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STABLE NEARLY SELF-SIMILAR BLOWUP OF THE 2D
BOUSSINESQ AND 3D EULER EQUATIONS WITH SMOOTH DATA
II: RIGOROUS NUMERICS*

JIAJIE CHENt AND THOMAS Y. HOU#

Abstract. This is Part II of our paper in which we prove finite time blowup of the two-
dimensional Boussinesq and three-dimensional axisymmetric Euler equations with smooth initial data
of finite energy and boundary. In Part I of our paper [Chen and Hou, preprint, arXiv:2210.07191,
2022], we establish an analytic framework to prove the nonlinear stability of an approximate self-
similar blowup profile using a combination of weighted L and weighted C'/2 energy estimates. We
reduce proving nonlinear stability to verifying several inequalities for the constants in the energy
estimate which depend on the approximate steady state and the weights in the energy functional
only. In Part IT of our paper, we construct approximate space-time solutions with rigorous error con-
trol, which are used to obtain sharp stability estimates of the linearized operator in Part I. We also
obtain sharp estimates of the velocity in the regular case using numerical integration with computer
assistance. These results enable us to verify that the constants in the energy estimate obtained in
Part I [Chen and Hou, preprint, arXiv:2210.07191, 2022] indeed satisfy the inequalities for nonlin-
ear stability. The nonlinear stability further implies the finite time singularity of the axisymmetric
three-dimensional Euler equations with smooth initial data and boundary.

Key words. 3D Euler singularity, approximate space-time solution, computer-assisted proof,
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1. Introduction. The three-dimensional (3D) incompressible Euler equations
are one of the most fundamental nonlinear partial differential equations that govern
the motion of the ideal inviscid fluid flow. They are closely related to the incompress-
ible Navier—Stokes equations. Due to the presence of nonlinear vortex stretching, the
global regularity of the 3D incompressible Euler equations with smooth initial data
and finite energy has been one of the longstanding open questions in nonlinear par-
tial differential equations. Let u be the divergence free velocity field and we define
w =V X u as the vorticity vector. The 3D Euler equations governing the vorticity w
are given by

(1.1) wi+u-Vw=w-Vu,

where u is related to w via the Biot—Savart law. The velocity gradient Vu formally
has the same scaling as vorticity w. Thus the vortex stretching term, w - Vu, has a
nonlocal quadratic nonlinearity in terms of vorticity. Although many experts tend to
believe that the 3D Euler equations would form a finite time singularity from smooth
initial data, the nonlocal nature of the vortex stretching term could lead to dynamic
depletion of nonlinearity, thus preventing a finite time blowup (see, e.g., [20, 23, 36]).
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The interested readers may consult the excellent surveys [19, 30, 34, 38, 43] and the
references therein.

Our work is inspired by the computation of Luo and Hou [41, 42], in which they
presented some convincing numerical evidence that the 3D axisymmetric Euler equa-
tions with smooth initial data and boundary develop a potential finite time singularity.
In Part I of our paper [13], we establish an analytic framework and obtain the es-
sential stability estimates to prove finite time singularity of the 2D Boussinesq and
3D axisymmetric Euler equations with smooth initial data and boundary. The main
results of this paper are stated by the two informal theorems below. The more precise
and stronger statement of Theorem 1 can be found in Theorem 3 in section 2.

THEOREM 1. Let 0, u, and w be the density, velocity, and vorticity in the 2D
Boussinesq equations (2.3)—(2.5), respectively. There is a family of smooth initial data
(6o, wo) with Og(x,y) being even and wo(x,y) being odd in x, such that the solution
of the 2D Boussinesq equations develops a singularity in finite time T < +oo. The
velocity field ug has finite energy. The blowup solution (0(t),w(t)) is nearly self-similar
in the sense that (0(t),w(t)) with suitable dynamic rescaling is close to an approzimate
blowup profile (§,&) up to the blowup time. Moreover, the blowup is stable for initial
data (0y,wo) close to (0,@) in some weighted L> and C'/? norm.

THEOREM 2. Consider the 3D axisymmetric Euler equations in the cylinder r,z €
[0,1]xT. Letu’ and w® be the angular velocity and angular vorticity, respectively. The
solution of the 3D FEuler equations (2.1)—(2.2) develops a nearly self-similar blowup
(in the sense described in Theorem 1) in finite time for some smooth initial data wg,
ug supported away from the symmetry axis r = 0. The initial velocity field has finite
energy, and ul and wf are odd and periodic in z. The blowup is stable for initial data
(u§,w8) that are close to the approzimate blowup profile (u®, &%) after proper rescaling

subject to some constraint on the initial support size.

We first review some main ideas in our stability analysis of the linearized operator
presented in Part I [13]. We use the 2D Boussinesq system as an example. Let @,
6 be an approximate steady state of the dynamic rescaling formulation. We denote
W = (w,0,,0,) and decompose W = W + W with W = (©,0,,0,). We further
denote by £ the linearized operator around W that governs the perturbation W in
the dynamic rescaling formulation (see section 2):

(1.2) W, = L(W).

We decompose the linearized operator £ into a leading order operator £y plus a finite
rank perturbation operator K, i.e., L = Ly + K. The leading order operator L is
constructed in such a way that we can obtain sharp stability estimates using weighted
estimates and sharp functional inequalities.

In Part I [13], we have performed the weighted energy estimates using a combi-
nation of weighted L and C 1/2 norm. In our analysis, we decompose W = W, + W,
where W is the main part of the perturbation, which is essentially governed by the
leading order operator Lo with a weak coupling to W through nonlinear interaction.
The perturbation W3 captures the contribution from the finite rank operator. The
key is to show that the energy estimate of the main part W; satisfies the inequalities
stated in our stability Lemma 2.1 (see section 2). For this purpose, we need to obtain
relatively sharp energy estimates for the leading order operator £y by subtracting a
finite rank operator L. Without subtracting the finite rank operator, we would not be
able to obtain the linear and nonlinear stability of the approximate self-similar profile.
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The constants in the weighted energy estimates obtained in Part I [13] depend
on the approximate self-similar profile that we constructed numerically in section 7 of
Part I [13] and the singular weights we use. In this paper and in the supplementary
material (supplement.pdf [local/web 1.43MB]), we will provide sharp and rigorous
upper bounds for these constants by estimating the higher order derivatives and then
using interpolation estimates from numerical analysis. We also obtain sharp esti-
mates of the regular part of the velocity, which is more regular than the vorticity,
by bounding various integrals using numerical integration with computer assistance.
These sharp estimates of the constants enable us to prove that the inequalities in our
stability lemma hold for our approximate self-similar profile. Thus we can complete
the stability analysis of the approximate self-similar profile and complete our blowup
analysis for the 2D Boussinesq and 3D Euler equations. See section 2.2 for more
discussion of the main steps in our blowup analysis.

We use the following toy model to illustrate the main ideas of our stability analysis
by considering K as a rank-one operator K(W) = a(z)P(W) for some operator P
satisfying (i) P(W) is constant in space; (ii) ||P(W)|| < c||W||. Given initial data Wy,
we decompose (1.2) as follows:

O WL (t) = LoWy, W4 (0) = W,

1.3 — — N —
43 O Wa(t) = LW2 + a(z) P(Wi(t)), W2(0)=0.

It is easy to see that W = W, + Wy solves (1.2) with initial data W, since £ =
Lo + a(x)P. By construction, the leading operator Ly has the desired structure that
enables us to obtain sharp stability estimates. The second part W is driven by the
rank-one forcing term a(x)P(W1(t)). Using Duhamel’s principle and the fact that
P(Wy(t)) is constant in space, we get

(1.4) Wa(t) = /0 P(Wi(s))e“t= ) a(z)ds.

If Wy is linearly stable in some L°(p) space, by checking the decay of e“®a(x) in
the energy space for large ¢, we can obtain the stability estimate of W5. Note that
e“Ma(x) is equivalent to solving the linear evolution equation v; = £(v) with initial
data vgp = a(x). We can solve this initial value problem by constructing a space-time
solution with rigorous error control. . .

We remark that our stability analysis is performed mainly for Wi since W5 is
driven by W1. The approximation errors in constructing the space-time approximation
to W5 can be controlled by the decay estimate of W;. Moreover, the region where we
need to modify the linearized operator by a finite rank operator is mainly located in
a small sector near the boundary where we have the smallest amount of damping.
The total rank is less than 50. In our construction of an approximate solution to Wa,
we need to solve the linear PDE (1.2) in space-time with a number of initial data,
which can be implemented in full parallel.

There has been a lot of effort in studying 3D Euler singularities. The most
exciting recent development is Elgindi’s breakthrough result in which he proved the
finite time singularity of the axisymmetric Euler equation with no swirl for C* initial
vorticity [24] (see also [25]). In [12], we established the finite time blowup of the
2D Boussinesq and the 3D axisymmetric Euler equations with C™® velocity, large
swirl, and boundary in a setting similar to the Hou-Luo scenario [41, 42]. See also [9]
for further developments. Earlier efforts include the Constantin-Lax-Majda (CLM)
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model [21], the De Gregorio model [22], the generalized CLM (gCLM) model [50],
and the Hou-Li model [35]. See also [5, 6, 7, 8, 15, 21, 26, 28] for the De Gregorio
model and for the gCLM model with various parameters. Inspired by their work on
the vortex sheet singularity [4], Caflisch and Siegel have studied complex singularity
for the 3D Euler equation; see [3, 54] and also [51] for the complex singularities for
the 2D Euler equation.

In [17], the authors proved the blowup of the Hou-Luo model proposed in [42].

n [16], Chen, Hou, and Huang proved the asymptotically self-similar blowup of the

Hou-Luo model by extending the method of analysis established for the finite time
blowup of the De Gregorio model by the same authors in [15]. In [18, 31, 32, 33, 39],
the authors proposed several simplified models to study the Hou—Luo blowup scenario
[41, 42] and established finite time blowup of these models. In [27, 29], Elgindi and
Jeong proved finite time blowup for the 2D Boussinesq and 3D axisymmetric Euler
equations in a domain with a corner using C%® data.

The rest of the paper is organized as follows. In section 2, we review the analytic
framework that we established in Part I [13] and state the key lemmas which we use to
prove the finite time blowup of the 2D Boussinesq and 3D Euler equations with smooth
initial data. In section 3, we discuss the construction of the approximate space-time
solution to the linearized operator £. This is crucial to obtain sharp estimates of
the perturbed operator £ — K in the stability analysis. In section 4, we show how to
estimate the L and Holder norms of the regular part of the velocity. Some technical
estimates and derivations are deferred to the appendix.

2. Review of the analytic framework from Part I [13]. In this section, we
will review some main ingredients in our analytic framework to establish the stability
analysis that we presented in Part I [13]. We will mainly focus on the 2D Boussinesq
equations since the difference between the 3D Euler and 2D Boussinesq equations is
asymptotically small. As in our previous works [12, 15, 16], we will use the dynamic
rescaling formulation for the 2D Boussinesq equations to study the linear stability for
the linearized operator around the approximate steady state of the dynamic rescaling
equations. Passing from linear stability to nonlinear stability is relatively easier by
treating the nonlinear terms and the residual error as small perturbations to the linear
damping terms.

Denote by w?, uf, and ¢? the angular vorticity, angular velocity, and angular
stream function, respectively. The 3D axisymmetric Euler equations are given below,

(2.1) Ap(ru?) + u" (ru?), +u*(ru’), =0,

(L) eu(2) r(2) - Koo

where the radial velocity u” and the axial velocity u’ are given by the Biot—Savart
law:

1 1 . 1
(22) _(arr""rar'i_azz)(bg'*'ﬁd)e:wga u” :_(bz» uzz¢ﬁ+;¢97

with the no-flow boundary condition ¢?(1,2) =0 on the solid boundary » =1 and a
periodic boundary condition in z. For 3D Euler blowup that occurs at the boundary
r =1, we know that the scaling properties of the axisymmetric Euler equations are
asymptotically the same as those of the 2D Boussinesq equations [43]. Thus, we also
study the 2D Boussinesq equations on the upper half space:
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(2.3) wt +u-Vw==0,,
915+ll'v9:0,

where the velocity field u = (u,v)” : RZ x [0,7) — R is determined via the Biot—
Savart law

(2.5) —“Ap=w, u=—¢dy, V=,

where ¢ is the stream function with the no-flow boundary condition ¢(z,0) = 0 at
y=0. By making the change of variables 6 £ (ru®)?,& = w?/r, we can see that 6 and
w satisfy the 2D Boussinesq equations up to the leading order for r > rg > 0.

2.1. Dynamic rescaling formulation. Following [12, 15, 16], we consider the
dynamic rescaling formulation of the 2D Boussinesq equations. Let w(x,t),0(x,t),
u(z,t) be the solutions of (2.3)—(2.5). Then it is easy to show that
&(z,7) = Co(T)w(Cy(T)z, (1)), Oz, 7) = Cy(T)0(Cy(7)z,t()),

u(z,7) = Cu(1)Ci(r) " u(Ci(7)z, t(7))

are the solutions to the dynamic rescaling equations

(2.7)
@r(z,7) + (e (T)x 4+ 1) - Vi = ¢, (1) + b, O (z,7) + (c(m)x+ 1) - VO =cpb,

(2.6)

where 6= (4,7)T = VH(-A) "0, x = (z,9)7,

(2.8)

CL(r) = exp (/OT cw(s)dT) L Ci(r) = exp (/0 —cl(s)ds) Cy—exp (/O ce(s)dT) ,

(1) = [ Cu(7)dr and the rescaling parameters ¢;(7),co(7), cw(7) satisfy [12]
(2.9) co(1) = c1(T) + 2¢, (7).

To simplify our presentation, we still use ¢ to denote the rescaled time in (2.7)
and simplify @, as w,0

(2.10) wi + (g 4+u) - Vw=0, 4+ cow, 0;+ (qxz+u)-V0=cyb.

Following [16], we impose the following normalization conditions on ¢, ¢;:

0.:(0)
=—= = 2¢,,.
wx<0) 5 Cw 201 + UI(O), Cp ¢+ 2¢,

For smooth data, these two normalization conditions play the role of enforcing

(2.11) =2

(2.12) O (£,0) = 025(0,0),  wy(t,0) = w,(0,0)

for all time.

We remark that the dynamic rescaling formulation was introduced in [40, 45] to
study the self-similar blowup of the nonlinear Schrodinger equations. This formulation
is closely related to the modulation technique in the literature and has been developed
by Merle, Raphael, Martel, Zaag, and others (see, e.g., [1, 2, 37, 44, 46, 47, 48]).
Moreover, it is related to the method of modulation equations developed by Soffer
and Weinstein [55, 56, 57]. Recently, this method has been applied to study singularity
formation in incompressible fluids [12, 24] and related models [6, 7, 8, 15]. The more
precise statement of our Theorem 1 is stated as follows.
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THEOREM 3. Let (0,,1,¢;,¢,) be the approzimate self-similar profile constructed
in section 7 of Part 1 [13] and E, =5-107°. For initial data 0y(x,y) even in z and

wo(z,y) odd in x of (2.10) satisfying E(wo —®,00,5 — 05,60, —0,) < E., we have

(2.13) l|w —©l|Lee, [|0z — éxHLOCv ||0y - éyHoo < 200F,,
2 (£,0) — @, (0)], |w — 0| < 100E,

for all time. In particular, we can choose smooth initial data wg,0p € C° in this
class with finite energy ||ug||r2 < +0o such that the solution to the physical equations
(2.3)—(2.5) with these initial data blows up in finite time T.

The energy E is quite complicated, and we refer to section 2.3 in Part I [13] for
its formula.

Nearly self-similar blowup and the blowup time. Based on the main theo-
rem, Theorem 3, the vorticity in the physical space ((2.3), (2.4)) wpny has the following
form:

wphy(m7t(7—)) = C_l(T)wSS(Cl(T>_1x’T)7 ||wss(7—) - ‘DHLN < 1,

w

where ws, is the self-similar variable (@ in (2.6)). We can generalize the rescaling
parameters Cy,,C1,Cy (2.8) to Cy(7) = Cyy(0) exp( [y cw(s)ds), Ci(r) = Ci(0) exp(fy
—ci(s)ds), Co=C2C; 1 t(1) = Jy Cu(7)dr. Using the estimates (2.13) and ¢;(7) = ¢
(2.11), (2.12), we obtain

[lwphy ()| = CLH(M)|@| e, Cuo() = Cu(0)eT,  Ci(T) = Ci(0)e™ 7,
||| o

_ ~ o -1
=)~ GOl ™ = 1o el

C’l(T)_1 ~C(T — t(T))El/E“’, Wphy (T) ~ (T — t(T))_1|Ew|_1@(C’ac(T — t(T))El/E“)

T—t(r)~ CW(T)|Ew|_1»

with ¢, /¢, = —2.92 < 0, for some C > 0 depending on ¢, ¢,,, C1(0), C,,(0). The notation
~ means that the relation holds approximately. The exact relation can be inferred
from (2.13), (2.6), (2.8). The blowup time is approximately inversely proportional to
[|wphy (0)]|Lee. Since we only prove that wgs(7) is sufficiently close to the approximate
profile @ and do not prove the convergence of wys(7) as 7 — 0o, Theorem 3 does not
imply an asymptotically self-similar blowup.

2.2. The main steps in the proof of Theorem 3. We will follow the frame-
work in [12, 15, 16] to establish finite time blowup by proving the nonlinear stability
of an approximate steady state to (2.10). We divide the proof of Theorem 3 into prov-
ing the following lemmas. The energy norm below is defined in section 5 in Part I
[13] for energy estimates, and the requirement of smallness is incorporated into the
conditions (2.17), e.g., the term a;; 3, in Lemma 2.5.

The upper bar notation is reserved for the approximate steady state, e.g., @, 6.
Given the approximate steady state @, 0, &, é,,, we denote by F; and F,,, Fy the residual
error

E,=—(qz+10)-Vo+0, +c,0, Fy=—(Ga+1)-V0+ b,

2.14 _ _ _ _ _ _
(214) F12F,, Fo20,Fy, F320,Fy, c9=0+20,.

We have the following nonlinear stability lemma for an L>°-based energy estimate,
which is proved in Appendix A.1 of Part I [13].
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LEMMA 2.1. Suppose that fi(z,z,t):R3, xR2, x[0,T] - R,1<i<n, satisfies
(2.15) Oufi +vi(m,2) - Voo fi = —aii(x, 2,t) fi + Bi(x, 2,t) + Ni(z, 2,t) + &,

where v;(x,z,t) are some vector fields Lipschitz in x,z with vi|z,—0 = 0,v;|,,=0 = 0.
For some p; >0, we define the energy

E(t) = max (ul|fil| o).

1<i<n

Suppose that B;, N;, and &; satisfy the following estimate:

(2.16) pi(|Bi(z, 2, t)| + [Ni(z, 2, 0)| + |&])
< (aij (@, 2, )| B(t) + laij 2(x, 2,0 B> () + |aij s(x, 2,1)])-
i

If there exists some E,,eq, M >0 such that

aii (2, 2,0) B = Y (laij | Bs + |aij o| B2 + |aij s(x, 2,1)]) > <o,
j#i
> (aij| Bx + laij o B2 + |aijs (2, 2, 8)]) < M
J#i
for all z,z, and t € [0,T]. Then for E(0) < E,, we have E(t) < E, fort e [0,T].
LEMMA 2.2. There exists a nontrivial approzimate steady state (@,é, 1, Cw) to

(2.10), (2.11) with ©,0 € C*' and residual errors F;,i = 1,2,3 (2.14) sufficiently
small in some energy norm.

(2.17)

The construction of an approximate self-similar profile with a small residual error
stated in Lemma 2.2 is provided in section 7 of Part I [13] and the properties of
(@0,0,¢;,¢,) are described in section 2.4 of Part I [13]. We will estimate the local part
of the residual error in Appendix C.4. We linearize (2.10) around (@,6,¢,¢,) and
perform an energy estimate of the perturbation W = (w, 8,,6,) in section 5 in Part I
[13]. In our estimates, we need to control a number of nonlocal terms.

LEMMA 2.3. Letw be odd in x1. Denote §(f,x,z) = f(x)—f(z). There exists finite
rank approximations 0, Vu for u(w), Vu(w) with rank less than 50 such that we have
the following weighted L™ and directional Holder estimate for f=wu,v,0u, 0w, x,z €
Ry, i=1,2,7; >0:

(2.18)
|pf(f - fA)(w)‘ < Cf,oo(fﬁa%%ﬁ) max (HWSDHOOﬂSf jnzl??élyj[w@bl]ciéz(ﬂg;))v
16(r(f = f),,2)]

|z — z|1/2

< Of,i(xazagoawlv’)/) max (HWSOHooan g%ng[WQ/fl]C;(?(R;))
=1, i

with x3_; = z3_;, where s =0 for f =u,v, sy =1 for f = Ou,0v, the functions
C(x),C(x,z) depend on vy, the weights, and the approximations, the singular weights
©=01,9g.1, Pelii; Vou =1,y are defined in (A.2), and the weight p1o for u and the
weight for p;; for Vu with i + j =2 are given in (A.2). In the estimate of f =u,v,
we do not need the Holder seminorm and we set sy =0. Moreover, C(x),C(x,z) are
bounded in any compact domain of R3 . We have an additional estimate for py(u—1)
similar to the above with py (A.2) singular along x1 =0.
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Furthermore, we have the following estimate using the localized norm. There exist
Dy, Ds,..D,, CRSY and Ds € RY depending on x in the L™ estimate and x,z in the
C;i/z estimate, such that

o5 (f = D@ €Y Crooi(@, 0, 91,7 [lwol L= (1)
J

+ Cf,oo,S(xa (2 1/)1”7) }E?‘}é (r}/l [wwl]calcl/z(Ds))7

)

d ,(/J f_f y Ly 2
I ( JI:(L,_ZP)/Q )l SZCf7i>j(x7z7¢7¢1a7)||w<p||L°°(Dj)
J

+ Cf,i,S(xa Z, L, 1/)1, FY) {2%}; (’Yl [wwl]cif(ps))
for xs_; = z3_;,0 = @Yeui and the same notation as above, where Cf o 5,Cfi5 =0
for f=w,v. Similarly, we have an estimate for py(u—0) using a localized norm with
Cf.00,5 =0 similar to the above.

Since the weights pip ~ || 3,91 ~ |z|~2,1, are singular near x = 0, without
subtracting the approximation f from f, pyf is not bounded near x = 0. We design
the finite rank approximations ﬁ,ﬁ in section 4.3 in Part I [13].

Based on these finite rank approximations, we can decompose the perturbations.

LEMMA 2.4. There exist m < 50 approzimate solutions F} to the linearized equa-
tions W = LW of (2.10) around (©,0,¢,¢,) in Lemma 2.2 from given initial data
F;(0) with residual error R small in the energy norm. Further we can decompose the
pertﬂrbatz'on W = W1 + Wy with the following properties. (a) Wg 1s constructed based
on F;; see section 4.2.4 of Part 1 [13]. (b) W1 satisfies the equations with the leading
order linearized operator (L — IC)Wy up to the small residual error R for some finite
rank operator K, and Wy depends on Wa weakly at the linear level via R. The func-
tionals a;(W1), an1,i(W) in the construction of Wa and K (see section 4.2.4 of Part 1
[13]) are related to the finite rank approximations in Lemma 2.3.

Moreover, there exists an energy Ey(t) for Wi, W (see section 5.6.3. of Part I
[13]) that controls the weighted L>® and C*/? seminorm of Wi such that under the
bootstrap assumption E4(t) < E. with E.g > 0, we can establish nonlinear energy
estimates for E4(t) using the estimates in Lemma 2.3.

If the bounds in Lemma 2.3 are tight, and the residual error in the constructions
of (@,0), F; are small enough, we can use Lemma 2.1 to obtain nonlinear stability.

LEMMA 2.5. For E, =5-107%, the coefficients in the nonlinear energy estimates
of E4(t) satisfy the conditions (2.17), and the statements in Theorem 3 hold true.

The main purpose of Part II of our paper is the following. First, we construct
the approximate F, (t) in Lemma 2.4 numerically, and estimate its piecewise deriva-
tives and the local residual error in section 3. Second, in section 4, we obtain sharp
estimates of the constants in Lemma 2.3, which only depend on the weights. Third,
we estimate piecewise bounds of the approximate steady state in Appendix C, the
singular weights in Appendix A, and some explicit functions related to the approxi-
mate solutions in Appendix D. We remark that all of these estimates and constants
depend on the given weights, some operators, and functions, e.g., the approximate
steady state and the specific initial conditions. With these estimates and constants,
we obtain the concrete values of the inequalities in (2.17) and Lemma 2.5, which are
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given in Appendix D in Part I [13]. We further verify the inequalities for the stability
conditions in Lemma 2.5.

Let us make a few comments on the above lemmas. First, our energy estimate is
based on weighted L functional spaces, which is crucial for extracting the damping
terms for the energy estimate. See section 2.7 of Part I [13] for the motivations. Given
w € CY2, we have u € C3/2,Vu € C'/2. To establish the nonlinear stability conditions
(2.17) in Lemma 2.5, we need sharp constants in the estimates in Lemma 2.3. We
use some techniques from optimal transport to obtain a sharp C'/2 estimate of Vu
in section 3 of Part I [13]. This corresponds to the limiting case in the C;T/ ? estimate
in Lemma 2.3 for a fixed « with |z — 2] — 0 and captures the most singular part in
the estimates in Lemma 2.3. The constants in the sharp C''/2 estimate established in
Part I [13] are given by several integrals. In section 5 of the supplementary material
(supplement.pdf [local/web 1.43MB]), we estimate these integrals.

Other parts of the estimates in Lemma 2.3 are more regular since we work with
the regular part of the velocity integral with a desingularized kernel. Given w € C'/2,
we can reduce the estimates of these more regular terms to estimate some explicit L'
integrals. We can obtain sharp estimates of these more regular integrals using some
numerical quadrature with computer assistance. See section 4.

By designing K to approximate the nonlocal terms, we can obtain much better
linear stability estimates for £ — K. After we have shown that the stability conditions
(2.17) are satisfied, we have nonlinear stability estimate F4(t) < E, for all ¢ > 0
using Lemma 2.1, which implies the bounds in Theorem 3. The remaining steps of
obtaining finite time blowup from smooth initial data and finite energy follow [15]
and a rescaling argument. We remark that the variable W5 in Lemma 2.4 (see the
full definition in section 4.2.4 of Part I [13]) plays an auxiliary role, and we do not
perform an energy estimate on W5 directly.

Note that all the nonlocal terms in the linearized equations are not small. Without
the sharp C'/? estimate, with the choice of energy Ey, the stability conditions in
(2.17) and Lemma 2.5 fail in the weighted Holder estimate. Without the finite rank
approximations for the nonlocal terms in Lemmas 2.3, 2.4, the stability conditions for
weighted L estimate also fail.

Rigorous numerics. We need to track two types of errors for rigorous numerics.
The first type is the discretization error, e.g., the error terms in the trapezoidal rule
and in the interpolating polynomials. The second type is the round-off error in the
computation. We use numerical analysis to estimate all the discretization errors and
use only the basic interval arithmetic [49, 53] (see, e.g., (A.4), (A.5)) in the INTLAB
package [52] from MATLAB to track the round-off error.

In our nonlinear estimates, we use a singular weight ¢ like |z|~2 near x = 0 to
measure the residual error ;. To obtain a small weighted residual error |¢F;| near
x =0, we choose the mesh y; (C.2) representing the approximate profile to be exact
floating point numbers to reduce the round-off error near x =0.

The codes for the computations are implemented in MATLAB and can be found
in [10]. The estimates of the constants in Lemma 2.3, integrals in section 4, and
constructions and estimates of the approximate space-time solutions in Lemma 2.4 and
in section 3 are performed in parallel using the Caltech high Performance Computing.*
Other computer-assisted estimates and the main part of the verifications are done on

1See more details for Caltech HPC Resources: https://www.hpc.caltech.edu/resources.
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a Mac Pro (Rack,2019) with 2.5 GHz 28-core Intel Xeon W processor and 768 GB
(6x128 GB) of DDR4 ECC memory.

2.3. Dependency tree. The following tree schematizes various intermediate
steps and related sections that lead to the main stability result, Theorem 3, which
implies the blowup result, Theorem 1, for the 2D Boussinesq equations. The blowup
for the Euler equations in Theorem 2 is proved by a perturbative argument in section 6
in Part I [13].

Below, Thm, Lem, App, Sec, P1, P2, Suppl, Supp2 are short for theorem, lemma,
appendix, section, paper I [13], paper II (the current paper), and the supplementary
material for paper I [14] and this paper (supplement.pdf [local/web 1.43MB]), respec-
tively. We present a few more detailed derivations in the supplementary materials
[14], (supplement.pdf [local/web 1.43MB]), which expand and generalize discussions
in the main papers and are less essential. Moreover, we present several explicit for-
mulas we used in our computer-assisted estimates for the quantities derived in the
main papers.

Sharp Holder estimates: Compute the sharp

Sec 4 & App B, P1 ~ constant: Sec 5 Supp2
Finite rank perturbation:

Linear Sec 4, P1

stability Linear energy estimates:
Sec 5.1-5.5, P1
Estimate nonlocal terms: A few more similar cases
Lem 2.3, - and explicit formulas:
Sec 4 & App B, P2 Sec 6-7 Supp2

Const}fuct finite rank
part Ws: Lem 2.4,

Estiml/%te gnitg ;ar;kl Sec 3 & App D, P2
. part , Dec 9.7,
Ehni.?" Prczvi,ql'l;y : Estimate the residual
onlinear stability i
lems: App A, P1 Nonlinear error for .WZ
(or Lem 2.1 7P2) estimates iec 3,06 At(l(iSaE}E P2
& inequalities: PP
App D, P1 (sum- Estimate nonlinear Estimate similar
marized in Lem terms: Sec 5.6-5.9, P1 \ nonlinear & error terms:
2.5, P2) Construct profile: Sec 8 Suppl
Sec 7, P1,
App C.1 & App D, P2
Approximate Estimate profile:
profile:

App C.2, C.3, D, P2

Estimate residual error:
Sec 3.6(ideas),
App C4,D & E P2

Lem 2.2, P2

In section 8 in Supp2, we generalize the standard interpolation estimate in numer-
ical analysis to derive higher order interpolation estimates, which are used to estimate
the residual error effectively. See the discussion in section 3.6. In Appendix A, we de-
rive piecewise bounds for various weights, which are used in the weighted estimates of
the nonlocal terms, the residual error, and the linear, nonlinear estimates for stability.

In Appendix F, we collect the main notation used in this paper.
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3. Construct and estimate the approximate solution to the linearized
equations. As we described in section 2 of Part I [13] (see also the Introduction), we
need to construct the approximate solutions to e“*Fy, for several initial data F}, Fx,i .
In this section, we discuss how to construct these space-time solutions numerically
with some vanishing properties at the origin with rigorous error control.

The linearized equations associated with £ read

(3.1)

8tw: 7(5[1’4’&) . VCU+77+EWW —u'V(IJ+Cw(D:£1(W»777§),

O =—(@rw + ) - Y+ (26, — Uy)1) — Up€ =, - VO — 1 VO, + 26,0, = Lo(w, 1, ),
0u& = — (e + 1) - VE + (200 + 1i)§ — iy — 1y - VO — - VO, + 20,0, = Ls(w,1,€)

with normalization condition
(3.2) cw=1u.(0), ¢=0.

Although 7, represent 6,,0, in the Boussinesq equations, we will consider initial
data (wo,n0,&o0) with dyno # 0.§0. Thus, we do not have the relation d,n = 0,§ and
will treat n,£ as two independent variables. The solutions w(z),n(z) are odd in 1,
and £() is even in x; with £(0,y) =0. We consider initial data (wg,n0,&) = O(|]z|?)
near x = 0. Using a direct calculation, we can show that these vanishing conditions
are preserved in time

(3:3) w(t,z), n(t,z), &(tz)=O(|z[*).
We introduce the bilinear operator B,y ;((u, M), Q) for (u,M),G = (G1,G2,G3)
(3.4)

Bop1i=—u-VGi+ M1(0)G1, Bopo=—u-VGs+2M;1(0)Gy — MGy — Moy G,
Bop,?) =—u-VGs;+ 2M11(0)G3 — M15Go — Moo Gs.
If M =Vu, M1 =ug, Mis = uy, Moy = vy, Moz = vy, then we drop M to simplify the
notation
(3.5)

Bop,l(ll,G) = —u- VGl —+ Um(O)Gl, Bop,Z = —u- VG2 + QUE(O)G2 _ uzG2 _ ’UmGg,

BOI)73 =—-u- VG?) + 2ux(0)G3 - UyGQ — ’Ung.

~ The main result in this section is the following. Given n initial data G, =
(Gin,Giz2,Gi3) and n functions ¢;(t)(i = 1,2,..,n) which are Lipschitz and bounded
in ¢, we construct an approximate space-time solution W; = (W; 1, W; 2,W,3),G =

(G’l, 6{2, ég) and the approximate stream functions qAbfV , <Z)N and the error € associated
with Wi,h Gl

(3.6) é:Z/Ci(t—s)Wi(s)ds, q’;N:Z/ci(t—s)qgﬁv(s)ds,

i<n isn
&= Z /ci(t — 3)(W11 + Ai)fv)(s)ds
i<n

with residual error

(3.7) R:Z@(t)(wi(o) -

i<n

3) + /O c(t — 5)(0y — L)W (s)ds,
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vanishing O(|z|®) near # = 0. Moreover, we can decompose R = (R1,R2,R3) as
follows:

(3'8) Rj( ) _Rloc O,j( )"’Rnlocj( )7
7?/loc ,0,0 — Z/ cz num,i,j(s)dsaRnum,i,j :O(|$|3),

i<n

Rutoej =Pj — DIPj(0)xj2, Pj=—Bop;(1(e),G) — Bopj(u(é), (@,0s,0,),

where ;2 is given in (D.5), and & = @ — (—A)¢" is the error of the approximate
stream function for (—A)~'@, and Ryum,;(t, ) depends on W;,$; in x locally. We
have absorbed the 1n1t1al error in R,um. We derive the above decompositions and
estimates of Ripe.0.5, G, @N &, in sections 3.5-3.7. See (3.37), (3.35). The error in
constructing the stream function d)N associated with W; .1 leads to a nonlocal error,
e.g., u(é), in constructing the velocity. We combine the estimate of the nonlocal
error in P; and perturbation in section 5.8 in Part I [13]. Furthermore, we track the

piecewise bounds of the following quantities:
(3.9)
/ OFOLF(t)|dt, F=W;;, F=0¢N, F=¢N — 0,y (0)zy, F=W;1+A¢Y,
0
F= CjWi,j — xasz + yayWi,j — D?Wi,j (O)fX,j7 D?= ((%y, 8$y, am),c = (1, 1, 3)

for j=1,2,3,i=1,2,..,n, where f, ; is defined in (D.6). We track the C? bound of
W; ;.7 and C* bounds for others following (3.37) and use these bounds to control W,
in Lemma 2.4 and use them in the nonlinear energy estimates in section 5 in Part I
[13].

In practice, we choose the initial data F; given in Appendix C.2.1 in Part I
[13] and ¢;(t) some functionals of the perturbation Wi, Wy related to the finite rank
perturbation.

