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POTENTIAL SINGULARITY OF THE AXISYMMETRIC EULER
EQUATIONS WITH \bfitC \bfitalpha INITIAL VORTICITY FOR A LARGE

RANGE OF \bfitalpha \ast 

THOMAS Y. HOU\dagger AND SHUMAO ZHANG\dagger 

Abstract. We provide numerical evidence for a potential finite-time self-similar singularity of
the three-dimensional (3D) axisymmetric Euler equations with no swirl and with C\alpha initial vorticity
for a large range of \alpha . We employ a highly effective adaptive mesh method to resolve the potential
singularity sufficiently close to the potential blow-up time. Resolution study shows that our numerical
method is at least second-order accurate. Scaling analysis and the dynamic rescaling method are
presented to quantitatively study the scaling properties of the potential singularity. We demonstrate
that this potential blow-up is stable with respect to the perturbation of initial data. Our numerical
study shows that the 3D axisymmetric Euler equations with our initial data develop finite-time blow-
up when the H\"older exponent \alpha is smaller than some critical value \alpha \ast , which has the potential to
be 1/3. We also study the n-dimensional axisymmetric Euler equations with no swirl, and observe
that the critical H\"older exponent \alpha \ast is close to 1 - 2

n
. Compared with Elgindi's blow-up result in

a similar setting [T. M. Elgindi, Ann. of Math., 194 (2021), pp. 647--727], our potential blow-up
scenario has a different H\"older continuity property in the initial data and the scaling properties of
the two initial data are also quite different. We also propose a relatively simple one-dimensional
model and numerically verify its approximation to the n-dimensional axisymmetric Euler equations.
This one-dimensional model sheds useful light to our understanding of the blow-up mechanism for
the n-dimensional Euler equations.

Key words. 3D axisymmetric Euler equations, finite-time blow-up

MSC codes. 35Q31, 76B03, 65M60, 65M06, 65M20

DOI. 10.1137/22M1542453

1. Introduction. The three-dimensional (3D) incompressible Euler equations
in fluid dynamics describe the motion of inviscid incompressible flows and are one of
the most fundamental equations in fluid dynamics. Despite their wide range of appli-
cations, the question regarding the global regularity of the Euler equations has been
widely recognized as a major open problem in partial differential equations (PDEs)
and is closely related to the Millennium Prize Problem on the Navier--Stokes equations
listed by the Clay Mathematics Institute [22]. In 2014, Luo and Hou [41, 42] con-
sidered the 3D axisymmetric Euler equations with smooth initial data and boundary,
and presented strong numerical evidences that they can develop potential finite-time
singularity. The presence of the boundary, the symmetry properties, and the direc-
tion of the flow in the initial data collaborate with each other in the formation of a
sustainable finite-time singularity. Recently, Chen and Hou [7, 8] provided a rigorous
justification of the Luo-Hou blow-up scenario.

In 2021, Elgindi [20] showed that given appropriate C\alpha initial vorticity with \alpha > 0
sufficiently small, the 3D axisymmetric Euler equations with no swirl can develop
finite-time singularity. In Elgindi's work, the initial data for the vorticity \omega have C\alpha 
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1327

H\"older continuity near r= 0 and z = 0. When \alpha is small enough, Elgindi approximated
the 3D axisymmetric Euler equations by a fundamental model that develops a self-
similar finite-time singularity. The blow-up result obtained in [20] has infinite energy.
In a subsequent paper [18], the authors improved the result obtained in [20] to have
finite energy blow-up.

In this work we study potential finite-time singularity of the 3D axisymmetric
Euler equations with no swirl and C\alpha initial vorticity for a large range of \alpha . Define
\omega = \nabla \times u as the vorticity vector, and then the 3D incompressible Euler equations
can be written in the vorticity stream function formulation:

