3.22) as

Fi =D2
i (\partial t  - \scrL i) \^W

(1)(0) =D2
i (\partial t  - \scrL N

i  - \scrL e
i  - \scrL \=e

i )
\^W (1)(0).(3.24)

Denote by M the coefficients in (3.21)

M =

\left(   - 2\=cl + \=c\omega 1 0
0  - 2\=cl + 2\=c\omega  - \=ux(0) 0
0 0  - 2\=cl + 2\=c\omega  - \=ux(0).

\right)  \triangleq MN +M \=e,

(3.25)

where the last identity is based on the decomposition \=c\omega = \=cN\omega + \=ce\omega , \=ux(0) = \=uNx (0) +
\=uex(0), and M

\=e only contains the contribution from \=ce\omega , \=u
\=\varepsilon 
x(0). According to the nor-

malization condition (3.2), we have \=ux(0)
e = \=ce\omega . It follows that

M \=e = \=ce\omega I3.(3.26)

We simplify the ODE for a= (a1, a2, a3)
T as

\.ai(t) =Mijaj(t) - Fi(t), \.a(t) =Ma - F =Ma - eiD
2
i (\partial t  - \scrL i) \^W

(1)(0).(3.27)

Recall \chi \cdot 2 = (\chi 12, \chi 22, \chi 32) from (3.17). In the ith equation, the overall error for

the approximate solution \widehat W (1) + a(t) \circ \chi \cdot 2 is

(\partial t  - \scrL i)(\widehat W (1) + a(t) \circ \chi \cdot 2) = (\partial t  - \scrL N
i )(a(t) \circ \chi \cdot 2) +

\Bigl( 
(\partial t  - \scrL N

i )\widehat W (1)

 - \scrL e
i (
\widehat W (1) + a(t) \circ \chi \cdot 2) - \scrL \=e

i (
\widehat W (1) + a(t) \circ \chi \cdot 2)

\Bigr) 
\triangleq J + I.

(3.28)

Note that in the above notation, \partial t acts on ai(t)\chi i,2. For J , using the ODE for
a(t), (3.27), (3.20), (3.24), and (3.25), we get

J = (Mijaj  - Fi)\chi i2  - CorNij (x;\chi \cdot 2)aj

= (MN
ij \chi i2  - CorNij (x;\chi \cdot 2))aj +M \=e

ijaj\chi i2  - D2
i (\partial t  - \scrL N

i  - \scrL e
i  - \scrL \=e

i )\widehat W (1)(0)\chi i2

\triangleq J1 + J2 + J3,

where we have a summation over j = 1,2,3. Since \scrL e(a(t) \circ \chi \cdot 2) = 0, using the above
decomposition and combining I, J2, J3 yields

I + J2 + J3 =
\Bigl( 
(\partial t  - \scrL N

i )\widehat W (1)  - D2
i (\partial t  - \scrL N

i )\widehat W (1)(0)\chi i2

\Bigr) 
 - 
\Bigl( 
\scrL e
i
\widehat W (1)  - D2

i\scrL e
i
\widehat W (1)(0)\chi i2

\Bigr) 
 - 
\Bigl( 
\scrL \=e
i (\widehat W (1) + a(t) \circ \chi \cdot 2) - D2

i\scrL \=e
i
\widehat W (1)(0)\chi i2  - M \=e

ijaj\chi i2

\Bigr) 
\triangleq Ii,N + Ii,e + Ii,\=e.

(3.29)

Next, we check that J1, Ii,N , Ii,e, Ii,\=e have a vanishing order O(| x| 3). This is clear
for Ii,N , Ii,e. Since we correct the second order derivatives and \^\omega (1), \^\eta (1), \^\zeta (1) are odd
with \^\xi (1) = x\^\zeta (1), we get \partial ix\partial 

j
yIi,N , \partial ix\partial 

j
yIi,e = 0, i+ j \leq 2, at the origin. For J1, we
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STABLE BLOWUP OF 3D EULER EQUATIONS 41

note that it is a linear combination of aj with given coefficientsMN
ij  - CorNij . Its cubic

vanishing order follows from the definition. For example, when i= j = 1, we have

S = a1(t) \cdot (Cor\=e11(x) - M \=e
11\chi 12) = a1(t)

\Bigl( 
 - \=ue \cdot \nabla \chi 12 + \=ce\omega \chi 12  - \=ce\omega \chi 12

\Bigr) 
= a1(t)

\Bigl( 
 - \=ue \cdot \nabla \chi 12

\Bigr) 
.

Since \chi 12 = xy +O(| x| 4) (3.17), \=ue = \=uex(0)x+O(| x| 2), \=ve = - \=uex(0)y near 0, we have
S =O(| x| 3) near 0. The vanishing order of other terms in J1 can be obtained similarly.
Then for J1, we estimate the weighted norm for Cor\=eij(x) - M \=e

ij\chi i2 and then apply the
triangle inequality to further bound J1. Similarly, for a fixed i, we have the following
vanishing order:

\scrL \=e
i (a(t) \circ \chi \cdot 2) - M \=e

ijaj\chi i2 =Cor\=eijaj(t) - M \=e
ijaj\chi i2 =O(| x| 3),

D2
i\scrL \=e

i (a(t) \circ \chi \cdot 2)(0) =M \=e
ijaj .

Thus, we can rewrite Ii,\=e as follows:

Ii,\=e = - 
\Bigl( 
\scrL \=e
i (\widehat W (1) + a(t) \circ \chi \cdot 2) - D2

i\scrL \=e
i (\widehat W (1) + a(t) \circ \chi \cdot 2)(0)\chi i2

\Bigr) 
,(3.30)

which clearly has a cubic vanishing order. Note that \widehat W (1) + a(t) \circ \chi \cdot 2 is our final
approximate solution for solving (3.1).

In summary, to estimate the error (\partial t  - \scrL )(\widehat W (1) + a \circ \chi \cdot 2), we will estimate
J1, Ii,N , Ii,e, Ii,\=e separately. The term Ii,N is the local error of solving (3.1) numer-
ically, and Ii,e, Ii,\=e are due to the error of solving the Poisson equations for \omega and\widehat \omega (1). Since we use a cubic polynomial interpolation to obtain the continuous function
\^W (1)(t), the errors Ii,N , Ii,e are piecewise cubic polynomials in time, and we track the
coefficients of these polynomials to verify that they are small. We discuss the estimate
of nonlocal error in section 3.7.

3.4. Cubic interpolation in time. Given the numerical solution with the first
correction \widehat W (1)

n = (\^\omega 
(1)
n , \^\eta 

(1)
n , \^\xi 

(1)
n ), we use a piecewise cubic interpolation to construct\widehat W (1)(t, x) over (t, x) \in [0, T ] \times \BbbR +

2 . We partition the whole time interval [0, T ] into
small subintervals [3mk,3(m+ 1)k] with length 3k. For s \in [ - 3k/2,3k/2] and tm =
3mk, we construct

\^W (1)

\biggl( 
s+ tm +

3k

2

\biggr) 
=

1

16
( - W0 + 9W1 + 9W2  - W3)

+
1

24
(W0  - 27W1 + 27W2  - W3)

s

k

+
1

4
(W0  - W1  - W2 +W3)

\Bigl( s
k

\Bigr) 2
+

1

6
( - W0 + 3W1  - 3W2 +W3)

\Bigl( s
k

\Bigr) 3
\triangleq 
\sum 
i\leq 3

Ci \cdot V
1

i!

\Bigl( s
k

\Bigr) i
, V = (W0,W1,W2,W3),
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42 JIAJIE CHEN AND THOMAS Y. HOU

where k is the time step, Wi = \^W
(1)
3m+i for tm = 3mk, and Ci \in \BbbR 4 is the coefficient

determined by the interpolation formula. A direct calculation yields

\partial t\widehat W (1)  - \scrL \widehat W (1) =
\sum 

1\leq i\leq 3

Ci \cdot V
k

1

(i - 1)!

\Bigl( s
k

\Bigr) i - 1

 - 
\sum 
i\leq 3

\scrL (Ci \cdot V )
1

i!

\Bigl( s
k

\Bigr) i
=
\sum 
i\leq 2

\Bigl( Ci+1 \cdot V
k

 - \scrL (Ci \cdot V )
\Bigr) 1
i!

\Bigl( s
k

\Bigr) i
 - \scrL (C4 \cdot V )

s3

6k3
.

To estimate \partial t\widehat W (1) - \scrL \widehat W (1), we will use the triangle inequality and estimate Ci+1\cdot V
k  - 

\scrL (Ci \cdot V ),\scrL (C4 \cdot W ) rigorously using the methods in sections 3.6, 3.7.
Applying the triangle inequality and integrating the error over s\in [ - 3k

2 ,
3k
2 ] yields

\int 
| s| \leq 3k/2

| \partial t \^W (1)  - \scrL \^W (1)| ds\leq 
\sum 
i\leq 2

\bigm| \bigm| \bigm| Ci+1 \cdot V
k

 - \scrL (Ci \cdot V )
\bigm| \bigm| \bigm| \int 

| s| \leq 3k/2

1

i!
| s
k
| i

+ | \scrL (C4 \cdot V )| 
\int 
| s| \leq 3k

2

1

6
| s
k
| 3 = k

\left(  \sum 
i\leq 2

\bigm| \bigm| \bigm| Ci+1 \cdot V
k

 - \scrL (Ci \cdot V )
\bigm| \bigm| \bigm| CI(i)+ | \scrL (C4 \cdot V )| CI(3)

\right)  ,

(3.31)

where

CI =

\biggl[ 
3,

9

4
,
9

8
,
27

64

\biggr] 
.

3.4.1. Decomposing the time interval for parallel computing. To verify
that the posteriori error is small, we need to estimate the error rigorously at each
time step, which takes a significant amount of time. Consider a partition of the time
interval 0 = T0 < T1 < \cdot \cdot \cdot < Tn = T , where T is the final time of the computation.
To reduce the computational time, we first solve the equations on [0, T ] without any
rigorous verification and save the solution (\omega k, \eta k, \xi k, \phi 

N
k,1) at tk = Ti. Since we do not

need to perform verification at this step, the running time for each time step is short.
Then we solve the equations on a smaller time interval [Ti, Ti+1], i = 0,1,2 . . . , n - 1
using W (Ti) as the initial data and then perform the verification in each time interval
in parallel. At the end of each time interval [Ti, Ti+1], we use the precomputed data
W (Ti+1), which is the same as the initial data for next time interval [Ti+1, Ti+2] for
verification. This guarantees that we use the same discrete solution (\omega k, \eta k, \xi k, \phi 

N
k,1)

for verification in [Ti, Ti+1] and [Ti+1, Ti+2].

3.5. Compactly supported in time. To construct an approximate solution,
we do not need to solve the linearized equations (3.1) for all time. In fact, since the
solution decays in certain norm as t increases, we stop the computation at time T if
\^W (1)  - D2 \^W (1) \circ \chi is small in the energy norm. Then we extend \^W (1)(t, \cdot ) trivially
for t > T \widehat W (1)(t, \cdot ) = 0, t > T.

As a result, the error satisfies

\scrR i = (\partial t  - \scrL i)\widehat W (1) = (\partial t  - \scrL i)\widehat W (1)1t\leq T  - \delta T (t)\widehat W (1)
i (T ).

Let F = (F1, F2, F3), Fi =D2
i (\partial t  - \scrL i)\widehat W (1)

\bigm| \bigm| \bigm| 
x=0

for t\leq T , where D2 = (Dxy,Dxy,D
2
x).

Then similarly, we get

Fext \triangleq D2(\partial t  - \scrL )\widehat W (1)| x=0 \cdot 1t\leq T  - D2\widehat W (1)(T,0)\delta T

= F (t)1t\leq T  - Fend(T )\delta T , Fend(T )\triangleq D2\widehat W (1)(T,0).
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STABLE BLOWUP OF 3D EULER EQUATIONS 43

We will test the above formulas with some Lipschitz function in time and the
above formulas are well defined. Recall that the coefficients of the second correction
a satisfy (3.27). Although \^W only has finite support in time, to achieve the vanishing
order (3.16) for all time, we need to solve the ODE exactly for all time. If we stop
solving the ODE at time T , we cannot achieve (3.16) at time T . Moreover, we cannot
solve the ODE using a numerical method, e.g., the Runge--Kutta method, since it
leads to an error. Instead, we solve the ODE exactly by diagonalizing the system. We
introduce the notation

\lambda 1 = - 2\=cl + \=c\omega , \lambda 2 = \lambda 3 = - 2\=cl + 2\=c\omega  - \=ux(0), \lambda 1  - \lambda 2 = - \=cl/2,

\~a1 = a1 +
a2

\lambda 1  - \lambda 2
, \~F1 = F1 +

F2

\lambda 1  - \lambda 2
, \~ai = ai, \~Fi = Fi, i= 2,3,

(3.32)

and similar notation for \~Fext, where we have used (2.11) to get \lambda 1  - \lambda 2 = - \=cl/2. The
coefficients satisfy \lambda 1 \approx  - 7, \lambda 2 = \lambda 3 \approx  - 5.5. We diagonalize (3.21) as follows:

d

dt
\~ai = \lambda i\~ai  - \~Fext,i.

Using Duhamel's formula and the definition of \~Fext,i yields

\~aj(t) = e\lambda jt\~aj(0) - 
\int t

0

e\lambda j(t - s) \~Fext,j(s)ds

= e\lambda jt\~aj(0) - 
\int t\wedge T

0

e\lambda j(t - s) \~Fj(s)ds+ \~Fend(T )e
\lambda j(t - T )1t\geq T \triangleq S1 + S2 + S3.

(3.33)

For rank-one perturbation, the full solution \^W with two corrections in (3.6),
(3.7) is given by \widehat W =\widehat W (1) + a \circ \chi \cdot 2, \^\phi N = \^\phi N,(1) + a1(t)\phi 2,(3.34)

where \chi \cdot 2, \phi 2 are defined in (3.17). With the above extension and the decomposition
of error (3.28)--(3.29), the residual error for rank-one perturbation (3.7) with n= 1 is
given by

\scrR = c(t)(\widehat W (1)
0 + a0 \circ \chi \cdot 2  - \=W0) +

\int t

0

c(t - s)(\partial t  - \scrL )(\widehat W (1) + a \circ \chi \cdot 2)ds

=\scrR loc,0,\cdot +\scrR nloc

\scrR loc,0,\cdot = c(t)(\widehat W (1)
0 + a0 \circ \chi \cdot 2  - \=W0) - (\widehat W (1)(T ) - D2\widehat W (1)(T ) \circ \chi \cdot 2)c(t - T )1t\geq T

+

\int t\wedge T

0

c(t - s)
\sum 
i\leq 3

eiIi,N (s))ds+

\int t

0

c(t - s)
\sum 
i\leq 3

eiJ1,i(s))ds

=

\int t

0

c(t - s)\scrR num(s)ds,

\scrR nloc =

\int t\wedge T

0

c(t - s)
\sum 
i\leq 3

eiIi,e(s)ds+

\int t

0

c(t - s)
\sum 
i\leq 3

eiIi,\=e(s)ds,

(3.35)

where Ii,N , Ii,e, Ii,\=e are given in (3.29), J1,i means J1 (3.29) in the ith equation, and
\scrR num is

\scrR num(s)\triangleq \delta 0 \cdot (\widehat W (1)
0 + a0 \circ \chi \cdot 2  - \=W0) - \delta T \cdot (\widehat W (1)(T ) - D2\widehat W (1)(T ) \circ \chi \cdot 2)

+ ej(1t\leq T Ij,N + J1,j).
(3.36)
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44 JIAJIE CHEN AND THOMAS Y. HOU

We only integrate the integrals for eiIi,N , eiIi,e up to min(t, T ) since these two inte-
grands (3.29) do not involve ai(t) and have compact support [0, T ] in time. We obtain
the local part \scrR loc,0,\cdot in (3.8) for n= 1. The first term is the initial interpolation error

for \=W0, and we choose a0 \in \BbbR 3 to achieve vanishing order \widehat W (1)
0 +a0\circ \chi  - \=W0 =O(| x| 3).

We use\scrR loc,0,\cdot ,\scrR nloc to denote the error that depends on the solution locally and non-
locally. We use the bootstrap assumption to obtain uniform control of c(t) in t. See
section 5.7 in Part I [13]. The error estimate of the local part \scrR loc,0,\cdot follows sec-
tion 3.6. Moreover, we extract the essentially local part from \scrR nloc and can estimate
it with \scrR loc,0,j together (3.38). We decompose the nonlocal part \scrR nloc in section 3.7.
To control the terms involving ai, e.g., J1,i above (3.29), we can estimate the weighted
norm of the functions CorNij (x) - MN

ij \chi i2 and then only need to estimate the integral
of \~aj .

Denote x\wedge y \triangleq min(x, y). Since the factor \lambda j < 0, using the formula of \~aj (3.33),
we obtain\int \infty 

0

| S1| dt=
1

| \lambda j | 
| \~aj(0)| ,

\int \infty 

0

| S3(t)| dt=
\int \infty 

T

| \~Fend,j(T )| e\lambda j(t - T )dt=
1

| \lambda j | 
| \~Fend,j(T )| ,\int \infty 

0

| S2(t)| dt\leq 
\int \infty 

0

\biggl( \int t\wedge T

0

e\lambda j(t - s)| \~Fj(s)| ds
\biggr) 
dt=

\int T

0

| \~Fj(s)| 
\biggl( \int \infty 

s

e\lambda j(t - s)dt

\biggr) 
ds

=
1

| \lambda j | 

\int T

0

| \~Fj(s)| .

It follows that\int \infty 

0

| \~aj(t)| dt\leq 
1

| \lambda j | 

\Biggl( 
| \~aj(0)| +

\int T

0

| \~Fj(s)| ds+ | \~Fend,j(T )| 

\Biggr) 
.

In the estimate of the integral of \~Fj , (3.22), (3.32), we use \=c\omega = \=cN\omega + \=ce\omega , c\omega =
cN\omega + ce\omega (3.11) and track the terms involving \=cN\omega , c

N
\omega in Ie1 and error separately,

Fj,e1 =

\int T

0

| FN
j (t)| dt, Fj,e2 =

\int T

0

| \=ce\omega D2
i
\widehat W (1)(t,0)| dt, Fj,e3 =

\int T

0

| ce\omega (t,0)D2
i
\=W (0)| dt,

FN
j =D2

j (\partial t  - \scrL N
i )\widehat W (1)(0), D2 = (\partial xy, \partial xy, \partial xx).

From (3.11), we get 2\=ce\omega  - \=uex(0) = \=uex(0) and only 1 unit of error Ie2 in Fj(t), j = 2,3.

We track \~Fj (3.32) similarly. Since\widehat W (1), F, \~F ,FN , \~FN (3.22) are cubic in time, we can
estimate the above integrals following (3.31). Note that | \~Fend,j(T )| does not involve
the nonlocal error. Using the linear relation between aj , \~aj , we can estimate aj .

Using the above estimates, we can represent the rank-one solution and estimate
it as follows:

\^G(t, x) =

\int t

0

c(t - s) \^W (s)ds, \^W = \^W (1) + a \circ \chi \cdot 2

| \partial ix\partial jyGl(t, x)| \leq sup
t>0

| c(t)| 

\Biggl( \int T

0

| \partial ix\partial jy \^W
(1)
l (t)| dt+ | \partial ix\partial jy\chi l2| 

\int \infty 

0

| al(t)| dt

\Biggr) 
.

(3.37)

Similarly, we can bound other quantities for \^G and complete the estimates in
(3.6).

We generalize the above formula and estimate directly to the finite rank per-
turbation operator using linearity. For different initial data \=W0 related to the finite
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STABLE BLOWUP OF 3D EULER EQUATIONS 45

rank perturbation, we choose a different stopping time T (\widehat W (1)
0 ) to save computation

cost. In practice, we construct the numerical solution up to time T (\widehat W (1)
0 )\leq T = 12.

At that time, the solution \^W (1)(T ) is very small, which can be treated as a small
perturbation. See the figures in section 4.3 in Part I [13].

Remark 3.1. Using linearity and the triangle inequality, we can assemble the esti-
mates for \scrR (3.7) from the estimates of each mode \^Wi in (3.6), (3.7). In practice, this
means that we can implement the above estimate for each individual mode completely
in parallel.

Finite support of the \bfitc \bfitomega term in time. In section 5 of Part I [13], we need
to use c\omega (f), where c\omega (f) = ux(f)(0) = - \partial xy( - \Delta ) - 1f(0). Since we choose the cutoff
function \chi 12 for the second correction of \^\omega with properties (3.17), (3.18), we get

c\omega ( \^W
(1)
1 + a1(t)\chi 12) = c\omega ( \^W

(1)
1 ),

and it is supported in [0, T ].

3.6. Ideas of estimating the norm of the error. In this section, we discuss
how to estimate the error derived in the previous section, e.g., Ii,N (3.29), a posteriori.
The general idea is to first evaluate f on some grid points and estimate the higher
order derivatives of f in a domain D. Then we can construct an approximation \^f of f
by interpolating the values of f at different points. The approximation error f - \^f can
be bounded by Ck| | f | | Ckhk, where h measures the size of the domain. If the mesh h
is sufficiently small, the error term is small. See a simple second order error estimate
in (C.12).

To develop an efficient method for rigorous estimates, we have the following
considerations. First, we should evaluate as small a number of points as possible
so that the method is efficient. Second, most functions f in the verification are
complicated, e.g., Ii,N (3.29), and it is difficult to obtain the sharp bound of the
higher derivatives. Instead, we first estimate the piecewise derivatives of some simple
functions, e.g., piecewise polynomials (\^\omega , \^\eta ) or semianalytic solutions following Ap-
pendix C, D. Then we use the triangle inequality and the Leibniz rule to estimate
the products of these simple functions, and their linear combinations. Yet, in gen-
eral, this approach overestimates the derivatives significantly. To compensate for the
overestimates, we use higher order interpolations and estimates with error bounds
Chk, k= 3,4,5, which provide the small factor hk. We develop three estimates based
on different interpolations---the Newton interpolation, the Lagrangian interpolation,
and the Hermite interpolation---in section 8 in the supplementary material (supple-
ment.pdf [local/web 1.43MB]). The 1D interpolating polynomials are standard, and
we generalize them to construct 2D interpolating polynomials.

We want to estimate the constant C in the error bound Chk as sharply as possible
to reduce the computational cost and improve the efficiency. In fact, when k = 4, if
we can obtain an interpolation method and reduce the constant C to C

16 , to achieve
the same level of error, we can increase h to 2h. In this verification step, since the
domain is 2D, it means that we can evaluate only 1

4 of the grid point values of f ,
which can reduce the computational cost by 75\%.

Using the above method, we can obtain a sharp estimate of the derivatives of
f . Using the method in section 8 in the supplementary material (supplement.pdf
[local/web 1.43MB]) and Taylor expansion, we can further estimate the weighted norm
of f with a singular weight near 0. We discuss the estimate of the nonlocal error in
section 3.7. Using these L\infty estimates of f and its derivatives, we can further develop
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46 JIAJIE CHEN AND THOMAS Y. HOU

a H\"older estimate for f . See section E.1. We remark that the numerical solutions
are regular, e.g., the approximate steady state and the solutions to the linearized
equations are C4,1. We use these methods to estimate a piecewise L\infty (\varphi evo,i) norm

of the local residual error \scrR num,i (3.36) and the C
1/2
xi partial H\"older seminorm of

\scrR num,i\psi i, where \varphi evo,i,\psi i are defined in (A.3).
We remark that the weights \varphi evo,i and \varphi i, i= 2,3 in the L\infty energy estimate (see

section 5 in [13]) for \eta , \xi are similar but with different coefficients p5,\cdot , p6,\cdot . Since \varphi i

and \varphi evo,i are equivalent, after we obtain the piecewise weighted L\infty (\varphi evo,i) estimate
of the error, we can obtain a piecewise weighted L\infty (\varphi i) estimate by estimating the
ratio \varphi i/\varphi evo,i. Similarly, we can obtain a weighted L\infty (\varphi g,i) estimate of the error,
where \varphi g,i is another weight in the energy estimate in section 5 in [13].

Estimate the local part of the residual error. Using the above methods, we
can estimate the local part of the residual error \=\scrF i for the approximate steady state
and discuss the estimate in Appendix C.4. We further extract the local part of \scrR nloc

(3.35), which has the form (3.8) obtained in section 3.7, and combine it with \scrR loc,0,j

to get the essentially local residual error:

\scrR loc,i =\scrR loc,0,i +\scrR dif,i +M, \scrR dif,i \triangleq D2
i\scrB op,i(u(\=\varepsilon ), \^G)(0) \cdot (\chi i2  - f\chi ,i),

M \triangleq \scrB op,i(u(\^\varepsilon ), \=W ) - D2
i\scrB op,i(u(\^\varepsilon ), \=W )(0)\chi i2  - \scrB op,i(uA(\^\varepsilon 1), (\nabla u)A(\^\varepsilon 1), \=W ),

(3.38)

where \chi i2 is defined in (3.17). By definition (3.39) and following derivation of (3.24),
we get

D2
i\scrB op,i(u(\=\varepsilon ), \^G)(0) = ux(\=\varepsilon )(0)Vi, V = ( \^G1,xy(0), \^G2,xy(0), \^G3,xx(0)).

To estimate each term, we follow section 3.6 and Appendix C.4. We perform the
decomposition (C.18) u(\^\varepsilon ) = uA(\^\varepsilon 1) + \^u(\^\varepsilon 1) + u(\^\varepsilon 2) and similar decomposition for
\nabla u(\^\varepsilon ), with (\=\varepsilon ,\chi \=\varepsilon ) in (C.18) replaced by (\^\varepsilon ,\chi \^\varepsilon ), where \chi \^e is defined in (D.6). Using
the linearity of Bop,i, we get

\scrB op,i(u(\^\varepsilon ), \=W ) - \scrB op,i(uA(\^\varepsilon 1), (\nabla u)A(\^\varepsilon 1), \=W ) = IIi(\^\varepsilon 1) + IIi(\^\varepsilon 2),

IIi(\^\varepsilon 1) =\scrB op,i(\^u(\^\varepsilon 1),\widehat \nabla u(\^\varepsilon 1), \=W ), IIi(\^\varepsilon 2) =\scrB op,i(u(\^\varepsilon 2),\nabla u(\^\varepsilon 2), \=W ).

We have uA =O(| x| 3), (\nabla u)A =O(| x| 2) near 0, which implies \scrB op,i(uA(\^\varepsilon 1), (\nabla u)A(\^\varepsilon 1),
\=W ) =O(| x| 3) (3.4) and

M = IIi(\^\varepsilon 1) + IIi(\^\varepsilon 2) - D2
i\scrB op,i(u(\^\varepsilon ), \=W )(0)\chi i2

= IIi(\^\varepsilon 1) + IIi(\^\varepsilon 2) - D2
i (IIi(\^\varepsilon 1) + IIi(\^\varepsilon 2))(0)\chi i2.

The term Ii,N in \scrR loc,0,i (3.29), (3.35) is similar to IINi , and M has a similar form as
IIi(\=\varepsilon 1) + IIi(\=\varepsilon 2) in Appendix C.4. We have done the above decomposition for u(\=\varepsilon )
in (C.18), (C.19) and refer therein for more details. Then the estimate of \scrR loc,j is
similar to that in Appendix C.4. See section 5.8 in [13] for more discussion of the
above forms.

Error for the initial data and at stopping time. The error \widehat W (1)(T )  - 
D2\widehat W (1)(t) \circ \chi \cdot 2 at the stopping time has compact support and its estimate follows

the methods in section 3.6. To bound the initial interpolation error errin \triangleq \widehat W (1)
0 +

a0 \circ \chi \cdot 2  - \=W0 (3.35) in a large domain, we follow similar methods. The error involves
\=\omega , \=\theta which are supported globally. To bound errin in the middle and far-field, since
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STABLE BLOWUP OF 3D EULER EQUATIONS 47

\^W
(1)
0 + a0 \circ \chi i,2 = 0, combining all the initial data from the finite rank perturbation

(see Appendix C.2.1 of Part I [13]), we need to estimate

I1 = c\omega (\omega 1)\=\omega  - \^u(\omega 1) \cdot \nabla \=\omega , I2 = 2c\omega (\omega 1)\=\theta x  - \^u \cdot \nabla \=\theta x  - \^ux \cdot \nabla \=\theta ,

I3 = 2c\omega (\omega 1)\=\theta y  - \^u \cdot \nabla \=\theta y  - \^uy \cdot \nabla \=\theta 

for large | x| . The approximation terms near 0 defined in section 4.2.1 of Part I [13]
are supported near 0 and decay to zero as | x| \rightarrow \infty . In the far-field, \^u(\omega 1) is only a
rank-one term. We estimate the above terms using (C.21), (C.22) with a = c\omega (\omega 1)
and the estimates in section C.4.

3.7. Posteriori error estimates of the velocity. In this section, we show
that the nonlocal error in (3.35) has the desired forms in (3.8). Then we combine the
estimate of such terms with the nonlinear energy estimate in section 5.8 in [13]. Using
(3.5) and the definition of \scrL \=e,\scrL e (3.11), (3.12), we have

\scrL \=e
j(G) =\scrB op,j(u(\=\varepsilon ),G), \scrL e

j(G) =\scrB op,j(u(G+ ( - \Delta )\phi NG ), \=W ),(3.39)

where \phi NG is the numerical stream function associated with G.
Given ci(t) Lipschitz in t and \=Wi(0), i = 1,2.., n, we construct \^Wi(t) following

previous sections and \^G using (3.6). Using the derivations in (3.35), (3.29), (3.30)
and the above relation, the contribution from the error type Ij,\=e term to the error
(3.7) in the jth equation is the following:

\scrR \=e
j \triangleq 

\int 
c(t - s)Ij,\=e(s)ds= - (\scrR \=e

j0  - D2
j\scrR \=e

j0(0)\chi j2),

\scrR \=e
j0 \triangleq 

\sum 
i\leq n

\int t

0

ci(s)\scrB op,j(u(\=\varepsilon ), \^Wi(t - s))dt.

Since \scrB op,j is bilinear and ci(t) is spatial-independent and Lipschitz in t, we get

\scrR \=e
j0 =\scrB op,j(u(\=\varepsilon ),

\left(  \sum 
i\leq n

\int t

0

ci(t - s) \^Wi(s)ds

\right)  =\scrB op,j(u(\=\varepsilon ), \widehat G(t)).(3.40)

Denote by \widehat G(l), \^W
(l)
j the approximate solution with extension in t in section 3.4,

and the first correction l= 1 in section 3.2 or two corrections l= 2 in sections 3.2, 3.3.
Let \^\phi 

(l)
i be the stream function associated with \^W

(1)
i constructed numerically with the

first correction for l= 1 and both corrections for l= 2. In particular, the full solution
is given by \^G= \^G(2), \^Wi = \^W

(2)
i , \^\phi Ni = \^\phi 

N,(2)
i (3.34). We construct the stream function

\^\phi N,(l) associated with \^G(l) and error \^\varepsilon as follows:

\^\phi N,(l) \triangleq 
\sum 
i\leq n

\int t

0

ci(s)\^\phi 
(l)
i (t - s)ds, \^\varepsilon = \^W (1) +\Delta \^\phi N,(1)

=
\sum 
i\leq n

\int t

0

ci(s)( \^W
(1)
i +\Delta \^\phi 

N,(1)
i )(t - s)ds.

Since we can obtain u(a(t)\chi 12) exactly for the second correction (see section 3.3), we
have

\^\varepsilon (t) = \^W (1)  - ( - \Delta )\^\phi N,(1) = \^W (2)  - ( - \Delta )\^\phi N,(2) = \^W  - ( - \Delta )\^\phi N .(3.41)
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48 JIAJIE CHEN AND THOMAS Y. HOU

In practice, we estimate \^\varepsilon using the first identity since it does not involve ai(t)

and the integrand \^W
(1)
i +\Delta \^\phi 

(1)
i is piecewise cubic in time. We decompose \^\varepsilon as follows:

\^\varepsilon 2 = \^\varepsilon xy(0)\Delta 
\Bigl( x3y

2
\chi \^\varepsilon 

\Bigr) 
, \^\varepsilon = (\^\varepsilon  - \^\varepsilon 2) + \^\varepsilon 2 \triangleq \^\varepsilon 1 + \^\varepsilon 2,(3.42)

where \chi \^\varepsilon is defined in (D.6). Since \^\varepsilon only vanishes O(| x| 2) near 0, we perform the
above decomposition so that \^\varepsilon 1 = O(| x| 3) near 0. See Appendix C.4 and section 5.8
in [13] for motivations of (3.42). We estimate \^\varepsilon 1, \^\varepsilon xy(0), \^\phi 

N following (3.37). We
establish (3.6).

Similarly, using linearity, (3.39), and (3.41), we can rewrite the residual error in
(3.35) from the Ij,e term in (3.29) related to \scrL e

j(\cdot ) as follows:

\scrR e
j \triangleq 

\int 
c(t - s)Ij,e(s)ds= - (\scrR e

j0  - D2
j\scrR e

j0(0)\chi j2),

\scrR e
j0 =

\sum 
i\leq n

\int t

0

ci(t - s)\scrL e
j(

\^W
(1)
i )(s)ds

=
\sum 
i\leq n

\int t

0

ci(t - s)\scrB op,j(u( \^W
(1)
i +\Delta \^\phi 

N,(1)
i )(s), \=W )ds

=\scrB op,j(\^\varepsilon (t), \=W ),

which along with (3.39)--(3.40) for \scrR \=e
j establishes the formula for \scrR nloc in (3.8).

4. Estimate the norm of the regular part of the velocity. In this section,
we derive the constants in the upper bound in Lemma 2.3. We have constructed
the finite rank approximation \^f for f in Lemma 2.3 in section 4.3 in Part I [13].
The estimate of the most singular part, e.g., ux,a,b(\omega \psi ), in the C1/2 estimate in
Lemma 2.3 can be obtained using the sharp H\"older estimates in section 3 of Part I
[13], where ux,a,b is defined via a localized kernel. In this section, we estimate other
terms in Lemma 2.3, e.g., I = \psi ux(\omega ) - ux,a,b(\omega \psi ) - \psi \^ux(\omega ), involving the velocity
with desingularized kernels, which are more regular.

In section 4.1, we outline the strategies in the estimate and decompose the in-
tegrals from the nonlocal terms into several parts based on their regularities. In
section 4.2, we perform the L\infty estimates in Lemma 2.3 and derive the constants. In
section 4.3, we perform the H\"older estimate of different parts. In section 4.6, we com-
bine the H\"older estimate of different parts, which provide the constants in Lemma 2.3.
In particular, we reduce the L\infty estimates and the C1/2 estimates in Lemma 2.3 to
bounding some explicit L1 integrals depending on the weights, which can be estimated
by a numerical quadrature with rigorous error control. We estimate these integrals
with computer assistance. See the discussions in section 2.2.

We will apply the second estimates in Lemma 2.3 for the nonlocal error, e.g., u(\=\varepsilon )
and \=\varepsilon is the error of solving the Poisson equations. Since we can estimate piecewise
bounds of \=\varepsilon following section 3.6, instead of using the global norm, we improve the
estimate using the localized norms, which are much smaller than the global norm.
See section 4.7.

The kernels associated with u,\nabla u are given by

K1 \triangleq 
y1y2
| y| 4

, K2 \triangleq 
1

2

y21  - y22
| y| 4

, Ku \triangleq 
y2

2| y| 2
, Kv \triangleq  - y1

2| y| 2
,

Kux
= - K1, Kuy

=Kvx =K2.

(4.1)
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STABLE BLOWUP OF 3D EULER EQUATIONS 49

Here, we have dropped the constant 1
\pi , e.g., ux(\omega ) = - \partial xy( - \Delta ) - 1 = 1

\pi Kux \ast \omega . One
needs to multiply 1

\pi back to obtain the final estimate.

Difficulties in the computations. In addition to the difficulties discussed in
section 5.1 of Part I [13], e.g., singularities caused by the weights and kernels, the
singular integral introduces several technical difficulties in our estimates. To address
these difficulties, we need to consider different scenarios and decompose the domain
of the integrals carefully in our computer-assisted estimates. Given \omega \varphi \in L\infty , the
velocity u and the commutator \psi \cdot (\nabla u)(\omega ) - (\nabla u)(\omega \psi ) are only log-Lipschitz. The
logarithm singularity introduces several difficulties. For example, if u is Lipschitz, a
natural approach to estimate its H\"older norm in terms of | | \omega \varphi | | \infty is to estimate the
piecewise bound of u and \partial u, which are local in u, and then use the method in sec-
tion E.1. However, since u is only log-Lipschitz, we need to perform a decomposition
of u into the regular part and the singular part carefully. For different parts, we will
apply different estimates. See section 4.1.11 for ideas. For \nabla u, the estimates are more
involved since it is more singular.

4.1. Several strategies. We outline several strategies to estimate the nonlocal
terms.

4.1.1. Integral with approximation. In our computation of uA = u - \^u, (\nabla u)A
=\nabla u - \widehat \nabla u, where the approximation terms \^u,\widehat \nabla u are defined in section 4.3 of Part
I [13], the rescaling argument still applies. Note that we do not have \partial uA = (\partial u)A
since we design approximations for u,\nabla u separately. We consider one approximation
term c(x)

\int 
1y/\in SK(xa, y)\omega (y)dy for

\int 
K(x, y)\omega (y)dy to illustrate the ideas, where S

is the singular region associated with xa. Suppose that K is  - d-homogeneous. We
want to estimate

I = \rho (x)

\int 
\BbbR 2

(K(x, y) - c(x)K(xa, y)1y/\in S)W (y)dy,

where W is the odd extension of \omega from \BbbR 2
+ to \BbbR 2 (see (4.23)). Denote

f\lambda (x)\triangleq f(\lambda x).(4.2)

We choose \lambda \asymp | x| and denote x= \lambda \^x, y = \lambda \^y,xa = \lambda \^xa. Since K(\lambda z) = \lambda  - dK(z), we
have

I = \rho \lambda (\^x)

\int 
\BbbR 2

\Bigl( 
K(\lambda \^x,\lambda \^y) - c(\lambda \^x)1\lambda \^y/\in SK(\lambda \^xa, \lambda \^y)

\Bigr) 
W (\lambda \^y)\lambda 2d\^y

= \lambda 2 - d\rho \lambda (\^x)

\int 
\BbbR 2

\Bigl( 
K(\^x, \^y) - c(\lambda \^x)1\^y/\in S/\lambda K(\^xa, \^y)

\Bigr) 
W\lambda (\^y)d\^y.

(4.3)

The singular region becomes S/\lambda and close to xa/\lambda = \^xa. For example, if S = \{ y :
maxi | yi  - xa,i| \leq a\} , we have S/\lambda = \{ y : maxi | yi  - \^xa,i| \leq a/\lambda \} . For the above
integral, we will symmetrize the kernel and then estimate it using the norms | | W\varphi | | \infty 
and [\omega \psi ]

C
1/2
xi

, i= 1,2 (4.9).

The bulk and approximation. To take advantage of the scaling symmetry
and overcome the singularity, in our computation for x away from the origin and
not too large, we choose several dyadic rescaling parameters \lambda = 2i, i \in I, e.g., I =
\{  - 4, - 3, ..,10\} . Then for any x with max(x1, x2)\in [2ixc,2

i+1xc], we can choose \lambda = 2i

so that the rescaled \^x= x
\lambda satisfies

\^x\in 

\Biggl\{ 
[xc,2xc]\times [0,2xc]\triangleq \Omega 1 if x2 \leq x1,

[0, xc]\times [xc,2xc]\triangleq \Omega 2 if x2 >x1.
(4.4)
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50 JIAJIE CHEN AND THOMAS Y. HOU

We also choose xi ((xi,0) is the singularity) and the size of the singular region ti for the
approximation term defined in section 4.3.2 of Part I [13] such that xi/\lambda is on the grid
point of the mesh and the boundary of the singular region \{ y : | xi - y1| \vee | y2| \geq ti/\lambda \} ,
which aligns with one of the edges of a mesh cell. For example, this can be done by
choosing the following y mesh in the near-field to discretize the y-integral, xi, and ti:

y1,i = ih, y2,i = ih, xi = 2nih, ti = 2mih.

