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EXPONENTIALLY CONVERGENT MULTISCALE METHODS FOR
2D HIGH FREQUENCY HETEROGENEOUS HELMHOLTZ

EQUATIONS*

YIFAN CHEN\dagger , THOMAS Y. HOU\dagger , AND YIXUAN WANG\dagger 

Abstract. In this paper, we present a multiscale framework for solving the Helmholtz equa-
tion in heterogeneous media without scale separation and in the high frequency regime where the
wavenumber k can be large. The main innovation is that our methods achieve a nearly exponential
rate of convergence with respect to the computational degrees of freedom, using a coarse grid of mesh
size O(1/k) without suffering from the well-known pollution effect. The key idea is a nonoverlapped
domain decomposition and its associated coarse-fine scale decomposition of the solution space that
adapts to the media property and wavenumber; this decomposition is inspired by the multiscale
finite element method. We show that the coarse part is of low complexity in the sense that it can
be approximated with a nearly exponential rate of convergence via local basis functions, due to the
compactness of a restriction operator that maps Helmholtz-harmonic functions to their interpolation
residues on edges, while the fine part is local such that it can be computed efficiently using the
local information of the right-hand side. The combination of the two parts yields the overall nearly
exponential rate of convergence of our multiscale method. Our method draws many connections to
multiscale methods in the literature, which we will comment in detail. We demonstrate the effective-
ness of our methods theoretically and numerically; an exponential rate of convergence is consistently
observed and confirmed. In addition, we observe the robustness of our methods regarding the high
contrast in the media numerically. We specifically focus on 2D problems in our exposition since the
geometry of nonoverlapped domain decomposition is simplest to explain in such cases.

Key words. the Helmholtz equation, heterogeneous media, high frequency, exponential conver-
gence, multiscale methods, high contrast

MSC codes. 65N12, 65N15, 65N30, 31A35

DOI. 10.1137/22M1507802

1. Introduction. This paper focuses on solving the Helmholtz equation in het-
erogeneous media and highfrequency regimes. We consider the model problem in a
bounded polygonal domain \Omega \subset \BbbR d with a Lipschitz boundary \Gamma . For generality, the
boundary can contain three disjoint parts \Gamma = \Gamma D\cup \Gamma N\cup \Gamma R, where \Gamma D,\Gamma N , and \Gamma R cor-
respond to the Dirichlet-, Neumann-, and Robin-type conditions, respectively. Given
positive constants Amin, Amax, \beta min, \beta max, Vmin, Vmax and functions A,\beta ,V : \Omega \rightarrow \BbbR 
that satisfy Amin \leq A(x) \leq Amax, \beta min \leq \beta (x) \leq \beta max, and Vmin \leq V (x) \leq Vmax, the
Helmholtz equation with homogeneous boundary conditions1 is formulated as follows:\left\{     

 - \nabla \cdot (A\nabla u) - k2V 2u= f in \Omega ,

u= 0 on \Gamma D,

A\nabla u \cdot \nu = Tku on \Gamma N \cup \Gamma R .

(1.1)
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850 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

Here, \nu is the outer normal to the boundary. The boundary operator satisfies Tku= 0
for x \in \Gamma N and Tku = ik\beta u for x \in \Gamma R, where i denotes the imaginary number. The
wavenumber k is real and positive, and functions u and f are complex-valued. The
aim of this paper is to design a multiscale method for solving (1.1) that achieves a
nearly exponential rate of convergence with respect to the computational degrees of
freedom. This is a challenging problem due to combined difficulties of heterogeneity
and high frequency. We review the related literature of this research field in sec-
tion 1.1 and discuss our methodology as well as its motivations and related work in
section 1.2.

1.1. Literature for solving Helmholtz equations. The Helmholtz equation
has been widely used in studying wave propagation in complex media. Numerical sim-
ulation of this equation still remains a challenging task, especially in the regime where
the wavenumber k is large. The main numerical difficulty lies in the highly oscillatory
pattern of the solution. Furthermore, the operator in the equation is indefinite, which
leads to severe instability issues for standard numerical solvers such as the finite ele-
ment method (FEM). Indeed, a well-known preasymptotic effect called the pollution
effect [5] can occur---that is, in order to get a reasonably accurate solution, the mesh
size H in the FEM needs to be much smaller than 1/k. For example, for a standard
P1-FEM approach, the mesh size needs to satisfy H =O(1/k2) for quasi-optimality of
the solution [1, 5]. This constraint on H is much stronger than the typical condition
in the approximation theory for representing an oscillatory function with frequency
k, where H =O(1/k), i.e., a fixed number of grid points per wavelength, would suffice
for an accurate approximate solution.

In the literature, there have been many attempts to overcome or alleviate the
difficulty associated with the pollution effect so that a mesh size of H = O(1/k) can
be used. We highlight two classes of methods, namely, the hp-FEM and multiscale
methods, which can theoretically deal with the pollution effect under their respective
model assumptions. The hp-FEM is proposed in [40, 41], which is an FEM using local
high order polynomials. It is shown that by choosing the degrees of local polynomials
p = O(logk), the pollution effect can be suppressed in principle for the Helmholtz
equation with constant A,V , and \beta . Nevertheless, to the best of our knowledge,
there have been no theoretical results for this methodology when these coefficients
become rough. There have been some recent developments for hp-FEM methods
when piecewise regularity of the coefficients is assumed [6, 35]. In general, it is well
known that polynomials might behave arbitrarily badly even for elliptic equations
with rough coefficients [4].

Multiscale methods, on the other hand, have long been developed to address
the difficulty associated with rough coefficients in elliptic equations. In particular,
we mention the localized orthogonal decomposition (LOD)- and gamblets-related ap-
proaches [39, 29, 47, 45, 46, 11, 12], variants of the multiscale finite element method
(MsFEM) [33, 15, 32, 14, 21, 13], and generalized FEMs based on partition of unity
methods (PUMs) [2, 53, 9, 10, 3, 52, 37, 38], which are the ones most related to this
paper. Recently, the LOD method has been generalized to the case of Helmholtz
equations with high wavenumber and heterogeneous media [48, 24, 8, 49]. They show
that with a coarse mesh of size O(H) and localized multiscale basis functions of sup-
port size O(H log(1/H) logk), the pollution effect can be overcome once the stability
constant of the solution operator of the Helmholtz equation is of at most polynomial
growth. An error of at most O(H) is established. Very recently, there is also a super-
localized version of an LOD-type method for the Helmholtz equations, proposed in
[20], where the support of basis functions is further reduced to O(H log(d - 1)/d(k/H)).
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 851

From the perspective of MsFEM methodology, the authors in [23] introduce
wavelet-based edge MsFEM to address the pollution effect successfully. Their ba-
sis functions are all of local support size O(H). On the theoretical side, they require
O(k) number of basis functions in each element in order to achieve O(H) accuracy.
In contrast, our method in this paper, which can be viewed as a generalization of the
MsFEM, only requires an O(logd+1 k) number of basis function of support size O(H)
in each element to handle the pollution effect and to achieve O(H) accuracy. More
importantly, our method yields an overall exponential rate of convergence regarding
the number of basis functions, thanks to a systematic decomposition and treatment
of coarse and fine scale parts of the solution.

In the literature, multiscale methods with exponential convergence for elliptic
equations with rough media first appeared in [2], which is based on local optimal ba-
sis approximation combined with the PUM. There have been a number of recent pa-
pers that are actively working on improving the methodology [53, 9, 10, 3, 52, 37, 38],
aiming for more refined continuous and discrete analysis, randomized computation,
efficient implementation, and generalization beyond elliptic equations. Our initial
work [13] on exponentially convergent multiscale methods for elliptic equations draws
many motivations from these results, especially the Caccioppoli-type inequality that
is essential for proving the exponential convergence. Different from the PUM-based
approach, our method is based on nonoverlapped domain decomposition. More com-
parisons will be discussed in subsection 1.2. While revising this paper on solving the
Helmholtz equations, we found that the authors in [36] also proposed an exponentially
convergent method for the Helmholtz equations using the PUM-based optimal local
approximation methodology.

In addition to those methods mentioned above, there have also been several al-
gorithms based on the MsFEM methodology [43, 22] or the heterogenous multiscale
methodology [44] with particular empirical success for solving the Helmholtz equa-
tion. It is also worth noting that, in conjunction with designing a good discretization
scheme as above, one could also consider fast solvers for the discrete linear system.
See, for example, the method of sweeping preconditioners [16, 17, 50], where a precon-
ditioning matrix is constructed to compute approximations of the Schur complements
successively. Very recently, the LOD approach has also been combined with the hi-
erarchical approach of gamblets [28] to get a multiresolution solver for the discrete
system.

1.2. Main contributions and motivations. In this paper, we propose a mul-
tiscale framework for solving the Helmholtz equation in rough media and high fre-
quency regimes, specifically in dimension d = 2, where the mesh geometry of the
nonoverlapped domain decomposition is simplest to describe. Our idea is based on a
multiscale method in our previous work [13] for solving elliptic equations with rough
coefficients in an exponentially convergent manner. This paper aims to extend this
framework to the more challenging Helmholtz equation where the operator is non-
Hermitian and indefinite. It is perhaps surprising that the techniques in multiscale
methods for elliptic equations can be systematically adapted to the Helmholtz equa-
tion. Indeed, it has been proved in [18] that the Green function of the Helmholtz
equations requires a polynomial in k number of degrees of freedom to approximate,
where they consider basis functions independent of the right-hand side. Here, our
results demonstrate that one can actually compress the solution operator exponen-
tially efficiently by adding a number of local basis functions that depend on the local
information of the right-hand side. This shows that one can still achieve significant

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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852 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

compression of the high frequency Helmholtz solution operator with rough coefficients
by developing a data-driven compression operator adapted to the right-hand side.

We outline the main contributions of this paper below.
1. In studying the solution behavior of the Helmholtz equation (1.1), we intro-

duce a coarse-fine scale decomposition of its solution space. This decomposi-
tion is adapted to the coarse mesh structure; a mesh size of O(1/k) suffices
to make this coarse-fine scale decomposition well defined. Moreover, the de-
composition is adapted to the coefficients A,V, \beta and the wavenumber k.

2. Analytically, we show the fine scale part is of O(H) in the energy norm, and it
can be computed efficiently by solving the Helmholtz equations locally. Mean-
while, we prove that the space of the coarse scale part is of low complexity
such that there exist local multiscale basis functions that can approximate
this part in a nearly exponentially convergent manner. These serve as the
cornerstone of our multiscale numerical method.

3. Numerically, we propose a multiscale framework that solves the two parts
separately. The nearly exponential rate of convergence in the energy norm
and L2 norm is theoretically proved in this paper.

4. Experimentally, we conduct a number of numerical tests and observe consis-
tently that our multiscale methods give a nearly exponential rate of conver-
gence, even for problems with high-contrast media. Based on these numerical
studies, several recommendations for efficient implementations of our methods
are provided, especially on how to design the offline and online computation
to handle multiple right-hand sides efficiently.

To the best of our knowledge, this multiscale framework is the first one that can
be proved rigorously to achieve a nearly exponential rate of convergence in solving
(1.1) with rough A,\beta , V and large k, especially for d= 2. It generalizes our previous
work on exponential convergence for solving rough elliptic equations [13], which is
motivated by the PUM approach using optimal local approximation spaces for elliptic
equations [2].

Different from the PUM that uses an overlapped domain decomposition, our
method relies on nonoverlapped domain decomposition and an edge coupling approach
to combine local basis functions as in MsFEM. Our coarse-fine scale decomposition of
the solution space is built on this nonoverlapped edge coupling. For elliptic equations,
this decomposition is the same as the orthogonal decomposition in previous work on
MsFEMs [32, 13] and approximate component mode synthesis [31, 30]. Under this line
of methodology, this paper contributes a principled framework for obtaining nearly
exponentially convergent basis functions for multiscale Helmholtz equations.

There are many differences between the multiscale methods based on PUMs and
edge coupling. Basically, the support of basis functions in PUMs is usually larger
than that of MsFEMs since nonoverlapped domain decomposition leads to smaller
decomposed domains than its overlapped counterpart. There is no need to introduce
additional freedom of partition of unity functions as well. On the other hand, in
two dimensions, the number of local edges could be twice as many as the number of
local domains, leading to more work in constructing the basis functions. Moreover,
there will be an increasing design complexity for the nonoverlapped edge coupling
approach for higher-dimensional problems since the boundaries of high-dimensional
local domains become more complicated. This is why, in this paper, we are ded-
icated specifically to 2D Helmholtz equations for detailed analysis and numerical
experiments.
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 853

We are not going to dive very deeply into the fundamental comparison between
overlapped and nonoverlapped decomposition in multiscale methods. The aim of this
paper is to demonstrate that one could achieve a nearly exponential convergence rate
theoretically using the nonoverlapped edge coupling framework in a principled way
and show that this method is very competitive numerically. A number of technical
difficulties, such as the appropriate approximation space for the edge functions and
the spectral analysis of the local restriction operator, are carefully addressed to lay
out this framework. We believe this work could help future researchers understand
and analyze multiscale methods that are built on different local decomposition and
global coupling approaches.