\omega t + u \cdot \nabla \omega = \omega \cdot \nabla u,
 - \nabla \psi = \omega ,

u=\nabla \times \psi ,

(1.1)

where \psi is the vector-valued stream function. Let us use x= (x1, x2, x3) to denote a
point in \BbbR 3, and let er, e\theta , ez be the unit vectors of the cylindrical coordinate system

er = (x1/r,x2/r,0) , e\theta = (x2/r, - x1/r,0) , ez = (0,0,1) ,

where r =
\sqrt{} 
x21 + x22 and z = x3. We say a vector field v is axisymmetric if it admits

the decomposition

v= vr(r, z)er + v\theta (r, z)e\theta + vz(r, z)ez,

namely, vr, v\theta , and vz are independent of the angular variable \theta . Denote by u\theta ,
\omega \theta , and \psi \theta the angular velocity, vorticity, and stream function, respectively. The
axisymmetric condition can then simplify the 3D Euler equations (1.1) to [44]:

u\theta t + uru\theta r + uzu\theta z = - 1

r
uru\theta ,(1.2a)

\omega \theta t + ur\omega \theta r + uz\omega \theta z =
2

r
u\theta u\theta z +

1

r
ur\omega \theta ,(1.2b)

 - \psi \theta rr  - \psi \theta zz  - 
1

r
\psi \theta r +

1

r2
\psi \theta = \omega \theta ,(1.2c)

ur = - \psi \theta z , uz =
1

r
\psi \theta +\psi \theta r .(1.2d)

In the case of no swirl, i.e., u\theta \equiv 0, the axisymmetric Euler equations are further
simplified into

\omega \theta t + ur\omega \theta r + uz\omega \theta z =
1

r
ur\omega \theta ,(1.3a)

 - \psi \theta rr  - \psi \theta zz  - 
1

r
\psi \theta r +

1

r2
\psi \theta = \omega \theta ,(1.3b)

ur = - \psi \theta z , uz =
1

r
\psi \theta +\psi \theta r .(1.3c)

When the initial condition for the angular vorticity \omega \theta is smooth, it is well known that
the 3D axisymmetric Euler equations with no swirl (1.3) will not develop finite-time
blow-up [54]. Therefore, we consider (1.3) when the initial condition for the angular
vorticity \omega \theta is C\alpha H\"older continuous for a large range of \alpha . By using an effective
adaptive mesh method, we will provide convincing numerical evidence that the 3D
axisymmetric Euler equations with no swirl and C\alpha initial voriticity with \alpha greater
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1328 THOMAS Y. HOU AND SHUMAO ZHANG

than or equal to 0, and smaller than some critical value \alpha \ast can develop potential finite-
time self-similar blow-up. The critical H\"older exponent \alpha \ast is observed to be larger
than 0.3 and close to 1/3. Our result serves as an example to support Conjecture 8
of [18] that the critical value \alpha \ast is equal to 1/3.

We perform scaling analysis and use the dynamic rescaling formulation [27, 6, 9] to
study the behavior of the potential self-similar blow-up. An operator splitting method
is proposed to solve the dynamic rescaling formulation and the late time solution from
the adaptive mesh method is used as our initial condition for the dynamic rescaling
formulation. We observe rapid convergence to a steady state, which implies that this
potential singularity is self-similar. We notice that the size of the finite computational
domain needs to be large enough to approximate steady state, due to a scale-invariant
property of the dynamic rescaling equation. So we conduct domain size study to verify
the accuracy of our results. We will also demonstrate that this potential blow-up is
stable with respect to the perturbation of initial data, suggesting that the underlying
blow-up mechanism is generic and insensitive to the initial data.

We choose the following C\alpha initial data for the angular vorticity \omega \theta :

\omega \theta 0 =
 - 12000 r\alpha 

\bigl( 
1 - r2

\bigr) 18
sin(2\pi z)

1 + 12.5cos2(\pi z)
.

The initial condition is a smooth and periodic function in z and is C\alpha in r. The
velocity field u becomes C1,\alpha continuous. We further introduce the new variables:

\omega 1(r, z) =
1

r\alpha 
\omega \theta (r, z), \psi 1(r, z) =

1

r
\psi \theta (r, z),(1.4)

to remove the formal singularity in (1.3) near r = 0. In terms of the new variables
(\omega 1,\psi 1), the 3D axisymmetric Euler equations with no swirl have the following equiv-
alent form:

\omega 1,t + ur\omega 1,r + uz\omega 1,z = - (1 - \alpha )\psi 1,z\omega 1,(1.5a)

 - \psi 1,rr  - \psi 1,zz  - 
3

r
\psi 1,r = \omega 1r

\alpha  - 1,(1.5b)

ur = - r\psi 1,z, uz = 2\psi 1 + r\psi 1,r.(1.5c)

The above reformulation is crucial for us to perform accurate numerical computation
of the potential singular solution and allow us to push the computation sufficiently
close to the singularity time.