Then when we discretize the rescaled integral in y, e.g., (4.3), the singular region is
the union of several mesh cells. For large y, it is away from the singularity \^x. Then
we can use an adaptive mesh in y1, y2 to discretize the integral.

We remark that in (4.3), if xa \not = 0 and xa/\lambda \asymp xa/| x| is too large or too small,
since c(x) is supported near xa, c(\lambda \^x) = c(x) will be 0. This means that when we
compute uA(x), (\nabla u)A, if the coefficient of an approximation term with center xi and
parameter ti is nonzero, e.g., c(x) \not = 0, then \lambda is comparable to xi when we rescale
the integral by \lambda . Thus \^xi = xi/\lambda is on the grid. We also choose ti such that ti/\lambda is
a multiple of mesh size h for \lambda comparable to xi.

Remark 4.1. Using the scaling symmetry and rescaling the integral by dyadic
scales, we can compute the integral for x \in [0,D]2\setminus [0, d]2 with roughly O(log(D/d))
computational cost.

The near-field and the far-field. Recall the notation from section 4.3 in Part I
[13]:

Cu0 = x, Cv0 = - y, Cux0 = 1, Cuy0 =Cvx0 = 0,

Cux
= - (x2  - y2), Cvx = 2xy, Cuy

= 2xy, Cu= - 
\Bigl( 1
3
x3  - xy2

\Bigr) 
, Cv = x2y - 1

3
y3,

Kux0 = - 4y1y2
| y| 4

, K00 =
24y1y2(y

2
1  - y22)

| y| 8
, \scrK 00(\omega )\triangleq 

1

\pi 

\int 
\BbbR 2

++

K00(y)\omega (y)dy.

(4.5)

If x is sufficiently small, i.e., max(x1, x2) < mini\in I 2
ixc, we choose \lambda 

= max(x1, x2)/xc so that the rescaled \^x = x
\lambda is on the line x1 = xc or x2 = xc.

Assuming \varphi (x)\geq | x|  - \beta 1 | x|  - \beta 2

1 , \rho \sim | x|  - \alpha near x= 0, and K is  - d-homogeneous, then
we get

| \rho (x)
\int 
\BbbR ++

2

K(x, y)\omega (y)dy| \leq | | \omega \lambda \varphi \lambda | | L\infty \rho \lambda (\^x)

\int 
\BbbR ++

2

| K(\^x, \^y)| \varphi \lambda (\^y)
 - 1\lambda 2 - dd\^y

\leq | | \omega \lambda \varphi \lambda | | L\infty \lambda \beta 1+\beta 2+2 - d\rho \lambda (\^x)

\int 
\BbbR ++

2

| K(\^x, \^y)| | \^y| \beta 1 \^y\beta 2

1 d\^y.

(4.6)

As x\rightarrow 0, \lambda \rightarrow 0. The factor \lambda \beta 1+\beta 2+2 - d absorbs the large factor \lambda  - \alpha in \rho \lambda (\^x).
In our estimate of uA,\nabla uA, we have \beta 1 + \beta 2 = 2.9 for \varphi 1,\varphi g,1, 2.5 for \varphi elli (A.2),
(\alpha ,d) = (2,2) for (\psi 1,\nabla uA) (A.1), and (\alpha ,d) = (3,1) for (\rho 10,uA) (A.2). We have
\beta 1 + \beta 2 + 2 - d - 2> 0.

In general, the above integral may not be integrable due to the growing weight
| y| \beta 1y\beta 2

1 . For uA,\nabla uA with small x, it takes the form (see section 4.3 of Part I [13])

f(x) - Cf0(x)ux(0) - Cf (x)\scrK 00 =

\int 
\BbbR 2

++

(Ksym
f +Cf0(x)

4

\pi 

y1y2
| y| 4

 - Cf (x)K00(y))\omega (y)dy,

(4.7)
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STABLE BLOWUP OF 3D EULER EQUATIONS 51

where Cf0,Cf , and K00 are defined in (4.5), and f = u, v,ux, vx, uy, vy. In particular,
the associated kernel has a much faster decay rate | y|  - 6, which will be shown in
Appendix B.1.1. Thus, the integral is integrable.

Since \lambda = max(x1, x2)/xc is very small, \rho \lambda (\^x) can be well approximated by the
most singular power c\lambda  - \alpha | x|  - \alpha for some c > 0, which can be estimated effectively
after factorizing out \lambda  - \alpha .

Similarly, if x is sufficiently large, i.e., max(x1, x2) > maxi\in I 2
i+1xc, we choose

\lambda = max(x1,x2)
xc

so that the rescaled \^x = x/\lambda is on the line x1 = xc or x2 = xc. Since
\lambda is sufficiently large, we can estimate the weight \rho \lambda ,\varphi \lambda based on their asymptotic
behavior.

Integral near 0. We have an approximation I = - Cf0(x)Kux0(y) - C2(x)K00(y)
(4.5) for Ksym

f0 (x, y) with some smooth coefficients C2 (C2 may not be Cf ). The term
Cf0(x)Kux0(y) and Kf are both  - d homogeneous, d = 1 or 2. Since Kux0,K00

are singular near 0, after we rescale the integral following (4.3), we decompose the
symmetrized integral for y near 0 as follows:

II =

\int 
\BbbR ++

2

\Bigl( 
Ksym

f (\^x, \^y)\lambda 2 - d  - \lambda 2 - dCf (\^x)Kux0(\^y) - C2(\lambda \^x)K00(\^y)\lambda 
 - 2
\Bigr) 
\omega (\lambda \^y)d\^y

= \lambda 2 - d
\Bigl( \int 

\BbbR ++
2

\Bigl( 
Ksym

f (\^x, \^y) - Cf (\^x)1| \^y| \infty \geq k01hKux0(\^y)

 - \lambda  - 4+dC2(\lambda \^x)1| \^y| \infty \geq k02hK00(\^y)
\Bigr) 
\omega (\lambda \^y)d\^y

 - 
\int 
\BbbR ++

2

\Bigl( 
Cf (\^x)1| \^y| \infty \leq k01hKux0(\^y) - \lambda  - 4+dC2(\lambda \^x)1| \^y| \infty \leq k02hK00(\^y)

\Bigr) 
\omega (\lambda \^y)d\^y

\Bigr) 

(4.8)

for some small integers k0i with k0ih < | \^x| \infty /2, e.g., k01 = 4, k02 = 20, where | a| \infty =
max(a1, a2) and h is chosen in (4.14). We will estimate the first integral with regular
integrand near \^y = 0 using the method in section 4.1.3 and the last two integrals
for | \^y| \infty \leq k01h, | \^y| \infty \leq k02h analytically in section 4.4.1. We perform the above
decomposition since K00(\^y),Kux0(\^y) are too singular to estimate them numerically.

We apply the above decompositions to the integrals in both L\infty and C1/2 es-
timates. We also apply the above decompositions to the approximation terms and
estimate the integral of Kux0 separately near y= 0.

4.1.2. The scaling relations. We discuss several scaling relations, which will
be useful in later computation. For a  - d-homogeneous kernel K, i.e., K(\lambda x) =
\lambda  - dK(x), we have

I(x) = \rho (x)

\int 
K(x, y)\omega (y)dy= \rho \lambda (\^x)

\int 
K(\^x, \^y)\omega \lambda (\^y)\lambda 

2 - dd\^y\triangleq \lambda 2 - dI\lambda (\^x),

where x = \lambda \^x, y = \lambda \^y. To compute the derivative of I(x), using the chain rule, we
have

\partial xiI(x) = \lambda 2 - d d\^xi
dxi

\partial \^xi
I\lambda (\^x) = \lambda 1 - d\partial \^xi

I\lambda (\^x).

For the L\infty part, clearly, we get | I(x)| = | I\lambda (\^x)| . To compute the H\"older norm,
we use the following relation | x - z| = \lambda | \^x - \^z| and

| I(x) - I(z)| 
| x - z| 1/2

= \lambda  - 1/2 | I\lambda (\^x) - I\lambda (\^z)| 
| \^x - \^z| 1/2

.
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52 JIAJIE CHEN AND THOMAS Y. HOU

In particular, for i= 1,2, we have

| | \omega \lambda \varphi \lambda | | \infty = | | \omega \varphi | | \infty , [\omega \lambda \psi \lambda ]C1/2
xi

= \lambda 1/2[\omega \psi ]
C

1/2
xi

, [f ]
C

1/2
xi

:= sup
y,z:yi=zi

| f(y) - f(z)| 
| y - z| 1/2

.

(4.9)

Using these scaling relations, we can perform the estimate in a rescaled domain with
any \lambda > 0.

4.1.3. Mesh and the trapezoidal rule. After rescaling the integral with suit-
able scaling factor \lambda , we can restrict the rescaled singularity \^x\in [0,2xc]

2\setminus [0, xc]2 (see
(4.3), (4.4)).

If a domain Q is away from the singularity \^x of the kernel, applying (4.9), we get\int 
Q

| K(\^x, y)| | \omega \lambda (y)| dy\leq | | \omega \lambda \varphi \lambda | | \infty 
\int 
Q

| K(\^x, y)| \varphi  - 1
\lambda (y)dy(4.10)

= | | \omega \varphi | | \infty 
\int 
Q

| K(\^x, y)| \varphi  - 1
\lambda (y)dy.

Then, it suffices to estimate the integral of an explicit function | K(\^x, y)| \varphi  - 1
\lambda (y).

If in addition, the region Q is small, e.g., Q is the grid [yi, yi+1]\times [yj , yj+1] introduced
below, we further apply\int 

Q

| K(\^x, y)| | \omega \lambda (y)| dy\leq | | \omega \varphi | | \infty | | \varphi  - 1
\lambda | | L\infty (Q)

\int 
Q

| K(\^x, y)| dy.

Since the domain Q is small, the estimate is sharp. We use the following method to
estimate

\int 
| K(\^xi, y)| dy for a suitable kernel K and \^xi on the grid points.

We consider the estimate of the L1 norm of some function f in \BbbR ++
2 , e.g., f =

K(\^xi, y) mentioned above. To discretize the integral, we design a uniform mesh in the
domain [0, b]2 covering \Omega 1 and \Omega 2 with mesh size h and adaptive mesh in the larger
domain [0,D]2

0 = y0 < y1 < \cdot \cdot \cdot < yn =D, yi = ih, i\leq b/h.(4.11)

The finer mesh in the near-field [0, b]2 allows us to estimate the integral with higher
accuracy. We choose a sparser mesh in the far-field since y is away from the singularity
\^x and the kernel decays in y. We partition the integral as follows:\int 

\BbbR ++
2

| f(y)| dy=
\sum 

0\leq i,j\leq n - 1

\int 
[yi,yi+1]\times [yj ,yj+1]

| f(y)| dy+
\int 
y/\in D

| f(y)| dy.(4.12)

We focus on how to estimate the first part for nonsingular f . In section 4.4, we
estimate the integral beyond [0,D]2 using the decay of the integral. We will discuss
how to estimate the integral near the singularity of the kernel in a later subsection.

Denote Q= [a, b]\times [d, c], h1 = b - a,h2 = d - c. We use the trapezoidal rule\int 
[a,b]\times [c,d]

| f(y)| dy\leq T (| f | ,Q) +Err(f),

where

T (f,Q)\triangleq 
(b - a)(d - c)

4
(f(a, c) + f(a, d) + f(b, c) + f(b, d)).

The error estimate of the above trapezoidal rule is not obvious due to the absolute
sign. In fact, even if f is smooth, | f | is only Lipschitz near the zeros of f . Since the
set of zeros is hard to characterize and | f | can have low regularity, we do not pursue
a higher order quadrature rule. We have the following error estimate.
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STABLE BLOWUP OF 3D EULER EQUATIONS 53

Lemma 4.2 (trapezoidal rule for the L1 integral). For f \in C2(Q), we have\int 
Q

| f(y)| dy\leq T (| f | ,Q) +
| Q| 
12

(h21| | fxx| | L\infty (Q) + h22| fyy| | L\infty (Q)).

Remark 4.3. The above estimate shows that the trapezoidal rule remains second
order accurate from the above. In particular, this error estimate is comparable to the
case without taking the absolute value.

Proof. Define the linear interpolation of f in Q

L(f) =

4\sum 
i=1

\lambda i(x)fi, E(f) = f  - L(f),

where \lambda i(x) is linear and satisfies
\sum 
\lambda i(x) = 1 and \lambda i(x) \geq 0 for x \in Q. Using the

triangle inequality, we obtain\int 
Q

| f | dy\leq 
\int 
Q

| E(f)| dy+
\int 
Q

\lambda i(x)| fi| dy= T (| f | ,Q) +

\int 
Q

| E(f)| dy.

We have the standard error bound for linear interpolation E(f)

| E(f)| \leq 
| | fxx| | L\infty (Q)

2
| (x - a)(x - b)| +

| | fyy| | L\infty (Q)

2
| (y - c)(y - d)| ,(4.13)

which can be obtained by first applying interpolation in x and then in y. It can
also be established using the error estimate for the 2D Lagrangian interpolation with
k= 2 in section 8 in the supplementary material (supplement.pdf [local/web 1.43MB]).

Integrating the above estimate in x, y and using 1
2

\int 1

0
t(1  - t)dt = 1

12 concludes the
proof.

To estimate the integral
\int 
| K(x, y)| for all \^x \in \Omega 1,\Omega 2 (4.4), we discretize [0,2a]2

using a uniform mesh with mesh size hx = h/2. We use the above method to estimate\int 
| K(\^xi, y)| dy for xi on the grid points. After we estimate the derivatives of the kernel,

we use the following lemma to estimate the integral for any x in a domain.

Lemma 4.4. Suppose that K(x, y) \in C2(P \times Q), P = [a1, b1]\times [a2, b2], hi = bi  - 
ai, i= 1,2, and Q= [a, b]\times [c, d]. Let L(K)(x, y) =

\sum 
i,j=1,2 \lambda ij(x)K((ai, bj), y) be the

linear interpolation of K(x, y) in x using K((ai, bj), y), i, j = 1,2. Then for any x\in P ,
we have \int 

Q

| K(x, y)| dy\leq 
\sum 

i,j=1,2

\lambda ij(x)

\int 
Q

| K((ai, bj), y)| dy

+
\Bigl( h21
8
| | Kxx| | L\infty (P\times Q) +

h22
8
| | Kyy| | L\infty (P\times Q)

\Bigr) 
| Q| .

The proof follows from (4.13), the triangle inequality, and 1
2 | t(1  - t)| \leq 1

8 for
t \in [0,1]. We will apply the above lemma and sum Q over all the near-field domains
Qij = [yi, yi+1]\times [yj , yj+1] (4.11). Since

\sum 
ij \lambda ij(x) = 1, we can simplify the first term

as follows:\sum 
i,j=1,2

\lambda ij(x)
\sum 
k,l\leq n

\int 
Qkl

| K((ai, bj), y)| dy\leq max
1\leq i,j\leq 2

\sum 
k,l\leq n

\int 
Qkl

| K((ai, bj), y)| dy.

Therefore, it suffices to estimate the integral for x on the grid points and the
piecewise derivative bounds of the kernel.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

31
.2

15
.2

20
.1

65
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://epubs.siam.org/doi/suppl/10.1137/23M1580395/suppl_file/supplement.pdf


54 JIAJIE CHEN AND THOMAS Y. HOU

We apply Lemmas 4.2, 4.4 to estimate the weighted integral related to the velocity.
The integrands take the form (4.28), (4.29), (4.24). To estimate the error in the
above integrals, we need to obtain a piecewise L\infty estimate of the derivatives of the
integrands in P,Q. We estimate the derivatives of the weights in Appendix A.1 and
the kernel in Appendix B.

Parameters for the integrals. In our computation, we choose

hx = 13 \cdot 2 - 12, h= 13 \cdot 2 - 11, xc = 13 \cdot 2 - 5,(4.14)

which can be represented exactly in a binary system, to reduce the round-off error.
The approximate values of the above parameters are hx \approx 0.0032, h\approx 0.0064, xc \approx 0.4.
For x\in [0,2xc]

2\setminus [0, xc]2 (4.4), we have

max(x1, x2)\geq xc = 64h= 128hx.(4.15)

In our decomposition of the integral, e.g., (4.24), (4.45), (4.49), we impose a constraint
on the size of the singular region to satisfy (k + 1)h < xc such that the region does
not cover the origin.

4.1.4. Decomposition, commutators, and the Lipschitz norm. The most
difficult part of the computation is to estimate the H\"older norm of \nabla u, and we discuss
several strategies. In this computation, we cannot first estimate the local Lipschitz
norm of \nabla u and then obtain the local H\"older norm due to the difficulties discussed
at the beginning of section 4. We need to decompose the integral related to \nabla u into
several parts according to the distance between y and the singularity and use different
estimates for different parts.

We focus on the integral related to ux without subtracting any approximation
term and assume that x\in [0,2xc]

2\setminus [0, xc]2. The approximation term \widehat \nabla u is nonsingu-
lar and can be estimated using the method in section 4.1.3. Let h be the mesh size
in the discretization of the integral in y. Suppose that

x\in \BbbR ++
2 , x2 \leq x1, x\in Bi1,j1(hx)\subset Bij(h), j \leq i,(4.16)

where hx = h/2 and Blm(r) is defined as

Blm(r) = [lr, (l+ 1)r]\times [mr, (m+ 1)r].(4.17)

Denote by R(x,k) the rectangle covering x

R(x,k)\triangleq [(i - k)h, (i+ 1+ k)h]\times [(j  - k)h, (j + 1+ k)h](4.18)

for any k > 0. If k \in Z+, the boundary of R(x,k) is along with the mesh grid and is
at least kh away from x. Denote by Rs,Rs,1,Rs,2 different symmetric rectangles with
respect to x

Rs(x,k)\triangleq [x1  - kh,x1 + kh]\times [x2  - kh,x2 + kh],

Rs,1(x,k)\triangleq [x1  - kh,x1 + kh]\times [(j  - k)h, (j + 1+ k)h],

Rs,2(x,k)\triangleq [(i - k)h, (i+ 1+ k)h]\times [x2  - kh,x2 + kh].

(4.19)

We have Rs(x,k) \subset Rs,i(x,k) \subset R(x,k), i = 1,2. We introduce the upper and lower
parts of R(x,k):

R+(x,k)\triangleq R(x,k)\cap \{ y : y2 \geq x2\} , R - (x,k)\triangleq R(x,k)\cap \{ y : y2 \leq x2\} .(4.20)
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STABLE BLOWUP OF 3D EULER EQUATIONS 55

Fig. 1. Left: The large box is R(x,k) and the red box is Rs,1(x,k). (Color images are available
online.) The small box containing x has size h \times h. Right: The upper box is R(x,k,N), and the
shaded box is R(x,k,S), the reflection of the region below the y-axis.

We use similar notation for Rs(x,k),Rs,1(x,k),Rs,2(x,k). We further introduce the
intersection of the rectangle and four half planes with reflection:

R(x,k,N) =R(x,k)\cap \{ y : y2 \geq 0\} , R(x,k,S) =\scrR 2(R(x,k)\cap \{ y : y2 \leq 0\} ),
R(x,k,E) =R(x,k)\cap \{ y : y1 \geq 0\} , R(x,k,W ) =\scrR 1(R(x,k)\cap \{ y : y1 \leq 0\} ),

(4.21)

where N,E,S,W are short for north, east, south, west, respectively, and the reflection
operators \scrR 1,\scrR 2 are given by

\scrR 1(y1, y2) = ( - y1, y2), \scrR 2(y1, y2) = (y1, - y2).

It is clear that R(x,k,S) \subset \BbbR +
2 ,R(x,k,W ) \subset \{ y : y1 \geq 0\} . An illustration of these

domains is given in Figure 1. If x, y \in \BbbR ++
2 , we have the equivalence

(y1, - y2) /\in R(x,k) \Leftarrow \Rightarrow (y1, - y2) /\in R(x,k)\cap \{ y : y2 \leq 0\} \Leftarrow \Rightarrow y /\in R(x,k,S),
(y1, - y2)\in R(x,k) \Leftarrow \Rightarrow y \in R(x,k,S).

(4.22)

The above notation will be very useful in our later decomposition of the symmetrized
kernel.

Define the odd extension of \omega in y from \BbbR +
2 to \BbbR 2:

W (y) = \omega (y) for y2 \geq 0, W (y) = - \omega (y1, - y2) for y2 < 0.(4.23)

W is odd in both y1 and y2 variables. Since we fix x (4.16) below, for simplicity, we
drop x in the R notation. For k > k2, k, k2 \in Z+, we decompose the weighted ux(x)
integral as follows:2

\psi (x)

\int 
K1(x - y)W (y)dy=\psi (x)

\int 
R(k)c

K1(x - y)W (y)dy

+

\int 
Rs,1(k)

K1(x - y)\psi (y)W (y)dy+

\int 
R(k)\setminus Rs,1(k)

K1(x - y)\psi (y)W (y)dy

+

\int 
R(k)\setminus R(k2)

K1(x - y)(\psi (x) - \psi (y))W (y)dy

+

\int 
R(k2)

K1(x - y)(\psi (x) - \psi (y))W (y)dy

\triangleq I1(x,k) + I2(x,k) + I3(x,k) + I4(x,k, k2) + I5(x,k2),

(4.24)

2Since we have no flow boundary condition for the velocity and stream function  - \Delta \phi =
\omega ,\phi (0, y) = 0, the Poisson integral formula for u = \nabla \bot \phi is equivalent to \nabla \bot ( - \Delta 2D) - 1W for \Delta 2D

defined in the whole space case.
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56 JIAJIE CHEN AND THOMAS Y. HOU

where

K1(s)\equiv 
s1s2
| s| 4

.

We drop  - 1
\pi in the integrand  - 1

\pi K1(s) for ux(x) (4.1) at this moment to simplify the
notation. We will estimate different parts in section 4.3.

Principle and log-Lipschitz integrand. Our major motivation for the decom-
position (4.24) and the integrand (4.28) with symmetrization is to obtain an integrand
J which is at least locally log-Lipschitz satisfying J(x, y)\lesssim | x - y|  - 1 for y close to x,
and the more singular one JS . We will estimate the integral of J using the trapezoidal
rule in section 4.1.3 and JS analytically.

4.1.5. Symmetrization. After we obtain the decomposition, we use the odd
symmetry of W in y1, y2 to symmetrize the integral and reduce the integral over \BbbR 2

to the first quadrant \BbbR ++
2 . This enables us to exploit the cancellation in the integral

and obtain a sharper estimate. In our computation, we symmetrize the integrals in
I1(x,k) and I4(x,k, k2), which are more regular. For a given kernel K(x, y), we denote
by Ksym the symmetrization of K:

Ksym(x, y)\triangleq K(x, y) - K(x, - y1, y2) - K(x, y1, - y2) +K(x, - y).(4.25)

We show how to symmetrize I1(x,k) as an example. Recall the notation in (4.21),
(4.16). We assume x1 \geq x2. We choose k < i so that R(x,k) \subset \{ y : y1 > 0\} and
R(x,k,W ) = \emptyset . By definition (4.18), the domains R(x,k),R(x,k,N),R+(x,k), etc.,
are the same for all x \in Bi1,j1(hx). Yet, R(x,k) may cross the boundary y2 = 0, i.e.,
R(x,k,S) \not = \emptyset . See the right figure in Figure 1 for a possible configuration. Using the
equivalence (4.22) and the property that W is odd in y1 and y2, for general x\in \BbbR ++

2

(without x1 \geq x2), we can symmetrize I1(x,k) as follows:

I1(x,k) =\psi (x)

\int 
\BbbR ++

2

\Bigl( 
K1(x - y)1y\in R(k)c  - K1(x1  - y1, x2 + y2)1y/\in R(k,S)

 - K1(x1 + y1, x2  - y2)1y/\in R(k,W ) +K1(x+ y)
\Bigr) 
\omega (y)dy.

(4.26)

For I4(x) (4.24), we choose the weight \psi (y) (A.1), (A.2) even in y1, y2. Then the
symmetrization of I4 is

I4(x,k, k2) =

\int 
\BbbR ++

2

(K1(x - y)1y\in R(k)\setminus R(k2)  - K1(x1  - y1, x2 + y2)1y\in R(k,S)\setminus R(k2,S)

 - K1(x1 + y1, x2  - y2)1y\in R(k,W )\setminus R(k2,W ))(\psi (x) - \psi (y))W (y)dy.

(4.27)

In (4.27), we do not have the term K1(x+ y) since for y \in \BbbR ++
2 , x+ y\geq xc > (k+1)h

and  - y /\in R(k). See the discussion below (4.15). Thus after symmetrizing the kernel
in I4, we do not have such a term.

Though the symmetrized kernel is complicated, since these regions R(l),R(l,\alpha )
\alpha =N,E, l= k, k2 (4.18), (4.21) can be decomposed into the union of the mesh girds
[yi, yi+1] \times [yj , yj+1], in each grid, the indicator functions are constants. See also
Remark 4.6. In each grid y \in [yi, yi+1] \times [yj , yj+1], we can write the integrand in
I1 + I4 as

J =KNC(x, y) \cdot \psi (x) +KC(x, y) \cdot (\psi (x) - \psi (y)),

\partial xi
J = (KNC +KC)\partial xi

\psi (x) + \partial xi
KNC \cdot \psi (x) + \partial xi

KC(x, y) \cdot (\psi (x) - \psi (y)),
(4.28)
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STABLE BLOWUP OF 3D EULER EQUATIONS 57

where NC,C are short for noncommutator, commutator, respectively.
For y close to x, J is at least locally log-Lipschitz. See the principle before sec-

tion 4.1.5 for motivation. For y away from x, e.g., | y1| \vee | y2| \geq 4xc in our computation,
we have

J =Ksym(x, y)\psi (x).(4.29)

In practice, we assemble the symmetrized integrand in I1 + I4 in \BbbR ++
2 together.

Using (4.28), we only need to assemble KNC ,KC . We first initialize the integrand
with (KNC ,KC) = (Ksym,0). To assemble the integrand in the singular regions, we
perform two replacements. In the first replacement, we pretend that R(k2) = \emptyset and
replace the integrand in R(k) \cap \BbbR ++

2 . Based on x \in Bij(h) (4.16), we determine the
regions R(x,k),R(x,k,S) (4.18), (4.21). Since x1 \geq x2, we get R(x,k,W ) = \emptyset . See
Figure 1. We partition R(k)\cap \BbbR ++

2 as follows:

R(k)\cap \BbbR ++
2 =R(k,N) = (R(k,N)\setminus R(k,S))\cup R(k,S)\triangleq D1 \cup D2.(4.30)

According to (4.26), (4.27) (R(k2) = \emptyset ), for i= 1,2, we first replace (KNC ,KC) in Di

by

(KNC ,KC) = (Ksym  - KC
i ,K

C
i ), KC

1 =K1(x - y), KC
2(4.31)

=K1(x - y) - K1(x1  - y1, x2 + y2),

respectively, where KC is from the integrand in (4.27). We have i singular terms in
Di in (4.27).

In the second replacement, we replace the integrand in the smaller singular region
R(k2) \cap \BbbR ++

2 \subset R(k)\setminus \BbbR ++
2 . Outside this region, we have obtained the symmetrized

integrand using (4.31). Since we assume x1 \geq x2, we get R(k,W ) = \emptyset (see the
discussion below (4.25)) and 1y/\in R(k,W ) \equiv 1,1y\in R(k,W ) = 0. Similarly to R(k) \cap \BbbR ++

2

(see Figure 1), we can decompose

R(k2)\cap \BbbR ++
2 = (R(k2,N)\setminus R(k2, S))\cap R(k2, S)\triangleq D3 \cup D4.

In D4 =R(k2, S)\subset R(k2),R(k,S), from (4.26), (4.27), we completely remove the
K1(x - y),K1(x1  - y1, x2 + y2) terms in the integrand and have

(KNC ,KC) = (K1(x+ y) - K1(x1 + y1, x2  - y2), 0).

In D3, since D3 \subset R(k,N) =D1\cup D2 (4.30), there are two cases. In D3\cap D1,D1 =
R(k,N)\setminus R(k,S), we have three nonsingular terms from (4.26) and zero terms from
(4.27) and get

(KNC ,KC) = (K1(x+ y) - K1(x1 + y1, x2  - y2) - K1(x1  - y1, x2 + y2), 0).

In D3 \cap D2,D2 = R(k,S), we have two terms from (4.26) and one term from
(4.27). We get

(KNC ,KC) = (K1(x+ y) - K1(x1 + y1, x2  - y2), - K1(x1  - y1, x2 + y2)).

For x1 < x2, we assemble the integrand similarly. Using (4.28), we obtain the
integrand \partial xi

J for the H\"older estimate.
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58 JIAJIE CHEN AND THOMAS Y. HOU

\bfitC 1/2
\bfity estimate of \bfitu \bfity , \bfitv \bfitx . In the C

1/2
y estimate of uy, vx with kernel K2 (4.1),

we symmetrize the integrand K(x  - y)(\psi (x)  - \psi (y); see (4.68) in section 4.3.9. In
this case, the symmetrized integrand W (y)T is similar to (4.26) with \psi (x) replaced
by \psi (x) - \psi (y) and

T = (\psi (x) - \psi (y))
\Bigl( 
K2(x - y)1y\in R(k)c  - K2(x1  - y1, x2 + y2)1y/\in R(k,S)

 - K2(x1 + y1, x2  - y2)1y/\in R(k,W ) +K1(x+ y)
\Bigr) 
.

Due to the weight (\psi (x) - \psi (y)), we always have KNC = 0. We initialize the T
using (4.28) with KC =Ksym

2 (4.25). In the singular region R(x,k) \cap \BbbR ++
2 , we only

need to perform one replacement. Similar to (4.31), we use (4.30) and replace the
integrand as follows:

KC =Ksym
2  - K2(x - y), y \in R(k,N)\setminus R(k,S),

KC =Ksym
2  - (K2(x - y) - K2(x1  - y1, x2 + y2)), y \in R(k,S).

We remove the most singular integrand in R(k,N)\setminus R(k,S) and the most two singular
integrands in D2 = R(k,S) to make T locally log-Lipschitz. See the principle before
section 4.1.5.

\bfitL \infty estimate. For the L\infty estimate, we do not multiply the integrand by the
weight \psi (x) or the commutator. We decompose the integral as (4.45) and symmetrize
the nonsingular part in I1 using (4.26) without the weight \psi (x). Symmetrizing I4
(4.45) is similar. We initialize the symmetrized integrand as Ksym (4.25) and then
replace it in R(k)\cap \BbbR ++

2 . Without loss of generality, we assume x1 \geq x2 and have the
decomposition (4.30). Similar to (4.31), we replace the integrand as follows:

Ksym  - K1(x - y), y \in R(k,N)\setminus R(k,S),
Ksym  - (K1(x - y) - K1(x1  - y1, x2 + y2)), y \in R(k,S).

That is, we remove one and two singular terms in R(k,N)\setminus R(k,S),R(k,S), resepc-
tively, making the integrand at least locally log-Lipschitz. See the principle before
section 4.1.5.

4.1.6. Integral in domains depending on \bfitx . In the computation, we need to
estimate several integrals in the domains D(x) depending on x, e.g., I3 in (4.24). Our
fundamental idea is to cover D(x) by some piecewise constant domains, which will
be essentially treated as fixed domains. By refining the location of x, we can obtain
tight covering.

We use the L\infty estimate of I3 to illustrate the ideas. A direct estimate yields

| I3(x)| \leq | | W\varphi | | \infty 
\int 
R(k)\setminus Rs,1(k)

| K1(x - y)| \psi (y)\varphi  - 1(y)dy.

We cannot apply the method in section 4.1.3 to first estimate I3(x) for x on the grid
points and then estimate \partial 2I3(x) for the error since the kernel is singular and the
error part associated with \partial 2I3(x) is more singular (see Lemma 4.4).

Denote f = \psi \varphi  - 1. We consider a change of variable y = x + s to center our
analysis around the singularity x. The domain for s is

\{ y \in R(k)\setminus Rs,1(k)\} = \{ s\in R(k) - x\} \cap \{ | s1| \geq kh\} \triangleq D(x,k).(4.32)
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STABLE BLOWUP OF 3D EULER EQUATIONS 59

It suffices to estimate

J =

\int 
s\in D(x,k)

| K1( - s)| f(x+ s)dy, f \geq 0,(4.33)

for all x\in Bi1,j1(hx) (4.16). We want to further simplify the above domain so that it
does not depend on x. Recall the location of x (4.16). To obtain a sharp estimate,
we further partition the location of x\in Bi1,j1(hx) as follows:

Aa = [i1hx + ahx/m, i1hx + (a+ 1)hx/m], Bb \triangleq [j1hx + bhx/m, j1hx + (b+ 1)hx/m]

(4.34)

for some m \in Z+ and 0 \leq a, b \leq m - 1. Clearly, Aa \times Bb is a partition of Bi1j1(hx).
Recall (4.16) and (4.18). We have

R(x,k) = [(i - k)h, (i+ 1+ k)h]\times [(j  - k)h, (j + 1+ k)h].

Now, for x\in Aa \times Bb, since | s1| \geq kh, we have

s1=y1 - x1 \in [(i - k)h - i1hx - (a+1)hx/m, - kh]\cup [kh, (i+1+k)h - i1hx  - ahx/m]

\triangleq Xl,a \cup Xr,a,

(4.35)

where the subscripts l, r are short for left, right, respectively. Similarly, for s2, we
have

s2 = y2  - x2 \in [(j  - k)h - j1hx  - (b+ 1)hx/m, (j + k+ 1)h - j1hx  - bhx/m]

\triangleq [(j  - k)h - j1hx  - (b+ 1)hx/m, - kh]\cup [ - kh,kh]
\cup [kh, (j + 1+ k)h - j1hx  - bhx/m]

\triangleq Yd,b \cup Ym,b \cup Yu,b,

(4.36)

where the subscripts d, m, u are short for down, middle, upper, respectively. Note
that the intervals X,Y do not depend on x. We have

D(x,k)\subset (Xl,a \cup Xr,a)\times (Yd,b \cup Ym,b \cup Yu,b).(4.37)

Now, we can decompose J (4.33) as follows:

J \leq 
\sum 

\alpha =l,r,\beta =d,m,u

J\alpha ,\beta , J\alpha ,\beta \triangleq 
\int 
X\alpha ,a\times Y\beta ,b

| K1( - s)| f(s+ x)dy, \alpha = l, r, \beta = d,m,u.

See the left figure in Figure 2 for different domains in the above decomposition. From
the definitions of X,Y , the total width of the left and the right domains X\alpha ,a\times (Yd,b\cup 
Ym,b \cup Yu,b), \alpha = l, u is

| Xl,a| + | Xr,a| = h+ hx/m.

For a fixed x, from the definition (4.18), the width of R(k)\setminus Rs,1(k) is h. We choose
a large m and further partition the location of x so that we do not overestimate the
region too much.

For a small domain Q= [a, b]\times [c, d], we can estimate the integral as follows:\int 
Q

| K1( - s)| f(x+ s)ds\leq 
\int 
Q

| K1( - s)| ds| | f | | L\infty (Bi1j1
(hx)+Q).(4.38)
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60 JIAJIE CHEN AND THOMAS Y. HOU

Fig. 2. The largest box in the left and middle figure is R(x,k). Left: The left and right blue
regions are Xl,a\times Ym,b,Xr,a\times Ym,b. The four red regions correspond to X\alpha ,a\times Y\beta ,b, \alpha = l, u, \beta = d,u.
Middle: Illustration of R(x,k)\setminus Rs(x,k) and Rs(x,k2). R(x,k)\setminus Rs(x,k) consists of the blue and the
red regions. Right: different regions near the singularity for u/x1. Blue, red, and white regions
represent Sin,1, Sin,2, Sout, respectively.

Since Q is given, K1(s) is explicit and has scaling symmetries, and we can estimate
the integral of | K1(s)| easily. For example, if Q = [ah, bh]2, we can use the scaling
symmetries of K1(s) to obtain

\int 
Q
| K1( - s)| = h\beta 

\int 
[a,b]2

| K1( - s)| for some \beta . Moreover,

for many kernels in our computations, e.g., K(s) = s1s2
| s| 4 , we have explicit formulas for

the integral. See section 5.1 in the supplementary material (supplement.pdf [local/web
1.43MB]).

We apply the above method to estimate the integral inX\alpha ,a\times Y\beta ,b, \alpha = l, r, \beta = d,u
(red region in Figure 2; color images are available online). Since Ym,b = [ - kh,kh], for
the integral in X\alpha ,a \times Ym,b (blue region), we further decompose it,

J\alpha ,m =
\sum 

 - k\leq t\leq k - 1

\int 
X\alpha ,a\times [th,(t+1)h]

| K1( - s)| f(s+ x)dy,(4.39)

and then apply the above method to estimate it.
Next, we further simplify | | f | | L\infty (Bi1j1

(hx)+Q) in the above estimate. From (4.16),
we get

ih\leq i1hx < (i1 + 1)hx \leq (i+ 1)h, jh\leq j1hx < (j1 + 1)hx \leq (j + 1)h.

For Xl,a (4.35) with 0\leq a\leq m - 1, we have the lower bound for the endpoint

(i - k)h - i1hx  - (a+ 1)hx/m\geq (i - k)h - i1hx  - hx \geq (i - k)h - ((i+ 1)h - hx) - hx

= - kh - h.

See the left figure in Figure 2. The width of the blue region is less than h. Similarly,
we can cover the intervals of X,Y (4.35), (4.36) uniformly for 0 \leq a, b \leq m - 1 and
obtain

Xl,a \subset [(i - k)h - i1hx  - hx, - kh]\subset [ - (k+ 1)h, - kh],
Xr,a \subset [kh, (i+ 1+ k)h - i1hx]\subset [kh, (k+ 1)h],

Yd,b \subset [ - (k+ 1)h, - kh], Yu,b \subset [kh, (k+ 1)h].

Thus, we only need to estimate the L\infty norm of f in

Qi1j1(hx) + [\alpha h, (\alpha + 1)h]\times [\beta h, (\beta + 1)h], \alpha = - k - 1, k, \beta = - (k+ 1), - k, .., k.
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STABLE BLOWUP OF 3D EULER EQUATIONS 61

These estimates are independent of the choice of m,a, b. Since the size of each domain
is at most 2h\times 2h, the above estimates based on (4.38) are sharp. We estimate the
piecewise bound of the weights \psi ,\varphi in Appendices A.1, A.2, A.3.

Using the above decomposition and estimates, we obtain the estimate of J (4.33)
for x\in Aa \times Bb (4.34). Similarly, we can estimate J for any 0\leq a, b\leq m - 1. Taking
the maximum of these m2 estimates, we obtain the estimate of J and I3(x) for all
x\in Bi1j1(hx).

4.1.7. First generalization: Integral in a ring. We generalize the above
ideas to estimate the integrals in domain D=R(x,k)\setminus R(x,k2) =R(k)\setminus R(k2),

J =

\int 
R(k)\setminus R(k2)

| K(y - x)| | f(y)| dy=
\int 
s\in D(x,k)

| K(s)| | f(x+ s)dy| ,

D(x,k)\triangleq R(k)\setminus R(k2) - x

with 2\leq k2 = k  - i
2 < k for some integer i\geq 1 and some kernel K(z). Note that the

inner region R(k2) is different from (4.32). See I4 in (4.24) for an example of this
integral region. Suppose x \in Bij(h) (4.16). We partition the location of x similarly
to (4.34) and introduce pl, ql:

Aa = [ih+ ah/m, ih+ (a+ 1)h/m],

Bb = [jh+ bh/m, jh+ (b+ 1)h/m], 0\leq a, b\leq m - 1,

p1 = - k2  - a/m, p2 = k2 + (m - a - 1)/m,

p3 = - k2  - b/m, p4 = k2 + (m - b - 1)/m,

q1 = - k - (a+ 1)/m, q2 = k+ (m - a)/m,

q3 = - k - (b+ 1)/m, q4 = k+ (m - b)/m.

(4.40)

For a fixed x\in Aa\times Bb, by comparing the boundaries of the following four rectangles,
we get

Din \triangleq [p1h,p2h]\times [p3h,p4h]\subset R(k2) - x\subset R(k) - x\subset [q1h, q2h]\times [q3h, q4h]\triangleq Dout.