Numerical methods. We solve (3.1) using the numerical method outlined in
section 7 of Part I [13] to obtain the solution (wg,nk, k) at discrete time t. Since € is
even with £(0,y) =0, we write £ = (¢ for an odd function (. We use the adaptive mesh
discussed in Appendix C.1 to discretize the spatial domain. Then we represent w, 7,
using the piecewise sixth order B-spline (C.6). See Appendix C.1. To solve the stream
function —A¢ = w numerically, we use the B-spline based finite element method and
obtain the numerical approximation ¢ for (—A)~'w. Then we can construct the
velocity u = V4oV,

The gradients of several initial conditions F} are relatively large and the linearized
equations (3.1) involve VW. To obtain a better approximation of the solution, we
represent w, 1, ¢ using a mesh Y x Y with Y refining the mesh y (C.2) in Appendix C.1
by a factor of three:

Ysipj =i + (Wis1 —v:)j/3, 0<5<3.

Since solving the Poisson equation is the main computational cost in each time step,
we still represent ¢V using the coarse mesh y x y and solve it from a source term with
the grid points value w(y;,y;)-

In the temporal variable, we use a third order Runge-Kutta method to update
the PDE. To reduce the round-off error near z = 0, where we require a very small
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error in solving the linear PDE, we use a multilevel representation. We defer more
details to section 7 in Part I [13]. To keep the residual error smooth near z = 0,
we apply a weak numerical filter near x = 0 every three steps. We do not add the
semianalytic part in constructing (wg, 1, k) for efficiency consideration and that the
far-field behavior of the solutions is changing over time.

After we obtain the numerical solution (wg, Nk, &k, ¢f€\{ 1) at discrete time, we will
perform two rank-one corrections and interpolate the solution in time using a cubic
polynomial to obtain the approximate space-time solution W and estimate residual
error in the energy space a posteriori.

3.1. A posteriori error estimates: Decomposition of errors. Since we
cannot solve the Poisson equation exactly, we decompose the stream function ¢, ¢ as
follows:

(3.10) ¢o=(-A)"'o=90" +¢° ¢=(-A)"rw=9¢" +¢°,

where ¢V, ¢V constructed using the finite element method are the numeric approx-
imation of the stream function, and the shorthand NN,e denote numeric, error, re-
spectively. We use similar notation below for other nonlocal terms since we cannot
construct them exactly. We will construct ¢V, ¢" numerically and treat ¢°,¢°¢ as
error. The reader should not confuse ¢V with the Nth power of ¢. We will never use
the power of ¢ throughout the paper. Similarly, we denote by u”,u® the velocities
corresponding to ¢™, ¢°. For example, we have

3.11
(uN :) ViGN, ut =Vt =V (=A) T w - (-A)¢"), o =uy (0), < =ug(0).
The above decomposition leads to the following decomposition of the operator L:
(3.12)
Ly=LY +L]+LS, Lo=LY +L5+L5 L3=Ly +L5+ LS,
LY =n+elw—(Gz+a") Vo+o-u" . vo,
LS=ctw—u® Vo, Li=cw-—1u° Vu,
LY =—@Gz+a)-vp+ @2 —a )y - —ul - vh—u - Ve, +2cV0,,
L5=—-u -Vl—u® VO, +2c0,, L5=-10° Vn+ (2, —us)n— v,
£l =—(qz+a") Vé+ (2¢) —o) ) —aln—u) - vo—u" Vo, +2c]0,,
L£§=—uj -Vl —u® VO, +2c0, L5=-u VE+ (26, —v5)¢—ugn,
where L£¢, L¢ denote the errors from ¥°, 1), respectively. These operators depend on
w,n, &, and we drop the dependence in (3.12) to simplify the notation.

3.2. First correction and the construction of ¢. According to the nor-
malization condition and (3.3), the solution to (3.1) satisfies w,(0,t) = 1.(0,t) = 0.
To obtain an approximate solution with this condition, we make the first correction

(3.13) Wi = Wi — We2(0,0)x11, M = Mk — Mk,2(0,0) x21,

where x;; are cutoff functions defined in (3.17) with x;; =  + O(|z|*) near 0. We
do not modify & since £ already vanishes quadratically near (0,0). We remark that
the first correction does not change the second order derivatives of the solution near
0 and ¢, since

OzyX11(0) = Opyx21(0) =0, cu(x11) = —02y91(0) =0,
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where ¢, is defined below:

T 2
(3.14) b1 = f%ﬁ*(m)ﬁ*(y),

where k. (z) is the cutoff function chosen in (D.5) in Appendix D.2 satisfying k. (z) =
1+ O(|z|*) near z =0, and ¢, satisfies —A¢p; =x + O(|z|*). For the numeric stream
function (bjk\f , constructed at the beginning of section 3, we correct it as follows:

O = Si1 + DA (0)61 2 67
Since 0, A¢1(0) = —1, this allows us to obtain
(3.15) Ou (= D)y (0) = =02 Ay, (0) + 0 A, (0) =0,
A¢y =0(|z*),  wi — (=A)gy =O(|2]?).

A

~ We further extend it to Lipschitz continuous solutions WO 2 (M @), 70 (1),
ED (1)), ™M) in time using a cubic polynomial interpolation in ¢. See section 3.4 for
more details. Here, we use f() to denote the solution with the first correction.

3.3. The second correction. The error
(0 — L)@ (1), aV (1), (1))

may not vanish to the order O(|z|?), which is a property that we require in the energy
estimate. Then we add the second correction

@D (),n M, €D (1), o™ M) = (@ (8) + ar (8) x12, A" + a2 (t)x22, €M ()
+az(t)xsz, 0NN + a1 (t)¢a),
so that the error satisfies
(3.16)
e 20— L&D (1) + ar () xa2,0™ (1) + aa(t)xa2 €Y (1) + as(t)xzz) = O(fal’)

near x = 0. We use the following functions for these two corrections:

(3.17)
2
X11=—A¢1, ¢1= —%m(az)m(y% X21 = T () Ka (Y),
3 2
X12 = _A¢2> ¢2 = _%K* (‘/I;)"{* (y)7 X22 = TYRx« (l‘)lﬁ*(y), X32 = %"i* (J,‘),‘i* (y)a

where k. (z) is chosen in (D.5), x.1 is used for the first correction, and x.o for the
second correction. We do not have y3; since we do need the first correction for &
(3.13). Since k. (z) satisfies k. (x) = 1+ O(|z|*) near x = 0, the behaviors of the above
functions near x =0 are given by

11 =Yy +lot., xo1 =x+1lot., xi2=ay+lot., xoo=1ay+l.0t., x30=12/2+ 0L

We choose x1; = —A¢; for the correction of w so that its associated velocity
Vi(=A) "y j can be obtained explicitly. We do not need such a form for the correc-
tion of 70, ¢ since we do not compute the velocity of 7, &.
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For cutoff functions x1, x2, x3 with
(318) Cw(Xl) = _8xy(_A)71X1 = 07

e.g., Xi = Xi2 chosen above, we have the following formulas of L£;(a1(t)x1,a2(t)x2,

az(t)xs) (3.1):
Li(anxs, axxa, a3xs) = an(0) — (@ +1) - Vi1 +coxs —ulu) - V&) +as(t)xs,
52(G1X1,02X27G3X3):ag(t)( (G + 1) - Vxa + (26, *%))@)
— a3 (t)vyx3 — a1 (t) <U(X1) . Vé)z,
@)+ Vs + (26, + )xs)
—az(t)uyx2 — ax(t) (u<X1) : Vé)y,

53(G1X17G2X27G3X3)=a3(t)( (ax+

where u(x1) is the velocity associated with y;. We want to apply the above formulas
to the second corrections y;2,4=1,2,3 in (3.17). We use the Hadamard product

and (3.12) to simplify the notation as follows:
Li(aox)=Coryj(z;x)a;j(t), Cori;(x;x)=Corlj(z;x)+ Corf;(z;x),
LN (aox) 2 Corg (z;x)a;(t), LS(aox)= Corfj(:r; X)a;(t).

Note that £¢(a o x) = 0 since we can obtain u(x1) explicitly for x1 = x11,Xx12
(3.17).
Next, we derive the equations for a;(t),i=1,2,3. Using (3.1) and the condition

(3.20)

Dy (0) = D1y 257 (0) = D) (0) = 0,

from (3.16), we obtain the following ODEs for a(t),b(t), c(t):

i1 (8) = (=26 + e0)ar (1) + as(t) — Fi(8),
(3.21) a(t) = (=26, + 26, — 11 (0))as (t) — Fi(t),
az(t) = (—2¢; + 2¢, — Uz (0))as(t) — F3(t),

where F(t) = (F1(t), Fo(t), F3(t))" is the error associated to the second order deriva-
tives of (0 — E)W () near 0. More precisely, we have

Fi(t) = 0y (04— LT (0) = £60)(1,0)

— (=20 + 2,)@%) (£,0) — A<1>(t,0> = Cy(£)@ay (0),
Fy(t) = 02y (9 — L)W D (0) = ﬁ&} (t,0)

— (=26 + 26, — um(o»nm (£,0) = € (1), (0),
F3(t) = 02(0; — L3)WD(0) = @5&? (,0)

— (=28 + 26, — @ (0))EX (£,0) = o (£)By (0).

(3.22)
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Denote

(3.23) D? = (D?,D3,D3) = (Ouy, Oy, 02) .

Then we can simplify (3.22) as

(3.24) Fy = D} (0, — LW (0) = D} (8, — LY — L5 — LM (0).

Denote by M the coefficients in (3.21)

(3.25)
—2¢;1 + ¢, 1 0
M= 0 —2¢; 4 26, — 11 (0) 0 &2 MN + Me,
0 0 —2¢; + 22, — u(0).

where the last identity is based on the decomposition &, = &~ + ¢¢,,(0) = a2 (0) +
u<(0), and M€ only contains the contribution from ¢¢,, @ (0). According to the nor-

T w T

malization condition (3.2), we have 4,(0)¢ =¢c¢,. It follows that
(3.26) M? = I,
We simplify the ODE for a = (a1, a2,a3)” as
(3.27)  ai(t) = Myja;(t) — Fi(t), a(t)=Ma— F=Ma—e;D?(3; — L;)W1(0).

Recall x.2 = (x12, ng,/x\gg) from (3.17). In the ith equation, the overall error for
the approximate solution W) + a(t) o x.5 is
52 (9 = L)W +a(t) 0 x.2) = (0 — £ a(t) 0 x2) + (0% — £X )W
3.28 - o
— LS +a(t) o xa) — LEWD +a(t) o X,z)) 2741

Note that in the above notation, 9, acts on a;(t)x; 2. For J, using the ODE for
a(t), (3.27), (3.20), (3.24), and (3.25), we get

J = (Mij(lj — Fi)XiQ — CO’I"g(Qi; X.Q)aj
= (MgXiQ - COTZZ}/T(IL‘; X.Q))Clj + MiéjanzQ — Df(@t — £f\/' — Ef — L‘f)W(l)(O)XiQ
£ J1+ Jo + Js,

where we have a summation over j =1,2,3. Since £¢(a(t) o x.2) =0, using the above
decomposition and combining I, Js, J3 yields

I Ty + Js = (0= L)W = D20, — L)W (0) iz
— (WD — D2LeW D (0)y,
(329) ( 4 i~ ( )X 2)
— (LW +a(t) 0 x.2) = DLWV (0)xiz — MEja;x2)
ELin+lie+ e

Next, we check that Ji, I; n, I; e, I; z have a vanishing order O(|z|*). This is clear
for I; n,1; .. Since we correct the second order derivatives and @(1), 77(1), C(l) are odd
with €1 = 2(™M) | we get 8;8;]1-7]\;, 8;81{[1»76 =0,i+j <2, at the origin. For J;, we
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note that it is a linear combination of a; with given coefficients Mljjv —Cor{}f . Its cubic
vanishing order follows from the definition. For example, when ¢ = j =1, we have

S=ay(t)- (Corfy(x) — Mf;x12) = a1 (t) ( —u° - Vxi2 + &5 x12 — EZX12)
= al(t) ( —u‘- VX12) .

Since x12 = 2y + O(|z|*) (3.17), u® = u<(0)z + O(|z|?),v* = —u%(0)y near 0, we have
S = O(|z|?) near 0. The vanishing order of other terms in .J; can be obtained similarly.
Then for J;, we estimate the weighted norm for Corfj(m) —ijxig and then apply the
triangle inequality to further bound J;. Similarly, for a fixed 7, we have the following

vanishing order:

L5 (alt) 0 x-2) — Mfja;xi2 = Corga;(t) — Ma;xiz = O(|z[?),
D} L5 (a(t) 0 x-2)(0) = Mja;

Thus, we can rewrite I; ; as follows:

(8:30)  Lie=—(LIW®Y +a(t)ox2) = DELIWD +a(t) o x2) 0)xiz).

which clearly has a cubic vanishing order. Note that W 4 a(t) o x.2 is our final
approximate solution for solving (3.1). .

In summary, to estimate the error (9; — L)(WM) + a o x.5), we will estimate
J1, L Ny Lo, Iz separately. The term I; y is the local error of solving (3.1) numer-
ically, and I; ., I; z are due to the error of solving the Poisson equations for w and
&), Since we use a cubic polynomial interpolation to obtain the continuous function
W(l)(t), the errors I; y,I; . are piecewise cubic polynomials in time, and we track the
coefficients of these polynomials to verify that they are small. We discuss the estimate
of nonlocal error in section 3.7.

3.4. Cubic interpolation in time. Given the numerical solution with the first
gc\)rrection W}ll) = (d),(Ll), 777(3) (1)) we use a piecewise cubic interpolation to construct
W (t,x) over (t,x) € [0,T] x Rf. We partition the whole time interval [0, 7] into
small subintervals [3mk,3(m + 1)k] with length 3k. For s € [-3k/2,3k/2] and t,, =
3mk, we construct

3k 1
) 76( Wo + 90, +9W2—W3)

ww (s+tm +5

i 2
+ 1 (Wo = Wi = Wo+ Ws) (7)

(Wo — 27TW1 + 27TW, — Wg)%

@\»—wl;\»—t

(—Wo + 3W, — 3Wa + W) (k)g

2 Zci : V5 (%) V = (Wo, Wy, Wa, W),
i<3 ’
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where k is the time step, W; = W?E;)H for t,, = 3mk, and C; € R* is the coefficient

determined by the interpolation formula. A direct calculation yields

o E i) e i)

1<i<3

3

—Z( ERRANTSH V)) (Z)l—c(c4~V);ﬁ.

To estimate 8,5W(1 — LW , we will use the triangle inequality and estimate
L(C;-V),L(Cy-W) rlgorously using the methods in sections 3.6, 3.7.
Applying the triangle inequality and integrating the error over s € [— 3, 3£] yields

(3.31)

Ciy1'V
k

i+1 "
/S|S3k/2|aw<1) EW(1)|ds<Z‘ Ve V‘/|s<3k/21|||
RCCROT 1 Z\ LY (G V)| Crti) + I V)IC3))
where
2
SNEE

3.4.1. Decomposing the time interval for parallel computing. To verify
that the posteriori error is small, we need to estimate the error rigorously at each
time step, which takes a significant amount of time. Consider a partition of the time
interval 0 =Ty < Ty < --- < T, =T, where T is the final time of the computation.
To reduce the computational time, we first solve the equations on [0,T] without any
rigorous verification and save the solution (wg, 7k, &, qﬁ,lxl) at t =T;. Since we do not
need to perform verification at this step, the running time for each time step is short.
Then we solve the equations on a smaller time interval [T}, T;11],: =0,1,2...,n—1
using W (T;) as the initial data and then perform the verification in each time 1nterval
in parallel. At the end of each time interval [T}, T;1], we use the precomputed data
W (T;+1), which is the same as the initial data for next time interval [T;11,T;12] for
verification. This guarantees that we use the same discrete solution (wg, 1k, &k, gka’ 1)
for verification in [T}, Tj11] and [T;41, Ti12].

3.5. Compactly supported in time. To construct an approximate solution,
we do not need to solve the linearized equations (3.1) for all time. In fact, since the
solution decays in certain norm as ¢ increases, we stop the computation at time T if
W® — D2W M o y is small in the energy norm. Then we extend W®M)(¢,-) trivially
for t>T

wWhE, =0, t>T.
As a result, the error satisfies
Ri= (0 — L)WD = (8, — L)W D 1yeq — 57 ()W (T).
Let F = (Fy, Fy, F3),F; = D28, — L)WM | for t <T, where D2 = (Dyy, Dy, D2).

=0

Then similarly, we get
Fogt 2 D?(0, — LYWWV |og - i< — D*WD(T,0)67
= F(t)Li<r — Funa(T)d7, Funa(T) 2 D*WM(T,0).
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We will test the above formulas with some Lipschitz function in time and the
above formulas are well defined. Recall that the coefficients of the second correction
a satisfy (3.27). Although W only has finite support in time, to achieve the vanishing
order (3.16) for all time, we need to solve the ODE exactly for all time. If we stop
solving the ODE at time T, we cannot achieve (3.16) at time 7. Moreover, we cannot
solve the ODE using a numerical method, e.g., the Runge-Kutta method, since it
leads to an error. Instead, we solve the ODE exactly by diagonalizing the system. We
introduce the notation

A1 =-2G+3C,, Aa=A3=-2¢+2¢,—u,(0), A\ —Aa=-0/2,

(332) ~ as ~ F2 ~ s
= —= kK =F i=a;, IF=1I, 1=23,
ai (11-|-)\1_>\27 1 1+)\1 N a;=a )

and similar notation for F,,;, where we have used (2.11) to get Ay — Ao = —¢; /2. The

coefficients satisfy A\; &~ —7, Ay = A3 & —5.5. We diagonalize (3.21) as follows:
d _ B ~
0= AiG; — Fegt i

Using Duhamel’s formula and the definition of Fezm yields

(3.33)
(1) = M1 (0) — / M=) Fy (s)ds
0

tAT
= 6)\-726&]'(0) — /0 et i(t=s) ( )dS + Fend(T) (t_T)].tzT £ S+ Sy + Ss3.

For rank-one perturbation, the full solution W with two corrections in (3.6),
(3.7) is given by
(3.34) W=W®" taoxs, ¢ ="O+a(t)s,
where X.2, ¢o are defined in (3.17). With the above extension and the decomposition
of error (3.28)—(3.29), the residual error for rank-one perturbation (3.7) with n=1 is
given by
(3.35)
t
R= C(t)(Wo(l) +agoxa—Wo)+ / c(t = 8)( — LYW + a0 x.s)ds
0
= 7-\{loc,O,- + Rnloc
Riven, = ()W) + ag o xo = Wo) = (WO(T) = DPWO(T) 0 x.0)e(t — T)Lisr

.|_/OMTc(t—s)Zeili,N(s))ds+/ (t—s)) eiii(s))

i<3 i<3

t
- / o(t — 8 R (5)ds,
e
Rnloc:/ c(t—s) Zel il ds+/ (t—s)ZeiIij(s)ds
0

i<3 i<3
where I; n,I; ., I; z are given in (3.29), Jq; means J; (3.29) in the ith equation, and
Rpum 18

R (8) 2 80 - (W + ag 0 x.2 = Wo) — 8 - (WO(T) = D*WO(T) 0 x.0)

(3.36)
+ ej(ltSTI-,N + Jl:j)'
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We only integrate the integrals for e;I; x,e;l; . up to min(¢,T) since these two inte-
grands (3.29) do not involve a;(t) and have compact support [0, 7] in time. We obtain
the local part Ripc0,. in (3.8) for n=1. The first term is the initial interpolation error
for Wy, and we choose ag € R? to achieve vanishing order ﬁ/\él) +agox—Wo=0(|z]3).
We use Rioc,0,-, Rnioc to denote the error that depends on the solution locally and non-
locally. We use the bootstrap assumption to obtain uniform control of ¢(¢) in t. See
section 5.7 in Part I [13]. The error estimate of the local part Rioc,o,. follows sec-
tion 3.6. Moreover, we extract the essentially local part from R, and can estimate
it with Ryoc,0,; together (3.38). We decompose the nonlocal part R0 in section 3.7.
To control the terms involving a;, e.g., J1; above (3.29), we can estimate the weighted
norm of the functions Corf}[ (z) — M;}f Xi2 and then only need to estimate the integral
Of (Nlj .

Denote z Ay £ min(z,y). Since the factor \; <0, using the formula of a; (3.33),
we obtain

oo [e.¢] oo - o 1 -
| 18uldt= sl [ 180t = [ Fonas (DNt = o Frna (D))
: b¥ : : Y

o) o) tAT N T ~ 0
/ |s2(t)|dtg/ (/ e’\j(t_s)|Fj(s)|ds)dt:/ Fj(s)|(/ e’\f(t_s)dt)ds
0 0 0 0 s
1 (7.
_M/o

It follows that

o0 N T - ~
| <>|dt<|A<|aj<o>|+/O |Fj<s>ds+Fend,j<T>|>.

In the estimate of the integral of Fj, (3. 22) (3 32), we use ¢, = ¢~ +¢,c, =

e +¢¢ (3.11) and track the terms 1nv01v1ng éN eNin I, and error separately7

T T

Fj,d:/ |FN (t)|dt, Fj,eg_/ e, D2W W (t,0)|dt, F;, 83_/ |c€ (t,0)D?W (0)]dt,
0 0

FN=D2(8, — LNYWD(0), D*=(8uy, Duy, Osa).-

From (3.11), we get 2¢, — ug (0) = ug(0) and only 1 unit of error Iz in Fj(t),j =2,3.
We track Fj (3.32) similarly. Since W(l) F,F,FN FN (3. 22) are cubic in time, we can
estimate the above integrals following (3 31). Note that |F.na;(T)| does not involve
the nonlocal error. Using the linear relation between a;,a;, we can estimate a;.

Using the above estimates, we can represent the rank-one solution and estimate
it as follows:

t

G(t,x):/ et —s)W(s)ds, W=WN +a0y.,
(3.37) ’ r ~
9504G1(6,2)] < sup et ( | i wlar-+ ol [ |al<t>dt> .

Similarly, we can bound other quantities for G and complete the estimates in
(3.6).

We generalize the above formula and estimate directly to the finite rank per-
turbation operator using linearity. For different initial data W related to the finite

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/06/25 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STABLE BLOWUP OF 3D EULER EQUATIONS 45

rank perturbation, we choose a different stopping time T(A(gl)) to save computation
cost. In practice, we construct the numerical solution up to time 7'( 0(1)) <T=12.
At that time, the solution W) (T') is very small, which can be treated as a small

perturbation. See the figures in section 4.3 in Part I [13].

Remark 3.1. Using linearity and the triangle inequality, we can assemble the esti-
mates for R (3.7) from the estimates of each mode W; in (3.6), (3.7). In practice, this
means that we can implement the above estimate for each individual mode completely
in parallel.

Finite support of the ¢, term in time. In section 5 of Part I [13], we need
to use ¢, (f), where ¢, (f) =uz(f)(0) = =4y (—A) " £(0). Since we choose the cutoff
function x12 for the second correction of & with properties (3.17), (3.18), we get

oW + a1 (t)x12) = co (WD),

and it is supported in [0, 7.

3.6. Ideas of estimating the norm of the error. In this section, we discuss
how to estimate the error derived in the previous section, e.g., I; v (3.29), a posteriori.
The general idea is to first evaluate f on some grid points and estimate the higher
order derivatives of f in a domain D. Then we can construct an approximation f of f
by interpolating the values of f at different points. The approximation error f— f can
be bounded by Cy||f||cxh*, where h measures the size of the domain. If the mesh h
is sufficiently small, the error term is small. See a simple second order error estimate
in (C.12).

To develop an efficient method for rigorous estimates, we have the following
considerations. First, we should evaluate as small a number of points as possible
so that the method is efficient. Second, most functions f in the verification are
complicated, e.g., I; ny (3.29), and it is difficult to obtain the sharp bound of the
higher derivatives. Instead, we first estimate the piecewise derivatives of some simple
functions, e.g., piecewise polynomials (&,7) or semianalytic solutions following Ap-
pendix C, D. Then we use the triangle inequality and the Leibniz rule to estimate
the products of these simple functions, and their linear combinations. Yet, in gen-
eral, this approach overestimates the derivatives significantly. To compensate for the
overestimates, we use higher order interpolations and estimates with error bounds
Ch*,k =3,4,5, which provide the small factor h¥. We develop three estimates based
on different interpolations—the Newton interpolation, the Lagrangian interpolation,
and the Hermite interpolation—in section 8 in the supplementary material (supple-
ment.pdf [local/web 1.43MB]). The 1D interpolating polynomials are standard, and
we generalize them to construct 2D interpolating polynomials.

We want to estimate the constant C' in the error bound Ch¥ as sharply as possible
to reduce the computational cost and improve the efficiency. In fact, when k =4, if
we can obtain an interpolation method and reduce the constant C' to 1%, to achieve
the same level of error, we can increase h to 2h. In this verification step, since the
domain is 2D, it means that we can evaluate only i of the grid point values of f,
which can reduce the computational cost by 75%.

Using the above method, we can obtain a sharp estimate of the derivatives of
f. Using the method in section 8 in the supplementary material (supplement.pdf
[local/web 1.43MB]) and Taylor expansion, we can further estimate the weighted norm
of f with a singular weight near 0. We discuss the estimate of the nonlocal error in
section 3.7. Using these L>° estimates of f and its derivatives, we can further develop
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a Holder estimate for f. See section E.1. We remark that the numerical solutions
are regular, e.g., the approximate steady state and the solutions to the linearized
equations are C*!. We use these methods to estimate a piecewise L™ (¢evo,;) norm
of the local residual error Rpyum,; (3.36) and the C';/ 2 partial Holder seminorm of
Rnum,iti, Where @eyo.i,%; are defined in (A.3).

We remark that the weights ¢ey0,; and ¢;,¢=2,3 in the L™ energy estimate (see
section 5 in [13]) for n,& are similar but with different coeflicients ps ., ps,.. Since ¢;
and @0 are equivalent, after we obtain the piecewise weighted L (peyo,;) estimate
of the error, we can obtain a piecewise weighted L (y;) estimate by estimating the
ratio ¢;/@evo,s- Similarly, we can obtain a weighted L*°(¢g ;) estimate of the error,
where ¢, ; is another weight in the energy estimate in section 5 in [13].

Estimate the local part of the residual error. Using the above methods, we
can estimate the local part of the residual error F; for the approximate steady state
and discuss the estimate in Appendix C.4. We further extract the local part of R0
(3.35), which has the form (3.8) obtained in section 3.7, and combine it with Roc,0,;
to get the essentially local residual error:

(3.38)
Rloqi = Rloc,O,i + Rdif,i + M: Rdiﬁi £ D?Bopﬁ (u(é)a G)( ) (X’L2 fx z)
M £ By i(u(€), W) = D7 Bop,i(a(€), W)(0)xiz — Bop,i(wa(ér), (Vu) a(é1), W),

where ;2 is defined in (3.17). By definition (3.39) and following derivation of (3.24),
we get

D?Bop,i(u(é)7é)(0) _ua:( )( )‘/17 V= (él,wy(())vé&wy(o)’é&mw(o))'

To estimate each term, we follow section 3.6 and Appendix C.4. We perform the
decomposition (C.18) u(é) = ua(é1) + (1) + u(é2) and similar decomposition for
Vu(é), with (&, xz) in (C.18) replaced by (&, x¢), where x; is defined in (D.6). Using
the linearity of B, ;, we get

Bop,i(U(é%W)—Bop,i(iA(él) (Vu)a (1), W) =1I;(é 1)+U‘(é );
ITi(21) = Bop,i((é1), Vu(ér), W), IIi(22) = Bop,i(u(é2), Vu(és), W).

We have uy = O(|z]3), (Vu) 4 = O(|z|?) near 0, which implies B, ; (w4 (é1), (Vu)a(é1),
W)=0(|z?) (3.4) and

M =1I;(é,) + II;(2)) — D

ZzB i(u(@), W)(0)xs2
= [I;(é1) + I1;(22) — D(II,

i(é1) +11;(£2))(0) x42-

The term I; n in Rioe0.: (3.29), (3.35) is similar to IT¥, and M has a similar form as
I1;(81) + I1;(22) in Appendix C.4. We have done the above decomposition for u(é)
n (C.18), (C.19) and refer therein for more details. Then the estimate of Rioc, ; is
similar to that in Appendix C.4. See section 5.8 in [13] for more discussion of the
above forms.

_Error for the initial data and at stopping time. The error /V(7(1)(T) —
DQW(l)(t) o x.2 at the stopping time has compact support and its estimate follows
the methods in section 3.6. To bound the initial interpolation error err;, e Wo(l) +
agoX.2 — Wo (3.35) in a large domain, we follow similar methods. The error involves
@, 0 which are supported globally. To bound err;, in the middle and far-field, since
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W()(l) + ag o x;,2 = 0, combining all the initial data from the finite rank perturbation
(see Appendix C.2.1 of Part I [13]), we need to estimate

Ilzcw(wl)’ A( ) Vi, IQZ2CW(W1)930—1A1-V§$—ﬂI'V§,
=2¢,,(w1)0, vo, —1a, -Vl

for large |x|. The approximation terms near 0 defined in section 4.2.1 of Part I [13]
are supported near 0 and decay to zero as |z| — co. In the far-field, Gi(wy) is only a
rank-one term. We estimate the above terms using (C.21), (C.22) with a = ¢, (w1)
and the estimates in section C.4.

3.7. Posteriori error estimates of the velocity. In this section, we show
that the nonlocal error in (3.35) has the desired forms in (3.8). Then we combine the
estimate of such terms with the nonlinear energy estimate in section 5.8 in [13]. Using
(3.5) and the definition of £%,£¢ (3.11), (3.12), we have

(3.39) L5(G) = Bop,;(u(e),G),  L5(G)=Bop,;(u(G + (=A)dg), W),

where c/)G is the numerical stream function associated with G.

Given ¢;(t) Lipschitz in ¢ and W;(0),i = 1,2..,n, we construct W;(t) following
previous sections and G using (3.6). Using the derlvatlons in (3.35), (3.29), (3.30)
and the above relation, the contribution from the error type I,z term to the error
(3.7) in the jth equation is the following:

Rgé/c(t—s)fé(s)ds:_( & DR (0)xy2).
jO_Z/ cz op, 5) Wz(t—s))dt

Since Bop,; is bilinear and ¢;(¢) is spatial-independent and Lipschitz in ¢, we get

(3.40) 2 = Bop(u@), |3 / colt = $)Wi(s)ds | = Bop s (u(@), G(t)).

i<n

Denote by @(l), Wj(l) the approximate solution with extension in t in section 3.4,
and the first correction [ =1 in section 3.2 or two corrections [ =2 in sections 3.2, 3.3.
Let (;ASEZ) be the stream function associated with Wi(l) constructed numerically with the
first correction for [ =1 and both corrections for [ =2. In particular, the full solution
is given by G =G W, = I/V(Q)7 <;SN ¢N ) (3.34). We construct the stream function
¢N (1) associated Wlth G® and error ¢ as follows:

03 [ s, e= O+ aGN

i<n

72/ YD 4 AGN D) (¢t - )ds.

i<n

Since we can obtain u(a(t)x12) exactly for the second correction (see section 3.3), we
have

(B41) )= WD = (—A)FD =T — (~A)FND — T — (—A)p
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In practice, we estimate € using the first identity since it does not involve a;(t)

and the integrand Wi(l) +Aq§§1) is piecewise cubic in time. We decompose € as follows:
. a’y e AN s A s

(3.42) 62:E$y(0)A<7Xé)7 E=(€—E&3)+éa=E1 469,
where y: is defined in (D.6). Since & only vanishes O(|z|?) near 0, we perform the
above decomposition so that &; = O(|z|®) near 0. See Appendix C.4 and section 5.8
in [13] for motivations of (3.42). We estimate &;,2,,(0),$" following (3.37). We
establish (3.6).

Similarly, using linearity, (3.39), and (3.41), we can rewrite the residual error in
(3.35) from the [; . term in (3.29) related to £(-) as follows:

RS L /c(t —8)1j(s)ds = —(RSy — DIR5(0)x;2),

S0= Z/o ci(t — s)ﬂ?(Wi(l))(s)ds

i<n

-3/ et = By (VY + 2G5, s
0

i<n

= Bop,(€(t), W),
which along with (3.39)(3.40) for Rf establishes the formula for R, in (3.8).

4. Estimate the norm of the regular part of the velocity. In this section,
we derive the constants in the upper bound in Lemma 2.3. We have constructed
the finite rank approximation f for f in Lemma 2.3 in section 4.3 in Part I [13].
The estimate of the most singular part, e.g., u; q5(wt), in the C'/2 estimate in
Lemma 2.3 can be obtained using the sharp Holder estimates in section 3 of Part I
[13], where wuy 4 is defined via a localized kernel. In this section, we estimate other
terms in Lemma 2.3, e.g., I = uy(w) — g qp(wy) — Py (w), involving the velocity
with desingularized kernels, which are more regular.

In section 4.1, we outline the strategies in the estimate and decompose the in-
tegrals from the nonlocal terms into several parts based on their regularities. In
section 4.2, we perform the L> estimates in Lemma 2.3 and derive the constants. In
section 4.3, we perform the Holder estimate of different parts. In section 4.6, we com-
bine the Holder estimate of different parts, which provide the constants in Lemma 2.3.
In particular, we reduce the L™ estimates and the C''/? estimates in Lemma 2.3 to
bounding some explicit L! integrals depending on the weights, which can be estimated
by a numerical quadrature with rigorous error control. We estimate these integrals
with computer assistance. See the discussions in section 2.2.

We will apply the second estimates in Lemma 2.3 for the nonlocal error, e.g., u(g)
and ¢ is the error of solving the Poisson equations. Since we can estimate piecewise
bounds of & following section 3.6, instead of using the global norm, we improve the
estimate using the localized norms, which are much smaller than the global norm.
See section 4.7.

The kernels associated with u, Vu are given by

Koot s Lyl u s Y s W

ly[*’ 2 [yt 7 T2y T 2y
K, =-Ki, K, =K, =K,

@

(4.1)
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Here, we have dropped the constant *, e.g., uy(w) = =0,y (—A) ! = %Kuw *w. One
needs to multlply = back to obtain the final estimate.

Difficulties in the computations. In addition to the difficulties discussed in
section 5.1 of Part I [13], e.g., singularities caused by the weights and kernels, the
singular integral introduces several technical difficulties in our estimates. To address
these difficulties, we need to consider different scenarios and decompose the domain
of the integrals carefully in our computer-assisted estimates. Given wp € L, the
velocity u and the commutator ¢ - (Vu)(w) — (Vu)(wy) are only log-Lipschitz. The
logarithm singularity introduces several difficulties. For example, if u is Lipschitz, a
natural approach to estimate its Holder norm in terms of ||wepl||s is to estimate the
piecewise bound of u and du, which are local in u, and then use the method in sec-
tion E.1. However, since u is only log-Lipschitz, we need to perform a decomposition
of u into the regular part and the singular part carefully. For different parts, we will
apply different estimates. See section 4.1.11 for ideas. For Vu, the estimates are more
involved since it is more singular.