It is important to note that the initial condition for the rescaled vorticity field \omega 1

is a smooth function of r and z. Using the above reformulation enables us to resolve
the potential singular solution sufficiently close to the potential singularity time. If
we solve the original 3D Euler equations (1.3a)--(1.3c), it is extremely difficult to
resolve the H\"older continuous vorticity even with an adaptive mesh, especially for
small \alpha . For this reason, we have not been able to compute the finite-time singularity
in Elgindi's work [20] since such a reformulation is not available for his initial data.

Compared with Elgindi's blow-up result [20], our potential blow-up scenario has
very different scaling properties. In our scenario, the scaling factor cl, defined in (2.6),
increases with \alpha and tends to infinity as \alpha approaches \alpha \ast ; see Table 4. In contrast,
the scaling factor cl in Elgindi's scenario is 1/\alpha , which decreases with \alpha and tends to
infinity as \alpha approaches 0. Another difference is that Elgindi's initial vorticity is C2\alpha 

in r and C\alpha in z near the origin, while our initial vorticity is C\alpha in r, but smooth in
z. We discuss the comparison in details in section 7.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1329

We also consider the n-dimensional axisymmetric Euler equations (see definitions
in (5.3)). We observe the same potential self-similar finite-time blow-up and find that
the critical value \alpha \ast is close to 1 - 2

n . The self-similar profiles for high-dimensional
Euler equations are qualitatively similar to those of the 3D Euler equations. We ob-
serve that the blow-up is more robust for higher space dimensions and the scaling
factor cl decreases as n increases, which may be partially due to the stronger nonlin-
earity in the vortex stretching term with larger n. Similar to the 3D Euler equations,
we see cl quickly increases with \alpha , and has the trend to go to infinity as \alpha \rightarrow \alpha \ast . We
observe that the stream function \psi 1 becomes almost linear in the near field along the
rescaled z variable (denoted as \zeta ) as \alpha \rightarrow \alpha \ast . Another interesting observation is that
\omega 1 becomes increasingly flat as a function of the rescaled r variable \xi . Based on this
observation, we propose a simplified one-dimensional (1D) model along the z-direction
by extending \omega 1 as a constant in the r-direction. This is equivalent to approximating
\omega \theta (r, z, t) \approx r\alpha \omega 1(0, z, t), which still captures the effect of the H\"older continuity of
\omega \theta through r\alpha . Although this 1D model is supposed to give a good approximation
of the 3D Euler equation as \alpha \rightarrow \alpha \ast , we also observe that it can approximate the
self-similar profile of the 3D Euler equation along the z-axis and its scaling factor cl
very well even for small \alpha . The analysis of the 1D model should shed useful light on
the blow-up mechanism of the 3D and the n-D Euler equations.

There has been exciting recent progress on the global regularity of the high-
dimensional axisymmetric Euler equations with no swirl with smooth initial data
under some assumptions; see, e.g., [12, 46, 37]. In particular, when n= 4, Choi, Jeong,
and Lim [12] proved global regularity of the four-dimensional (4D) axisymmetric Euler
equation with no swirl under the assumption that the initial vorticity satisfies some
decay condition at infinity and is vanishing at the symmetry axis. Further, if the
initial vorticity is of one sign, they proved global regularity for n \leq 7. This result is
further improved in a subsequent paper by Lim [37] to any dimension n \geq 4 under
a similar decay assumption and for one-signed vorticity. In [46], Miller showed that
the four- and higher-dimensional axisymmetric Euler equations with no swirl have
properties which could lead to finite-time blow-up that is excluded for the 3D Euler
equation. The author also considered a model for the infinite-dimensional vorticity
equation, which exhibits finite-time blow-up of a Burgers shock type. The blow-up
result of this model equation seems to suggest that the Euler equation in sufficiently
high dimension is likely to develop a finite-time blow-up with smooth initial data.