To obtain the above inclusions, for example, for s= y - x, y \in R(k2), we use

min
y\in R(k2)

y1  - x1 = ih - k2h - x1 \leq ih - k2h - (ih+ ah/m) = - k2h - ah/m= p1h,

uniformly for x\in Aa\times Bb \subset Bij(h). For R(k) - x\subset Dout, we have q1h\leq miny\in R(k) y1 - 
x1. Other bounds for the inclusions are obtained similarly. This yields D(x,k) \subset 
Dring, where

Dring \triangleq Dout\setminus Din(4.41)

is fixed for x\in Aa \times Bb.
It suffices to estimate the integral J in Dring. We partition s\in Dring using mesh

Z1 = \{  - k\leq i\leq k, i\in \BbbZ \} \cup \{ p1, p2, q1, q2\} , Z2 = \{  - k\leq i\leq k, i\in \BbbZ \} \cup \{ p3, p4, q3, q4\} ,
(4.42)

and then order them in an increasing order zl,1 < zl,2 < \cdot \cdot \cdot < zl,2k+5 \in Zl, l= 1,2. Note
that we do not multiply zl,c by h here. We estimate the integral Jcd in each grid Qc,d =
[z1,ch, z1,c+1h] \times [z2,dh, z2,d+1h] following (4.38) and using the norm | | f | | L\infty (x+Qc,d).
We turn off the integral in region Qc,d if Qc,d \subset Din since it is not in Dring (4.41).
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62 JIAJIE CHEN AND THOMAS Y. HOU

Uniform covering. For fixed c, d, we want to cover x+Qc,d uniformly for x \in 
Aa \times Bb and all 0 \leq a, b \leq m  - 1 (the subpartition of x) to bound | | f | | L\infty (x+Qc,d).
Since we add four extra points pl, ql in Z1 and Z2 and order them in an increasing
order, the region Qc,d can change for fixed c, d but with different a, b. We show that
the 2k+4 intervals [z1,c, z1,c+1],1\leq c\leq 2k+4 can be covered by [\alpha l, \beta l] uniformly for
a, b

[\alpha l, \beta l], \alpha l \in Zl
1, \beta l \in Zu

1 , Z
l
1 \triangleq \{  - (k+ 1)\leq i\leq k, i\in \BbbZ \} \cup \{  - s0  - 2, s0\} ,

Zu
1 \triangleq \{  - k\leq i\leq k+ 1, i\in \BbbZ \} \cup \{  - s0, s0 + 2\} , s0 = \lfloor k2\rfloor ,

(4.43)

with \alpha l, \beta l increasing. From (4.40) and the definition of s0, we get

p1 \in [ - s0  - 2, - s0], p2 \in [s0, s0 + 2], q1 \in [ - k - 1, - k], q2 \in [k, k+ 1].(4.44)

The uniform covering is based on the following observations. Suppose that ui \leq 
vi, i= 1,2, . . . , n (ui, vi may not be increasing). Let us denote by \{ Ui\} the reordering of
\{ ui\} in an increasing order and denote by \{ Vi\} the reordering of \{ vi\} in an increasing
order. Then we have Ui \leq Vi. In fact, for any k \leq n, from ui \leq vi, Vk is larger than
uj with at least k different indexes j. Since Uk is the k-smallnest value in \{ ui\} i, we
get Vk \geq Uk.

From (4.42), (4.44), since q2 =maxc z1,c, q1 =minc z1,c, we get

\{ z1,c, c\leq 2k+ 4\} = \{  - k\leq i\leq k, i\in \BbbZ \} \cup \{ p1, p2, q1\} ,
 - k - 1\leq q1, - s0  - 2\leq p1, s0 \leq p2,

\{ z1,c+1, c\leq 2k+ 4\} = \{  - k\leq i\leq k, i\in \BbbZ \} \cup \{ p1, p2, q2\} ,
p1 \leq  - s0, p2 \leq s0 + 2, q2 \leq k+ 1.

We can bound each component in Zl
1 (4.43) by a component in the above list. Using

the above observations, after reordering two sequences in an increasing order, which
gives \{ \alpha c\} ,\{ z1,c\} c\leq 2k+4, we get \alpha c \leq z1,c, c \leq 2k + 4 (4.43). Similarly, we obtain
z1,c+1 \leq \beta c, yielding [z1,c, z1,c+1]\in [\alpha c, \beta c], c\leq 2k+ 4.

Similarly, we obtain [z2,d, z2,d+1]\subset [\alpha d, \beta d]. Thus, we get [z1,c, z1,c+1]\times [z2,d, z2,d+1]
\in [\alpha c, \alpha c+1]\times [\beta d, \beta d+1] uniformly for the subpartition of x \in Aa \times Bb with 0\leq a, b\leq 
m  - 1, and can cover x + Qcd by Bi1j1(hx) + [\alpha ch,\alpha c+1h] \times [\beta dh,\beta d+1h] (4.16) for
x\in Bi1j1(hx)\subset Bij(h).

4.1.8. Second generalization: The boundary terms. We generalize the
method to estimate some boundary terms. We estimate the x1-derivative of I3(x)
(4.24) to illustrate the ideas. In \partial 1I3, we have an extra boundary term I32

\partial 1I3(x) =

\int 
R(k)\setminus Rs,1(k)

\partial x1
K1(x - y)(W\psi )(y)dy

 - 
\int (j+1+k)h

(j - k)h

K1(x - y)(W\psi )(y)
\bigm| \bigm| \bigm| x1+kh

y1=x1 - kh
dy2 \triangleq I31 + I32,

where we have used the domain for R(x,k) (4.18).
For I31, we apply the method in section 4.1.6 to estimate it. Denote \Gamma k \triangleq [j  - 

k)h, (j+1+ k)h]. Using a change of variable y= x+ s, we can rewrite I32 as follows:

I32 = - 
\int 
s2\in \Gamma k - x2

(K1( - kh, - s2)(W\psi )(x1 + kh,x2 + s2)

 - K1(kh, - s2)(W\psi )(x1  - kh,x2 + s2))ds2.
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STABLE BLOWUP OF 3D EULER EQUATIONS 63

We partition the location of x and assume x\in Aa \times Bb \subset Bi1,j1(hx) (4.34). From
(4.36), we have

s2 \in \Gamma k  - x2 \subset Yd,b \cup Ym,b \cup Yu,b.

Using the above decomposition and | W\psi (x)| \leq | | W\varphi | | \infty f(x), f =\psi \varphi  - 1, we obtain

| I32| \leq | | W\varphi | | \infty 
\sum 

\alpha =\pm ,\beta =d,m,u

M\alpha ,\beta ,

M\alpha ,\beta \triangleq 
\int 
Y\beta ,b

| K1( - \alpha kh, - s2)| \cdot | f(x1 + \alpha kh,x2 + s2)| ds2

for \alpha = \pm , \beta = u,m,d. For \beta = u,d, the domain Y\beta ,b is small | Y\beta ,b| \leq h. We apply
the method in (4.38) to estimate M\alpha ,\beta . The only difference is that we need consider
a 1D integral here \int 

Q

| K1( - \alpha kh, - s2)| ds2

for some interval Q, rather than a 2D integral in (4.38). For M\alpha ,m, we decompose
the domain Ym,b into small intervals with length h similar to (4.39) and then apply
the method in (4.38).

We combine these estimates to bound I32 for x \in Aa \times Bb. Then, we maximize
the estimates over 0\leq a, b\leq m - 1 to bound I32 for x\in Bi1,j1(hx).

4.1.9. Third generalization. In some of the computations, we need to estimate

J =

\int 
R(k)\setminus Rs(k2)

| K(x - y)| f(y)dy

for some k2 <k with 2k2, k \in Z+, where Rs(k) is defined in (4.19). Similarly, we use

Rs(k2)\subset Rs(k)\subset R(k), R(k)\setminus Rs(k2) =R(k)\setminus Rs(k)\cup Rs(k)\setminus Rs(k2),

and a change of variable y= x+ s to obtain

J =

\Biggl( \int 
s\in R(k) - x,| s1| \vee | s2| \geq kh

+

\int 
k2h\leq | s1| \vee | s2| \leq kh

\Biggr) 
K( - s)f(x+ s)dy\triangleq J1 + J2.

Compared to R(k)\setminus Rs,1(k), the domain R(k)\setminus Rs(k) contains two more parts,

Xm,a \triangleq [ - kh,kh], Xm,a \times Yu,b, Xm,a \times Yd,b,

i.e., the upper and lower blue regions in the right figure in Figure 2. The integral in
these regions is estimated to be similar to that in X\alpha ,a\times Ym,b (4.37), and the estimate
of J1 is similar to J in (4.33).

For J2, the domain is simpler. Since 2k2 \in Z+, we partition the domain into
hx \times hx grids,

J2 =
\sum 

(c,d)\in Sk\setminus Sk2

\int 
[chx,(c+1)hx]\times [dhx,(d+1)hx]

| K( - s)| f(s+ x)ds,

Sl \triangleq \{  - k\leq c < k, - k\leq d< k\} .
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64 JIAJIE CHEN AND THOMAS Y. HOU

For each integral, we estimate it using the method in (4.38). The remaining steps are
the same as those of J in (4.33) studied previously.

Remark 4.5. In the estimates in sections 4.1.6--4.1.9, we use the important prop-
erty that the weights are locally smooth to move them outside the integral. Moreover,
we use the fact that the singular region depends on x monotonously to cover it effec-
tively. Since the integral

\int 
Q
| K1(s)| dy for different Q,a, b in the above estimates does

not depend on x, we first compute these integrals once and store them and then use
them in later estimate of different x.

4.1.10. Taylor expansion near the singularity. We need to estimate the
integral

J(x)\triangleq 
\int 
D

\partial xi

\Bigl( 
K(x - y)(\psi (x) - \psi (y))W (y)

\Bigr) 
dy

for k2 < k in some region D close to the singularity x. For example, D =
R(x,k2)\setminus R(x,k3), R(x,k3)\setminus Rs1(x,k3) in \partial xi

I5,0, \partial xi
I5,1 (4.51). To obtain a sharp

estimate, we perform Taylor expansion on \psi (x). We focus on \partial x1
. Denote z =

x - y,xm = x+y
2 . A direct computation yields

I = \partial x1
(K(x - y)\psi (x) - \psi (y)) = (\partial 1K)(x - y)(\psi (x) - \psi (y)) +K(x - y)\partial 1\psi (x).

Using Taylor expansion of \psi at xm and following (B.26), we get

\psi (x) - \psi (y) = (x - y) \cdot \nabla \psi (xm) + \varepsilon 1, \psi x(x) =\psi x(xm) + \varepsilon 2,

| \varepsilon 1| \leq 
\sum 

i+j=2

cij | | \partial ix\partial jy\psi | | L\infty (Q(y))| z1| i| z2| j ,

| \varepsilon 2| \leq 
1

2
(| | \partial xx\psi | | L\infty (Q(y))| z1| + | | \partial xx\psi | | L\infty (Q(y))| z2| ),

where c20 =
1
4 , c11 =

1
2 , c02 =

1
4 , and we have written zi = xi - yi and Q(y) is one of the

four quadrants D \cap \{ y : sgn(yi  - xi) = \pm 1\} covering both x, y. Combining the term
with the same derivative of \psi , we need to estimate the following integrals:\bigm| \bigm| \bigm| \bigm| \int 

D

\psi x(xm)(\partial 1K(z)z1 +K(z))W (y)dy

\bigm| \bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| \bigm| \int 
D

\psi y(xm)\partial 1K(z)z2W (y)dy

\bigm| \bigm| \bigm| \bigm| ,\int 
D

| \partial ix\partial jy\psi | L\infty (Q(y))| \partial 1K(z)zi1z
j
2W (y)| dy, i+ j = 2,\int 

D

| \partial i+1
x \partial jy\psi | L\infty (Q(y))| K(z)zi1z

j
2W (y)| dy, i+ j = 1.

We partition the region of z = x  - y \in x  - D, e.g., D = R(k2)\setminus R(k3) (4.51), into
small mesh and estimate the piecewise bounds of weights and each integral following
sections 4.1.6--4.1.9.

We estimate the integral of | \partial i1\partial 
j
2K(z)zk1z

l
2| in section 5.1 in the supplementary

material (supplement.pdf [local/web 1.43MB]).

4.1.11. H\"older estimate of log-Lipschitz function. In some computation,
we need to perform a C1/2 estimate of some log-Lipschitz function. We consider an
example to illustrate the ideas:

F (x) =

\int 
maxi | xi - yi| \leq b

K(x, y)f(y)dy, | K(x, y)| \leq C1| x - y|  - 1,

| \partial K(x, y)| \leq C2| x - y|  - 2,
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for some constant C1,C2. Given f \in L\infty , F is log-Lipschitz. To estimate [f ]
C

1/2
x

, we
cannot first estimate the piecewise values of f and \partial xf and then combine them to
obtain the C

1/2
x estimate. Instead, given x, z, for a to be determined, we decompose

F into the smooth part and the singular part

F1(x)\triangleq 
\int 
a\leq maxi | xi - yi| \leq b

K(x, y)f(y)dy, F2(x)\triangleq 
\int 
maxi | xi - yi| \leq a

K(x, y)f(y)dy.

Using the assumptions of the kernel, we have

| \partial x1
F1(x)| \leq C3 log

b

a
| | f | | \infty , | F2(x)| \leq C4| a| \cdot | | f | | \infty ,

where the constants C3,C4 depend on b,C1,C2. Applying the above estimates, we
obtain

| F (x) - F (z)| 
| x1  - z1| 1/2

\leq | F1(x) - F1(z)| + | F2(x) - F2(z)| 
| x1  - z1| 1/2

\leq 
\Bigl( 
C3 log

b

a
\cdot | x1  - z1| 1/2 + 2C4| a| | x1  - z1|  - 1/2

\Bigr) 
| | f | | \infty .

We optimize the estimates by choosing a = C5| x1  - z1| for some constant C5

depending on C3,C4. Then we establish the estimate. The above simple estimates
show that the choice of a depends on | x - z| . Thus, in our later H\"older estimates, we
perform decomposition guided by the above estimates and optimize the choice of size
of the singular region [ - a,a]2. On the other hand, since for different | x - z| we need
to choose different a, it increases the technicality of the computer-assisted estimates.

4.2. \bfitL \infty estimate. Let \widehat ux be the approximation term of ux (see section 4.3 of
Part I [13]). We focus on the estimate of the piecewise L\infty norm of ux,A = ux  - \widehat ux,
which is a representative case. For simplicity, we assume the rescaling factor \lambda = 1.
We assume that x satisfies (4.16) without loss of generality. We want to estimate ux,A
for all x\in Bi1j1(hx).

We can write ux,A = ux  - \^ux as follows:

ux,A =

\int 
(K(x - y) - \^K(x, y))W (y)dy, KA \triangleq K(x - y) - \^K(x, y),

where \^K(x, y) is the kernel for the approximation term and W is the odd extension
of \omega (see (4.23)). From sections 4.3.2 and 4.3.3 of Part I [13], we remove the singular
part in \^K, and then \^K is nonsingular. Given x with (4.16), similar to (4.24), for
k\geq k2, we perform the following decomposition:

ux,A =

\Biggl( \int 
R(k)c

+

\int 
R(k)\setminus Rs(k2)

+

\int 
Rs(k2)

\Biggr) 
K(x - y)W (y)dy - 

\int 
\^K(x, y)W (y)dy

\triangleq I1 + I2 + I3 + I4,

(4.45)

where Rs(k) is the symmetric singular region (4.19). See section 4.2.3 for the choice
of k.

Since I1 + I4 is nonsingular, we use the ideas in section 4.1.5 to symmetrize the
kernels in I1 + I4. Then we use the method in section 4.1.3 to estimate it.

Remark 4.6. In our computation, the domain [0,D]2 \cap R(k)c can be decomposed
into the union of small grids [yi, yi+1]\times [yj , yj+1] (4.11) since the boundary of R(x,k)
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66 JIAJIE CHEN AND THOMAS Y. HOU

aligns with the mesh (4.18). In particular, in each grid, the indicator function is
constant, and the integrand is smooth in y.

Next we consider I2. The domain of the integral is close to the singularity. If
we use the method in section 4.1.3 to estimate it, the error will be quite large since
\partial 2K(x - y) is very singular. We want to estimate I2 using | | W\varphi | | \infty and the singular
part I3 using [W\psi 1]C1/2 . Since K(z) is singular of order  - 2, we expect an estimate

| I2| + | I3| \lesssim log
k

k2
\varphi  - 1(x)| | W\varphi | | L\infty [R(k)] +\psi  - 1(x)k

1/2
2 [W\psi ]

C
1/2
x
.

Note that the weights \varphi ,\psi have a different order of singularity for small x and a
different rate of decay. Moreover, we need to control the right hand side using the
energy, which assigns different weights to two norms (seminorms). Thus, to obtain a
sharp estimate, we need to optimize the choice of k2.

First, we consider k2 = 2,2+ 1
2 , .., k; we use the method in section 4.1.9 to estimate

I2. We also consider very small k2 < 2. In this case, we further decompose I2 as
follows:

I2 =

\Biggl( \int 
R(k)\setminus Rs(2)

+

\int 
Rs(2)\setminus Rs(k2)

\Biggr) 
K(x - y)W (y)dy\triangleq I21 + I22.

For I21, we apply the method in section 4.1.9. For I22, we use a change of variables
y= x+ sh,

| I22| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
k2\leq | s1| \vee | s2| \leq 2

K( - sh)W (x+ sh)h2ds

\bigm| \bigm| \bigm| \bigm| \bigm| .
Since the region is very small, x+sh\in Bi1j1(hx)+[ - 2h,2h], and K1(hs) = h - 2K1(s),
and we get

| I22| \leq | | W\varphi | | \infty | | \varphi  - 1| | L\infty (Bi1j1
(hx)+[ - 2h,2h])

\int 
k2\leq | s1| \vee | s2| \leq 2

| K(s)| ds.

The integral can be computed explicitly and has the order log 2
k2
.

It remains to estimate the most singular part I3 for different k2. Using a change
of variables y= x+ sh, the scaling symmetries, and the above derivations, we get

I3 =

\int 
[ - k2,k2]2

K( - s)W (x+ sh)ds.

To use the H\"older norm of W\psi , we decompose it as follows:

I3 =

\int 
[ - k2,k2]2

K( - s)(W\psi )(x+ sh)

\Biggl( 
1

\psi (x+ sh)
 - 1

\psi (x)

\Biggr) 
+K( - s) (W\psi )(x+ sh)

\psi (x)
ds

\triangleq I31 + I32.

(4.46)

For I32, using the H\"older seminorm, the odd symmetry of K(s) = c s1s2| s| 4 in s1, and

| (W\psi )(x+ sh) - (W\psi )(x - sh)| \leq 
\surd 
2s1h, we get

| I32| \leq 
h1/2

\psi (x)
[W\psi ]

C
1/2
x

\int 
[0,k2]\times [ - k2,k2]

| K(s)| 
\surd 
2s1ds

=
2k

1/2
2 h1/2

\psi (x)
[W\psi ]

C
1/2
x

\int 
[0,1]2

| K(s)| 
\surd 
2s1ds,
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STABLE BLOWUP OF 3D EULER EQUATIONS 67

where we used the scaling symmetry of K and a change of variables s\rightarrow k2s in the
last equality.

4.2.1. The commutator. For I31, we apply the simple Taylor expansion to
f =\psi  - 1,

| f(x+ sh) - f(x)| \leq | fx(x)hs1 + fy(x)hs2| + h2

\Biggl( 
m20s

2
1

2
+m11s1s2 +

m02s
2
2

2

\Biggr) 
,

(4.47)

where mij is the bound for the second derivatives of \psi  - 1,

mij(s) = max
Bi1j1 (h)+I(sgn(s1))\times I(sgn(s2))

| | \partial ix\partial jy(\psi  - 1)| | L\infty , I+ = [0, k2h], I - = [ - k2h,0].

Note that mij is constant in each quadrant of [ - k2, k2]. We plug in the expansion
(4.47) to estimate I31. We only discuss a typical term m20s

2
1h

2,

I31,20 \triangleq h2
\int 
[ - k2,k2]2

| K( - s)(W\psi )(x+ sh)| m20(s)
s21
2
ds.

If k2 \geq 2, we can further partition [ - k2, k2]2 into B2p,2q(1/2) = [p, p + 1/2] \times 
[q, q + 1/2], - k2 \leq p, q \leq k2  - 1/2, where we use the notation (4.17). For each grid
B2p,2q(1/2), the sign of s and m20(s) are fixed, and we have\int 

B2p,2q(
1
2 )

| K( - s)| (W\psi )(x+ sh)m20(s)
s21
2
ds

\leq m20| | W\varphi | | \infty 
\int 
B2p,2q

\bigl( 
1
2

\bigr) | K(s)| s21
2

\biggl( 
\psi 

\varphi 

\biggr) 
(x+ sh)ds.

The last integral can be estimated using the method in (4.38). Combining the estimate
of integral in different regions B2p,2q(1/2), we obtain the estimate of I31,20. Similarly,
we can estimate the contributions of other terms in (4.47) to I31.

For small k2 \leq 2, we do not partition the domain. We denote D(k2) =Bi1,j1(hx)+
[ - k2h,k2h]2. For s\in [ - k2, k2], we use x+ sh\subset D(k2)\subset D(2) to get

| f(x+ sh) - f(x)| \leq | | fx| | L\infty (D(k2))s1h+ | | fy| | L\infty (D(k2))s2h,

| W\psi (x+ sh)| \leq | | W\varphi | | \infty 
\bigm\| \bigm\| \bigm\| \bigm\| \psi \varphi 
\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (D(2))

.
(4.48)

Plugging the above estimate into I31, we get

I31 \leq 
\sum 

(i,j)=(1,0),(0,1)

h| | \partial ix\partial jy(\psi  - 1)| | L\infty (D(k2))| | W\varphi | | \infty 
\bigm\| \bigm\| \bigm\| \bigm\| \psi \varphi 
\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (D(2))

\times 
\int 
[ - k2,k2]2

| K(s)si1s
j
2| ds.

Using the scaling symmetry, we can reduce the last integral to ki+j
2

\int 
[ - 1,1]2

| K(s)si1s
j
2| ds.

We apply the above estimates to a list of k2 and bound different norms using
max(| | \omega \varphi | | \infty , maxi \gamma i[\omega \psi 1]C1/2

xi
(\BbbR +

2 )
). Then by optimizing the k2, we obtain the sharp

estimate of ux,A.
In (4.47), we do not bound f(x + sh)  - f(x) directly using the estimate (4.48)

since s is large. Instead, we perform a higher order expansion.
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68 JIAJIE CHEN AND THOMAS Y. HOU

Estimate of \bfitu \bfity , \bfitv \bfitx . The estimates of uy, vx follow similar strategies and esti-
mates. The only difference is the estimate of the most singular term similar to I32
(4.46) for uy, vx due to a different symmetry property of the kernel. We estimate
it using a combination of norms | | \omega \varphi | | \infty and seminorms [\omega \psi ]

C
1/2
xi

, and defer it to

section 6.1 in the supplementary material (supplement.pdf [local/web 1.43MB]).

4.2.2. Estimate of u\bfitA . The estimate of uA is much simpler since it is more
regular. Let K and \^K be the kernel of u, v and its approximation term, respectively.
For f = u or v, we perform a decomposition similar to (4.45)

fA =

\Biggl( \int 
R(k)c

+

\int 
R(k)\setminus Rs(k)

+

\int 
Rs(k)

\Biggr) 
K(x - y)W (y)dy - 

\int 
\^K(x, y)W (y)dy

\triangleq I1 + I2 + I3 + I4.

(4.49)

The estimates of I1 + I4 follow the method for ux,A. For I2, we use the method
in section 4.1.6. For I3, since K has a singularity of order | x|  - 1, which is locally
integrable, we use a change of variable y= x+ sh to obtain

I3 = h

\int 
[ - k,k]2

K( - s)W (x+ sh)ds.

Then we partition [ - k, k]2 into small grids and use the method in (4.38) to estimate
the integral in each grid. Here, we get a factor h in the change of variables since
K(\lambda s) = \lambda  - 1K(s).

4.2.3. Choice of parameters. Recall the choice of several parameters a,h,hx
from (4.14). We choose 3\leq k\leq 10. We choose k for the size of the singular region kh
(4.45), (4.49) not so small such that the error h2\partial 2K in Lemma 4.2, which has the
order h2| x - y|  - \alpha  - 2 near the singularity, is smaller than the main term K, which has
the order | x - y|  - \alpha , \alpha = 1,2. Since we will estimate I1+I4, I2, I3 in the decomposition
separately using the triangle inequality, we do not choose k to be too large so that we
can exploit the cancellation in I1 + I4.

4.3. H\"older estimates. We want to estimate | f(x) - f(z)| 
| x - z| 1/2 for any x, z \in \BbbR ++

2 with

x1 = z1 or x2 = z2 and some function f , e.g., f = ux,A. Without loss of generality,

we assume | z| > | x| . Then in the C
1/2
x estimate, we have x1 < z1, x2 = z2; in the C

1/2
y

estimate, we have x1 = z1, x2 < z2. Applying the rescaling argument in section 4.1,
we can restrict \^x = x

\lambda to \^x \in [0,2xc]
2\setminus [0, xc]2. For this reason, we assume \lambda = 1 for

simplicity. We will only estimate the H\"older difference for comparable x, z: | x| \asymp | z| .
If | z| \gg | x| , we simply apply the L\infty estimate to f(x), f(z) and use the triangle
inequality.

We focus on the H\"older estimate of ux,A, which is a representative and the most
important nonlocal term to estimate in our energy estimate.

4.3.1. \bfitC 1/2
\bfitx estimate. Recall Ii from the decomposition (4.24) and K1(s) =

s1s2
| s| 4 . We apply the same decomposition to ux,A(z). We assume that the approxima-

tion term \^ux (see section 4.3 of Part I [13]) takes the following form:

\^ux(x) =

\int 
\^K1(x, y)W (y)dy, I6(x)\triangleq \psi (x)\^ux(x) =\psi (x)

\int 
\^K1(x, y)W (y)dy,(4.50)

with a nonsingular kernel \^K1. We first discuss how to estimate the regular part
I1, I3, I4 in (4.24) and I6, which are Lipschitz. We will apply the sharp H\"older estimate
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STABLE BLOWUP OF 3D EULER EQUATIONS 69

in Lemmas 3.1--3.5 in section 3 of Part I [13] to estimate the most singular part I2.
The most technical part is to estimate I5, which is log-Lipschitz since the kernel
K1(x - y)(\psi (x) - \psi (y)) has a singularity of order  - 1. We assemble the estimates of
different parts to estimate [ux,A\psi ]C1/2

x
in section 4.6.

4.3.2. Estimates of the regular terms \bfitI 1, \bfitI 3, \bfitI 4, \bfitI 6. Recall I1, I3, I4 from
(4.24) and I6 from (4.50). Since the integrands in I1, I3, I4 are supported at least k2h
away from the singularity x, if W is in some suitable weighted L\infty space, I1, I3, I4 are
piecewise smooth and their derivatives can be bounded by | | W\varphi | | \infty (\BbbR ++

2 ) = | | \omega \varphi | | \infty .

Their derivatives jump when R(x,k),R(x,k2) change, or equivalently, x moves from
one grid to another. For x\in Bi1,j1(hx) (4.16), these rectangle domains are the same,
and these functions are smooth. The approximation term I6 (4.50) is locally smooth
in x. To exploit the cancellation, we combine the estimates of I1, I4, I6 together. We
symmetrize the kernel in I1(x) + I4(x)  - I6(x) following section 4.1.5 and use the
method in section 4.1.3 to estimate the derivatives of I1(x) + I4(x) - I6(x). See also
(4.28), (4.29) for the form of the symmetrized integrands in these integrals.

We estimate the piecewise Lipschitz norm of I3 using the method in sections 4.1.6,
4.1.8. We choose integer k, k2 in the decomposition (4.24). Then in each grid [yi,
yi+1]\times [yj , yj+1], the indicator functions in I1 + I4  - I6, e.g., 1R(k)c ,1R(k)\setminus R(k2), are
constant. See Remark 4.6. We will combine the estimates of different terms in sec-
tion 4.6, e.g., I1 + I4  - I6, I3 and part of I5\cdot defined later in (4.51), and obtain some
H\"older continuous functions when x moves from one grid to another. We assemble
the H\"older estimates in section 4.6.

4.3.3. \bfitC 1/2
\bfitx estimate of \bfitI 2. We first estimate the second term I2 in (4.24).

Recall R(x,k),Rs1(x,k),Rs(x,k) from (4.18), (4.19) and the location of x (4.16). We
have

x2  - (j  - k)h\leq (j + 1)h - (j  - k)h= (k+ 1)h,

(j + 1+ kh) - x2 \leq (j + 1+ kh) - jh= (k+ 1)h.

Since x2 = z2, using Lemma 3.1 from section 3 of Part I [13] with (a, b1, b2) = (kh,x2 - 
(j  - k)h, (j + 1+ k)h - x2) and | b1| , | b2| \leq (k+ 1)h, we obtain

1

| x - z| 1/2
| I2(x,k) - I2(z, k)| \leq C1

\Biggl( 
(k+ 1)h

| x - z| 

\Biggr) 
[W\psi ]

C
1/2
x

=C1

\Biggl( 
(k+ 1)h

| x - z| 

\Biggr) 
[\omega \psi ]

C
1/2
x
.

We only apply the H\"older estimate to | x - z| \leq kh
2 (rescaled x, z) and the assump-

tion a\geq 1
2 | x1 - z1| in Lemma 3.1 in Part I [13] is satisfied. For I2(x,k) associated with

other terms u, v,uy, vx, we can estimate it using similar ideas and Lemmas 3.1--3.5 in

Part I [13]. The C
1/2
y estimate of I2(x,k) is completely similar. See section 4.3.8 for

more details.

4.3.4. \bfitC 1/2
\bfitx estimate of \bfitI 5. For I5 (4.24), K1(x - y)(\psi (x) - \psi (y)) is singular

of order  - 1 near y = x. Given W \in L\infty (\varphi ), I5 is log-Lipschitz. There are several
approaches to estimate its H\"older norm (see, e.g., section 4.1.11). We use part of

the C
1/2
x seminorm of \omega to get a better estimate. We choose k3 = k2  - i

2 \geq 2, i =
0,1,2, ..,2k2  - 4, and further decompose I5 as follows:
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70 JIAJIE CHEN AND THOMAS Y. HOU

I5(x,k2) =

\Biggl( \int 
R(k2)\setminus R(k3)

+

\int 
R(k3)\setminus Rs,1(k3)

+

\int 
Rs,1(k3)

\Biggr) 
K1(x - y)(\psi (x) - \psi (y))W (y)dy

\triangleq I5,0(x,k2, k3) + I5,1(x,k3) + I5,2(x,k3).

(4.51)

The domain in I5,0 depends on x. For x in a grid cell, it does not change with
x. We estimate \partial x1

I5,0 using Taylor expansion in section 4.1.10 and following the
method in section 4.1.7. We estimate the x-derivative of I5,1 using the method in
sections 4.1.6, 4.1.8. We have

\partial x1
I5,1 =

\int 
R(k3)\setminus Rs,1(k3)

\partial x1
(K1(x - y)(\psi (x) - \psi (y)))W (y)dy

 - 
\int (j+1+k3)h

(j - k3)h

K1(x - y)(\psi (x) - \psi (y))W (y)
\bigm| \bigm| \bigm| x1+k3h

y1=x1 - k3h
dy2.

(4.52)

We estimate the first part following section 4.1.10 and the second part following
section 4.1.8.

For I5,2, we will estimate it using a method similar to that of I2. See the left
figure in Figure 3 for the domains of the integrals in I5,2(x), I5,2(z). The integrand
satisfies

K1(x - y)(\psi (x) - \psi (y))W (y) =\psi (x)K1(x - y)(\psi  - 1(y) - \psi  - 1(x)(W\psi )(y)

\approx \psi (x)\partial i(\psi 
 - 1(x)) \cdot K1(x - y)(yi  - xi)(W\psi )(y).

Thus, I5,2(x) can be seen as a weighted version of I2 (4.24) with a weight \psi (x)\partial i(\psi 
 - 1

(x)), a more regular kernel K1(x - y)(yi  - xi), and a smaller domain Rs,1(k3). Since
the kernel is more regular and the domain is smaller, our estimate for I5,2 is much
smaller than that of I2.

Now, we justify this approach. Using a change of variables y= x+s, s\in Rs,1(k3) - 
x and the above identity yields

I5,2(x,k3) =\psi (x)

\int 
Rs,1(k3) - x

K1( - s)(\psi  - 1(x+ s) - \psi  - 1(x))(W\psi )(x+ s)ds.

Using Newton's formula f(1) = f(0) + f \prime (0) +
\int 1

0
(1  - t)f \prime \prime (t)dt for f(t) = \psi  - 1

(x+ ts), we get

Fig. 3. Left: Rs,1(x,k3) and Rs,1(z, k3) with x2 = z2. The small square is a mesh grid con-
taining x or z. x, z can have different locations relative to the grids. Right: The large rectangle is
R(k2), the upper part is R+(k2), and the lower part is R - (k2). The blue region is R - (k2)\setminus R - (k3).
\Gamma is part of its boundary.
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STABLE BLOWUP OF 3D EULER EQUATIONS 71

\psi  - 1(x+ s) - \psi  - 1(x)

= s \cdot \nabla \psi  - 1(x) +

\int 1

0

(1 - t)
\Bigl( 
s \cdot (\nabla 2\psi  - 1)(x+ ts) \cdot s

\Bigr) 
dt

=
\sum 
i=1,2

si\partial i(\psi 
 - 1)(x) +

\sum 
0\leq i\leq 2

\biggl( 
2

i

\biggr) 
si1s

2 - i
2

\int 1

0

(1 - t)\partial i1\partial 
2 - i
2 (\psi  - 1)(x+ ts)dt.

Denote

Qij(x) =\psi (x)

\int 1

0

(1 - t)\partial i1\partial 
j
2(\psi 

 - 1)(x+ ts)dt, i+ j = 2, D(x) =Rs,1(x,k3) - x,

Qij(x) =\psi (x) \cdot \partial i1\partial 
j
2(\psi 

 - 1)(x) = - \partial 
i
1\partial 

j
2\psi (x)

\psi (x)
, i+ j = 1,

Pij(x) =

\int 
D(x)

K1( - s)si1s
j
2(W\psi )(x+ s)ds.

Using the above expansion and notation, we get

I5,2(x,k3) =
\sum 

i+j=1

PijQij +
\sum 

i+j=2

\biggl( 
2

i

\biggr) 
PijQij .

Next, we use the above decomposition to estimate I5,2(x,k3)  - I5,2(z, k3). The
leading order terms are PijQij with i + j = 1. By the definition of Rs,1 (4.19), we
observe that if x2 = z2, we have

D(x) =Rs,1(x,k3) - x=Rs,1(z, k3) - z =D(z).

Suppose that x1 < z1. We perform a decomposition

| Pij(x)Qij(x) - Pij(z)Qij(z)| \leq J1 + J2,

J1 \triangleq | Qij(z)(Pij(x) - Pij(z))| , J2 \triangleq | Pij(x)(Qij(x) - Qij(z))| .
(4.53)

Using D(x) =D(z), we bound J1 as follows:

| J1| \leq | Qij(z)| 
\bigm| \bigm| \bigm| \int 

D(x)

K1( - s)si1s
j
2((W\psi )(x+ s) - (W\psi )(z + s))ds

\bigm| \bigm| \bigm| 
\leq | Qij(z)| \cdot | x - z| 1/2| | \omega \psi | | 

C
1/2
x

\int 
s\in D(x)

| K1(s)s
i
1s

j
2| ds.

The term Qij only depends on the weight and is smoother than Pij . We can
estimate Qij(x) - Qij(z) by bounding \partial 1Qij since Qij is locally smooth. For Pij in
J2, we use the method in (4.38) to bound it by C| | \omega \varphi | | \infty with some constant C. Then
we obtain the estimate

| J2| \leq C2| x - z| \cdot | | \omega \varphi | | L\infty 

for some constant C2. Note that the second order term PijQij , i + j = 2 is much
smaller than the leading order terms. For | x - z| not too small, we can estimate its
contribution trivially

1

| x - z| 1/2
| Pij(x)Qij(x) - Pij(z)Qij(z)| \leq 

1

| x - z| 1/2
(| Pij(x)Qij(x)| + | Pij(z)Qij(z)| ).

(4.54)
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72 JIAJIE CHEN AND THOMAS Y. HOU

We optimize the above two estimates.
In summary, to obtain the above estimates, we estimate piecewise bounds for

| Qij(x)| , Pij(x), | \partial kQij(x)| and the integrals
\int 
D(x)

| K1(s)s
i
1s

j
2| ds, i+ j = 1,2.

The above estimate of I5(x,k2) can be generalized to the C
1/2
x estimate of u, v,

vx, uy. Yet, it does not apply to the C
1/2
y estimate of u,\nabla u since it requires the

estimate of (W\psi )(x + s)  - (W\psi )(z + s) for s in some rectangle R = D(x) = D(z).

However, since W is discontinuous across the boundary y = 0, W\psi /\in C1/2
y (R) if x+

s, z+s are not in the same half plane. If x1 <x2, then the rectangles R(x,k2),R(z, k2)
will not intersect the boundary and the previous estimate holds true. If x1 > x2, we
consider two modifications for different kernels in the following subsections.

4.3.5. Ideas of the \bfitC 1/2
\bfity estimates of \bfitI 5. The main idea in the following

C
1/2
y estimates is to use a combination of the estimates for the log-Lipschitz function

in section 4.1.11 and the estimate in section 4.3.4. The latter provides better esti-
mates, and we try to use this method as much as possible. Following the ideas in
section 4.1.11, we decompose I5(x) into the singular part and nonsingular part with
different size k3 of the singular region

I5(x) = I5,S(x,k3) + I5,NS(x,k3).

Although we cannot apply the second method to the whole I5(x), we can apply
it to the integrals in the upper part of the regions, e.g., R+(k2),R

+(k3) (4.20), since
these integrals only involve W\psi in \BbbR +

2 and we have W\psi \in C1/2. Thus, we will further
decompose some of the regions into the upper part and the lower part and then apply
the first method to the lower part, and the second method to the upper part.

4.3.6. \bfitC 1/2
\bfity estimate of the velocity with a kernel of the first type. The

kernels

K =
y1y2
| y| 4

,
y2
| y| 2

(4.55)

associated with ux =  - \partial xy( - \Delta ) - 1\omega ,u =  - \partial y( - \Delta ) - 1\omega vanish when y2 = 0. We call
them the first type kernel. Let K be a kernel of the first type. We use the following
decomposition:

I5(x,k2) =

\Biggl( \int 
R+(k2)

+

\int 
R - (k2)

\Biggr) 
K(x - y)(\psi (x) - \psi (y))W (y)dy

\triangleq I+5 (x,k2) + I - 5 (x,k2).

(4.56)

See the right figure in Figure 3 for R\pm (k2). Since R+(x,k2),R
+(z, k2)\subset \BbbR +

2 , we can
decompose

I+5 = I+5,1 + I+5,2

into the integral in the regions I+5,1 : R+(k2)\setminus R+
s,2(k2) and I+5,2 : R+

s,2(k2) and apply
the same argument as that for I5,1(x,k3), I5,2(x,k3) in section 4.3.4 to obtain the
desired estimates by restricting all the derivations in R+(x,k2),R

+(z, k2). Note that
here, we do not further choose smaller window R+(x,k3) to decompose I+5 (x,k2), i.e.,
k3 = k2 and I5,0 = 0 in (4.51). For I+5,1, similar to (4.52), we get a boundary term

from \partial 2(R
+(k2)\setminus R+

s2(k2)) = [(i - k2)h, (i+ 1+ k2h)]\times \{ x2 + k2h\} . See (4.19), (4.18)
for R+(k),R+

s2(k).
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STABLE BLOWUP OF 3D EULER EQUATIONS 73

For the lower part I - 5 (x,k2), it is log-Lipschitz if W \in L\infty (\varphi ). We cannot bound
its derivative using | | W\varphi | | \infty . We face the difficulty discussed at the beginning of
section 4.