4.1. Several strategies. We outline several strategies to estimate the nonlocal
terms.

4.1.1. Integral with approximation. In our computation of uy =u-u, (Vu) 4
=YVu — Vu, where the approximation terms 1, Vu are defined in section 4.3 of Part
I [13], the rescaling argument still applies. Note that we do not have dus = (9u)4
since we design approximations for u, Vu separately. We consider one approximation
term ¢(x) [ 1y¢s K (zq,y)w(y)dy for [ K(z,y)w(y)dy to illustrate the ideas, where S
is the singular region associated with x,. Suppose that K is —d-homogeneous. We
want to estimate

I=pla) [ (K(2.9) = o) K0 1ygs)W ().
where W is the odd extension of w from R% to R? (see (4.23)). Denote

(4.2) fa(@) = f(Az).
We choose A < |z| and denote = A%,y = A\J, 7, = AZ,. Since K(A\2) =A"¢K(2), we
have

T=p2(@) [ (KO0 = M) LagesK (A0, X0)) W ()0

=N @) [ (K823 = e Lygsn K (6 ) ) W)

The singular region becomes S/A and close to z,/A = &,. For example, if S = {y:
max; |y; — Tqi| < a}, we have S/A = {y : max; |y; — &4 < a/A}. For the above
integral, we will symmetrize the kernel and then estimate it using the norms ||[W¢||s
and [wip] ;12,0 =1,2 (4.9).

(4.3)

The bulk and approximation. To take advantage of the scaling symmetry
and overcome the singularity, in our computation for z away from the origin and
not too large, we choose several dyadic rescaling parameters A = 2, € I, e.g., I =
{—4,-3,..,10}. Then for any = with max(x1,z2) € [2°x., 2" 1z.], we can choose A = 2
so that the rescaled & = ¥ satisfies

X
{ Ze,y 22¢] X [0 2170] =0y if xo <z,

(4.4) .
0,z] xc,2xc] Qy  if 29 > 21
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We also choose x; ((x;,0) is the singularity) and the size of the singular region ¢; for the
approximation term defined in section 4.3.2 of Part I [13] such that x;/X is on the grid
point of the mesh and the boundary of the singular region {y: |z; — y1|V |y2| > t;/A},
which aligns with one of the edges of a mesh cell. For example, this can be done by
choosing the following y mesh in the near-field to discretize the y-integral, z;, and ¢;:

Y1 =1th, y2i=1h, x;=2""h, t;=2""h.

Then when we discretize the rescaled integral in y, e.g., (4.3), the singular region is
the union of several mesh cells. For large y, it is away from the singularity . Then
we can use an adaptive mesh in y;,y2 to discretize the integral.

We remark that in (4.3), if z, # 0 and z,/\ < x,/|z| is too large or too small,
since c¢(x) is supported near z,, ¢(AZ) = ¢(z) will be 0. This means that when we
compute uz(z), (Vu) 4, if the coefficient of an approximation term with center x; and
parameter ¢; is nonzero, e.g., ¢(x) # 0, then X\ is comparable to x; when we rescale
the integral by A\. Thus &; = z;/X is on the grid. We also choose t; such that ¢;/\ is
a multiple of mesh size h for A comparable to x;.

Remark 4.1. Using the scaling symmetry and rescaling the integral by dyadic
scales, we can compute the integral for x € [0, D]?\[0,d]? with roughly O(log(D/d))
computational cost.

The near-field and the far-field. Recall the notation from section 4.3 in Part I
[13]:
(4.5)
CuO =2z, C’UO =Y, Cuwo = 1; CuyO = C'UEO = Oa

1 1
Cuz :_(‘TQ _y2)v CUI =2xy, Cuy:2xy7 Cu:_<§m3 —my2>, Cv:ny_ §y3v

)

4 24 2 _y2 1
Kyzo=— y1y27 Koo = Hy1ya (67~ v2) Koo(w) = = Koo(y)w(y)dy.
lyl* ly[® ™ Jr2,

If z is sufficiently small, i.e., max(zi,z2) < mines2'a., we choose A
= max(x1,22)/z. so that the rescaled & = { is on the line 1 = z. or 3 = x..
Assuming o(z) > |z| 7P |z]] %, p~|z|~* near z =0, and K is —d-homogencous, then

we get

(1.6
ole) [ Klewdl < lloorlli=pn(@ [ 1K Dler) 3

S P e NC ) BN CIr e
2

As x — 0, A = 0. The factor \1+52+2=d ahsorbs the large factor A=< in py(2).
In our estimate of ug, Vuy, we have 81 + 2 = 2.9 for @1, 41, 2.5 for pe; (A.2),
(a,d) = (2,2) for (¢1,Vua) (A1), and (a,d) = (3,1) for (p1g,us) (A.2). We have
1+ P2+2—-d—2>0.

In general, the above integral may not be integrable due to the growing weight
ly|?1y?2. For u,Vu, with small z, it takes the form (see section 4.3 of Part I [13])

(4.7)
f(@) = Co(@)ua (0) — Cp(a)Koo = / (K™ +Crola) LI2 () Koo () (y)dy,

a4
2, ™ [yl
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where Co,Cy, and Koo are defined in (4.5), and f = u, v, uy, s, Uy, vy. In particular,
the associated kernel has a much faster decay rate |y|=%, which will be shown in
Appendix B.1.1. Thus, the integral is integrable.

Since A = max(z1,x2)/x. is very small, py(&) can be well approximated by the
most singular power ¢A~%|z|~* for some ¢ > 0, which can be estimated effectively
after factorizing out A=<,

Similarly, if z is sufficiently large, i.e., max(x1,z2) > max;es 2 1z,., we choose
A = max(@123) o that the rescaled @ = x/)\ is on the line x; = z, or x9 = z.. Since
A s sufﬁmently large, we can estimate the weight py, ) based on their asymptotic
behavior.

Integral near 0. We have an approximation I = —C'o(x) Kyuzo(y) —Ca(2) Koo (y)
(4.5) for K3¢™ (x,y) with some smooth coefficients C> (Co may not be Cy). The term
Cyo(2)Kuzo(y) and Ky are both —d homogeneous, d = 1 or 2. Since K0, Koo
are singular near 0, after we rescale the integral following (4.3), we decompose the
symmetrized integral for y near 0 as follows:

(4.8)
1= [ (K7 @) = X0 @) Kaoal) = Ca0) Koo (DA (i

:AQ—d(/&++ (K”””( 9) = Cr (@) L3 > k01 Kuzo (9)
- /\‘4+d02(/\i’)lmmzkmhKOO(ﬁ))w()‘?)d?)

—/]R++ (Cf( 211510 <horh Kuzo(§) = A0 (AR) 115/ <pgpn Koo (9 ))W(A@)d:&)

for some small integers ko; with ko;h < |Z|eo/2, €.g., ko1 = 4, ko2 = 20, where |a|e =
max(ay,az) and h is chosen in (4.14). We will estimate the first integral with regular
integrand near § = 0 using the method in section 4.1.3 and the last two integrals
for |9|oo < ko1h,|¥|oo < kooh analytically in section 4.4.1. We perform the above
decomposition since Koo(§), Kuz0(J) are too singular to estimate them numerically.
We apply the above decompositions to the integrals in both L>® and C'/? es-
timates. We also apply the above decompositions to the approximation terms and

estimate the integral of K, .o separately near y =0.

4.1.2. The scaling relations. We discuss several scaling relations, which will
be useful in later computation. For a —d-homogeneous kernel K, ie., K(A\x) =
A"?K(z), we have

x)/K(x,y) y)dy = pa(@ /K &, 9)oa ()N g £ N2 (@),

where © = A2,y = Ag. To compute the derivative of I(x), using the chain rule, we
have

dz;
d.l?i

For the L* part, clearly, we get |I(z)| = |Ix(Z)|. To compute the Holder norm,
we use the following relation |z — z| = A|Z — 2| and

1) = I _ 1y la@) = ()]

|z — z|1/2 | — 2|1/2

Op, I(2) = N279=220; I (2) = N 790, I (2).
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In particular, for i =1,2, we have

(4.9)
1) = F)

llwapalloo = llwplloos  [WAYA]p1/2 = /\1/2[W1/)]cl/27 [fle2 = sup 1/2
v} z; T Y,2:1Yi =2 |y - Z‘

Using these scaling relations, we can perform the estimate in a rescaled domain with
any A > 0.

4.1.3. Mesh and the trapezoidal rule. After rescaling the integral with suit-
able scaling factor )\, we can restrict the rescaled singularity & € [0,2z.])%\[0,z.]? (see

(4.3), (4.4)).
If a domain @ is away from the singularity & of the kernel, applying (4.9), we get
(4.10) /Q (K (2, y)l|wa (y)dy < [lwapalloo /Q K (&,9)|ex " (y)dy

= llwolloe /Q K (&, )]y (v)dy.

Then, it suffices to estimate the integral of an explicit function |K(&,y)|¢5 " (y).
If in addition, the region @ is small, e.g., Q is the grid [y;, ¥i+1] X [y, yj+1] introduced
below, we further apply

A?|K(i,y)llwx(y)ldyéllw¢|oollsaillLoe(@)/QlK(i‘,y)ldy-

Since the domain @ is small, the estimate is sharp. We use the following method to
estimate [ |K(&;,y)|dy for a suitable kernel K and &; on the grid points.

We consider the estimate of the L' norm of some function f in Ré’*, eg., f=
K (Z;,y) mentioned above. To discretize the integral, we design a uniform mesh in the
domain [0,b]? covering 2; and s with mesh size h and adaptive mesh in the larger
domain [0, D]?

(4.11) O=yo<p1 < --<yn=D, wy;=1ih, i<b/h.

The finer mesh in the near-field [0,b]? allows us to estimate the integral with higher
accuracy. We choose a sparser mesh in the far-field since y is away from the singularity
Z and the kernel decays in y. We partition the integral as follows:

w2 [ = Y FWldy+ [ 17wy,
Ry " 0<ij<n—1" [Wiyit1]x[y;y;5+1] y¢D
We focus on how to estimate the first part for nonsingular f. In section 4.4, we
estimate the integral beyond [0, D]? using the decay of the integral. We will discuss
how to estimate the integral near the singularity of the kernel in a later subsection.
Denote Q = [a,b] X [d,c],h1 =b—a,hs =d — c. We use the trapezoidal rule

/ FW)ldy <T(f1.Q) + Err(f),
la,b] X [e,d]

where
b—a)(d—c
77,2 "= (fa.0) ¢ flad) + S0.0) + £0.0)

The error estimate of the above trapezoidal rule is not obvious due to the absolute
sign. In fact, even if f is smooth, |f| is only Lipschitz near the zeros of f. Since the
set of zeros is hard to characterize and |f| can have low regularity, we do not pursue
a higher order quadrature rule. We have the following error estimate.
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LEMMA 4.2 (trapezoidal rule for the L! integral). For f € C?(Q), we have

/Q @Iy <TOFQ) + L 02| frall @) + Byl 0))-

Remark 4.3. The above estimate shows that the trapezoidal rule remains second
order accurate from the above. In particular, this error estimate is comparable to the
case without taking the absolute value.

Proof. Define the linear interpolation of f in @

4
L(f)=Y _X(@)fi, E(f)=f-L(f),
i=1

where A;(z) is linear and satisfies Y A\;(x) =1 and A\;(x) > 0 for € Q. Using the
triangle inequality, we obtain

/QflyS/QI (f)|y+/Q (@) fildy <|f|@>+/@| (H)ldy

We have the standard error bound for linear interpolation E(f)

| faallz= (@) 1 fyyllL=(q)
(413) (B < P g gy — )+ D )y - a),
which can be obtained by first applying interpolation in x and then in y. It can
also be established using the error estimate for the 2D Lagrangian interpolation with
k = 2 in section 8 in the supplementary material (supplement.pdf [local/ web 1.43MB)).
Integrating the above estimate in z,y and using % fol t(1 —t)dt = 3; concludes the
proof. 0

To estimate the integral [ |K(z,y)| for all & € Qy,Q5 (4.4), we discretize [0, 2a]?
using a uniform mesh with mesh size h, = h/2. We use the above method to estimate
[ |K (&;,y)|dy for x; on the grid points. After we estimate the derivatives of the kernel,
we use the following lemma to estimate the integral for any x in a domain.

LEMMA 4.4. Suppose that K(x,y) € C*(P x Q), P = [a1,b1] X [a2,ba],h; = b; —
airi=1,2, and Q =[a,b] x [e,d]. Let L(K)(x,y) =y 1 » s (2)K ((ar, b)) be the
linear interpolation of K(gc y) in x using K((a;,b;),y),4,5=1,2. Then for any x € P,
we have

/lK:cy|dy< 3 e /\K (airby), m)ldy

1,j=1,2
+ <§1||Kzr||L°°(P><Q) + §2||Kyy||Loo(PxQ)) Q.

The proof follows from (4.13), the triangle inequality, and %[¢(1 —¢)| < & for
t € [0,1]. We will apply the above lemma and sum @ over all the near-field domains
Qij = Yi, Yi+1] X [Yj,yj+1]) (4.11). Since Z Aij(x) =1, we can simplify the first term

as follows:
< m
Aij( g / ((ai, b)), y)ldy < 1<Zg§2§ / ((ai,bj), y)ldy.

1,]= 12 k,l<n

Therefore, it suffices to estimate the integral for z on the grid points and the
piecewise derivative bounds of the kernel.
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We apply Lemmas 4.2, 4.4 to estimate the weighted integral related to the velocity.
The integrands take the form (4.28), (4.29), (4.24). To estimate the error in the
above integrals, we need to obtain a piecewise L™ estimate of the derivatives of the
integrands in P,Q). We estimate the derivatives of the weights in Appendix A.1 and
the kernel in Appendix B.

Parameters for the integrals. In our computation, we choose
(4.14) he=13-2712 h=13.271 2.=13.277,

which can be represented exactly in a binary system, to reduce the round-off error.
The approximate values of the above parameters are h, ~ 0.0032, h = 0.0064, z. ~ 0.4.
For € [0,2x.)%\[0,7.])? (4.4), we have

(4.15) max(x1,x2) > x. = 64h = 128h,.

In our decomposition of the integral, e.g., (4.24), (4.45), (4.49), we impose a constraint
on the size of the singular region to satisfy (k+ 1)h < z. such that the region does
not cover the origin.

4.1.4. Decomposition, commutators, and the Lipschitz norm. The most
difficult part of the computation is to estimate the Holder norm of Vu, and we discuss
several strategies. In this computation, we cannot first estimate the local Lipschitz
norm of Vu and then obtain the local Hélder norm due to the difficulties discussed
at the beginning of section 4. We need to decompose the integral related to Vu into
several parts according to the distance between y and the singularity and use different
estimates for different parts.

We focus on the integral related to u, without subtracting any approximation
term and assume that x € [0, 2z.]?\[0,2.]?. The approximation term Vu is nonsingu-
lar and can be estimated using the method in section 4.1.3. Let h be the mesh size
in the discretization of the integral in y. Suppose that

(4.16) reRST, zo<m, wx€By, (k) CBi(h), j<i,
where h, =h/2 and By, (r) is defined as

(4.17) By (1) = [lr, (1 + 1)r] x [mr, (m + 1)r].

Denote by R(z, k) the rectangle covering x

(4.18) R(z,k) 2 [(i — k)h, (i + 1+ k)h] x [(j — k)h, (j + 1+ k)A]

for any k> 0. If k € Z*, the boundary of R(z,k) is along with the mesh grid and is
at least kh away from z. Denote by R, R 1, Rs 2 different symmetric rectangles with
respect to ©

Ry (z,k) =[xy — kh,x1 + kh] X [z2 — kh, 5 + kh],
(4.19) Req(z,k) 2 [x1 — kh,21 +kh] x [(j — k)h, (j + 1+ k)],
Reo(z,k) = [(i — k)h, (i + 1+ k)R] x [v2 — kh, 2o + kh].

We have Rq(x,k) C Ry i(z,k) C R(z,k),i =1,2. We introduce the upper and lower
parts of R(z,k):

(4.20) RY(z,k) 2 R(z, k) N{y:ya > x2}, R (z,k) 2 R(z,k)N{y:y2 <o}
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y2
R(x,k,N)
kh | X | kn
] 1

Fi1G. 1. Left: The large box is R(x,k) and the red box is Rs 1(x, k). (Color images are available
online.) The small box containing x has size h X h. Right: The upper boz is R(xz,k,N), and the
shaded bozx is R(z,k,S), the reflection of the region below the y-azis.

We use similar notation for Rs(z,k), Rs1(x,k), Rs 2(z,k). We further introduce the
intersection of the rectangle and four half planes with reflection:
R(z,k,N)=R(xz,k)N{y:y2 >0}, R(x,k,S)=Ra(R(z,k)N{y:y2 <0}),
R(z,k,E)=R(x,k)N{y:y1 >0}, R(z,k,W)=R1(R(x,k)N{y:y1 <0}),

where N, E, S, W are short for north, east, south, west, respectively, and the reflection
operators R, Ry are given by

(4.21)

Ri(y1,y2) = (—y1,92), Ra(y1,y2) = (y1, —y2).

It is clear that R(z,k,S) C Ry, R(z,k,W) C {y : y1 > 0}. An illustration of these
domains is given in Figure 1. If z,y € R, we have the equivalence

(Y1, —y2) & R(x, k) <= (y1, —y2) & R(z, k) N {y 192 <0} <= y & R(x,k,5),

(4.22) (y1,—y2) € R(z,k) < y € R(z,k,S).

The above notation will be very useful in our later decomposition of the symmetrized
kernel.
Define the odd extension of w in y from R} to Ry:

(4.23) W(y) =w(y) for y2 =0, W(y)=—w(ys, —y2) for y <0.

W is odd in both y; and yo variables. Since we fix x (4.16) below, for simplicity, we
drop x in the R notation. For k > ks, k, ks € ZT, we decompose the weighted u,(z)
integral as follows:?

wuy/Kﬂx—yWV@Myzw@> Ky (x — )W (y)dy
R(k)e
+

/ Ki(z —y)(y)W (y)dy + / Ki(z —y)y(y)W(y)dy
R, 1 (k)

R(k)\Rs,1 (k)
(4.24) +/’ K (2 — ) () — ()W (y)dy
R(k)\R(k2)

+ Ki(z —y)(¥(z) —(y))W(y)dy
R(k2)

2 I (a, k) + Lo (2, k) 4 Is(a, k) + Iy(z, k, ko) + Is (a0, ks),

2Since we have no flow boundary condition for the velocity and stream function —A¢ =
w,¢(0,) = 0, the Poisson integral formula for u = V1 ¢ is equivalent to V+(—=Asp)~1W for Asp
defined in the whole space case.
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where
5182

Ki(s)=—+.
1( ) 8‘4

We drop —2 in the integrand — 1 K7 (s) for u, () (4.1) at this moment to simplify the

notation. We will estimate different parts in section 4.3.

Principle and log-Lipschitz integrand. Our major motivation for the decom-
position (4.24) and the integrand (4.28) with symmetrization is to obtain an integrand
J which is at least locally log-Lipschitz satisfying J(x,y) < |z —y| ™! for y close to z,
and the more singular one Jg. We will estimate the integral of J using the trapezoidal
rule in section 4.1.3 and Jg analytically.

4.1.5. Symmetrization. After we obtain the decomposition, we use the odd
symmetry of W in y;,ys to symmetrize the integral and reduce the integral over Ry
to the first quadrant R;Jr. This enables us to exploit the cancellation in the integral
and obtain a sharper estimate. In our computation, we symmetrize the integrals in
I (z,k) and I4(x, k, ko), which are more regular. For a given kernel K (z,y), we denote
by K*Y™ the symmetrization of K:

(425) Ksym(x7y) £ K(J?,y) - K(l‘, —91792) - K(xaylv _yQ) + K($7 _y)

We show how to symmetrize I1(z, k) as an example. Recall the notation in (4.21),
(4.16). We assume 7 > x3. We choose k < i so that R(x,k) C {y:y1 > 0} and
R(z,k,W) = 0. By definition (4.18), the domains R(x,k), R(z,k,N),R" (x,k), etc.,
are the same for all « € B;, j, (hs). Yet, R(x, k) may cross the boundary y» =0, i.e.,
R(z,k,S)#0. See the right figure in Figure 1 for a possible configuration. Using the
equivalence (4.22) and the property that W is odd in y; and ys, for general x € Ry
(without 1 > z5), we can symmetrize I (z,k) as follows:

hiak) =v() [

++
RQ

(Kl(ﬂf =Y Lyerp)ye — K1(w1 —y1,72 + y2) Lygr(x,s)
(4.26)

— Ky(21 +y1,72 — y2)Lygre,wy + Ki( —|—y))w(y)dy.

For I4(z) (4.24), we choose the weight ¢ (y) (A.1), (A.2) even in y1,y2. Then the
symmetrization of I is

(4.27)
14(x7kak2)/R;_
— Ki(x1 +y1,22 — y2) Lyc p(e, W)\ R(ks,w)) (0 () — U (y) )W (y)dy.

In (4.27), we do not have the term K, (x+y) since for y e R ", 2 +y > 2. > (k+1)h
and —y ¢ R(k). See the discussion below (4.15). Thus after symmetrizing the kernel
in I4, we do not have such a term.

Though the symmetrized kernel is complicated, since these regions R(1), R(l, )
a=N,E,l=k,ky (4.18), (4.21) can be decomposed into the union of the mesh girds
(Wi, Yit1] X [Y;,Y;j+1], in each grid, the indicator functions are constants. See also
Remark 4.6. In each grid y € [y;,yit1] X [y;,y;+1], we can write the integrand in
I + 14 as

N (K1(z — ¥)1yeR(k\R(ks) — K1 (71 — Y1, 72 + Y2)Lye R(k,5)\ R(ks,5)

J=EKNC(z,y)-o(x) + K (z,y) - (¥(z) — ¥(y)),

(28] = (K€ 1 KO3, (@) + 00, KNC - () + 0., K ,9) - (9(x) — 0())
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where NC,C are short for noncommutator, commutator, respectively.

For y close to z, J is at least locally log-Lipschitz. See the principle before sec-
tion 4.1.5 for motivation. For y away from x, e.g., |y1|V |y2| > 4z, in our computation,
we have

(4.29) J = K™ (&, y)y(a).

In practice, we assemble the symmetrized integrand in Iy + Iy in R;H' together.
Using (4.28), we only need to assemble KN¢ K¢ We first initialize the integrand
with (KN¢ K¢) = (K*¥™ 0). To assemble the integrand in the singular regions, we
perform two replacements. In the first replacement, we pretend that R(k2) =0 and
replace the integrand in R(k) "R . Based on = € B;;(h) (4.16), we determine the
regions R(z,k), R(z,k,S) (4.18), (4.21). Since z1 > z2, we get R(z,k, W) =0. See
Figure 1. We partition R(k) "R T as follows:

(4.30) R(k) "R}t = R(k,N) = (R(k, N)\R(k,S)) UR(k,S) 2 D, U D,.

According to (4.26), (4.27) (R(kz) =0), for i =1,2, we first replace (KN, K%) in D;
by
(4.31) (KN, K) = (K" — K[ K{), KY = Ki(z —y), Ky

=Ki(z —y) — Ki(z1 — 91,22 + 42),
respectively, where K¢ is from the integrand in (4.27). We have i singular terms in
D; in (4.27).

In the second replacement, we replace the integrand in the smaller singular region
R(k2) NRIT € R(K)\RF ™. Outside this region, we have obtained the symmetrized
integrand using (4.31). Since we assume x1 > z2, we get R(k,W) = 0 (see the
discussion below (4.25)) and Ly¢ruw) =1, 1yer,w) = 0. Similarly to R(k) NR3 ™"
(see Figure 1), we can decompose

R(k‘g) QR;JF = (R(k‘g,N)\R(k‘g,S)) N R(kQ,S) £ D3 UDy.

In Dy = R(ke,S) C R(k2), R(k,S), from (4.26), (4.27), we completely remove the
Ki(z —vy), Ki(x1 — y1,22 + y2) terms in the integrand and have

(KN KO = (Ki(z +vy) — Ki(z1 +y1,22 — y2), 0).

In D3, since D3 C R(k,N) = D1UD3 (4.30), there are two cases. In D3N Dy, Dy =
R(k,N)\R(k,S), we have three nonsingular terms from (4.26) and zero terms from
(4.27) and get

(KNC K9) = (K1 (z +y) — K1 (21 + y1,22 — y2) — K1 (21 — y1,22 + 32), 0).

In D3 N Dy, Dy = R(k,S), we have two terms from (4.26) and one term from
(4.27). We get

(KNC K9 = (K (x +y) — Ki(v1 +y1,702 — ya2), =K1 (x1 — y1, 72 + 2)).

For x1 < x5, we assemble the integrand similarly. Using (4.28), we obtain the
integrand 0, J for the Holder estimate.
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C1/2? estimate of u,,v,. In the C;/Q estimate of w,,v, with kernel Ky (4.1),
we symmetrize the integrand K (z — y)(¢(z) — ¢ (y); see (4.68) in section 4.3.9. In
this case, the symmetrized integrand W (y)T is similar to (4.26) with ¢(x) replaced

by ¥ (x) — ¢ (y) and

T= () —¥(y)) (Kz(fﬁ — ) lyerye — Ko(x1 —y1,22 + ¥2) Lyg r(k,s)
— Ko (z1 +y1, 02 — y2)Lygpe,wy + Ki(o + y)).

Due to the weight (1(x) — (y)), we always have KV = 0. We initialize the T
using (4.28) with K¢ = K;™ (4.25). In the singular region R(z,k) NRJ ™, we only
need to perform one replacement. Similar to (4.31), we use (4.30) and replace the
integrand as follows:

K¢ =K;"" — Ko(x —y),y € R(k, N)\R(k, S),
K9 =K' — (Ka(x — y) — Ko(z1 — y1,22 +42)),y € R(K, S).

We remove the most singular integrand in R(k, N)\R(k,S) and the most two singular
integrands in Dy = R(k,S) to make T locally log-Lipschitz. See the principle before
section 4.1.5.

L*° estimate. For the L*° estimate, we do not multiply the integrand by the
weight ¢(x) or the commutator. We decompose the integral as (4.45) and symmetrize
the nonsingular part in I; using (4.26) without the weight ¢(z). Symmetrizing I,
(4.45) is similar. We initialize the symmetrized integrand as K*¥™ (4.25) and then
replace it in R(k) "RF*. Without loss of generality, we assume x; > x5 and have the
decomposition (4.30). Similar to (4.31), we replace the integrand as follows:

K™ — Ky(x —vy),y € R(k,N)\R(k,S),
K™ — (Ki(z—y) — Ki(z1 —y1,22 + y2)),y € R(k, S).

That is, we remove one and two singular terms in R(k, N)\R(k,S), R(k,S), resepc-
tively, making the integrand at least locally log-Lipschitz. See the principle before
section 4.1.5.

4.1.6. Integral in domains depending on x. In the computation, we need to
estimate several integrals in the domains D(x) depending on z, e.g., I3 in (4.24). Our
fundamental idea is to cover D(z) by some piecewise constant domains, which will
be essentially treated as fixed domains. By refining the location of x, we can obtain
tight covering.

We use the L estimate of I3 to illustrate the ideas. A direct estimate yields

I5(2)] < [[Welloe /R oo DR Wy

We cannot apply the method in section 4.1.3 to first estimate I3(x) for « on the grid
points and then estimate §%I3(x) for the error since the kernel is singular and the
error part associated with 9%I3(x) is more singular (see Lemma 4.4).

Denote f = 1p~!. We consider a change of variable y = = 4+ s to center our
analysis around the singularity . The domain for s is

(4.32) {y€ R(k)\Rs1(k)} = {s € R(k) — 2} N {|s1] > kh} 2 D(x, k).
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It suffices to estimate
(4.3 1= [ Rl 20
seD(x,k)

for all x € By, j, (hs) (4.16). We want to further simplify the above domain so that it
does not depend on z. Recall the location of z (4.16). To obtain a sharp estimate,
we further partition the location of x € B;, j, (hs) as follows:

(4.34)
Ag = [i1hg + ahg/m,ithg + (a+ 1)hy/m], By 2 [j1he + bhy/m, j1he + (b+ 1)h,/m]

for some m € Z* and 0 < a,b <m — 1. Clearly, A, x By is a partition of B;, j, (hy).
Recall (4.16) and (4.18). We have

R(x,k) =[(i — k)h, (i + 1+ k)h] x [(j — k)h, (j + 1+ k)h].
Now, for z € A, X By, since |s1| > kh, we have
(4.35)
si=y1—x1 € [(i—k)h —irhy —(a+1)hy/m,—kh] U [kh, (i+1+k)h —ithy — ahy/m)
éAle,a UXT,aa
where the subscripts 1, r are short for left, right, respectively. Similarly, for so, we
have
so=ys — w2 €[(j —k)h— j1hy — (b+ Dhy/m,(j + k+ 1)h — j1hy — bhy/m]
2((j — k) — jiha — (b-+ Dy /m, —kh] U[~kh, kh]
U [kh,(j+ 1+ k)h — j1hy — bhy/m)]
2 YapU Y UYas,

(4.36)

where the subscripts d, m, u are short for down, middle, upper, respectively. Note
that the intervals X,Y do not depend on x. We have

(437) D(l‘, k) C (Xl,a U X'r‘,a) X (Yd,b U Ym,b U Yu,b)~

Now, we can decompose J (4.33) as follows:

J< S ap Jap® /X Ky (=$)|f (s +a)dy, a=1,r, B=d,m,u.

a=l,r,f=d,m,u a,aXYp b

See the left figure in Figure 2 for different domains in the above decomposition. From
the definitions of X,Y, the total width of the left and the right domains X, o x (Yg,,U
Y;n,b U Yu,b)v o= lv u is

‘Xl,a| + |X7’,a| = h+ h/g;/m

For a fixed x, from the definition (4.18), the width of R(k)\Rs1(k) is h. We choose
a large m and further partition the location of = so that we do not overestimate the
region too much.

For a small domain @ = [a,b] X [¢,d], we can estimate the integral as follows:

(4.38) / K1 (=8| ( + s)ds < /\m sl Fll (e, (hor 12>
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kh kh

kh | x kh
kh kh

Sin,l

kh

\—Y—’

Ssym

FI1G. 2. The largest box in the left and middle figure is R(x,k). Left: The left and right blue
regions are X o X Yo b, Xr.a X Yim p. The four red regions correspond to Xo,a X Ygp,a=1,u,f =d,u.
Middle: Illustration of R(z,k)\Rs(z,k) and Rs(xz,k2). R(z,k)\Rs(z,k) consists of the blue and the
red regions. Right: different regions near the singularity for uw/xi. Blue, red, and white regions
represent Sin 1, Sin,2, Sout, Tespectively.

Since @ is given, Ki(s) is explicit and has scaling symmetries, and we can estimate
the integral of |K;(s)| easily. For example, if @ = [ah,bh]?, we can use the scaling
symmetries of K71 (s) to obtain [, |K1(—s)|= P f[a,b]2 |K1(—s)| for some 3. Moreover,
for many kernels in our computations, e.g., K(s) = sélsf , we have explicit formulas for
the integral. See section 5.1 in the supplementary material (supplement.pdf [local/web
1.43MBJ)).

We apply the above method to estimate the integral in X, o xYsp,a=1,r,f=d,u
(red region in Figure 2; color images are available online). Since Y;, , = [—kh, kh], for
the integral in X, o, X Y, 5 (blue region), we further decompose it,

(4.39) Jom= % / s+

—k<t<k—17 Xaax[th,(t+1)h

and then apply the above method to estimate it.
Next, we further simplify || f||z(B,, ,, (h.)+@) D the above estimate. From (4.16),
we get

141

ih <ithy < (i1 + 1)he < (i +1)h, jh<jihe < (j1 4+ Dhe < (5 +1)h.
For X , (4.35) with 0 <a <m — 1, we have the lower bound for the endpoint
(i—k)h—ithy — (a+Dhy/m> (i —k)h —ithy —he > (i —k)h— ((i + 1)h — hy) — hy
=—kh—h.

See the left figure in Figure 2. The width of the blue region is less than h. Similarly,
we can cover the intervals of X,Y (4.35), (4.36) uniformly for 0 < a,b <m — 1 and
obtain

Xi.a C [(i — k)h — ivhy — ha, —kh] C [ (k + 1)h, —kh),
X, C [khy (i + 14 k)b — iy hy) C [kh, (k+ 1)R],
Yao C[—(k+ Dh,—kh], Y, C [kh, (k+ 1)A].

Thus, we only need to estimate the L norm of f in

Qll]l(h$)+[ah7 (Oé+1)h] X [ﬁhv (6+1)h]7 Oé:—k—l,k, 6:_(k+1)7_ka7k
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These estimates are independent of the choice of m, a,b. Since the size of each domain
is at most 2h x 2h, the above estimates based on (4.38) are sharp. We estimate the
piecewise bound of the weights 1, ¢ in Appendices A.1, A.2, A.3.

Using the above decomposition and estimates, we obtain the estimate of J (4.33)
for x € A, x By (4.34). Similarly, we can estimate J for any 0 <a,b <m — 1. Taking
the maximum of these m? estimates, we obtain the estimate of J and I3(z) for all
S Biljl (hw)

4.1.7. First generalization: Integral in a ring. We generalize the above
ideas to estimate the integrals in domain D = R(x,k)\R(z, k2) = R(k)\R(k2),

J/R(k>\3(k2>|K(yx)”f(y)'dy/SGD@,;C)K(S)”JC(I“M?/"
D(z,k) £ R(k)\R(ks) — =

with 2 <k, =k — % < k for some integer ¢ > 1 and some kernel K(z). Note that the
inner region R(kz) is different from (4.32). See Iy in (4.24) for an example of this
integral region. Suppose x € B;;(h) (4.16). We partition the location of z similarly
to (4.34) and introduce py, q;:

Ay =[th+ah/m,ih+ (a+ 1)h/m],

By =[jh+bh/m,jh+ (b+1)h/m], 0<a,b<m—1,
p1=—ko —a/m, po=ko+(m—a—1)/m,
p3=—ka—b/m, py=ko+(m—>b—1)/m,
q1=—k— (a+1)/m, g=k+ (m—a)/m,
g3s=—k—(b+1)/m, ga=k+ (m—>b)/m.

(4.40)

For a fixed x € A, x By, by comparing the boundaries of the following four rectangles,
we get

Din = [prh,p2h] X [psh, pah] C R(k2) —x C R(k) — 2 C [q1h, gah] X [g3h, qah] = Dour.
To obtain the above inclusions, for example, for s =y — x,y € R(ks), we use

min y; —x1 =ih — koh — x1 <ih — koh — (ih + ah/m) = —kah — ah/m = p1 h,
yER(k2)
uniformly for x € A, x By, C Bjj(h). For R(k)—x C Dout, we have g1h <minye gery y1 —
z1. Other bounds for the inclusions are obtained similarly. This yields D(z,k) C
Dying, where

(441) Dring = Dout\Din

is fixed for z € A, X Bj.
It suffices to estimate the integral J in D,;ne. We partition s € D, using mesh

(4.42)
Zy={-k<i<ki€Z}U{p1,p2, 1,02}, Zo={-k<i<k,i€Z}U{p3,ps,q3,qa},

and then order them in an increasing order z; 1 < 212 <--- < 212845 € 21,1 = 1,2. Note
that we do not multiply 2; . by h here. We estimate the integral J,q in each grid Q¢ 4 =
[21,ch, 21,c410] X [22,4h, 22, a41h] following (4.38) and using the norm || f|[ze(z+4q..,)-
We turn off the integral in region Q. q if Qg C D;y since it is not in Dy, (4.41).
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Uniform covering. For fixed c,d, we want to cover = + Q). 4 uniformly for x €
Ay x By and all 0 < a,b <m — 1 (the subpartition of z) to bound ||f||Le(24q. 4)-
Since we add four extra points p;,q; in Z; and Z5 and order them in an increasing
order, the region ()4 can change for fixed c,d but with different a,b. We show that
the 2k 44 intervals [z1,¢, 21,¢41],1 < ¢ <2k +4 can be covered by [y, 8;] uniformly for
a,b

[O‘lvﬁl]v ap € Zivﬂl S Zfa Zi £ {7(k+ 1) SZS kaZ GZ} U {750 - 2350}3

(4.43) N
Zi":{—k§i§k+1,iEZ}U{—SQ,So+2}, 80:|_]<}2J,

with «y, 8; increasing. From (4.40) and the definition of sg, we get
(4.44) p1 € [—50 —2,—50), p2 € [s0,50 +2], q1 €[~k —1,—k], ¢z € [k, k+1].