Lastly, we remark that in principle, our multiscale algorithm can be applied to
general Helmholtz equations numerically, while most of our theoretical results rely
on analytical properties of the solution to (1.1), related to the well-posedness, sta-
bility and C\alpha estimates. Therefore, typical conditions (usually very mild) of these
analytical properties will be assumed in this paper in order to get a rigorous theory.
We will mention several references to these results in this paper. Some numerical
examples in which these assumptions are violated will be also presented to illustrate
the effectiveness of our algorithm in a general context.

1.3. Organization of the paper. The rest of this paper is organized as follows.
In section 2, we review preliminary results for the Helmholtz equation, including the
well-posedness, stability, adjoint problems, and H\"older C\alpha estimates. Section 3 is
devoted to analyzing the solution space based on a coarse-fine scale decomposition.
Moreover, the computational properties of the coarse and fine parts are rigorously
studied in detail. Building upon these properties, in section 4 we develop the multi-
scale computational framework and prove the nearly exponential rate of convergence
for our multiscale methods. The detailed numerical algorithms are discussed and im-
plemented in section 5 for several Helmholtz equations. To improve the readability
of our paper, some technical proofs of theorems and propositions will be deferred to
section 6. Some concluding remarks are made in section 7.

2. Preliminaries on the Helmholtz equation. Our multiscale algorithm re-
lies on an in-depth understanding of the solution space of (1.1). To achieve this, we
first present several analytic results for (1.1), which will serve as preliminaries for our
subsequent discussions. We cover the weak formulation, the well-posedness of the
equation, the stability estimates of the solution, and H\"older estimates.

2.1. Notations. We use H1(\Omega ) to denote the standard complex Sobolev space
in \Omega , containing L2 functions with L2 first order derivatives. We write (u, v)D :=

\int 
D
u\=v

for any domain D. We use C as a generic constant, and its value can change from
place to place; we will state explicitly the parameters that this constant may or may
not depend on.

2.2. Analytic results. For the model problem (1.1), we consider the complex
Sobolev space \scrH (\Omega ) := \{ u \in H1(\Omega ) : u| \Gamma D

= 0\} in which functions have zero trace on
the Dirichlet boundary. This space is equipped with the norm \| \cdot \| \scrH (\Omega ) such that

\| u\| \scrH (\Omega ) :=

\int 
\Omega 

A| \nabla u| 2 + k2V 2| u| 2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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854 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

The dual space of \scrH (\Omega ) is denoted by \scrH  - 1(\Omega ) equipped with the norm \| \cdot \| \scrH  - 1(\Omega );
by definition, one has

\| f\| \scrH  - 1(\Omega ) := sup
v\in \scrH (\Omega )

| (f, v)\Omega | 
\| v\| \scrH (\Omega )

.

Now, we present several analytic results pertaining to the Helmholtz equation (1.1).
Weak formulation. The weak formulation of (1.1) is given by

a(u, v) := (A\nabla u,\nabla v)\Omega  - k2(V 2u, v)\Omega  - (Tku, v)\Gamma N\cup \Gamma R
= (f, v)\Omega \forall v \in \scrH (\Omega ) .(2.1)

Continuity estimate. By the Cauchy--Schwarz and trace inequalities (see Lemma
3.1 of [40]), the sesquilinear form a(\cdot , \cdot ) is bounded on \scrH (\Omega ) with a constant Cc

independent of k; i.e., for any u, v \in \scrH (\Omega ), one has the continuity estimate

| a(u, v)| \leq Cc\| u\| \scrH (\Omega )\| v\| \scrH (\Omega ) .(2.2)

Well-posedness and stability. If \Gamma R has positive d - 1 dimensional measure, then
under some mild conditions (see Assumption 2.3 and Theorem 2.4 in [25]), problem
(2.1) admits a unique solution given the right-hand side f \in L2(\Omega ). We will assume
these conditions. Let the solution operator be Nk, so that u=Nkf . Under the same
conditions, this operator is stable (Theorem 2.4 in [25]) in the sense that

Cstab(k) := sup
f\in L2(\Omega )\setminus \{ 0\} 

\| Nkf\| \scrH (\Omega )

\| f\| L2(\Omega )
<\infty .(2.3)

To avoid getting into detailed discussions of these assumptions and for simplicity of
presentation, we will base most of our arguments on assuming (2.3) holds.

The stability constant Cstab(k) will depend on k in general, and obtaining an
explicit characterization of this dependence has been a hard task; see [7, 8, 26, 42, 51].
A prevalent and reasonable assumption on the constant is that of polynomial growth,
namely, Cstab(k)\leq C(1 + k\gamma ) for some constants \gamma and C; see, for example, [34]. We
are not going into detailed discussions on this assumption here, while we mention that
the final error estimate of our numerical solution in this paper will depend on Cstab(k)
explicitly; thus, those estimates on Cstab(k) in the literature can be readily applied
to our context.

In addition, stability for f \in L2(\Omega ) can yield well-posedness and stability for
f \in \scrH  - 1(\Omega ). According to Lemma 2.1 in [48] and also [19], one has

sup
f\in \scrH  - 1(\Omega )\setminus \{ 0\} 

\| Nkf\| \scrH (\Omega )

\| f\| \scrH  - 1(\Omega )
\leq kCstab(k) .(2.4)

Adjoint problems. Due to the presence of the Robin boundary condition, a(\cdot , \cdot )
is not Hermitian. Its adjoint sesquilinear form is defined as a\ast (u, v) = a(v,u). The
adjoint problem for (2.1) is given by a\ast (u, v) = (f, v)\Omega for any v \in \scrH (\Omega ). It also
corresponds to the following PDE:\left\{     

 - \nabla \cdot (A\nabla u) - k2V 2u= f on \Omega ,

u= 0 in \Gamma D,

A\nabla u \cdot \nu = T \ast 
k u on \Gamma N \cup \Gamma R ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 855

where T \ast 
k u := Tku =  - Tku. The adjoint solution operator is denoted by N\ast 

k . One
can readily check that N\ast 

kf =Nkf . Therefore, the adjoint problem admits the same
stability constant as the original problem; namely, it holds

Cstab(k) = sup
f\in L2(\Omega )\setminus \{ 0\} 

\| N \star 
kf\| \scrH (\Omega )

\| f\| L2(\Omega )
<\infty .

The adjoint problem will play a valuable role when we analyze the convergence prop-
erty of our multiscale methods for the Helmholtz equation.

C\alpha H\"older regularity. We will need the C\alpha estimates of the solution in order to
demonstrate the theoretical properties of our multiscale methods.

Proposition 2.1. Suppose d \leq 3 and that (2.3) holds. If f \in L2(\Omega ), then the
solution u\in C\alpha (\Omega ) for some \alpha \in (0,1).

We defer the proof of this proposition to subsection 6.1.

Remark 2.2. The global regularity estimate may depend on the wavenumber k.
Nevertheless, we only use it to show qualitatively that our solution is continuous so
that the nodal interpolation in subsection 3.4.2 is mathematically rigorous. Later,
when we derive error estimates of our methods, we will only use the local version of
the regularity estimate, where the constant is independent of the wavenumber; see
Lemma 6.2.

We have presented several critical analytic results for the Helmholtz equation.
Based on these results, we are now ready to study the solution space of (1.1) in the
next section. The key is a coarse-fine scale decomposition of the solution space, which
will play an essential role in designing our multiscale algorithms.

3. Coarse-fine scale decomposition. In this section, we develop a coarse-fine
scale operator-adapted decomposition of the solution space. This decomposition is
adaptive to the mesh structure, and a mesh of size H =O(1/k) suffices to make this
coarse-fine scale decomposition well defined. We discuss the setting of the mesh struc-
ture in subsection 3.1, followed by introducing the coarse-fine scale decomposition in
subsection 3.2. In subsection 3.3, we show the finescale part is local and small up to
O(H) in the \scrH (\Omega ) norm. In subsection 3.4, we show the coarse scale component can
be approximated via local edge basis functions in a nearly exponentially convergent
manner.

3.1. Mesh structure. We begin by discussing related concepts of the mesh
structure. The focus here is on d = 2. In the mesh structure, we discuss 2D el-
ements in subsection 3.1.1, one-dimensional edges and zero-dimensional nodes, and
their neighborship in subsection 3.1.2. See also Figure 1 for illustrations.

3.1.1. Elements. We consider a shape regular and uniform partition of the
domain \Omega into finite elements, such as triangles and quadrilaterals. The collection
of elements is denoted by \scrT H = \{ T1, T2, . . . , Tr\} . For simplicity, we assume that each
connected component of the domain is at least partitioned into two elements.

The mesh size is H, i.e., maxT\in \scrT H
diam(T ) = H. The uniformity of the mesh

implies minT\in \scrT H
diam(T ) \geq c0H for some 0 < c0 \leq 1 that is independent of H and

T . The shape regularity property implies there is a constant c1 > 0 independent of H
and T such that maxT\in \scrT H

diam(T )d/| T | \leq c1, where | T | is the volume of T .
In this mesh, by using a scaling argument, the following Poincar\'e inequality will

hold uniformly for T \in \scrT H . This inequality will be used frequently later.
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856 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

Fig. 1. Geometry of the mesh.

Proposition 3.1 (the Poincar\'e inequality). For any T \in \scrT H and a function
v \in H1(T ) that vanishes on one of the edges of T , it holds that

\| v\| L2(T ) \leq CPH\| \nabla v\| L2(T ) ,(3.1)

where CP depends on c0, c1, and d.

3.1.2. Nodes, edges, and their neighbors. Let \scrN H = \{ x1, x2, . . . , xp\} be the
collection of interior nodes, and let \scrE H = \{ e1, e2, . . . , eq\} be the collection of edges
except those fully on the boundary of \Omega . An edge e \in \scrE H is defined such that there
exists two different elements Ti, Tj with e = T i

\bigcap 
T j that has co-dimension 1 in \BbbR d.

We will use EH =
\bigcup 

e\in \scrE H
e\subset \Omega to denote the edges as a whole set.

We use the symbol \sim to describe the neighbourship between nodes, edges, and
elements. More precisely, if we consider a node x \in \scrN H , an edge e \in \scrE H , and an
element T \in \scrT H , then (1) x\sim e denotes x\in e, (2) e\sim T denotes e\subset T , and (3) x\sim T
denotes x\in T . The relationship \sim is symmetric.

We use N(\cdot , \cdot ) to describe the union of neighbors as a set. For example, N(x,\scrE H) =\bigcup 
\{ e \in \scrE H : e \sim x\} \subset EH , N(x,\scrT H) =

\bigcup 
\{ T \in \scrT H : T \sim x\} \subset \Omega , and N(e,\scrT H) =

\bigcup 
\{ T \in 

\scrT H : T \sim e\} \subset \Omega .

3.2. Decomposition of solution space. With the mesh structure defined,
we now discuss the coarse-fine scale decomposition of the solution space. We first
discuss decomposition in the local element T in subsection 3.2.1 and then the global
decomposition in subsection 3.2.2.

3.2.1. Local decomposition. A crucial requirement for the decomposition to
be well defined is that the mesh size is order O(1/k); see Assumption 1. As we will see
later, this bound on H ensures that local Helmholtz problems in each element have
properties that are similar to those of elliptic problems; thus, techniques in elliptic
equations can then be applied.

Assumption 1. The mesh size satisfies H \leq A
1/2
min/(

\surd 
2CPVmaxk), where CP is the

constant in Proposition 3.1.

Given Assumption 1, we decompose2 u into two parts u= u\sansh T +u
\sansb 
T in each element

T \in \scrT H . The two components satisfy

2This decomposition is inspired by that in the elliptic case [13].
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 857\left\{     
 - \nabla \cdot (A\nabla u\sansh T ) - k2V 2u\sansh T = 0 in T,

u\sansh T = u on \partial T \setminus (\Gamma N \cup \Gamma R),

A\nabla u\sansh T \cdot \nu = Tku
\sansh 
T on \partial T \cap (\Gamma N \cup \Gamma R) ,\left\{     

 - \nabla \cdot (A\nabla u\sansb T ) - k2V 2u\sansb T = f in T,

u\sansb T = 0 on \partial T \setminus (\Gamma N \cup \Gamma R),

A\nabla u\sansb T \cdot \nu = Tku
\sansb 
T on \partial T \cap (\Gamma N \cup \Gamma R) .