Alternatively, we follow the ideas in section 4.1.11. We decompose it into the
smooth part and rough part. We introduce 0 < k3 < k2 and consider the following
decomposition:

I - 5 (x,k2)

=

\Biggl( \int 
R - (k2)\setminus R - (k3)

+

\int 
R - (k3)\setminus R - 

s,2(k3)

+

\int 
R - 

s,2(k3)

\Biggr) 
K(x - y)(\psi (x) - \psi (y))W (y)dy

\triangleq I - 5,0(x,k2) + I - 5,1(x,k3) + I - 5,2(x,k3).

(4.57)

See the right figure in Figure 3 for an illustration of different domains. Recall that
k2 \in Z+. We choose k3 = k2  - i

2 \geq 2, i= 0,1,2 . . . ,2k2  - 4. Since the integrand in I - 5,0
supports at least k3h away from the singularity, I - 5,0(x,k2) is piecewisely smooth. We

can estimate \partial x2
I - 5,0(x,k) following sections 4.1.7, 4.1.10. The domain R - (k2)\setminus R - (k3)

is not piecewise constant since the upper part of its boundary, i.e.,

\Gamma = \{ (y1, x2) : y1 \in [(i - k2)h, (i+ 1+ k2)h]\setminus [(i - k3)h, (i+ 1+ k3)h]\} ,

depends on x2. See Figure 3 for an illustration of \Gamma . Taking x2-derivative on I - 5,1, we
get

| \partial x2
I - 5,0(x,k2)| \leq 

\bigm| \bigm| \bigm| \bigm| \int 
R - (k2)\setminus R - (k3)

\partial x2
J(x, y)W (y)dy

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int 
y\in \Gamma 

J(x, y)W (y)dy1

\bigm| \bigm| \bigm| \bigm| ,
J(x, y) =K(x - y)(\psi (x) - \psi (y)).

(4.58)

Since y \in \Gamma \subset \{ y : y2 = x2\} and K(y1,0) \equiv 0, the second term vanishes. The
first term can be estimated using a change of variables y = x+ s and the method in
sections 4.1.10, 4.1.7, since its support is at least k3h away from the singularity.

For I - 5,1, it is also piecewise Lipschitz, and we estimate the x2-derivative similarly
to I5,1 in (4.52)

| \partial x2
I - 5,1| \leq 

\bigm| \bigm| \bigm| \bigm| \int 
R - (k3)\setminus R - 

s,2(k3)

\partial x2
J(x, y)W (y)dy

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int (i+1+k3)h

(i - k3)h

J(x, y)W (y)

\bigm| \bigm| \bigm| \bigm| 
y2=x2 - k3h

dy1

\bigm| \bigm| \bigm| \bigm| .(4.59)

Different from I5,1 in (4.52), the boundary term in the above estimate only involves
the lower part y2 = x2  - k3h since the domain in I - 5,1 is R - (k3)\setminus R - 

s,2(k3).

For I - 5,2, the kernel satisfies K(x - y)(\psi (x) - \psi (y)) \sim | x - y|  - 1 for small | x - y| 
and is locally integrable. We estimate its piecewise L\infty bound using the method in
section 4.2.1 for the commutator.

The above decomposition can be applied to estimate

| I - 5 (x,k2) - I - 5 (z, k2)| 
| x - z| 1/2

\leq min
k3=k2 - i

2

| (I - 5,0 + I - 5,1)(x,k3) - (I - 5,0 + I - 5,1)(z, k3)| 
| x - z| 1/2

+
| I - 5,2(x,k3)| + | I - 5,2(z, k3)| 

| x - z| 1/2
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74 JIAJIE CHEN AND THOMAS Y. HOU

for | x - z| not too small, e.g., | x - z| \geq ds =
h
10 . When | x - z| is sufficiently small, the

second term in the above estimate can be very large.
According to the analysis in section 4.1.11, for | x - z| very small, we need to choose

k3h \sim | x - z| to get the sharp estimate. Thus, we consider one more decomposition
for a\leq 1,

I - 5 (x,k2) =

\int 
R - (k2)\setminus R - 

s (a)

K(x - y)(\psi (x) - \psi (y))W (y)dy

+

\int 
R - 

s (a)

K(x - y)(\psi (x) - \psi (y))W (y)dy\triangleq I - 5,3(x,a) + I - 5,4(x,a).

(4.60)

The above decomposition is slightly different from (4.57). We choose R - 
s (a) rather

than R - (a), since we need to choose the singular region with size going to 0 as
| x - z| \rightarrow 0. Yet, R - (a) (4.18) does not satisfy this requirement for a\rightarrow 0. We can
estimate the derivative of I - 5,3(x,a) following sections 4.1.6--4.1.8 and the L\infty norm

of I - 5,4(x,a) following section 4.2.1. Again, in the computation of \partial x2
I - 5,3(x,a), the

boundary term vanishes due to K(y1,0)\equiv 0. In summary, we can obtain the estimate

| \partial x2
I - 5,3(x,a)| \leq A(x) +B(x) log(1/a), | I - 5,4(x,a)| \leq C(x)ah,(4.61)

for any a \leq 1, where A(x),B(x) can be estimated following the method in Appen-
dix B.5.1, and the estimate of C(x) follows the method in section 4.2.1. Using the
above estimates and the ideas in section 4.1.11, we can estimate dy(I

 - 
5 (\cdot , k2), x, z) for

small | x - z| by optimizing a, where dy is defined below:

dy(f,x, z) = | f(x) - f(z)| | x - z|  - 1/2.(4.62)

We will assemble these estimates in section 4.6.

4.3.7. \bfitC 1/2
\bfity estimate of the velocity with a kernel of the second type.

For the kernels K2 =
y2
1 - y2

2

| y| 4 and y1

| y| 2 , they do not vanish on y2 = 0 in general. We call
them the second type kernel.

If we use the strategies in the previous subsection, the boundary term in the
computation of \partial x2

I - 5,0(x,k3), \partial x2
I - 5,1(x,k3) or \partial x2

I - 5,3(x,k3) does not vanish on \Gamma and
can be large. To avoid picking up a boundary term on \Gamma and to apply the ideas
in section 4.3.5, we consider another estimate on I5(x,k2). For k3 = k2  - i

2 , i =
0,1, . . . ,2k2  - 4, we perform the following decomposition:

I5(x,k2) =

\Biggl( \int 
R(k2)\setminus R(k3)

+

\int 
R - (k3)\setminus R - 

s,2(k3)

+

\int 
R+(k3)

+

\int 
R - 

s,2(k3)

\Biggr) 
\times K(x - y)(\psi (x) - \psi (y)W (y)dy

\triangleq I5,0 + I5,1 + I5,2 + I5,3.

(4.63)

Following the ideas in section 4.1.11, we estimate the derivative of the regular part
and then the L\infty norm of the singular part. Indeed, we can estimate the y-derivative
of I5,0 following sections 4.1.10, 4.1.7, I5,1 following the estimates of I5,1, I

 - 
5,1 in (4.52),

(4.59), and the L\infty norm of I5,3 following section 4.2.1. The estimate of I5,1 is similar
to that of I4 in section 4.3.2. For I5,2, since R

+(k3) is in \BbbR +
2 , we decompose

I5,2 = I5,2,1 + I5,2,2
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STABLE BLOWUP OF 3D EULER EQUATIONS 75

into the integral in the regions I5,2,1 :R
+(k3)\setminus R+

s,2(k3) and I5,2,2 :R
+
s,2(k3), and then

estimate them following the method in the estimate of I5,1, I5,2 in section 4.3.4.
After we estimate these quantities, we can estimate dy(I5, x, z) (4.62) for | x - z| 

not too small by optimizing k3. To estimate dy(I5, x, z) (4.62) for sufficiently small
| x - z| , following (4.60), we use the decomposition

I5(x,k2) =

\int 
R(k2)\setminus Rs(a)

K(x - y)(\psi (x) - \psi (y)W (y)dy

+

\int 
R+

s (a)

K(x - y)(\psi (x) - \psi (y))W (y)dy

+

\int 
R - 

s (a)

K(x - y)(\psi (x) - \psi (y))W (y)dy\triangleq I5,4 + I5,5 + I5,6.

(4.64)

Then we estimate the derivative of I5,4 and the L\infty norm of I5,6 as follows:

| \partial x2
I5,4| \leq A(x) +B(x) log(1/a), | I5,6| \leq C(x)ah,(4.65)

where the estimates of A,B are given in Appendix B.5.1, and the estimate of C
follows the method in section 4.2.1. The H\"older estimate of I5,5 follows the method
in the estimate of I5,2 in section 4.3.4. With these estimates, we can further bound
dy(I5, x, z),

dx(f,x, z)\triangleq 
| f(x) - f(z)| 
| x1  - z1| 1/2

, dy(f,x, z)\triangleq 
| f(x) - f(z)| 
| x2  - z2| 1/2

for sufficiently small | x - z| by optimizing a. See section 4.6.

Remark 4.7. We do not apply the above computation with smaller window
[ - ah,ah]2 in the C

1/2
x estimate, since it leads to a worse estimate. See also the

discussions in section 4.3.5.

4.3.8. H\"older estimate of \bfitu ,\bfitv ,\bfitu \bfity , \bfitv \bfitx . The ideas of the H\"older estimate for
other terms are similar. For a kernel K associated with u,\nabla u, we perform another
decomposition similar to (4.24):

\psi (x)

\int 
K(x - y)W (y)dy=

\int \Bigl( 
\psi (x)1R(k)c + 1Rs(k)\psi (y) + 1R(k)\setminus Rs(k)\psi (y)

+ 1R(k)\setminus R(k2)(\psi (x) - \psi (y)) + 1R(k2)(\psi (x) - \psi (y))
\Bigr) 
K(x - y)W (y)dy

\triangleq I1(x,k) + I2(x,k) + I3(x,k) + I4(x,k, k2) + I5(x,k2).

(4.66)

Here, we use Rs(x,k) (4.19), which is symmetric with respect to both x1 and x2,
rather than Rs,1(x,k), since the singular region in the sharp H\"older estimate of

[uy]
1/2
Cxi

, [vx]C1/2
xi

, [ux]C1/2
y

in Lemmas 3.3--3.5 in Part I [13] needs to be symmetric

in both x1, x2. Denote by If6(x,k2) the approximation term for f = ux, uy, vx, u, v. It
takes a form similar to (4.50).

We consider two cases of \^x \in [0,2xc]
2\setminus [0, xc]2 (4.4). In the first case, we consider

\^x \in [xc,2xc] \times [0,2xc] \triangleq DX1, where we have \^x1 \geq c\^x2 for some constant c > 0. In
the second case, we consider \^x \in [0, xc] \times [xc,2xc] \triangleq DX2, where we have \^x1 \leq c\^x2.
We distinguish these two cases since in the second case, the singular region does not
touch the boundary, and we can apply the method in section 4.3.4.
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76 JIAJIE CHEN AND THOMAS Y. HOU

\bfitC 1/2
\bfitx estimate of \bfitu \bfity , \bfitv \bfitx . In the C

1/2
x estimate of uy, vx, we follow section 4.3.2

to estimate the regular part I1 + I4  - I6 and I3. We follow section 4.3.3 and use
Lemma 3.4 in section 3 of Part I [13] to estimate I2. For I5, we follow section 4.3.4.

\bfitC 1/2
\bfity estimate of \bfitu \bfitx . We perform the decomposition (4.66) rather than (4.24).

The estimates of I1 + I4  - I6, I3 follow section 4.3.2. For I2, we use Lemma 3.3
in section 3 of Part I [13]. We follow section 4.3.6 to estimate I5 if \^x \in DX1, and
section 4.3.4 if \^x\in DX2.

We remark that we use the decomposition (4.66) rather than (4.24) since in
Lemma 3.3 in section 3 of Part I [13], we need to assume that the singular region

around x is symmetric in both x1 and x2. The same reasoning applies to the C
1/2
xi

estimate of uy, vx.

\bfitC 1/2
\bfitx and \bfitC 1/2

\bfity estimate of \bfitu ,\bfitv . The H\"older estimates of u, v are substantially

easier since u, v are more regular. We perform C
1/2
x ,C

1/2
y of \rho uA for another weight

\rho =\psi u (A.1). Below, we only use the weighted L\infty norm | | \omega \varphi | | \infty . We decompose the
integral as follows:

\rho (x)

\int 
K(x - y)W (y)dy=

\int 
(1R(k)c\rho (x) + 1R(k)\rho (x))K(x - y)W (y)dy

\triangleq I1(x,k) + I2(x,k).

(4.67)

We choose k smaller than that in (4.24) for \nabla u since the kernel for u is more reg-
ular. We follow section 4.3.2 to estimate I1  - I6. For I2, we follow the ideas in
sections 4.1.11, 4.3.6, 4.3.7 to estimate the log-Lipschitz function. We choose a list of
k2 and associated region S(k2) and decompose I2 as follows:

I2(x,k)\triangleq 

\Biggl( \int 
R(k)\setminus R(k2)

+

\int 
R(k2)\setminus S(k2)

+

\int 
S(k2)

\Biggr) 
\rho (x)K(x - y)W (y)dy

\triangleq I20(x,k2) + I21(x,k2) + I22(x,k2).

For large k2 = k, k  - 1/2, . . . ,2, we choose S(k2) = Rs,i(k2) in the C
1/2
xi estimate,

i = 1,2. For k2 < 2, we choose S(k2) = Rs(k2). For I20(x,k2), I21(x,k2), we esti-
mate its derivatives following the estimate of I50, I5,1 (4.51), (4.52), respectively, or
section 4.1.7 when k2 \geq 2, and the estimate of I54 when k2 < 2 in section 4.3.7. For
I22(x,k2), we estimate its L\infty norm following the estimate of I53 when k2 \geq 2, and
the estimate of I56 when k2 < 2 in section 4.3.7. The estimate is simpler since the
above kernel is much simpler than K(x - y)(\psi (x) - \psi (y)) in section 4.3.7.

4.3.9. Special case: \bfitC 1/2
\bfity estimate of \bfitu \bfity , \bfitv \bfitx . In this case, we apply Lemma

3.5 from section 3 of Part I [13] to estimate the most singular part. Since in Lemma
3.5 from section 3 of Part I, we do not localize the integral, we perform the following
decomposition:

\psi (x)

\int 
K(x - y)W (y)dy=

\int \Bigl( 
\psi (y) + 1R(k2)c(\psi (x) - \psi (y)) + 1R(k2)(\psi (x) - \psi (y))

\Bigr) 
\times K(x - y)W (y)dy

\triangleq I1(x,k) + I2(x,k) + I3(x,k).

(4.68)

For I1, we apply Lemma 3.5 from Part I [13]. We follow section 4.3.7 to estimate I3
if \^x \in DX1, and section 4.3.4 if \^x \in DX2. We follow section 4.3.2 to estimate I2  - I6,
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STABLE BLOWUP OF 3D EULER EQUATIONS 77

where I6 is the approximation term for uy, vx similar to (4.50). The symmetrized
integrand is discussed in the paragraph ``C1/2 estimate of uy, vx"" in section 4.1.5.
There are additional difficulties since the weight \psi (y) and the symmetrized integrand
I(x, y) =KC(x, y)(\psi (x) - \psi (y)) for some kernel KC (see similar derivations in (4.28),
(4.29)) are singular near 0. Note that we do not have the KNC term. See the
paragraph C1/2 estimate of uy, vx before section 4.1.6.

The integral of I(x, y) near 0 or in the far-field require some additional estimates,
which we discuss below. Since y is away from the singularity x in these cases, the sym-
metrized integral is given by I =Ksym(x, y)(\psi (x) - \psi (y)). See (4.29) and section 4.1.5
for related discussions.

Estimate the integral near 0. To estimate the D1 = \partial x2
derivative, we use

| D1I| = | D1K
sym(\psi (x) - \psi (y)) +Ksym \cdot D1\psi (x)| 

\leq | D1K
sym \cdot \psi (x) +Ksym \cdot D1\psi (x)| + | D1K

sym \cdot \psi (y)| .

For y close to 0, since \psi is singular, \psi (y) is much larger than \psi (x), and Ksym(x, y) is
not singular. The main term in D1I is given by D1K

sym\psi (y). It follows that\int 
Q

| D1I \cdot W (y)| dy\leq | | W\varphi | | \infty 
\Bigl( 
| | \varphi  - 1| | L\infty (Q)

\int 
Q

| D1K
sym\psi (x) +Ksym \cdot D1\psi (x)| dy

+

\bigm| \bigm| \bigm| \bigm| \psi \varphi 
\bigm| \bigm| \bigm| \bigm| 
L\infty (Q)

\int 
Q

| D1K
sym| dy

\Bigr) 
,

where Q is some grid near the origin. The integrands in both integrals do not involve
the singular weight, and we can estimate them for each grid point x using the previous
methods.

To estimate theX-discretization error, we need to estimate the integral of \partial 2xi\partial x2J .
Since \psi (y) is independent of x, we get

I =Ksym(x, y)

\biggl( 
\psi (x)

\psi (y)
 - 1

\biggr) 
\psi (y),

\int 
Q

| \partial 2xi
\partial x2

I \cdot W (y)| dy

\leq | | W\varphi | | \infty 
\bigm| \bigm| \bigm| \bigm| \psi \varphi 
\bigm| \bigm| \bigm| \bigm| 
L\infty (Q)

\int 
Q

\bigm| \bigm| \bigm| \bigm| \partial 2xi
\partial x2

Ksym(x, y)

\biggl( 
\psi (x)

\psi (y)
 - 1

\biggr) \bigm| \bigm| \bigm| \bigm| dy.
The last integrand is not singular in y near y= 0, and we estimate it using the previous
method, e.g., section 4.1.3.

For uy, vx, we have a rank-one approximation Kapp(x, y) from Cuy
\chi 0K00 (4.5)

(see section 4.3.2 from Part I [13]). The full integrand with approximation term and
weight is given by

Iapp =Ksym(x, y)(\psi (x) - \psi (y)) - Kapp(x, y)\psi (x)

= (Ksym(x, y) - Kapp(x, y))\psi (x) - Ksym(x, y)\psi (y) = Iapp,1 + Iapp,2.

For y away from the singularity x and 0, Iapp,1 has the same form as the previous

case, e.g., the C
1/2
x estimate. We improve the error estimate \partial 2i \partial x2

Iapp using the
cancellation between the full symmetrized kernel K(x, y) and Kapp from Lemma B.2
and the estimate in (B.15) in Appendix B.1.1 and the property that \psi (y) is much
smaller than \psi (x) for | y| much larger than | x| .
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78 JIAJIE CHEN AND THOMAS Y. HOU

Estimate in the far-field. For the tail part in this case, we have an improve-
ment for small | x| where \chi 0(x) = 1 due to the approximation term near 0

\^f =Cf0(x, y)ux(0) +Cf (x, y)\scrK 00 =Cf (x, y)\scrK 00,

where f = uy, vx and \scrK 00 is defined in (4.5), and we have used Cf0(x, y) = 0. Its
associated integrand is given by

Kapp \triangleq \pi  - 1Cf (x, y)K00(y),

where K00 is defined in (4.5). To estimate it, we use the following decomposition:

D1(I  - \psi (x)Kapp) =D1((K
sym  - Kapp) \cdot \psi (x)) - D1K

sym \cdot \psi (y)\triangleq P1 + P2.

We estimate P1 using the method in section 4.4. Due to the approximation, Ksym  - 
Kapp has a much faster decay for large y beyond [0,D]2. See (B.15) and Appen-
dix B.1.1. For P2, we have\int 

\Omega c

| P2| | W (y)| dy\leq | | W\varphi | | \infty 
\int 
\Omega c

| D1K
sym| \psi 

\varphi 
(y)dy,

where \Omega = [0,D]2 with large D. The last integral is computed using the method in
section 4.4.

4.4. Estimate the integrals near 0 and in the far-field. We use a combi-
nation of uniform mesh and adaptive mesh to compute the integral in a finite domain
[0,D]2, e.g., D= 1000. See section 4.1.3. Since the kernel decays and the singularity is
in the near-field, the integral beyond this domain is small, and we estimate it directly.
In addition, for y near 0, we estimate the integrals (the last two integrals in (4.8))
from the approximations ux(0),K00 (4.7), which is singular of order | y|  - 2 or | y|  - 4.
For simplicity, we consider \lambda = 1. The estimates can be generalized to another scaling
parameter \lambda . To estimate

\int 
D
k(y)\omega (y)dy for D near 0 or D in the far-field, following

(4.10), we only need to estimate
\int 
D
| k(y)| \varphi  - 1(y)dy. Since | y| is either very small or

very large, we can use the asymptotics of \varphi in these estimates.

4.4.1. Near-field estimate. First, we estimate
\int 
[0,R1]2

| k(y)| \varphi  - 1(y)dy for k(y) =
y1y2

| y| 4 ,
y1y2(y

2
1 - y2

2)
| y| 8 related to ux(0),K00 (4.7). We partition [0,R1] into

0 = z0 < z1 < \cdot \cdot \cdot < zn =R1

with z1 much smaller than R1. Denote Qij = [zi - 1, zi]\times [zj - 1, zj ]. Clearly, we have\int 
[0,R1]2

| k(y)| \varphi  - 1(y)dy\leq 
\sum 

1\leq i,j\leq n

Iij , Iij \triangleq 
\int 
Qij

| k(y)| \varphi  - 1(y)dy.

For Iij , (i, j) \not = (1,1), we apply a trivial bound

Iij \leq | | \varphi  - 1| | L\infty (Qij)

\int 
Qij

| k(y)| dy\leq | Qij | \cdot | | k| | L\infty (Qij)| | \varphi 
 - 1| | L\infty (Qij).(4.69)

For k(y) = y1y2

| y| 4 ,
y1y2(y

2
1 - y2

2)
| y| 8 , the estimate of | | k| | L\infty (Qij) is established in Appen-

dix B. It remains to estimate the first term I11. Denote r= y1. Suppose that

\varphi (x)\geq q| x| a(cos\beta )b, b\leq 0.
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STABLE BLOWUP OF 3D EULER EQUATIONS 79

See (A.2). If k(y) = y1y2

| y| 4 and a< 0, we get

I11 \leq q - 1

\int \surd 
2r

0

\int \pi /2

0

sin\beta cos\beta 

r2
r - a(cos\beta ) - brdrd\beta 

= q - 1

\int \surd 
2r

0

r - a - 1dr

\int \pi /2

0

sin\beta (cos\beta ) - b+1d\beta 

= q - 1 (
\surd 
2r) - a

 - a

\int 1

0

t - b+1dt= q - 1 (
\surd 
2r) - a

 - a
1

2 - b
.

If k(y) =
y1y2(y

2
1 - y2

2)
| y| 8 , we get | k(y)| \leq 1

4
sin4\beta 
r4 . Since b\leq 0, if a< - 2, we get \varphi \geq qra

and

I11 \leq q - 1

\int \surd 
2r

0

\int \pi /2

0

1

4

| sin4\beta | 
s4

s - asdsd\beta =
1

4q

\int \surd 
2r

0

s - a - 3ds
1

4

\int 2\pi 

0

| sin\beta | d\beta 

=
1

4q

(
\surd 
2r) - a - 2

 - 2 - a

\int \pi /2

0

sin\beta d\beta =
1

4q

(
\surd 
2r) - a - 2

 - 2 - a
.

4.4.2. Far-field estimate. Denote a \vee b = max(a, b). To estimate the far-field
integral I \triangleq 

\int 
y1\vee y2\geq R0

| k(y)| \varphi  - 1(y)dy, we first pick a sufficiently large R and then
partition the domain

0 = z0 < z1 < \cdot \cdot \cdot < zm =R0 < zm+1 < \cdot \cdot \cdot < zn =R1 <+\infty .

Denote Qij = [zi - 1, zi]\times [zj - 1, zj ]. Clearly, we have

I =
\sum 

m+1\leq max(i,j)\leq n

Iij + J, Iij \triangleq 
\int 
Qij

| k(y)| \varphi  - 1(y)dy,

J =

\int 
y1\vee y2\geq R1

| k(y)| \varphi  - 1(y)dy.

For Iij , we apply the trivial estimate (4.69). Suppose that

\varphi \geq qra(cos\beta )b, | k(y)| \leq | y|  - p, b\in [ - 1,0], p+ a> 2.

We get

J \leq 1

q

\int \infty 

R1

\int \pi /2

0

r - p - a(cos\beta ) - brdrd\beta =
1

q

R - p - a+2
1

| p+ a - 2| 

\int \pi /2

0

(cos\beta ) - bd\beta .

Using H\"older's inequality and b\in [ - 1,0], we get

\int \pi /2

0

(cos\beta ) - bd\beta \leq 

\Biggl( \int \pi /2

0

cos\beta d\beta 

\Biggr)  - b\Biggl( \int \pi /2

0

1

\Biggr) 1+b

= (\pi /2)1+b.

It follows that

J \leq 1

q

R - p - a+2
1

| p+ a - 2| 
(\pi /2)1+b.
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80 JIAJIE CHEN AND THOMAS Y. HOU

Application. We apply the above calculations to estimate the integral and its
derivatives beyond the mesh [0,D]2 (4.12). Since the domain is far away from the
singularity, the integrand is the symmetrized kernel, e.g., (4.29). From Appendix B.1.1
and Lemma B.2 in Appendix B, for uA,\nabla uA, \partial i(\rho uA), \partial i(\psi \nabla uA), the integrand in the
far-field (y is large) satisfies

| K(x, y)| \leq C(x)Den - k

with some k\geq 2 and coefficients C(x), where Den is defined in (B.20).
In our computation, we rescale x to \^x and restrict it to the near-field [0, b]2 with

b < 2. Note that y /\in [0,D]2 and | y| \geq D\gg b. From (B.20), we get

Den\geq min
| z1| \leq x1,| z2| \leq x2

| y - z| 2 \geq min
| z1| \leq x1,| z2| \leq x2

(| y|  - | z| )2 \geq (| y|  - | x| )2 = | y| 2
\biggl( 
1 - | x| 

| y| 

\biggr) 2

.

Since | x| 
| y| \leq 

\surd 
2b/D, we get

Den\geq (1 - Cs)
2| y| 2, Cs =

\surd 
2b/D.

It follows that\int 
y/\in [0,D]2

| K(x, y)| \varphi  - 1(y)dy\leq (1 - Cs)
 - 2kC(x)

\int 
y/\in [0,D]2

| y|  - 2k\varphi  - 1(y)dy.

Using the method in section 4.4.2, we can estimate the above integral.

4.5. Estimate for very small or large \bfitx . The rescaling argument and the
methods in the previous subsections apply to the estimate of uA(x),\nabla uA(x) for x \in 
[0, xM ]2\setminus [0, xm]2,0 < xm < xM . For very small or large x, we cannot use a finite
number of dyadic scales \lambda = 2i to rescale x such that x/\lambda \in [0,2xc]

2\setminus [0, xx]2. Instead,
we choose \lambda = max(x1,x2)

xc
. We want to estimate the rescaled integral with a  - d-

homogeneous kernel K

p(x)

\int 
K(x - y)W (y)dy= p\lambda (x)

\int 
K(\^x - \^y)\lambda 2 - dW\lambda (\^y)dy,

uniformly for all small \lambda \ll 1 or large \lambda \gg 1, where p is some weight and p\lambda is defined
in (4.2). The rescaled singularity \^x = x/\lambda satisfies maxi \^xi = xc. We simplify \^x, \^y as
x, y.

We can use the asymptotic of the weights to estimate the integral (see, e.g., (4.6).)
The new difficulty is that the estimate involves the rescaled weight p\lambda (y). Since \lambda is
not fixed and depends on x that tends to 0 or \infty , we cannot evaluate p\lambda (y) and the
integrand directly. In the following derivation, \lambda is comparable to | x| , which is either
very small or very large.

For y away from the singular region, the integrand of the regular part is given
by J =K(x, y) \cdot p\lambda (x) (4.29). We choose a radial weight p defined in Appendix A.1
p(x) =

\sum 
1\leq i\leq n qi| x| ai . See \psi 1,\psi u,\psi du (A.1). We introduce the asymptotics of these

weights

Rlim \triangleq lim
x\rightarrow A

D1p\lambda (x)

p\lambda (x)
, plim = qi| x| ai ,
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STABLE BLOWUP OF 3D EULER EQUATIONS 81

with (A, i) = (0,1) or (A, i) = (\infty , n), where (qn, an) denotes the last power in the
weight. We use the following decomposition to compute D1J with D1 = \partial xi :

| D1J | = | D1(K(x, y) \cdot p\lambda (x))| = | D1K(x, y) \cdot p\lambda (x) +K(x, y) \cdot D1p\lambda (x)| 

=
\bigm| \bigm| \bigm| p\lambda (x)\Bigl\{ D1K(x, y) +RlimK(x, y) +

\biggl( 
D1p\lambda (x)

p\lambda (x)
 - Rlim

\biggr) 
K(x, y)

\Bigr\} \bigm| \bigm| \bigm| .
Since we consider a very small \lambda or very large \lambda , the error term D1p\lambda (x)

p\lambda (x)
 - Rlim is

small. Hence, we use a triangle inequality to bound D1J :

| D1J | \leq p\lambda (x)
\bigm| \bigm| \bigm| D1K(x, y) +RlimK(x, y)

\bigm| \bigm| \bigm| + p\lambda (x)
\bigm| \bigm| \bigm| \biggl( D1p\lambda (x)

p\lambda (x)
 - Rlim

\biggr) 
K(x, y)

\bigm| \bigm| \bigm| .
The advantage of the above decomposition is that the main term D1K(x, y) +Rlim

K(x, y) does not depend on \lambda so that we can estimate it using previous methods.
Since the estimate of a derivative of u, v does not involve the commutator (see,

e.g., (4.67)), we can apply the above method to compute the integral of D1u for small
x or large x.

For y near the singular region, from (4.28), the symmetrized integrand is given
by

J =KC(p\lambda (x) - p\lambda (y)) +KNCp\lambda (x),

where we use p for the weight. First, we have

| D1J | = | D1K
C(p\lambda (x) - p\lambda (y)) +D1K

NCp\lambda (x) + (KC +KNC)D1p\lambda (x)| .

Denote K =KC +KNC . We use the following method to bound D1J :

| D1J | \leq p\lambda (x)

\bigm| \bigm| \bigm| \bigm| D1K
C \cdot 
\biggl( 
1 - p\lambda (y)

p\lambda (x)

\biggr) 
+D1K

NC +K \cdot D1p\lambda 
p\lambda 

\bigm| \bigm| \bigm| \bigm| 
\leq p\lambda (x)

\Biggl\{ \bigm| \bigm| \bigm| \bigm| D1K
C \cdot 
\biggl( 
1 - plim(y)

plim(x)

\biggr) 
+D1K

NC +K \cdot D1plim
plim

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| D1K
C

\biggl( 
p\lambda (y)

p\lambda (x)
 - plim(y)

plim(x)

\biggr) \bigm| \bigm| \bigm| \bigm| +K

\bigm| \bigm| \bigm| \bigm| D1plim
plim

 - D1p\lambda 
p\lambda 

\bigm| \bigm| \bigm| \bigm| 
\Biggr\} 
.

The second and the third terms on the right hand side can be seen as error terms.
The main term | D1K

C \cdot (1 - plim(y)
plim(x) )+D1K

NC+K \cdot D1plim

plim
| does not depend on \lambda , and

the singularity x is in the near-field and away from 0. We can apply all the delicate
decompositions developed in previous sections to estimate D1J .

In the H\"older estimates, we need various bounds for the weights p\lambda . Using the
asymptotics of p(x), we can estimate the derivatives of p\lambda for very small \lambda or very
large \lambda uniformly. See Appendices A.1, A.2. Once we obtain the estimates of \psi \lambda and
the weight \varphi \lambda in the L\infty norm | | \omega \lambda \varphi \lambda | | \infty , we can use the methods in the previous
subsections and the scaling relations in section 4.1.2 to perform the H\"older estimates.

The L\infty estimate follows similar ideas and is much easier. We defer more details
to section 7 in the supplementary material (supplement.pdf [local/web 1.43MB]).

We remark that since we have much larger damping coefficients in the energy
estimates (see section 5 in Part I [13]) near x= 0 and in the far-field, the estimates of
the nonlocal terms in these regions, though technical, only have minor effects on the
nonlinear stability estimates.
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82 JIAJIE CHEN AND THOMAS Y. HOU

4.6. Assemble the H\"older estimates. In section 4.3, we decompose the veloc-
ity in several parts and estimate them separately using the norms | | \omega \varphi | | \infty , [\omega \psi ]C1/2

xi

.

In this section, we assemble these estimates and estimate

\delta (f,x, z)\triangleq 
| f(x) - f(z)| 
| x - z| 1/2

for f = \psi uuA,\psi \nabla uA with weights in (A.1). To obtain better estimates, we combine
some of the estimates.

In the proof of the first inequality in Lemma 2.3, we combine and bound different
norms using max(| | \omega \varphi | | \infty ,maxj=1,2 \gamma j [\omega \psi 1]C1/2

xj
(\BbbR +

2 )
). We apply the second inequality

to the error \varepsilon = \omega  - ( - \Delta )\phi N (3.10) and can evaluate the localized norm using piecewise
bounds of the error. See section 4.7.

To illustrate the ideas, we focus on the C
1/2
x estimate, x \in [xc,2xc] \times [0,2xc],

i.e., x1 is large relative to x2, z1 \geq x1, and x2 = z2. For general pairs (x, z), we can
rescale (x, z) to (\lambda x,\lambda z) such that \lambda x \in [0,2xc]

2\setminus [0, xc]2. Using the scaling relations
in (4.1.2), we can estimate the rescaled version of \delta (f,x, z). See also the discussion at
the beginning of section 4.3.

We assume that z1 \in [xc,2(1 + \nu )xc] with \nu < 1. For z1 \geq 2(1 + \nu )xc, we have
z1 > (1 + \nu )x1. Since z1, x1 are large relative to z2, x2, respectively, we have

| x - z| = | z1  - x1| \asymp | z1| \gtrsim | x| , | z| .

Then, we can use the L\infty estimate and triangle inequality to estimate \delta (f,x, z). Note
that we can estimate the piecewise L\infty norm of | x|  - 1/2\rho (x)uA(x) and | x|  - 1/2\psi \nabla uA

following section 4.2, where \rho ,\psi are the weights in the H\"older estimate of \rho uA,\psi \nabla uA.
See section 7.4 in the supplementary material (supplement.pdf [local/web 1.43MB])
for more details.

We focus on f = \psi ux,A. We partition the domain D\nu = [xc,2(1 + \nu )xc]\times [0,2xc]
into hx \times hx grids Dij ,1\leq i\leq 2(1+ \nu )xc/hx,1\leq j \leq 2xc/hx. We apply the decompo-
sition (4.67) with the same parameters k, k2 to x in different grids Dij . For x \in Dij ,
using the method in section 4.3, we obtain the estimate

f(x) = I1(x) + I2(x) + I3(x) + I4(x) + I5(x) - I6(x), I5 = I5,0 + I5,1 + I5,2,

| \partial x(I1 + I4 + I5,0  - I6)| \leq aij,1| | \omega \varphi | | \infty , | \partial xI3| \leq aij,2| | \omega \varphi | | \infty , | \partial xI5,1| \leq aij,3| | \omega \varphi | | \infty 

(4.70)

for some constants aij,l, bij \geq 0, where I5,1, I5,2 are defined and estimated in sec-
tion 4.3.4.

For x, z \in D\nu with x2 = z2, z1 \leq z1, we have x \in Di1,j , z \in Di2,j for some
i1 \leq i2. We apply the method in section 4.3.3 to estimate \delta (I2, x, z) and the method
in section 4.3.4 to estimate J1 related to \delta (I52, x, z) (4.53). These estimates contribute
to the bound Chol[\omega \psi ]C1/2

x
for some Chol > 0, which can be computed.

Regularity of the combination. While I1 + I4 + I5,0  - I6, I3, I5,1 are only
piecewise smooth and can be discontinuous when x crosses the grids Dij , the sum
Ilip = I1 + I4 + I5,0  - I6 + I3 + I5,1 is continuous and Lipschitz in x1 for fixed x2. In
fact, by definition (4.24), (4.51), we get
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STABLE BLOWUP OF 3D EULER EQUATIONS 83

Ilip =

\int 
R(k)\setminus Rs,1(k3)

K1(x - y)(\psi (x) - \psi (y))W (y)dy

+\psi (x)

\int 
R(k)c

K1(x - y)W (y)dy+

\int 
R(k)\setminus Rs,1(k)

K1(x - y)\psi (y)W (y)dy - I6

=\psi (x)

\int 
Rc

s,1(k3)

K1(x - y)W (y)dy - 
\int 
Rs,1(k)\setminus Rs,1(k3)

K1(x - y)W (y)\psi (y)dy - I6.

For fixed x2, since I6 (4.50) for the approximation term is smooth in x and the
domain Rs,1(l) (4.19) depends on x1 continuously, we obtain that Ilip is continuous
in x1 when x crosses the grids Dij . Since Ilip(x) is smooth for x \in Dij , we get
that Ilip is continuous and Lipschitz in x1 with piecewise Lipschitz norm bounded by
aij,1 + aij,2 + aij,3.

Similarly, for the case in section 4.3.4, we have Ilip = I1+ I3+ I4+ I5,0+ I5,1 - I6
(4.24), (4.51) is Lipschitz in xi in the C

1/2
i estimate for fixed x3 - i, i= 1,2.

For the case in section 4.3.6, Ilip = I1+I3+I4+I
 - 
5,0+I

 - 
5,1+I

+
5,1 - I6 (4.24), (4.56),

(4.57) and Ilip = I1+I3+I4+I
 - 
5,3+I

+
5,1 - I6 (4.24), (4.56), (4.60) are Lipschitz, where

I+5,1 associated with I+5 (4.56) is defined similarly to I5,1 in (4.51).
For the case in section 4.3.7, Ilip = I1 + I3 + I4 + I5,0 + I5,1 + I5,2,1  - I6 (4.24),

(4.63), and Ilip = I1 + I3 + I4 + I5,4  - I6 are Lipschitz, where I5,2,1 associated with
I5,2 (4.63) is defined similar to I5,1 in (4.51).

In summary, the sum of the terms in f(x) (4.70) with piecewise derivative esti-
mates is Lipschitz. Using the triangle inequality, we obtain the piecewise Lipschitz
bound for Ilip. The remaining parts in f(x) (4.70) are continuous and are estimated by
the piecewise L\infty bounds, e.g., I - 5,2 (4.57), I - 5,4(a) (4.60), I5,3 (4.63), and the improved
H\"older estimates, e.g., I5,2 (4.51)

By averaging the piecewise derivative bounds and using the estimates in Appen-
dix E.2, for x\in Di1,j , z \in Di2,j , we can obtain

| Ilip(x) - Ilip(z)| \leq Clip| x1  - z1| \cdot | | \omega \varphi | | \infty 

for constant Clip depending only on \{ akl,j\} k,l\geq 1,j\leq 3 and the mesh hx explicitly. Hence,
for the remaining terms in f not estimated using the seminorm [\omega \psi ]

C
1/2
x

, e.g., I1 +

I4 - I6+I3+I5,0+I5,1 and J2 related to I5,2 (4.53), each term is continuous and they
satisfy3

fR(x) =
\sum 

1\leq l\leq N

fl(x), | fl(x) - fl(z)| \leq min(pl| x1  - z1| , ql) \cdot | | \omega \varphi | | \infty 

for some N , where we can choose ql =\infty if we do not have an L\infty estimate for fl(x).
A similar consideration applies to pl. In our problem, there are only a few terms and
N < 10. In the C

1/2
xi H\"older estimate of PijQij(x) (continuous in xi) in I52 (4.53),

we optimize two estimates (see the estimates between (4.53) and (4.54)), which is a
nontrivial example of the above summand.