The uniform covering is based on the following observations. Suppose that u; <
v;,8=1,2,...,n (u;,v; may not be increasing). Let us denote by {U;} the reordering of
{u;} in an increasing order and denote by {V;} the reordering of {v;} in an increasing
order. Then we have U; <V;. In fact, for any k& <n, from u; < wv;, Vi is larger than
u; with at least k£ different indexes j. Since Uy is the k-smallnest value in {ui}i, we
get Vi, > Ug.

From (4.42), (4.44), since g2 = max, z1,c, 1 = min, z1 ¢, we get

{r1,6,6 <2k +4} ={-k<i<k,ic€Z}U{pi,p2,q1},
—k—=1<q1,—s0—2<p1,80 <pa,

{#z1,e41, ¢ <2k + 4}y ={-k <i<Ek,i € Z} U {p1,p2, 2},
p1 < =380, p2<s0+2,q2<k+1

We can bound each component in Z! (4.43) by a component in the above list. Using
the above observations, after reordering two sequences in an increasing order, which
gives {ac}, {z1,cte<obra, We get ae < 21,c,¢ < 2k + 4 (4.43). Similarly, we obtain
21,041 < B¢, yielding [21,¢, 21,c41] € [, Be), ¢ < 2k + 4.

Similarly, we obtain [22 4, 22,a+1] C [aq, Ba]. Thus, we get [21 ¢, 21,c+1]) X [22,d, 22,d+1]
€ [, @ey1] X [Bas Bar1] uniformly for the subpartition of x € A, X By with 0 < a,b <
m — 1, and can cover z + Qcq by Bj,j, (hs) + [ach, acp1h] X [Bah, Bar1h] (4.16) for
x € By, j, (he) C Bij(h).

4.1.8. Second generalization: The boundary terms. We generalize the
method to estimate some boundary terms. We estimate the z-derivative of I3(x)
(4.24) to illustrate the ideas. In 0,15, we have an extra boundary term I35

D1l (2) = / 0y, Ky (3 — ) (W) (1) dy
R(k)\Rs,1(k)

(G+1+k)h z1+kh N
o A X DI S e R
(j—k)h y1=x1—kh

where we have used the domain for R(z,k) (4.18).
For I3;, we apply the method in section 4.1.6 to estimate it. Denote I'y 2 [j —
k)h,(j 4+ 1+ k)h]. Using a change of variable y =z + s, we can rewrite I35 as follows:

.[32:—/ (Kl(—kh7—82)(w¢)($1 +/€h,$2 +82)
s$2€l, —m2

— Kl(k‘h, —52)(W¢)($1 —kh,zo + SQ))dSQ.
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We partition the location of  and assume z € A, X By C By, j, (hy) (4.34). From
(4.36), we have

so €l —xo C Yd,b U Ym,b U Yu,b-

Using the above decomposition and |[W(x)| < |[W¢||e f (), f =11, we obtain

sl <[[Weplloo > Mag,
a==+,8=d,m,u

M%Bé/ |K1(—Oékh,—$2)| . |f(l‘1 +O(]<lh,$2+82)|d82
Yﬁ,b
for o = £, =u,m,d. For 8 = u,d, the domain Yz is small |Yz ;| < h. We apply

the method in (4.38) to estimate M, g. The only difference is that we need consider
a 1D integral here

/ |K1(—O¢I€h, —82)|d82
Q

for some interval @, rather than a 2D integral in (4.38). For M, ., we decompose
the domain Y,, ; into small intervals with length h similar to (4.39) and then apply
the method in (4.38).

We combine these estimates to bound I3 for x € A, X B,. Then, we maximize
the estimates over 0 < a,b<m —1 to bound I3, for z € B;, ;, (hs).

4.1.9. Third generalization. In some of the computations, we need to estimate

J= / K (2 — )| f(y)dy
R(k)\Rs(k2)

for some ko < k with 2ks, k € ZT, where R4(k) is defined in (4.19). Similarly, we use
Rs(k2) C Rs(k) CR(K),  R(k)\Rs(k2) = R(K)\Rs(k) U Rs (F)\Rs (k2),

and a change of variable y = x + s to obtain

J= / Jr/ K(—8)f(z+s)dy = J; + Jo.
SER(k)—w,|s1|V]|s2|>kh koh<|s1|V|s2|<kh

Compared to R(k)\Rs,1(k), the domain R(k)\R,(k) contains two more parts,
Xm,a £ [—kh, kh]7 X’m,a X Yu,ba Xm,a X Yd,ba

i.e., the upper and lower blue regions in the right figure in Figure 2. The integral in
these regions is estimated to be similar to that in X, 4 X Y5, (4.37), and the estimate
of Jy is similar to J in (4.33).

For Jo, the domain is simpler. Since 2ky € ZT, we partition the domain into
hz X hy grids,

Jo =
(C,d)GSk\Sk2
SiE2{—k<c<k,—k<d<k}.

/ K (=)l (s +2)ds,
[cha,(cH+1)ha] X [dhg,(d+1)he]
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For each integral, we estimate it using the method in (4.38). The remaining steps are
the same as those of J in (4.33) studied previously.

Remark 4.5. In the estimates in sections 4.1.6-4.1.9, we use the important prop-
erty that the weights are locally smooth to move them outside the integral. Moreover,
we use the fact that the singular region depends on z monotonously to cover it effec-
tively. Since the integral [ o [K1(s)|dy for different @, a,b in the above estimates does
not depend on z, we first compute these integrals once and store them and then use
them in later estimate of different x.

4.1.10. Taylor expansion near the singularity. We need to estimate the
integral

I@)2 [ 0n (K =) w(@) )W) dy

for ko < k in some region D close to the singularity x. For example, D =

R(x,k2)\R(x,k3), R(x,k3)\Rs1(x,k3) in Oy, I50,04,151 (4.51). To obtain a sharp

estimate, we perform Taylor expansion on t(x). We focus on 9,,. Denote z =
=2t A direct computation yields

=Y, Tm = P}
I'=0q, (K(z —y)v(z) —¢(y) = (01 K)(z —y) (¥ (z) — () + K(z —y)o1¢(z).
Using Taylor expansion of 9 at x,, and following (B.26), we get
V() —p(y) =(z—y) - Vip(am) +e1, Yo(@) =a(zm) + €2,

el < D eill0LAY ] L ey 2l |22l
itj=2

1
le2| < §(||3m%/1||Loo(Q(y))|21| |0z Lo (@) 122])

where cog = i, c11 = %, Co2 = i and we have written z; = z; —y; and Q(y) is one of the
four quadrants D N {y: sgn(y; — x;) = £1} covering both z,y. Combining the term
with the same derivative of 9, we need to estimate the following integrals:

\ / wmwm)(almz)zl+K<z>>w<y>dy‘, \ [ a2 o)
D D
/D 500 1 (0 |V () AW (9) i+ = 2,

/D 051090 e (o [ ()24 AW () dy,i 4§ = 1.

We partition the region of z =z —y € z — D, e.g., D = R(ks)\R(k3) (4.51), into
small mesh and estimate the piecewise bounds of weights and each integral following
sections 4.1.6-4.1.9. '

We estimate the integral of |0103 K (2)zF25| in section 5.1 in the supplementary
material (supplement.pdf [local/web 1.43MB]).

4.1.11. Holder estimate of log-Lipschitz function. In some computation,
we need to perform a C''/2 estimate of some log-Lipschitz function. We consider an
example to illustrate the ideas:

F(z) = / K@y, K| <Ol
max; |x; —y;|<

0K (2,y)| < Calz —y| 72,
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for some constant C1,Cs. Given f € L>, I is log-Lipschitz. To estimate [f], 1/2, We
cannot first estlmate the piecewise values of f and 0, f and then combine them to
obtain the C ? estimate. Instead, given z, z, for a to be determined, we decompose
F' into the smooth part and the singular part

R [ Ka)f )y, Fa(o) 2 [ K(2,y)f(4)dy.
<max; |z; —y;|<b max; |z; —yi|<a
Using the assumptions of the kernel, we have

b
|02, F1(2)] < Cslog — || fllo,  [F2(2)] < Calal - || floc,

where the constants C3,Cy depend on b,Cq,Cs. Applying the above estimates, we
obtain

|F(z) = F(2)| _ [Fi(2) = Fi(2)] + |[Fa(x) — Fa(2)|
|21 — 21|12 = |71 — 21|1/2

b
< (Catog ;- for — 222 + 2Culalfor — 2072 1|

We optimize the estimates by choosing a = Cj|z; — 21| for some constant Cj
depending on C5,Cy;. Then we establish the estimate. The above simple estimates
show that the choice of a depends on |z — z|. Thus, in our later Holder estimates, we
perform decomposition guided by the above estimates and optimize the choice of size
of the singular region [—a,a]?. On the other hand, since for different |z — 2| we need
to choose different a, it increases the technicality of the computer-assisted estimates.

4.2. L* estimate. Let u, be the approximation term of u, (see section 4.3 of
Part I [13]). We focus on the estimate of the piecewise L> norm of u, 4 =ty — Uy,
which is a representative case. For simplicity, we assume the rescaling factor A = 1.
We assume that x satisfies (4.16) without loss of generality. We want to estimate u,, 4
for all z € By, j, (hy).

We can write uy 4 =uy, — Uy as follows:

o n = / (K(z—y)— K(e,y)Wy)dy, Ka2K(z—y) - K(zy),

where K (z,y) is the kernel for the approximation term and W is the odd extension
of w (see (4.23)). From sections 4.3.2 and 4.3.3 of Part I [13], we remove the singular
part in K, and then K is nonsingular. Given z with (4.16), similar to (4.24), for
k > ko, we perform the following decomposition:

(4.45)
</ / / ) (x —y)W(y)dy — /K x,y)W (y)dy
R(k)° R(k)\Rs (k2) R (k2)

20+ I+ I3+ 1y,

where Rg(k) is the symmetric singular region (4.19). See section 4.2.3 for the choice
of k.

Since I + I is nonsingular, we use the ideas in section 4.1.5 to symmetrize the
kernels in Iy + I4. Then we use the method in section 4.1.3 to estimate it.

Remark 4.6. In our computation, the domain [0, D]?> N R(k)¢ can be decomposed
into the union of small grids [y;, ¥i+1] X [y;,y;+1] (4.11) since the boundary of R(z, k)
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aligns with the mesh (4.18). In particular, in each grid, the indicator function is
constant, and the integrand is smooth in y.

Next we consider I5. The domain of the integral is close to the singularity. If
we use the method in section 4.1.3 to estimate it, the error will be quite large since
0?K (x — y) is very singular. We want to estimate I using ||W¢||o and the singular
part Is using [W1h1]ou/2. Since K (z) is singular of order —2, we expect an estimate

ko -
2]+ 11| Slog o~ @)Wl eimaor + 97 @)y W]y e

Note that the weights ¢, have a different order of singularity for small = and a
different rate of decay. Moreover, we need to control the right hand side using the
energy, which assigns different weights to two norms (seminorms). Thus, to obtain a
sharp estimate, we need to optimize the choice of ks.

First, we consider ko = 2,2+ %, .., k; we use the method in section 4.1.9 to estimate
I>. We also consider very small ky < 2. In this case, we further decompose Iy as
follows:

I, = (/ —|—/ )K(x—y)W(y)dyéIm—FIgg.
R(k)\Rs(2) Rs(2)\Rs(k2)

For I51, we apply the method in section 4.1.9. For I55, we use a change of variables
y=x + sh,

[I22| =

/ K(—sh)W (x + sh)h?ds
ka<[s1|V]s2|<2

Since the region is very small, z+ sh € B, j, (hy) +[—2h, 2h], and K (hs) =h"?K;(s),
and we get

ool < Wellool I 1w 511 (ho (2280 / K (s)]ds.

ka<|s1|V[s2|<2

The integral can be computed explicitly and has the order log k%
It remains to estimate the most singular part I3 for different ko. Using a change
of variables y = x + sh, the scaling symmetries, and the above derivations, we get

I3 :/ K(—s)W(x + sh)ds.
[—ka2,k2]?

To use the Holder norm of W, we decompose it as follows:

(4.46)

_ et s L T sh)
I= /[_,@,kzp[“ )W) +h>< R ¢<x>>+K< ) d
£ I3y + I3

For I35, using the Holder seminorm, the odd symmetry of K (s) = cslgff in s1, and

[(Wi)(x + sh) — (W) (x — sh)| < v/2s1h, we get

1/2
I S — W’¢ 1/2/ K(s \/gds
| 32| ¢(x)[ ]Cm [07k2]><[*k27k2]| ( )| '
2k, h1/2 /
=— (W 1/2 K(s \/gds,
e (W] s [0,1}2| (s)]v/2s1
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where we used the scaling symmetry of K and a change of variables s — kos in the
last equality.

4.2.1. The commutator. For I3;, we apply the simple Taylor expansion to
f=v
(4.47)

2 2
|f(x 4 sh) — f(2)| < |fu(®)hss + fy(x)hsa| + h2 (mQ2051 +mi18182 + m02252>,

where m;; is the bound for the second derivatives of 1=,

m;;(s) = max 0L7 (v Y|pee, Iy =1[0,koh], I_=][—koh,0].
= e S0 e L= [0kl = [—kah,0

Note that m;; is constant in each quadrant of [—kz, k2]. We plug in the expansion
(4.47) to estimate I3;. We only discuss a typical term mogsih?,

2

S
131’20éh2/[ ] K (=) (W) (@ + sh)mao (s) 5 ds.
ko ,k2]?

If ko > 2, we can further partition [—kg,ks]? into Bay,24(1/2) = [p,p + 1/2] x
[g,q + 1/2],—ko < p,q < ko — 1/2, where we use the notation (4.17). For each grid
Bop,24(1/2), the sign of s and mgg(s) are fixed, and we have

/ [ ()| (W) &+ sh)maofs) s
B2p 2q(l)

2
§m20\|ch||oo/ K(Sﬂsl(w>($+sh)d$.
B2pw2q (%) 2 ¥

The last integral can be estimated using the method in (4.38). Combining the estimate
of integral in different regions Bap 24(1/2), we obtain the estimate of I3y 29. Similarly,
we can estimate the contributions of other terms in (4.47) to I3;.

For small ks <2, we do not partition the domain. We denote D(k2) = By, j, (hs)+
[—kah, koh)?. For s € [—ka, ks], we use z + sh C D(k2) C D(2) to get

|f (@ + sh) = f(@)] < |[fallLoe (D ko)) St A+ |[fyll oo (D(k2)) 52105

Wiz + sh)| < [[Wel| || — .
PllLe=(D(2))

(4.48)

Plugging the above estimate into I3, we get

E

In< Y R0l Wl
(1,7)=(1,0),(0,1)

<[ K,
[—Fka;ko]?

Using the scaling symmetry, we can reduce the last integral to k’ﬂ Ik 1 1]2|K sy s% |ds.

We apply the above estimates to a list of ko and bound dlﬁLerent norms using

max(]|wp|| o, max;y; [wdjl]cl/g(]w)). Then by optimizing the k2, we obtain the sharp
£ 2

L>=(D(2))

estimate of uy 4.
n (4.47), we do not bound f(x + sh) — f(x) directly using the estimate (4.48)
since s is large. Instead, we perform a higher order expansion.
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Estimate of u,,v;. The estimates of u,,v, follow similar strategies and esti-
mates. The only difference is the estimate of the most singular term similar to I3y
(4.46) for u,,v, due to a different symmetry property of the kernel. We estimate
it using a combination of norms [|wep||e and seminorms [wi)] 1/2, and defer it to

section 6.1 in the supplementary material (supplement.pdf [local/web 1.43MB]).

4.2.2. Estimate of uy. The estimate of uy is much simpler since it is more
regular. Let K and K be the kernel of u,v and its approximation term, respectively.
For f=w or v, we perform a decomposition similar to (4.45)

(4.49) fa= (/R(,f)ch/R(k)\Rs(k)+/&(k)>K(9€—y)W(y)dy—/K(x,y)W(y)dy

éll + I+ I3+ 14.

The estimates of I; + I, follow the method for u, 4. For I, we use the method
in section 4.1.6. For I3, since K has a singularity of order |z|~!, which is locally
integrable, we use a change of variable y = x + sh to obtain

I3 = h/ W (x + sh)ds.
k k]2

Then we partition [—k, k]? into small grids and use the method in (4.38) to estimate
the integral in each grid. Here, we get a factor h in the change of variables since
K(\s)=A"1K(s).

4.2.3. Choice of parameters. Recall the choice of several parameters a, h, h,
from (4.14). We choose 3 < k <10. We choose k for the size of the singular region kh
(4.45), (4.49) not so small such that the error 29K in Lemma 4.2, which has the
order h?|z —y|~*~2 near the singularity, is smaller than the main term K, which has
the order | —y|~%, a=1,2. Since we will estimate I 4+ I4, I2, I3 in the decomposition
separately using the triangle inequality, we do not choose k to be too large so that we
can exploit the cancellation in I; + Iy.

4.3. Holder estimates. We want to estimate W for any x,z € R++ with

x1 = 21 Or T3 = 2 and some function f, e.g., f = uy 4. Without loss of generality,
we assume |z| > |z|. Then in the Cy 1/% estimate, we have a1 < 21,2 = 2g; in the 01/2
estimate, we have z1 = 21,22 < 2z2. Applying the rescaling argument in section 4.1,
we can restrict = £ to & € [0,2z.]?\[0,z.]?. For this reason, we assume A =1 for
simplicity. We will only estimate the Holder difference for comparable x,z: |z| < |z|.
If |z] > |z|, we simply apply the L estimate to f(z), f(z) and use the triangle
inequality.

We focus on the Holder estimate of u, 4, which is a representative and the most
important nonlocal term to estimate in our energy estimate.

4.3.1. C1/2? estimate. Recall I; from the decomposition (4.24) and Ki(s) =
S‘éff We apply the same decomposition to u; 4(z). We assume that the approxima-
tion term i, (see section 4.3 of Part I [13]) takes the following form:

(4.50) Gy (x /K1 )W (y)dy, Is(x)=Y(x)i, /K1 x,y)W(y)dy,

with a nonsingular kernel K;. We first discuss how to estimate the regular part
I, 13,14 in (4.24) and I, which are Lipschitz. We will apply the sharp Holder estimate
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in Lemmas 3.1-3.5 in section 3 of Part I [13] to estimate the most singular part Is.
The most technical part is to estimate I5, which is log-Lipschitz since the kernel
Ki(z —y)(¥(x) —¥(y)) has a singularity of order —1. We assemble the estimates of
different parts to estimate [ty 4] c1/2 in section 4.6.

4.3.2. Estimates of the regular terms I3, I3,14,Ig. Recall I,13,1; from
(4.24) and I from (4.50). Since the integrands in Iy, I3, I are supported at least koh
away from the singularity z, if W is in some suitable weighted L*° space, I, I3, I are
piecewise smooth and their derivatives can be bounded by \|W@||OO(R;+) = ||w||oo-
Their derivatives jump when R(x,k), R(x,ks) change, or equivalently,  moves from
one grid to another. For « € B;, ;, (hy) (4.16), these rectangle domains are the same,
and these functions are smooth. The approximation term I (4.50) is locally smooth
in z. To exploit the cancellation, we combine the estimates of I, I, I together. We
symmetrize the kernel in Ir(z) + I4(x) — Is(z) following section 4.1.5 and use the
method in section 4.1.3 to estimate the derivatives of I;(x) + Is(x) — Is(x). See also
(4.28), (4.29) for the form of the symmetrized integrands in these integrals.

We estimate the piecewise Lipschitz norm of I3 using the method in sections 4.1.6,
4.1.8. We choose integer k, ko in the decomposition (4.24). Then in each grid [y;,
Yit1] X [yj,yj+1], the indicator functions in Iy + Iy — Ig, e.g., 1R(k)ca 1R(k)\R(k2)7 are
constant. See Remark 4.6. We will combine the estimates of different terms in sec-
tion 4.6, e.g., I1 + I4 — I, Is and part of I5. defined later in (4.51), and obtain some
Holder continuous functions when z moves from one grid to another. We assemble
the Holder estimates in section 4.6.

4.3.3. C1/2 estimate of I,. We first estimate the second term I in (4.24).
Recall R(x, k), Rs1(x, k), Rs(x, k) from (4.18), (4.19) and the location of x (4.16). We
have

29— (j—k)h<(+1)h—(j—k)h=(k+1)h,
(j+14kh) — 2y < (j+ 1+ kh) — jh = (k + 1)h.

Since x9 = zg, using Lemma 3.1 from section 3 of Part I [13] with (a,b1,b2) = (kh,zo —
(J—k)h,(j+14+k)h —z2) and |b1],|b2| < (k + 1)h, we obtain

(k+1h
| — 2|

1
o @R~ Lz k=G (

> [W¢]C;/2

We only apply the Holder estimate to |z —z| < (rescaled z,z) and the assump-
tion a > 1|21 — 2| in Lemma 3.1 in Part I [13] is satisfied. For I5(z,k) associated with
other terms u,v, uy, vz, we can estimate it using similar ideas and Lemmas 3.1-3.5 in
Part I [13]. The C’;/Q estimate of I3(x, k) is completely similar. See section 4.3.8 for
more details.

4.3.4. C1/2 estimate of Is. For I (4.24), Ki(x — y)(¢(z) — (y)) is singular
of order —1 near y = z. Given W € L*(p), I5 is log-Lipschitz. There are several
approaches to estimate its Holder norm (see, e.g., section 4.1.11). We use part of
the C;/Q seminorm of w to get a better estimate. We choose k3 = ko — % > 2,1 =
0,1,2,..,2kys — 4, and further decompose I5 as follows:
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(4.51)

Iy, k) = ( / +f +f ) K (2 — ) (@) — w(y)) W (y)dy
R(k2)\R(k3) R(k3)\Rs,1(k3) Rs 1(ks)
£ I50(z, ko, k3) + Is 1 (x, k) + I5 2 (2, k3).

The domain in Is o depends on z. For z in a grid cell, it does not change with
xz. We estimate 0., I5 using Taylor expansion in section 4.1.10 and following the
method in section 4.1.7. We estimate the x-derivative of I5; using the method in
sections 4.1.6, 4.1.8. We have

O Ty = / O, (B (2 — ) (9(x) — ()W ()dly
R(k3)\Rs,1(k3)

(4.52) /(j+1+k3)h z1+ksh
(

Ki(z —y) () — ()W (y) dys.
Jj—ks)h y1=z1—kszh
We estimate the first part following section 4.1.10 and the second part following
section 4.1.8.
For I5 o, we will estimate it using a method similar to that of I5. See the left
figure in Figure 3 for the domains of the integrals in I5 2(x),I5 2(2). The integrand
satisfies

Ki(z —y)((x) =))W (y) =¢(x)K1(z —y) (¥~ (y) — ¢ (@) (W) (y)
~ ()0 (Y (@) - K1 (@ — ) (yi — 2:) (W) ().

Thus, I5 2(x) can be seen as a weighted version of Iy (4.24) with a weight ¢(z)9; (1)1
(x)), a more regular kernel K1 (z —y)(y; — z;), and a smaller domain R; 1 (k3). Since
the kernel is more regular and the domain is smaller, our estimate for I5 o is much
smaller than that of I.

Now, we justify this approach. Using a change of variables y =z+s,s € R 1(ks)—
2 and the above identity yields

I52(x, k3) = (x) / Ei(=s)(™ (@ + ) =971 (2)) (W) (x + 5)ds.

Rsyl(k‘g)fm

Using Newton’s formula f(1) = f(0) + f/(0) + [, (1 — t)f"(t)dt for f(t) = ¢~
(z +ts), we get

+ J
ksh [x lksh| | ksh[ 2| ksh R (kz)
R™ (k) 1
— —
Ry (x, k3) Ry1(z,ks)

F1G. 3. Left: Rs1(x,k3) and R, 1(2,k3) with x2 = z2. The small square is a mesh grid con-
taining x or z. x,z can have different locations relative to the grids. Right: The large rectangle is
R(k2), the upper part is Rt (k2), and the lower part is R~ (kz2). The blue region is R~ (k2)\R™ (k3).
T is part of its boundary.
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(x4 s) — T
=5V~ l(x)

)
+/01(1t)<s~(V21/11)(x+ts)~s)dt
=Y sow @+ 3 (5 (- 03B + L),

i=1,2 0<i<2

Denote

Qij(x)= w(x)/o (1- t)a{ag(w—l)(x +ts)dt, i+j=2, D(z)=Rs1(x,ks)—

() = x,ij 71x:818¢()i _
Qij(x) =v(x) - 0105(¥™ ) (2) e +j=1
Py(x)= |  Ki(=s)sisy(We)(x + s)ds.

D(z)
Using the above expansion and notation, we get
2
Iso(x,k3) = Z 5 Qi + Z (Z.)PijQij-
i+j=1 i+j=2

Next, we use the above decomposition to estimate I5o(x,ks) — I5 2(2,k3). The
leading order terms are P;;Q;; with i 4+ j = 1. By the definition of R, (4.19), we
observe that if x5 = 25, we have

D(x)=Rs1(z,ks) —x=Rs1(2,k3) — 2= D(z).
Suppose that z1 < z;. We perform a decomposition

|Pij(2)Qij(x) — Pij(2)Qij(2)| < Ji + Ja,
J1 2|Qij(2)(Pij(z) — Pij(2))],  J2 = |Pij(2)(Quj(x) — Qij(2))]-
Using D(x) = D(z), we bound J; as follows:

(4.53)

I<1QuN] [ V) +3) = (W) + )
<1Qi () -l — 22 ||w]| a2 / | K1(5)s13]ds.
s€D(x)

The term @;; only depends on the weight and is smoother than F;;. We can
estimate Q;;(x) — Q;;(z) by bounding 91Q);; since Q;; is locally smooth. For P;; in
Ja, we use the method in (4.38) to bound it by C||wy||ec with some constant C'. Then
we obtain the estimate

|J2| < Calz — 2] - |lwel| Lo

for some constant Cy. Note that the second order term P;;Q;;,¢ + j = 2 is much
smaller than the leading order terms. For |z — z| not too small, we can estimate its
contribution trivially

(4.54)
T P )2y ()~ Pu)Qu ()] € o (P @Qu ()] + Py ()Qs ()
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We optimize the above two estimates.

In summary, to obtain the above estimates, we estimate piecewise bounds for
|Qij(z)|, Pij(x),|0kQij(x)| and the integrals fD(m) |K1(s)sisy|ds, i+j=1,2.

The above estimate of I5(x, ko) can be generalized to the 031;/2 estimate of u,v,

Ug,Uy. Yet, it does not apply to the C;/ % estimate of u, Vu since it requires the
estimate of (W)(x + s) — (We)(z + s) for s in some rectangle R = D(z) = D(z).
However, since W is discontinuous across the boundary y =0, W1 ¢ C;/Q (R) if z+
8,z4+s are not in the same half plane. If 21 < x4, then the rectangles R(x,ks), R(z, k2)
will not intersect the boundary and the previous estimate holds true. If z1 > xo, we

consider two modifications for different kernels in the following subsections.

4.3.5. Ideas of the C;/z estimates of I5. The main idea in the following
Cyl/ ? estimates is to use a combination of the estimates for the log-Lipschitz function
in section 4.1.11 and the estimate in section 4.3.4. The latter provides better esti-
mates, and we try to use this method as much as possible. Following the ideas in
section 4.1.11, we decompose I5(z) into the singular part and nonsingular part with
different size k3 of the singular region

Is(x) =I5 s(x, ks) + Is ns(x, k3).

Although we cannot apply the second method to the whole I5(z), we can apply
it to the integrals in the upper part of the regions, e.g., R (ka), R*(k3) (4.20), since
these integrals only involve W4 in R} and we have W1 € C'/2. Thus, we will further
decompose some of the regions into the upper part and the lower part and then apply
the first method to the lower part, and the second method to the upper part.

4.3.6. C;/z estimate of the velocity with a kernel of the first type. The
kernels
_ Y1Yy2 Y2

4.55 _ oz b2
(4.55) Wt P

associated with u, = —0.,(—A) lw,u = —0,(—A)"'w vanish when y2 = 0. We call
them the first type kernel. Let K be a kernel of the first type. We use the following
decomposition:

(4.56) I (@, ko) = A+(k2)+L(k2)>K($—y)(¢($)—w(y))W(y)dy

é[;(:&k‘g) +Ig($,k2)

See the right figure in Figure 3 for R*(ks). Since R*(z,ks), RT(2,k2) C RS, we can
decompose

I = 1;1 + 1;2

into the integral in the regions 1;1 : R+(k2)\R:2(1€2) and I;Q : R;z(kg) and apply
the same argument as that for I51(z, ks), [52(x, k3) in section 4.3.4 to obtain the
desired estimates by restricting all the derivations in R (z,ks2), RT (2, k2). Note that
here, we do not further choose smaller window R* (z,k3) to decompose I (z, k), i.e.,
ks = ko and I5 o = 0 in (4.51). For I;:l, similar to (4.52), we get a boundary term
from aQ(RJ'_(k‘Q)\R;B(k‘Q)) = [(Z — k‘g)h, (’L + 14+ k‘gh)] X {.TQ + kgh} See (4.19), (418)
for R*(k), R, (k).
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For the lower part Iy (z, k2), it is log-Lipschitz if W € L>(y). We cannot bound
its derivative using ||[Wy||o. We face the difficulty discussed at the beginning of
section 4.

Alternatively, we follow the ideas in section 4.1.11. We decompose it into the
smooth part and rough part. We introduce 0 < ks < ko and consider the following
decomposition:

(4.57)
]5 (Q?, kg)

= ( / +f +f )K(az—y)(w(az) ()W )y
R~ (k2)\R~ (k3) R=(k3)\R 5 (ks) RS 5 (ks)
2 15_,0(% ko) + 15_,1(% k3) + I5_,2(=T7 k3).

See the right figure in Figure 3 for an illustration of different domains. Recall that
ko € Z. We choose k3 = ko — % >2,1=0,1,2...,2ko — 4. Since the integrand in Is,
supports at least k3h away from the singularity, I5 (, k) is piecewisely smooth. We
can estimate 0,,I5 (2, k) following sections 4.1.7,4.1.10. The domain R~ (k2)\R~ (k3)
is not piecewise constant since the upper part of its boundary, i.e.,

I'={(y1,22) :y1 € [(i — k2)h, (i + 1+ k2)W\[(i — k3)P, (i + 1 + k3) D]},
depends on 3. See Figure 3 for an illustration of I'. Taking xs-derivative on I, we
get
(4.58)

O I (0, k)| < \ / amJ(w,y)W(y)dy' n ] [ I w s
R~ (k2)\R~ (k3) yel’

J(z,y) = K(z —y)(d(z) —P(y)).

Since y € T' C {y : y2 = 22} and K(y1,0) = 0, the second term vanishes. The
first term can be estimated using a change of variables y = z 4+ s and the method in
sections 4.1.10, 4.1.7, since its support is at least ksh away from the singularity.

For Iy ,, it is also piecewise Lipschitz, and we estimate the xo-derivative similarly
to Iz in (4.52)

‘aﬂvz]{;—,l‘ S

/ o %J(x,y)W(y)dy‘
R~ (k3)\R_ 5(k3
(4.59> (k3)\Rg 5(k3)

+ / I ()W () ).
(i—k3)h

2

y2=z2—ksh
Different from I5; in (4.52), the boundary term in the above estimate only involves
the lower part ya =3 — kgh since the domain in I5; is R~ (k3)\R, »(ks3).

For I ,, the kernel satisfies K (x — y)(¢(z) — 9(y)) ~ [z — y|~" for small [z — y|
and is locally integrable. We estimate its piecewise L*° bound using the method in
section 4.2.1 for the commutator.

The above decomposition can be applied to estimate

L5 (2, k2) =I5 (2,ka)| _ (I 0+ 15 1) (@, ks) — (I5 o + I5 1) (2, ks)|
PEETERE PEEpE

|I§2(£U,k3)| + |IE;2(ka3)|
|z — 2|1/2
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for |z — 2| not too small, e.g., |z — 2| > ds = &. When |z — 2| is sufficiently small, the
second term in the above estimate can be very large.

According to the analysis in section 4.1.11, for |x— z| very small, we need to choose
ksh ~ |z — z| to get the sharp estimate. Thus, we consider one more decomposition
fora<l,

Fk)= [ K-y - )W)y

(4.60) R~ (k2)\R; (a)

+ / K@ —y)@@) — @)W )y 2 Iy (w,a) + Iy (,a).
Ry (a)

The above decomposition is slightly different from (4.57). We choose R; (a) rather
than R~ (a), since we need to choose the singular region with size going to 0 as
|z —z| = 0. Yet, R~ (a) (4.18) does not satisfy this requirement for a — 0. We can
estimate the derivative of I5 3(z,a) following sections 4.1.6-4.1.8 and the L norm
of Iy ,(x,a) following section 4.2.1. Again, in the computation of d,,I; ;(v,a), the
boundary term vanishes due to K (y1,0) =0. In summary, we can obtain the estimate

(4.61) (02,15 3(7, 0)| < A(x) + B(x)log(1/a),  |I54(x,a)] < C(x)ah,

for any a < 1, where A(x), B(z) can be estimated following the method in Appen-
dix B.5.1, and the estimate of C(x) follows the method in section 4.2.1. Using the
above estimates and the ideas in section 4.1.11, we can estimate d, (15 (-, k2),z, z) for
small |z — z| by optimizing a, where d,, is defined below:

(4.62) dy(f,z,2)=|f(x) = f(2)]]x— 2| ~/2
We will assemble these estimates in section 4.6.

4.3.7. C’;/z estimate of the velocity with a kernel of the second type.
2 2
For the kernels Ky = “1-%2 and %, they do not vanish on y; =0 in general. We call

2
them the second type kernel. 5
If we use the strategies in the previous subsection, the boundary term in the
computation of 0, I5 o (,k3), O, I5 1 (2, k3) or O, I3 5(, k3) does not vanish on I" and
can be large. To avoid picking up a boundary term on I'" and to apply the ideas
in section 4.3.5, we consider another estimate on I5(z,ks). For k3 = ko — %,i =
0,1,...,2ky — 4, we perform the following decomposition:

oo ([ o ] ]
R(k2)\R(k3) R~ (k3)\R, 5(ks) Rt (k3) R 5(ks)

x K(z —y)((z) —¢(y)W(y)dy
Els0+I50 +Is2+ I5 3.