(3.2)

In short, the part u\sansh T incorporates the boundary value of u, while u\sansb T contains infor-
mation of the right-hand side. Both equations in (3.2) should be understood in the
standard weak sense using the following local sesquilinear form aT (\cdot , \cdot ) in T :

aT (v,w) := (A\nabla v,\nabla w)T  - k2(V 2v,w)T  - (Tkv,w)\partial T\cap (\Gamma N\cup \Gamma R) for v,w \in \scrH (T ) ,

(3.3)

where \scrH (T ) :=\scrH (\Omega )| T , the restriction of \scrH (\Omega ) in the domain T . The well-posedness
of the two problems is due to the following proposition.

Proposition 3.2. Under Assumption 1, for v \in \scrH (T ) that vanishes on one of
the edges of T , the corresponding sesquilinear form is coercive such that

ReaT (v, v)\geq 
1

2
\| A1/2\nabla v\| 2L2(T ) .

Proof. Using the Poincar\'e inequality (3.1) and Assumption 1, we get

ReaT (v, v) = \| A1/2\nabla v\| 2L2(T )  - \| kV v\| 2L2(T )

\geq (1 - C2
PH

2k2V 2
maxA

 - 1
min)\| A

1/2\nabla v\| 2L2(T ) \geq 
1

2
\| A1/2\nabla v\| 2L2(T ) .(3.4)

Since both equations in (3.2) contain Dirichlet's boundary condition on at least
one of the edges of T , the coercivity implied by Proposition 3.2 suffices for the well-
posedness. Consequently, the solutions u\sansh T and u\sansb T are well defined.

Remark 3.3. An important property is that u\sansh T is ``left-orthogonal"" to u\sansb T in T
with respect to the local sesquilinear form aT (\cdot , \cdot ) in T , in the sense of aT (u

\sansh 
T , u

\sansb 
T ) = 0,

according to the weak form of the equation. Note that we might not have aT (u
\sansb 
T , u

\sansh 
T ) =

0 for T near the boundary (i.e., \partial T \cap (\Gamma N \cup \Gamma R) \not = \emptyset ) due to the fact that aT (\cdot , \cdot ) is
not Hermitian here.

3.2.2. Global decomposition. In this subsection, we define a global decompo-
sition u= u\sansb +u\sansh such that for each T , it holds that u\sansh (x) = u\sansh T (x) and u

\sansb (x) = u\sansb T (x)
when x\in T . Both u\sansh and u\sansb are well defined and belong to \scrH (\Omega ) due to the continuity
across edges. Here, the component u\sansh T (resp., u\sansh ) is called the local (resp., global)
Helmholtz-harmonic part and u\sansb T (resp., u\sansb ) is the local (resp., global) bubble part of
the solution u.

We further introduce the function space for the Helmholtz-harmonic part

V \sansh := \{ v \in \scrH (\Omega ) : - \nabla \cdot (A\nabla v) - k2V 2v= 0 in each T \in \scrT H ,
A\nabla v \cdot \nu = Tkv, on \Gamma N \cup \Gamma R\} ,

(3.5)

so that u\sansh \in V \sansh , and the space for the bubble part

V \sansb := \{ v \in \scrH (\Omega ) : v= 0 on EH\} ,(3.6)
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858 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

such that u\sansb \in V \sansb . In this way, the solution space of (1.1) can be decomposed to
V \sansh + V \sansb . Furthermore, for any v \in V \sansh and w \in V \sansb , it holds that a(v,w) = 0 by
summing up local sesquilinear forms aT (\cdot , \cdot ) and using Remark 3.3.

We will treat V \sansb as the fine scale or microscopic space and refer to V \sansh as the coarse
scale or macroscopic space. The idea of our multiscale framework is to compute the
two parts separately by exploring their own structures.

In the next two subsections, we will study the computational properties of u\sansh \in V \sansh 

and u\sansb \in V \sansb , respectively. These properties serve as the cornerstone of designing our
multiscale algorithm.

3.3. Local and small bubble part. In this subsection, we analyze the bubble
part u\sansb . This part depends locally on f in each T . Thus, it can be computed efficiently
in a parallel manner. Moreover, it is small and can be ignored if the target accuracy
is O(H); see Proposition 3.4.

Proposition 3.4. Under Assumption 1, it holds that\bigm\| \bigm\| u\sansb \bigm\| \bigm\| \scrH (\Omega )
\leq 3CP

A
1/2
min

H\| f\| L2(\Omega ) .(3.7)

Proof. By definition, inside each patch T , it holds that aT (u
\sansb , u\sansb ) = (f,u\sansb )T . The

coercivity estimate in (3.4) implies the inequality \| kV u\sansb \| 2L2(T ) \leq 
1
2\| A

1/2\nabla u\sansb \| 2L2(T ).
Using the estimate, we get

ReaT (u
\sansb , u\sansb ) = \| A1/2\nabla u\sansb \| 2L2(T )  - \| kV u\sansb \| 2L2(T )

\geq 1

3
(\| A1/2\nabla u\sansb \| 2L2(T ) + \| kV u\sansb \| 2L2(T )) =

1

3
\| u\sansb \| 2\scrH (T ) .

Combining the above estimate with the Cauchy--Schwarz inequality, we arrive at

\| u\sansb \| 2\scrH (T ) \leq 3ReaT (u
\sansb , u\sansb ) = 3(f,u\sansb )T \leq 3\| f\| L2(T )\| u\sansb \| L2(T ) .

Meanwhile, by the Poincar\'e inequality (3.1), we get

\| u\sansb \| L2(T ) \leq CPH\| \nabla u\sansb \| L2(T ) \leq 
CPH

A
1/2
min

\| u\sansb \| \scrH (T ) .

Combining all the above inequalities gives \| u\sansb \| \scrH (T ) \leq 3(CPH/A
1/2
min)\| f\| L2(T ) for each

element T . Summing them up for all elements T yields the desired conclusion.

3.4. Low complexity of the Helmholtz-harmonic part. Now, we turn to
the study of the Helmholtz-harmonic part u\sansh . The goal is to show that u\sansh can be ap-
proximated via local basis functions in an exponentially efficient manner. To achieve
this, our approximation framework3 contains three steps: (1) reducing the approxi-
mation of u\sansh to that of edge functions in subsection 3.4.1, (2) localizing the approxi-
mation to every single edge in subsection 3.4.2, and (3) realizing local approximation
via oversampling and SVD in subsection 3.4.3. Combining all these three steps, we
establish the low complexity in approximation of u\sansh in subsection 3.4.4.

3.4.1. Approximation via edge functions. We start with the first step of
approximating u\sansh . By definition, u\sansh belongs to V \sansh . A key observation is that any
function in V \sansh is determined entirely by its value on the edge set EH . Thus, define

\~V \sansh := \{ \~\psi :EH \rightarrow \BbbR , there exists a function \psi \in V \sansh , such that \~\psi =\psi | EH
\} ;

3It is similar to that in our previous work for elliptic equations [13].
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 859

then, under Assumption 1, there is a one-to-one correspondence \~\psi \in \~V \sansh \updownarrow \psi \in V \sansh .
More precisely, in each T , it holds that\left\{     

 - \nabla \cdot (A\nabla \psi ) - k2V 2\psi = 0 in T,

\psi = \~\psi on \partial T \setminus (\Gamma N \cup \Gamma R),

A\nabla \psi \cdot \nu = Tk\psi on \partial T \cap (\Gamma N \cup \Gamma R) .

(3.8)

Indeed, we have \~V \sansh =H1/2(EH) by the trace theory since the local equation is elliptic.
Using the above identification, approximating u\sansh corresponds to approximating \~u\sansh ,
which is a function defined on edges and of lower complexity. We need to pay attention
to the norm we use when approximating \~u\sansh so that we can use the error bound of the
approximation to control the error of u\sansh in the energy norm. This will be the focus
of the next section.

Remark 3.5. In the remaining part of the article, we will frequently use the
correspondence between V \sansh and \~V \sansh . Conventionally, when we write a tilde on the top
of a function in V \sansh , it refers to its corresponding part in \~V \sansh .

3.4.2. Localization of approximation. We discuss how to approximate the
edge function \~u\sansh , whose domain is EH , which is nonlocal. Since it is often preferable
to have localized basis functions for approximation and numerical algorithms, our
second step is to localize the task of approximating \~u\sansh to every single edge.

To achieve localization, we study the geometry of the edge set EH first. Observing
that different edges only communicate with each other along their shared nodes, we
can use nodal interpolation to localize the approximation. More precisely, we proceed
with the following steps:

1. Interpolation: For each node xi \in \scrN H , choose \~\psi i to be the piecewise linear
tent function on EH , satisfying \~\psi i(xj) = \delta ij for each xj \in \scrN H . This defines
an interpolation operator for v \in V \sansh \cap C(\Omega ):

IHv :=
\sum 

xi\in \scrN H

v(xi)\psi i(x) .

Note that \psi i(x) is the same as the basis function constructed via the MsFEM
[33]. The interpolation residual v - IHv vanishes on each xi \in \scrN H . Set4 v= \~u\sansh 

and let IH \~u\sansh be one part of the approximation for \~u\sansh . Then, it remains to
approximate the residue \~u\sansh  - IH \~u\sansh .

2. Localization: We wish to explore the fact that \~u\sansh  - IH \~u\sansh vanishes on nodes
to localize the subsequent approximation task. To achieve so, define Re\~u

\sansh =
Pe(\~u

\sansh  - IH \~u\sansh ) := (\~u\sansh  - IH \~u\sansh )| e. The goal is to find some basis functions
on each e to approximate Re\~u

\sansh . To make this problem precise, we need to
specify the function space of Re\~u

\sansh and the norm for approximation. It turns
out that the natural function space Re\~u

\sansh is the Lions--Magenes space; see the
following Proposition 3.6.

Proposition 3.6. Let d = 2. Suppose f \in L2(\Omega ) and that (2.3) holds. For

each e \in \scrE H , it holds that Re\~u
\sansh \in H1/2

00 (e), the Lions--Magenes space, which contains
functions v \in H1/2(e) such that

v(x)

dist(x,\partial e)
\in L2(e) .

Here, dist(x,\partial e) is the Euclidean distance from x to the boundary of e.

4Note that we can apply IH to \~u\sansh due to the C\alpha estimate of u in Proposition 2.1.
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860 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

It might seem unclear at this stage why we should consider such a complicated
function space. In fact, this is related to the zero extension of functions. According
to Chapter 33 of [54], H

1/2
00 (e) can also be characterized as the space of functions in

H1/2(e) such that their zero extensions to EH are still in H1/2(EH). This is the key

and in fact the only property that we will use for H
1/2
00 (e). The zero extension allows

us to connect local approximation and global approximation. In the following, we will
not distinguish \~\psi \in H1/2

00 (e) and its zero extension to EH that belongs to H1/2(EH).

For any function inH
1/2
00 (e), we define a norm to measure approximation accuracy.

Definition 3.7. Let d = 2. The \scrH 1/2(e) norm of a function \~\psi \in H
1/2
00 (e) is

defined as

\| \~\psi \| 2\scrH 1/2(e) :=

\int 
\Omega 

A| \nabla \psi | 2 + k2| V \psi | 2 ,(3.9)

where we have used the one-to-one correspondence \~\psi \in \~V \sansh \updownarrow \psi \in V \sansh . Here, we
identify \~\psi as the zero extension of its value on the edge e to EH .

The \scrH 1/2(e) norm in Definition 3.7 is the natural one to consider here since
eventually, we aim for approximation accuracy in the energy norm.

The following theorem is the cornerstone for the above localization strategy. It
states that a local accuracy guarantee can be seamlessly coupled to form a global
accuracy guarantee.

Theorem 3.8 (global error estimate). Let d= 2. Suppose, for each edge e, there

exists an edge function \~ve \in H1/2
00 (e) that satisfies

\| Re\~u
\sansh  - \~ve\| \scrH 1/2(e) \leq \epsilon e .(3.10)

Let ve \in V \sansh be the corresponding part of \~ve \in \~V \sansh . Then, it holds that

\| u\sansh  - IHu
\sansh  - 

\sum 
e\in \scrE H

ve\| 2\scrH (\Omega ) \leq Cmesh

\sum 
e\in \scrE H

\epsilon 2e ,(3.11)

where Cmesh is a constant depending on the number of edges for the elements only,
e.g., for quadrilateral mesh Cmesh = 4.

Given this theorem, to approximate u\sansh it suffices to find local edge basis functions
that satisfy (3.10) for some desired \epsilon e. This is a localized task for each e.

The proofs for Propositions 3.6 and Theorem 3.8 are similar to those in the setting
of elliptic equations [13]. However, for completeness, we will also present them here
in subsections 6.2 and 6.3.

3.4.3. Local approximation via oversampling. The last step of approxima-
tion is to find local edge basis functions for each e so that (3.10) is satisfied. In this
subsection, we discuss how to achieve this via oversampling and SVD, which can yield
exponentially decaying \epsilon e. The general idea is to explore the fact that for a coarse
scale function, its behavior on e can be controlled very well by that in an oversampling
domain due to the compactness property of the restriction operator.