3In the previous version of this paper [11], some term fl(x) is not continuous when x crosses
the grids. We have corrected this minor issue by reorganizing different terms so that each fl(x) is
continuous. See the above paragraph ``Regularity of the combination."" Related computer-assisted
estimates have been updated and the full nonlinear stability estimates remain valid.
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84 JIAJIE CHEN AND THOMAS Y. HOU

Now, for x\in Di1,j , z \in Di2,j , we have

| fR(x) - fR(z)

| z1  - x1| 1/2
\leq 
\sum 

1\leq l\leq N

min(pl\delta 
1/2, ql\delta 

 - 1/2)| | \omega \varphi | | \infty ,

\delta = z1  - x1 \in [max(i2  - i1  - 1,0)hx, (i2  - i1 + 1)hx].

(4.71)

The upper bound can be obtained explicitly by partitioning the range of z1  - x1
into finite many subintervals Ml according to the threshold \delta l = ql/pl. In each Ml,
the bound reduces to

P\delta 1/2 +Q\delta  - 1/2

for some constants P,Q. It is convex in \delta 1/2 and can be optimized easily and explicitly
in any interval [\delta l, \delta u], \delta l > 0.

Remark 4.8. We combine the estimates of different parts in (4.70) using (4.71)
to obtain a sharp estimate. If one estimates different parts separately, the distance
\delta = z1  - x1 for the optimizer may not be achieved for the same value, which leads to
an overestimate. We remark that for a small distance | z1  - x1| , such an overestimate
can be significant since the ratio between the endpoints | i2 - i1+1| /max(i2 - i1 - 1,0)
varies a lot.

In some estimates, e.g., the C
1/2
y estimate of ux in section 4.3.6, we need to

decompose I5 using a different size of small singular region k3. In such a case, we
have a list of estimates associated to different k3 for the part fR not estimated by
[\omega \psi ]

C
1/2
x

or [\omega \psi ]
C

1/2
y

:

| fR(x) - fR(z)| 
| z1  - x1| 1/2

\leq 
\sum 

1\leq l\leq N

min(pl,k3\delta 
1/2, ql,k3\delta 

 - 1/2)| | \omega \varphi | | \infty .

For | x1  - z1| bounded away from 0, e.g., | x1  - z1| \geq 1
10hx, we can still partition the

range of | x1  - z1| and optimizing the above estimates first over \delta and then k3.

4.6.1. H\"older estimate for small distance. In some H\"older estimates, e.g.,
the C

1/2
y estimate in sections 4.3.6, 4.3.7, when | x - z| is very small, e.g., | x - z| \leq chx

with c < 1, we need to choose a singular region with size a to be arbitrarily small. See
also section 4.1.11 for the estimates of a log-Lipschitz function. In these estimates, we
can decompose fR(x) that is not estimated using the H\"older norm of \omega \psi as follows:

fR(x) = f1(x,a, b) + f2(x,a)

for a< b and b is fixed. We can estimate the derivative of f1, and the L\infty norm for f2

| \partial xf1(x,a, b)| \leq 
\Bigl( 
Ai +Bi log

b

a

\Bigr) 
| | \omega \varphi | | \infty , | f2| \leq 

Cia

2
| | \omega \varphi | | \infty 

in each grid Dij for any a \leq b (see, e.g., (4.61) and (4.70)). We drop j since we
consider x, z with x2 = z2. For t= | x - z| \leq hx, we get

| f(x) - f(z)| 
| x - z| 1/2

\leq 
\Bigl( 
A+B log

b

a

\Bigr) \surd 
t+

Ca\surd 
t
\triangleq F (a, t),(4.72)

where A = max(Ai,Ai+1),B = max(Bi,Bi+1),C = max(Ci,Ci+1). For each t \leq chx,
we can optimize the above estimate over a \leq b explicitly. Then we maximize the
estimate over t\leq chx to obtain a uniform estimate for small | x - z| \leq chx. We defer
the derivations to Appendix B.5.2.
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STABLE BLOWUP OF 3D EULER EQUATIONS 85

Fig. 4. Piecewise L\infty (\varphi elli) bound of the error \=\varepsilon 1, \^\varepsilon 1 in solving the Poisson equations. Left:

Error for the approximate steady steate. Right: Error for the approximate space-time solution \^W2.

4.7. Improved estimate for the nonlocal error. In section 3.7, we discuss
the estimates of the nonlocal error u(\=\varepsilon ) based on the functional inequalities established
in this section. Since the weight is singular \varphi \sim | x|  - 2| x1|  - 1/2,\varphi =\varphi elli (A.2) near the
origin, \=\varepsilon 1\varphi is much larger near x = 0. Due to the anisotropic mesh for large x and
small y, or small x and large y, and the round-off error, \=\varepsilon 1 is not very small in these
far-field regions. On the other hand, these regions are small since either | (x, y)| is very
small or the ratio x/y, y/x is very small, and the error is very small in the bulk, e.g.,
x = O(1). See Figure 4 for the rigorous weighted bound of the error in the adaptive
mesh. The weighted error of \=\varepsilon 1 is larger near 0, while the error for \^\varepsilon 1 is larger in
the far-field. If we simply use the global norm | | \omega \varphi | | \infty , \omega = \=\varepsilon , \^\varepsilon , and then apply the
previous estimates to bound u(\=\varepsilon ), we overestimate the nonlocal error significantly.
For x = O(1), where we have the smallest damping for the energy estimate, due to
the decay of kernel and the smallness of these regions, the integral

\int 
K(x, y)\=\varepsilon (y)dy

near y= 0 or in the far-field is very small.
Note that we can obtain the piecewise derivative bounds for the error \=\varepsilon 1, \^\varepsilon 1 and

we partition the domain of the integral into different regions (4.45). Instead of using
the global norm to bound the integral, we use the localized norms | | W\varphi elli| | l\infty (D),
[W\psi 1]C1/2

xi
(D)

(A.2), (A.1) to exploit the smallness of the error in most parts of the

domains and improve the error estimate.
Recall the regions of rescaled \^x (4.4) and the mesh yi partitioning the domain

(4.11). We fix a scale \lambda and assume \^\in [xc,2xc]\times [0,2xc]. By definition, the singular
region R(\^x,k) (4.18) satisfies

 - R(\^x,k)\cap \BbbR +
2 , R(\^x,k)\cap \BbbR +

2 \subset [xc  - kh,2xc + kh]\times [0,2xc + kh]\triangleq Skh.

Thus, in the estimates of I2, I3, I4 in (4.45), instead of using the global norm | | W\varphi | | L\infty ,
we use | | \omega \lambda \varphi \lambda | | L\infty (Skh) = | | \omega \varphi | | L\infty (\lambda Skh). For the error \omega = \=\varepsilon , \^\varepsilon , we can bound
| | \omega \varphi | | L\infty (\lambda Skh) by using the piecewise estimates of \=\varepsilon , \^\varepsilon and covering the region \lambda Skh.
Similarly, we use the localized bound [\omega \lambda \psi \lambda ]C1/2

xi
(Skh)

= \lambda 1/2[\omega \psi ]
C

1/2
xi

(\lambda Skh)
for the

H\"older seminorm in the estimate of I2, I3, I4, and similar localized norms for I5.
For the regular part I1, we partition [0,D]2,\BbbR ++

2 into disjoint domains: near-field
Dn,i, the bulk DB , and the far-field Df,i, e.g.,

Dn,1 = [8h,16h], DB = [0,2]2\setminus Dn,1, Df,1 = [0,D]2\setminus [0,2]2, Df,2 =\BbbR ++
2 \setminus [0,D]2,
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86 JIAJIE CHEN AND THOMAS Y. HOU

where h is the mesh size in (4.11). Then we use the norm | | \omega \lambda \varphi \lambda | | L\infty (D) = | | \omega \varphi | | L\infty (\lambda D)

for the estimate of the integral in region D.
In (4.8), we estimate the integral of K00(y) (4.5) for | \^y| \infty \leq k02h and | \^y| \infty \geq k02h

separately. Since the kernel is very singular near 0, the L1 estimate of the integral
in | \^y| \infty \leq k02h in section 4.4.1 is not very small. Since we can evaluate \omega = \=\varepsilon , \^\varepsilon , we
change the rescaling from \^y back to y by using y= \lambda \^y in (4.8),

J =

\int 
| \^y| \infty \leq k02h

K00(\^y)\omega (\lambda \^y)d\^y= \lambda 2
\int 
| y| \infty \leq \lambda k02h

K00(y)\omega (y)dy,

where we get \lambda 2 since K00 is  - 4 homogeneous. For a list of dyadic scales \lambda = 2k, we
estimate the integral using Simpson's rule with very small mesh. This allows us to
exploit the cancellation in the integral. For | y| very close to 0, we use Taylor expansion.
See section 6.4.1 in the supplementary material (supplement.pdf [local/web 1.43MB])
(attached to this paper) for more details.

In the estimate of the integral for very small x or large x in section 4.5 (see
more details in section 7 in the supplementary material (supplement.pdf [local/web
1.43MB])), we estimate the rescaled integral for \lambda \leq \lambda 1 and \lambda \geq \lambda n with small \lambda 1
and large \lambda n uniformly. In the case of \lambda \leq \lambda 1, we bound | | \omega \lambda \varphi \lambda | | L\infty ([a,b]\times [c,d]) \leq 
| | \omega \varphi | | L\infty (\lambda 1[0,b]\times [0,d]). Other norms in different cases are estimated similarly.

We do not track the bound | | \omega \lambda \varphi \lambda | | L\infty (Qij) in each small grid Qij for computa-
tional efficiency.

Appendix A. Weights and parameters.

A.1. Estimate of the weights. Recall the weights for the H\"older estimate of
\omega ,\eta , \xi , and u,

\psi 1 = | x|  - 2 + 0.5| x|  - 1 + 0.2| x|  - 1/6, \psi du =\psi 1, \psi u = | x| 5/2 + 0.2| x|  - 7/6,

\psi 2 = p2,1| x|  - 5/2 + p2,2| x|  - 1 + p2,3| x|  - 1/2 + p2,4| x| 1/6,
\psi 3 =\psi 2, \vec{}p2,\cdot = (0.46,0.245,0.3,0.112),

(A.1)

and the following weights for \omega , \rho i for u and the error,

\varphi 1 = x - 1/2(| x|  - 2.4 + 0.6| x|  - 1/2) + 0.3| x|  - 1/6, \varphi g1 =\varphi 1 + | x| 1/16,
\varphi elli = | x1|  - 1/2(| x|  - 2 + 0.6| x|  - 1/2) + 0.3| x|  - 1/6, \rho 10 = | x|  - 3 + | x|  - 7/6, \rho 20 =\psi 1.

\rho 3 = | x|  - 1 + | x|  - 1/6, \rho 4 = x - 1/2(| x|  - 2.5 + 0.6| x|  - 1/2) + 0.3| x|  - 1/6.

(A.2)

To estimate the weighted L\infty norm of the residual error in section 3, we use
\psi i,\varphi evo,i,

\varphi evo,1 =\varphi 1,

\varphi evo,2 = x - 1/2(\~p5,1| x|  - 5/2 + \~p5,2| x|  - 3/2 + \~p5,3| x|  - 1/6) + \~p5,4| x|  - 1/4 + \~p5,5| x| 1/7,
\varphi evo,3 = x - 1/2(\~p6,1| x|  - 5/2 + \~p6,2| x|  - 3/2 + \~p6,3| x|  - 1/6) + \~p6,4| x|  - 1/4 + \~p6,5| x| 1/7,
\~p5,\cdot = (0.42, 0.135, 0.216, 0.182, 0.0349) \cdot \mu 0, \mu 0 = 0.917,

\~p6,\cdot = (2.5 \cdot \~p5,1,2.9 \cdot \~p5,2, 3.115 \cdot \~p5,3, 1.82 \cdot \~p5,4, 2.72 \cdot \~p5,5),

(A.3)

where \varphi 1 is defined in (A.2).
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In our energy estimates and the estimates of the nonlocal terms, we need various
estimates of the weights and their derivatives. From Appendix C.1 of Part I [13] and
(A.2), (A.1), we have two types of weights. The first one is the radial weight

\rho (x, y) =
\sum 
i

pir
ai , r= (x2 + y2)1/2,

where ai is increasing and pi \geq 0. We use these weights for the H\"older estimates. See,
e.g., (A.1).

The second type of weight is the following:

\rho (x, y) = \rho 1(r)| x|  - \alpha + \rho 2(r),

where \rho 1, \rho 2 are the radial weights.
We use fl, fu to denote the lower and upper bound of f . We have the following

simple inequalities:

(f  - g)l = fl  - gu, (f  - g)u = fu  - gl, (f + g)\gamma = f\gamma + g\gamma ,

(fg)l =min(flgl, fugl, flgu, fugu), (fg)u =max(flgl, fugl, flgu, fugu),
(A.4)

where \gamma = l, u. If g\geq 0, we can simplify the formula for the product

(fg)l =min(flgl, flgu), (fg)u =max(fugl, fugu).(A.5)

Given the piecewise bounds of \partial jf, \partial jg, j \leq k, we can estimate \partial k(fg) using the
Leibniz rule

| \partial ix\partial jy(fg)| \leq 
\sum 

k\leq i,l\leq j

\biggl( 
i

k

\biggr) \biggl( 
j

l

\biggr) 
| \partial kx\partial lyf | \cdot | \partial i - k

x \partial j - l
y g| .(A.6)

A.2. Radial weights. The advantage of radial weights \rho is that we can estimate
them easily. Since \rho (x, y) is even in x, y, we restrict the estimate of piecewise bounds
to the case of x \geq 0, y \geq 0. The bound in general domain D = [a, b] \times [c, d] can be
obtained by decomposing D into four quadrants and then using the symmetry and
combining the bounds from different quadrants.

A.2.1. Bounds for the derivatives. We can easily derive the derivatives and
their upper and lower bound as follows. First, we have

(\partial ix\partial 
j
y\rho (x, y))\gamma =

\sum 
1\leq k\leq n

pk(\partial 
i
x\partial 

j
yr

ak)\gamma ,(A.7)

where \gamma = l, u. Using induction, for any \alpha , i, j, we can obtain

\partial ix\partial 
j
yr

\alpha =
\sum 

k\leq i+j,l\leq min(j,1)

Ci,j,k,l(\alpha )x
kylr\alpha  - i - j - k - l

=
\sum 

k\leq i+j,l\leq min(j,1)

(C+
i,j,k,l(\alpha ) - C - 

i,j,k,l(\alpha ))x
kylr\alpha  - i - j - k - l

with C\pm 
i,j,k,l(\alpha ) \triangleq max(0,Ci,j,k,l(\alpha )). The bounds for C\pm 

i,j,k,l(\alpha )x
kylr\alpha  - i - j - k - l are

simple:

(C\pm 
i,j,k,l(\alpha )x

kylr\alpha  - i - j - k - l)\gamma =C\pm 
i,j,k,l(\alpha )x

k
\gamma y

l
\gamma r

\alpha  - i - j - k - l
\gamma .(A.8)
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88 JIAJIE CHEN AND THOMAS Y. HOU

In particular, we use the derivatives bound for i+ j \leq 4 and we have

\partial xr
a = axra - 2, \partial 2xr

a = ara - 2 + a(a - 2)x2ra - 4, \partial xyr
a = a(a - 2)xyra - 4,

\partial 3xr
a = a(a - 2)(a - 4)x3ra - 6 + 3a(a - 2)xra - 4,

\partial 2x\partial yr
a = a(a - 2)yra - 4 + a(a - 2)(a - 4)x2yra - 6,

\partial 4xr
a = 3a(a - 2)ra - 4 + 6a(a - 2)(a - 4)x2ra - 6 + a(a - 2)(a - 4)(a - 6)x4ra - 8,

\partial 3x\partial yr
a = a(a - 2)(a - 4)xyra - 6 + 2a(a - 2)(a - 4)xyra - 6

+ a(a - 2)(a - 4)(a - 6)x3yra - 8,

\partial 2x\partial 
2
yr

a = a(a - 2)(a - 3)ra - 4 + a(a - 2)(a - 4)(a - 6)x2ra - 6

 - x4a(a - 2)(a - 4)(a - 6)ra - 8.

Using (A.4), the above identities, and linearity, we can obtain the upper and
lower bounds for \partial ix\partial 

j
y\rho . Since \rho (x, y) is symmetric in x, y, we have \partial i1\partial 

j
2\rho (x, y) =

(\partial j1\partial 
i
2\rho )(y,x) and can obtain piecewise bounds of \partial i1\partial 

j
2\rho from that of \partial j1\partial 

i
2\rho .

For the estimate in section 4.5, we need to use the estimates of \partial ix\partial 
j
y\rho (\lambda x) for

very small \lambda \leq \lambda \ast or very large \lambda \geq \lambda \ast uniformly. Obviously, the bounds are mainly
determined by the leading order power of p(\lambda x), i.e., p1| \lambda r| a1 for small \lambda and pn| \lambda r| an

for large \lambda . We would like to estimate (\partial ix\partial 
j
y\rho (\lambda x))\gamma \lambda 

 - \beta for \lambda \leq \lambda \ast , \beta = a1 and
\lambda \geq \lambda \ast , \beta = an, \gamma = l, u. Using the above derivations (A.7), we have

\lambda  - \beta (\partial ix\partial 
j
y\rho (x, y))\gamma =

\sum 
1\leq k\leq n

pk(\partial 
i
x\partial 

j
y\lambda 

ak - \beta rak)\gamma , \gamma = l, u,

and we only need to derive the upper and the lower bounds for C\pm 
i,j,k,l(am)xkyl

r\alpha  - i - j - k - l\lambda am - \beta uniformly for \lambda \leq \lambda \ast , \beta = a1 or \lambda \geq \lambda \ast , \beta = an. Since ai is in-
creasing, in the first case, we have

\lambda a1 - a1 = 1, am  - a1 > 0, (\lambda am - a1)l = 0, (\lambda am - a1)u = \lambda am - a1
\ast ,m> 1.

In the second case, we get

\lambda an - an = 1, am  - an < 0, (\lambda am - an)l = 0, (\lambda am - an)u = \lambda am - an
\ast ,m> 1.

In both cases, if am = \beta , we get a trivial bound 1 for \lambda am - \beta ; if am \not = \beta , we get
0 \leq \lambda am - \beta \leq \lambda am - \beta 

\ast . Using these bounds for \lambda am - \beta , (A.8), (A.4), (A.5), we obtain
the bounds for \lambda  - \beta \partial ix\partial 

j
y\psi (\lambda x) uniformly for small \lambda ,\beta = a1 and large \lambda ,\beta = an.

We also need to bound M = \lambda  - \beta \rho \lambda (x)
\bigm| \bigm| \bigm| \rho \lambda (y)
\rho \lambda (x)

 - \rho lim(y)
\rho lim(x)

\bigm| \bigm| \bigm| used in section 4.5, uni-

formly for \lambda \leq \lambda \ast , \beta = a1, \rho lim(y) = p1| y| a1 or \lambda \geq \lambda \ast , \beta = an, \rho lim(y) = pn| y| an . Using
the formula of \rho and a direct computation yield

\rho lim(y)

\rho lim(x)
=

| y| \beta 

| x| \beta 
, M \leq 

\sum 
i\leq n

pi\lambda 
ai - \beta 

\bigm| \bigm| \bigm| | y| ai  - | x| ai
| y| \beta 

| x| \beta 
\bigm| \bigm| \bigm| 

\leq 
\sum 
i\leq n

pi\lambda 
ai - \beta 
\ast | y| \beta 

\bigm| \bigm| \bigm| | y| ai - \beta  - | x| ai - \beta 
\bigm| \bigm| \bigm| .

We remark that the leading power \lambda ai - \beta 
\ast for ai = \beta is cancelled due to | y| 0 = | x| 0 = 1

in the above estimate and we gain the small factor \lambda ai - \beta 
\ast for ai \not = \beta .
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STABLE BLOWUP OF 3D EULER EQUATIONS 89

A.2.2. Leading order behavior of \bfpartial \bfitrho /\bfitrho . In our verification, we need to bound
\partial \rho (\lambda x)/\rho (\lambda x) as \lambda \rightarrow 0 or \lambda \rightarrow \infty uniformly. A direct calculation yields

\partial xi\rho 

\rho 
=

xi
| x| 2

\sum 
i piair

ai\sum 
i pir

ai
\triangleq 

xi
| x| 2

S(x), S(x)\triangleq 

\sum 
i piair

ai\sum 
i pir

ai
.

For x close to 0, we introduce b= a - a1. Clearly, we get bi \geq 0 and

S(x) = a1 +

\sum 
i pibir

ai\sum 
i pir

ai
= a1 +

\sum 
i pibir

bi\sum 
i pir

bi
\triangleq a1 +

A(r)

B(r)
.

Using bi \geq 0 and the Cauchy--Schwarz inequalities, we get

A\prime B  - AB\prime = r - 1
\Bigl( \Bigl( \sum 

pib
2
i r

bi
\Bigr) \Bigl( \sum 

pir
bi
\Bigr) 
 - 
\Bigl( \sum 

pibir
bi
\Bigr) 2\Bigr) 

= r - 1 1

2

\sum 
ij

pipj(bi  - bj)
2rbi+bj \geq 0,

and thus A/B is increasing. For \lambda \leq \lambda \ast , r \in [rl, ru], we get the uniform bound for
S(\lambda x)

a1 \leq S(\lambda x)\leq a1 +
A(\lambda \ast ru)

B(\lambda \ast ru)
.

For \lambda = 1, we simply obtain

a1 +
A(rl)

B(rl)
\leq S(x)\leq a1 +

A(ru)

B(ru)
.

Similarly, for \lambda \geq \lambda \ast , r \in [rl, ru], we get

an +
A(\lambda \ast rl)

B(\lambda \ast rl)
\leq S(\lambda x)\leq an,

A(r)

B(r)
=

\sum 
i pibir

bi\sum 
i pir

bi
,

where b= a - an \leq 0. Here, we have used that A(r)/B(r) is increasing. Though bi is
negative, we still have (A/B)\prime = A\prime B - AB\prime 

B2 > 0. From the above estimates, we get

lim
\lambda \rightarrow 0

\lambda 
\partial xi

\rho 

\rho 
(\lambda x) =

xi
| x| 2

a1 \triangleq R0(x),\bigm| \bigm| \bigm| \bigm| \partial xi
\rho 

\rho 
(\lambda x) - R0(\lambda x)

\bigm| \bigm| \bigm| \bigm| \leq \lambda  - 1 xi
| x| 2

| A(\lambda \ast x)| 
| B(\lambda \ast x)| 

, \lambda \leq \lambda \ast ,

lim
\lambda \rightarrow \infty 

\lambda 
\partial xi

\rho 

\rho 
(\lambda x) =

xi
| x| 2

an \triangleq R\infty (x),\bigm| \bigm| \bigm| \bigm| \partial xi
\rho 

\rho 
(\lambda x) - R\infty (\lambda x)

\bigm| \bigm| \bigm| \bigm| \leq \lambda  - 1 xi
| x| 2

| A(\lambda \ast x)| 
| B(\lambda \ast x)| 

, \lambda \geq \lambda \ast .

A.2.3. Bounds for the derivatives of 1/\bfitrho . The bounds for dixd
j
y\rho 

 - 1 are more
complicated since \rho  - 1 is not linear in the summand pir

ai . We need such estimates in
the estimate of the velocity. First, using the bounds in section A.2.1 and (A.5), we
can obtain the upper and the lower bounds for Rij :

Rij =
\partial ix\partial 

j
y\rho 

\rho 
.
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90 JIAJIE CHEN AND THOMAS Y. HOU

For i+ j = 1 and k = 2,3, we use the estimate in section A.2.1 to obtain the bounds
for

R10 =
x

| x| 2
S(x), R0,1 =

y

| x| 2
S(x), (Rij)

k.

In our estimate, we need \partial ix\partial 
j
y\rho 

 - 1 for i+ j \leq 3. A direct calculation yields

\partial x\rho 
 - 1 = - \rho x

\rho 2
= - R10

\rho 
, \partial xx\rho 

 - 1 = - \rho xx
\rho 2

+ 2
\rho 2x
\rho 3

= \rho  - 1( - R20 + 2R2
10),

\partial xy\rho 
 - 1 = - \rho xy

\rho 
+

2\rho x\rho y
\rho 3

= \rho  - 1( - R11 + 2R10R01),

\partial xxx\rho 
 - 1 = - \rho xxx

\rho 2
+

6\rho xx\rho x
\rho 3

 - 6\rho 3x
\rho 4

= \rho  - 1( - R30 + 6R20R10  - 6R3
10),

\partial xxy\rho 
 - 1 = - \rho xxy

\rho 2
+

2\rho xx\rho y
\rho 3

+
4\rho x\rho xy
\rho 3

 - 6
\rho 2x\rho y
\rho 4

= \rho  - 1( - R21 + 2R20R01 + 4R10R11  - 6R2
10R01).

Next, we estimate \partial ix\partial 
j
y(\partial xl

\rho /\rho ) for i \leq 2, j = 0 or i = 0, j \leq 2. Denote f = \partial xl
\rho .

Using a direct computation, for D2 = \partial i2x \partial 
j2
y with i2 + j2 = 1, we get

D2
f

\rho 
=
D2f

\rho 
 - fD2\rho 

\rho 2
= \rho  - 1(D2f  - fRi2,j2).

For (i2, j2) = (2,0), (0,2), denote i3 = i2/2, j3 = j2/2, D3 = \partial i3x \partial 
j3
y . We get

D2
3

f

\rho 
=
D2

3f

\rho 
 - 2D3f \cdot D3\rho 

\rho 2
+ fD2

3

\biggl( 
1

\rho 

\biggr) 
=
D2

3f

\rho 
 - 2D3f \cdot D3\rho 

\rho 2
+ f

\biggl( 
 - D2

3\rho 

\rho 2
+

2(D3\rho )
2

\rho 3

\biggr) 
= \rho  - 1(D2

3f  - 2D3fRi3,j3  - fRi2,j2 + 2fR2
i3,j3),

where we have used D2
3
1
\rho =D3( - D3\rho 

\rho 2 ) = - D2
3\rho 
\rho 2 + 2(D3\rho )

2

\rho 3 .

Since we have estimated \partial ix\partial 
j
y\rho and Rij , we can bound these derivatives of D1\rho /\rho 

using (A.4).
We also need to obtain the uniform estimates of \lambda \beta \partial ix\partial 

j
y(\rho 

 - 1(\lambda x)) for \lambda \leq \lambda \ast , \beta =
a1, and \lambda \geq \lambda \ast , \beta = an. Denote \rho \lambda (x) = \rho (\lambda x). For example, for D1 = \partial xi , we have

\lambda \beta D1(\rho 
 - 1
\lambda (x)) = - \lambda 1+\beta (D1\rho )(\lambda x)

\rho 2\lambda (x)
= - \lambda 1+\beta \rho  - 1

\lambda (x)\lambda  - 1 xi
| x| 2

S(\lambda x)

= - \lambda \beta \rho  - 1
\lambda (x)

xi
| x| 2

S(\lambda x),

which can be estimated using the estimates in sections A.2.1, A.2.2. The power \lambda \beta and
the leading power \lambda  - \beta in \rho  - 1

\lambda (x) cancel each other. The estimates of \lambda \beta \partial ix\partial 
j
y(\rho 

 - 1(\lambda x))

with i+ j \geq 2 and \partial ix\partial 
j
y
\partial xl

(\rho \lambda )

\rho \lambda 
are similar and follow from the above derivations for

\partial ix\partial 
j
y\rho 

 - 1, \partial ix\partial 
j
y(\partial \rho /\rho ) and the piecewise estimates for \partial ix\partial 

j
y\rho (\lambda x) in section A.2.1 and

\partial \rho 
\rho (\lambda x) in section A.2.2, which are uniform in small \lambda \leq \lambda \ast or large \lambda \geq \lambda \ast . We remark
that in all of these estimates for \rho \lambda (x), taking derivatives in x does not change the
asymptotic power in \lambda .
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STABLE BLOWUP OF 3D EULER EQUATIONS 91

A.2.4. Improved estimates for \bfitrho  - 1 near \bfitx = 0. For the special case a1 = - 2,
we can write

\rho (x) = r - 2
\sum 
i

pir
ai+2 = r - 2\~\rho (x), \rho  - 1 = (x2 + y2)\~\rho (x) - 1.

To obtain a better estimate of \rho  - 1, we use the fact that x2+y2 is a polynomial. First,
we can obtain the bounds for \partial ix\partial 

j
y \~\rho 

 - 1. The bound for S0 = x2 + y2 is trivial, e.g.,

(\partial xS0)\gamma = 2x\gamma , (\partial yS0)\gamma = 2y\gamma , \gamma = u, l, \partial xyS0 = 0, \partial xxS0 = \partial yyS0 = 2.

Then using (A.4)--(A.5), we can bound \rho  - 1.

A.3. The mixed weight. For the second type of weights W = \rho 1(r)| x|  - 1/2 +
\rho 2(r), we can compute its derivatives and its upper and lower bounds using linearity
and the Leibniz rule (A.6). We consider x, y\geq 0. For example, we have

Wl = \rho 1,lx
 - 1/2
u + \rho 2,l, (W - 1)u = (Wl)

 - 1, Wx = \partial x\rho 1x
 - 1/2  - 1

2
\rho 1x

 - 3/2 + \partial x\rho 2.

To obtain the upper bound for \partial ix\partial 
j
yW , we use the Leibniz rule (A.6):

| \partial ix\partial jyW | \leq 
\sum 
k\leq i

\biggl( 
i

k

\biggr) 
| \partial i - k

x \partial jy\rho 1| 
(2k - 1)!!

2k
x - 1/2 - k + | \partial ix\partial jy\rho 2| .

We need to bound \rho (r)/W (x, y) in the estimate of the integrals. Suppose that
the leading and the last powers of \rho are a1, an. The leading and the last terms of W
are given by pir

bi cos(\beta ) - \alpha i , \alpha i \geq 0,

W \geq p1r
b1 , W \geq pnr

bn .

We estimate

\rho 

W
\leq C1r

a1 - b1 ,
\rho 

W
\leq C2r

an - bn

for all x, y \in \BbbR +
2 . We apply the above estimates for x near 0 or x sufficiently large.

UsingW (\lambda x)\geq \rho 1(\lambda x)\lambda 
 - 1/2| x1|  - 1/2,W (\lambda x)\geq \rho 2(\lambda x), and the uniform estimates

of \rho i(\lambda x) in \lambda in section A.2.1, we can obtain the lower bound ofW (\lambda x) and the upper

bound of \rho (\lambda x)
W (\lambda x) uniformly in \lambda .

Appendix B. Estimate the derivatives of the velocity kernel and in-
tegrands. In this appendix, we estimate the derivatives of the kernel  - 1

2\pi log | x| 
associated to the velocity u = \nabla \bot ( - \Delta ) - 1\omega and its symmetrization (4.25). These
estimates are used to estimate the error terms in Lemmas 4.2, 4.4. We will per-
form an additional estimate for u with weight \varphi (x) singular along x1 = 0 in sec-
tion B.4. Some additional derivations related to the estimate of the velocity are given
in Appendix B.5.

B.1. Estimate the symmetrized kernel. In this section, we estimate the sym-
metrized kernel. We develop several symmetrized estimates for harmonic functions.
Before we introduce the estimates, we have a simple 1D estimate, which is useful for
later estimates.
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92 JIAJIE CHEN AND THOMAS Y. HOU

Lemma B.1. We have

| f(x) + f( - x) - 2f(0)| \leq x2| | fxx| | L\infty [ - x,x],

| f(x) + f( - x) - 2f(0) - x2fxx(0)| \leq 
x4

12
| | \partial 4xf | | L\infty [ - x,x].

Proof. Denote G(x) = f(x) + f( - x). Clearly, G is even and

G(0) = 2f(0), G\prime (0) = 0, \partial 2xG(0) = 2fxx(0), \partial 3xG(0) = 0.(B.1)

Using the Taylor expansion, we obtain

G(x) =G(0) +G\prime (0)x+
\partial 2xG(0)x

2

2
+
\partial 3xG(0)x

3

6
+
\partial 4xG(\xi )x

4

24

for some \xi \in [0, x]. Using (B.1), we get

| G(x) - G(0) - G\prime \prime (x)
x2

2
| \leq | | \partial 4xG| | L\infty [0,x]

x4

24
\leq | | \partial 2xf | | L\infty [ - x,x]

x4

12
.

Plugging the identity (B.1) into the above estimate proves the second estimate in
Lemma B.1. The first estimate is simpler.

The following lemma is useful for estimating the symmetrized kernel (4.25) and
its derivatives.

Lemma B.2. Suppose that Qx = [ - x1, x1]\times [ - x2, x2] and f \in C4(Qx) is harmonic.
Denote

G1(1, x)\triangleq f(x1, x2) + f( - x1, x2) + f(x1, - x2) + f( - x1, - x2) - 4f(0,0),

G2(1, x)\triangleq f(x1, x2) - f( - x1, x2) - f(x1, - x2) + f( - x1, - x2),
\^G1(x)\triangleq 2x21fxx(0,0) + 2x22fyy(0,0), \^G2(x)\triangleq 4x1x2fxy(0,0).

(B.2)

We have

| G1(1, x)| \leq 2| x| 2| | fxx| | L\infty (Qx), | \partial xi
G1(1, x)| \leq 4| xi| \cdot | | fxx| | L\infty (Qx),

(B.3)

| G1(1, x) - \^G1(x)| \leq 
(x41 + 6x21x

2
2 + x42)

6
| | \partial 4f | | L\infty (Qx) \leq 

| x| 4

3
| | \partial 4f | | L\infty (Qx),

(B.4)

| G1(1, x1,0) - \^G1(x1,0)| \leq 
1

6
x41| | \partial 4f | | L\infty (Qx),

(B.5)

| \partial xi(G1(1, x) - \^G1(x))| \leq 
2

3
(3x23 - ixi + x3i )| | \partial 4f | | L\infty (Qx) \leq 

2
\surd 
2

3
| x| 3| | \partial 4f | | L\infty (Qx),

(B.6)

where | | \partial 4f | | L\infty =max0\leq i\leq 4 | | \partial ix\partial jyf | | L\infty (Qx). For G2, we have the following estimate:

| G2(1, x)| \leq 4x1x2| | fxy| | L\infty (Qx), | \partial xi
G2(1, x)| \leq 4| x3 - i| \cdot | | fxy| | L\infty (Qx),

(B.7)
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STABLE BLOWUP OF 3D EULER EQUATIONS 93

| G2(1, x) - \^G2(x)| \leq 
2x1x2| x| 2

3
| | \partial 4f | | L\infty (Qx),

(B.8)

| \partial xi
(G2(1, x) - \^G2(x))| \leq 

2

3
(3x2ix3 - i + x33 - i)| | \partial 4f | | L\infty (Qx) \leq 

2
\surd 
2

3
| x| 3| | \partial 4f | | L\infty (Qx).

(B.9)

Note that G1(\cdot , x) is even in xi, and G2(\cdot , x) is odd in xi. The polynomials of
xi in the upper bounds (without absolute value) have the same symmetries. Similar
properties hold for \partial G1, \partial G2. Moreover the above bound satisfies the differential
relation. These properties are useful for tracking different bounds for G1,G2.

Proof. Recall Qx = [ - x1, x1]\times [ - x2, x2]. Denote

Aij(x) = | | \partial ix\partial jyf | | L\infty (Qx).

Using Lemma B.1, for any t\in [0,1], we obtain

| f(tx1, x2) + f(tx1, - x2) - 2f(tx1,0)| \leq A02x
2
2,

| f(x1,0) + f( - x1,0) - 2f(0,0)| \leq A20x
2
1.

Since f is a harmonic function, we have \partial i+2
x \partial jyf =  - \partial ix\partial j+2

y f and obtain Ai+2,j =
Ai,j+2. Taking t = \pm 1 in the above estimate and using the triangle inequality, we
prove

| G(1, x)| \leq 2A20x
2
1 + 2A02x

2
2 = 2A20(x

2
1 + x22) = 2A20| x| 2,

which is the first estimate in (B.3).
The second estimate in (B.3) is simple. We consider i= 1 without loss of gener-

ality. We get

| \partial x1
G1(1, x)| = | (\partial 1f)(x1, x2) - (\partial 1f)( - x1, x2) + (\partial 1f)(x1, - x2) - (\partial 1f)( - x1, - x2))| 

\leq 4x1A20(x).

For (B.4), using Lemma B.1, we get

| f(tx1, x2) + f(tx1, - x2) - 2f(tx1,0) - x22(\partial 
2
2f)(tx1,0)| \leq A04(x)

x42
12
,

| \partial 22f(x1,0) + \partial 22f( - x1,0) - 2\partial 22f(0,0)| \leq x21A2,2(x),

| f(x1,0) + f( - x1,0) - 2f(0) - x21\partial 
2
1f(0)| \leq A40

x41
12

(B.10)

for t = \pm 1. Combining the above estimates and using the triangle inequality and
A40 = A22 = A04, we prove the first estimate in (B.4). The second estimate follows
from 2| x| 4  - x41  - 6x21x

2
2  - x42 = (x21  - x22)

2 \geq 0.
Estimate (B.5) follows from (B.4) by taking x2 = 0.
For (B.6), we consider the estimate of \partial x1

. The other case is similar. Using

\partial 1f(x1, s) - (\partial 1f)( - x1, s) =
\int x1

0

(\partial 21f)(t, s) + (\partial 21f)( - t, s)dt,
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94 JIAJIE CHEN AND THOMAS Y. HOU

we obtain

\partial 1(G(1, x) - \^G1(x)) = (\partial 1f)(x1, x2) - (\partial 1f)( - x1, x2) + (\partial 1f)(x1, - x2)
 - (\partial 1f)( - x1, - x2) - 4x1\partial 

2
1f(0)

=

\int x1

0

\Bigl( 
(\partial 21f)(z,x2) + (\partial 21f)( - z,x2) + (\partial 21f)(z, - x2)

+ (\partial 21f)( - z,x2) - 4\partial 21f(0)
\Bigr) 
dz.

Applying (B.3), we get

| \partial 1(G(1, x) - \^G1(x))| \leq 
\int x1

0

2(z2 + x22)dzA4,0(x) =

\biggl( 
2

3
x31 + 2x1x

2
2

\biggr) 
A4,0(x)

and complete the proof of the first estimate in (B.6). For the second estimate, we use
the inequality of arithmetic and geometric means (AM-GM) inequality to yield

(3x22x1 + x31)
2 = (3x22 + x21)

2x21 =
1

4
(3x22 + x21)

24x21 \leq 
1

4

\Biggl( 
2(3x22 + x21) + 4x21

3

\Biggr) 3

= 2| x| 6.

(B.11)

Taking a square root completes the estimate.
To estimate G2 in (B.2), we rewrite it as follows:

G2(1, x) - c \^G2(x) =

\int x1

 - x1

\int x2

 - x2

\partial 12f(z1, z2) - c\partial 12f(0)dz

=

\int x1

0

\int x2

0

(\partial 12f)(z1, z2) + (\partial 12f)( - z1, z2) + (\partial 12f)(z1, - z2)

+ (\partial 12f)( - z1, z2) - 4c(\partial 12f)(0)dz

(B.12)

for c = 0,1. The integrand has the same form as G1 in (B.2). For c = 0, using the
above decomposition, we prove

| G2(1, x)| \leq 4x1x2A11.

When c= 1, using (B.6), we get

| G2(1, x) - \^G2(x)| \leq A402

\int x1

0

\int x2

0

| y| 2dy=A40
2

3
(x31x2 + x1x

3
2) =A40

2

3
x1x2| x| 2.

To estimate the derivatives, we focus on \partial x1 . Using the above representation, we
obtain

\partial x1(G2(1, x) - c \^G2(x)) =

\int x2

0

((\partial 12f)(x1, y2) + (\partial 12f)( - x1, y2))

+ ((\partial 12f)(x1, - y2) + (\partial 12f)( - x1, - y2) - 4c(\partial 12f)(0))dy.

We apply the same estimates to the integrands with c= 0,1 and get

| \partial x1
G2(1, x)| \leq 4x2A11,

| \partial x1
(G2(1, x) - \^G2(x))| \leq A312

\int x2

0

(x21 + y22)dy2 =A31

\biggl( 
2x21x2 +

2

3
x32

\biggr) 
.
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STABLE BLOWUP OF 3D EULER EQUATIONS 95

The second inequality in (B.9) follows from (B.11). The above estimates imply (B.7)--
(B.9).