(4.63)

Following the ideas in section 4.1.11, we estimate the derivative of the regular part
and then the L® norm of the singular part. Indeed, we can estimate the y-derivative
of I5 o following sections 4.1.10, 4.1.7, I5 ; following the estimates of Is5q,15, in (4.52),
(4.59), and the L> norm of I5 3 following section 4.2.1. The estimate of I5 ; is similar
to that of I, in section 4.3.2. For I o, since R*(k3) is in RJ, we decompose

Iso=1I521+1I522
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into the integral in the regions I5 o1 : R+(k3)\RI2(k3) and I o0 : R:Q (k3), and then
estimate them following the method in the estimate of I5 1, I5 2 in section 4.3.4.

After we estimate these quantities, we can estimate d,(I5,,2) (4.62) for |z — 2|
not too small by optimizing k3. To estimate d,(I5,z,2) (4.62) for sufficiently small
|x — z|, following (4.60), we use the decomposition

Iy ) = / K(z - y)($(z) — ()W (5)dy
R(kg)\Rs(a)
(4.64) + /R ) K =)0 )W )y
[ K p)0) o)W )y 2 T+ s + T
RS (a)

Then we estimate the derivative of I5 4 and the L® norm of I5 ¢ as follows:
(4.65) |0y I5,4] < A(z) + B(z)log(1/a), |Iss] < C(x)ah,

where the estimates of A, B are given in Appendix B.5.1, and the estimate of C
follows the method in section 4.2.1. The Holder estimate of I5 5 follows the method
in the estimate of I5» in section 4.3.4. With these estimates, we can further bound
dy (IE)’ Z, 2)7

|f(x) = f(2)]

|£C1 _ Zl|1/2 ?

() = f(2)

A
dx(faxaz): |$2_22‘1/2

dy(f?mvz) £

for sufficiently small |« — z| by optimizing a. See section 4.6.

Remark 4.7. We do not apply the above computation with smaller window
[—ah,ah)? in the c? estimate, since it leads to a worse estimate. See also the
discussions in section 4.3.5.

4.3.8. Holder estimate of w,v,uy,v,. The ideas of the Holder estimate for
other terms are similar. For a kernel K associated with u, Vu, we perform another
decomposition similar to (4.24):

(4.66)
Y(z) /K(x —y)W(y)dy = / (¢($)1R(k)c +1r, (¥ (Y) + 1@\ R. (1) P (V)

+ LR()\R(k) V() = V(Y)) + LRr(ky) (P () — ¢(y))>K($ —y)W(y)dy
2 I (x,k) + Ly (w, k) + Is(x, k) + Ly(z, k, ko) + Is(z, ko).

Here, we use Rg(z,k) (4.19), which is symmetric with respect to both x; and o,
rather than R, q(z,k), since the singular region in the sharp Hoélder estimate of
[Uy]é{f,['UI]C;/Z,[UI]Cl/z in Lemmas 3.3-3.5 in Part I [13] needs to be symmetric
in both x]_,fEQT Denotg by Irs(x, k2) the approximation term for f = ug, uy, vy, u,v. It
takes a form similar to (4.50).

We consider two cases of & € [0,2z.]?\[0,z.]? (4.4). In the first case, we consider
& € [2e,21.] % [0,22.] £ Dx1, where we have #; > c@o for some constant ¢ > 0. In
the second case, we consider 2 € [0,2.] X [z.,22.] £ Dx2, where we have &; < ciy.
We distinguish these two cases since in the second case, the singular region does not
touch the boundary, and we can apply the method in section 4.3.4.
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C1/? estimate of wu,,v,;. In the C3/? estimate of Uy, Uy, we follow section 4.3.2
to estimate the regular part Iy + Iy — Is and I3. We follow section 4.3.3 and use
Lemma 3.4 in section 3 of Part I [13] to estimate I5. For I5, we follow section 4.3.4.

C;/z estimate of u,. We perform the decomposition (4.66) rather than (4.24).
The estimates of Iy + I, — Ig, I3 follow section 4.3.2. For Iy, we use Lemma 3.3
in section 3 of Part I [13]. We follow section 4.3.6 to estimate Iy if & € Dxq, and
section 4.3.4 if £ € Dxs.

We remark that we use the decomposition (4.66) rather than (4.24) since in
Lemma 3.3 in section 3 of Part I [13], we need to assume that the singular region
around z is symmetric in both x; and z5. The same reasoning applies to the Ci/ 2
estimate of uy, ;.

C1/2 and C;/z estimate of u,v. The Holder estimates of u,v are substantially

easier since u,v are more regular. We perform cy 2, C’;/ % of puy for another weight
p =1, (A.1). Below, we only use the weighted L norm ||w¢||eo. We decompose the
integral as follows:

e / K — )W (y)dy = / (Lo () + Lgy () K (2 — )W (y)dy
= Il(l‘, k‘) + IQ(JJ, ]43)

(4.67

We choose k smaller than that in (4.24) for Vu since the kernel for u is more reg-
ular. We follow section 4.3.2 to estimate I; — Ig. For Iy, we follow the ideas in
sections 4.1.11, 4.3.6, 4.3.7 to estimate the log-Lipschitz function. We choose a list of
ko and associated region S(ks) and decompose I as follows:

Lz, k)2 ( / +f +f )pu)K(x—y)W(y)dy
R(k)\R(k2) R(k2)\S(k2) S(kz2)
£ Ino(z, ko) + Io1 (2, ko) + Taa(z, k2).

For large ko = k,k — 1/2,...,2, we choose S(k2) = Ry ;(k2) in the C/? estimate,
i = 1,2. For ko < 2, we choose S(ka2) = Rs(ka). For Ing(x,ka), Io1(x, ka), we esti-
mate its derivatives following the estimate of I5o,I51 (4.51), (4.52), respectively, or
section 4.1.7 when ko > 2, and the estimate of I54 when ko < 2 in section 4.3.7. For
Iso(x, ko), we estimate its L norm following the estimate of Iss when ko > 2, and
the estimate of Isg when ko < 2 in section 4.3.7. The estimate is simpler since the
above kernel is much simpler than K (z — y)(¢(z) — ¥ (y)) in section 4.3.7.

4.3.9. Special case: C1/2 estimate of Uy, Vz. In this case, we apply Lemma
3.5 from section 3 of Part I [13] to estimate the most singular part. Since in Lemma
3.5 from section 3 of Part I, we do not localize the integral, we perform the following
decomposition:

(4.68)
0@) [ K =Wy = [ (50 + g (60) = 00) + Lagu () —60))
x K(z —y)W(y)dy
2 I (z,k) + Ix(z, k) + I3(x, k).

For I, we apply Lemma 3.5 from Part I [13]. We follow section 4.3.7 to estimate I3
if £ € Dx1, and section 4.3.4 if & € Dxo. We follow section 4.3.2 to estimate I, — I,
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where I is the approximation term for w,,v, similar to (4.50). The symmetrized
integrand is discussed in the paragraph “C'/2 estimate of Uy, V" in section 4.1.5.
There are additional difficulties since the weight ¢ (y) and the symmetrized integrand
I(z,y) = K¢ (z,y)()(x) — 1 (y)) for some kernel K€ (see similar derivations in (4.28),
(4.29)) are singular near 0. Note that we do not have the KN term. See the
paragraph C'/? estimate of Uy, v, before section 4.1.6.

The integral of I(z,y) near 0 or in the far-field require some additional estimates,
which we discuss below. Since y is away from the singularity x in these cases, the sym-
metrized integral is given by I = KV (x,y) (¢ (z) —¢(y)). See (4.29) and section 4.1.5
for related discussions.

Estimate the integral near 0. To estimate the Dy = 0,, derivative, we use

[DiI| = |Dy K™ (¢(x) —(y) + K™ - Diyp(z))|
SIDLEPY™ - ap(z) + K™ - Dip(a)] 4 [DL K™ - 4 (y)].

For y close to 0, since 1) is singular, ¢ (y) is much larger than ¢(z), and K%Y (x,y) is
not singular. The main term in D11 is given by Dy K*¥™(y). It follows that

/Q DT W ()ldy < [Welloe (1672 @ /Q (DY) + K™ - Dy ()| dy

[ i),
Q

where @ is some grid near the origin. The integrands in both integrals do not involve
the singular weight, and we can estimate them for each grid point x using the previous
methods.

To estimate the X-discretization error, we need to estimate the integral of 92,0, J.
Since v (y) is independent of z, we get

+|2
¢

L>(Q)

I:KSW(x,y)<M— )w(y)a/Qlai%l-W(y)ldy

Y(y)
§|Wap||oo‘w Lw(@)/Q agiamKsymu,y)(M— )’dy

@ ¥(y)
The last integrand is not singular in y near y = 0, and we estimate it using the previous
method, e.g., section 4.1.3.
For u,,v,, we have a rank-one approximation Kp,,(7,y) from C,, xoKoo (4.5)
(see section 4.3.2 from Part I [13]). The full integrand with approximation term and
weight is given by

Lopp = Ksym(x’y)(w(x) - 11)(2/)) - Kapp(xvy)"/)(x)
= (K" (2,y) — Kapp(w,9))Y(x) = K™ (2,9)0(y) = Lapp,1 + Lapp,2-

For y away from the singularity  and 0, I,p, 1 has the same form as the previous
case, e.g., the C’;/Q estimate. We improve the error estimate 070,,1,,, using the
cancellation between the full symmetrized kernel K (z,y) and Kgpp from Lemma B.2
and the estimate in (B.15) in Appendix B.1.1 and the property that ¢(y) is much
smaller than ¢ (z) for |y| much larger than |z|.
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Estimate in the far-field. For the tail part in this case, we have an improve-
ment for small || where xo(z) =1 due to the approximation term near 0

[ =Cro(z,y)us(0) + Cy(2,y)Koo = Cs(z,y) Koo,

where f = uy,v,; and Koo is defined in (4.5), and we have used Cyo(z,y) = 0. Its
associated integrand is given by

Kapp = 7T_lof (z,y) Koo (v),
where Ky is defined in (4.5). To estimate it, we use the following decomposition:
Di(I = () Kapp) = D1((K™™ = Kapp) - (x)) — D1E™ - 1)(y) £ P+ Py

We estimate P; using the method in section 4.4. Due to the approximation, K*Y™ —
Kapp has a much faster decay for large y beyond [0, D]?. See (B.15) and Appen-
dix B.1.1. For P,, we have

.
/Q PollW (5)dy < |[Wealloe / a2 1)y,

where Q = [0, D]? with large D. The last integral is computed using the method in
section 4.4.

4.4. Estimate the integrals near 0 and in the far-field. We use a combi-
nation of uniform mesh and adaptive mesh to compute the integral in a finite domain
[0, D)2, e.g., D =1000. See section 4.1.3. Since the kernel decays and the singularity is
in the near-field, the integral beyond this domain is small, and we estimate it directly.
In addition, for y near 0, we estimate the integrals (the last two integrals in (4.8))
from the approximations u,(0), Koo (4.7), which is singular of order |y|=2 or |y|~*.
For simplicity, we consider A = 1. The estimates can be generalized to another scaling
parameter A. To estimate [, k(y)w(y)dy for D near 0 or D in the far-field, following
(4.10), we only need to estimate [, [k(y)|¢~"(y)dy. Since |y| is either very small or
very large, we can use the asymptotics of ¢ in these estimates.

4.4.1. Near-field estimate. First, we estimate f[o Ri? k()| (y)dy for k(y) =

"m{f , %‘i_yg) related to u,(0), Koo (4.7). We partition [0, R4] into

O0=z20<z < e <zp=R
with z; much smaller than R;. Denote Q;; = [2—1,2;] X [2j_1, 2;]. Clearly, we have
[kl was Y L 2 [kl )
(0,1 ] 1<i,j<n Qi
For I, (4,7) # (1,1), we apply a trivial bound
(4.69) Ii; < |\<P_1||Loc<Qij)/ k(W)ldy <1Qij| - k]| L= @i lle ™ e @iy)-
ij

2 2
For k(y) = %, %, the estimate of [|k||L~(q,,) is established in Appen-

dix B. It remains to estimate the first term I;;. Denote r = y;. Suppose that

p(x) > gla]*(cos B)°, b<0.
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See (A.2). If k(y) = ?T;?\Jf and a <0, we get

Ver  pm/2 .
I Sq_l/ / mﬁr%bﬂr_“(cosﬁ)_brdrdﬁ
0 0

V2r /2
:qfl/ r*afldr/ sin B(cos B) ~*+1dg
0 0
—a 1 —a
(vV2r) / o gy = g (v2r) 1
0

= q717
—a

—a 2-0b

If k(y) = %‘%{yg), we get |k(y)] < %Sijf’g. Since b <0, if a < —2, we get p > qr®

ly
and

Vor /2 1 in4 1 V2r 1 2
I <q! / / flSLﬂS_asdsdﬁ = —/ s_“_?’dsf/ | sin B|dS
0 0 4 s 0 4 Jo

4q
—a—2 /2 —a—2
LI R 1
4q -2—-a J, 49 —-2—-a

4.4.2. Far-field estimate. Denote a V b = max(a,b). To estimate the far-field
integ.r.al = Vi Ro |k(y)|~(y)dy, we first pick a sufficiently large R and then
partition the domain

0=z20<21< " <zm=Ro<zmi1 < <zp=Ry <+oo.

Denote Q;; = [2i—1,2i] X [2j—1,%;]. Clearly, we have
I= > Lij+J, L é/ [k (y)l™" (y)dy,
m-+1<max(i,j)<n Qij

I=[ ke @
y1Vy2> Ry

For I;;, we apply the trivial estimate (4.69). Suppose that

B
¢ >qri(cosB)’,  |k(y)| <yl ™?, be[-1,0, pta>2.
We get

1 R;p7a+2 /2

1 00 w/2 oa b B T
ng/Rl /0 r (cosB) ’rdrdf = (cos B)7dp.

qlp+a—2[Jy
Using Holder’s inequality and b € [—1,0], we get

w/2 /2 —b /2 1+b
~bdp < d 1 = (7/2)*?.
/0 (cosB)~7dp < </0 cosf3 6) (/0 ) (m/2)
It follows that

1 RyPot?

<——F———(7/2 1+b,
qlp+a72\( /3
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Application. We apply the above calculations to estimate the integral and its
derivatives beyond the mesh [0, D]? (4.12). Since the domain is far away from the
singularity, the integrand is the symmetrized kernel, e.g., (4.29). From Appendix B.1.1
and Lemma B.2 in Appendix B, for us, Vuy,d;(pua),0;(¥Vuy), the integrand in the
far-field (y is large) satisfies

|K (z,y)| < C(z)Den™*

with some k> 2 and coeflicients C(z), where Den is defined in (B.20).
In our computation, we rescale x to & and restrict it to the near-field [0,b]? with
b < 2. Note that y ¢ [0, D]? and |y| > D > b. From (B.20), we get

: : EAY
Den>  min _|y—z*>  min (IyI—IZI)QZ(Iy—m|)2=yl2<1— -

[21|<z1,|22|<22 |z1|<z1,|22|<z2 |y|
Smce < \fb/D we get
Den > (1—-Cy)*[y*, Cy=v2b/D.

It follows that

/ K (2.9l (y)dy < (1 — C) () / w0 (v)dy.
y¢[0,D]?

y¢[0,D]?
Using the method in section 4.4.2, we can estimate the above integral.

4.5. Estimate for very small or large x. The rescaling argument and the
methods in the previous subsections apply to the estimate of us(x), Vuu(z) for z €
[0, 227]2\[0, 2,,]%,0 < 2., < wps. For very small or large =, we cannot use a finite
number of dyadic scales A = 2¢ to rescale = such that x/\ € [0, 2z.]?\[0,2,]?. Instead,
we choose \ = 2&X(@LT2) - We want to estimate the rescaled integral with a —d-
homogeneous kernel K

/K:r— y)dy = pa(e /K PNUW (§)dy,

uniformly for all small A < 1 or large A > 1, where p is some weight and p) is defined
n (4.2). The rescaled singularity & = 2/ satisfies max; &; = x.. We simplify &,¢ as
x,y.

We can use the asymptotic of the weights to estimate the integral (see, e.g., (4.6).)
The new difficulty is that the estimate involves the rescaled weight py(y). Since A is
not fixed and depends on z that tends to 0 or oo, we cannot evaluate py(y) and the
integrand directly. In the following derivation, A is comparable to |z|, which is either
very small or very large.

For y away from the singular region, the integrand of the regular part is given
by J = K(z,y) - pa(z) (4.29). We choose a radial weight p defined in Appendix A.1

P(x) =D 1cicnm ql\m|‘”. See 91,1y, Yau (A.1). We introduce the asymptotics of these
weights

Rllm = lim Dlpk(x)
A D) ( )

s Diim = qi|z|"
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with (A4,7) = (0,1) or (A,i) = (oco,n), where (¢n,a,) denotes the last power in the
weight. We use the following decomposition to compute D;J with Dy = 0,,:

(DI = D1 (K ,3) - pa())| = D1 K (2.9) - pa(x) + K (2.3) - Dipa(o)
=@ Da o) + R + (P2 i ) )

pa(x)
Since we consider a very small A or very large A, the error term D;fi(*w()x) — Ryjm s
small. Hence, we use a triangle inequality to bound D, J:
Dipx()
|D1J| <pa(x)| D1 K (2,y) + Riim K (z,y)| + pa(z) @) = Rijm | K(z,y)|.

The advantage of the above decomposition is that the main term D1 K(z,y) + Riim
K(x,y) does not depend on X so that we can estimate it using previous methods.
Since the estimate of a derivative of u,v does not involve the commutator (see,
e.g., (4.67)), we can apply the above method to compute the integral of Dyu for small
x or large x.
For y near the singular region, from (4.28), the symmetrized integrand is given
by

J = K(px(x) —pa(y)) + KNpa(x),
where we use p for the weight. First, we have
|D1J| = |D1K (pa(x) — pa(y) + D1 KNpa(x) + (K€ + KN9) Dipa(x))|.

Denote K = K¢ + KN¢. We use the following method to bound D, J:

D
1K + K + K-
D.KC. ( pA( )) D, NC Lipx
( ) Px

<pa(w {’DKC | Bum(y >+DKNC+K-

|D1J| < pa(z)

Dlplim ’

DPlim

The second and the third terms on the right hand side can be seen as error terms.
The main term |D; K¢ (1— %)+D KNC 1 K. D;p‘”" | does not depend on A, and
the singularity x is in the nea[f’:fgeld and away from 0. mVVe can apply all the delicate
decompositions developed in previous sections to estimate Dq.J.

In the Holder estimates, we need various bounds for the weights py. Using the
asymptotics of p(z), we can estimate the derivatives of p) for very small A or very
large A uniformly. See Appendices A.1, A.2. Once we obtain the estimates of ¥, and
the weight ¢, in the L norm [|wapa|/co, We can use the methods in the previous
subsections and the scaling relations in section 4.1.2 to perform the Holder estimates.

The L*° estimate follows similar ideas and is much easier. We defer more details
to section 7 in the supplementary material (supplement.pdf [local/web 1.43MB]).

We remark that since we have much larger damping coefficients in the energy
estimates (see section 5 in Part I [13]) near =0 and in the far-field, the estimates of
the nonlocal terms in these regions, though technical, only have minor effects on the
nonlinear stability estimates.

plzm
im D im D
pA(Y)  pim(y) ) ’ K‘ 1Plim 1P

+|DyK¢ (
’ P (LE) pllm(x) Plim Px
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4.6. Assemble the Holder estimates. In section 4.3, we decompose the veloc-
ity in several parts and estimate them separately using the norms [[we||ec, [wWi)]1/2.
In this section, we assemble these estimates and estimate '

0700 & H@ =G
(f ) |1, - Z|1/2
for f =1,ua,9¥Vuy with weights in (A.1). To obtain better estimates, we combine
some of the estimates.
In the proof of the first inequality in Lemma 2.3, we combine and bound different
norms using max(||we||ec, max;j=1,2 v, [wwl]cl/z(R+)). We apply the second inequality
T 2

to the error ¢ = w—(—A)¢" (3.10) and can evaluate the localized norm using piecewise
bounds of the error. See section 4.7.

To illustrate the ideas, we focus on the C/? estimate, z € [, 2xc] % [0,22],
i.e., x1 is large relative to za, 21 > 21, and x3 = 2z5. For general pairs (z,z), we can
rescale (z,z) to (Az,Az) such that Az € [0,2x.]\[0,2.]%. Using the scaling relations
in (4.1.2), we can estimate the rescaled version of §(f,x,z). See also the discussion at
the beginning of section 4.3.

We assume that z1 € [z, 2(1 4+ v)z.] with v < 1. For z; > 2(1 + v)z,., we have
z1 > (1 4+ v)zq. Since 21,z are large relative to 2o, xs, respectively, we have

|z — 2| = |21 — 21| X |21] 2 |, |2]-

Then, we can use the L> estimate and triangle inequality to estimate 6(f,z, z). Note
that we can estimate the piecewise L norm of |z|~/2p(z)us(x) and |z|~Y/2pVuy
following section 4.2, where p,1) are the weights in the Holder estimate of pus,9¥Vuy4.
See section 7.4 in the supplementary material (supplement.pdf [local/web 1.43MB])
for more details.

We focus on f = tu, 4. We partition the domain D, = [z, 2(1 + v)z.] x [0, 2z]
into hy X hy grids D;;,1 <i<2(1+v)z./hy, 1 <j<2z./h;. We apply the decompo-
sition (4.67) with the same parameters k, ko to x in different grids D;;. For « € D;;,
using the method in section 4.3, we obtain the estimate

(4.70)
f(x) =1 (x) + I(x) + I3(x) + Iy(x) + Is(x) — Is(x), Is=1Is50+I51+I5p2,
|0z (11 + 1s+ Is 0 — I6)| < aija lwelloo, 0215.1] < aij3]lwelloo

lwplloo, [0213| < aij2

for some constants a;j;,b;; > 0, where I51,l52 are defined and estimated in sec-
tion 4.3.4.

For z,z € D, with z3 = 29,21 < 21, we have x € D;, j,2 € D;,; for some
i1 <is. We apply the method in section 4.3.3 to estimate (12, x,z) and the method
in section 4.3.4 to estimate Jp related to §(Isz,x, 2) (4.53). These estimates contribute

to the bound O}y [ww]cl/z for some Cjo; > 0, which can be computed.

Regularity of the combination. While I, + Iy + Is g — Ig, 13,15, are only
piecewise smooth and can be discontinuous when x crosses the grids D;;, the sum
Lip =11+ 14+ Is o — Is + I3 + I5 1 is continuous and Lipschitz in z; for fixed z2. In
fact, by definition (4.24), (4.51), we get
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Ly = / Ky (@ — ) ((x) — ()W (y)dy
R(k)\Rs,1(k3)

@) [ Ko - )Wy + / Ky (@ — y)b)W (y)dy — I
R(k)e R(k)\Rs 1 (k)

— (x) / Ky(z — y)W(y)dy — / Ky (@ — y)W(y)(y)dy — I,
RS (k3) Rs,1(k)\Rs,1(ks)

For fixed x9, since I (4.50) for the approximation term is smooth in x and the
domain R, 1(1) (4.19) depends on x; continuously, we obtain that I;;, is continuous
in z7 when x crosses the grids D;;. Since Ij;,(x) is smooth for = € D;;, we get
that Ij;, is continuous and Lipschitz in x; with piecewise Lipschitz norm bounded by
Qij,1 + Qij2 + Q3.

Similarly, for the case in section 4.3.4, we have Ij;, =11 +Is+1s+ 150+ 151 — Is
(4.24), (4.51) is Lipschitz in x; in the Cil/2 estimate for fixed x3_;,9=1,2.

For the case in section 4.3.6, Ijjp = 1 + I3+ s+ 15 o+ 154 —|—I§fl —1Ig (4.24), (4.56),
(4.57) and Ty = I + Iy + L+ I5 3 + I3, — I (4.24), (4.56), (4.60) are Lipschitz, where
I, associated with I (4.56) is defined similarly to I5; in (4.51).

For the case in section 4377 Ilip = Il + 13 + 14 + 1570 + 15’1 + 157271 — I6 (424),
(4.63), and Ij;, = I1 + I3 + Iy + I5 4 — I are Lipschitz, where I5 21 associated with
I5 2 (4.63) is defined similar to I5; in (4.51).

In summary, the sum of the terms in f(x) (4.70) with piecewise derivative esti-
mates is Lipschitz. Using the triangle inequality, we obtain the piecewise Lipschitz
bound for I};,. The remaining parts in f(x) (4.70) are continuous and are estimated by
the piecewise L°>° bounds, e.g., Iy, (4.57), I5 4(a) (4.60), I5 3 (4.63), and the improved
Holder estimates, e.g., I5 2 (4.51)

By averaging the piecewise derivative bounds and using the estimates in Appen-
dix E.2, for z € Dy, j,2 € D;, j, we can obtain

[ Lhip(2) = Liip(2)| < Cliplzr = 21| - [[wepl oo

for constant Cj;;, depending only on {ak; ; }x,1>1,j<3 and the mesh h,, explicitly. Hence,
for the remaining terms in f not estimated using the seminorm [wy] 1,2, e.g., [1 +
Iy —Ig+ I3+ 150+ 151 and Jo related to I5 o (4.53), each term is continuous and they
satisfy>

fr(x)= Y fie), |file) = filz)| < minpilzr — 2], a0) - [Joploo

1<I<KN

for some N, where we can choose ¢; = oo if we do not have an L estimate for fi(z).
A similar consideration applies to p;. In our problem, there are only a few terms and
N < 10. In the C;ZZ Hélder estimate of P;;Q;;(x) (continuous in ;) in Iy (4.53),
we optimize two estimates (see the estimates between (4.53) and (4.54)), which is a
nontrivial example of the above summand.

3In the previous version of this paper [11], some term f;(z) is not continuous when = crosses
the grids. We have corrected this minor issue by reorganizing different terms so that each fj(z) is
continuous. See the above paragraph “Regularity of the combination.” Related computer-assisted
estimates have been updated and the full nonlinear stability estimates remain valid.
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Now, for x € Dy, j,z € Dy, j, we have

fr(z) — fr(z - -
(4.71) ws D> min(pid'/%, @0 ™) lwellos
. 1<IKN

0=z —x1 € [max(ip — i1 — 1,0)hy, (ia — i1 + 1)hs].

The upper bound can be obtained explicitly by partitioning the range of z; — x1
into finite many subintervals M, according to the threshold 6; = ¢;/p;. In each M;,
the bound reduces to

P61/2 + Q5_1/2

for some constants P, Q. It is convex in §'/2 and can be optimized easily and explicitly
in any interval [d;,d,],d; > 0.

Remark 4.8. We combine the estimates of different parts in (4.70) using (4.71)
to obtain a sharp estimate. If one estimates different parts separately, the distance
6 = z1 — x1 for the optimizer may not be achieved for the same value, which leads to
an overestimate. We remark that for a small distance |z; — 21/, such an overestimate
can be significant since the ratio between the endpoints |iz —i1 +1|/ max(ia —i; — 1,0)
varies a lot.

In some estimates, e.g., the C;/Q estimate of w, in section 4.3.6, we need to
decompose I5 using a different size of small singular region k3. In such a case, we
have a list of estimates associated to different k3 for the part fr not estimated by

[CU?,[}}C;N or [LLH/)]C;/QI
|fr(x) — fr(2)

| . .
T < > min(pud, a0 ) lwl oo

|21 — 1] 1<I<N

For |z — z1| bounded away from 0, e.g., |z — 21| > %hz, we can still partition the
range of |21 — z1| and optimizing the above estimates first over ¢ and then ks.

4.6.1. Holder estimate for small distance. In some Holder estimates, e.g.,
the C’;/Q estimate in sections 4.3.6, 4.3.7, when |z — z| is very small, e.g., |x — z| < ch,
with ¢ < 1, we need to choose a singular region with size a to be arbitrarily small. See
also section 4.1.11 for the estimates of a log-Lipschitz function. In these estimates, we
can decompose fr(z) that is not estimated using the Hélder norm of wy as follows:

fR(x) = fl(l’,a,b) + fQ(I',a)
for a < b and b is fixed. We can estimate the derivative of f1, and the L* norm for f

C’ia
[l oo

2

in each grid D;; for any a < b (see, e.g., (4.61) and (4.70)). We drop j since we
consider x,z with x9 = z9. For t = |z — z| < h,, we get
[f(z) — f(2)] ( b Ca ,
—r = <(A+ Bl 7) t+ — = F(a,t),

e < (At Blogg \f+\/£ (a,t)
where A = max(A4;, A1), B =max(B;,B;y1),C = max(C;,C;41). For each ¢ < ch,,
we can optimize the above estimate over a < b explicitly. Then we maximize the
estimate over t < ch, to obtain a uniform estimate for small |z — z| < ch,. We defer
the derivations to Appendix B.5.2.

b
92 £1(2,0,6)| < (A + Bilog 2 ) |welloo, |2l <

(4.72)
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o0

FI1G. 4. Piecewise L (pey1;) bound of the error £1,€1 in solving the Poisson equations. Left:
Error for the approximate steady steate. Right: Error for the approzimate space-time solution Wa.

4.7. Improved estimate for the nonlocal error. In section 3.7, we discuss
the estimates of the nonlocal error u(£) based on the functional inequalities established
in this section. Since the weight is singular o ~ |z|~2|21|7Y2,¢ = @i (A.2) near the
origin, &1 is much larger near x = 0. Due to the anisotropic mesh for large x and
small y, or small  and large y, and the round-off error, £; is not very small in these
far-field regions. On the other hand, these regions are small since either |(z,y)] is very
small or the ratio x/y,y/x is very small, and the error is very small in the bulk, e.g.,
x = 0(1). See Figure 4 for the rigorous weighted bound of the error in the adaptive
mesh. The weighted error of &; is larger near 0, while the error for &, is larger in
the far-field. If we simply use the global norm ||wep||~,w = &,€, and then apply the
previous estimates to bound u(€), we overestimate the nonlocal error significantly.
For = O(1), where we have the smallest damping for the energy estimate, due to
the decay of kernel and the smallness of these regions, the integral [ K (x,y)&(y)dy
near y =0 or in the far-field is very small.

Note that we can obtain the piecewise derivative bounds for the error £1,£; and
we partition the domain of the integral into different regions (4.45). Instead of using
the global norm to bound the integral, we use the localized norms ||Weyil|i= (D),
[Wz/)l]C;/z(D) (A.2), (A.1) to exploit the smallness of the error in most parts of the
domains ‘and improve the error estimate.

Recall the regions of rescaled & (4.4) and the mesh y; partitioning the domain
(4.11). We fix a scale A and assume &|x.,2z.] x [0,2z.]. By definition, the singular
region R(&,k) (4.18) satisfies

—R(2,k) "Ry, R(2,k)NRY C [, — kh, 22, + kh] x [0,22, + kh] & Skp.

Thus, in the estimates of I, I3, I4 in (4.45), instead of using the global norm ||W ||,
we use |lwax@allLe(sin) = [lwellree(rs,,)- For the error w = &,€, we can bound
l|wel| Lo (As,,) Dy using the piecewise estimates of £, and covering the region ASyp,.
Similarly, we use the localized bound [wAQ/J,\]C;/Q(Skh) = Al/z[ww]cii/z()\skh) for the
Holder seminorm in the estimate of Io, I3, 14, and similar localized norms for Is.

For the regular part I;, we partition [0, D]2,R§r * into disjoint domains: near-field
D, ;, the bulk Dp, and the far-field Dy, e.g.,

D,,1 = [8h,16h], Dp =1[0,2]*\D,..1, D1 =[0,D]*\[0,2]?, D;o=R5"\[0,D]?
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where h is the mesh size in (4.11). Then we use the norm ||wx@x||L(p) = [[w@|| L~ (AD)
for the estimate of the integral in region D.

In (4.8), we estimate the integral of Kog(y) (4.5) for |§|eo < kozh and |§|ec > ko2h
separately. Since the kernel is very singular near 0, the L' estimate of the integral
in |§|eo < kooh in section 4.4.1 is not very small. Since we can evaluate w = &,¢, we
change the rescaling from § back to y by using y = Ag in (4.8),

J= Koo (§)w(Ag)df = N2 / Koo(y)w(y)dy,

[9] 0o <koz2h [Y] oo <AKo2h

where we get A2 since Koo is —4 homogeneous. For a list of dyadic scales A\ =2, we
estimate the integral using Simpson’s rule with very small mesh. This allows us to
exploit the cancellation in the integral. For |y| very close to 0, we use Taylor expansion.
See section 6.4.1 in the supplementary material (supplement.pdf [local/web 1.43MB])
(attached to this paper) for more details.

In the estimate of the integral for very small z or large z in section 4.5 (see
more details in section 7 in the supplementary material (supplement.pdf [local/web
1.43MB])), we estimate the rescaled integral for A < A\; and A > \,, with small X\,
and large A, uniformly. In the case of A < A;, we bound [|wr@al|ze([a,b)x[c,d)) <
l|wepl| Loe (A [0,b]x[0,a])- Other norms in different cases are estimated similarly.

We do not track the bound [[wxpa||Le(q,,) in each small grid Q;; for computa-
tional efficiency.

Appendix A. Weights and parameters.

A.1. Estimate of the weights. Recall the weights for the Holder estimate of
w’ 77757 a’nd u?

¢1 = ‘.T|_2+0.5|$‘_1+0.2|.’I)‘_1/67 wdu:wlv wu:|$|5/2+0-2|$|_7/67
(A1) gy =paal| ™+ posla| ™ + paslo| ™2 + paalal'/C,

g =13, Pa.=(0.46,0.245,0.3,0.112),
and the following weights for w, p; for u and the error,

(A.2)
pr=a" 2|27+ 0.6[z[ %) +0.3[2[ 70, o =1+ |21,
Weri = |21 Y2 (|2 72 + 0.6]z) Y2 + 03]z Y6, pro= x| +|z|776,  pao =11.
ps = x| 4 2|7V, py=a7 V2 (|2 720 4 0.6]z)72) + 0.3]z| /6,
To estimate the weighted L®° norm of the residual error in section 3, we use
Vi, Pevo,is
(A.3)
Pevo,1 = P1;
Pevoz =& 2 (Ps.1)2| 72 + P 2|a| 73 + pr sz 7O + Py ale| T + ps sl M,
Pevo,3 =% (Pe,1 )21 7% + Po 2l|73/% + po 3|z 76) + Poalx| T + poslz] M,
Ps,. = (0.42, 0.135, 0.216, 0.182, 0.0349) - 1o, o =0.917,
Do, = (2.5-D5,1,2.9 P52, 3.115- P53, 1.82- P54, 2.72-Ps5 5),

where ¢ is defined in (A.2).
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In our energy estimates and the estimates of the nonlocal terms, we need various
estimates of the weights and their derivatives. From Appendix C.1 of Part I [13] and
(A.2), (A.1), we have two types of weights. The first one is the radial weight

p(zy) = pir™, r=("+y*)"?,

where a; is increasing and p; > 0. We use these weights for the Holder estimates. See,
e.g., (A.1).
The second type of weight is the following;:

p(x,y) = pr(r)|z[~* + pa(r),

where p1, p2 are the radial weights.