More precisely, for a given edge e, consider an oversampling domain \omega e associated
with the edge. In general, any domain containing e in the interior can serve as a
candidate. Here, for simplicity of presentation and as an illustrative example, we set

\omega e =
\bigcup 

\{ T \in \scrT H : T \cap e \not = \emptyset \} .(3.12)
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 861

Fig. 2. Illustration of oversampling domains. On the right, we use an edge connected to the
upper boundary as an illustrating example.

For interior edges and edges connected to the boundary, an illustration of this choice
(3.12) for a quadrilateral mesh is given in Figure 2.

The key idea is to treat the residue Re\~u
\sansh as a restriction of a coarse scale function

in \omega e and explore the compactness property of such restriction operators. By an abuse
of notation via the correspondence of V \sansh and \~V \sansh , for any \scrH (\Omega ) in V , we identify Rev
as Re\~v

\sansh . As a first step, we write

Re\~u
\sansh =Reu=Reu

\sansh 
\omega e

+Reu
\sansb 
\omega e
,(3.13)

where we decompose u in \omega e into its coarse and fine scale components via (3.2) with
T replaced by \omega e, and we shall use u\sansh \omega e

and u\sansb \omega e
to denote the corresponding local

Helmholtz-harmonic and bubble part, respectively. Then, to approximate Re\~u
\sansh , we

could approximate the two terms in (3.13) separately. We will show that the first
term can be approximated in an exponentially efficient manner due to a compactness
property, and the second term can be computed locally and is very small.

Remark 3.9. One may ask whether the decomposition (3.13) in the oversampling
domain is still well defined. Indeed, similar to (3.1), we have a uniform Poincar\'e
inequality for every \omega e: for any edge e and H1(\omega e) function v vanishing on any one
of the edge boundaries of \omega e, it holds that

\| v\| L2(\omega e) \leq C \prime 
PH\| \nabla v\| L2(\omega e) ,(3.14)

where C \prime 
P is a constant that only depends on c0, c1, d and our choice of oversampling

domain. For the particular choice (3.12), C \prime 
P is a constant multiple of CP ; without

loss of generality, we assume C \prime 
P \geq CP . Based on this observation, we will choose a

small H so that Assumption 2 holds, which guarantees that local Helmholtz operators
in the oversampling domain behave in a manner similar to that of elliptic case; this
is similar to Proposition 3.2.

Assumption 2. The mesh size satisfies H \leq A
1/2
min/(

\surd 
2C \prime 

PVmaxk), where C
\prime 
P is

the constant in (3.14).

Note that Assumption 2 implies Assumption 1. Now, we discuss in detail how to
deal with the two terms in (3.13).

1. For the first term, we consider the following function space in \omega e:

U(\omega e) := \{ v \in \scrH (\omega e) : - \nabla \cdot (A\nabla v) - k2V 2v= 0 in \omega e,

A\nabla v \cdot \nu = Tkv on (\Gamma N \cup \Gamma R)\cap \partial \omega e\} .
(3.15)

Functions in this space are fully determined by their trace on \partial \omega e\setminus (\Gamma N \cup \Gamma R).
By definition, u\sansh \omega e

belongs to U(\omega e). Under Assumption 2, (U(\omega e),\| \cdot \| \scrH (\omega e))
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862 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

is a Hilbert space since the Helmholtz operator in \omega e is elliptic. Then, by
abuse of notation, consider the operator

Re : (U(\omega e),\| \cdot \| \scrH (\omega e))\rightarrow (H
1/2
00 (e),\| \cdot \| \scrH 1/2(e))

such that Rev = Pe(v  - IHv) for v \in U(\omega e). A critical property is that the
singular values of Re decay nearly exponentially fast; see Theorem 3.10. Its
proof is deferred to subsection 6.4.

Theorem 3.10. Let d = 2. Under Assumption 2, the operator Re is compact
for each e \in \scrE H . Denote the pairs of its left singular vectors and singular values by
\{ \~vm,e, \lambda m,e\} m\in \BbbN , where \~vm,e \in H1/2

00 (e) and the sequence \{ \lambda m,e\} m\in \BbbN is in a descending
order. Then, for any \epsilon > 0, it holds that

\lambda m,e \leq C\epsilon exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
,(3.16)

where C\epsilon is a constant that is independent of k,H and may depend on \epsilon , d, and the
mesh parameters c0, c1.

Remark 3.11. As we can see from the proof, we actually show that (3.16) still
holds by setting C\epsilon to be 1 and requiring for m > N\epsilon with N\epsilon depending on k and
H. But we can also make the above inequality hold for all m by introducing the
constant C\epsilon .

We discuss the implication of this theorem. By definition of singular values,
if we set Wm,e = span \{ \~vj,e\} m - 1

j=1 , then Theorem 3.10 implies that

min
\~ve\in Wm,e

\| Rev - \~ve\| \scrH 1/2(e) \leq C\epsilon exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| v\| \scrH (\omega e) .(3.17)

Applying this result to v= u\sansh \omega e
\in U(\omega e) leads to

min
\~ve\in Wm,e

\| Reu
\sansh 
\omega e

 - \~ve\| \scrH 1/2(e) \leq C\epsilon exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| u\sansh \omega e

\| \scrH (\omega e) .(3.18)

Thus, there is a nearly exponential efficiency in approximating the first term
Reu

\sansh 
\omega e
.

2. For the second term in (3.13), the oversampling bubble part u\sansb \omega e
can be ef-

ficiently computed by solving local Helmholtz problems. Moreover, under
Assumption 2, this term is small in the \scrH (\Omega ) norm, as shown in the following
proposition.

Proposition 3.12. Under Assumption 2, for each e\in \scrE H , the following estimate
holds for the oversampling bubble part:

\| Reu
\sansb 
\omega e
\| \scrH 1/2(e) \leq CH\| f\| L2(\omega e) ,

where C is a constant independent of k and H.

The proof is deferred to subsection 6.5.
We further define a special Helmholtz-harmonic function u\sanss \in V \sansh such that
that its restriction on each edge e \in EH equals Reu

\sansb 
\omega e
. Namely, this special

Helmholtz-harmonic function accounts for the second term in (3.13) for each
edge. By the previous proposition, we immediately have the estimate

\| u\sanss \| \scrH (\Omega ) \leq CH\| f\| L2(\Omega ) ,
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 863

where C is a constant independent of k and H. Along with Proposition 3.4,
we conclude that there is a constant Cs independent of k and H such that

\| u\sanss \| \scrH (\Omega ) + \| u\sansb \| \scrH (\Omega ) \leq CsH\| f\| L2(\Omega ) .(3.19)

Now, consider the following space of basis functions:

\~V
(1)
H,m,e :=Wm,e .

In practice, this space can be computed locally by an SVD of Re. Due to (3.13) and
(3.18), we have the following error estimate on each e:

min
\~ve\in \~V

(1)
H,m,e

\| Reu
\sansh  - u\sanss  - \~ve\| \scrH 1/2(e) \leq C\epsilon exp

\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| u\sansh \omega e

\| \scrH (\omega e) .(3.20)

Remark 3.13. The operator Re involves nodal interpolation, which is in general
not stable for H1 functions if the dimension is greater than 1. However, in Theo-
rem 3.10, we take the domain of the operator to be U(\omega e), which contains Helmholtz-
harmonic functions that are H\"older continuous due to the standard C\alpha estimates for
elliptic equations. More specifically, Lemma 6.2 implies the stability of Re in this
space.

Remark 3.14. If we follow the proof of Lemma 3.13 in [38], it is be possible
to remove the small parameter \epsilon in Theorem 3.10 to get a better asymptotic bound
O(exp( - m

1
d+1 )).

3.4.4. Low complexity in approximation. Finally, define the collection of
edge basis functions

\~V
(1)
H,m = span

\Biggl\{ \bigcup 
e

\~V
(1)
H,m,e

\Biggr\} 
,

and denote by \~V
(0)
H the span of the nodal interpolation basis used earlier, i.e., \~V

(0)
H :=

span \{ \~\psi i\} . Define the overall edge approximation \~VH,m = span \{ \~V (0)
H

\bigcup \~V
(1)
H,m\} . Let

VH,m \subset V \sansh be the corresponding part of \~VH,m \subset \~V \sansh , via (3.8). Then, using (3.20) and
Theorem 3.8, we get a nearly exponentially decaying error estimate for approximating
u\sansh ; see Theorem 3.15.

Theorem 3.15. Let d= 2. Under Assumption 2 and (2.3), it holds that

min
v\in VH,m

\| u\sansh  - u\sanss  - v\| \scrH (\Omega ) \leq Cd(Cstab(k) +H) exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| f\| L2(\Omega ) ,

where Cd is a generic constant independent of k,m,H.

Proof. By Theorem 3.10 and the global error estimate in Theorem 3.8, we get

min
v\in VH,m

\| u\sansh  - u\sanss  - v\| 2\scrH (\Omega ) \leq CmeshC
2
\epsilon exp

\Bigl( 
 - 2m( 1

d+1 - \epsilon )
\Bigr) \sum 

e\in \scrE H

\| u\sansh \omega e
\| 2\scrH (\omega e)

.(3.21)

Due to Assumption 2, we have the elliptic estimate for the oversampling bubble part

\| u\sansb \omega e
\| \scrH (\omega e) \leq 

3C \prime 
P

A
1/2
min

H\| f\| L2(\omega e) .(3.22)
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864 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

This is similar to Proposition 3.4, which is a consequence of Assumption 1. Then,
using u\sansh \omega e

= u - u\sansb \omega e
, it follows that

\| u\sansh \omega e
\| 2\scrH (\omega e)

\leq 2(\| u\| 2\scrH (\omega e)
+ \| u\sansb \omega e

\| 2\scrH (\omega e)
)\leq 18C \prime 2

P

Amin
H2\| f\| 2L2(\omega e)

+ 2\| u\| 2\scrH (\omega e)
.(3.23)

Note that by our choice of oversampling domains, every element T can only be covered
by \{ \omega e\} e\in \scrE H

at most C1 times for a fixed C1. Therefore, it holds that\sum 
e\in \scrE H

\| f\| 2L2(\omega e)
\leq C1\| f\| 2L2(\Omega ) ,(3.24)

as well as \sum 
e\in \scrE H

\| u\| 2\scrH (\omega e)
\leq C1\| u\| 2\scrH (\Omega ) \leq C1C

2
stab(k)\| f\| 2L2(\Omega ) ,(3.25)

where the last inequality is due to the a priori estimate (2.3). Combining (3.21),
(3.23), (3.24), and (3.25) completes the proof.

Clearly, Theorem 3.15 implies the low complexity property of the part u\sansh  - u\sanss .
Each edge contains at most m basis functions, so the space VH,m is of dimension

O(m/Hd), while the approximation accuracy is of order exp( - m( 1
d+1 - \epsilon )). We will

use the space VH,m in our multiscale framework for approximating u\sansh  - u\sanss .

Remark 3.16. VH,m does not depend on the right-hand side f or the solution u.
Therefore, we can use the same VH,m for different right-hand sides.

4. The multiscale methods. In this section, we discuss the multiscale methods
for solving (1.1), based on the coarse-fine scale decomposition established in the last
section.

By the nature of a multiscale algorithm, we will handle the ``coarse part"" u\sansh  - u\sanss 

and the ``fine part"" u\sansb +u\sanss separately. Conceptually, the locality and small magnitude
of u\sansb + u\sanss imply that it can be computed efficiently or ignored without affecting the
accuracy much, and the low complexity of u\sansh  - u\sanss indicates that we can use a Galerkin
method with a small number of basis functions to approximate it accurately.

In subsection 4.1, we outline our general multiscale computational framework.
Depending on how the trial and test spaces in the Galerkin method are selected, we
get two categories of algorithms, namely, the Ritz--Galerkin approach and Petrov--
Galerkin approach, that we will make precise in subsections 4.2 and 4.3, respectively.

4.1. The multiscale framework. The bubble part u\sansb and the special function
u\sanss are first computed locally. Given these parts, we form an effective equation for
u\sansh  - u\sanss as

a(u\sansh  - u\sanss , v) = (f, v)\Omega  - a(u\sansb + u\sanss , v)(4.1)

for any v \in \scrH (\Omega ).

Remark 4.1. The right-hand side in (4.1) can be seen as a bounded linear func-
tional on v \in \scrH (\Omega ). By the estimate in (2.4), this equation for u\sansh  - u\sanss (given fixed
u\sansb + u\sanss ) is well-posed.

Numerically, we solve (4.1) for u\sansh  - u\sanss using a Galerkin method. That is, we
choose a trial space S and a test space Stest to find a numerical solution uS \in S that
satisfies

a(uS , v) = (f, v)\Omega  - a(u\sansb + u\sanss , v)(4.2)
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 865

for any v \in Stest. If Stest = S, then it is called a Ritz--Galerkin method; otherwise, it
is a Petrov--Galerkin method. Here, since the equation is formulated in the complex
domain, we specifically refer to the choice Stest = S as the Petrov--Galerkin method.