Recall the kernels associated with\nabla u,u in (4.1). These kernels are the derivatives
of the Green function - 1

2\pi log | x| and are harmonic away from 0. We have the following
estimates for their derivatives.

Lemma B.3. Denote r = (x2 + y2)
1
2 and f(x, y) = log r. For any i, j \geq 0 with

i+ j \geq 1, we have

| \partial ix\partial jyf(x, y)| \leq (i+ j  - 1)! \cdot r - i - j .

As a result, for K1(y) = - 1
2\partial 12f(y),K2(y) = - 1

2\partial 
2
1f(y), we have

| Ki| \leq 
1

2| y| 2
, | \partial jy1

\partial 2 - j
y2

Ki| \leq 
3

| y| 4
, | \partial jy1

\partial 4 - j
y2

Ki| \leq 
60

| y| 6
,

| \partial jy1
\partial 6 - j
y2

Ki| \leq 
2520

| y| 8
, i= 1,2.

Proof. Consider the polar coordinate \beta = arctan(y/x), r = (x2 + y2)1/2. We use
induction on n= i+ j to prove

\partial ix\partial 
j
yf = (n - 1)! cos(n\beta  - \beta ij)r

 - n(B.13)

for some constant \beta ij . We have the formula

\partial xg=

\biggl( 
cos\beta \partial r  - 

sin\beta 

r
\partial \beta 

\biggr) 
g, \partial yg=

\biggl( 
sin\beta \partial r +

cos\beta 

r
\partial \beta 

\biggr) 
g.(B.14)

First, for n= 1, a direct calculation yields

\partial xf =
x

r2
=

cos\beta 

r
, \partial yf =

y

r2
=

sin\beta 

r
=

cos(\beta  - \pi /2)

r
.

Suppose that (B.13) holds for any i, j with i+ j = n and n\geq 1. Now, since

\partial x\partial 
i
x\partial 

j
yf = (n - 1)!\partial x(cos(n\beta  - \beta ij)r

 - n)

= (n - 1)!( - n cos\beta cos(n\beta  - \beta ij)r
 - n - 1 + n sin\beta sin(n\beta  - \beta ij)r

 - n - 1)

= n!( - cos(n\beta  - \beta ij + \beta )r - n - 1) = n! cos((n+ 1)\beta  - \beta ij  - \pi )r - n - 1,

using a similar computation and sin(x) = cos(x - \pi /2), we can obtain that \partial y\partial 
i
x\partial 

j
yf

has the form (B.13). Using induction, we prove (B.13). The desired estimate follows
from (B.13).

Using the above two lemmas, we can estimate the error in the discretization of
the kernels K(x, y) in both the x and y directions.

B.1.1. Estimate the kernels in the far-field. We apply Lemma B.2 to esti-
mate the decay of F1, F2

F0 \triangleq G(y - x) - G(y1  - x1, y2 + x2) - G(y1 + x1, y2  - x2) +G(y+ x),

G(y) = - log | y| /2,

F1 \triangleq F0  - 4x1x2\partial 12G(y), F2 \triangleq F1  - 
2(x21  - x22)x1x2

3
\partial 31\partial 2G(y),

Iijkl(P )\triangleq \partial ix1
\partial jx2

\partial ky1
\partial ly2

P (x, y).

(B.15)
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96 JIAJIE CHEN AND THOMAS Y. HOU

Note that for stream function \phi = ( - \Delta ) - 1\omega (y) =C \cdot G \ast W , where W is the odd
extension of \omega from \BbbR +

2 to \BbbR ++
2 , since G(z) is even in zi, after symmetrization, we

have

\~\phi (x) = \phi (x) - x1x2\phi 12(0) =C

\int 
\BbbR 2

G(y - x)W (y)dy=C

\int 
F1(x, y)W (y)dy,

where \phi 12(0) is related to Cf0Kux0 in (4.5). In the estimate of u,\nabla u related to
\partial ix1

\partial jx2
\~\phi , e.g., (1,1) for ux = - \partial x1x2

\phi , for y \in Q away from the singularity, we get the
symmetrized integrand

\partial ix1
\partial jx2

\int 
Q

F1(x, y)W (y)dy=

\int 
Q

\partial ix1
\partial jx2

F1(x, y)W (y)dy.

In the error estimate of the trapezoidal rule Lemma 4.2, we estimate \partial ix1
\partial jx2

\partial 2yi

F1(x, y), which is Iij20(F1) or Iij02(F1) in (B.15). We apply the estimate of F2 to
Kf  - Cf0Kux0  - CfK00 (4.5). Below, we show that Iijkl(Fi), i= 1,2 has faster decay
in | y| than \partial ix1

\partial jx2
\partial ky1

\partial ly2
G(y+ x).

By definition, we get i1, j1 \leq 1. Next, we fix y and introduce

gpq(z)\triangleq \partial py1
\partial qy2

G(y+ z), MG,k \triangleq max
a+b=k

| | (\partial ay1
\partial by2

G)(y+ \cdot )| | L\infty (Qx),

Qx = [ - x1, x1]\times [ - x2, x2].
(B.16)

Since G is harmonic, we have

\partial kxi
G(y1 + s1x1, y2 + s2x2) = ski \partial 

k
yi
G(x1 + s1y1, x2 + s2y2), sl \in \{ \pm 1\} ,

\partial 21G(y) = - \partial 22G(y), \partial x1x2
gpq(x)| x=0 = \partial p+1

y1
\partial q+1
y2

G(y), \partial 22grs(0) = - \partial 11grs(0).

(B.17)

Second approximation \bfitF 2. Note that taking \partial yi in Fi does not change the
sign of the coefficient of the G term in (B.15). Applying (B.12) with c = 1 and
f(z) = grs(z) in G2, we get

Ipqrs(F2) = \partial px1
\partial qx2

\int x1

0

\int x2

0

gr+1,s+1,all(z)dz,

g\alpha \beta ,all(z) = g\alpha \beta (z) + g\alpha \beta ( - z) + g\alpha \beta (z1, - z2) + g\alpha \beta ( - z1, z2)
 - 4g\alpha \beta (0) - 2(z21  - z22)\partial 11g\alpha \beta (0).

If max(i, j)\leq 1, using the above notation to Iijkl(F2) and the estimate of G1 - \^G1

in Lemma B.2 with f = gkl, and then integrating the bounds in z2, we get

| I10kl(F2)| =
\bigm| \bigm| \bigm| \bigm| \int x2

0

gk+1,l+1,all(x1, z2)dz2

\bigm| \bigm| \bigm| \bigm| \leq MG,d2

\int x2

0

x41 + 6x21z
2
2 + z42

6
dz2

=

\biggl( 
x41x2
6

+
x21x

3
2

3
+
x52
30

\biggr) 
MG,d2

,

where d2 = k+ l+ 6. Similarly, we get

| I01kl(F2)| \leq 

\Biggl( 
x51
30

+
x31x

2
2

3
+
x41x2
6

\Biggr) 
AG,d2

, I11kl(F2)\leq 
x41 + 6x21x

2
2 + x42

6
AG,d2

.
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STABLE BLOWUP OF 3D EULER EQUATIONS 97

If max(i, j)\geq 2, i+ j \leq 3, without loss of generality, we consider i\geq 2. We choose
(i1, j1, k1, l1) = (i - 2, j, k+ 2, l). From (B.17), we get

\partial 2x1
(x1x2\partial 12G(y)) = 0,

\partial 2x1
\partial ky1

\partial ly2

\Biggl( 
2(x21  - x22)x1x2

3
\partial 31\partial 2G(y)

\Biggr) 
= 4x1x2\partial 

k1+1
y1

\partial l1+1
y2

G)(y) = 4x1x2\partial 12gk1l1(0).

Using (B.17) again, we rewrite \partial ix1
\partial ky1

G(x+ y) = \partial i1x1
\partial k1
y1
G(x+ y) and get

Iijkl(F2) = \partial i1x1
\partial j1x2

(gk1l1(x) - gk1l1(x1, - x2) - gk1l1( - x1, x2)
+ gk1l1( - x) - 4x1x2\partial 12gk1l1(0)).

(B.18)

The same derivation applies to the case of j \geq 2, where we choose (i1, j1, k1, l1) =
(i, j  - 2, k, l+ 2). Since i1, j1 \leq 1, using the estimate of G2  - \^G2 in Lemma B.2 with
f = gk1l1 , we get

| I20kl(F2)| , | I02kl(F2)| \leq 
2x1x2| x| 2

3
MG,d2

, (i1, j1) = (0,0),

| I30kl(F2)| , | I12kl(F2)| \leq 
2

3
(3x21x2 + x32)MG,d2 , (i1, j1) = (1,0),

| I21kl(F2)| , | I03kl(F2)| \leq 
2

3
(x31 + 3x1x

2
2)MG,d2 , (i1, j1) = (0,1),

d2 = k1 + l1 + 4= k+ l+ 6.

Note that the form (B.18) can be seen as the \partial i1x1
\partial i2x2

F1. If 4\leq i+ j \leq 5, we still
first perform (B.18) by choosing (i1, j1, k1, l1) = (i - 2, j, k + 2, l) or (i, j  - 2, k, l + 2)
and get

Iijkl(F2) = Ii1j1k1l1(
\~F1),

where \~F1 is similar to F1 in (B.15) with G replaced by gi - i1,j - j1 = \partial i - i1
y1

\partial j - j1
y2

G(y).
Then we apply the estimate for the first approximation below with i1 + j1 \leq 3.

First approximation. The estimate of Iijkl(F1) is similar. Denote

i2 = i - 2

\biggl\lfloor 
i

2

\biggr\rfloor 
, j2 = j  - 2

\biggl\lfloor 
j

2

\biggr\rfloor 
, k2 = k+ 2

\biggl\lfloor 
i

2

\biggr\rfloor 
, l2 = l+ 2

\biggl\lfloor 
j

2

\biggr\rfloor 
.

If max(i, j) \leq 1, we get (i, j, k, l) = (i2, j2, k2, l2). Applying the estimate G2  - \^G2 in
Lemma (B.2) with f = gk2l2 , we get

I10kl(F1)\leq 
2

3
x2(x

2
2 + 3x21)| | \partial dG(y+ \cdot )| | L\infty (Qx) =

2

3
x2(x

2
2 + 3x21)MG,d,

I01kl(F1)\leq 
2

3
x1(x

2
1 + 3x22)MG,d, I00kl(F1)\leq 

2x1x2| x| 2

3
MG,d,

d= k2 + l2 + 4= k+ l+ 4.

If (i, j) = (1,1), we apply the estimate of G1 in Lemma (B.2) with f = \partial x1x2gkl(x)
(k, l are number of derivatives on G(y+ z)) to get

| I11kl(F1)| \leq 2| x| 2MG,d, d= k2 + l2 + 4= k+ l+ 4.
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98 JIAJIE CHEN AND THOMAS Y. HOU

If max(i, j) \geq 2, i+ j \leq 3, x1x2\partial 12G(0) vanishes in Iijkl. We apply a derivation
similar to (B.18) without 4x1x2\partial 12gk2l2(0) and the estimate of G2 in Lemma B.2 with
f = gk2l2 to get

| Iijkl(F1)\leq 4x1 - i2
1 x1 - j2

2 | | \partial 2gk2l2 | | L\infty (Qx) \leq 4x1 - i2
1 x1 - j2

2 MG,d,

d= k2 + l2 + 2= k+ l+ 4.

To bound MG,k, we apply Lemma B.3 to get

MG,k = max
a+b=k

| | (\partial ay1
\partial by2

G)(y+ \cdot )| | L\infty (Qx) \leq 
(k - 1)!

2 \cdot Den(x, y)k/2
, Den(x, y) = min

z\in Qx

| y - z| 2.

(B.19)

It is not difficult to obtain that for x, y \in \BbbR ++
2 , we have

Den(x, y) =
\sum 
i=1,2

min
| zi| \leq xi

| yi  - zi| 2 =
\sum 
i=1,2

(max(yi  - xi,0))
2.(B.20)

Using the above estimates, for | y| \gg | x| , we get Den\sim | y| 2 and the decay estimate
for Iijkl(F1) (B.15) with a rate | y|  - k - l - 4 and Iijkl(F2) with a rate | y|  - k - l - 6.

B.2. Piecewise \bfitL \infty estimate of derivatives of the Green function. In this
section, we develop sharp L\infty estimates of the derivatives of the Green functionG(x) =
 - 1

2\pi log | x| and their linear combinations in a small domain [a, b]\times [c, d]. They will be
used in Lemmas 4.2, 4.4 to estimate the error, especially near the singularity of the
kernel. We remark that the linear combinations of \partial i1\partial 

j
2G can be quite complicated.

If we simply use the triangle inequality to estimate it, we can overestimate some
terms with cancellation significantly, especially near the singularity of G. These sharp
estimates are useful for reducing the estimate of the error term in Lemmas 4.2, 4.4
without choosing a very small mesh, which can lead to large computational cost.

B.2.1. Coefficients of the derivatives of the Green function. To simplify
the notation, we drop 1

\pi from G and denote fp =  - 1
2 log | x| . First, we derive the

formulas of \partial i1\partial 
j
2fp. Due to homogeneity, for k+ l\geq 1, we assume

\partial kx1
\partial lx2

fp =

\sum 
i+j=k+l cijx

i
1x

j
2

| x| 2(k+l)
.(B.21)

Next, we derive the recursive formula for cij . Using induction, we can obtain

\partial k+1
x1

\partial lx2
fp =

\sum 
i+j=k+l cijix

i - 1
1 xj2

| x| 2(k+l)
 - 2(k+ l)x1

| x| 2(k+l+1)

\sum 
i+j=k+l

cijx
i
1x

j
2

=
1

| x| 2(k+l+1)

\Biggl( \sum 
i+j=k+l

cijix
i+1
1 xj2 + cijix

i - 1
1 xj+2

2  - 2(k+ l)cijx
i+1
1 xj2

\Biggr) 

=
1

| x| 2(k+l+1)

\Biggl( \sum 
i+j=k+l

(ciji+ ci+2,j - 2(i+ 2) - 2(k+ l)cij)x
i+1
1 xj2

\Biggr) 
.

Therefore, we obtain the recursive formula

ci+1,j = icij + (i+ 2)ci+2,j - 2  - 2(k+ l)cij
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STABLE BLOWUP OF 3D EULER EQUATIONS 99

for all i+ j = k+ l, or equivalently,

ci,j = (i - 1)ci - 1,j  - 2(k+ l)ci - 1,j + (i+ 1)ci+1,j - 2

for all i+ j = k+ l+ 1. Similarly, for \partial x2 , we get

ci,j = (j  - 1)ci,j - 1  - 2(k+ l)ci,j - 1 + (j + 1)ci - 2,j+1

for all i+ j = k+ l+ 1.

B.2.2. Estimates of rational functions. We use the above formulas to develop
sharp estimates of the derivatives of fp and their linear combinations in a small grid
cell [y1l, y1u]\times [y2l, y2u]. For k < k2 and S \subset \{ (i, j) : i+ j = k\} , we estimate

IS \triangleq 

\sum 
(i,j)\in S cijy

i
1y

j
2

| y| k2
.(B.22)

We assume that IS(x) is either odd in xi or even in xi for i = 1,2. Clearly, this
property holds for \partial kx1

\partial lx2
fp (B.21). Denote i1 =mini\in S i, j1 =minj\in S j. We get

IS =
yi11 y

j1
2

| y| i1+j1

\sum 
(i,j)\in S cijy

i - i1
1 yj - j1

2

| y| k2 - i1 - j1
.

We further introduce

P \triangleq 
\sum 

(i,j)\in S

c+ijy
i - i1
1 yj - j1

2 , Q\triangleq 
\sum 

(i,j)\in S

c - ijy
i - i1
1 yj - j1

2 .

We claim that i - i1, j - j1 are even for all (i, j)\in S. Since IS is either odd or even
in xi, i= 1,2, the numerator

\sum 
cijx

i
1x

j
2 in (B.22) has the same symmetries in x1, x2.

In particular, each monomial cijx
i
1x

j
2 in (B.22) also enjoys the same symmetries in

x1, x2 as IS . If i  - i1 is odd for some i, then cijx
i - i1
1 xj - j1

2 must be odd in x1. It
implies i - i1 \geq 1 for any (i, j) \in S and contradicts the minimality of i1. The same
argument applies to j1.

As a result, P and Q are monotone increasing in | y1| , | y2| \geq 0. For | yi| l \leq | yi| \leq 
| yi| u, i= 1,2, we can derive the upper and lower bounds for P,Q and get

| I| \leq max(Pu  - Ql,Qu  - Pl)

| y| k2 - i1 - j1
l

max
y\in \Omega 

| y1| i1 | y2| j1
| y| i1+j1

\leq max(Pu  - Ql,Qu  - Pl)

| y| k2 - i1 - j1
l

\biggl( 
| y1| u

(| y1| 2u + | y2| 2l )1/2

\biggr) i1\biggl( | y2| u
(| y1| 2l + | y2| 2u)1/2

\biggr) j1

,

where | y| l is the lower bound of | y| and we have used the fact that zi/| z| is increasing
in zi for zi \geq 0 to obtain its upper bound. Now, for yi \in [yil, yiu], we estimate | yi| l, | yi| u
as follows:

| yi| \geq max(0, | yil + yiu| /2 - (yiu  - yil)/2)\triangleq | yi| l,
| yi| \leq max(| yil| , | yiu| )\triangleq | yi| u, | y| l \triangleq (| y1| 2l + | y2| 2l )1/2.

(B.23)

Note that for yi \in [yil, yiu], yi can change signs.
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100 JIAJIE CHEN AND THOMAS Y. HOU

B.3. Improved estimate of the higher order derivatives of the inte-
grands. In the H\"older estimate, we need to estimate the derivatives of the integrands
(4.28), (4.29), (4.24), which take the form

KC(x, y)(p(x) - p(y)) +KNCp(x)

for some weight p and kernels KC ,KNC . Using the estimates of the kernels in Ap-
pendices B.1, B.2 and the weights in section A.1, the Leibniz rule (A.6), and the
triangle inequality, we can estimate the derivative of the integrands. However, such
an estimate can lead to significant overestimates near the singularity of the integrand.
We use the estimates in Appendix B.2 to handle the cancellations among different
terms and obtain improved estimates for the integrand and its derivatives near the
singularity:

T00(x, y)\triangleq K(y - x)(p(x) - p(y)), \partial xi
T00(x, y).(B.24)

We choose weight p(x) that is even in x and y. The basic idea is to perform a Taylor
expansion on p(x)  - p(y) and obtain the factor | x  - y| , which cancels one order of
singularity from K(x, y). We use the formulas in Appendix B.2 to collect the terms
with the same singularity and exploit the cancellation.

B.3.1. Y-discretization. In the Y-discretization of the integral, we need to
estimate the y-derivatives of the integrand (B.24). For a, b= 1,2, denote

D1 = \partial a, D2 = \partial b, xm =
x+ y

2
.(B.25)

Next, we compute \partial jyb
\partial ixa

T00. The reader should be careful about the sign. Note that

\partial xa
(K(y - x)) = - (\partial aK)(y - x) = - D1K(y - x).

Using the Leibniz rule, we get

\partial 2yb
\partial xaT00 = \partial 2yb

( - D1K(p(x) - p(y)) +K \cdot D1p(x))

= \partial 2yb
(D1K \cdot (p(y) - p(x)) +K \cdot D1p(x))

=D2
2D1K \cdot (p(y) - p(x)) + 2D2D1K \cdot D2p(y)

+ D1K \cdot D2
2p(y) +D2

2K \cdot D1p(x).

We use Taylor expansion at x= xm and write

p(y) - p(x) = (y - x) \cdot \nabla p(xm) + pm,2,err, \partial ip(z)

= \partial ip(xm) + (\partial ip(z) - \partial ip(xm)), z = x, y,

| f(z) - f(xm) - (z  - xm) \cdot \nabla f(xm)| 

\leq 1

2

d21
4
| | fxx| | L\infty (Q) +

d1d2
4

| | fxy| | L\infty (Q) +
1

2

d21
4
| | fxx| | L\infty (Q) \triangleq If

(B.26)
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STABLE BLOWUP OF 3D EULER EQUATIONS 101

for d= y - x, z = x, y and any f , where Q is the rectangle covering x, y. Then pm,2,err

is bounded by 2Ip =O(| x - y| 2). Combining the terms involving \nabla p, we get

\partial 2yb
\partial xa

T00 =
\sum 
i=1,2

\Bigl( 
D2

2D1K \cdot (yi  - xi) + 1D2=\partial i
2D2D1K + 1D1=\partial i

D2
2K
\Bigr) 
\cdot \partial xi

p(xm)

+ D2
2D1K \cdot pm,2,err + 2D2D1K \cdot (D2p(y) - D2p(xm))

+ D2
2K \cdot (D1p(x) - D1p(xm)) +D1K \cdot D2

2p(y)

\triangleq 

\left(  \sum 
i=1,2

Ii \cdot \partial xip(xm)

\right)  + II1 + II2 + II3 + II4,

Ii \triangleq D2
2D1K \cdot (yi  - xi) + 1D2=\partial i

2D2D1K + 1D1=\partial i
D2

2K,

(B.27)

where \partial i1\partial 
j
2K is evaluated at y - x, and IIi denotes the last four terms in the second

equation. The first term is the most singular term. We combine the most singular
terms to exploit the cancellation and improve the estimates. We estimate the kernels

Kmix(D1,D2, i, s)(z1, z2)\triangleq D2
2D1K(z)zi + 1D2=\partial i2D2D1K(z) + s1D1=\partial iD

2
2K(z)

(B.28)

with s=\pm 1 and D1,D2 \in \{ \partial 1, \partial 2\} . Then we can bound \partial 2yb
\partial xa

T00 using the triangle
inequality. When D1 =D2, we have an improved estimate for II2, II3,

II2 + II3 =D2
2K(D2p(y) - D2p(xm) + (D2p(y) +D2p(x) - 2D2p(xm))).(B.29)

We estimate D2p(y) +D2p(x) - 2D2p(xm) using (B.26) with f =D2p and z = x, y.

B.3.2. The second singular term. For x= (x1, x2) close to the y-axis or the
x-axis, since we have symmetrized the integral (see (4.28) and section 4.1.5), we have
another singular term in the integrand

T01 \triangleq K(y1  - x1, y2 + x2)(p(x) - p(y)), or T10 \triangleq K(y1 + x1, y2  - x2)(p(x) - p(y)).

We have the first term if x2 <x1 and x2 close to 0 and the second term if x1 <x2
and x1 close to 0. We label the former case with side = 1 and the latter side = 2.
See the right figure in Figure 1 for an illustration of the first case. The T01 term is
supported in the blue region R(x,k,S). Denote

(s1, s2) = (1, - 1) if side= 1, (s1, s2) = ( - 1,1) if side= 2.(B.30)

Case I. If (D1, side) = (\partial 1,1) or (\partial 2,2), we obtain

\partial xa
K(y1  - s1x1, y2  - s2x2) = - \partial ya

K(y1  - s1x1, y2  - s2x2)

for (a, s1, s2) = (1,1, - 1) or (2, - 1,1). The computations for \partial 2yb
\partial x1T01, \partial 

2
yb
\partial x2T10 are

the same as (B.27) with K and its derivatives evaluating at z = (y1 - s1x1, y2 - s2x2).
We estimate IIi in (B.27) directly using the triangle inequality and the bounds

for \partial i1\partial 
j
2K in sections B.1, B.2 and p in section A.1. For Ii in (B.27) in the most

singular term, if i= side, from definition (B.30), we get

si = 1, s3 - i = - 1, zi = yi  - sixi = yi  - xi, z3 - i = y3 - i + x3 - i.

Therefore, it follows that

Ii =D2
2D1K(z) \cdot (yi  - xi) + 1D2=\partial i2D2D1K(z) + 1D1=\partial iD

2
2K(z)

=Kmix(D1,D2, i,1)(z),
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102 JIAJIE CHEN AND THOMAS Y. HOU

where Kmix is defined in (B.28). If i \not = side, we have zi = yi + xi \geq | yi  - xi| , z3 - i =
y3 - i  - x3 - i. We simply bound the summand using the triangle inequality

| Ii| \leq | D2
2D1K(z)| \cdot | yi  - xi| + 1D2=\partial i

2| D2D1K(z)| + 1D1=\partial i
| D2

2K(z)| .

Case II. If (D1, side) = (\partial 1,2) or (\partial 2,1), we obtain

\partial xa
K(y1  - s1x1, y2  - s2x2) = (\partial ya

K)(y1  - s1x1, y2  - s2x2)

for (a, s1, s2) = (1, - 1,1) or (2,1, - 1). Recall the definitions of D1,D2 (B.25). Using
the above identity, we get

\partial 2yb
\partial xaT = \partial 2yb

(D1K \cdot (p(x) - p(y)) +K \cdot D1p) = - (\partial 2yb
(D1K \cdot (p(y) - p(x)) - K \cdot D1p))

for T = T01 or T10. Using an expansion similar to that in (B.27), (B.26), we get

 - \partial 2yb
\partial xa

T =
\sum 
i=1,2

\Bigl( 
D2

2D1K \cdot (yi  - xi) + 1D2=\partial i
2D2D1K  - 1D1=\partial i

D2
2K
\Bigr) 
\cdot \partial xi

p(xm)

+ D2
2D1K \cdot pm,2,err + 2D2D1K \cdot (D2p(y) - D2p(xm))

 - D2
2K \cdot (D1p(x) - D1p(xm)) +D1K \cdot D2

2p(y)

\triangleq 

\left(  \sum 
i=1,2

Ii \cdot \partial xip(xm)

\right)  + II1 + II2 + II3 + II4,

Ii \triangleq D2
2D1K \cdot (yi  - xi) + 1D2=\partial i

2D2D1K  - 1D1=\partial i
D2

2K,

(B.31)

where \partial i1\partial 
j
2K is evaluated at z = (y1  - s1x1, y2  - s2x2). We bound IIi using the

triangle inequality, the estimate (B.29), and the bounds for K, its derivatives, and p
in sections B.1, B.2, and A.1.

For Ii, if i= side, from (B.30), we get si = 1 and zi = yi  - sixi = yi  - xi. Hence,
we get

Ii =D2
2D1K \cdot (yi  - xi) + 1D2=\partial i

2D2D1K  - 1D1=\partial i
D2

2K =Kmix(D1,D2, i, - 1)(z),

where Kmix is defined in (B.28).
If i \not = side and D1 =D2 = \partial i, we have zi = yi - sixi = yi+xi and get a cancellation

between D2D1K and D2
2K, yielding

| Ii| = | D2
2D1K \cdot (yi  - xi) +D2D1K| \leq | D2

2D1K| \cdot | yi  - xi| + | D2D1K| .

Otherwise, we simply bound each term in Ii using the triangle inequality.

B.3.3. X-discretization. For K(s) = s1s2
| s| 4 ,

1
2
s21 - s22
| s| 4 , we have K(s) = K( - s).

Denote

T =K(y - x)(p(x) - p(y)) =K(x - y)(p(x) - p(y)).

In this section, we compute \partial ixb
\partial jxa

T . Using the Taylor expansion at x,

p(x) - p(y) = (x - y) \cdot \nabla p(x) + px,2,err,
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STABLE BLOWUP OF 3D EULER EQUATIONS 103

and calculations similar to those in section B.3.1, we get

\partial 2xb
\partial xa

T = \partial 2xb
(D1K \cdot (p(x) - p(y)) +KD1p(x))

=D2
2D1K \cdot (p(x) - p(y)) + 2D1D2K \cdot D2p(x)

+D1K \cdot D2
2p(x) +D2

2K \cdot D1p(x) + 2D2K \cdot D1D2p(x) +K \cdot D1D
2
2p(x)

=
\sum 
i=1,2

(D2
2D1K \cdot (xi  - yi) + 1D2=\partial i

2D1D2K + 1D1=\partial i
D2

2K)\partial ip(x)

+ D2
2D1K \cdot px,2,err +D1K \cdot D2

2p(x) + 2D2K \cdot D1D2p(x) +K \cdot D1D
2
2p(x)

\triangleq 

\left(  \sum 
i=1,2

Ii \cdot \partial ip(x)

\right)  + II,

Ii \triangleq D2
2D1K \cdot (xi  - yi) + 1D2=\partial i2D1D2K + 1D1=\partial iD

2
2K,

(B.32)

where II consists of the last four terms in the third equation, K and its derivatives
are evaluated at x - y. Since D1,D2 = \partial xi , we get

Ii =D2
2D1K \cdot (xi  - yi) + 1D2=\partial i

2D1D2K + 1D1=\partial i
D2

2K =Kmix(D1,D2, i,1)(x - y),

whereKmix is defined in (B.28). We use the bound forKmix, \partial 
i
1\partial 

j
2K and p to estimate

D2
2D1T .

B.3.4. The second singular term. Similar to section B.3.2, we have the second
singular term for x close to the x-axis or y-axis,

T01 \triangleq K(x1  - y1, x2 + y2)(p(x) - p(y)), T10 \triangleq K(x1 + y1, x2  - y2)(p(x) - p(y)).

We have the former if x2 <x1 and x2 close to 0, and the latter if x1 <x2 and x1 close
to 0. Using the definition of side, s1, s2 from section B.3.2 and (B.30), we get

\partial xaK(x1  - y1s1, x2  - y2s2) = (D1K)(x1  - y1s1, x2  - y2s2).

Then the computations of D2
2D1T are the same as those in (B.32) with \partial i1\partial 

j
2K eval-

uated at z = (x1 - s1y1, x2 - s2y2). We bound II in (B.32) directly using the triangle
inequality and the bounds for \partial i1\partial 

j
2K and p. For Ii in (B.32), if i= side, from (B.30),

we get si and zi = xi  - siyi = xi  - yi. It follows that

Ii =D2
2D1K \cdot zi + 1D2=\partial i

2D1D2K + 1D1=\partial i
D2

2K =Kmix(D1,D2, i,1)(z).

If i \not = side, we have zi = xi + yi > | xi  - yi| . We bound each term in Ii separately by
following the previous argument.

B.4. Estimate of \bfitu (\bfitx ) for small \bfitx 1. In the energy estimate, we need to
estimate (u(x)  - \^u(x))\varphi (x) with weight \varphi singular along the line x1 = 0, e.g., \varphi 1

(A.2), where \^u(x) is a finite rank approximation of u(x). We use the property that u
vanishes on x1 = 0 to establish such an estimate.

By definition and symmetrizing the kernel using the odd symmetry of \omega , we have

u(x, y) =
1

2\pi 

\int 
y1\geq 0

\Bigl( x2  - y2
| x - y| 2

 - x2  - y2
(x1 + y1)2 + (x2  - y2)2

\Bigr) 
\omega (y)dy

=
1

\pi 

\int 
y1\geq 0

K(x, y)W (y)dy,
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104 JIAJIE CHEN AND THOMAS Y. HOU

where

K =
1

2

\biggl( 
x2  - y2
| x - y| 2

 - x2  - y2
(x1 + y1)2 + (x2  - y2)2

\biggr) 
= x1 \cdot 

2(x2  - y2)y1
| x - y| 2((x1 + y1)2 + (x2  - y2)2)

\triangleq x1Kdu(x, y) = x1 \~Kdu(x1, y1, x2  - y2),

\~Kdu(x, y, z) =
2yz

((x - y)2 + z2)((x+ y)2 + z2)
.

(B.33)

We define Kapp as the symmetrized kernel in \BbbR ++
2 for \^u similar to that in section 4.2.

Since W is odd in y2, we can symmetrize the integral in y2 and obtain the full
symmetrized integrand

x1Kdu(x, y) - x1Kdu(x1, x2, y1, - y2) = x1( \~Kdu(x1, y1, x2  - y2) - \~Kdu(x1, y1, x2 + y2)).

Since K is  - 1 homogeneous, using a rescaling argument, for x = \lambda \^x, y = \lambda \^y, we
have

u=
\lambda 

\pi 

\int 
\^y1\geq 0

\Bigl( 
1Sc(\^y)K(\^x, \^y) - Kapp,\lambda (\^x, \^y)

\Bigr) 
\omega \lambda (\^y) + 1S(\^y)K(\^x, \^y)\omega \lambda (\^y)d\^y\triangleq I + II

(B.34)

for some rescaled kernel Kapp,\lambda (\^x, \^y), where S =R(\^x,k) is the singular region (4.18)
adapted to \^x. For I, we further rewrite it and estimate it as follows:

I =
\lambda 

\pi 
\^x1

\int 
\^y1\geq 0,\^y/\in S

\Bigl( 
1Sc(\^y)Kdu(\^x, \^y) - 

1

\^x1
Kapp,\lambda (\^x, \^y)

\Bigr) 
\omega \lambda (\^y)d\^y.

Since the integrand is not singular, we further symmetrize the integrand in y2 and
then use the method in section 4.1.3 to discretize and estimate the integral to obtain
its tight bound.

Derivative bounds. To estimate the error in the trapezoidal rule in Lemma 4.2,
we need to bound \partial 2xi

Kdu(x, y), \partial 
2
yi
Kdu(x, y). Since 1

xCu0(x, y),
1
xCu(x, y) (4.5) are

smooth, from the construction in section 4.3, the kernel 1
x1
Kapp(x, y) and its rescaled

version are regular in \^x. We estimate its derivatives following section 4.1. Since
Kdu(x, y) =

1
x1
K(x, y) (B.33),K(x, y) is harmonic in y, and | \partial 2x2

K(x, y)| = | \partial 2y2
K(x, y)| ,

we get

\partial 2y1
Kdu(x, y) = - \partial 2y2

Kdu(x, y), | \partial 2y2
Kdu(x, y)| = | \partial 2x2

Kdu(x, y)| .

Thus, we only need to bound | \partial 2x1
Kdu| and | \partial 2y1

Kdu| or \partial 2x \~Kdu and \partial 2y \~Kdu using the

relation (B.33). We derive the formulas of \partial 2x \~Kdu and \partial 2y \~Kdu and then estimate them
using methods similar to that in Appendix B.2. We have an improved estimate for
\partial y \~Kdu in \{ x\} \times [yl, yu]\times [zl, zu] near the singularity. A direct computation yields

\partial 2y \~Kdu(x, y, z) = 24yz
(z4  - (x2  - y2)2)(x2 + y2 + z2)

T 3
 - T

3
+

+ 64
x2y3z3

T 3
 - T

3
+

=
yz

T 2
 - T

2
+

\Bigl( 
12
\Bigl( 1

T - 
+

1

T+

\Bigr) 
(z4  - (x - y)2(x+ y)2) + 64x2

y2z2

T - T+

\Bigr) 
, T\pm = (x\pm y)2 + z2,

where we have used 1
T - 

+ 1
T+

= 2x2+y2+z2

T - T+
. We apply the estimate of Kdu to x, y\geq 0.

Since | \partial 2y \~Kdu| is even in z, without loss of generality, we consider z \geq 0. Then for
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STABLE BLOWUP OF 3D EULER EQUATIONS 105

P2, we have z/T
1/2
 - , y/T

1/2
+ are increasing in z, y, respectively. To bound other terms,

we simply use the monotonicity of the polynomials, (B.22), interval operation (A.4),
(A.5), and follow section B.2.1. For example, we use (B.23) to bound (x - y)2, (x+y)2
and

0\leq y

T
1/2
+

\leq yu
((x+ yu)2 + z2l )

1/2
, 0\leq z

T
1/2
 - 

\leq zu
(| x - y| 2l + z2u)

1/2
.

\^\bfitx 1 not small. For II in (B.34), if \^x1 \geq xl = 2h > 0 away from 0, we have
| Kdu(\^x, \^y)| \lesssim 1

xl

1
| \^x - y| , which is integrable near the singularity \^x. We estimate II

using

| II| \leq \lambda 

\pi 
\^x1

\int 
\^y1\geq 0,\^y\in S

| Kdu(\^x, \^y)| \varphi  - 1
\lambda (\^y)d\^y| | \omega \varphi | | \infty , S =R(\^x,k).

We follow section 4.1.6 by introducing \^y = \^x+ s, s \in S  - \^x, decomposing S  - \^x into
the symmetric part Dsym and nonsymmetric part Dns and estimating the piecewise
integral of Kdu(\^x, \^y),

Dsym =Rs(\^x,k) - \^x, Dns = (R(\^x,k)\setminus Rs(\^x,k)) - \^x,

| Kdu(\^x, \^y)| 1\^y1\geq 0 = | F | 1\^x1+s1\geq 0, F =
(\^x1 + s1)s2

| s| 2((s1 + 2\^x1)2 + s22)
,

and piecewise bounds of \varphi  - 1
\lambda (y), where we have used (B.33) to obtain the above

formula. We observe that | F | is even in s2 and F \geq 0 for s \in Q = [a, b] \times [c, d]
with c, d \geq 0. We estimate the piecewise integrals of F in Q in section 6.2 in the
supplementary material (supplement.pdf [local/web 1.43MB]). Denote X+

1 \triangleq \{ y :
y1 \geq 0\} . If \^x1 \geq kh, we get S \cap X+

1 =R(\^x,k) and the regions Dsym,Dns are the same
as those in section 4.1.6. If \^x1 \in [ih, (i+ 1)h), i < k, the region S touches \{ y : y1 = 0\} 
and we get

S \cap X+
1 = [0, (i+ k+ 1)h]\times [(j  - k)h, (j + 1+ k)h] for x2 \in [jh, (j + 1)h].

In this case, the symmetric and nonsymmetric region becomes smaller. We do not
have the left edge in the middle figure in Figure 2, part of the upper and the lower edge
due to the restriction \^y1 = s1+\^x1 \geq 0. The estimate of the integrals for s\in S\cap X+

1  - \^x1
follows similar argument.

Small \^\bfitx 1. The difficulty is to estimate II for small \^x1 \leq 2h. It is not difficult to
obtain that

| II| \lesssim \lambda 

\pi 
| | \omega \lambda | | L\infty (S)\^x1| log(\^x1)| .(B.35)

Thus we cannot bound II by C\^x1 for some constant C uniformly for small \^x1.
Denote by

Ssym = [0, \^x1 + kh]\times [\^x2  - kh, \^x2 + kh], Sin,1 = [0, \^x1]\times [\^x2  - kh, \^x2 + kh],

Sin,2 = [\^x1, \^x1 + h]\times [\^x2  - h, \^x2 + h], Sin = Sin,1 \cup Sin,2,

Sout = [\^x1, \^x1 + hk]\times [\^x2  - kh, \^x2 + kh]\setminus Sin,2, \^y= \^x+ \^x1s.

(B.36)

See the right figure in Figure 2 for an illustration of different regions. By definition,
we have Ssym = Sout\cup Sin,1\cup Sin,2. Here Sin captures the most singular region. Then
\^y \in Sin is equivalent to
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106 JIAJIE CHEN AND THOMAS Y. HOU

s\in \^x - 1
1 (Sin  - \^x) = x - 1

1 ([ - \^x1,0]\times [ - kh,kh]\cup [0, h]\times [ - h,h])\triangleq R1(B1)\cup R2(B2),

R1(B1) = [ - 1,0]\times 
\Bigl[ 
 - 1

B1
,
1

B1

\Bigr] 
,

R2(B2) =
\Bigl[ 
0,

1

B2

\Bigr] 
\times 
\Bigl[ 
 - 1

B2
,
1

B2

\Bigr] 
, B1 =

\^x1
kh
, B2 =

\^x1
h
.

(B.37)

We further decompose II as follows:

II =
\lambda 

\pi 
\^x1

\int 
y1\geq 0

(1S\setminus Ssym
(\^y) + 1Sout(\^y) + 1Sin,1(\^y) + 1Sin,2(\^y))Kdu(\^x, \^y)\omega \lambda (\^y)d\^y

=
\lambda \^x1
\pi 

(II1 + II2 + IIin,1 + IIin,2).

The integrals II1, II2 capture the nonsymmetric part and the symmetric part away
from the singularity. We apply L\infty estimate and the method in sections 4.1.6, 4.1.9.
For IIin,i, using a change of variables (B.36), (B.37), we derive

IIin,i =

\int 
s\in Ri(Bi)

Kdu(\^x, \^x+ \^x1s)\^x
2
1\omega \lambda (\^x+ \^x1s)ds.