We use fi, fu to denote the lower and upper bound of f. We have the following
simple inequalities:
(f_g)l:fl_gua (f_g)u:fu_gla (f+g)’Y:f’Y+g’yv

A4
( ) (fg)l:min(flghfuglvflgu>fugu)> (fg)u:max(flglafuglvflgu>fugu)>

where v =1,u. If g >0, we can simplify the formula for the product

(A.5) (fg)r=min(fig, figu), (fg)u=max(fugi, fugu)-

Given the piecewise bounds of &7 f, 3¢, j < k, we can estimate 9*(fg) using the
Leibniz rule

o i\ (i —
(A6) ool 3 () (])lekebsl ooy ol
k<i 1<j

A.2. Radial weights. The advantage of radial weights p is that we can estimate
them easily. Since p(z,y) is even in x,y, we restrict the estimate of piecewise bounds
to the case of > 0,y > 0. The bound in general domain D = [a,b] X [c,d] can be
obtained by decomposing D into four quadrants and then using the symmetry and
combining the bounds from different quadrants.

A.2.1. Bounds for the derivatives. We can easily derive the derivatives and
their upper and lower bound as follows. First, we have

(A7) (8;8510(9573/))7: Z pk(ﬁiaiﬂ““)v,

1<k<n

where v =1, u. Using induction, for any «,1,j, we can obtain

0,05 = > Cijpa(a)atylro—imi=k1
k<itjl<min(j,1)

- Z (C:j],k,l(oo - C,L'ijkyl(a))xkylra_i_j—k—l
k<i+j,0<min(j,1)

with Ciijk (@) £ max(0,C; j (). The bounds for ijkl(a)xkylra*i*j*k’l are
simple:

(4.8) (G g @)y o700, = O (a)aylry =9 R,
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In particular, we use the derivatives bound for ¢ 4+ j <4 and we have

07" = axr®™2, 02" =ar % +ala —2)2%r*™t,  Ouyr® =ala — 2)xyr® T4,

3r® =ala —2)(a —4)23r* % + 3a(a — 2)ar*?,
220,r* = a(a —2)yr* * +a(a — 2)(a — 4)z%yr*~°,
4r® =3a(a —2)r*~* + 6a(a — 2)(a — 4)z*r* % +ala — 2)(a — 4)(a — 6)x*r*~8,
230,r" =a(a —2)(a — 4)zyr* "+ 2a(a — 2)(a — 4)zyr*°
+ ala —2)(a —4)(a — 6)a3yr*8,
agajra =a(a—2)(a—3)r"*+ala—2)(a—4)(a—6)x?r*"
— z*a(a —2)(a —4)(a — 6)r*8.

Using (A.4), the above identities, and linearity, we can obtain the upper and
lower bounds for 8;85p. Since p(x,y) is symmetric in z,y, we have 9:95p(x,y) =
(&18ip)(y,x) and can obtain piecewise bounds of 3i8}p from that of &d%p.

For the estimate in section 4.5, we need to use the estimates of 8;85p()\x) for
very small A < A, or very large A > A, uniformly. Obviously, the bounds are mainly
determined by the leading order power of p(Az), i.e., p1|Ar|** for small A and p,, |Ar|*
for large A. We would like to estimate (0L09p(Ax)),A™7 for A < A,,8 = a1 and
A> A, B=an, ¥y=1,u. Using the above derivations (A.7), we have

AP (0L pla,y))y = Z Pre(DLHINNPror) oy =1u,
1<k<n

and we only need to derive the upper and the lower bounds for C’fj pp(am)zhy!
po—i=i—k=lyam—F uniformly for A < A\,,8 = a; or A > A\, = a,. Since a; is in-
creasing, in the first case, we have

AT =1 apym—a; >0, (AM74); =0, (A7), = AT m > 1.
In the second case, we get
AT =10y —ap <0, (A¥7); =0, (A7), = AT > 1.

In both cases, if a,, = (8, we get a trivial bound 1 for \%»~#; if a,, # 3, we get
0 < Nam—B < \am=F, Using these bounds for A\*»~# (A.8), (A.4), (A.5), we obtain
the bounds for A™#9%0¢)(Az) uniformly for small X, 3 =a; and large A, 5 = an,.

We also need to bound M = AP p,(x) Zi—gg - %

fOI‘Hlly for A< )\*7[3 =dar, plzm(y) :p1|y‘a1 or \> )\*,ﬂ = anaplim(y) :Pn|y|a"- USng
the formula of p and a direct computation yield

used in section 4.5, uni-

prim(y) _ lyl° B . yl?
=5, M<) p® ’\y Y “’7‘
puim(z)  |z|? ; ' |z|?
<Y PPyl |y = faf .
i<n

We remark that the leading power A% ~? for a; = 8 is cancelled due to |y|° = |z[® =1
in the above estimate and we gain the small factor 278 for a; # 6.
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A.2.2. Leading order behavior of 8p/p. In our verification, we need to bound
Op(Az)/p(Ax) as A — 0 or A — oo uniformly. A direct calculation yields

Ou,p _ zi Zipiairc_“ 2 L5 () S(x)éM-
po lal? Xipirn Jaf 2ipir

For z close to 0, we introduce b=a — a;. Clearly, we get b; >0 and

: ibﬂ’ai . ibﬂ‘bi A(r
S(x):a1+m:al+méal+32’r;.

2D Yo pirti
Using b; > 0 and the Cauchy—Schwarz inequalities, we get
2
A'B—AB =r"! ((Zpibgrbi) (Zpﬂ”bi) — (Zpibirb'i) )

=S b = by >0,

ij

and thus A/B is increasing. For A < A\.,r € [r, 7], we get the uniform bound for
S(\x)

AN

a; <S(A\x) <ay + B()\

For A =1, we simply obtain

a1 +

Similarly, for A > X\, r € [r;, 7], we get

A()\*T’l)
B(/\*’I“l)

A(r) _ Xoipibir®

B(r)  Yprt

where b=a — a,, <0. Here, we have used that A(r)/B(r) is increasing. Though b; is
negative, we still have (A/B)' = M > 0. From the above estimates, we get

ay + SS()\Z’)S(LR,

£

i pp()\w) EE Say = Ro(x),
|1

Jim Aaﬂ“—;"ux): |j| R (2),
%(m) — Roo(M\z)| <A1 |§|12 :g((i Z;' L A>

A.2.3. Bounds for the derivatives of 1/p. The bounds for d’, dj L are more
complicated since p~! is not linear in the summand p;7%. We need such estimates in
the estimate of the velocity. First, using the bounds in section A.2.1 and (A.5), we
can obtain the upper and the lower bounds for R;;:

aici)ip.

Rij =
oo
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For i+ j=1 and k = 2,3, we use the estimate in section A.2.1 to obtain the bounds
for

Y S(x), Ror=—S(x), (R

Rio=—
T 22 EE

In our estimate, we need a;’ag,‘p—l for i+ j < 3. A direct calculation yields

— Pz Rl() — Prx Pz —

0zp 1:_?:_77 Oy p =— 2 +2E:p 1(_R20+2R%0)7
— T 2 xr —
Ouyp™ ' = —pr + % =p Y (=Ry1 +2R1oRn1),
- Poze | Opeaps 603 _

5mxﬂ 1—— p2 p3 - p4 =p 1(—R30 + 6R20R10 — 6R£130>,
aww 1% ! - — + + - —6

Y p2 p3 p3 p4

=p '(=Ra1 +2RaoRo1 +4R10R11 — 6R3,Ro1).

Next, we estimate 95,07 (dx,p/p) for i <2,j=0or i=0,j <2. Denote f =y, p.
Using a direct computation, for Dy = 9¢2 852 with is + jo = 1, we get

D D
Dzi = Dof 1 22,0 =p "(Daof — fRi, ;)
PP p

For (ig,jg) = (2,0), (O, 2), denote i3 = i2/2, j3 =j2/2, D3 = 6;38233 We get

p2f _D3f  2Dsf-Dsp *ng(;)

) p?
_ D3f 2D3f-Dsp D3p | 2(Dsp)?
=— a2 tH -t
p p p p
= pil(D‘%f —2D3fRiy 5, — fRiy 5, + 2fRi23,j3)’

D2 2(Dsp)?
where we have used D%% = Dg(—[;%p) =_Dgp 4 2Dep)”

Since we have estimated 8};6‘{” and R;j, we can bound these derivatives of D1p/p
using (A.4).

We also need to obtain the uniform estimates of A?9.89 (p~! (Az)) for A<\, =
a1, and A > \,, B =a,. Denote py(z) = p(Az). For example, for D1 = 9,,, we have

)\ﬁDl(pgl(x)) — _\+8 (D12p)()\a?) _ —)\1+6p;1(3:)>\_1 miZS()\:c)
pa(z) ||

— Byl T
=-A Px (z)|.’17|2

S(Ax),

which can be estimated using the estimates in sections A.2.1, A.2.2. The power \? and
the leading power ™7 in p; ! (x) cancel each other. The estimates of NPOLOI (p~ (M)
with ¢ 4+ j > 2 and 8;85%?) are similar and follow from the above derivations for
9.0 p~",0L07(8p/p) and the piecewise estimates for 9597 p(Ax) in section A.2.1 and
@()\x) in section A.2.2, which are uniform in small A < A, or large A > A.. We remark
that in all of these estimates for py(x), taking derivatives in 2 does not change the
asymptotic power in \.
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1

A.2.4. Improved estimates for p~ near x = 0. For the special case a; = —2,

we can write
p@) =2 Y pir T = (), = () la)
i

To obtain a better estimate of p~!, we use the fact that 22 +y? is a polynomial. First,

we can obtain the bounds for 9,975~ ". The bound for Sy =z + y? is trivial, e.g.,
(6xSO)’y = 2%77 (81/50)7 = 2yw Y =Uu, l, amyS() = 0, 81250 = anyO =2.

Then using (A.4)—(A.5), we can bound p~1.

A.3. The mixed weight. For the second type of weights W = py(r)|z|~"/% +
p2(r), we can compute its derivatives and its upper and lower bounds using linearity
and the Leibniz rule (A.6). We consider z,y > 0. For example, we have

_ _ _ _ 1 _
Wi=prazy P +pag, W Hu=W)"" Wy=0,p12 1/2—5,0193 32 4 Oy po.

To obtain the upper bound for 9,07 W, we use the Leibniz rule (A.6):

. N e QR DN e
k<i

We need to bound p(r)/W(z,y) in the estimate of the integrals. Suppose that
the leading and the last powers of p are aj,a,. The leading and the last terms of W
are given by p;r% cos(8) %, a; >0,

W > plrbl, W > pnrb”.

We estimate

for all z,y € R;. We apply the above estimates for z near 0 or = sufficiently large.
Using W(Az) > p1(Ax)A~Y2|z1|~Y2, W (Ax) > po(A\x), and the uniform estimates
of p;(Az) in A in section A.2.1, we can obtain the lower bound of W (Az) and the upper

bound of V’;,(()‘ ;;)) uniformly in A.

Appendix B. Estimate the derivatives of the velocity kernel and in-
tegrands. In this appendix, we estimate the derivatives of the kernel 7%10g|x|
associated to the velocity u = V+(—A)7lw and its symmetrization (4.25). These
estimates are used to estimate the error terms in Lemmas 4.2, 4.4. We will per-
form an additional estimate for u with weight ¢(x) singular along z; = 0 in sec-
tion B.4. Some additional derivations related to the estimate of the velocity are given
in Appendix B.5.

B.1. Estimate the symmetrized kernel. In this section, we estimate the sym-
metrized kernel. We develop several symmetrized estimates for harmonic functions.
Before we introduce the estimates, we have a simple 1D estimate, which is useful for
later estimates.
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LEMMA B.1. We have

£(2) + (=2) =2 O)] €22 faoll

£(2) + (=) = 2(0) = 2 £ 0)] € 102 | oo
Proof. Denote G(z) = f(x) + f(—x). Clearly, G is even and

(B.1) G(0)=2f(0), G'(0)=0, O2G(0)=2f..(0), O2G(0)=0.

Using the Taylor expansion, we obtain

902G (0)a? N 22G(0)x? N 02G (&)t
2 6 24

G(z) = G(0) + G/ (0)z +

for some & € [0,z]. Using (B.1), we get

I4

l‘2 $4
|G(@) = G(0) = G" (@) S| < 11026l Loy 57 <10l (2015

24 —

Plugging the identity (B.1) into the above estimate proves the second estimate in
Lemma B.1. The first estimate is simpler. ]

The following lemma is useful for estimating the symmetrized kernel (4.25) and
its derivatives.

LEMMA B.2. Suppose that Q, = [—x1,21] X [~x2, 2] and f € C*(Q,) is harmonic.
Denote
Gi(1,2) £ f(z1,22) + f(=21,22) + f(21, —22) + f(—21, —22) — 4£(0,0),
(B2)  Ga(l,2) & flar,22) — f(=21,22) — f(a1, —22) + (=21, —22),

C31 (.’17) £ 2x§fmw(070> + 2$§fyy(070)7 C12(37) £ 4$1x2facy(0a0>-

(B.3)
G1(L, )| <202 foallLo(@u)s 102, G1(L2)| < AJai| - || fazll Lo (0.

(B.4)
Gi(1a) = G| < 4 aft

xi + 6a3x3 + a5) I,
3

6

10* fl] L (@) < =10l Lo (@)

(B.5)
) 1
(G1(1,21,0) = G (21,0)| < c2t[10* fl] 2.,

(B.6)

10,,(G1(1,) — G ()] < 2v2

2
(323 i+ 20 i~ @ < T5m o110 i~ @

[SVRN )

where [|8* f|| Lo = maxo<i<a |[0207 f|| L (q,)- For Ga, we have the following estimate:

(B.7)
|Go(1,2)| < 4z122]| foyllLe(@u), 102, Go(L,2)| < 4zz—i| - || foyll Lo (Q.)>
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(B.8)
N 2$1$2|$‘2 4
|Ga(1,2) — Ga(z)] < f”a FllL=(@.);
(B.9)
. 2 2v2
|02, (G2(1,z) — Ga(x))| < 5(3$?5€3—¢ +23_)10*fllL=(q.) < T\$|3||84f||L°°(Qw)~

Note that G1(-,z) is even in z;, and Ga(-,z) is odd in x;. The polynomials of
x; in the upper bounds (without absolute value) have the same symmetries. Similar
properties hold for dG1,0G5. Moreover the above bound satisfies the differential
relation. These properties are useful for tracking different bounds for G, Gs.

Proof. Recall Q, =[—x1,21] X [—22,z2]. Denote
Aij(x) = ||5;5§f‘|Lw(Qm)~
Using Lemma B.1, for any ¢ € [0, 1], we obtain

|f(tzy, x0) + f(tay, —xo) — 2f(t21,0)] < Agox?,
| f(21,0) + f(—x1,0) — 2£(0,0)| < Agpa?.

Since f is a harmonic function, we have 95207 f = =005 f and obtain A;io; =
A j4o. Taking t = £1 in the above estimate and using the triangle inequality, we
prove

\G(l,x)| S 2A20$% + 2A02$§ = 2A20(1:% + Z‘g) = 2A20|$‘2,

which is the first estimate in (B.3).
The second estimate in (B.3) is simple. We consider ¢ =1 without loss of gener-
ality. We get

102, G1(1,2)| = [(O1f) (w1, 22) = (Ouf) (=21, m2) + (O1f) (w1, —22) = (Ouf) (=21, —22))]
S 41’11420(1’).

For (B.4), using Lemma B.1, we get

4
|f (b1, 22) + f(txr, —x2) — 2f (t21,0) — 23(05 f) (t21,0)] < Ao4(36)%,
(B.10) |05 f(21,0) + 85 f(—a1,0) — 205 (0,0)] < 2742 5(2),

4
[F(1,0) + F(=21,0) = 2f(0) — {02 f (0)] < Awo T

for ¢t = +1. Combining the above estimates and using the triangle inequality and
Ago = Agg = Agy, we prove the first estimate in (B.4). The second estimate follows
from 2|z|* — 21 — 62223 — 25 = (23 — 23)2 > 0.

Estimate (B.5) follows from (B.4) by taking zs =0.

For (B.6), we consider the estimate of d,,. The other case is similar. Using

O1f(x1,8) — (O f)(—z1,5) Z/Oml(a%f)(tas) + (97 f)(—t, s)dt,
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we obtain

01(G(1,2) — Gi(x)) = (01 f)(z1,22) — (O1f)(—21,22) + (01 ) (21, —2)
— (01 f) (=21, —2) — 42107 £(0)

= [ (@ (e02) + @) -2020) + 02z~
+ (021)(=2,32) — 403 £(0) ) d=.
Applying (B.3), we get
|81 (G(l,l’) — Gl (3;‘))‘ < /Oac1 2(,22 + x%)dZAzl’o(:L‘) = (;ﬁ + 21’11‘%) A4’0((E)

and complete the proof of the first estimate in (B.6). For the second estimate, we use
the inequality of arithmetic and geometric means (AM-GM) inequality to yield

(B.11)

3
2(33:34—3:%)4—433%) oo
3 .

1 1
(oo 1= 0 1] = s+ afast <
Taking a square root completes the estimate.
To estimate G in (B.2), we rewrite it as follows:
(B.12)
Xy xro
GQ(l,.’E) —CGQ(ZL'):/ 312]”(21,22) —0812f(0)d2

[ [ @unem + @uni-a.m + @af)e, )
+ (O12f) (=21, 22) — 4c(D12.f)(0)dz

for ¢ =0,1. The integrand has the same form as G; in (B.2). For ¢ =0, using the
above decomposition, we prove

|G2(l,x)| S4!L‘1$2A11.
When ¢=1, using (B.6), we get

2
3

2

2
3x1x2|$| .

. X1 o
|Ga(1,2) — Ga(z) §A402/ / ly[Pdy = Ago = (x3me + 2123) = Ago
o Jo

To estimate the derivatives, we focus on J,,. Using the above representation, we
obtain

O, (Ga(1,2) — cCin(a)) = / " (@uaf) @1 92) + Graf) (—1,4m)
+ ((O12f) (21, —y2) + (O12f) (=21, —y2) — 4c(012£)(0))dy.

We apply the same estimates to the integrands with ¢=0,1 and get
|0z, G2(1,2)| <4zaAiq,

. *2 2
|8$1 (GQ(l,SU) — G2($))| S A312/ (CL’% + yg)dyg = A31 <2£L’%£L’2 + 3%3) .
0
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The second inequality in (B.9) follows from (B.11). The above estimates imply (B.7)—

(B.9). |
Recall the kernels associated with Vu,uin (4.1). These kernels are the derivatives
of the Green function —5- log |z| and are harmonic away from 0. We have the following

estimates for their derlvatlves

LEMMA B.3. Denote r = (22 + yQ)% and f(x,y) =logr. For any i,j > 0 with
1+ 7>1, we have

10,05 f (w,y)| < (i+j = 1t-r™ .

As a result, for Ki(y)= —%312]‘(3/), Ky (y) = —%B%f(y), we have

1 . o 60

|Ki|§W7 10, 0, ”ﬂﬁwv |05, 0y, JK|<| 5
2520 .

o o5kl <220, e

1/2

Proof. Consider the polar coordinate 3 = arctan(y/x),r = (2% + y?)/2. We use

induction on n =1+ j to prove
(B.13) G;Bif =(n—1)lcos(nf — Bi;)r "

for some constant 3;;. We have the formula

(B.14) 0,9 = (cosﬁ@T — bmﬁ@g)g, Oyg = (smﬁf) + CObﬂa@)g.

First, for n =1, a direct calculation yields

0. f= 2 =00 =Y I _colBonD)

r r

Suppose that (B.13) holds for any 4,5 with i + j =n and n > 1. Now, since

0:050) f = (n — 1)1, (cos(nf — Bij)r—™)
=(n—1)!/(—ncosBcos(nB — Bij)r "~ +nsinBsin(nf — Bi;)r ")
=nl(—cos(nB — Bij + B)r ") =nlcos((n+1)8 — Bij —m)r "1,
using a similar computation and sin(z) = cos(x — 7/2), we can obtain that 8,050 f

has the form (B.13). Using induction, we prove (B.13). The desired estimate follows
from (B.13). d

Using the above two lemmas, we can estimate the error in the discretization of
the kernels K (x,y) in both the x and y directions.

B.1.1. Estimate the kernels in the far-field. We apply Lemma B.2 to esti-
mate the decay of Fy, Fy

FOéG(y—x) —Gyr —x1,y2 +22) — G(y1 + 21,92 — x2) + G(y + ),

G(y) = —loglyl/2,
B.15 Vo
(B.15) FL 2 Fy — da120012CG(y), Fo 2 Fy — w

Lij(P) £ 0. 05 0k 0., P (l‘,y)-

T1 T2 7Yl TY2

97 0:G(y),
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Note that for stream function ¢ = (—=A) " lw(y) =C -G * W, where W is the odd
extension of w from R} to Ry ™, since G(z) is even in z;, after symmetrization, we
have

3(0) = 6l2) — 21226120 =C [ Gly—)W(p)dy=C [ Fi(w.)W(5)dy,
R

where ¢15(0) is related to CroKyzo in (4.5). In the estimate of u,Vu related to

8;16w2¢, e.g., (1,1) for uy, = —0y, 4,9, for y € Q away from the singularity, we get the

symmetrized integrand

5,00, /Q Fy (2, y)W (y)dy = / 3. 00 Fy(a,y)W (y)dy.

In the error estimate of the trapezoidal rule Lemma 4.2, we estimate 97, 6;285
Fi(z,y), which is I;jo0(F1) or Iijo2(F1) in (B.15). We apply the estimate of Fs to
Ky — CroKuzo — CpKop (4.5). Below, we show that ;. (F;), = 1,2 has faster decay
in |y| than 8% 09,08 8! G(y+x).

By definition, we get i1,71 < 1. Next, we fix y and introduce

Y17Y2 Y1 7Y2

g 9,04,G(y+2), M —max 9% 0 Q) (y+ | L=(0.),
w1 ¢ )= (y+2), Moy max [|( )+ )=o)
Qz = [~21,71] X [~22,72].

Since G is harmonic, we have
(B.17)
O Gyr + 5121, Y2 + s212) = 570y G(z1 + 5191, T2 + s292), 51 € {1},
8%G(y) = _822G(y>7 8x1azzgpq<x)|a::0 = 051+135j1G(y), 822grs(0> = _8119rs(0)-

Second approximation F5. Note that taking d,, in F; does not change the
sign of the coefficient of the G term in (B.15). Applying (B.12) with ¢ = 1 and

f(z) =grs(2) in Gy, we get

Ipqrs F2 8518;12/ / Gr+1,s4+1, all( )d

9ap.ail(2) = gap(2) + gap(—2) + gap(21, —22) + gap(—21, 22)
— 4945(0) — 2(27 — 23)9119ap(0).

If max(4,j) <1, using the above notation to I;;x;(F») and the estimate of G; — G,
in Lemma B.2 with f = gx;, and then integrating the bounds in 2o, we get

w2 4 2,2 4 4
]+ 62725 + 25
<Mag,a, / 6 dzo
0

To
|Ilokl(F2)|:‘/ Gkt1,1+1,a11(T1, 22)d 22
0

4 2,.3 5
Tr{T Tri{T x
142 142 2 M.
= < + + ) G,d2>

6 3 30
where do = k 4+ [ 4+ 6. Similarly, we get

R £ R

x4 + 62222 4
o1k (F2)| < <30 + 5 + G )Ac,dg, Ny (Fy) < 12 7 72

+z
2 AG.dy-
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If max(i,7) > 2,1+ j < 3, without loss of generality, we consider i > 2. We choose
(i1,71,k1,011) = (1 — 2,4,k +2,1). From (B.17), we get

321(561172312G(y)) =0,
2
2

2 _ B
o2 ok o, (W@f@ﬁ@)) — 4212205 G (y) = 41220199101, (0).

Using (B.17) again, we rewrite 9. 0% G(x +y) =04 0*1G(z +y) and get

17 Y1 1 Y1

L (F2) = 02 032 (gryiy () — Gryiy (21, —%2) — Gyt (—21, 22)

(B.18)
+ gy, (—2) — 42122012981, (0)).

The same derivation applies to the case of j > 2, where we choose (i1,71,k1,01) =
(1,7 — 2,k,1+2). Since i1,j1 <1, using the estimate of G — G2 in Lemma B.2 with

J = 9ri1,, we get

[ T20k1 (F2)], o261 (F2)| < Mg a,, (i1,751) =(0,0),

Lsok1 (F2) |, T2k (F2)| < = (323 w2 + 23) Mg 4y, (i1, 1) = (1,0),

2
3
2 ..
[ L2151 (F2)]s [Ho3ki (F2)| < g(ﬂfi’ + 32123) MG a5, (i1, 51) = (0, 1),
do=ki+lL1i+4=k+1+6.

Note that the form (B.18) can be seen as the 92t 822 Fy. If 4 <i+ j <5, we still
first perform (B.18) by choosing (i1, j1,k1,01) = (i — 2,5,k 4+ 2,1) or (4,5 — 2,k, 1+ 2)
and get

Iijk?l(FQ) = Ii1j1k1l1 (ﬁ1)7

where F} is similar to F} in (B.15) with G replaced by Giirj—ji = Bél_ilaiz_-le(y).
Then we apply the estimate for the first approximation below with i; + j; <3.

First approximation. The estimate of I, (F1) is similar. Denote

i2:i—2{;J,j2=j—2BJ, kgzk:+2BJ, lg:l—s-QBJ.

If max(i,j) < 1, we get (i,7,k,1) = (iz, jo, k2,12). Applying the estimate Gy — G5 in
Lemma (B.2) with f = gg,1,, we get

2 2
Lo (F1) < §I2(I§ +32)|0°G(y + ML= (Q.) = gl’z(fg +323) Mg, 4,

2
I (F1) < gfﬁ(wf +323)Mg.a, Toow(Fi) <
d=ke+lo+4=k+1+4.

If (4,5) = (1,1), we apply the estimate of G; in Lemma (B.2) with f = 0,, 4, gri ()
(k,1 are number of derivatives on G(y + z)) to get

‘Illkl(F1)|S2|m|2MG,d7 d=ky+lo+4=k+1+4.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/06/25 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

98 JIAJIE CHEN AND THOMAS Y. HOU

If max(4,7) > 2,4+ j < 3, £122012G(0) vanishes in I;;;. We apply a derivation
similar to (B.18) without 4z x20129k,1,(0) and the estimate of G in Lemma B.2 with
f =gy, to get

L (Fy) < day ™22y 72 (|0% iy, || Lo (0,) < 421 22y 7> Ma a,
d=ko+l+2=k+1+4.

To bound M¢ 1., we apply Lemma B.3 to get

(B.19)
(k—1)!

— a b . o < N7 7T
May = mox 119,04, G)(y +)lle=(@u) = 5 v

. 2
1 Oyo Den(x,y)erg&\y—Z\ :

It is not difficult to obtain that for =,y € R;r+, we have

(B.20) Den(z,y) = Z min |y; — z|* = Z (max(y; — x;,0))>.

<z
sl i=1,2

Using the above estimates, for |y| > |z, we get Den ~ |y|? and the decay estimate
for I;jri(Fy) (B.15) with a rate |y|=*='=% and I, 3, (F2) with a rate |y|=*=1=6,

B.2. Piecewise L*° estimate of derivatives of the Green function. In this
section, we develop sharp L™ estimates of the derivatives of the Green function G(z) =
— 5= log |z| and their linear combinations in a small domain [a,b] x [¢,d]. They will be
used in Lemmas 4.2, 4.4 to estimate the error, especially near the singularity of the
kernel. We remark that the linear combinations of 9{93G can be quite complicated.
If we simply use the triangle inequality to estimate it, we can overestimate some
terms with cancellation significantly, especially near the singularity of G. These sharp
estimates are useful for reducing the estimate of the error term in Lemmas 4.2, 4.4
without choosing a very small mesh, which can lead to large computational cost.

B.2.1. Coefficients of the derivatives of the Green function. To simplify
the notation, we drop % from G and denote f, = —%log|x|. First, we derive the
formulas of ;03 f,. Due to homogeneity, for k41> 1, we assume

i
Zi+j=k+l CijT1T3

k ol _
(B21) 8x18$2fp_ |x\2(k+1)

Next, we derive the recursive formula for ¢;;. Using induction, we can obtain

. =1 g
PYSEPY ikt G @ 2(k 4 Dan i
oy Oz, fp = FEG) G Z Cijly T

itj=k+l

1 o L o
= it g Cai—1 2 it j
EEGEED) > eyiattlah + egint T ey = 2(k + Deigai g
itj=k+1

1 . . i j
IR ( D (eiyi+cipa a(i+2) —2(k+ l)Cz‘j)xflx%) .
itj=k+1

Therefore, we obtain the recursive formula

Cit1,j =i + (14 2)Ciya,j—2 — 2(k + 1)cy;
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for all i+ j =k 4+, or equivalently,
Cij=(—1)ci1; —2k+1Dci—ij+ (i +1)ciyr,j—2
for all i+ j =k 41+ 1. Similarly, for 9,,, we get
cij=0—Deij—1 =2k +Dcij—1 4+ (G +1)cizj+1

foralli+j=k+1+1.

B.2.2. Estimates of rational functions. We use the above formulas to develop
sharp estimates of the derivatives of f, and their linear combinations in a small grid
cell (Y11, Y1u) X [Y21,Y2u)- For k< ko and S C{(i,j):i+ j =k}, we estimate

Z(i,j)es Cijy%yé

B.22 Is2
(B.22) PE

We assume that Ig(z) is either odd in z; or even in x; for i = 1,2. Clearly, this

property holds for 8’;1 352fp (B.21). Denote iy =min;es,j1 =minjecgj. We get
fo_ v Dagescth v
Ty

We further introduce

a i i a i i
P2 Y ey Q= D
(ig)es (i.9)€s

We claim that i —iy,j — j; are even for all (i,5) € S. Since Ig is either odd or even
in @;,i=1,2, the numerator > ¢;;x}x} in (B.22) has the same symmetries in z1, 2.
In particular, each monomial ¢;jzia} in (B.22) also enjoys the same symmetries in
x1,%9 as Ig. If i — iy is odd for some i, then cijzi_ilx%_ﬁ must be odd in z;. It
implies ¢ — i; > 1 for any (i,7) € S and contradicts the minimality of ¢;. The same
argument applies to ji.

As a result, P and @) are monotone increasing in |y1],|y2| > 0. For |y;|; < |y;| <

|yi|u,?=1,2, we can derive the upper and lower bounds for P,Q and get

B o 11 J1
1| < max(P, — Q;, Q. — F)) s ly1]" [y2]

Jyl;2 v [ylita
- max (P, — Q1,Qu — P) ( Y1 >“< Y2 >]1
B yly2 (ly1]2 + lyl7)2/2 (alf + ly212)12)

where |y|; is the lower bound of |y| and we have used the fact that z;/|z| is increasing
in z; for z; > 0 to obtain its upper bound. Now, for y; € [y, Yiu], We estimate |y;|i, |¥i|u
as follows:

lyil > max(0, |yi + yiul /2 = Win — vir) /2) = yil,

(B.23)
lyi| < max(lyal, |yiul) = [ilu, Wl = (91l7 + ly2l?)

12

Note that for y; € [yi1, i), ¥i can change signs.
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B.3. Improved estimate of the higher order derivatives of the inte-
grands. In the Holder estimate, we need to estimate the derivatives of the integrands
(4.28), (4.29), (4.24), which take the form

KC(2,y)(p(x) — p(y)) + KN p(x)

for some weight p and kernels K¢, KN¢. Using the estimates of the kernels in Ap-
pendices B.1, B.2 and the weights in section A.1, the Leibniz rule (A.6), and the
triangle inequality, we can estimate the derivative of the integrands. However, such
an estimate can lead to significant overestimates near the singularity of the integrand.
We use the estimates in Appendix B.2 to handle the cancellations among different
terms and obtain improved estimates for the integrand and its derivatives near the
singularity:

(B.24) Too(z,y) £ K(y — 2)(p(x) = p(y)); O, Too(x,y)-

We choose weight p(x) that is even in 2 and y. The basic idea is to perform a Taylor
expansion on p(z) — p(y) and obtain the factor |z — y|, which cancels one order of
singularity from K (z,y). We use the formulas in Appendix B.2 to collect the terms
with the same singularity and exploit the cancellation.

B.3.1. Y-discretization. In the Y-discretization of the integral, we need to
estimate the y-derivatives of the integrand (B.24). For a,b=1,2, denote

Tty
5

(B25) D1 = 8a, DQ = 8;,7 L =

Next, we compute 97 9? Too. The reader should be careful about the sign. Note that

Yb " ZTa

0z, (K(y —2)) = —(0.K)(y —2) = —D1 K(y — x).
Using the Leibniz rule, we get

82, 0z, Too = 03, (D1 K (p(x) — p(y)) + K - D1p())
= 32 (D1 “(p(y) — p(2)) + K - Dip(x))
=D3D1K - (p(y) — p(x)) +2D2 D1 K - Dp(y)
+ DK - D2p(y) + D2K - D1p(x).

We use Taylor expansion at z =z, and write

p(y) —p(x) = (y — ) - V(&) + Pm2.err, 0ip(2)
=0ip(Tm) + (0ip(2) — Oip(Tm)), z=2,Y,
(B-26) | f(2) = f(xm) — (2 — &) - V(0]

ld2 d1 2

1d
<357 A faelle@) + —— 1 fayllL=(@) t3 Hfm||L°°(Q) 2 Iy
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ford=y—z,z==,y and any f, where @ is the rectangle covering x,y. Then py, 2 crr
is bounded by 21, = O(|z — y|?). Combining the terms involving Vp, we get
(B.27)

0,02, Too =Y (D§D1K~ (yi — i) + 1p,=0,2Ds D1 K + 1p, o, D3K ) - O, p(Tm)
i=1,2
+ DngK *Pm,2,err + 2D2D1K ! (DQP(y) - Dgp(fﬂm))
+ D3K - (D1p(x) — D1p(x,,)) + D1 K - D3p(y)

>

> Li-0ppam) | + 1L+ 11y + 115+ 114,
i=1,2

I;2D3iDK - (y; — xi) + 1py=5,2D2 D1 K + 1p,—p, D3 K,
where 8{8§K is evaluated at y — =, and II; denotes the last four terms in the second

equation. The first term is the most singular term. We combine the most singular
terms to exploit the cancellation and improve the estimates. We estimate the kernels

(B.28)
Kmiz(D1,Da,i,5)(21,20) 2 D3D1 K (2)2; + 1p,—5,2D2D1 K (2) 4+ s1p,—5, D3K (2)

with s =+1 and Dy, Dy € {91,02}. Then we can bound 85178%%0 using the triangle
inequality. When Dy = D5, we have an improved estimate for I1s, 13,

(B:29)  Ily+ 3= D3K(Dop(y) — Dop(xm) + (D2p(y) + Dap(a) — 2Dop(x:m)))-
We estimate Dop(y) + Dap(x) — 2Dop(2y,) using (B.26) with f = Dop and z =z, y.