In subsection 4.2, we formulate our Ritz--Galerkin method and present theories
for the well-posedness of the discrete problem, as well as the error estimate in both
the energy norm and the L2 norm. In subsection 4.3, we discuss the Petrov--Galerkin
method, which is more straightforward and appears more convenient in practical
computation.

4.2. The Ritz--Galerkin method. First, we establish a general strategy for
analyzing the Ritz--Galerkin method in solving (4.1). We start with a definition of
the approximation accuracy of S.

Definition 4.2. For S \subset V \sansh , the approximation accuracy of S is defined as

\eta (S) := sup
f\in L2(\Omega )\setminus \{ 0\} 

inf
v\in S

\| u - v\| \scrH (\Omega )

\| f\| L2(\Omega )
,(4.3)

where u and f are related via the Helmholtz equation in (1.1).

For the Ritz--Galerkin method, it turns out that \eta (S) is critical in analyzing the
solution errors of uS .

Theorem 4.3. Suppose (2.3) holds and that k\eta (S) \leq 1/(4CcVmax) as well as
S = S. Then, the following statements hold for the Ritz--Galerkin method:

1. The Galerkin solution uS is a quasi-optimal approximation in the sense that

\| u\sansh  - u\sanss  - uS\| \scrH (\Omega ) \leq 2Cc inf
v\in S

\| u\sansh  - u\sanss  - v\| \scrH (\Omega ) ,

\| u\sansh  - u\sanss  - uS\| L2(\Omega ) \leq Cc\eta (S)\| u\sansh  - u\sanss  - uS\| \scrH (\Omega ) .

2. If we further assume Hk\leq 1/(8CsCcVmax) for constant Cs defined in (3.19),
the discrete problem satisfies the discrete inf-sup stability condition:

inf
v\in S

sup
v\prime \in S\setminus \{ 0\} 

| a(v, v\prime )| 
\| v\| \scrH (\Omega )\| v\prime \| \scrH (\Omega )

\geq 1

4 + 3C - 1
c + 8kVmaxCstab(k)

.

The proof of this theorem is deferred to subsection 6.6. It is inspired by the
standard G\r arding-type inequality for a posteriori estimates; see, for example, [40].
However, our proofs are slightly different since only the part u\sansh  - u\sanss is approximated
via the basis functions.

The above theorem implies that once \eta (S) is small, the discrete problem is well-
posed, and the Galerkin solution approximates the exact solution accurately.

Given Theorem 4.3, we can choose S = VH,m + VH,m where VH,m is defined in
Theorem 3.15 independent of the right-hand side. For the quantity \eta (S), we have the
following estimate using its subspace VH,m:

\eta (S)\leq \eta (VH,m)\leq max(Cd,Cs)
\Bigl( 
(Cstab(k) +H) exp

\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
+H

\Bigr) 
.(4.4)

Here, we have used (3.19) for the small parts u\sansb and u\sanss of size O(H) and Theorem 3.15
for the approximation error for u\sansh  - u\sanss . Invoking Theorems 4.3 and 3.15, we get the
following error analysis for the Galerkin solution.
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866 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

Theorem 4.4. Let d= 2. Suppose Assumption 2 and (2.3) hold, and

max(Cd,Cs)k
\Bigl( 
(Cstab(k) +H) exp

\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
+H

\Bigr) 
\leq 1/(4CcVmax) ,

where Cs, Cd are generic constants defined in (3.19) and Theorem 3.15, respectively.
Then, using S = VH,m+VH,m in the Ritz--Galerkin method leads to a solution uS that
satisfies

\| u\sansh  - u\sanss  - uS\| \scrH (\Omega ) \leq 2CcCd(Cstab(k) +H) exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| f\| L2(\Omega ) .(4.5)

For the \epsilon that satisfies 1
d+1  - \epsilon = 1

d+2 , we can take m \sim O(logd+2(kCstab(k)).
Then, the condition in Theorem 4.4 holds, provided that the mesh size H satisfies the
following Assumption 3.

Assumption 3. The mesh size satisfies H \leq 1/(8max(Cd,Cs)CcVmaxk).

Furthermore, if Cstab(k) \leq C(1 + k\gamma ) for some constants \gamma and C, then the
condition m\sim O(logd+2(kCstab(k)) reduces to m\sim logd+2(k). This implies that once
m is moderately large, i.e., logarithmic in k, the nearly exponential convergence of the
Galerkin solution shown in Theorem 4.4 will become effective. As in Remark 3.14,
we can improve the index d+ 2 to d+ 1.

We provide several additional remarks of the Ritz--Galerkin method below.

Remark 4.5. In the Ritz--Galerkin method, the trial and test spaces are S =
VH,m + VH,m. One can intuitively understand that VH,m is needed to represent the
desired solution, and VH,m is used for the approximation of the adjoint problem, which
is required in the numerical analysis of the Helmholtz equation. There can be a lot
of overlap between VH,m and VH,m: on each interior edge, since the singular vectors
of Re are real, these edge basis functions are real-valued. Thus, VH,m and VH,m can
only differ on the edges connected to the boundary, where the presence of the Robin
boundary condition makes the operator non-Hermitian.

Remark 4.6. Combining (4.5) with the local computation of the fine parts will
yield the overall error estimate for u, which is nearly exponentially convergent.

4.3. The Petrov--Galerkin method. In this subsection, we introduce the
Petrov--Galerkin method. We choose S = VH,m and Stest = VH,m. We give the
following remarks on this method.

Remark 4.7. The trial and test spaces in the Petrov--Galerkin method often have
smaller dimensions than their Ritz--Galerkin counterpart since we do not put the
complex conjugate VH,m in S. This can save computational effort.

Remark 4.8. Our current theory does not address the stability of the discrete
system and the \scrH (\Omega ) error estimate for the Petrov--Galerkin method. This is left for
our future work. We note that our numerical experiments in the next section imply
that these properties also hold for the Petrov--Galerkin method.

5. Numerical experiments. In this section, we will outline and discuss our
numerical algorithms in detail based on the established theoretical analysis. Several
Helmholtz equations are solved using our algorithm, which confirm our theoretical
results. We also consider some examples in which our theoretical assumptions are not
satisfied. Even for these examples, our methods still give a nearly exponential rate of
convergence. This provides further evidence for the robustness of our methods.
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 867

Fig. 3. Two-level mesh: a fraction.

5.1. Set-up. We consider the domain \Omega = [0,1] \times [0,1] and discretize it by a
uniform two-level quadrilateral mesh; see a fraction of this mesh in Figure 3, where
we also show an edge e and its oversampling domain \omega e in solid lines. The coarse and
fine mesh sizes are denoted by H and h, respectively.

For a given Helmholtz equation, we compute the reference solution uref using the
classical FEM on the fine mesh; with a sufficiently small h, it is reasonable to treat
uref as the ground truth u. We remark that via a posteriori estimates, we can check
that the fine mesh indeed resolve the corresponding problems; thus, the associated
fine mesh solutions could serve as good reference solutions for all of our numerical
examples. To be precise, we check that the relative error between the solutions using
fine mesh of size h and h/2 are small such that it is of order 10 - 2 in the energy norm
and 10 - 4 in the L2 norm.

The accuracy of a numerical solution usol is computed by comparing it with the
reference solution uref on the fine mesh. The accuracy will be measured both in the
L2 norm and the energy norm:

eL2 =
\| uref  - usol\| L2(\Omega )

\| uref\| L2(\Omega )
,

e\scrH =
\| uref  - usol\| \scrH (\Omega )

\| uref\| \scrH (\Omega )
.

(5.1)

5.2. Multiscale algorithms. We outline our numerical algorithms for obtain-
ing usol. There are offline and online stages, depending on whether the steps involve
the information of the right-hand side.

5.2.1. Offline stage. For each edge e \in \scrE H and its associated oversampling
domain \omega e, the key step in the offline stage is to construct the discretized version of
the operator

Re : (U(\omega e),\| \cdot \| \scrH (\omega e))\rightarrow (H
1/2
00 (e),\| \cdot \| \scrH 1/2(e)) ,

which is defined by Rev = (v  - IHv)| e. Here, U(\omega e) is defined in (3.15), \| \cdot \| \scrH (\omega e) is

the energy norm in \omega e while H
1/2
00 (e) is the Lions--Magenes space, and \| \cdot \| \scrH 1/2(e) is

defined in (3.9).
We note that functions in U(\omega e) are fully determined by their traces on \partial \omega e\setminus (\Gamma N\cup 

\Gamma R). Thus, we can take the discretized matrix version of Re as a linear mapping from
Dirichlet's data on \partial \omega e\setminus (\Gamma N \cup \Gamma R) to the image of Re, which contains functions on
the edge e. The discretization of the \| \cdot \| \scrH (\omega e) and \| \cdot \| \scrH 1/2(e) norms leads to positive
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868 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

definite matrices on the discretized domains \partial \omega e\setminus (\Gamma N \cup \Gamma R) and e. To obtain these
positive definite matrices, we construct the Helmholtz-harmonic extension operators
both on e and \partial \omega e\setminus (\Gamma N \cup \Gamma R), which maps boundary data to the Hemholtz-harmonic
function in the domain. Based on this operator, we can calculate the energy norms of
the extended Hemholtz-harmonic function. This leads to the required norms as well
as the positive definite matrices defining these norms.5

With the discretized matrices constructed, the next step is to compute the top m
left singular vectors of Re for some selected m \in \BbbN . This SVD problem turns out to
be a generalized eigenvalue problem for these discrete matrices. For each e, denote
the singular vectors by \~v1,e, . . . , \~vm,e \in H1/2

00 (e). Their Helmholtz-harmonic extensions
to the domain are denoted by v1,e, . . . , vm,e \in \scrH (\Omega ), obtained via the correspondence
(3.8). The basis function space formed by the collection of all vj,e,1 \leq j \leq m and
e\in \scrE H , together with the interpolation part \{ \psi i\} xi\in \scrN H

, are denoted by VH,m and will
constitute the Galerkin basis as defined in subsection 3.4.4. Note that here, \{ \psi i\} xi\in \scrN H

are the same as the basis functions in the MsFEM.
We are now in a position to construct our Galerkin basis and the associated

stiffness matrix. The construction depends on how to choose the trial and test spaces
in the Galerkin method. We will outline two possible choices below:

\bullet Ritz--Galerkin: S = VH,m + VH,m and Stest = S.
\bullet Petrov--Galerkin: S = VH,m and Stest = VH,m.

5.2.2. Online stage. In the online stage, we solve the coarse and fine scales
separately. First, we solve for u\sansb and u\sanss , and then we use the effective equation (4.1)
to solve for u\sansh  - u\sanss .

For the bubble part u\sansb , we solve the local Hemholtz problem in each element
T \in \scrT H , which leads to u\sansb T defined in (3.2). Gluing them together leads to u\sansb .

For u\sanss , on each e \in \scrE H and \omega e, we construct the oversampling bubble part u\sansb \omega e

via solving a local Helmholtz equation. Then, we get an edge function Reu
\sansb 
\omega e

for each
edge. We solve locally the Helmholtz-harmonic extension of these edge functions and
add them together to obtain u\sanss .

Now, we can form the right-hand-side vector in our effective equation (4.1) and
use the offline-assembled stiffness matrix to obtain the Galerkin solution for the part
u\sansh  - u\sanss .

This construction yields a practical numerical algorithm that efficiently handles
multiple right-hand sides.

We note that all the above algorithms consider a uniform number of basis func-
tions, namely, m, for each edge e \in \scrE H . It is also possible to make this number
vary with edges and thus fully adaptive to the problem's local properties such as the
approach in [32]. Consequently, this will lead to an adaptive algorithm where the
truncated singular values serve as local error indicators. We do not pursue this in
detail here and will leave this to our future work.

In the following, we will test our algorithms for different model problems. Our
general set-up is to fix a reasonable coarse scale H and then study how the errors
behave as m changes for the two choices outlined above.

Remark 5.1. Our numerical experience implies that in the Ritz--Galerkin method,
one does not need to add the conjugate space VH,m into S while still obtaining an
exponential rate of convergence.

5See also the implementation in subsection 4.2 of [13] on how these matrices are constructed for
elliptic problems.
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 869

5.3. A high wavenumber example: Planar wave. We start with an example
of planar wave where the coefficients are constant and the wavenumber is high. More
precisely, we set A = V = \beta = 1 and f = 0. The wavenumber k = 27. We take the
exact solution to be

u(x1, x2) = exp( - ik(0.6x1 + 0.8x2)) .