Note that \^y - \^x= \^x1s, \^y1+ \^x1 = \^x1(2+ s1), \^y2 - \^x2 = \^x1s2. By definition (B.33),
we get

Kdu(\^x, \^x+ \^x1s)\^x
2
1 = - 2\^x1s2 \cdot (\^x1 + \^x1s1)

\^x21| s| 2 \cdot \^x21((s1 + 2)2 + s22)
\^x21 = - 2(s1 + 1)s2

| s| 2((s1 + 2)2 + s22)
\triangleq  - Ks(s),

IIin,i = - 
\int 
Ri(Bi)

Ks(s)\omega \lambda (\^x+ \^x1s)ds.

Since Ks(s) is symmetric in s2, we derive

| IIin,1| \leq | | \omega \varphi | | \infty 
\biggl( 

max
z\in [ - \^x1,0]\times [0,kh]

\varphi  - 1
\lambda (\^x+ z) + max

z\in [ - \^x1,0]\times [ - kh,0]
\varphi  - 1
\lambda 

\biggr) 
J1(B1),

| IIin,2| \leq | | \omega \varphi | | \infty 
\biggl( 

max
z\in [0,h]\times [0,h]

\varphi  - 1
\lambda + max

z\in [0,h]\times [ - h,0]
\varphi  - 1
\lambda 

\biggr) 
J2(B2),

where Bi is given in (B.37) and

J1(B1) =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[ - 1,0]\times [0,1/B1]

Ks(s)ds

\bigm| \bigm| \bigm| \bigm| \bigm| =
\int 
[ - 1,0]\times [0,1/B1]

Ks(s)ds,

J2(B2) =

\int 
[0,1/B2]2

Ks(s)ds.

The formula of Ji can be obtained using the analytic integral formula for Ks, and
obviously Ji is decreasing in B. Note that J1(B) is bounded, but J2(B)\lesssim 1+log(B)\lesssim 
1 + | log \^x1| , which relates to the estimate (B.35). We defer the formulas of Ji to
section 6.2 in the supplementary material (supplement.pdf [local/web 1.43MB]).
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STABLE BLOWUP OF 3D EULER EQUATIONS 107

B.5. Additional derivations.

B.5.1. Estimate of the log-Lipschitz integral. In this section, we derive the
coefficient in the estimate of \partial x2I5,4(x) (4.64), (4.65). For I5,4, we further decompose
it as follows:

I5,4 =

\biggl( \int 
R(k2)\setminus Rs(k2)

+

\int 
Rs(k2)\setminus Rs(b)

+

\int 
Rs(b)\setminus Rs(a)

\biggr) 
K(x - y)(\psi (x) - \psi (y)W (y)dy

\triangleq I5,4,1 + I5,4,2 + I5,4,3.

In practice, we choose b= 2. The first two terms are nonsingular and their derivatives
can be estimated using the method in sections 4.1.6--4.1.9. In the estimate of \partial xiI5,4,
we only need to estimate the boundary term on \partial Rs(a) since the boundary terms on
\partial Rs(k2), \partial Rs(b) are canceled in \partial xi

I5,j , j = 1,2,3. For I5,4,3, using the second order
Taylor expansion to \psi (x) - \psi (y) centered at x, we have

\partial x2
(K(x - y)(\psi (x) - \psi (y))) = (\partial 2K)(x - y)(\psi (x) - \psi (y)) +K(x - y)\partial 2\psi (x)

= (\partial 2K(x - y)(x2  - y2) +K(x - y))\partial 2\psi (x) + \partial 2K(x - y)(x1  - y1)\partial 1\psi (x) +\scrR K ,

where the remainder \scrR K coming from the higher order term in the Taylor expansion
satisfies

| \scrR K | \leq 
\sum 

i+j=2

| | \partial ix\partial jy\psi | | L\infty (Q)| x1  - y1| i| x2  - y2| jcij ,

where Q=Bi1j1(hx) + [ - bh, bh]2 and c20 = c02 =
1
2 , c11 = 1. It follows that

| \partial x2
I5,4,3| \leq | | \omega \varphi | | \infty 

\sum 
0\leq i\leq 1,0\leq j\leq i+1

Scoeij(x) \cdot fij(a, b),

where the coefficients Scoeij(x) depend on the weight \psi ,\varphi , and fij(a, b) bounds the
integral \int 

[ - b,b]2\setminus [ - a,a]2
| \partial 2K(y) \cdot yi1y

j
2 + 1(i,j)=(0,1)K(y)| dy\leq fij(a, b).(B.38)

For example, Scoe01 comes from the following estimate for I5,4,3\int 
Rs(b)\setminus Rs(a)

| (\partial 2K(x - y)(x2  - y2) +K(x - y))\partial 2\psi (x)| \omega (y)dy

\leq | | \omega \varphi | | \infty | | \varphi  - 1| | L\infty (Q) \cdot | \partial 2\psi (x)| 
\int 
[ - b,b]2\setminus [ - a,a]2

| \partial 2K(s)s2 +K(s)| ds.

The function fij(a, b) satisfies the following estimates for some constants B1j > 0

f1j(a, b)\leq B1j log(b/a), j = 1,2.

We defer the derivations to section 5.1.5 in the supplementary material (supple-
ment.pdf [local/web 1.43MB]).

B.5.2. Optimization in the H\"older estimate. Consider

max
t\leq tu

min
a\leq b

F (a, t), F (a, t) =
\Bigl( 
A+B log

b

a

\Bigr) \surd 
t+

Ca\surd 
t
,
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108 JIAJIE CHEN AND THOMAS Y. HOU

in the upper bound in (4.72). For each t\leq tu, we first optimize F (a, t) over a\leq b. We
assume that A,B,C, b, c, h,hx are given. Denote

tu = chx, t1 =
Cb

B
.

For a fixed t, since \partial 2aF > 0, \partial aF (0, t)< 0, and \partial aF (a, t) = 0 if a= Bt
C , we choose

a=min(b, Bt
C ). For t\leq Cb

B = t1, we get

min
a\leq b

F (a, t)\leq F
\Bigl( Bt
C
, t
\Bigr) 
=
\Bigl( 
A+B log

bC

B
+B

\Bigr) \surd 
t - B

\surd 
t log t.

The right hand side can be further estimated by studying the concave function on
s= t1/2 \leq su,

f(p, q, s) = (p - q log s)s\leq f(p, q,min(su, s\ast )), s\ast = exp
\Bigl( p - q

q

\Bigr) 
with p=A+B log( bCB ) +B,q= 2B,su =min(t

1/2
u , t

1/2
1 ). We get the above inequality

since f(p, q, s) is increasing for s\leq s\ast and is decreasing for s\geq s\ast .
If Cb

B \leq t\leq tu, we choose a= b and get

min
a\leq b

F (a, t)\leq F (b, t) =A
\surd 
t+

Cb\surd 
t
,

which is convex in t1/2. Thus its maximum is achieved at the endpoints.

Appendix C. Representations and estimates of the solutions. In sec-
tion 7 of Part I [13], we represent the approximate steady state as follows:

\=\omega = \=\omega 1 + \=\omega 2, \=\theta = \=\theta 1 + \=\theta 2, \=\omega 1 = \chi (r)r - \=\alpha 1g1(\beta ), \=\theta 1 = \chi (r)r1 - 2\=\alpha 1g2(\beta ),

\=\phi N = \=\phi N1 + \=\phi N2 + \=\phi N3 + \=\phi Ncor,
\=\phi N3 = \=a\chi \phi ,2D, \chi \phi ,2D = - xy\chi \phi (x)\chi \phi (y),

\=\phi Ncor = - c \cdot xy
2

2
\kappa \ast (x)\kappa \ast (y) = c\phi 1, c= \partial x(\=\omega +\Delta (\=\phi N1 + \=\phi N2 + \=\phi N3 )),

| \=\alpha 1 +
\=c\omega 
\=cl
| \ll 1, \=\alpha 1 \approx 

1

3
,

(C.1)

where \=\omega 2, \=\theta 2, \=\phi 
N
2 have compact supports and are represented as piecewise polynomials,

\=a \in \BbbR is some coefficient, \kappa \ast is given in (D.5), \phi 1 is the same as (3.14), and \chi \phi is
given in (D.7). We choose a small correction \=\phi cor similar to that in section 3.2 so
that \=\omega + \Delta \=\phi N = O(| x| 2) near 0. We use upper script N to distinguish the numer-
ical approximation \=\phi N for the exact stream function \=\phi = ( - \Delta ) - 1\=\omega . The exponent
\=\alpha 1 and angular profiles gi(\beta ) are obtained by fitting the far-field asymptotics of an
approximate steady state with \=\omega 1 = 0, \=\theta 1 = 0. Then we construct (\=\omega 1, \=\theta 1) using the
above formulas. Afterward, we refine the construction of the near-field part (\=\omega 2, \=\theta 2)
and exponents (\=c\omega , \=cl) by fixing (\=\omega 1, \=\theta 1, \=\alpha 1). See more details on how to find the
semianalytic part in section 7 of Part I [13]. We will discuss how to estimate the
semianalytic part in section C.3. In the following sections, we discuss more details
about the representations and establish a rigorous estimate of the derivatives of \=\omega , \=\theta .

Note that we do not need an approximation term \=\phi 3 for the stream function in
solving the linearized equation in section 3 since we can allow a larger residual error
in section 3.
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STABLE BLOWUP OF 3D EULER EQUATIONS 109

C.1. Representations. In a large domain [0,L]2, we use piecewise polynomials
to represent the solution. First, we choose a large L of order 1015 and then design the
adaptive mesh y - 5 < \cdot \cdot \cdot < y0 = 0< y1 < \cdot \cdot \cdot < yN - 1 =L,N = 748 to partition [0,L].

Adaptive mesh. We design three parts of the mesh yi, i\in Ij \triangleq [aj , bj ], a0 = 0 as
follows:

yi =
i

256
, i= - 5, - 4, . . . ,1, . . . , b1, ya2+i = ya2

+ F (ih3), i= 1, . . . , b2  - a2,

ya3+i = ya3
exp(ir1), i= 1, . . . , b3  - a3, r0 = 1.025, r1 = 1.15

F (z) =
h2
h3
z exp(rz2), r= log

\Bigl( r0
1 + h3

\Bigr) 1

(1 + h3)2  - 1
, h2 =

1

128
, h3 =

1

b2  - a2
.

(C.2)

Since we need to estimate the weighted L\infty norm of the residual error with a
singular weight of order | x|  - \beta , \beta \approx 3 near x= 0, we use a uniformly dense mesh near
0 so that we have a very small residual error. We choose the parameters 1

256 , h2 =
1

128
since they can be represented exactly as floating point numbers. Thus, we can reduce
the round-off error in the computation. In the far-field, we use a mesh that grows
exponentially fast in space. Note that the error estimate f  - I(f) for the kth order
interpolation of f on [yi, yi+1] reads

| f  - I(f)| \leq C(yi+1  - yi)
k| \partial kxf | .

For large x, we expect that \partial kxf has a decay rate | y|  - k - \alpha if | f | \lesssim | y|  - \alpha for \alpha > 0.
Thus, to get a uniformly small error in the far-field, we just require yi+1 - yi

yi
\leq \varepsilon with

\varepsilon < 1. This allows us to choose an exponentially growing mesh in the far-field and
cover a very large domain without using too many points. We use the second part
of the mesh to glue the first part of the mesh, which grows linearly, and the third
part of the mesh. The function F (z) behaves linearly for z close to 0, and it grows
exponentially fast with rate r1 for z close to 1:

F (1 + h3)/F (1) = (1 + h3) exp(r((1 + h3)
2  - 1)) = (1 + h3) exp(log(r0/(1 + h3))) = r0.

Parameters h2, h3 control the mesh size ya2+1  - ya2
= F (h3) = h2 exp(rh

2
3) \approx h2.

One can design another F (z) by gluing the first and the third part of the mesh.
The above explicit and simple form of F (z) serves our purpose. We further glue
yi, i \in [bj , aj+1], j = 1,2, using the Lagrangian interpolation for j = 1. For j = 2, we
interpolate the growth rate using exp(log(r0)l(i) + (1 - l(i)) log(r1)) with l(i) linear
in i \in [b2, a3]. Note that we do not use the specific property of the profile to design
the adaptive mesh (C.2).

In our numerical computation, we compute the derivatives of the solution using
the B-spline basis (see, e.g., (C.6)) and do not use the Jacobian related to the adaptive
mesh. In particular, we do not use derivatives of the map f(i) = yi and have more
flexibility to design the mesh.

Let n1 = 720<N . We solve the dynamic rescaling equation (2.10)--(2.11) on first
n1 \times n1, (yi, yj), i, j \leq n1  - 1 grids. We construct

\=\omega 2(x, y) =
\sum 

0\leq i\leq n1+11, - 2\leq j\leq n1+1

aijB1,i(x)Bj(y),(C.3)

where aij \in \BbbR is the coefficient, and Bi(x),Bj(y) are constructed from the sixth order
B-spline

Bi(x) =CiBi0(x), Bi0(x) =
\sum 

0\leq j\leq k

k
(sij  - x)k - 1

+

dj
, dj =

\prod 
0\leq l\leq k,l \not =j

(sij  - sil),(C.4)
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110 JIAJIE CHEN AND THOMAS Y. HOU

with k = 6. The constant Ci will be chosen in (C.10), (C.11) so that the stiffness
matrix associated to the B-spine basis has a better condition number. We choose sij
as follows:

sij = yi+j - 3, 0\leq j \leq k= 6.

Then the B-spline Bi is supported in [yi - 3, yi+3] and is centered around yi. Since \omega 
is odd in x, to impose this symmetry in the representation, we modify the first few
bases

B1,i(x) =Bi(x) - Bi( - x), i\leq 2.(C.5)

Then Bi is odd. We remark that B1,0(x)\equiv 0.

B-spline and the tensor structure. We also use the B-spline basis to represent
the stream function (C.8) and solve the Poisson equation using the B-spline based
finite element method. We use the B-spline basis since it is easy to design a high
order numerical scheme to solve the Poisson equation. Each basis function in (C.3),
(C.7), (C.8) has the form f(x)g(y), which allows us to evaluate and estimate the 2D
function very effectively using the method in Appendix C.2.2.

Remark C.1. While the method described below to obtain the coefficients ai is
technical, since we perform a posteriori estimates of the profiles and residual error
using the given ai, the method of deriving ai is not involved in the a posteriori
estimates and the verification process.

Extrapolation. Near the boundary y = 0, we need two extra basis functions
ai, - jB - j(y), j = 1,2, that are not zeros in y1 \geq 0. Without these two functions,
the representation (C.3) does not approximate \=\omega with a sixth order error. We use a
seventh order extrapolation [41, 42] to determine ai, - j :

ai, - j =
\sum 

0\leq l\leq 6

C3 - j,l+1ai,l, C1,\cdot = (28, - 112,210, - 224,140, - 48,7),

C2,\cdot = (7, - 21,35, - 35,21, - 7,1).

We choose Cj,l such that the 7th difference of ai,j , - 2\leq j \leq 6 is 0. Since ai, - j depends
on ai,l linearly, we can combine ai, - jBi, - j , j = 1,2 with ai,lBi,l and modify (C.3) as
follows:

\=\omega 2(x, y) =
\sum 

0\leq i,j\leq n1+1

aijB1,i(x)B2,j(y),

B2,j(y) =Bj(y) +C2,j+1B - 1(y) +C1,j+1B - 2(y), 0\leq j \leq 6, B2,j(y) =Bj(y), j \geq 7.

(C.6)

The modified basis functions B1,i,B2,j are still piecewise polynomials in [yl, yl+1].

Far-field extension. In (C.3), (C.6), we use B-spline B1,i(x),Bj(y) up to i, j \leq 
n1 + 1 rather than n1  - 1 since the support of B1,i,Bj intersects [0, yn - 1]

2 for i, j \leq 
n1  - 1. To determine the extra coefficients, we first extend the grid point values
of \omega 2(x, y) from (yi, yj) with i, j \leq n1  - 1 to i, j \leq n1 + l0  - 1 by \omega 2(yn1+l, yj) =
P (yn1+l;yj), l = 0,1, .., l0  - 3, where P is the Lagrangian interpolation polynomials
on (yn1 - 1, \omega (yn1 - 1, yj)), (yn1+l0 - 3,0), (yn1+l0 - 2),0). We impose \omega 2(yn1+l, yj) = 0, l=
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STABLE BLOWUP OF 3D EULER EQUATIONS 111

l0 - 3, l0 - 2, l0 - 1. Similarly, we extend \omega (yi, yn+l). Note that \omega 2 is odd and B1,0 = 0.
We solve the coefficients akl,1\leq k\leq M,0\leq l\leq M from

\omega 2(yp, yq) =
\sum 

1\leq i\leq M,0\leq j\leq M

aijB1,i(x)B2,j(y), 1\leq p\leq M, 0\leq q\leq M, M = n1 + l0  - 1 .

The value a0j is not used since B1,0 \equiv 0. To simplify the notation, we keep it. We only
keep aij , i, j \leq n1 + 1 and obtain (C.6). In practice, we choose l0 = 8, and the above
construction provides a solution with tail decaying smoothly to 0 for | y| \infty \geq yn1+l0 - 1.

To solve the dynamic rescaling equations numerically (2.10)--(2.12) (see section 7
Part I), we update the grid point value of \omega n+1 at time tn+1 and then use the above
method to obtain aij .

For the density \=\theta 2, the representation is similar

\=\theta 2 = x
\sum 

0\leq i,j\leq n1+1

aijB1,i(x)B2,j(y).(C.7)

Here, we multiply x since \=\theta is even and vanishes O(x2) near x= 0.
For the stream function \=\phi N2 (C.1), we choose n2 >n1 and represent it as follows:

\=\phi N2 =
\sum 

0\leq i,j\leq n2 - 1

aij \~B1,i(x) \~B2,j(y)\rho p(y).(C.8)

Instead of using the above extension to determine the extra coefficients, we per-
form an additional extrapolation for the basis in the far-field similarly to (C.6):

\~Bl,j(z) =Bl,j(z), j \leq n2  - 8, \~Bl,j(z) =Bj(z) +C2,n2 - jBn2(z) +C1,n2 - jBn2+1(z).

We multiply \rho p(y) given below to impose the Dirichlet boundary condition

\rho p(y) = arctan(1 + y) - arctan(1).(C.9)

We can obtain the exact formulas of \partial ix\rho p using a symbolic computation. We use
induction to obtain a rigorous estimate of \partial ix\rho p. See section D.3.

We choose Ci in (C.4) of order si,j+1  - si,j as

Ci = y1, i\leq 9, Ci = (si,4  - si,2)/2, i > 9,(C.10)

so that the summand in (C.4) has order 1 for x in the support [yi - 3, yi+3]. When we
need to perform extrapolation for anBn, an+1Bn+1 from aiBi, i \leq n - 1, e.g., (C.8),
we modify the last few terms as follows:

Ci = (yn  - yn - 1)/100, n - 9\leq i.(C.11)

We choose Ci to be constant for i close to 0 or i close to n1 since we need to perform
extrapolation, and the choice of the constant does not affect the extrapolation formula
for aij .

Far-field angular profile. To represent the far-field angular profile of \=\omega 1, \=\theta 1, \=\phi 
N
1

(C.1), we design adaptive mesh 0 = \beta 0 <\beta 1 < \cdot \cdot \cdot <\beta m = \pi /2, and use an eighth order
B-spline to represent \=\omega , \=\zeta =

\=\theta 
x1
,

g(\pi /2 - \beta ) =
\sum 
i\geq 0

biB
(8)
1,i (\beta ), g\phi (\pi /2 - \beta ) = ((\pi /2)2  - \beta 2)

\sum 
i

bi \~B
(8)
i (\beta ), \beta \in [0, \pi /2],
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112 JIAJIE CHEN AND THOMAS Y. HOU

where B
(8)
1,i is an eighth order B-spline (C.4) k= 8 with odd modification (C.5). Since

\=\omega , \=\zeta are odd in x, in the angular direction, this symmetry becomes odd in \beta = \pi /2.
To impose it, we write g in terms of \pi /2 - \beta and modify the first few B-splines Bi

(C.4) following (C.5) so that \~B1,i is odd at \beta = 0. Then g is odd in \beta = \pi /2. The
stream function \=\phi N satisfies the boundary condition \=\phi N (x,0) = 0. For the angular
profile, we need g\phi (0) = 0, and use the weight \pi /2  - \beta to impose this condition.
We further modify a few B-spline B1,i(\beta ) supported near \beta = \pi /2 using a 9th order
extrapolation similar to (C.6) near \beta = \pi /2 and get \~B1,i(\beta ). We choose the mesh \beta i
to be equispaced near \beta = \pi /2 and determine the coefficients for extrapolation similar
to (C.6). We remark that to evaluate the derivative \partial i\beta g at \pi /2 - \beta , we have the sign

( - 1)k

(\partial k\beta g)(\pi /2 - \beta ) = ( - 1)k\partial k\beta g(\pi /2 - \beta ) = ( - 1)k
\sum 

bi\partial 
k
\beta B

(8)
1,i (\beta ).

We discuss how to obtain these angular profiles using the curve fitting in section 7
in [13].

C.2. Estimate of the derivatives of piecewise polynomials. Our approx-
imate steady state in a very large domain is represented as piecewise polynomials.
We discuss how to estimate its derivatives. Suppose that we can evaluate a function
f on finite many points. For example, f is an explicit function or a polynomial. To
obtain a piecewise sharp bound of f on I = [xl, xu], we use the following standard
error estimate:

max
x\in I

| f(x)| \leq max(| f(xl)| , | f(xu)| ) +
h2

8
| | fxx| | L\infty (I), h= xu  - xl.(C.12)

If we can obtain a rough bound for fxx, as long as the interval I is small, i.e., h is
small, the error part is small. Similarly, if we can obtain a rough bound for \partial k+2

x f ,
using induction and the above estimate recursively,

max
x\in I

| \partial ixf(x)| \leq max(| \partial ixf(xl)| , | \partial ixf(xu)| ) +
h2

8
| | \partial i+2

x f | | L\infty (I)

for i= k, k - 1, . . . ,0, we can obtain the sharp bound for \partial ixf on I. We call the above
method the second order method since the error term is second order in h.

C.2.1. Estimate a piecewise polynomial in one dimension. Suppose that
p(x) is a piecewise polynomial on x0 < x1 < \cdot \cdot \cdot < xn with degree d, e.g., Hermite
spline. Denote Ii = [xi, xi+1]. Then p(x) is a polynomial in each Ii with degree \leq d.
Our goal is to estimate \partial kxp(x) in Ii for all k by only finite many evaluations of p(x)
and its derivatives. First, we have

\partial kxp(x) = 0, k > d, \partial dxp(x) = cp,

for some constant cp in Ii. Using induction from k= d - 1, d - 2, . . . ,0, we have

max
x\in Ii

| \partial kxp(x)| \leq max(| \partial kxp(xi)| , | \partial kxp(xi+1)| ) +
h2i
8
| | \partial k+2

x p| | L\infty (Ii), hi = xi+1  - xi.

Since we know \partial d+1
x p(x) = 0 on Ii, using the above method, we can obtain the

sharp piecewise bounds for all derivatives of p(x) on Ii. Using the above approach,
we can estimate the derivatives of the angular profile defined in section 7.1 of Part I
[13] rigorously.
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STABLE BLOWUP OF 3D EULER EQUATIONS 113

C.2.2. Estimate a piecewise polynomial in two dimensions. Now, we
generalize the above ideas to two dimensions so that we can estimate the approximate
steady state (C.6). We assume that p(x, y) is a piecewise polynomial in the mesh
Qij = [xi, xi+1]\times [yj , yj+1] with degree d. That is, in Qij , p(x, y) can be written as a
linear combination of

xkyl, max(k, l)\leq d,

e.g., (C.6). For (C.6), we have d= 5. Similar to the 1D case, we have

\partial kx\partial 
l
yp(x, y) = 0, max(k, l)>d.

Moreover, we know \partial d - 1
x \partial d - 1

y is linear in x, y.
We use the following direct generalization of (C.12) to two dimensions:

max
(x,y)\in Q

| f(x, y| \leq max
\alpha ,\beta =l,u

| f(x\alpha , y\beta )| +
| | fxx| | L\infty (Q)(xu  - xl)

2

8
+

| | fyy| | L\infty (Q)(yu  - yl)
2

8
,

Q= [xl, xu]\times [yl, yu].

(C.13)

Denote

Akl \triangleq max
Qij

| | \partial kx\partial lyp| | L\infty (Qij),Bkl \triangleq max
\alpha ,\beta =l,u

| \partial kx\partial lyp(x\alpha , y\beta )| ,

h1 = xi+1  - xi, h2 = yj+1  - yj .

Since p is given, we can evaluate Bkl. Clearly, we have Akl = 0 for max(k, l)>d. For
k = d - 1, d, using (C.13) and induction on the order l = d, d - 1, d - 2, . . . ,0, we can
obtain

Akl \leq Bkl +
1

8
(h21Ak+2,l + h22Ak,l+2).

This allows us to bound Akl for k = d, d - 1, and all l. Similarly, we can bound Akl

for l= d, d - 1, and all k.
For the remaining cases, we can use induction on n=max(k, l) = d - 2, d - 1, . . . ,0

to estimate

Akl \leq Bkl +
1

8
(h21Ak+2,l + h22Ak,l+2).

This allows us to estimate all derivatives of p(x, y) in Qij .

C.2.3. Estimate a piecewise polynomial in two dimensions with weights.
We consider how to estimate the derivatives of f = \rho (y)p(x, y), where \rho is a given
weight in y and p(x, y) is the piecewise polynomials in two dimensions. For example,
our construction of the stream function (C.8) has such a form. First, we can estimate
the derivatives of p(x, y) using the method in Appendix C.2.2. For the weight \rho , we
estimate its derivatives in section D.3. Then, using the Leibniz rule (A.6) and the
triangle inequality, we can estimate the derivatives f

| \partial ix\partial jyf | \leq 
\sum 
l\leq j

\biggl( 
j

l

\biggr) 
| \partial ix\partial lyp(x, y)| | \partial j - l

y \rho (y)| 

for high enough derivatives.
Now, we plug the above bounds for \partial i+2

x \partial yj , \partial 
i
x\partial 

j+2
y f in (C.13) and evaluate \partial ix\partial 

j
yf

on the grid points to obtain the sharp estimate of \partial ix\partial 
j
yf .
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114 JIAJIE CHEN AND THOMAS Y. HOU

C.3. Estimate of the far-field approximation. We estimate the derivatives
of

g(x, y) = g(r,\beta ) =A(r)B(\beta ), r= (x2 + y2)1/2, \beta = arctan(y/x),

where (r,\beta ) is the polar coordinate. The semianalytic parts of \=\omega , \=\theta have the above
forms.

C.3.1. Formulas of the derivatives of \bfitg . First, we use induction to establish

Fi,j \triangleq \partial ix\partial 
j
yg(r,\beta ) =

\sum 
k+l\leq i+j

Ci,j,k,l(\beta )r
 - i - j+k\partial krA\partial 

l
\beta B(C.14)

with Ci,j,k,l = 0, for k < 0, l < 0, or k + l > i+ j. Let us motivate the above ansatz.
Recall from (B.14) that

\partial x = cos\beta \partial r  - 
sin\beta 

r
\partial \beta , \partial y = sin\beta \partial r +

cos\beta 

r
\partial \beta .

For each derivative \partial x or \partial y, we get the factor
1
r or a derivative \partial r, which leads to

the form r - i - j+k\partial krA. Moreover, we get a derivative \partial \beta and some functions depending
on \beta , which leads to the form Ci,j,k,l(\beta )\partial 

l
\beta B.

For D= \partial x or \partial y, a direct calculation yields

DFi,j =
\sum 

k+l\leq i+j

D(Ci,j,k,lr
 - i - j+k) \cdot \partial krA\partial l\beta B(C.15)

+Ci,j,k,lr
 - i - j+k(D\partial krA \cdot \partial l\beta B + \partial krA \cdot D\partial l\beta B).

Using the formula of \partial x, \partial y, we get

\partial x(Ci,j,k,l(\beta )r
 - i - j+k) = - sin\beta \partial \beta Ci,j,k,lr

 - i - j - 1+k + (k - i - j) cos\beta Ci,j,k,lr
 - i - j - 1+k,

\partial x\partial 
k
rA= cos\beta \partial k+1

r A, \partial x\partial 
l
\beta B = - sin\beta 

r
\partial l+1
\beta B.

Using \partial xFi,j = Fi+1,j and comparing the above formulas and the ansatz (C.14), we
get

Ci+1,j,k,l = (k - i - j) cos\beta Ci,j,k,l  - sin\beta \partial \beta Ci,j,k,l + cos\beta Ci,j,k - 1,l  - sin\beta Ci,j,k,l - 1

(C.16)

for k\leq i+ j. Similarly, for D= \partial y, plugging the identities

\partial y(Ci,j,k,l(\beta )r
 - i - j+k) = cos\beta \partial \beta Ci,j,k,lr

 - i - j - 1+k + (k - i - j) sin(\beta )Ci,j,k,lr
 - i - j - 1+k,

\partial y\partial 
k
rA= sin\beta \partial k+1

r A, \partial y\partial 
l
\beta B =

cos\beta 

r
\partial l+1
\beta B

into (C.15) and then comparing (C.14) and (C.15), we get

Ci,j+1,k,l = (k - i - j) sin\beta Ci,j,k,l + cos\beta \partial \beta Ci,j,k,l + sin\beta Ci,j,k - 1,l + cos\beta Ci,j,k,l - 1.
(C.17)

The based case is given by

F0,0 =A(r)g(\beta ), C0,0,0,0 = 1.

Using induction and the above recursive formulas, we can derive Ci,j,k,l(\beta ) in (C.14).
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STABLE BLOWUP OF 3D EULER EQUATIONS 115

C.3.2. Estimates of \bfitF \bfiti ,\bfitj . To estimate Fi,j , using (C.14) and the triangle in-
equality, we only need to estimate \partial krA,\partial 

l
\beta B(\beta ), and Ci,j,k,l(\beta ). In our case, B(\beta )

is piecewise polynomials, whose estimates follow the method in Appendix (C.2.1).
Function A(r) is some explicit function, which will be constructed and estimated in
section D.1. To estimate Ci,j,k,l(\beta ) on \beta \in [\beta 1, \beta 2], we use the second order estimate
in (C.12) and the induction ideas in section C.2.1. We can evaluate Ci,j,k,l using its
exact formula. It remains to bound \partial 2\beta Ci,j,k,l.

An important observation from (C.16), (C.15) is that Ci,j,k,l is a polynomial on
sin\beta and cos\beta with degree less than i+j, which can be proved easily using induction.
In particular, we can write Ci,j,k,l as follows:

Ci,j,k,l =
\sum 

0\leq k\leq n

ak sin(k\beta ) + bk cos(k\beta ),

f \triangleq \partial 2\beta Ci,j,k,l =
\sum 

1\leq k\leq n

ck sin(k\beta ) + dk cos(k\beta ), n= i+ j,

for some ak, bk, ck, dk \in \BbbR . It is easy to see that Ci,j,k,l is either odd or even in \beta 
depending on j  - l, which implies ck \equiv 0 or dk \equiv 0. Using the Cauchy--Schwarz
inequality, we get

| | f | | \infty \leq 
\sum 

1\leq k\leq n

(| ck| + | dk| )\leq 

\left(  n\sum 
k\leq n

(c2k + d2k)

\right)  1/2

=

\biggl( 
n

\pi 

\int 2\pi 

0

f2
\biggr) 1/2

,

where we have used the orthogonality of sinkx, coskx and | | f | | 2L2 = \pi 
\sum 

k\leq n(c
2
k + d2k)

in the last equality. It is easy to see that f2 is again a polynomial in sin\beta , cos\beta with
degree \leq 2n. We fix M > 2n. For any 0\leq k <M , it is easy to obtain

1

2\pi 

\int 2\pi 

0

eikx =
1

M

M\sum 
j=1

exp
\Bigl( 
i
2kj

M
\pi 
\Bigr) 
= \delta k0.

Using the above identity, we establish

| | g| | 2L2 =
2\pi 

M

M\sum 
j=1

| g
\Bigl( 2j\pi 
M

\Bigr) 
| 2

for any polynomial g in sin\beta , cos\beta with degree <M/2. Hence, we prove

| | f | | \infty \leq 

\Biggl( 
2n

M

M\sum 
k=1

f2
\biggl( 
2j\pi 

M

\biggr) \Biggr) 1/2

.

The advantage of the above estimate is that to obtain the sharp bound of Ci,j,k,l,
we only need to evaluate Ci,j,k,l, f = \partial 2\beta Ci,j,k,l on finite many points.

C.3.3. From polar coordinates to the Cartesian coordinate. We want
to obtain the piecewise estimate of Fp,q = \partial px\partial 

q
y(A(r)g(\beta )) on Qij = [xi, xi+1] \times 

[yj , yj+1],1 \leq i, j \leq n. First, we partition the (r,\beta ) coordinate into r1 < r2 < \cdot \cdot \cdot <
rn1

,0 = \beta 0 < b1 < \cdot \cdot \cdot <\beta n2
= \pi 

2 . Then we apply the methods in section C.3 to bound

Fp,q on Sij \triangleq [ri, ri+1]\times [\beta j , \beta j+1]. We cover Qij by Sk,l and transfer the bound from
(r,\beta ) coordinate to (x, y) coordinate

max
x\in Qij

| Fp,q(x)| \leq max
Sk,l\cap Qij \not =\emptyset 

| | Fp,q(r,\beta )| | L\infty (Sk,l).
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116 JIAJIE CHEN AND THOMAS Y. HOU

For (r,\beta )\in Qi,j , we get

r \in [(x2i + y2j )
1/2, (x2i+1 + y2j+1)

1/2], \beta \in 
\Bigl[ 
arctan

yj
xi+1

, arctan
yj+1

xi

\Bigr] 
.

Therefore, we get the necessary conditions for Qi,j \cap Sk,l \not = \emptyset :

x2i+1 + y2j+1 \geq r2k, x2i + y2i \leq r2u, arctan
yj+1

xi
\geq \beta l, arctan

yj
xi+1

\leq \beta l+1.

Given Qi,j , we maximize | | Fp,q| | L\infty (Sk,l) over (k, l) satisfying the above bounds to
control | | Fp,q| | L\infty (Qi,j).

C.4. Estimates of the residual error. Let \chi \=\varepsilon = 1 + O(| x| 4) be the cutoff
function in (D.6). First, we decompose the error of solving the Poisson equations
\=\varepsilon = \=\omega  - ( - \Delta )\=\phi N as follows:

\=\varepsilon = \=\varepsilon 1 + \=\varepsilon 2, \=\varepsilon 2 = \=\varepsilon xy(0)\Delta 
\Bigl( x3y

2
\chi \=\varepsilon 

\Bigr) 
, u(\=\varepsilon 2) =\nabla \bot ( - \Delta ) - 1\=\varepsilon 2 =

1

2
\=\varepsilon xy(0)\nabla \bot (x3y\chi \=\varepsilon ),

u(\=\varepsilon ) = u(\=\varepsilon 1) + u(\=\varepsilon 2) = uA(\=\varepsilon 1) + (\^u(\=\varepsilon 1) + u(\=\varepsilon 2))\triangleq uA(\=\varepsilon 1) + uloc(\=\varepsilon ),

(C.18)

where \^u is the approximation term for u defined in section 4.3 in Part I [13]. We
perform the above correction near 0 so that \=\varepsilon 1 =O(| x| 3) near 0. We perform a similar
decomposition for (\nabla u)A. Note that we do not have \partial xi

uA = (\partial xi
u)A. Using the

above decomposition and the notation (3.4), we can rewrite the residual error \=\scrF i

(2.14) with rank-one correction as follows:

\=\scrF i  - D2
i
\=\scrF i(0)f\chi ,i = \=\scrF loc,i +\scrB op,i((uA(\=\varepsilon 1), (\nabla u)A(\=\varepsilon 1)), \=W ),

where D2 = (\partial xy, \partial xy, \partial 
2
x) is defined in (3.23) and \=\scrF loc,i is defined below in (C.19).

Since uA(\=\varepsilon 1) = O(| x| 3), (\nabla u)A(\=\varepsilon 1) = O(| x| 2) (see section 4.3 in Part I [13] for these
properties of uA = u - \^u), from (3.4) and (C.18), we get

\scrB op,i((uA(\=\varepsilon 1), (\nabla u)A(\=\varepsilon 1)), \=W ) =O(| x| 3), ux(\=\varepsilon 2)(0) = 0, ux,A(\=\varepsilon 1)(0) = 0.

Using these properties of \scrB op,i, we define \=\scrF loc,i as follows:

\=\scrF loc,i = IIi  - D2
i IIi(0)f\chi ,i, IIi = \=\scrF i  - \scrB op,i((uA(\=\varepsilon 1), (\nabla u)A(\=\varepsilon 1)), \=W ),

u(\=\omega ) = \=u= \=uN + uloc(\=\varepsilon ) + uA(\=\varepsilon 1), \=c\omega = \=cN\omega + ux(\=\varepsilon 1)(0), \=c
N
\omega \triangleq 

\=cl
2
+ \=uNx (0),

c\omega (\=\varepsilon 1)\triangleq ux(\=\varepsilon 1)(0),

II1 = - (\=clx+ \=uN + uloc(\=\varepsilon )) \cdot \nabla \=\omega + \=\theta x + (\=cN\omega + \=c\omega (\=\varepsilon 1))\=\omega ,

II2 = - (\=clx+ \=uN + uloc(\=\varepsilon )) \cdot \nabla \=\theta x + 2(\=cN\omega + \=c\omega (\=\varepsilon 1))\=\theta x  - (\=uNx + ux,loc(\=\varepsilon ))\=\theta x

 - (\=vNx + vx,loc(\=\varepsilon ))\=\theta y,

II2 = - (\=clx+ \=uN + uloc(\=\varepsilon )) \cdot \nabla \=\theta y + 2(\=cN\omega + c\omega (\=\varepsilon 1))\=\theta y  - (\=uNy + uy,loc(\=\varepsilon ))\=\theta x

 - (\=vNy + vy,loc(\=\varepsilon ))\=\theta y,

(C.19)

where f\chi ,i is defined in (D.6), and we have used \=c\theta = \=cl + 2\=c\omega (2.14), (2.11) for \=c\omega .
The above decomposition is essentially the same as (3.12). We apply the functional
inequalities in section 4 to estimate the nonlocal terms uA(\=\varepsilon 1), (\nabla u)A(\=\varepsilon 1), and com-
bine the estimate of \scrB op,i((uA, (\nabla u)A), \=W ) with the energy estimate. See section 5.8
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STABLE BLOWUP OF 3D EULER EQUATIONS 117

in Part I [13] for more details about the decompositions and estimates. The terms IIi
depend on the profile \=\omega , \=\theta , \=\varepsilon locally. Using the decomposition (C.18), we can further
decompose the above IIi as follows:

IIi = IINi + IIi(\=\varepsilon 1) + IIi(\=\varepsilon 2), IIi(\=\varepsilon 1) =\scrB op,i(\^u(\=\varepsilon 1),\widehat \nabla u(\=\varepsilon 1), \=W ),

IIi(\=\varepsilon 2) =\scrB op,i(u(\=\varepsilon 2),\nabla u(\=\varepsilon 2), \=W ),

where IINi contain the terms in IIi except the uloc, u(\=\varepsilon 1) terms.
For \^u(\=\varepsilon 1), it is a finite rank operator on \=\varepsilon 1, and we can write it as

\^u(\=\varepsilon 1) =

n\sum 
i=1

ai(\=\varepsilon 1)\=gi(x)\triangleq Cu0(x)ux(\=\varepsilon 1)(0) + \~\^u(\=\varepsilon 1), ai(\=\varepsilon 1) =

\int 
\BbbR ++

2

\=\varepsilon 1(y)qi(y)dy,

for some functions \=gi(x) and qi(y), where Cu0(x) is given in (4.5), and \~\^u(\=\varepsilon 1) denotes
other modes with O(| x| 3) vanishing order near 0. See section 4.3 in [13] for a definition.
We can obtain more regular estimates, e.g., C3 estimates, of \^u(\varepsilon 1) since \=g1(x) is

smooth. Similarly, we decompose\widehat \nabla u(\=\varepsilon 1). We obtain piecewise estimates of \partial ix\partial 
j
y\=\varepsilon 1, i+

j \leq 1 following the methods in section 3.6 and section 8 in the supplementary material
(supplement.pdf [local/web 1.43MB]) and then the above integrals on \=\varepsilon 1. The main
term in \^u(\=\varepsilon 1) is Cu0ux(0) with

ux(\=\varepsilon 1)(0) = ux(\=\varepsilon )(0) = - 4

\pi 

\int 
\BbbR ++

2

\=\varepsilon (y)
y1y2
| y| 4

dy,

ux(\=\varepsilon 2)(0) = - \varepsilon xy(0)/2 \cdot \partial y(x3y\chi \=\varepsilon )| (0,0) = 0.