B.3.2. The second singular term. For x = (x1,25) close to the y-axis or the
x-axis, since we have symmetrized the integral (see (4.28) and section 4.1.5), we have
another singular term in the integrand

Tor £ K (y1 — x1,y2 + 22) (p(x) — p(y)), or Tio = K(y1 + z1,y2 — 22) (p(x) — p(y))-

We have the first term if 29 < 1 and x5 close to 0 and the second term if 21 < xo
and 1 close to 0. We label the former case with side = 1 and the latter side = 2.
See the right figure in Figure 1 for an illustration of the first case. The Ty; term is
supported in the blue region R(z,k,S). Denote

(B.30) (s1,82) =(1,-1) if side=1, (s1,82)=(—1,1) if side=2.
Case 1. If (Dy, side) = (01,1) or (02,2), we obtain
Oz, K(y1 — 5121, Y2 — 5222) = =0y, K (y1 — 5171, y2 — S22)
for (a,s1,s2) = (1,1,—1) or (2,—1,1). The computations for 82, 0., To1, 2, 0z, Tho are
the same as (B.27) with K and its derivatives evaluating at z = (y1 — s121, Y2 — S222).
We estimate I1; in (B.27) directly using the triangle inequality and the bounds
for 9105 K in sections B.1, B.2 and p in section A.1. For I; in (B.27) in the most
singular term, if ¢ = side, from definition (B.30), we get
si=1, s3_i=-1, 2z =y, — 8% =Y —Ti, 23-i=Y3—i+ T3
Therefore, it follows that
I;=D3D1K(2) - (yi — %) + 1p,=0,2D2s D1 K (2) + 1p,—o, D3 K (2)
:Kmix(DhDQvi)l)(Z)a
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where K, is defined in (B.28). If i # side, we have z; = y; + x; > |y; — x|, 25— =
Ys—; — T3—;. We simply bound the summand using the triangle inequality

;| < |D3D1K(2)| - [y — 2| 4+ 1p,=5,2| D2 D1 K (2)| + 1p, =0, | D3 K (2)].
Case II. If (D, side) = (01,2) or (02,1), we obtain
6xaK(y1 — $1%1,Y2 — 321‘2) = (8yaK)(y1 — S1%T1,Y2 — 82»’62)

for (a,s1,s2) = (1,—1,1) or (2,1,—1). Recall the definitions of Dy, Dy (B.25). Using
the above identity, we get

05,05, T =05, (D1K - (p(z) —p(y)) + K - Dip) = —(0;, (D1 - (p(y) — p(x)) — K - D1p))
for T =Ty, or Thp. Using an expansion similar to that in (B.27), (B.26), we get

(B.31)
—02 0, =Y <D§D1K “(yi = i) + 1p,=9,2D2D1 K — 1p, -5, D3 K ) O p(m)
1=1,2
+ DSDlK *Pm.2,err + 2D2D1K ' (DQp(y) - Dgp(l'm))
— D3K - (D1p(z) — Dip(zm)) + D1 K - D3p(y)

(>

> L 0np(am) | + 11+ 11, + ITs + 14,
i=1,2

I;2D2D\K - (y; — ;) + 1p,—5,2D2 D1 K — 1p,_5, D3K,
where 3%8%[( is evaluated at z = (y; — s121,y2 — S2x2). We bound II; using the
triangle inequality, the estimate (B.29), and the bounds for K, its derivatives, and p
in sections B.1, B.2, and A.1.
For I;, if i = side, from (B.30), we get s; =1 and z, =y; — s;x; = y; — x;. Hence,
we get

I;=D3D1K - (y; — i) + 1p,—9,2D2D1 K — 1p, —9, D3 K = K3, (D1, D2, i, —1)(2),
where K, is defined in (B.28).
If i # side and D1 = Dy = 0;, we have z; = y; — s;x; = y; +x; and get a cancellation
between Dy D1 K and D3K, yielding
|| = |D3D1K - (y; — ;) + Do D1 K| < |D3D1 K| - |y; — ;| + |D2 D1 K.

Otherwise, we simply bound each term in I; using the triangle inequality.

B.3.3. X-discretization. For K(s) = ‘Tg‘ff,%s?ls_‘fg, we have K(s) = K(—s).
Denote

T'=K(y—z)(p(x) —ply) = K(z —y)(p(z) — p(y)).

In this section, we compute 5;b8%QT~ Using the Taylor expansion at z,

p(z) —p(y) = (x —y) - VD(T) + Pz 2,errs
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and calculations similar to those in section B.3.1, we get

(B.32)
82,8,,T =02 (D1 K - (p(x) — p(y)) + K Dip(x))
=D3D1K - (p(z) — p(y)) + 2D1 D2 K - Dap()
+ D1 K - D3p(z) + D3K - Dip(x) + 2D K - Dy Dop(x) + K - D1 D3p(x)
= > (D3D1K - (i — yi) + 1p,-9,2D1 D2 K + 1p,—5, D3 K)Dip(x)
i=1,2
+ D3D1K - py o err + D1K - Dip(x) +2D2 K - D1 Dop(z) + K - Dy D3p()

1>

Z I - 0ip(x) | +11,

i=1,2
I;2DiD\K - (x; — yi) + 1p,—5,2D1 D2 K + 1p,—p, D3K,

where I1 consists of the last four terms in the third equation, K and its derivatives
are evaluated at x —y. Since Dy, Dy = 0,,, we get
I;=D3D\K - (z; — yi) + 1p,—9,2D1 D2 K + 1p,—9, D3 K = Kpniw(D1, Da,i, 1) (z — y),
where K, is defined in (B.28). We use the bound for K,,;,, 0 6%[( and p to estimate
D2D;T.

B.3.4. The second singular term. Similar to section B.3.2, we have the second

singular term for x close to the x-axis or y-axis,

Tor £ K(z1 —y1, 22+ y2)(p(x) = p(y)), Tio £ K(z1+y1,22 — y2)(p(x) — p(y)).

We have the former if x5 < 7 and x5 close to 0, and the latter if 1 < x5 and x; close
to 0. Using the definition of side, 1, s2 from section B.3.2 and (B.30), we get

0z, K (71 — 181,22 — y2s2) = (D1K) (21 — y151, T2 — Y252).

Then the computations of D2D;T are the same as those in (B.32) with 89) K eval-
uated at z = (z1 — s1y1, 22 — 52y2). We bound /7 in (B.32) directly using the triangle
inequality and the bounds for 9{95 K and p. For I; in (B.32), if i = side, from (B.30),
we get s; and z; = x; — s;y; = x; — y;. It follows that

Ii=D3D\K - 2, + 1p,—9,2D1 Do K + 1p, -9, D5 K = K iz (D1, Da,i,1)(2).

If ¢ # side, we have z; = x; + y; > |x; — y;|. We bound each term in I; separately by
following the previous argument.

B.4. Estimate of u(x) for small z;. In the energy estimate, we need to
estimate (u(z) — @(z))p(x) with weight ¢ singular along the line 27y = 0, e.g., ¢
(A.2), where 4(z) is a finite rank approximation of u(x). We use the property that u
vanishes on x1 =0 to establish such an estimate.

By definition and symmetrizing the kernel using the odd symmetry of w, we have

1 To — To —
waw)=g- [ (- s Jwl)dy
Y12

2T |z —y|2  (x14+y1)?+ (22— y2)
1
T Jy120
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where
K:1<!E2—y2_ To — Yo )
2\|z—yl?  (z1+y1)? + (22 —y2)?
= - 2(x2 —y2)y1
(B.33) |z —y]2((z1 + y1)? + (2 — y2)?)

20 Kau(2,y) = 21K gu (21, Y1, 72 — ),

i ( ) 2yz

x,Y,2) = .
N (e R (R )
We define K, as the symmetrized kernel in Ry for 4 similar to that in section 4.2.
Since W is odd in y, we can symmetrize the integral in y, and obtain the full
symmetrized integrand

21 Kau(2,y) — 21 Kau (21, 22,91, —y2) = 21 (Kau (21, 91,72 — ¥2) — Kau (21,91, 22 + 42)).

Since K is —1 homogeneous, using a rescaling argument, for x = AZ,y = Ay, we
have

(B.34)
W= 2 [ (5K @0 = Kuppr(0) )+ s (DK (b )en () 2 1+ 11

for some rescaled kernel Ky (%,9), where S = R(&,k) is the singular region (4.18)
adapted to Z. For I, we further rewrite it and estimate it as follows:

AL . A 1 A o n
1=20 [ (@) Kald) = 5 Kapna(0,0) )or0)d:

m 91>0,9¢S T
Since the integrand is not singular, we further symmetrize the integrand in yo and
then use the method in section 4.1.3 to discretize and estimate the integral to obtain
its tight bound.

Derivative bounds. To estimate the error in the trapezoidal rule in Lemma 4.2,
we need to bound 97, Kgu(x,y), 02, Kqu(x,y). Since ;Cuo(x Y),1Cyu(z,y) (4.5) are
smooth, from the construction in section 4. 3, the kernel - K, (7,y) and its rescaled
version are regular in . We estimate its derivatives following section 4.1. Since
Koy (z,y) = iK(:z:,y) (B.33), K (x,y) is harmonic in y, and |92, K (x,y)| =02, K (z,y)],
we get

aledu(l'vy) = 7832Kdu(xay)a |a2 Kdu(xay)| = |a:% Kdu(xay)|

Thus, we only need to bound [02 K4, | and |32 Kgy| or 82Kdu and 97 K, using the
relation (B.33). We derive the formulas of 82Kdu and 8 Ky, and then estimate them
using methods similar to that in Appendix B.2. We have an improved estimate for
(%K'du in {x} X [y, yu] X [21, 2u] near the singularity. A direct computation yields

) (2 — (2% — y?)?) (22 + y% + 22) w2y3 23
8§Kdu($»y72) =24yz TST_‘E_ +64 TS T3
yz 1 4 2 y?2* 2, 2
12(—+—)( z—y)*(z +y)?) + 642° ) Te=(zty) +27
T2T2( T_ ' T, A T T

where we have used 7 + T— = QM We apply the estimate of K4, to z,y > 0.

Since |8§I~(du\ is even in z, without 1055 of generality, we consider z > 0. Then for
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P, we have z/TE/Q7 y/T_l%/2 are increasing in z,y, respectively. To bound other terms,
we simply use the monotonicity of the polynomials, (B.22), interval operation (A.4),
(A.5), and follow section B.2.1. For example, we use (B.23) to bound (z —y)?, (z+y)?
and

Yy Yu 0< z Zu

= o U= < .
T (N e e T (PR Bk

0<

&1 not small. For IT in (B.34), if &1 > x; = 2h > 0 away from 0, we have
| Kau(Z,9)] S z%‘m—iyl, which is integrable near the singularity . We estimate [T
using

A TR PN R
1< 24, / K au(2,9)l05 ()0 |wplloos S = R(2. ).
m §1>0,5€S

We follow section 4.1.6 by introducing § = 2 + s,s € S — &, decomposing S — & into
the symmetric part Dy, and nonsymmetric part D,, and estimating the piecewise
integral of Kg4,(Z,9),

Dsym = Re(i’k) - i‘, Dys = (R(ivk)\Rs(i'vk)) - ij;

(Li'l + 81)52

KuAvA]-A :Flis 7F: Py ;
[ Kau(2,9)[1g,>0 = [F[14, 45,20 |s[2((51 + 241)2 + s2)

and piecewise bounds of ¢} '(y), where we have used (B.33) to obtain the above
formula. We observe that |F| is even in se and F > 0 for s € Q = [a,b] X [¢,d]
with ¢,d > 0. We estimate the piecewise integrals of F' in ) in section 6.2 in the
supplementary material (supplement.pdf [local/web 1.43MB]). Denote X, £ {y :
y1 > 0}. If 21 > kh, we get SN X;" = R(%, k) and the regions Dy, Dy are the same
as those in section 4.1.6. If & € [ih, (i + 1)h),i < k, the region S touches {y:y; =0}
and we get

SNX; =100,(i +k+1)h] x[(5—k)h,(j+1+k)h] for 3 € [jh, (5 + 1)h).

In this case, the symmetric and nonsymmetric region becomes smaller. We do not
have the left edge in the middle figure in Figure 2, part of the upper and the lower edge
due to the restriction g7 = s1+27 > 0. The estimate of the integrals for s € SﬁXf' -1
follows similar argument.

Small &;. The difficulty is to estimate I for small 2y < 2h. It is not difficult to
obtain that

A N .
(B.35) (IS —llwallzee (s)@1[og(21)]-
Thus we cannot bound I by Cz; for some constant C uniformly for small z;.
Denote by

Ssym = 10,21 + kh] X [T2 — kh, &2 + kh], Sin1=10,%1] X [&2 — kh, T2 + kh],
(B.36) Sin2=[&1,&1+h] X [T2 —h,Z2 + h], Sin=Sin1USin2,

Sout = [£1, %1 + hk] X [#2 — kh, &2 + kh\Sin2, §=2+Z1s.
See the right figure in Figure 2 for an illustration of different regions. By definition,

we have Syym = Sout USin,1USin,2. Here S, captures the most singular region. Then
7 € Sin 18 equivalent to
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(B.37)
SERT (Sm gz) xll([ #1,0] x [=kh,kh] U [0,h] x [=h,h]) & R1(B1) U Ra(Bs),
By)
Ri(By) { By’ BJ
1 1 1 2 1
By) =10, — ——,—|, By=—, Bo=—.
Ra(Bo) [O’BJ x[ BQ’BJ’ YUk TP
We further decompose 11 as follows:
A N N N N
IT=—& (Ls\Suym (9) + 155, (9) + 15,2 (9) + L5y, 2 (9) Kau (2, §)wr (9)di
y1>0
)\1’1

(III +II2+II7.n 1 +I-[zn 2)

The integrals 117, I capture the nonsymmetric part and the symmetric part away
from the singularity. We apply L estimate and the method in sections 4.1.6, 4.1.9.
For II;, ;, using a change of variables (B.36), (B.37), we derive

Il :/ Kau (2,2 4 218) 23wy (2 + &1 5)ds.
€R;(B;)
Note that § — & =218, §1 + 21 =21(2+ 81), §2 — Lo = &182. By definition (B.33),
we get

WA A\ 22182 - (21 + 151) L2 2(s1+1)s2 A
Kua:,a:%—xst———A — T = —Ks(s),
au( 1)1 2ls2-23((s1 +2)2+52) 1 [s[2((s1 +2)% + s2) (#)

IIin,i:_/ K(s)wa(Z + &18)ds.
Ri(B)

Since K,(s) is symmetric in so, we derive

IIzn < [e%e) = A"‘ + >J B
il <llogll (e o3MG4a) _ mes o) (B,

uma<Wﬂu( gx)bwm

—1
ceiohfon T + 0N X h

where B; is given in (B.37) and

/ K (s)ds
[—1,0]%x[0,1/B4]

Jo(By) = / K. (s)ds.
[0,1/B2]?

The formula of J; can be obtained using the analytic integral formula for K, and
obviously J; is decreasing in B. Note that J;(B) is bounded, but J2(B) < 1+log(B) <
1+ |log&1|, which relates to the estimate (B.35). We defer the formulas of J; to
section 6.2 in the supplementary material (supplement.pdf [local/web 1.43MB]).

J1(B1) =

:/ KS(S)CZS,
[—1,0]x[0,1/B4]
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B.5. Additional derivations.

B.5.1. Estimate of the log-Lipschitz integral. In this section, we derive the
coefficient in the estimate of 0,, 15 4(z) (4.64), (4.65). For I5 4, we further decompose
it as follows:

ha=( S )R- ) - )Wy
R(k2)\Rs(k2) Rs(k2)\Rs(b) Rs(b)\Rs(a)
L5014+ 502+ 543

In practice, we choose b = 2. The first two terms are nonsingular and their derivatives
can be estimated using the method in sections 4.1.6-4.1.9. In the estimate of 0,15 4,
we only need to estimate the boundary term on OR;(a) since the boundary terms on
OR4(k2),0Rs(b) are canceled in 0,15 ;,j = 1,2,3. For I5 4 3, using the second order
Taylor expansion to 1 (z) — ¥ (y) centered at z, we have

O, (K (2 = y) (¢ () = ¥(y))) = (02K)(x — y) (¥ (2) — ¥ (y)) + K (2 — y) 021 (x)
= (02K (x —y) (2 — y2) + K (2 —y))02¢(x) + 0 K (¢ — y) (21 — 1) 01p(2) + Rk,

where the remainder R coming from the higher order term in the Taylor expansion
satisfies

Rec| < Y 1050501121 — a2 — wal ey,
i+j=2

where Q = B, j, (hy) + [—bh,bh]? and 20 = co2 = %, ¢11 = 1. Tt follows that

|00, 15,4,3] < [|wloo > Scoeij(z) - fij(a,b),
0<i<1,0<j<i+1

where the coefficients Scoe;;(x) depend on the weight ¢, ¢, and f;;(a,b) bounds the
integral

(B.38) / 102K (y) - 493 + L. 5y=0.) K ()ldy < fi;(a,b).
[—b,b]2\[~a,a]?
For example, Scoeg; comes from the following estimate for I 4 3
/ (D2 (& — y) (2 — y2) + K (2 — ) Dot (@)|eo(y)dy
Rs(b)\Rs(a)
<lwgllool o™ e (@) - 1028 (2))| / |02 K (s)s2 + K (s)|ds.
[~b,b]2\[~a,a]?
The function f;;(a,b) satisfies the following estimates for some constants By; >0

flj(avb)gBljlog(b/a)v .721,2

We defer the derivations to section 5.1.5 in the supplementary material (supple-
ment.pdf [local/web 1.43MB]).

B.5.2. Optimization in the Holder estimate. Consider

. b Ca
gr%z%icr;lgl?F(a,tL F(a,t)= (A—i—Blog a)\/f—i— Wk
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in the upper bound in (4.72). For each t <t,,, we first optimize F(a,t) over a <b. We
assume that A, B,C,b,c, h, h, are given. Denote

o

tu=chy, t B

For a fixed t, since 92F > 0,0,F(0,t) <0, and 9, F (a,t) =0 if a = %, we choose
a =min(b, %) For t < % =t1, we get

Bt bC
i <F(=.t)= — - .
I;lglilF(aJ)_F(C,t) (A+BlogB —I—B)\/% BV/tlogt
The right hand side can be further estimated by studying the concave function on
s=t12<s,,

. pP—q
f(p,q:s) = (p—qlogs)s < f(p,q,min(sy, sx)), s« =exp (T)
with p=A+ Blog(%) + B,q=2B, s, = min( 11/2,1&}/2). We get the above inequality
since f(p,q,s) is increasing for s < s, and is decreasing for s > s,.
If % <t<t,, we choose a="> and get

. Ch
?%?F(a,t) <F(bt)=AVi+ NG

which is convex in ¢'/2. Thus its maximum is achieved at the endpoints.

Appendix C. Representations and estimates of the solutions. In sec-
tion 7 of Part I [13], we represent the approximate steady state as follows:

w=w; @y, 0=01+0, @ =x(r)r “g(B), 0 =x(r)r'""g(s),

PN = + 03 + 85 + Peps B3 =aXo2D,  Xo2D =~y (X6 (1),
2
D68, =—c s @pmaly) =cor, e= 0@+ AGY + 3 +a)),

|oz1+c_—°’|<<1, ap ~ =,
C| 3
where @y, 02, 5 have compact supports and are represented as piecewise polynomials,
a € R is some coefficient, k., is given in (D.5), ¢; is the same as (3.14), and x, is
given in (D.7). We choose a small correction (Ecor similar to that in section 3.2 so
that @ + A¢"™ = O(|x|?) near 0. We use upper script N to distinguish the numer-
ical approximation ¢V for the exact stream function ¢ = (—A)~'@. The exponent
a1 and angular profiles ¢;(8) are obtained by fitting the far-field asymptotics of an
approximate steady state with @; = 0,0; = 0. Then we construct (w;,60;) using the
above formulas. Afterward, we refine the construction of the near-field part (wo,6s)
and exponents (¢,,&) by fixing (@1,01,&;). See more details on how to find the
semianalytic part in section 7 of Part I [13]. We will discuss how to estimate the
semianalytic part in section C.3. In the following sections, we discuss more details
about the representations and establish a rigorous estimate of the derivatives of @, 6.
Note that we do not need an approximation term ¢s for the stream function in
solving the linearized equation in section 3 since we can allow a larger residual error
in section 3.
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C.1. Representations. In a large domain [0, L]?, we use piecewise polynomials
to represent the solution. First, we choose a large L of order 10'® and then design the
adaptive mesh y_5 < - <yo=0<y; <---<yn—_1 =L, N =748 to partition [0, L].

Adaptive mesh. We design three parts of the mesh y;,i € I; £ [a;,b;],a0 =0 as
follows:
)

yi:%,’i:—5,—4,...,1,...,b1, ya2+i:ya2+F(ih3),i:1a"'ab2_a2a
(C.2) Yag+i=Yasexp(iry),i=1,...,b3 —az, 1o=1.025 r =1.15
h2 2 To 1 1 1
F(z)=22 Cr=1 ( ) hg = —— hy = .
(2) = q zexplr=n), r=log (3 ) g sa = he = g e = =

Since we need to estimate the weighted L*° norm of the residual error with a
singular weight of order |z|=?, 8~ 3 near x =0, we use a uniformly dense mesh near
0 so that we have a very small residual error. We choose the parameters ﬁ, ho = %28
since they can be represented exactly as floating point numbers. Thus, we can reduce
the round-off error in the computation. In the far-field, we use a mesh that grows
exponentially fast in space. Note that the error estimate f — I(f) for the kth order

interpolation of f on [y;,y;+1] reads

|f =T < Clyivr — i)*|0% £

For large x, we expect that ¥ f has a decay rate |y|=%= if |f| < |y|=® for a > 0.
Thus, to get a uniformly small error in the far-field, we just require 242=% < ¢ with
e < 1. This allows us to choose an exponentially growing mesh in the far-field and
cover a very large domain without using too many points. We use the second part
of the mesh to glue the first part of the mesh, which grows linearly, and the third
part of the mesh. The function F(z) behaves linearly for z close to 0, and it grows
exponentially fast with rate r; for z close to 1:

F(1+h3)/F(1) = (1 + hs)exp(r((1+ h3)* = 1)) = (1 + hs) exp(log(ro/ (1 + h3))) =ro.

Parameters hg, hg control the mesh size Y, 11 — Ya, = F(h3) = hoexp(rh3) ~ hs.
One can design another F(z) by gluing the first and the third part of the mesh.
The above explicit and simple form of F(z) serves our purpose. We further glue
Yi,t € [bj,a;41],7 = 1,2, using the Lagrangian interpolation for j = 1. For j =2, we
interpolate the growth rate using exp(log(ro)l(¢) + (1 — (7)) log(r1)) with (i) linear
in i € [ba,as]. Note that we do not use the specific property of the profile to design
the adaptive mesh (C.2).

In our numerical computation, we compute the derivatives of the solution using
the B-spline basis (see, e.g., (C.6)) and do not use the Jacobian related to the adaptive
mesh. In particular, we do not use derivatives of the map f(i) = y; and have more
flexibility to design the mesh.

Let n; =720 < N. We solve the dynamic rescaling equation (2.10)—(2.11) on first
n1 X na, (Yi,y;),%,7 <ni — 1 grids. We construct
(C.3) wa(z,y) = > aijB1,i(2)B;(y),

0<i<ni+11,-2<5j<n1+1
where a;; € R is the coefficient, and B;(z), B;(y) are constructed from the sixth order
B-spline
(sij — )5
(04) B,(SU) = CZBlo(.”L'), BZ()(.’E) = Z k/’di, dj == H (Sij - 3il)7
0<j<k J 0<I<k,I#]
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with k = 6. The constant C; will be chosen in (C.10), (C.11) so that the stiffness
matrix associated to the B-spine basis has a better condition number. We choose s;;
as follows:

Then the B-spline B; is supported in [y;_3,%;+3] and is centered around y;. Since w
is odd in z, to impose this symmetry in the representation, we modify the first few
bases

Then B; is odd. We remark that By o(z) =0.

B-spline and the tensor structure. We also use the B-spline basis to represent
the stream function (C.8) and solve the Poisson equation using the B-spline based
finite element method. We use the B-spline basis since it is easy to design a high
order numerical scheme to solve the Poisson equation. Each basis function in (C.3),
(C.7), (C.8) has the form f(x)g(y), which allows us to evaluate and estimate the 2D
function very effectively using the method in Appendix C.2.2.

Remark C.1. While the method described below to obtain the coefficients a; is
technical, since we perform a posteriori estimates of the profiles and residual error
using the given a;, the method of deriving a; is not involved in the a posteriori
estimates and the verification process.

Extrapolation. Near the boundary y = 0, we need two extra basis functions
a; —;B_;(y),7 = 1,2, that are not zeros in y; > 0. Without these two functions,
the representation (C.3) does not approximate «w with a sixth order error. We use a
seventh order extrapolation [41, 42] to determine a; _;:

ai_j= Y Cs_jiqraiy, Ci.=(28,-112,210,-224,140,-48,7),
0<1<6
Cy. = (7,—21,35,-35,21,—7,1).

We choose C;; such that the 7th difference of a; j, —2 < j < 61is 0. Since a;,_; depends
on a;; linearly, we can combine a; _;B; _j,j = 1,2 with a;;B;; and modify (C.3) as
follows:

(C.6)
@a(,y)= Y aijBri(z)Ba;(y),
0<i,j<ni+1
B, i(y)=Bj(y) + Ca j41B_1(y) + C1 j+1B-2(y), 0<j <6, B ,(y)=B;(y),j>T7.

The modified basis functions Bj ;, Bs ; are still piecewise polynomials in [y;, yi41].

Far-field extension. In (C.3), (C.6), we use B-spline By ;(x), B;(y) up to i,j <
n1 + 1 rather than ny — 1 since the support of By ;, B; intersects [0,y,,—1]? for ,5 <
n1 — 1. To determine the extra coefficients, we first extend the grid point values
of wa(z,y) from (y;,y;) with ¢,j < ny —1to 4,5 < ny+1lo—1 by walyn,+1,Y5) =
P(merl;yj),l =0,1,..,lp — 3, where P is the Lagrangian interpolation polynomials
on (yn1—17w(yn1—1’yj))7 (yn1+lo—370)7 (yn1+lo—2)7 0) We impose WQ(ynrHvyj) =0,l=
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lo—3,lo—2,lp—1. Similarly, we extend w(y;,Yn+1). Note that we is odd and By ¢ =0.
We solve the coefficients ag;, 1 <k < M,0<1< M from

waUpo¥g) = D, ayBri@)Ba(y), 1<p<M, 0<q<M, M=ny+1lp—1.
1<i<M,0<j<M
The value ag; is not used since By g = 0. To simplify the notation, we keep it. We only
keep a;j,4,7 <mi + 1 and obtain (C.6). In practice, we choose [y =8, and the above
construction provides a solution with tail decaying smoothly to 0 for |y|eo > Yn, +1o—1-
To solve the dynamic rescaling equations numerically (2.10)—(2.12) (see section 7
Part I), we update the grid point value of w41 at time ¢,,+1 and then use the above
method to obtain a;;.
For the density 65, the representation is similar

(C.7) Or=z Y ayBii(x)Ba;(y).

0<i,j<ni+1

Here, we multiply z since is even and vanishes O(2?) near x =0.
For the stream function ¢ (C.1), we choose ny > n; and represent it as follows:

(C.8) 95 = Z aijB1,i(x)Ba,j (y)pp(y)-
0<i,j<ns—1

Instead of using the above extension to determine the extra coeflicients, we per-
form an additional extrapolation for the basis in the far-field similarly to (C.6):

Bij(2)=Bij(2), j<na—8, Bi;(2)=B;(2)+ Cono—jBny(2) + Clinz—j Brot(2).
We multiply p,(y) given below to impose the Dirichlet boundary condition
(C.9) pp(y) = arctan(1 + y) — arctan(1).

We can obtain the exact formulas of 9%p, using a symbolic computation. We use
induction to obtain a rigorous estimate of 9% p,. See section D.3.
We choose C; in (C.4) of order s; j41 — ;5 as

(ClO) C'i:yl,z'§9, Ci=(8i74—8i72)/2, ©>9,

so that the summand in (C.4) has order 1 for = in the support [y;—3,yi+3]. When we
need to perform extrapolation for a, By, an+1Bn+1 from a;B;,i <n—1, e.g., (C.8),
we modify the last few terms as follows:

(C.11) Ci = (Yn — Yn-1)/100, n — 9 <i.

We choose C; to be constant for ¢ close to 0 or ¢ close to n; since we need to perform
extrapolation, and the choice of the constant does not affect the extrapolation formula
for a;;.

Far-field angular profile. To represent the far-field angular profile of wy, 51, (;_S{V
(C.1), we design adaptive mesh 0=y < f1 <+ < = 7/2, and use an eighth order
B-spline to represent w,( = -,

g(m/2=B8)=>_"6:B(B), go(r/2—B)=((r/2)? ZbB<8> 8),8€[0,7/2),

>0
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where Bﬁ? is an eighth order B-spline (C.4) k =8 with odd modification (C.5). Since
@,¢ are odd in z, in the angular direction, this symmetry becomes odd in 3 = /2.
To impose it, we write ¢ in terms of 7/2 — 8 and modify the first few B-splines B;
(C.4) following (C.5) so that By ; is odd at 8 =0. Then g is odd in 8 = /2. The
stream function ¢V satisfies the boundary condition ¢” (z,0) = 0. For the angular
profile, we need g4(0) = 0, and use the weight 7/2 — 5 to impose this condition.
We further modify a few B-spline B ;() supported near 8 = 7/2 using a 9th order
extrapolation similar to (C.6) near = /2 and get B; ;(3). We choose the mesh 3;
to be equispaced near 8 = /2 and determine the coefficients for extrapolation similar
to (C.6). We remark that to evaluate the derivative 8;39 at /2 — 3, we have the sign

(—D)F
(99)(m/2 = B) = (1)} dkg(m/2 = B) = (=)' > biOE B (8).

We discuss how to obtain these angular profiles using the curve fitting in section 7
in [13].

C.2. Estimate of the derivatives of piecewise polynomials. Our approx-
imate steady state in a very large domain is represented as piecewise polynomials.
We discuss how to estimate its derivatives. Suppose that we can evaluate a function
f on finite many points. For example, f is an explicit function or a polynomial. To
obtain a piecewise sharp bound of f on I = [x;,2,], we use the following standard
error estimate:

h2
(C.12) max|f(z)] < max(|f ()], |f(@)]) + Ffaalle=m, h=zu—a1.

If we can obtain a rough bound for f.., as long as the interval I is small, i.e., h is
small, the error part is small. Similarly, if we can obtain a rough bound for 9%+2f,
using induction and the above estimate recursively,

, . , B2
max|0; f(x)| < max(10, £ (22)]: [05.f (@u) ) + 1057 Fllpe o
for i=k,k—1,...,0, we can obtain the sharp bound for 9 f on I. We call the above

method the second order method since the error term is second order in hA.

C.2.1. Estimate a piecewise polynomial in one dimension. Suppose that
p(z) is a piecewise polynomial on 2y < 1 < -+ < x,, with degree d, e.g., Hermite
spline. Denote I; = [z;,x;41]. Then p(z) is a polynomial in each I; with degree < d.
Our goal is to estimate 9%p(z) in I; for all k by only finite many evaluations of p(z)
and its derivatives. First, we have

8§p(:z:) =0, k>d, afclp(x) =cp,

for some constant ¢, in I;. Using induction from k=d —1,d —2,...,0, we have
k k k h? o
max |95p(x)| < max(|0yp(2:)]; |0xp(wi+1)]) + 102 pllrery,  hi=zip1 — @i

Since we know 92*!p(z) = 0 on I;, using the above method, we can obtain the
sharp piecewise bounds for all derivatives of p(z) on I;. Using the above approach,
we can estimate the derivatives of the angular profile defined in section 7.1 of Part I
[13] rigorously.
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C.2.2. Estimate a piecewise polynomial in two dimensions. Now, we
generalize the above ideas to two dimensions so that we can estimate the approximate
steady state (C.6). We assume that p(z,y) is a piecewise polynomial in the mesh
Qij = [zi,Tit1] X [y;,y;+1] with degree d. That is, in Q;;, p(z,y) can be written as a
linear combination of

Fyl, max(k,1) < d,
e.g., (C.6). For (C.6), we have d =5. Similar to the 1D case, we have
k 5l —
0;0,p(z,y) =0, max(k,l)>d.

Moreover, we know 8%’185’1 is linear in x,y.
We use the following direct generalization of (C.12) to two dimensions:

(C.13)

W foal Lo (@) @ — 202 [ fyyll Lo (@) W — 1)
<
(max ) 1@yl s max 1F(@ays)l+ 8 * 8 ’

Q: [xlvx’u.] X [yhyu]'
Denote

A k ql A k ql
A = Héixllamaypllmo(@ﬁ), By = max |07 0yp(Tasyp)l,

hi=ziy1 -2, ho= Yj+1 —Yj-
Since p is given, we can evaluate By;. Clearly, we have Ay, =0 for max(k,l) > d. For
k=d—1,d, using (C.13) and induction on the order l =d,d — 1,d — 2,...,0, we can
obtain

Ap < By + 8(h Apyog +h3 A 142).

This allows us to bound Ay; for kK =d,d — 1, and all [. Similarly, we can bound A,
forl=d,d—1, and all k.

For the remaining cases, we can use induction on n = max(k,l) =d—2,d—1,...,0
to estimate

A < B+ < (h Apyog +h3 Ak 142).

This allows us to estimate all derivatives of p(x,y) in Q;;.

C.2.3. Estimate a piecewise polynomial in two dimensions with weights.
We consider how to estimate the derivatives of f = p(y)p(z,y), where p is a given
weight in y and p(z,y) is the piecewise polynomials in two dimensions. For example,
our construction of the stream function (C.8) has such a form. First, we can estimate
the derivatives of p(x,y) using the method in Appendix C.2.2. For the weight p, we
estimate its derivatives in section D.3. Then, using the Leibniz rule (A.6) and the
triangle inequality, we can estimate the derivatives f

o:0is1< Y (1) 0:0ipte.liog ot
1<j

for high enough derivatives.
Now, we plug the above bounds for 9;29%,9:0] 2 f in (C.13) and evaluate 9.9 f
on the grid points to obtain the sharp estimate of 8;85 .
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C.3. Estimate of the far-field approximation. We estimate the derivatives
of

g(x,y)=g(r,) = A(r)B(B), r=(z*+ y2)1/27 B = arctan(y/z),

where (r,3) is the polar coordinate. The semianalytic parts of @,f have the above
forms.

C.3.1. Formulas of the derivatives of g. First, we use induction to establish
(C.14) Fi;20.099(r,8)= Y Cijna(B)r "7 0FAdsB
k+1<i+j

with C; ;11 =0, for k< 0,1 <0, or k+1>¢+j. Let us motivate the above ansatz.
Recall from (B.14) that

sin 3

cos B

0y = cos 80, — 857 0y = sin 30, + 0g.

For each derivative 9, or 9, we get the factor % or a derivative 0,., which leads to
the form r~*=7T*9* A. Moreover, we get a derivative d3 and some functions depending
on 3, which leads to the form C’id’k,l(ﬁ)aéB

For D =0, or 0, a direct calculation yields

(C.15) DE; ;= Z D(Cjjpar™"9%*) . 0 A9, B
kHI<itj
+Cigear™ T (DOFA- 03B + 0y A- DO B).

Using the formula of 0,,0,, we get

0u(Cy jaea(B)r ™ I = —sin B C; j par ™I T 4 (b — i — ) cos BC j IR,

sin 8

0, 0F A= cos BOETT A, @%B:— 95 B.