Using this solution, we are able to specify the Robin boundary condition on \partial \Omega .
Note that this is an inhomogeneous boundary condition, so it is beyond our previous
discussion. In this case, the inhomogeneous data are incorporated to the equation of
the bubble part u\sansb , while the treatment for the Helmholtz-harmonic part remains the
same as that in the homogeneous case. To be specific, now our decomposition on each
element T is u= u\sansh T + u\sansb T + u\sansp T , where u

\sansp 
T stands for a particular solution. The part

u\sansb T + u\sansp T satisfies

 - \nabla \cdot (A\nabla (u\sansb T + u\sansp T )) - k2V 2(u\sansb T + u\sansp T ) = f in T,

u\sansb T + u\sansp T = 0 on \partial T \setminus (\Gamma N \cup \Gamma R),

A\nabla (u\sansb T + u\sansp T ) \cdot \nu = Tk(u
\sansb 
T + u\sansp T ) + g on \partial T \cap (\Gamma N \cup \Gamma R) .

We will use u\sansb + u\sansp to replace u\sansb on the right-hand side of the effective equation for
Galerkin solution (4.1). Similarly, when we compute the special Helmholtz-harmonic
function u\sanss to account for the oversampling bubble part, its restriction on each edge
equals Re(u

\sansb 
\omega e

+u\sansp \omega e
) instead of Reu

\sansb 
\omega e
. In this way we can take care of the boundary

data via local particular problems and still obtain the desired accuracy. The error
analysis in such case remains the same once we replace u\sansb T in the homogeneous data
case by u\sansb T + u\sansp T ; in the bound, we will also have the norm of g.

We set the fine mesh h = 2 - 10 and coarse mesh H = 2 - 5. We vary the number
of edge basis functions in each e\in \scrE H , choosing m= 1,2, . . . ,7 and implementing the
two algorithms outlined in subsection 5.2.2. The results are shown in Figure 4. We
observe that the online basis approaches achieve nearly exponential decaying errors
with respect to m. The difference between the Ritz--Galerkin and Petrov--Galerkin
approaches is almost negligible. We can see that a few bases per edge suffice for very
high accuracy.

Furthermore, we make some comparison between our edge coupling approach (the
Ritz--Galerkin version) and the PUM approach reported in [36]. We adopt the same

Fig. 4. Numerical results for the high wavenumber example. Left: e\scrH versus m; right: eL2

versus m.
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870 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

Fig. 5. Numerical results for the high wavenumber example with k= 100, H = 1/20, h= 1/1000.

setting there with k = 100, H = 1/20, h = 1/1000 and vary the number of edge
basis functions in each e \in \scrE H , choosing m = 2,3, . . . ,7. We present the results in
Figure 5. We see that both errors decay very fast, and in particular, the error in our
method for m= 7 is smaller than the error in [36], with oversampling ratio H\ast /H = 2
and 35 local bases per patch. With the same wavenumber and number of coarse
patches, our method uses a slightly larger oversampling domain while reducing the
number of multiscale bases by a factor of around 35/(2\times 7) = 2.5. Here, we have used
the fact that the number of edges is twice as many as domains in two dimensions.
Nevertheless, the support of basis functions in our approach and PUM approach could
be different by a factor of two, and the size of the overlapped domain decomposition in
the PUM approach could also influence the result, leading to additional complexities
for comparison. More detailed numerical study of the two approaches could be of
future interest.

5.4. A high contrast example: Mie resonances. In this example, we con-
sider an A(x) with high contrast channels. More precisely, define the domain

\Omega \varepsilon = (0.25,0.75)2 \cap 
\bigcup 
j\in \BbbZ 2

\varepsilon 
\bigl( 
j + (0.25,0.75)2

\bigr) 
,(5.2)

and the coefficient is defined as

A(x) =

\Biggl\{ 
1, x /\in \Omega \varepsilon 

\varepsilon 2, x\in \Omega \varepsilon .

Here, \varepsilon is a parameter controlling the contrast. We choose \varepsilon = 2 - 4 and visualize
log10A(x) in the left plot of Figure 6.

We take \beta = 1, V = 1, k= 9. For such a choice of k, the model exhibits an unusual
behavior induced by Mie resonances in the small inclusions; see [44, 49]. An accurate
numerical solution for this model would be hard to compute, and it serves as a proper
benchmark for our method. The right-hand side is

f(x1, x2) =

\left\{   10000exp

\biggl( 
 - 1

1 - 400\times dist(x, z)2

\biggr) 
, dist(x, z)2 <

1

400

0 otherwise ,

where z = (0.125,0.5) and dist(x, z)2 = (x1  - 0.125)2 + (x2  - 0.5)2. We impose the
homogeneous Robin boundary condition on \partial \Omega . We take the fine mesh h= 2 - 9 and
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 871

Fig. 6. Left: the contour of log10A for the high contrast example; right: the contour of A for
the rough media example.

Fig. 7. Numerical results for the high contrast example. Left: e\scrH versus m; right: eL2 versus m.

the coarse mesh H = 2 - 5. As before, we take m = 1,2, . . . ,7, and the numerical
results are shown in Figure 7. A nearly exponential rate of convergence is observed
consistently, and in this particular example, the Ritz method slightly outperforms the
Petrov method.

5.5. A numerical example with mixed boundary and rough field. In the
last example, we consider a mixed boundary problem. We impose the homogeneous
Dirichlet boundary condition on (x1,0), x1 \in [0,1], the homogeneous Neumann bound-
ary condition on (x1,1), x1 \in [0,1], and the homogeneous Robin boundary condition
on the other two parts of \partial \Omega . We choose A(x) to be a realization of some random
field; more precisely,

A(x) = | \xi (x)| + 0.5 ,(5.3)

where the field \xi (x) satisfies

\xi (x) = a11\xi i,j + a21\xi i+1,j + a12\xi i,j+1 + a22\xi i+1,j+1, if x\in 
\Bigl[ i
27
,
i+ 1

27

\Bigr) 
\times 
\Bigl[ j
27
,
j + 1

27

\Bigr) 
.

Here, \{ \xi i,j ,0 \leq i, j \leq 27\} are independent and identically distributed unit Gaussian
random variables. In addition, a11 = (i+1 - 27x1)(j+1 - 27x2), a21 = (27x1  - i)(j+
1 - 27x2), a12 = (i+ 1 - 27x1)(2

7x2  - j), a22 = (27x1  - i)(27x2  - j) are interpolating
coefficients to make \xi (x) piecewise linear. A sample from this field is displayed in the
right plot of Figure 6.
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872 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

Fig. 8. Numerical results for the mixed boundary and rough field example. Left: e\scrH versus m;
right: eL2 versus m.

Moreover, we also take V (x) and \beta (x) as independent samples drawn from this
random field. We choose the wavenumber k = 25, the right-hand side f(x1, x2) =
x41  - x32 + 1, the fine mesh h = 2 - 10, and the coarse mesh H = 2 - 5. Again, we take
m= 1,2, . . . ,7 and present the numerical results in Figure 8. A nearly exponential rate
of convergence is still observed for this challenging example. The difference between
the Ritz--Galerkin method and the Petrov--Galerkin method is very mild.

It is worth noting that this example is constructed artificially, mixing different
kinds of boundary conditions and rough coefficients without taking into account the
analytical properties of this combination. Thus, the numerical results for this example
demonstrate the effectiveness of our multiscale methods in a more general setting.
Moreover, our right-hand side f is global, so most oversampling bubble parts would
be nonzero.

5.6. Summary. We summarize what we have observed in these numerical ex-
amples. Both algorithms lead to a nearly exponential rate of convergence with respect
to m, and we are able to use the offline-computed Galerkin basis to solve for multiple
right-hand sides.

Moreover, it is observed that the difference between the Ritz--Galerkin and the
Petrov--Galerkin approaches is very mild in most cases, but sometimes the Ritz--
Galerkin method can have better performance. Therefore, we recommend using the
Ritz--Galerkin approach in practice.

6. Proofs. This section presents the theoretical proofs in this paper. Some
proofs are similar to those in the elliptic case. We will refer these proofs to the
corresponding proofs in the elliptic case [13], while we will make relevant remarks on
possible changes and modifications.

6.1. Proof of Proposition 2.1. In this subsection, we provide the proof of the
qualitative version of the C\alpha estimate. It is a direct application of related results for
elliptic equations.

Proof. We note that the Helmholtz PDE (1.1) is equivalent to\left\{     
 - \nabla \cdot (A\nabla u) = f + k2V 2u in \Omega ,

u= 0 on \Gamma D,

A\nabla u \cdot \nu = Tku on \Gamma N \cup \Gamma R .

(6.1)
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 873

Since f \in L2(\Omega ), we know by the a priori estimate of the Helmholtz equation that
u \in H1(\Omega ). Therefore, we can regard (6.1) as an elliptic PDE with k2V 2u known as
a part of the right-hand side. This PDE has its right-hand side in L2(\Omega ) and has u
as its solution. We can invoke the result in Remark 6.5 of [27], which concludes that
u lies in some H\"older space C\alpha (\Omega ) such that

\| u\| C\alpha (\Omega ) \leq C(\| f\| L2(\Omega ) + k2\| u\| L2(\Omega ))

for some H\"older exponent \alpha \in (0,1) and C.

6.2. Proof of Proposition 3.6. The proof relies on the fact that any func-
tion v on e belonging to H1/2(e)

\bigcap 
C\alpha (e) and vanishing at \partial e will be in the space

H
1/2
00 (e); see Proposition 2.1 in [13] for detailed arguments of this fact. Then, Re\~u

\sansh \in 
H1/2(e)

\bigcap 
C\alpha (e) and vanishes at \partial e, so it belongs to H

1/2
00 (e).

6.3. Proof of Theorem 3.8. We decompose the energy norm into the contri-
bution from each element T \in \scrT H :

\| u\sansh  - IHu
\sansh  - 

\sum 
e\in \scrE H

ve\| 2\scrH (\Omega ) =
\sum 

T\in \scrT H

\| u\sansh  - IHu
\sansh  - 

\sum 
e\sim T

ve\| 2\scrH (T ) ,

where we have used the fact that ve = 0 in T if e and T are not neighbors.
Let us fix an element T . For each e \sim T , the trace of the function u\sansh  - IHu

\sansh  - \sum 
e\in T ve on e is \~u\sansh  - IH \~u\sansh  - \~ve \in H

1/2
00 (e). We can extend this trace to \partial T\setminus e by 0

to get an H1/2(\partial T ) boundary data. Then, this boundary data can be used to define
a Helmholtz-harmonic function in T via the correspondence (3.8). Using the triangle
inequality and the Cauchy--Schwarz inequality, we get

\| u\sansh  - IHu
\sansh  - 

\sum 
e\sim T

ve\| 2\scrH (T ) \leq Cmesh

\sum 
e\sim T

\| Pe(\~u
\sansh  - IH \~u\sansh ) - \~ve\| 2\scrH 1/2

T (e)
,

where the \scrH 1/2
T (e) norm of a function \~\psi \in H1/2

00 (e) is defined as

\| \~\psi \| 2
\scrH 1/2

T (e)
:=

\int 
T

A| \nabla \psi | 2 + k2| V \psi | 2 .(6.2)

The constant Cmesh depends on the mesh type only; for example, Cmesh = 4 for the
quadrilateral mesh and Cmesh = 3 for the triangular mesh. Then, we sum the above
inequality over all T \in \scrT H , which yields

\| u\sansh  - IHu
\sansh  - 

\sum 
e\in \scrE H

ve\| 2\scrH (\Omega ) \leq Cmesh

\sum 
T\in \scrT H

\sum 
e\sim T

\| Pe(\~u
\sansh  - IH \~u\sansh ) - \~ve\| 2\scrH 1/2

T (e)

=Cmesh

\sum 
e\in \scrE H

\| Pe(\~u
\sansh  - IH \~u\sansh ) - \~ve\| 2\scrH 1/2(e)

\leq Cmesh

\sum 
e\in \scrE H

\epsilon 2e .

(6.3)

The proof is completed.

6.4. Proof of Theorem 3.10. This is the key theorem underlying the exponen-
tial convergence for approximating u\sansh . To prove it, we need to analyze the spectrum
of the operator Re for each edge e. The treatments for interior edges and edges con-
nected to the boundary are slightly different due to the different boundary conditions
involved. We will explain the proof for interior edges in detail and comment on the
changes needed to be made for edges connected to the boundary.

Since this theorem is stated for all edges, we start by discussing some geometric
relations that hold uniformly for all interior edges.
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874 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

Fig. 9. Geometric relation e\subset \omega \subset \omega \ast \subset \omega e.

6.4.1. Geometric relation: Interior edges. Suppose that e is an interior edge
so that e lies strictly in the interior domain of \omega e; see Figure 2. We describe some
geometric relation6 between e and \omega e that will be needed in our analysis. Figure 9
illustrates our ideas for a uniform quadrilateral mesh. For each interior edge e, there
exist two concentric rectangles \omega \subset \omega \ast with the center being the midpoint me of e
such that e \subset \omega \subset \omega \ast \subset \omega e; the center me is the center of gravity of \omega and \omega \ast . We
require \omega \ast \cap \partial \Omega = \emptyset . Moreover, one side of \omega and \omega \ast should be parallel to e. We
introduce three parameters l1, l2, l3 to specify and describe the geometry:

1. With respect to the center me, the two rectangles \omega and \omega \ast are scaling equiv-
alent such that there exists l1 > 1, \omega \ast  - me = l1 \cdot (\omega  - me). Here, we use
the notation that t \cdot X := \{ tx : x \in X\} for a set X and a scalar t. For our
choice of \omega e, the parameter l1 can be selected to only depend on c0 and c1 in
subsection 3.1.1.