(C.20)

Since the kernel y1y2

| y| 4 has a slow decay for large | y| (not in L1), we need to esti-

mate ux(\=\varepsilon )(0) carefully, using Simpson's rule. See section 6.4.2 in the supplementary
material (supplement.pdf [local/web 1.43MB]).

Using the above decomposition, we further decompose \^u(\=\varepsilon 1)

IIi(\=\varepsilon 1)=ux(\=\varepsilon )(0)\scrB op,i

\Bigl( 
Cu0(x),C\nabla u0(x), \=W

\Bigr) 
+\scrB op,i(\widetilde \widehat u,\widetilde \widehat \nabla u, \=W )\triangleq IIi,M (\=\varepsilon 1)+IIi,R(\=\varepsilon 1).

Since D2
i is linear, we estimate each term gi - D2

i gi(0)f\chi ,i for gi = IIi,M (\=\varepsilon 1), IIi,R(\=\varepsilon 1),
IINi , IIi(\=\varepsilon 2) to bound \scrF loc,i. To estimate IIi,R, since \~\^u(\=\varepsilon 1) = O(| x| 3) near 0, (see
section 4.3 in [13]), we get D2

i IIi,R(\=\varepsilon 1) =O(| x| 3) and estimate

\~\^u(\=\varepsilon 1)\rho 10, \partial i\~\^u(\=\varepsilon 1)\rho 20,
\widetilde \widehat \nabla u(\=\varepsilon 1)\rho 20, \partial i

\widetilde \widehat \nabla u(\=\varepsilon 1)\rho 3, \rho 4\~\^u(\=\varepsilon 1)

for \rho i0 (A.2) with \rho i0 \sim | x|  - 4+i, i \leq 3, near 0 using the C3 bounds of \~\^u,
\widetilde \widehat \nabla u. Note

that \partial i\~\^u \not =\widetilde \widehat \partial iu. The former is the derivative of \~\^u, and the latter is the approximation
term for \partial iu. With the above weighted estimate, we can bound a typical term, e.g.,\widetilde \widehat ux\=\theta x\varphi 2 in IIi,R(\=\varepsilon 1)\varphi 2, as follows:\widetilde \widehat ux\=\theta x\varphi 2 =\widetilde \widehat ux\rho 20 \cdot \Bigl( \=\theta x \varphi 2

\rho 20

\Bigr) 
, \partial x(\widetilde \widehat ux\=\theta x)\rho = (\partial x\widetilde \widehat ux\=\theta x +\widetilde \widehat ux\partial x\=\theta x)\rho 

= \partial x\widetilde \widehat ux\rho 3 \cdot \=\theta x\rho 
\rho 3

+\widetilde \widehat ux\rho 20 \cdot \partial x\=\theta x\rho 
\rho 20

,

where \varphi 2 is given in (A.2). Each term A,B in the above products A \cdot B is regular and
we estimate each term and then the product to bound weighted L\infty and C1 norm of
IIi,R(\=\varepsilon 1).
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118 JIAJIE CHEN AND THOMAS Y. HOU

The remaining part in IINi , IIi,M (\=\varepsilon 1), IIi(\=\varepsilon 2) depends on (\=\phi N , \=\omega , \=\theta ) locally and
they are given functions. To estimate the weighted L\infty and C1/2 norms of gi  - 
D2

i gi(0)f\chi ,i = O(| x| 3) with g = IIi,M (\=\varepsilon 1), IIi(\=\varepsilon ), we follow the methods in sec-
tions 3.6, 3.7 with \partial t\=\omega = \partial t\=\theta = 0.

Estimate in the far-field. Since \=\omega , \=\theta are supported globally, we need to estimate
the error in the far-field. Recall the formulas of \=\omega , \=\omega 1, \=\theta , \=\theta 1 from (C.1). We consider
| x| \infty \geq R1 \geq 1012 > 10a2 beyond the support of \=\omega 2, \=\theta 2, \=\phi 

N
2 ,

\=\phi N3 ,
\=\phi Ncor (C.1) so that

\chi (r) = 1 (D.4) and

\=\omega = \=\omega 1 = \=g1(\beta )r
\=\alpha 1 , \=\theta = \=\theta 1 = r1+2\=\alpha 1\=g2(\beta ), \=\phi N = \=\phi N1 = r2+\=\alpha 1 \=f(\beta ).

We estimate the angular derivatives of f(\beta ), gi(\beta ) using the methods in section C.2.1.
Using the above representation, x\cdot \nabla r\beta = r\partial rr

\beta = \beta r\beta , x\cdot \nabla (\partial \=\theta 1) = 2\=\alpha 1(\partial \=\theta 1), x\cdot \nabla \=\omega 1 =
\=\alpha 1\=\omega 1, \=c\omega = \=cN\omega + \=c\=\varepsilon \omega (3.11), and separating uN and uloc in (C.19), for | x| \infty \geq 1012, we
obtain

\=\scrF loc,1 =
\Bigl( 
(\=cN\omega  - \=cl \=\alpha 1)\=\omega 1  - \=uN \cdot \nabla \=\omega 1 + \=\theta 1,x

\Bigr) 
+ \=c\varepsilon \omega \=\omega 1  - uloc \cdot \nabla \=\omega 1 \triangleq I11 + I12,

\=\scrF loc,2 =
\Bigl( 
(2\=cN\omega  - 2\=cl \=\alpha 1)\=\theta 1,x  - \partial x(\=u

N \cdot \nabla \=\theta 1)
\Bigr) 

+ 2\=c\varepsilon \omega 
\=\theta 1,x  - uloc \cdot \nabla \=\theta 1,x  - ux,loc\=\theta x  - vx,loc\=\theta y \triangleq I21 + I22,

\=\scrF loc,3 =
\Bigl( 
(2\=cN\omega  - 2\=cl \=\alpha 1)\=\theta 1,y  - \partial x(\=u

N \cdot \nabla \=\theta 1)
\Bigr) 

+ 2\=c\varepsilon \omega 
\=\theta 1,y  - uloc \cdot \nabla \=\theta 1,y  - uy,loc\=\theta x  - vy,loc\=\theta y \triangleq I31 + I32,

where we have simplified uloc(\=\varepsilon ) as uloc and used f\chi ,i = 0 (D.6), \=\scrF loc,i = IIi (C.19)
since f\chi ,j is supported near 0. The terms I11, I21, I31 are local with the form r\gamma q(\beta )
for some angular function q and decay rate \gamma . We estimate their piecewise L\infty and
derivative bounds using (B.14). From our choice of \=\alpha 1 (C.1), \=cN\omega  - \=cl \=\alpha 1 is very small.
Thus the first term in I11, I21, I31 is small. The second term in I11, I21, I31 has faster
decay rates r2\=\alpha 1 , r3\=\alpha 1 and is also very small.

Estimate of the velocity approximation. From (C.18), since \=\varepsilon 2 is supported
near 0, we get uloc = \^u(\varepsilon 1). For Ij2 in the above decomposition in the far-field, it
remains to estimate

\=ce\omega \=\omega  - \^u(\=\varepsilon 1) \cdot \nabla \=\omega , 2\=ce\omega 
\=\theta x - \^ux(\=\varepsilon 1) \cdot \nabla \=\theta  - \^u(\=\varepsilon 1) \cdot \nabla \=\theta x, 2\=c

e
\omega 
\=\theta y - \^uy(\=\varepsilon 1) \cdot \nabla \=\theta  - \^u(\=\varepsilon 1) \cdot \nabla \=\theta x.

(C.21)

Note that c\omega (\=\varepsilon 1) = c\omega (\=\varepsilon ) (C.20) and c\omega (\=\varepsilon ) = \=ce\omega in our notation. For any a \in \BbbR , we
estimate

A(f, g) = ag - \^u(f) \cdot \nabla g, Bi(f, g) = 2a\partial ig - \^u(f) \cdot \nabla \partial ig - \widehat \partial iu(f) \cdot \nabla g, i= 1,2,

for | x| \infty \geq R1. From sections 4.3.2--4.3.3 in Part I [13], for | x| \infty \geq R1, \^u,\widehat \nabla u reduce
to

\^u(f) = x1Ifar(f), \^v(f) = - x2Ifar(f), \widehat \partial 1u(f) = Ifar(f), \widehat \partial 2v(f) = - Ifar(f),

\widehat \partial 2u(f) = \widehat \partial 1v(f) = 0, Ifar(f)\triangleq  - 4

\pi 

\int 
max(y1,y2)\geq Rn

y1y2
| y| 4

\omega (y)dy,
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STABLE BLOWUP OF 3D EULER EQUATIONS 119

where Rn = 1024 \cdot 64hx is the largest threshold. Denote b = Ifar(f). A direct
calculation yields

A(f, g) = (a - b)g+ b(g - x1\partial 1g+ x2\partial 2g),

B1(f, g) = 2a\partial 1g - b\partial 1g - bx1\partial 11g+ bx2\partial 12g

= (2a - 2b)\partial 1g+ b(\partial 1g - x1\partial 11g+ x2\partial 12g),

B2(f, g) = 2a\partial 2g+ b\partial 2g - bx1\partial 12g+ bx2\partial 22g

= (2a - 2b)\partial 2g+ b(3\partial 1g - x1\partial 11g+ x2\partial 12g).

(C.22)

Therefore, we only need to bound the functions following section C.2, e.g., g - x1\partial 1g+
x2\partial 2g and g, and the functional b(f) and a. We apply these estimates for (C.21) with
a= \=ce\omega , f = \=\varepsilon 1, g= \=\omega , \=\theta .

Appendix D. Estimate of explicit functions. In this section, we estimate
the derivatives of several explicit or semiexplicit functions using induction, including
several cutoff functions used in the estimates and the weight in the stream function
(C.8).

D.1. Estimate of the radial functions.

D.1.1. Estimate of the cutoff function. We estimate the derivatives of the
cutoff function

\chi e(x) =
\Bigl( 
1 + exp

\Bigl( 1
x
+

1

x - 1

\Bigr) \Bigr)  - 1

,(D.1)

where e is short for exponential. In our verification, it involves high order derivatives
of \chi e. Although \chi e is explicit, its formula is complicated and is difficult to estimate.
Instead, we use the structure of \partial ix\chi e and induction to estimate \partial ix\chi e. Denote

p(x) =
1

x
+

1

x - 1
, f =

1

1+ x
, \chi e = f(ep).

First, we use induction to derive

dkx\chi e =

k\sum 
i=1

(\partial if)(ep)eipQk,i(x),

where Qk,i = 0 for i > k, i < 0. A direct calculation yields

\partial 

k\sum 
i=1

\partial ifeipQk,i(x) =

k\sum 
i=1

(\partial i+1f)(ep) \cdot p\prime epeipQk,i + (\partial if)\partial x(e
ipQk,i)

=

k\sum 
i=1

(\partial i+1f)(ep) \cdot e(i+1)pp\prime Qk,i + (\partial if)eip(ip\prime Qk,i +Q\prime 
k,i).

Comparing the above two equations, we derive

Qk+1,i = p\prime Qk,i - 1 + ip\prime Qk,i +Q\prime 
k,i.

The first few terms in Qk,i are given by

Q0,0 = 1, Q1,1 = p\prime , Q1,0 = 0.
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120 JIAJIE CHEN AND THOMAS Y. HOU

It is not difficult to see that Qk,i is a polynomial of \partial jxp, j \leq k with nonnegative
coefficients. We derive the expression of Qk,i in terms of \partial jxp, j \leq k symbolically.
Thus, using the triangle inequality, we only need to bound \partial jxp. We have

| \partial nxp(x)| = n!| x - n - 1 + (x - 1) - n - 1| \leq n!(| z|  - n - 1 + 2n+1), z =min(| x| , | 1 - x| ).

If n is even, x - n - 1 and (x - 1) - n - 1 have a different sign, and we get a better estimate,

| \partial nxp(x)| \leq n!max(| x|  - n - 1, | x - 1|  - n - 1) = n! \cdot z - n - 1.

Substituting the above bounds into the formula of Qk,i, we can obtain the upper
bound Qu

k,i(x) for Qk,i(x), which is a polynomial of z - 1 with positive coefficient. Since

each term in Qk,i is given by ci1,i2,..,im
\prod m

j=1 \partial 
ij
x p with

\sum 
ij = k, the above estimate

implies \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ci1,i2,..,im
m\prod 
j=1

\partial ijx p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq ci1,i2,..,im

m\prod 
j=1

ij !(| z|  - ij - 1 + 2ij+1).

Since m \leq k, the highest order of z - 1 in the upper bound is bounded by 2k. Thus,
we obtain that Qu

k,i is a polynomial in z - 1 with degQu
k,i \leq 2k. Next, we bound

| eipQk,i| \leq eipQu
k,i.

For k \leq 20, x \geq 1  - 1
2k \geq 1

2 , z
 - 1 = | x  - 1|  - 1 \geq 2k, a direct calculation implies that

eip(x)Qu
k,i(x) is decreasing. In fact, for l\leq 2k, we have z = | x - 1| = 1 - x and

\partial x(exp(ip(x))(1 - x) - l) = exp(ip(x))(ip\prime (1 - x) - l + l(1 - x) - l - 1)

= exp(ip(x))
\Bigl( 
 - i

x2
 - i

(x - 1)2
+ l(1 - x) - 1

\Bigr) 
(1 - x) - l \leq 0.

In the last inequality, we have used  - i
1 - x + l\leq  - 2ki+ 2k\leq 0.

Note that | (\partial ixf)(ep)| = i!| (1 + ep) - i - 1| \leq i!. Thus, for x \in [xl, xu] with xl close
to 1, we get

| \partial kx\chi e(x)| \leq 
k\sum 

i=1

| (\partial if)(ep)| eip(x)Qu
k,i(x)\leq 

k\sum 
i=1

i!
eip(x)

(1 + ep)i+1
Qu

k,i(x)

\leq 
k\sum 

i=1

i!eip(xl)Qu
k,i(xl).

For x away from 1, we use monotonicities of p,Qu and the above estimate to esti-
mate piecewise bounds of \partial kx\chi e(x). Using the above derivatives bound, the symbolic
formula of \partial kx\chi e, and the refined second order estimate in section C.2.1, we can obtain
sharp bounds for \partial kx\chi e. Note that we only apply the above estimate to k\leq 15.

D.1.2. Estimate of polynomial decay functions. For cutoff function \chi e(
| x|  - a

b )
based on the exponential cutoff function (D.1), it has rapid change from | x| \leq a to
| x| \geq a + b, which is not very smooth in the computational domain if there is not
enough mesh for x with a\leq | x| \leq b. We apply these cutoff functions to the far-field,
e.g., | x| \geq 10, where the mesh is relatively sparse. Thus, we need another function sim-
ilar to a cutoff function that has a slower change than the exponential cutoff function.
We consider

\chi (x) =
x7

(1 + x2)7/2
, x\in \BbbR +,(D.2)
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STABLE BLOWUP OF 3D EULER EQUATIONS 121

and will use its rescaled version, e.g., \chi (x - a
b ), in our verification.

First, we use induction to derive

\partial kx\chi =
pk(x)

(1 + x2)7/2+k
, p0 = x7,

where pk(x) is a polynomial. A direct calculation yields

\partial k+1
x \chi =

p\prime k(x)(1 + x2) - ( 72 + k) \cdot 2xpk(x)
(1 + x2)7/2+k+1

.

Comparing the above two formulas, we get

pk+1 = p\prime k(1 + x2) - (7 + 2k)xpk(x).

The first few terms are given by p0 = x7, p1 = 7x6. Using the recursive formula
and deg p1 = 6, we get

deg pk+1 \leq deg pk + 1, deg pk \leq k+ 5, k\geq 1.(D.3)

Since pk is a polynomial, the above recursive formula shows that pk+1 is also a
polynomial.

To estimate \partial kx\chi , we decompose pk into the positive and the negative parts.
Suppose that pk =

\sum 
i aix

i. We have

pk = p+k  - p - k , p+k =
\sum 

a+i x
i, p - k =

\sum 
a - i x

i.

For x\geq 0, p+k , p
 - 
k are increasing. Thus, for x\in [xl, xu], we get

| \partial kx\chi | \leq 
max(p+k (xu) - p - k (xl), p

 - 
k (xu) - p+k (xl))

(1 + x2l )
7/2+k

.

Next, we estimate \partial kx\chi for large x. For x\geq 2, k\geq 1 and any polynomial q(x) with
nonnegative coefficients and deg q\leq k+ 5, we get

xq\prime \leq (k+ 5)q,
q\prime (1 + x2)

(7 + 2k)xq
\leq (1 + x2)(k+ 5)

(7 + 2k)x2
\leq 5(k+ 5)

4(7 + 2k)
< 1.

The first inequality follows by comparing the coefficients of xq\prime and (k+5)q, which
are nonnegative. It follows that

\partial x
q

(1 + x2)7/2+k
=
q\prime (1 + x2) - (7/2 + k)2xq

(1 + x2)7/2+k+1
\leq 0, k\geq 1, x\geq 2.

Thus q
(1+x2)7/2+k is decreasing. For k \geq 1 and x \geq xl \geq 2, using (D.3) and the

monotonicity, we get

| \partial kx(x)| \leq 
p+k (x) + p - k (x)

(1 + x2)7/2+k
\leq 
p+k (xl) + p - k (xl)

(1 + x2l )
7/2+k

.

For k = 0, the estimate is trivial: \chi (x) \leq 1. Using these higher order derivative
bounds, we can use the discrete values of \partial kx\chi and the bound for \partial k+2

x \chi to obtain
sharp bounds of \partial kx\chi .

Note that \chi 1(x - a) =
(x - a)7+

(1+(x - a)2)7/2
is only C6,1. Suppose that a \in [xl, xu]. Since

\chi 1 is smooth on x\leq a and on x\geq a, we can still use a first order estimate to estimate
\partial kx\chi 1 as follows:

| \partial kx\chi 1(x)| \leq max
\alpha \in \{ l,u\} 

| \partial kx\chi 1(x\alpha )| +max(| | \partial k+1
x \chi 1| | L\infty ][xl,a]| | \partial 

k+1
x \chi 1| | L\infty ][a,xu])| xu  - xl| .
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122 JIAJIE CHEN AND THOMAS Y. HOU

D.1.3. Radial cutoff function. Now, we construct the radial cutoff functions
for the far-field approximation terms of \omega and \phi as follows:

\chi (r) = \chi 1(1 - \chi 2) + \chi 2, \chi 1(r) = \chi rati

\Biggl( 
r - a1

l
1/2
1

\Biggr) 
, \chi 2(r) = \chi exp

\Bigl( r - a2
9a2

\Bigr) 
,

a1 = 10, l1 = 50000, a2 = 105,

(D.4)

where \chi exp and \chi rati are defined in (D.1) and (D.2), respectively. Using the estimates
of \chi rati, \chi exp established in the last two sections, the Leibniz rule (A.6), and (C.12),
we can evaluate \chi on the grid points and estimate its derivative bounds.

D.2. Cutoff function near the origin. For the cutoff function \kappa (x) used in
section 3, we choose it as follows:

\kappa (x;a, b) = \kappa 1

\Bigl( x
a

\Bigr) \Bigl( 
1 - \chi e

\Bigl( x
b

\Bigr) \Bigr) 
, \kappa 1(x) =

1

1+ x4
, \kappa \ast (x) = \kappa 

\Bigl( 
x;

1

3
,
3

2

\Bigr) 
,(D.5)

where \chi e is the cutoff function chosen in (D.1). We mostly use the cutoff \kappa \ast . Since
\chi e(y) = 1 for y \geq 1 and \chi e(y) = 0 for y \leq 0, the above cutoff function is supported in
x\leq a2. Using Taylor expansion, we have the following properties for \kappa :

\kappa 1(x/a1) = 1+O(x4), \kappa (x) = 1+O(x4).

For the cutoff functions \chi NF in section 4.2.1 in Part I [13], \chi \=\varepsilon in (C.18), and \chi \^\varepsilon 

in (3.42), we choose

\chi \=\varepsilon (x, y) = \kappa (x;\nu \=\varepsilon ,1, \nu \=\varepsilon ,2)\kappa (y;\nu \=\varepsilon ,1, \nu \=\varepsilon ,2), \nu \=\varepsilon ,1 = 1/192, \nu \=\varepsilon ,2 = 3/2,

\chi \^\varepsilon (x, y) = \kappa \ast (x)\kappa \ast (y), \chi NF (x, y) = \kappa (x; 2,10)\kappa (y; 2,10),

f\chi ,1 =\Delta 
\Bigl( xy3

6
\chi NF (x, y)

\Bigr) 
, f\chi ,2 = xy\chi NF (x, y), f\chi ,3 =

x2

2
\chi NF (x, y).

(D.6)

For the cutoff function in the stream function (C.1), we choose

\chi \phi = \kappa 2

\Bigl( x

\nu 4,1

\Bigr) \Bigl( 
1 - \chi e

\Bigl( x

\nu 4,2

\Bigr) \Bigr) 
, \kappa 2(x) =

1

1+ x2
, \nu 4,1 = 2, \nu 4,2 = 128.(D.7)

For \kappa 1(x), \kappa 2(x), we use induction to obtain

\partial kx\kappa 1(x) =
P+
k (x) - P - 

k (x)

(1 + x4)k+1
, \partial kx\kappa 2(x) =

R+
k (x) - R - 

k (x)

(1 + x2)k+1

for some polynomials P\pm 
k ,R

\pm 
k with nonnegative coefficients, and the same method as

that in section D.1.2 to estimate the derivatives of \partial ix\kappa 1(x). The estimate of \kappa 1 is
simpler since \kappa 1 has a simpler form. Using the Leibniz rule (A.6) and the triangle
inequality, we can obtain estimate \partial lx\kappa 1(x) in [a, b]. Then we use these derivative
estimates for \partial l+2

x \kappa 1(x), evaluate \kappa (x;a1, a2) on the grid points, and then use (C.12)
to obtain a sharp estimate of \partial lx\kappa 1(x) on [a, b]. The same method applies to estimate
\kappa 2, \chi \phi .

For large x, e.g., x\geq 100, the above estimates can lead to a very large round off
error. Instead, for a\geq 2, a\in \BbbZ +, we use the Taylor expansion

Fa =
1

1+ xa
=
\sum 
k\geq 0

( - 1)kx - a(k+1), \partial ixFa =
\sum 
k\geq 0

( - 1)k+iCi,kx
 - a(k+1) - i,

Ci,k =
\prod 

0\leq j\leq i - 1

(a(k+ 1) + j).
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STABLE BLOWUP OF 3D EULER EQUATIONS 123

We want to bound | \partial ixFa| \leq Ci,0(1+C\varepsilon )x
 - a - i for x\geq xl = 100, i\leq 20. For k\leq 20, we

bound

Ci,kx
 - a(k+1) - i \leq Ci,kx

 - (a - 1)k
l x - a - i - k \leq Ci,0\varepsilon 

 - a - i - k
1 , \varepsilon 1 \triangleq max

i\leq 20,k\leq 20
x
 - (a - 1)k
l Ci,kC

 - 1
i,0 .

For the tail part k > 20, we consider G(k) = k logx - i log(1+ k). Since x> 21, i\leq 20,
we get

\partial kG= logx - i

1 + k
\geq logx - 1> log 4 - 1> 0, G(k)\geq G(21) = 21 logx - i log 21> 0.

It follows that xk > (1 + k)i. Using a(k+1)+j
a+j \leq 1 + k,Ci,k \leq Ci,0(1 + k)i, and a \geq 2,

we further get

Ci,kx
 - a(k+1) - i \leq x - k - a - iCi,kx

 - k \leq x - k - a - iCi,0(1 + k)ix - k \leq Ci,0x
 - k - a - i, k > 20.

Combining the above estimates and x\geq xl > 10, we obtain

| \partial ixFa| \leq Ci,0x
 - a - iCa,

Ca \leq 1 + \varepsilon 1

20\sum 
k=1

x - k +
\sum 
k\geq 21

x - k \leq 1 +
\varepsilon 1x

 - 1

1 - x - 1
+

x - 21

1 - x - 1
\leq 1 +

\varepsilon 1
xl  - 1

+ x - 20
l .

D.3. Estimate of \bfitrho \bfitp (\bfity ). We estimate the weight \rho p(y) (C.9) in the repre-
sentation of the stream function. Using symbolic computation, e.g., MATLAB or
Mathematica, we get

\partial 9x\rho p(y) =
f2(y) - f1(y)

(g(y))9
, g(y) = 2+ 2y+ y2,

f1 = 288y2 + 672y3 + 504y4, f2 = 16+ 168y6 + 72y7 + 9y8.

Since f1, f2, g\geq 0 are increasing in y\geq 0, for y \in [yl, yu], we get

| \partial 9x\rho p(y)| \leq 
max(f2(yu) - f1(yl), f1(yu) - f2(yl)

(g(yl))9
.

We have a trivial estimate similar to (C.12)

max
x\in I

| f(x)| \leq max(| f(xl)| , | f(xu)| ) +
h

2
| | fx| | L\infty (I),(D.8)

which is useful if we do not have a bound for fxx.
Based on the above estimates, using the estimates (C.12), (D.8), ideas in sec-

tion C.2.1, and evaluating \rho p on some grid points, we can obtain piecewise sharp
bounds for \partial ix\rho p for i\leq 8.

Appendix E. Piecewise \bfitC 1/2 and Lipschitz estimates. In this section, we
estimate the piecewise C1/2 bound and Lipschitz bound for a function.

E.1. H\"older estimate of the functions. In the following two sections, we
estimate the H\"older seminorms [f ]

C
1/2
x

or [f ]
C

1/2
y

of some function f , e.g., f = (\partial t  - 
\scrL )\widehat W in (3.28), based on the previous L\infty estimates. We will develop two approaches.

Below, we will assume x, y \in \BbbR ++
2 since our functionf(x) defined on x\in \BbbR +

2 (x2 \geq 0)
is either even or odd in x1 and we can reduce essentially all estimates to the case of
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124 JIAJIE CHEN AND THOMAS Y. HOU

\BbbR 2
++ using symmetry. Suppose that we have bounds for \partial xf, \partial yf , and f . First, we

consider the C
1/2
x estimate. For x1 < y1 and x2 = y2, we have

I =
| f(x) - f(y)| 
| x - y| 1/2

\leq | x - y| 1/2 1

| x - y| 

\int y1

x1

| fx(z1, x2)| dz1.

We further bound the average of fx piecewisely using the method in Appendix E.2 to
obtain the first estimate. We have a second estimate

| I| =
\bigm| \bigm| \bigm| \int y1

x1

fx(z1, x2)dz
\bigm| \bigm| \bigm| \cdot 1

| x - y| 1/2
\leq | | fxx1/2| | \infty 

\int y1

x1

z
 - 1/2
1 dz1 \cdot 

1

| x - y| 1/2

\leq | | fxx1/2| | \infty 2
y
1/2
1  - x

1/2
1

| x - y| 1/2
= | | fxx1/2| | \infty 

2
\surd 
y1  - x1\surd 

x1 +
\surd 
y1
.

We also have a trivial L\infty estimate

| I| \leq | | fx - 1/2
1 | | \infty 

x
1/2
1 + y

1/2
1

| x - y| 1/2
, | I| \leq | | f | | \infty 

2

| x - y| 1/2
.

Similar L\infty and Lipschitz estimates apply to | | f | | 
C

1/2
y

.

Near the origin, optimizing the above estimates, for x2 = y2, we obtain\bigm| \bigm| \bigm| f(x) - f(y)

| x - y| 1/2
\bigm| \bigm| \bigm| \leq min(| | fxx1/2| | \infty 2t, | | fx - 1/2

1 | | \infty t - 1), t=

\surd 
y1  - x1\surd 
x1 +

\surd 
y1
.

In the Y -direction, x1 = y1, x2 \leq y2, and we use

IY =
\bigm| \bigm| \bigm| f(x) - f(y)

| x - y| 1/2
\bigm| \bigm| \bigm| \leq 1

| x2  - y2| 1/2

\int y2

x2

| fy(x1, z2)| | z| 1/2 \cdot | z|  - 1/2dz2

\leq | | fy| x| 1/2| | \infty 
| x2  - y2| 1/2

| x| 1/2
\triangleq At,

IY \leq (| f(x)x1| + | f(y)x1| 1/2)
\Bigl( x1
| x| 

\Bigr) 1/2
\cdot | x| 1/2

| x2  - y2| 1/2
\triangleq Bt - 1,

t\triangleq 
| x2  - y2| 1/2

| x| 1/2
, IY \leq min(At,Bt - 1).

Since x1 \leq | x| , A,B are not singular near x= 0. We derive the piecewise bounds for
A,B and then optimize two estimates to estimate IY .

From the above estimates, to obtain a sharp H\"older estimate of f , we estimate
the piecewise bounds of f, fx

 - 1/2
1 , f | x|  - 1/2, fx, fy, fx| x1| 1/2, fy| x| 1/2, which are lo-

cal quantities. These estimates can be established using the piecewise bounds of
\partial ix\partial 

j
yf and the methods in section 8 in the supplementary material (supplement.pdf

[local/web 1.43MB]).

E.1.1. The second approach of H\"older estimate. We develop an additional
approach to estimate I(f) = | f(x) - f(z)| 

| x - z| 1/2 that is sharper if | x - z| is not small and f is

smooth. We need the grid point values and derivative bounds of f .
We estimate I(f) = | f(x) - f(z)| 

| x - z| 1/2 for x \in [xl, xu], z \in [zl, zu]. Denote by \^f the linear

approximation of f with \^f(xi) = f(xi) on the grid point xi. We have the following
lemma.
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STABLE BLOWUP OF 3D EULER EQUATIONS 125

Lemma E.1. Suppose that f is linear on [xl, xu], [zl, zu] and xl \leq xu \leq zl \leq zu.
Then we have

max
x\in [xl,xu],z\in [zl,zu]

| f(x) - f(z)| 
| x - z| 1/2

= max
\alpha ,\beta \in \{ l,u\} 

| f(x\alpha ) - f(z\beta )| 
| x\alpha  - z\beta | 1/2

.

The above lemma shows that for the linear interpolation of f , the maximum of
the Holder norm is achieved at the grid point.

Proof. Denote byM the right hand side in the lemma. Clearly, it suffices to prove
that the left hand side is bounded by M . We fix x\in [xl, xu], z \in [zl, zu]. Suppose that

x= alxl + auxu, z = blzl + buzu, au + al = 1, bl + bu = 1

for al, bl \in [0,1]. Denote

m\alpha \beta = a\alpha b\beta , \alpha ,\beta \in \{ l, u\} .

Since f(x) is linear on [xl, xu] and [zl, zu], we get

f(x) = alf(xl) + auf(xu), f(z) = blf(zl) + buf(zu).

For any function g linear on [xl, xu], [zl, zu], e.g., g(x) = 1, g(x) = x, g(x) = f(x),
we have

g(x) =
\sum 

\alpha ,\beta \in \{ l,u\} 

m\alpha \beta g(x\alpha ), g(z) - g(x) =
\sum 

\alpha ,\beta \in \{ l,u\} 

m\alpha \beta (g(z\beta ) - g(x\alpha )).(E.1)

Using the above identities and the triangle inequality and the definition of M , we
get

| f(x) - f(z)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\alpha ,\beta \in \{ l,u\} 

m\alpha \beta (f(x\alpha ) - f(z\beta ))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 

\alpha ,\beta \in \{ l,u\} 

m\alpha \beta M | x\alpha  - z\beta | 1/2.

Using the Cauchy--Schwarz inequality, | x\alpha  - z\beta | = z\beta  - x\alpha , and (E.1), we establish

| f(x) - f(z)| \leq 
\sum 

\alpha ,\beta \in \{ l,u\} 

m\alpha \beta 

\sum 
\alpha ,\beta \in \{ l,u\} 

m\alpha \beta M | x\alpha  - z\beta | 1/2 =
\sum 

\alpha ,\beta \in \{ l,u\} 

m\alpha \beta M | x\alpha  - z\beta | 1/2

=M

\left(  \sum 
\alpha ,\beta \in \{ l,u\} 

m\alpha \beta (z\beta  - x\alpha )

\right)  1/2

=M(z  - x)1/2.

The desired result follows.

We generalize Lemma E.1 to two dimensions as follows.

Lemma E.2. Let Ix = [xl, xu], Iz = [zl, zu], Iy = [yl, yu] with xl \leq xu \leq zl \leq zu.
Suppose that f is linear on Ix \times Iy and Iz \times Iy. Then we have

max
x\in Ix,z\in Iz,y\in Iy

| f(x, y) - f(z, y)| 
| x - z| 1/2

= max
\alpha ,\beta ,\gamma \in \{ l,u\} 

| f(x\alpha , y\gamma ) - f(z\beta , y\gamma )| 
| x\alpha  - z\beta | 1/2

.
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126 JIAJIE CHEN AND THOMAS Y. HOU

Proof. Note that the function I(x, z, y) = f(x,y) - f(z,y)
| x - z| 1/2 is linear in y. We get

| I(x, z, y| =max(| I(x, z, yl)| , | I(x, z, yu)| ).

Applying Lemma E.1 completes the proof.

Let \^f be the linear interpolation of f . Suppose that x \in Ix, z \in Iz, y \in Iy with
xu \leq zl. Using the above estimates and notation, we can bound I(f) as follows:

I(f) =
| f(z, y) - f(x, y)| 

| x - z| 1/2

\leq | \^f(x, y) - f(x, y)| + | \^f(z, y) - f(z, y)| 
| x - z| 1/2

+ max
\alpha ,\beta ,\gamma \in \{ l,u\} 

| f(x\alpha , y\gamma ) - f(z\beta , y\gamma )| 
| x\alpha  - z\beta | 1/2

\leq 

\Biggl( 
h2x
8
| | fxx| | Ix\times Iy +

h2y
8
(| | fyy| | Ix\times Iy + | | fyy| | Iz\times Iy ) +

h2z
8
| | fxx| | Iz\times Iy

\Biggr) 
\times | x - z|  - 1/2 +M.

E.2. Piecewise derivative bounds. In this section, we discuss how to obtain
the sharp bound of p(b) - p(a)

b - a using piecewise derivative bounds of p.
Suppose that | p\prime (y)| \leq Ci, y \in Ii = [yi, yi+1]. For any a \in Ik, b \in Il, a < b, we have

the bound

| p(b) - p(a)| \leq 
\int b

a

| p\prime (y)| dy\leq | yk+1  - a| Ck + | b - yl| Cl+
\sum 

k+1\leq m\leq l - 1

Cm(ym+1  - ym)

= (yk+1  - a)Ck + (b - yl)Cl +Mkl(yl  - yk+1)1l\geq k+1,

where Mkl is defined below:

Mkl = | yl  - yk+1|  - 1

\left(  \sum 
k+1\leq m\leq l - 1

Cm| ym+1  - ym| 

\right)  .(E.2)

Next, we want to bound | p(b) - p(a)| 
| b - a| . If l - k\leq 1, we get

| p(b) - p(a)| \leq (b - a)max(Ck,Cl).

Otherwise, if l\geq k+ 2, we have

| p(b) - p(a)| \leq (yk+1  - a)(Ck  - Mkl) + (b - yl)(Cl  - Mkl) +Mkl(b - a).

Since yk+1 - a
b - a is decreasing in a and b, b - yl

b - a is increasing in b and a, we get

0\leq yk+1  - a

b - a
\leq yk+1  - yk

yl  - yk
, 0\leq b - yl

b - a
\leq yl+1  - yl
yl+1  - yk+1

.

Using the above estimates, for a\in Ik, b\in Il, we obtain

| p(b) - p(a)| 
| b - a| 

\leq max(Ck  - Mkl,0)
yk+1  - yk
yl  - yk

+max(Cl  - Mkl,0)
yl+1  - yl
yl+1  - yk+1

+Mkl.

(E.3)
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STABLE BLOWUP OF 3D EULER EQUATIONS 127

For uniform mesh, i.e., yi+1 - yi = h, we can simplify the above estimate as follows:

| p(b) - p(a)| 
| b - a| 

\leq (max(Ck  - Mkl,0) +max(Cl  - Mkl,0))

l - k
+Mkl,

Mkl =
1

l - k - 1

\sum 
k+1\leq m\leq l - 1

Cm.

The same argument applies to obtain piecewise bounds of J(a, b) = p(b) - p(a)
b - a .

We use piecewise upper bounds p\prime (y) \leq Ci, y \in Ii = [yi, yi+1] and obtain the same
upper bounds as (E.3). To get lower bounds of J(a, b), we use piecewise lower bounds
p\prime (y)\geq Ci and (E.2) to get

p(b) - p(a)

b - a
\geq min(Ck  - Mkl,0)

yk+1  - yk
yl  - yk

+min(Cl  - Mkl,0)
yl+1  - yl
yl+1  - yk+1

+Mkl.

Appendix F. Notation. For the reader's convenience, we collect the main
notation used in this paper.

Weights. We use the following weights defined in (A.1), (A.2), (A.3) for the
estimates

\psi 1,\psi 2,\psi 3,\psi du,\psi u, \varphi 1,\varphi g1,\varphi elli,\varphi evo,i, i= 1,2,3, \rho 10, \rho 20, \rho 3, \rho 4.

We use f\lambda (x) = f(\lambda x) for rescaled function (4.2).

Cutoff functions. We use various cutoff functions to construct the approximate
solutions.

\chi ij , i= 1,2,3, j = 1,2 are defined in (3.17).
\chi \=\varepsilon , \chi \^\varepsilon , f\chi ,i, i= 1,2,3 are defined in (D.6), (D.7).

Operators. We use \scrL \cdot to denote various linear operators. \scrL i is the full linearized
operator around the approximate steady state. We decompose \scrL i into \scrL e

i ,\scrL \=e
i ,\scrL N

i

(3.12).
\scrB op,i (3.4), (3.5) denotes bilinear operators related to the linearized operators.
\scrR \cdot (3.7), (3.8) denotes residual error in the construction of the approximate so-

lution to the linearized equations.

Velocity and kernels. We use Ki to denote the kernels of the velocity, e.g.,
K1,K2,Kf , f = u, v,ux, vx, uy (4.1). We use Ksym for the symmetrized kernel (4.25)
and Kux0,K00 (4.5) for the kernel of the approximation terms near x= 0.

We use f = u, v,ux, uy, vx, vy to denote the original velocity and its derivatives, \^f
for its finite rank approximation, and fA = f  - \^f . See the beginning of section 4.1.

Regions for integrals. We use Blm(r) (4.17) to denote different grids and R\cdot (\cdot )
to denote various singular regions: R(x,k) (4.18), Rs(x,k),Rs,i(x,k) (4.19), R

\pm (x,k)
(4.20), R(x,k,\alpha ), \alpha =N,E,S,W (4.21)

Approximate profiles and solutions. We use \omega ,\eta , \xi ,\phi to denote the vorticity,
\theta x, \theta y (\theta is the density (2.3)), and the stream functions, respectively. We use \=f to
denote the approximate profile for f , e.g., \=\omega , \=\theta , and use \^f to denote the numeric
solution, e.g., \widehat W (3.34) and \^G (3.6).

We use \=F\omega , \=F\theta , \=\scrF i (2.14) to denote the residual error of the profile.

Mesh. To construct the approximate profile, we use the adaptive mesh yi (C.2).
To estimate the integrals

\int 
f(x, y)dy in section 4, we use mesh yi (4.11) with mesh

size hx, h (4.14).
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Differential operators. We denote (3.23) D2 = (D2
1,D

2
2,D

2
3) = (\partial xy, \partial xy, \partial 

2
x)

T .
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