Using 0, F; j = Fiy1,; and comparing the above formulas and the ansatz (C.14), we
get

(C.16)
Ci+1,j,k,l = (k’ — 17— j) COSﬂCiJ,kJ — sinﬂ@;;C’M,kJ + COS/BCi,j,k—l,l — sinﬂC’m,k’l_l

for k <i+ j. Similarly, for D = 9,, plugging the identities

Oy(Ci,jyk,g(,é’)r_i_j'*'k) =cos $05C; j 1, iR (k—i—17) sin(ﬁ)Ci,j,k7lr_i_j_1+k,

cos B

0,0F A=sin Oy A, 0,0,B = o5 B

into (C.15) and then comparing (C.14) and (C.15), we get

(C.17)
Cijt1,k1 = (k —i—7)sinBC; j k1 + cos BOsC; j k1 +sin BC; j k-1, + cos BCi j k11

The based case is given by

Fo,o=A(r)g(B), Cop0,0,0=1.

Using induction and the above recursive formulas, we can derive C; ;. ;(8) in (C.14).
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C.3.2. Estimates of F; ;. To estimate F; ;, using (C.14) and the triangle in-
equality, we only need to estimate 8fA,8lBB(,B), and C; j.1(8). In our case, B(B)
is piecewise polynomials, whose estimates follow the method in Appendix (C.2.1).
Function A(r) is some explicit function, which will be constructed and estimated in
section D.1. To estimate C; j(3) on § € [B1, B2], we use the second order estimate
in (C.12) and the induction ideas in section C.2.1. We can evaluate C; ; ; using its
exact formula. It remains to bound 8%01-7]-, kil

An important observation from (C.16), (C.15) is that C; j x; is a polynomial on
sin 8 and cos 8 with degree less than i+ j, which can be proved easily using induction.
In particular, we can write Cj j 1 as follows:

Cijri= Y apsin(kp)+bycos(kB),

0<k<n
fEO3C; jra= Z crsin(kB) + di cos(kB), n=i+j,
1<k<n
for some ag,by,ci,di, € R. It is easy to see that C; ;i is either odd or even in S
depending on j — I, which implies ¢z = 0 or di = 0. Using the Cauchy—Schwarz
inequality, we get

1/2 12

n 27
il Y dad+lad< (n @] =(2[77)

1<k<n k<n

where we have used the orthogonality of sinkz,coskz and ||f||2, =73, ., (ci +d3)
in the last equality. It is easy to see that f2 is again a polynomial in sin 3, cos 3 with
degree <2n. We fix M > 2n. For any 0 <k < M, it is easy to obtain

1 2 ikx 1 - -2kj
o | e zM;exp<zMﬂ>=5ko.

Using the above identity, we establish

o <L /247
2 2
loll7: = 37 Zf 9(5F)

for any polynomial g in sin 8, cos 8 with degree < M /2. Hence, we prove

M 1/2
2n o5 [ 2jm
il < (sz (M)> .
k=1
The advantage of the above estimate is that to obtain the sharp bound of C; j 1,
we only need to evaluate C; jx 1, f = 93C; jx, on finite many points.

C.3.3. From polar coordinates to the Cartesian coordinate. We want
to obtain the piecewise estimate of F}, , = 9L0i(A(r)g(B)) on Qi = [zi,wiy1] X
[Yj,yj+1],1 < 4,5 < n. First, we partition the (r,3) coordinate into 1 < re < --- <
Tny,0= B <by <---< By, =7. Then we apply the methods in section C.3 to bound
F, 4 on S;; 2 [ry,ric1] ¥ (85, Bj+1]. We cover Q;; by Sk, and transfer the bound from
(r,B) coordinate to (x,y) coordinate

max |F, (z)| < max F, . (r - )
meQi,-‘ P )|_Sk’inj¢®|| p.a(75 Bl (s10)
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For (r,) € Qi ;, we get

€ (w2 + D)2, (@2 +y20)?, B [arctan Y arctan Y],

Ti41 £

Therefore, we get the necessary conditions for @Q; ; N Sk, # 0:

2 2 2 2 2 2 Yji+1 Y;
T T Y 2Tk T +y; <ry, arctan=— > B, arctan < PBry1-

x; Ti41
Given Q; j, we maximize [|F) ||z~ (s, ) over (k,l) satisfying the above bounds to
control [[F}, 4l (q, ,)-

C.4. Estimates of the residual error. Let y: = 1+ O(|z|*) be the cutoff
function in (126) First, we decompose the error of solving the Poisson equations
E=w— (—=A)p" as follows:

(C.18)
- - = - = 3y = il S L/.3
=&1+&, & :Ewy(O)A(7X§)a u(E)=V-(-A)"a= §5wy(0)v (z°yxz),
u(é) =u(&)) +u(&) =ua(&r) + (0(&1) + u(&2)) = u4 (1) + woc(8),
where U is the approximation term for u defined in section 4.3 in Part I [13]. We
perform the above correction near 0 so that &; = O(|x|®) near 0. We perform a similar
decomposition for (Vu)a. Note that we do not have 9,,us = (0,,u)a. Using the

above decomposition and the notation (3.4), we can rewrite the residual error F;
(2.14) with rank-one correction as follows:

./T:.i — D?ﬁz(o)fx,l = -/_:.loc,i + Bop,i((uA(51)7 (VU)A(él)), W)’

where D? = (8ry,5'xy,32) is defined in (3. 23) and Fj,; is defined below in (C.19).
Since u4(z1) = O(|z]3), (Vu)a(£1) = O(|z|?) (see section 4.3 in Part I [13] for these
properties of uy =u — 1), from (3.4) and (C.18), we get

Bop,i((ua(e1),(Vu)a(21)), W) =O(|]*), us(52)(0) =0, g a(£1)(0)=0.
Using these properties of B, ;, we define _7:'10671- as follows:
(C.19)
]:loc,i - II’L - DZQII’L(O)fX,Z7 IIZ :]:7, - Bop,i((uA(§1)7 (VU)A(7 ))7
1

1 )7
u(@)=ta=u" + (&) +ual(é), éo = +u.(51)(0), Y & % + a2 (0),
co(E1) 2 uy(£1)(0),
I = —(qaz + 0N + Wee(€)) - Vo + 0, + (€} + ¢u(61))w,
Il = —(gz 4+ 0" +Wee(8) - VO, +2(EN +¢,(61))0, — (@) + tz 100(2))0s
- (v + Uy IOC( ))é
Il = —(qr 4+ 0" + Wee(8) - VO, +2(EN + cu(61))0, — (a;\’ + Uy 10c(£)) 02
= (1 + vy10c(8))8y,
where f, ; is defined in (D.6), and we have used ¢y = ¢ + 2¢, (2.14), (2.11) for ¢,,.
The above decomposition is essentially the same as (3.12). We apply the functional
inequalities in section 4 to estimate the nonlocal terms u4(¢1),(Vu)a(€1), and com-
bine the estimate of Bop ;((ua,(Vu)a), W) with the energy estimate. See section 5.8
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in Part I [13] for more details about the decompositions and estimates. The terms I1;
depend on the profile @, 0, locally. Using the decomposition (C.18), we can further
decompose the above II; as follows:

IL=1IN + II;(&)) + I1;(&), ILi(&1) = Bop.s(0(21), Vu(&y), W),

IIZ‘(EQ) = Bop)i(u<§2), Vu(ég), W),

where ITV contain the terms in I1; except the ujoe, u(21) terms.
For a(&y), it is a finite rank operator on &, and we can write it as

n

a(é) = Zai(r’ﬁ)ﬁi(w) £ Cuo(x)uz(£1)(0) + 171(51), a;(é1) = / &1(y)ai(y)dy,

++
i=1 R;

for some functions g;(z) and ¢;(y), where Cyo(x) is given in (4.5), and u(&;) denotes
other modes with O(|x|?) vanishing order near 0. See section 4.3 in [13] for a definition.
We can obtain more regular estimates, e.g., C3 estimates, of (eq) since gi(z) is
smooth. Similarly, we decompose Vu(&1). We obtain piecewise estimates of 9%, 8{;51, i+
j <1 following the methods in section 3.6 and section 8 in the supplementary material
(supplement.pdf [local/web 1.43MB]) and then the above integrals on &;. The main
term in 0(&y) is Cyou,(0) with
4

OV — (0= A [ i
o) wE) O =u @O =~ [ it

U2 (£2)(0) = —€4y(0)/2 - 9, (z°yxe)| (0,0) = 0-

Since the kernel Y12 has a slow decay for large |y| (not in L'), we need to esti-
mate u,(£)(0) carefully, using Simpson’s rule. See section 6.4.2 in the supplementary
material (supplement.pdf [local/web 1.43MB]).

Using the above decomposition, we further decompose (&)

I75(21) = 2 (2)(0) Bop,i (Cuo (2), Couo (), W) + Bops(B, V1, W) £ 11y g (81) + I, (E1)-

Since D? is linear, we estimate each term g; fDizgi(O)fXﬂ;for gi =11 m(81), 11 r(E1),
IIN II;(23) to bound Fioe,;. To estimate I1; g, since u(z1) = O(|z|*) near 0, (see
section 4.3 in [13]), we get D?I1; r(&1) = O(|z|®) and estimate

(21)p10, Bia(E1)p20, Vu(E1)po0, 9V u(e1)ps, pati(21)

for pio (A.2) with pio ~ |z|=**%,i < 3, near 0 using the C* bounds of 4, Vu. Note

that 9;a #* 5;1 The former is the derivative of 1:1, and the latter is the approximation
term for J;u. With the above weighted estimate, we can bound a typical term, e.g.,

Uz0,00 in I1; g(E1)p2, as follows:

20
O

—~ 0, —~ (7
= 0 Uy p3 - Zzp + Uz P20 $p7
P3 P20

where 9 is given in (A.2). Each term A, B in the above products A- B is regular and
we estimate each term and then the product to bound weighted L and C* norm of
IIi’R (51 )
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The remaining part in ITN,I1; p(21), 11;(22) depends on (¢V,@,0) locally and
they are given functions. To estimate the weighted L™ and C'/? norms of g; —
D?g;(0)fy.i = O(|z|®) with g = II; pm(21),11;(€), we follow the methods in sec-
tions 3.6, 3.7 with 9,0 = 9,0 = 0.

Estimate in the far-field. Since @, are supported globally, we need to estimate
the error in the far-field. Recall the formulas of @,w;,0,6; from (C.1). We consider
|Z|so > R1 > 102 > 10ay beyond the support of Wy, 02, dY, ¢, ¢~ (C.1) so that
x(r)=1 (D.4) and

D= =q(B)r*, 0=0=r""%gpB), oV =¢ =r*Mf(8).
We estimate the angular derivatives of f(3), gi(5) using the methods in section C.2.1.
Using the above representation, z-Vr? = rd,8 = pr?, 2-V(80,) = 2a1(00,), -V, =
a1y, ¢y =clY +¢ (3.11), and separating u” and uy,. in (C.19), for |z|s > 10'2, we
obtain

Fioen = ((éﬁ}’ —gay)w —a - Vi, + 91@) FE DL — Wee - Var 2 11y + Ia,
Fioes = ((26) = 2011)01,0 — 0™ - V1) )

+ 26501 2 — Woe - VO1 & — Ug 100z — Vi 10cOy = T2 + oo,
Floe,s = ((255 —2¢,81)01, — O (0" - vél))

—€ N n n n A
+ 2cw91,y — Wjoc * v91,y - uy,locez - Uy,locey =131+ 1327

where we have simplified u;oc(€) as wjo. and used fy; =0 (D.6), Froei = 11; (C.19)
since fy,; is supported near 0. The terms I11, 21,31 are local with the form r7¢(f5)
for some angular function ¢ and decay rate v. We estimate their piecewise L™ and
derivative bounds using (B.14). From our choice of a; (C.1), &Y — ¢a; is very small.
Thus the first term in I11, Io1, I31 is small. The second term in I11, I21, I3 has faster
decay rates 21, 1391 and is also very small.

Estimate of the velocity approximation. From (C.18), since &3 is supported
near 0, we get uj,. = U(e1). For Ij2 in the above decomposition in the far-field, it
remains to estimate

(C.21) - - _ _ _ _
cow—u(&)- Vo, 26,0, —0,(51)- VO —a(&1)-VO,, 26,0, —0,(51)-VO—u(z1)-V0O,.

Note that ¢, (&1) = ¢, (&) (C.20) and ¢, () = &, in our notation. For any a € R, we
estimate

for |z|oc > Ry. From sections 4.3.2-4.3.3 in Part I [13], for |z|s > Ry, ﬁ,ﬁ reduce
to

W(f) = a1 Lrar(f),  8(f) = —=22Tsar(f), () =Tsar(f), Oa0(f) = —Tsar(f),

— — 4 Y1Yy2

dou(f)=01v(f) =0, Ifar(f) =

—rw(y)dy,
7T max(y1,y2)> Ry |y|4

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/06/25 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STABLE BLOWUP OF 3D EULER EQUATIONS 119

where R, = 1024 - 64h, is the largest threshold. Denote b = Ifq,(f). A direct
calculation yields

A(f.9)=(a—0)g+b(g — 1019 + ¥2029),
Bi(f,9) =2a01g — bd1g — br10119 + bx20129g
(C.22) = (2a —2b)01g + b(01g — 210119 + 120129),
Bs(f,9) =2ad2g + bOag — br10129 + brodang
= (2a — 2b)029 + b(3019 — ©10119 + £20129).

Therefore, we only need to bound the functions following section C.2, e.g., g—x1919+
x202g and g, and the functional b(f) and a. We apply these estimates for (C.21) with
a=¢c, f=¢&,9=w,0.

Appendix D. Estimate of explicit functions. In this section, we estimate
the derivatives of several explicit or semiexplicit functions using induction, including
several cutoff functions used in the estimates and the weight in the stream function

(C.8).
D.1. Estimate of the radial functions.

D.1.1. Estimate of the cutoff function. We estimate the derivatives of the
cutoff function

(D.1) de)=(1+%MP(1+- ! ))‘5

z  x—1

where e is short for exponential. In our verification, it involves high order derivatives
of xe. Although . is explicit, its formula is complicated and is difficult to estimate.
Instead, we use the structure of 9., x. and induction to estimate 9% x.. Denote

pa)= 4, f=

1
= p .
L  Xe=f(eP)

1+

First, we use induction to derive

k

dixe =Y (0" )(€")e™Qpi(x),

i=1

where Q,; =0 for ¢ > k,i < 0. A direct calculation yields

(071 F) () - PP Qi+ (9 f)Da (P Q)

M=

k
0 0 fePQri(x) =

1=1 %

I
A

(@ F)(e”) eI Qi+ (8 e (ip Qri + Qh)-

-

Il
-

?

Comparing the above two equations, we derive

Qri1,i =P Qryic1 + 10 Qrii + Qi i

The first few terms in @} ; are given by

Qoo=1, Qi1=p, Q10=0.
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It is not difficult to see that @y ; is a polynomial of 87p,j < k with nonnegative
coefficients. We derive the expression of Q) ; in terms of d2p,j < k symbolically.
Thus, using the triangle inequality, we only need to bound d7p. We have

p(@)| =nlla™ " + (2 = 1) < nl(]2 7T 42", 2 =min(|a], |1 - ).

n—1

If nis even, x~ and (z—1)"""! have a different sign, and we get a better estimate,

|0 p(x)| < nlmax(|z|~" Lz — 17" ) =nl. 27"
Substituting the above bounds into the formula of Q) ;, we can obtain the upper
bound Q. ;(x) for Q. i(x), which is a polynomial of z~* with positive coefficient. Since

each term in Qg is given by ¢, 4. i[5 &?p with ) i; =k, the above estimate

i=1
implies

% i 1;+1
Ciy iz, ,ZmHa]p <C11 12,. ’ZmHZJ |Z| T2 )

Since m < k, the highest order of z~! in the upper bound is bounded by 2k. Thus,
we obtain that @} ; is a polynomial in 2z~ with deg Q% < 2k. Next, we bound

€7 Qi < ePQj -

For k < 20,2 >1— 5z > 1,271 = |z — 1|71 > 2k, a direct calculation implies that

eip(”)Q}j,i(x) is decreasing. In fact, for I < 2k, we have z=|z — 1| =1—x and
8; (exp(ip(x))(1 — ) ~") = exp(ip(a)) (ip' (1 — ) " +1(1 =)~

= eXp(ip(x))<— % - ﬁ +1(1— x)*l) (1-=z)"t<o.

In the last inequality, we have used —3*— +1 < —2ki + 2k <O0.
Note that (0% f)(eP)| = !|(1 + e”) i~ 1| <4l. Thus, for x € [z;,,] with 2; close
to 1, we get

k
|0 xe (@) |<Z|51 )(€)|ePDQy (x SZ

ep(z) "
(14 ep)itl Qk.i(2)
g}:m@mkﬁﬂm)
i=1

For x away from 1, we use monotonicities of p, Q" and the above estimate to esti-
mate piecewise bounds of 9%y, (x). Using the above derivatives bound, the symbolic
formula of 9% ., and the refined second order estimate in section C.2.1, we can obtain

sharp bounds for 8%x.. Note that we only apply the above estimate to k < 15.

D.1.2. Estimate of polynomial decay functions. For cutoff function Xe(\wl )

based on the exponential cutoff function (D.1), it has rapid change from |z| < a to
|z| > a + b, which is not very smooth in the computational domain if there is not
enough mesh for z with a < || <b. We apply these cutoff functions to the far-field,
e.g., |z| > 10, where the mesh is relatively sparse. Thus, we need another function sim-
ilar to a cutoff function that has a slower change than the exponential cutoff function.
We consider

(D:2) x(@) =

7

Arayn TR
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r—a

and will use its rescaled version, e.g., x(*3%), in our verification.
First, we use induction to derive

k. _ pi() _ 7
Ozx = W7 po=2z,
where pg () is a polynomial. A direct calculation yields
gert, P47 — (4 K) - 20p(a)
T - (1 +$2)7/2+k+1 '

Comparing the above two formulas, we get
Pri1 =P (14 2%) — (7+ 2k)py(2).

The first few terms are given by po = z7,p; = 72°. Using the recursive formula
and degp; =6, we get

(D.3) degprr1 <degpr+1, degpr<k+5, k>1.

Since py is a polynomial, the above recursive formula shows that pyy1 is also a
polynomial.

To estimate 9%y, we decompose pj into the positive and the negative parts.
Suppose that p,, =", a;z’. We have

Pe=pi —pp, DE=Y_aial, pr=> a;a’.
For z >0, p;,p; are increasing. Thus, for x € [x;,z,,], we get

max(p;(xu) —py, (1), 0y, (24) —pﬁ(xl))
(1+ a?)7/2+k .

10k x| <

Next, we estimate 0¥y for large z. For > 2,k > 1 and any polynomial ¢(z) with
nonnegative coefficients and degq < k + 5, we get
q(1+2?%) < (14 22)(k+5) - 5(k+5)
(T+2k)xqg —  (T+2k)x®  — 4(7T+2k)
The first inequality follows by comparing the coefficients of ¢’ and (k+5)g, which
are nonnegative. It follows that

zq' < (k+5)q, <1.

q 7q’(1+x2)7(7/2+k)2xq
817(1 ¥ 22)T2Hk (1 + 22)7/2+k+1 <0, k>1,z>2.
Thus W is decreasing. For k > 1 and = > z; > 2, using (D.3) and the

monotonicity, we get

08 ()| < 2 @) Pk (@) pi (@) + 1y ()
x — (1 +l‘2)7/2+k - (1 +xl2>7/2+k .
For k = 0, the estimate is trivial: x(x) < 1. Using these higher order derivative

bounds, we can use the discrete values of 9¥y and the bound for 95+2x to obtain

sharp bounds of 9Fy.
T
Note that x1(z —a) = % is only C%!. Suppose that a € [z, 7,]. Since
X1 is smooth on x < a and on = > a, we can still use a first order estimate to estimate

9%x1 as follows:

05X ()] < (e |05 x1 ()| + max (|05 xall ooty 108 Xl vt o, — 2]
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D.1.3. Radial cutoff function. Now, we construct the radial cutoff functions
for the far-field approximation terms of w and ¢ as follows:

r—a r—a
X(r):X1(1_X2)+X27 Xl(r):XTati <ll/21> 9 XQ(T):Xezp(iz>a

(D4) 1 9&2

a1 =10, 1, =50000, ap=10°,
where Xezp and Xrqt: are defined in (D.1) and (D.2), respectively. Using the estimates

of Xrati, Xewp established in the last two sections, the Leibniz rule (A.6), and (C.12),
we can evaluate y on the grid points and estimate its derivative bounds.

D.2. Cutoff function near the origin. For the cutoff function x(z) used in
section 3, we choose it as follows:
T T 1 13
09 - ()1 (2)) fo=s(ah ).
(D.5)  k(x;a,b) =k . Xel k1(x) k() =K|x 37

T

where x. is the cutoff function chosen in (D.1). We mostly use the cutoff k.. Since
Xe(y) =1 for y > 1 and x.(y) =0 for y <0, the above cutoff function is supported in
x < ay. Using Taylor expansion, we have the following properties for x:

ki(z/a1)=1+0(x"), rK(x)=14+0(x?).
For the cutoff functions y yr in section 4.2.1 in Part I [13], x& in (C.18), and x.
in (3.42), we choose
Xe(T,y) = k(x5 ve1, Ve 2)(Ys Va1, ve2), Va1 =1/192, ve2=3/2,

D.6)  Xe@y)=ra(@)ra(y), xwr(z,y)=rl2;2,10)6(y; 2,10),
3 2

xy x
fra= A(?XNF(%Q)) Fee=zyxnr(@y), fus= 5 xwr(@y).
For the cutoff function in the stream function (C.1), we choose
x T 1
07 ()0 uE) e e
(D7) x¢ =k ” X\ ro(2) = 7 Tz VA Va2

For k1(x), k2(z), we use induction to obtain

(1 + z4)k+1 (1 + 22)F+1

for some polynomials P]j[, R,f with nonnegative coefficients, and the same method as
that in section D.1.2 to estimate the derivatives of d2k1(x). The estimate of kp is
simpler since k; has a simpler form. Using the Leibniz rule (A.6) and the triangle
inequality, we can obtain estimate d\ki(z) in [a,b]. Then we use these derivative
estimates for 042k, (), evaluate k(z;a1,az2) on the grid points, and then use (C.12)
to obtain a sharp estimate of 9.k (x) on [a,b]. The same method applies to estimate
R2, X¢-

For large z, e.g., > 100, the above estimates can lead to a very large round off
error. Instead, for a >2,a € Z,, we use the Taylor expansion

1 ko—a(k+1)  ai g _ ki —a(kt1)—i
>0 k>0
Cin=[] (alk+1)+3).
0<j<i-1
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We want to bound |02 F,| < C; o(1+ Ce)x™"¢ for x>z, =100,7 < 20. For k <20, we
bound

— —i —(a—1)k —q—i— —a—i— A —(a—1)k —
Cipx a(k"’l)zﬁCikx( )xalkgCioaalk, 12 max =z ( )CikGl.
; kT 081 <3020t )

For the tail part k > 20, we consider G(k) = klogz —ilog(1+ k). Since z > 21,7 < 20,

we get

oG =logx — 117 >logz—1>logd—1>0, G(k)>G(21)=21logz —ilog21 >0.

It follows that 2% > (1 + k)*. Using % <14k, Ci <Cio(l+k)', and a > 2,
we further get

Okaia(kJrl)ii S .Z‘ikiaiici,kl‘ik S xikiaiici,o(l + k)ixik S CLQai‘ikiaii, k> 20.
Combining the above estimates and x > x; > 10, we obtain

|05, Fa| < Ciox™ """ Cly,
20 —1 —21

—_k _k E1x x &1 920
Ca§1+€1;x +k>221x §1+1_x_1+1_x_1§1+m+1'l .

D.3. Estimate of p,(y). We estimate the weight p,(y) (C.9) in the repre-
sentation of the stream function. Using symbolic computation, e.g., MATLAB or
Mathematica, we get

9 _fy) - f1ly) _ 2
0ppp(y) = T 9(y)=2+2y+y,

f1=288y% + 672y° + 504y*,  fo =16+ 168y° + 72y" + 9y°.
Since f1, f2,9 >0 are increasing in y > 0, for y € [y;, y.], we get

max(fQ(yu) - fl(yl)a fl(yu) B fQ(yl)
(9(y))?

We have a trivial estimate similar to (C.12)

102pp(y)] <

h
(D8) max | (@) < max((f )l £ (@a)l) + 51l o,

which is useful if we do not have a bound for f,..

Based on the above estimates, using the estimates (C.12), (D.8), ideas in sec-
tion C.2.1, and evaluating p, on some grid points, we can obtain piecewise sharp
bounds for 9% p,, for i <8.

Appendix E. Piecewise C'/2 and Lipschitz estimates. In this section, we
estimate the piecewise C''/2 bound and Lipschitz bound for a function.

E.1. Holder estimate of the functions. In the following two sections, we

estimate the Hélder seminorms [f] 1/2 or [f]1/2 of some function f, e.g., f = (0; —
x y

E)W in (3.28), based on the previous L™ estimates. We will develop two approaches.
Below, we will assume x,y € R5 T since our function f(z) defined on x € R} (25 > 0)
is either even or odd in x; and we can reduce essentially all estimates to the case of
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Ri | using symmetry. Suppose that we have bounds for d,f,0,f, and f. First, we
consider the C;/2 estimate. For x1 <y; and x2 = y2, we have

|f(z) — f(v)] 121 /y
=2 M - - ,
1 |z —y|1/2 <l|z -yl z—yl /., | f(21,22)|dz1

We further bound the average of f, piecewisely using the method in Appendix E.2 to
obtain the first estimate. We have a second estimate

2 1 ) 1
|I|=‘/ fo(z1,22)dz ~_1/25||fx$1/2||oo/ T dzl'Tpm
1 *1

| |

1/2 1/2
yl/ ;L'l/ —Hf x1/2|| 2\/y171’1'
|z —y[1/? TTVE A+

We also have a trivial L estimate

< |Ifow"?]] 002

nn e
| |1/27 — °°| ‘1/2

Similar L>° and Lipschitz estimates apply to || f|| cu/z
Near the origin, optimizing the above estimates, for To = Y2, We obtain

’ flz

—1/2
11 < |1 f27 ]|

‘<m1n(||fm V22t || f2y 2 |t ™), t=\/@-
x1 Y1

|1/2

In the Y-direction, x1 = y1,22 < y2, and we use

= (LT < e [ a2
‘x, |1/2 *‘x27y2|1/2 y L1, <2 2
|2 y2|
§||fy|z|1/2‘|oo||71/2AAt
1/2 x|1/2
IYS(\f(ﬂ?)xllJrlf(y)xlll/z)( ) LW%BFI’
|z |z2 — Y2l
_q1/2
t2 % Iy <min(At, Bt™Y).
x

Since z1 < |z|, A, B are not singular near = 0. We derive the piecewise bounds for
A, B and then optimize two estimates to estimate Iy .

From the above estimates, to obtain a sharp Holder estimate of f, we estimate
the piecewise bounds of f, fx_1/2 Fl2l7Y2, fus £y felza|M?, fyl2|t/?, which are lo-
cal quantities. These estimates can be established using the piecewise bounds of
8;82 f and the methods in section 8 in the supplementary material (supplement.pdf
[local/web 1.43MB]).

E.1.1. The second approach of Holder estimate. We develop an additional
approach to estimate I(f) = % that is sharper if |« — z| is not small and f is
smooth. We need the grid point values and derivative bounds of f.

We estimate I(f) = % for € [z, 4], 2 € [21, 24). Denote by f the linear
approximation of f with f (z;) = f(x;) on the grid point z;. We have the following
lemma.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.


https://epubs.siam.org/doi/suppl/10.1137/23M1580395/suppl_file/supplement.pdf

Downloaded 01/06/25 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STABLE BLOWUP OF 3D EULER EQUATIONS 125

LEMMA E.1. Suppose that f is linear on [z, 2], [21,2u] and 21 < @, < 21 < z,,.
Then we have

@t fen) = fG)
2€[x1,20],2E[21,24] ‘.T — Z|1/2 a,Be{l,u} |$a - 25|1/2

The above lemma shows that for the linear interpolation of f, the maximum of
the Holder norm is achieved at the grid point.

Proof. Denote by M the right hand side in the lemma. Clearly, it suffices to prove
that the left hand side is bounded by M. We fix x € [, 2], 2z € [2, 24]. Suppose that

=T+ ayly, 2z2=bzi+byzy,an,+a;=1, b +b,=1
for a;,b; € [0,1]. Denote
mag =aabp, «,B€{l,u}.
Since f(z) is linear on [z, x,] and [z, z,], we get
f@)=af(x) +auf(za),  f(2) =bif(21) + buf(2u)-

For any function g linear on [z, 2], [21, zu], .., 9(x) = 1,9(z) = z,g(z) = f(z),
we have

(1) gl@)= > mapg(za), 9(z)—glx)= > map(g(zs) —g(xa)).

a,Be{lu} a,Be{lu}

Using the above identities and the triangle inequality and the definition of M, we
get

f@) = fEI=] D map(f@a) = fz)| < D mapMlze —2g|">.
a,fe{lu} o,Be{l,u}

Using the Cauchy—Schwarz inequality, |z, — 23| = 23 — 24, and (E.1), we establish

F@) = FEI< D map Y, mapMlza — 25" = > magMlza — z5]"?

a,Be{l,u} a,Be{l,u} a,Be{l,u}
1/2
=M | > maplzs—wa) | =M(z— )2
a,Be{l,u}
The desired result follows. 0

We generalize Lemma E.1 to two dimensions as follows.

LEMMA E.2. Let I, = [z, 2], . = [21,2u), Iy = [Y1, Yu) with 2 <z, < 21 < 2.
Suppose that f is linear on I, x Iy, and I, x I,. Then we have

@) = fenl )~ fea)l

zel, ,rznelz,yely |z — z|1/2  aBellu} |0 — 25]1/2
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Proof. Note that the function I(z,z,y) = L@ =f(z9) i finear in y. We get

|z—2[1/2
|I(x,z,y| = max(u(xvzayl”’ |I(‘T’Zayu>|)

Applying Lemma E.1 completes the proof. ]

Let f be the linear interpolation of f. Suppose that = € I,z € I,y € I, with
2y < z;. Using the above estimates and notation, we can bound I(f) as follows:

I(f) = If(Z|,;/)_—Z|Ji§§7y)

|f(xay)_f(xay)|+|f(zay)_f(zvy)| + max |f(xaay’y)_f(zﬁ’y7)|
|z — z|1/2 a,B,ye{lu} 2o — 2p|1/2

IN

8
X |z — 2|72+ M.

h2 h? h2
< fﬂfml\fxxfy + LU fyyllraxr, + [ fyyllroxr,) + ngmelszy

E.2. Piecewise derivative bounds. In this section, we discuss how to obtain
the sharp bound of % using piecewise derivative bounds of p.

Suppose that |p'(y)| < Ci,y € I; = [yi,Yi+1]. For any a € It,b € I;,a < b, we have
the bound

b
Ip(b) — p(a)] S/ P’ W)ldy <|yrsr —alCr + = wlCi+ > Con(Ymir — Ym)
@ k+1<m<i—1

= (Yr+1 — a)Ck + (b —y)Cr + Mii(yr — Y1) Liz k41,
where M}, is defined below:

(E.2) My = lyr = ypesa |~ Y. Colymir — yml
k1<m<i—1

Next, we want to bound W. Ifl—k<1, we get
Ip(b) — p(a)| < (b — a) max(C, Cy).
Otherwise, if [ > k + 2, we have

Ip(b) — p(a)] < (Yr1 — a)(Cr — M) + (b —y1)(Cr — M) + My (b — a).

b

Yrt1—a —Yi is increasing in b and a, we get
b—a ’

b—a

Since is decreasing in a and b,

0< YEH1 =0 _ Ykt1 — Yk 0<b—yz< Yi+1 — Y

T b-a T y-y T b—a T Y1 —uyke1
Using the above estimates, for a € I, b € I}, we obtain
(E.3)

b) - - _
|p( ) p(a)| S maX(C’k — Mk[, O) 7yk+1 Yk + max(C’l — Mkl; 0) 7yl+l Yi + Mkl-
b —al Y — Yk Y41 — Yk+1
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For uniform mesh, i.e., y;11 —y; = h, we can simplify the above estimate as follows:

[p(b) — p(a)] < (max(Cy, — My, 0) + max(C; — My, 0))

M
b—a = — & + M,
1
My = +—F—— 'm-
Mok -1 2. ¢
k+1<m<i—-1
The same argument applies to obtain piecewise bounds of J(a,b) = %.

We use piecewise upper bounds p'(y) < Cy,y € I; = [yi,yi+1] and obtain the same
upper bounds as (E.3). To get lower bounds of J(a,b), we use piecewise lower bounds
p'(y) > C; and (E.2) to get

b) — - _
p( ) p(a) Z min(Ck - MkhO) 7yk+l Yk + min(Cl - Mkho) 7yl+1 LL + Mkl~
b—a Y — Yk Y41 = Yk+1
Appendix F. Notation. For the reader’s convenience, we collect the main
notation used in this paper.

Weights. We use the following weights defined in (A.1), (A.2), (A.3) for the
estimates

V1,92, Y3, Vaus Yus P15 Pg1s Pellis Pevo,irt = 1,2,3,  p10, 020, 3, pa-
We use fi(z) = f(Az) for rescaled function (4.2).

Cutoff functions. We use various cutoff functions to construct the approximate
solutions.

Xij,t=1,2,3,j=1,2 are defined in (3.17).

Xzs Xés [x.ir»t =1,2,3 are defined in (D.6), (D.7).

Operators. We use L. to denote various linear operators. L; is the full linearized
operator around the approximate steady state. We decompose L; into L£¢, LS, LN
(3.12).

Bop,i (3.4), (3.5) denotes bilinear operators related to the linearized operators.

R. (3.7), (3.8) denotes residual error in the construction of the approximate so-
lution to the linearized equations.

Velocity and kernels. We use K; to denote the kernels of the velocity, e.g.,
K, Ko, Ky, f =u,v,ug, vz, uy (4.1). We use K*¥™ for the symmetrized kernel (4.25)
and K0, Koo (4.5) for the kernel of the approximation terms near z = 0.

We use f =u,v, Uz, Uy, Vz, vy to denote the original velocity and its derivatives, f
for its finite rank approximation, and f4 = f — f . See the beginning of section 4.1.

Regions for integrals. We use By, (r) (4.17) to denote different grids and R.(-)
to denote various singular regions: R(z,k) (4.18), Ry(z,k), Rs i(z,k) (4.19), R*(x,k)
(4.20), R(z,k,a),a =N, E,S,W (4.21)

Approximate profiles and solutions. We use w,7,£, ¢ to denote the vorticity,
0.,0, (0 is the density (2.3)), and the stream functions, respectively. We use f to
denote the approximate profile for f, e.g., @, 0, and use f to denote the numeric
solution, e.g., W (3.34) and G (3.6).

We use F,, Fy, F; (2.14) to denote the residual error of the profile.

Mesh. To construct the approximate profile, we use the adaptive mesh y; (C.2).
To estimate the integrals [ f(z,y)dy in section 4, we use mesh y; (4.11) with mesh
size hy,h (4.14).
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Differential operators. We denote (3.23) D? = (D%, D3, D%) = (9yy, Oy, 02)7.
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