2. The ratio of \omega 's larger side length over the smaller side length is bounded by
a uniform constant l2 > 1 that depends on c0 and c1 only.

3. There is a constant l3 > 1 depending on c0 and c1 only such that l3 \cdot e\subset \omega .
We note that l1, l2, l3 are universal constants for all interior edges. All three parameters
depend on c0, c1 only. We introduce these parameters in order to get a uniform
treatment for every interior edge. Indeed, several constants in our estimates depend
on l1, l2, l3, but not on k and H, uniformly for all interior edges.

6.4.2. Main idea of the proof. In the following, we explain the main ideas
of our proof. Recall the target is to show the left singular values of Re decay nearly
exponentially fast. Similar to the rationale behind (3.17), it suffices to show that

there exists an m - 1 dimensional space Wm,e \subset H
1/2
00 (e) such that

min
\~ve\in Wm,e

\| Rev - \~ve\| \scrH 1/2(e) \leq C\epsilon exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| v\| \scrH (\omega e)(6.4)

for any v \in U(\omega e). We also use U(\omega \prime ) to denote the function space in \omega \prime defined via
(3.15), with \omega e replaced by any \omega \prime . Our proof contains two main steps, summarized
in the following two lemmas.

Lemma 6.1. For d > 0 and any v \in U(\omega \ast ), there exists an m  - 1 dimensional
space \Phi m,e \subset U(\omega ) such that

min
\chi \in \Phi m,e

\| v - \chi \| \scrH (\omega ) \leq C\epsilon exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| v\| \scrH (\omega \ast )(6.5)

for some C\epsilon independent of k and H.

6It is similar to that in subsection 3.3.1 of [13].
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 875

Lemma 6.2. For d= 2 and any v \in H1(\omega ) and \nabla \cdot (A\nabla v)\in L2(\omega ), it holds that

\| Rev\| \scrH 1/2(e) \leq C
\bigl( 
\| v\| \scrH (\omega ) +H\| \nabla \cdot (A\nabla v) + k2V 2v\| L2(\omega )

\bigr) 
(6.6)

for some C independent of k and H.

Remark 6.3. Here in Lemma 6.1 and 6.2, the constants are independent of k
because in the local domain, the operator behaves similarly to an elliptic operator.
Moreover, for edges connected to the boundary that we will discuss in subsection 6.4.7,
the boundary condition is of order 1 after rescaling due to the assumption on our mesh
size Hk \lesssim 1. Thus, eventually no k-dependence will be involved for our estimates in
the local domain. This is different from the global C\alpha regularity estimate in the proof
of Proposition 2.1. See subsection 6.4.6 for details, where we only use the C\alpha estimate
of an elliptic equation.

We will defer the proofs of the two lemmas to subsections 6.4.3 and 6.4.6 and
describe how to prove Theorem 3.10 using them here.

Proof of Theorem 3.10. From the above discussion, it remains to show (6.4). For
v \in \scrH (\omega e), we have v \in \scrH (\omega \ast ) and \| v\| \scrH (\omega \ast ) \leq \| v\| \scrH (\omega e). By Lemma 6.1, we get

min
\chi \in \Phi m,e

\| v - \chi \| \scrH (\omega ) \leq C\epsilon exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| v\| \scrH (\omega e) .

Now, since v - \chi satisfies the condition in Lemma 6.2 and v and \chi both vanish under
the operator v\rightarrow \nabla \cdot (A\nabla v) + k2V 2v, we obtain

min
\chi \in \Phi m,e

\| Rev - Re\chi \| \scrH 1/2(e) \leq CC\epsilon exp
\Bigl( 
 - m( 1

d+1 - \epsilon )
\Bigr) 
\| v\| \scrH (\omega e) .

Thus, taking Wm,e =Re\Phi m,e completes the proof.

6.4.3. Proof of Lemma 6.1. The proof of this lemma is inspired by Theorem
3.3 in [2], which states a similar result but for elliptic equations only. We generalize
it here for the Helmholtz equation.

First, by our geometric construction, \omega \ast  - me = l1 \cdot (\omega  - me). We denote a
sequence of domains \omega = \omega 0 \subset \omega 1 \subset \cdot \cdot \cdot \subset \omega N - 1 \subset \omega N = \omega \ast such that they are

concentric and that \omega j - me = (1+t)(\omega j - 1 - me) for j = 1,2, . . . ,N . Here, t= l
1/N
1  - 1.

Then, there are two important lemmas, whose proofs are presented in subsections 6.4.4
and 6.4.5.

Lemma 6.4. For each 0\leq j \leq N and any n\in \BbbN , there is an n-dimensional space
Wn(\omega j)\subset U(\omega j) such that for all v \in U(\omega j), it holds that

inf
w\in Wn(\omega j)

\| v - w\| L2(\omega j) \leq CHn - 1/d\| v\| \scrH (\omega j) ,(6.7)

where C is a generic constant independent of k,H, t, and n.

Lemma 6.5. For each 1\leq j \leq N and every v \in U(\omega j), it holds that

\| v\| \scrH (\omega j - 1) \leq C/(tH)\| v\| L2(\omega j) ,(6.8)

where C is a generic constant independent of k,H, and t.

With the two lemmas, we are ready to prove Lemma 6.1.

Proof of Lemma 6.1. Choose n = \lfloor m/N\rfloor . The proof relies on an iteration ar-
gument. We start from j = N . By (6.7) and (6.8), we get an n-dimensional space
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876 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

Wn(\omega N )\subset U(\omega N ) and a function wN \in Wn(\omega N ) such that

\| v - wN\| \scrH (\omega N - 1) \leq C/(tH)\| v - wN\| L2(\omega N ) \leq Ct - 1n - 1/d\| v\| \scrH (\omega N ) ,

where we have used the fact that the infimum in (6.7) is attained since it is a fi-
nite dimensional optimization problem. Here, by abuse of notation, the value of the
constant C varies in different places. It is a generic constant independent of k,H, t,
and n.

Now, we iterate the above process. The function v - wN \in U(\omega N - 1), so again by
(6.7) and (6.8), we get an n-dimensional space Wn(\omega N - 1)\subset U(\omega N - 1) and a function
wN - 1 \in Wn(\omega N - 1) such that

\| v - wN  - wN - 1\| \scrH (\omega N - 2) \leq Ct - 1n - 1/d\| v - wN\| \scrH (\omega N - 1) \leq (Ct - 1n - 1/d)2\| v\| \scrH (\omega N ) .

Repeating the above procedure, we get\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| v - 
N\sum 
j=1

wj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\scrH (\omega )

\leq (Ct - 1n - 1/d)N\| v\| \scrH (\omega \ast ) ,

where each wj \in U(\omega j) \subset U(\omega 0) = U(\omega ). Therefore, there exists an m \geq nN dimen-
sional space \Phi m,e \subset U(\omega ) such that

inf
w\in \Phi m,e

\| v - w\| \scrH (\omega ) \leq (Ct - 1n - 1/d)N\| v\| \scrH (\omega \ast ) .

For a parameter q to be determined later, choose N =
\Bigl\lfloor 
m

q
q+1

\Bigr\rfloor 
; then we obtain

(Ct - 1n - 1/d)N \leq 
\biggl( 
Ct - 1

\Bigl( m
N

\Bigr)  - 1/d
\biggr) N

= exp(N

\biggl( 
1

d
log

\Bigl( N
m

\Bigr) 
+ logC  - log t

\biggr) 
) .(6.9)

Using N \leq m
q

q+1 and t= l
1/N
1  - 1 = exp( 1

N log l1) - 1\geq 1
N log l1 \geq m - q

q+1 log l1, we can
bound the right-hand side of (6.9) as

(Ct - 1n - 1/d)N \leq exp

\biggl( 
 - m

q
q+1

\biggl( \biggl( 
1

d
 - q

\biggr) 
1

q+ 1
logm - logC + log log l1

\biggr) \biggr) 
\leq Cq exp

\Bigl( 
 - m

q
q+1

\Bigr) (6.10)

for some constant Cq that depends on q, d,C, l1 if q < 1/d. Here, in the last inequality,
we used the fact that when q < 1/d, there exists an Mq such that if m\geq Mq, then\biggl( 

1

d
 - q

\biggr) 
1

q+ 1
logm - logC + log log l1 \geq 1 ,

and thus, (Ct - 1n - 1/d)N \leq exp
\Bigl( 
 - m

q
q+1

\Bigr) 
for m\geq Mq. By choosing

Cq = max
1\leq m<Mq

exp

\biggl( 
 - m

q
q+1

\biggl( \biggl( 
1

d
 - q

\biggr) 
1

q+ 1
logm - logC + log log l1

\biggr) \biggr) 
exp(m

q
q+1 ) + 1,

we can prove that (6.10) is valid.
Now, we choose q < 1/d and denote q

q+1 = 1
d+1  - \epsilon for some \epsilon > 0. There is a

one-to-one correspondence between q and small positive \epsilon , so we can also write the
error estimate in (6.10) in terms of \epsilon as

(Ct - 1n - 1/d)N \leq C\epsilon exp
\Bigl( 
 - m

1
d+1 - \epsilon 

\Bigr) 
.

This completes the proof.
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 877

6.4.4. Proof of Lemma 6.4. First, using the spectrum of the Laplacian oper-
ator with Neumann's boundary condition, there exists an n-dimensional space Sn \subset 
H1(\omega j) such that for any v \in H1(\omega j),

inf
w\in Sn

\| v - w\| L2(\omega j) \leq CHn - 1/d\| v\| H1(\omega j) \leq CHn - 1/d\| v\| \scrH (\omega j) ,(6.11)

where C is a generic constant independent of k,H, t, and n. Equivalently, this implies
the identity embedding operator Q : (\scrH (\omega j),\| \cdot \| \scrH (\omega j))\rightarrow (L2(\omega j),\| \cdot \| L2(\omega j)) such that

Qv= v is compact and the nth largest left singular value \mu n \leq CHn - 1/d.
Now, since U(\omega j) is a closed subspace of (\scrH (\omega j),\| \cdot \| \scrH (\omega j)), we can view Q as an

operator from (U(\omega j),\| \cdot \| \scrH (\omega j)) to (L2(\omega j),\| \cdot \| L2(\omega j)). Denote its singular values in
a nonincreasing order by \{ \mu n

\prime \} . Using the max-min theorem for singular values, we
obtain

\mu \prime 
n = max

Sn\subset U(\omega j),dim(Sn)=n
min

v\in Sn,\| v\| \scrH (\omega j)
=1

\| Qv\| L2(\omega j)

\leq max
Sn\subset \scrH (\omega j),dim(Sn)=n

min
v\in Sn,\| v\| \scrH (\omega j)

=1
\| Qv\| L2(\omega j) = \mu n .

Thus, \mu \prime 
n \leq CHn - 1/d. Therefore, there is an n-dimensional space Wn(\omega j) \subset U(\omega j)

such that for all v \in U(\omega j), it holds that

inf
w\in Sn

\| v - w\| L2(\omega j) \leq CHn - 1/d\| v\| H1(\omega j) \leq CHn - 1/d\| v\| \scrH (\omega j) .

The proof is completed.

6.4.5. Proof of Lemma 6.5. We introduce a cutoff function \eta \in C1(\omega j) such
that 0 \leq \eta \leq 1, and \eta = 1 in \omega j - 1, as well as | \nabla \eta (x)| \leq C/(tH) for some constant C
independent of k,H, and t.

For any v \in U(\omega j), we use the test function \eta 2v and the weak form to get

(A\nabla v,\nabla (\eta 2v))\omega j
 - k2(V v,V \eta 2v)\omega j

= 0 ,(6.12)

where we have used the definition of U(\omega j) (see the beginning of subsection 6.4.2)
and the property of our construction that \partial \omega j \cap (\Gamma N \cup \Gamma R) = \emptyset .

Using the relation \| A1/2\eta \nabla v\| 2L2(\omega j)
= (A\nabla v, \eta 2\nabla v)\omega j

and the above formula, we
obtain

\| A1/2\eta \nabla v\| 2L2(\omega j)
= - 2(A1/2\eta \nabla v,A1/2v\nabla \eta )\omega j + k2(V v,V \eta 2v)\omega j

\leq 1

2
\| A1/2\eta \nabla v\| 2L2(\omega j)

+ 2\| A1/2v\nabla \eta \| 2L2(\omega j)
+ k2V 2

max\| v\| 2L2(\omega j)
,

(6.13)

which leads to \| A1/2\eta \nabla v\| 2L2(\omega j)
\leq 4\| A1/2v\nabla \eta \| 2L2(\omega j)

+ 2k2V 2
max\| v\| 2L2(\omega j)

. Therefore,
using the fact that \eta = 1 in \omega j - 1, we have

\| v\| 2\scrH (\omega j - 1)
\leq \| A1/2\eta \nabla v\| 2L2(\omega j)

+ k2V 2
max\| v\| 2L2(\omega j)

\leq 4\| A1/2v\nabla \eta \| 2L2(\omega j)
+ 3k2V 2

max\| v\| 2L2(\omega j)

\leq 
\biggl( 

4C2

(tH)2
+ 3k2V 2

max

\biggr) 
\| v\| 2L2(\omega j)

\leq C \prime 2

(tH)2
\| v\| 2L2(\omega j)

(6.14)

for some C \prime independent of k,H, and t, where we have used Assumption 1 such that
kVmaxH \leq C \prime \prime for C \prime \prime =A

1/2
min/(

\surd 
2CP ). This completes the proof.
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878 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

6.4.6. Proof of Lemma 6.2. We use Lemma 3.10 of [13], which implies that

\| Rev\| \scrH 1/2(e) \leq C
\Bigl( 
\| A1/2\nabla v\| L2(\omega ) +H\| \nabla \cdot (A\nabla v)\| L2(\omega )

\Bigr) 
(6.15)

for some C independent of k,H. Indeed, Lemma 3.10 of [13] implies that C can
depend on the C\alpha estimate constant of v in \omega . The discussion in Remark 6.3 implies
that this constant is independent of k.

By a triangular inequality, we have

H\| \nabla \cdot (A\nabla v)\| L2(\omega ) \leq H\| k2V 2v\| L2(\omega ) +H\| \nabla \cdot (A\nabla v) + k2V 2v\| L2(\omega )

\leq C \prime \| kV v\| L2(\omega ) +H\| \nabla \cdot (A\nabla v) + k2V 2v\| L2(\omega ) ,

where we have used Assumption 1 such that kVmaxH \leq C \prime for C \prime = A
1/2
min/(

\surd 
2CP ).

Now, using the definition of the \scrH (\omega ) norm, we have

\| A1/2\nabla v\| L2(\omega ) +C \prime \| kV v\| L2(\omega ) \leq C \prime \prime \| v\| \scrH (\omega )

for some generic constant C \prime \prime that does not depend on anything else. Combining the
above inequalities concludes the proof.

6.4.7. For edges connected to the boundary. The above proofs are for
interior edges. For edges connected to the boundary, we need a different geometric
relation, as depicted in the right of Figure 9. The quantitative characterization of this
geometric relation is the same as that in subsection 3.3.2 of [13], which introduces
three other parameters l4, l5, l6 to describe the geometry associated with edges, similar
to l1, l2, l3 for interior edges.

The main idea of the proof for this case is the same as that for the interior edges.
We need to prove Lemmas 6.1 and 6.2 for edges connected to the boundary. The
proof of Lemma 6.2 remains nearly the same. A technical part is that the constant
in the inequality depends on the local C\alpha estimate. According to the discussion
in Remark 6.3, the local C\alpha constant is independent of k for edges connected to the
boundary. To prove Lemma 6.1, we again use the same strategy in subsection 6.4.3, by
establishing Lemmas 6.4 and 6.5 and then using an iteration argument. The iteration
argument and the proof for Lemma 6.4 remain unchanged. For Lemma 6.5, the only
slight change is (6.12), which becomes

(A\nabla v,\nabla (\eta 2v))\omega j
 - k2(V v,V \eta 2v)\omega j

= (Tkv, \eta 
2v)\partial \omega j\cap (\Gamma N\cup \Gamma R)(6.16)

due to the boundary conditions involved. However, since Re (Tkv, \eta 
2v)\partial \omega j\cap (\Gamma N\cup \Gamma R) \leq 

0, the conclusion of Lemma 6.5 still holds.
Therefore, the result also holds for edges connected to the boundary.

Remark 6.6. We have assumed that \Omega is a polygonal domain, so the shape of the
local domains around the boundary is well behaved. In particular, a uniform Poincar\'e
inequality will hold for these domains (in general, the constant in the Poincar\'e in-
equality depends on the shape of the domain). This guarantees that we can obtain a
uniform constant in Theorem 3.10 for both interior edges and edges connected to the
boundary.

6.5. Proof of Proposition 3.12. First, we have the bound on the oversampling
bubble part in (3.22):

\| u\sansb \omega e
\| \scrH (\omega e) \leq 

3C \prime 
P

A
1/2
min

H\| f\| L2(\omega e) .(6.17)
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EXPONENTIAL CONVERGENCE FOR HELMHOLTZ EQUATIONS 879

Applying Lemma 6.2 and the definition of u\sansb \omega e
leads to

\| Reu
\sansb 
\omega e
\| \scrH 1/2(e) \leq C

\bigl( 
\| u\sansb \omega e

\| \scrH (\omega ) +H\| \nabla \cdot (A\nabla u\sansb \omega e
) + k2V 2u\sansb \omega e

\| L2(\omega )

\bigr) 
\leq C \prime H\| f\| L2(\omega e) ,

(6.18)

where C \prime is a constant independent of k and H.

6.6. Proof of Theorem 4.3.
Proof. Define eS = u\sansh  - u\sanss  - uS \in V \sansh . Take \psi =N \star 

k (eS). It holds that

\| eS\| 2L2(\Omega ) = a(eS ,\psi ) = a(eS ,\psi  - v)

for any v \in S due to the property of the Galerkin solution. Thus, using the bounded-
ness of a(\cdot , \cdot ), we obtain that

\| eS\| 2L2(\Omega ) \leq Cc\| eS\| \scrH (\Omega )\| \psi  - v\| \scrH (\Omega ) =Cc\| eS\| \scrH (\Omega )\| \psi  - v\| \scrH (\Omega ) .(6.19)

As \psi =NkeS according to the definition of the adjoint problem in subsection 2.2, we
can take infimum of v over S, using the fact that S = S, the definition (4.3), and the
inequality (6.19), to get

\| eS\| 2L2(\Omega ) \leq Cc\| eS\| \scrH (\Omega ) \cdot \eta (S)\| eS\| L2(\Omega ) ,

which leads to the desired L2(\Omega ) error estimate: \| eS\| L2(\Omega ) \leq Cc\eta (S)\| eS\| \scrH (\Omega ).
For the \scrH (\Omega ) error, the property of Galerkin's solution implies that for any v \in S,

we have

\| eS\| 2\scrH (\Omega ) =Rea(eS , eS) + \{ \| eS\| 2\scrH (\Omega )  - Rea(eS , eS)\} 
=Rea(eS , u

\sansh  - u\sanss  - v) + 2\| kV (x)eS\| 2L2(\Omega ) +Re(TkeS , eS)\Gamma N\cup \Gamma R

\leq Cc\| eS\| \scrH (\Omega )\| u\sansh  - u\sanss  - v\| \scrH (\Omega ) + 2(kVmaxCc\eta (S))
2\| eS\| 2\scrH (\Omega ) ,

(6.20)

where we have used the fact that Re (TkeS , eS)\Gamma N\cup \Gamma R
\leq 0 and the L2(\Omega ) error estimate

that we established earlier.
By the assumption k\eta \sansh (S)\leq 1/(2CcVmax), the last term in (6.20) is bounded by

1
2\| eS\| 

2
\scrH (\Omega ). Thus, due to the arbitrariness of v, we arrive at

\| eS\| \scrH (\Omega ) \leq 2Cc inf
v\in S

\| u\sansh  - v\| \scrH (\Omega ) .

This completes the proof for the first part. Next, we move to the proof for the
discrete inf-sup stability. For any v \in S, set z = 2N \star 

k (k
2V 2v)\in \scrH (\Omega ) so that a(v, z) =

2k2(V 2v, v)\Omega . Plugging v and v+ z into the sesquilinear form yields

a(v, v+ z) = a(v, v) + a(v, z)

= (A\nabla v,\nabla v)\Omega  - k2(V 2v, v)\Omega  - (Tkv, v)\Gamma N\cup \Gamma R
+ 2k2(V 2v, v)\Omega 

= \| v\| 2\scrH (\Omega )  - (Tkv, v)\Gamma N\cup \Gamma R
.

By the definition of Tk, Re (Tkv, v)\Gamma N\cup \Gamma R
\leq 0, so it holds that

Rea(v, v+ z)\geq \| v\| 2\scrH (\Omega ) .

Now, by the definition of the adjoint problem, we have z = 2Nk(k
2V 2v). Let zS \in S

achieve the best approximation in (4.3) for f = 2k2V 2v, so that

\| z\sansh  - z\sanss  - zS\| \scrH (\Omega ) \leq \eta (S)\| 2k2V 2v\| L2(\Omega ) \leq 2kVmax\eta (S)\| v\| \scrH (\Omega ) .(6.21)

We can choose v\prime = v+ zS \in S to compute

Rea(v, v+ zS) =Rea(v, v+ z) - Rea(v, z  - zS)\geq \| v\| 2\scrH (\Omega )  - Cc\| v\| \scrH (\Omega )\| z  - zS\| \scrH (\Omega ) .
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880 YIFAN CHEN, THOMAS Y. HOU, AND YIXUAN WANG

We use the bound in (6.21) and the triangle inequality to get

| a(v, v+ zS)| \geq \| v\| 2\scrH (\Omega )(1 - 2CckVmax\eta (S)) - Cc\| v\| \scrH (\Omega )(\| z\sanss \| \scrH (\Omega ) + \| z\sansb \| \scrH (\Omega )) .

Meanwhile, by a triangle inequality, we get

\| v+ zS\| \scrH (\Omega ) \leq \| v\| \scrH (\Omega ) + \| z\sansh  - z\sanss  - zS\| \scrH (\Omega ) + \| z\| \scrH (\Omega ) + \| z\sanss \| \scrH (\Omega ) + \| z\sansb \| \scrH (\Omega ) .

Finally, we are left to estimate the energy norm of z and its fine scale parts. By
the stability estimate in (2.3), we have

\| z\| \scrH (\Omega ) \leq Cstab(k)\| 2k2V 2v\| L2(\Omega ) \leq 2Cstab(k)kVmax\| v\| \scrH (\Omega ) ,

and by the bound on the fine part as given by (3.19), it holds that

\| z\sanss \| \scrH (\Omega ) + \| z\sansb \| \scrH (\Omega ) \leq CsH\| 2k2V 2v\| L2(\Omega ) \leq 2CsHkVmax\| v\| \scrH (\Omega ) .

Therefore, we obtain

sup
v
\prime \in S\setminus \{ 0\} 

| a(v, v\prime )| 
\| v\| \scrH (\Omega )\| v\prime \| \scrH (\Omega )

\geq | a(v, v+ zS)| 
\| v\| \scrH (\Omega )\| v+ zS\| \scrH (\Omega )

\geq 
(1 - 2\eta (S)CckVmax  - 2CcCsHkVmax)\| v\| 2\scrH (\Omega )

(1 + 2\eta (S)kVmax + 2Cstab(k)kVmax + 2CsHkVmax)\| v\| 2\scrH (\Omega )

.

Using the assumptions that \eta (S)kVmax \leq 1/(4Cc) and CsHkVmax \leq 1/(8Cc), we
obtain the desired estimate.

7. Concluding remarks. In this paper, we have developed a multiscale frame-
work for solving the Helmholtz equation in heterogeneous media and high frequency
regimes. The coarse-fine scale decomposition of the solution space is motivated by
the MsFEM. In our algorithm, the coarse scale Helmholtz-harmonic part and the
fine scale bubble part are computed separately. Their own structures are carefully
explored, such as the low complexity of the coarse part and the locality of the fine
part. A nearly exponential rate of convergence is proved rigorously and is confirmed
numerically for a wide range of the Helmholtz equations with rough coefficients, high
contrast, and mixed boundary conditions.

Perhaps surprisingly, our framework implies that designing an accurate multiscale
method for the Helmholtz equation is not much more different from that for the el-
liptic equation. Many techniques in the elliptic case can be successfully adapted once
the mesh size satisfies H = O(1/k), a condition that does not suffer from the pollu-
tion effect. This work also demonstrates the broad applicability of our exponentially
convergent multiscale framework proposed originally in [13].

Most discussions in this paper are concerned with dimension d= 2. In our future
work, we will generalize the methodology to dimension d= 3, where we can use nodal,
edge, and face bases to approximate the local solution in the nonoverlapped domain
decomposition.

It is also of future interest to extend this methodology systematically to other
equations such as the Schrodinger equation, where the problem is time-dependent and
the potential function could introduce indefiniteness into the system. On the other
hand, developing a better theoretical understanding of the behavior of the multiscale
framework with respect to high contrast in the media is also an exciting direction for
further exploration.
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