In an excellent survey paper by Drivas and Elgindi [18], the authors discussed
singularity formation in the high-dimensional incompressible Euler equation in some
details. In particular, the authors asked in their Open Question 7 that if singularities
can form from smooth data for the axisymmetric no-swirl Euler equations on \BbbR n when
n\geq 4. To the best of our knowledge, there has been no strong numerical evidence for
potential finite-time blow-up for the n-dimensional axisymmetric Euler equation with
no swirl and smooth initial data. We have performed such computation by ourselves
and did not find any evidence for finite-time blow-up. One of the reasons for the non-
blow-up is that the quantity \omega \theta /rn - 2 satisfies a transport equation with no vortex
stretching, thus \omega \theta /rn - 2 satisfies a maximum principle. As long as \omega \theta /rn - 2 is well
defined at t= 0 and \omega \theta decays rapidly at infinity, we will have control of the maximum
growth of vorticity, thus there is no finite-time blow-up [12, 46, 37].

Theoretical analysis of the 3D Euler equations have been studied for a long time.
The Beale--Kato--Majda (BKM) blow-up criterion [2, 23] gives a necessary and suffi-
cient condition for the finite-time singularity for the smooth solutions of the 3D Euler
equations at time T if and only if

\int T
0
\| \omega (\cdot , t)\| L\infty dt=+\infty . This result also holds true
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1330 THOMAS Y. HOU AND SHUMAO ZHANG

for H\"older continuous initial data (see Theorem 4.3 of [44]) and can be easily general-
ized to high-dimensional Euler equations. In [13], Constantin, Fefferman, and Majda
asserted that there will be no finite-time blow-up if the velocity u is uniformly bounded
and the direction of vorticity \xi = \omega /| \omega | is sufficiently regular (Lipschitz continuous)
in an O(1) domain containing the location of the maximum vorticity. Inspired by the
work of [13], Deng, Hou, and Yu developed a more localized non-blow-up criterion
using a Lagrangian approach in [17].

There have been a number of numerical attempts in search of the potential finite-
time blow-up. The finite-time blow-up in the numerical study was first reported by
Grauer and Sideris [25] and Pumir and Siggia [48] for the 3D axisymmetric Euler
equations. However, the later work of E and Shu [19] suggested that the finite-time
blow-up in [25, 48] could be caused by numerical artifact. Kerr and his collaborators
[29, 3] presented finite-time singularity formation in the Euler flows generated by a
pair of perturbed antiparallel vortex tubes. In [28], Hou and Li reproduced Kerr's
computation using a similar initial condition with much higher resolutions and did
not observe finite-time blow-up. The maximum vorticity grows slightly slower than
double exponential in time. Later, Kerr confirmed in [30] that the solutions from
[29] eventually converge to a superexponential growth and are unlikely to lead to a
finite-time singularity.

In [4, 52], Caflisch and his collaborators studied axisymmetric Euler flows with
complex initial data and reported singularity formation in the complex plane. The
review paper [24] lists a more comprehensive collection of interesting numerical results
with more detailed discussions.

Due to the lack of stable structure in the potentially singular solutions, the pre-
viously mentioned numerical results remain inconclusive. In [41, 42], Luo and Hou
reported that the 3D axisymmetric Euler equations with a smooth initial condition
developed a self-similar finite-time blow-up in the meridian plane on the boundary
of r = 1; see also [43]. The Hou--Luo blow-up scenario has generated a great deal
of interest in both the mathematics and fluid dynamics communities, and inspired a
number of subsequent developments [33, 32, 31, 11, 10, 6, 9, 7, 8, 15, 14, 5].

We remark that there has been recent exciting progress on the theoretical study
of singularity formation of the two-dimensional (2D) Boussinesq system and the 3D
Euler equations. In [21], Elgindi and Pasqualotto established finite-time singularity
formation for C1,\alpha solutions to the Boussinesq system that are compactly supported on
\BbbR 2 and infinitely smooth except in the radial direction at the origin. In [15], Cordoba,
Martinez-Zorao, and Zheng constructed non-self-similar blow-up solutions of the 3D
axisymmetric Euler equation with no swirl and C\alpha initial vorticity, which is smooth
except at the origin. Inspired by the work of [15], Chen in [5] showed that Elgindi's
C1,\alpha self-similar blow-up can be improved to be smooth except at the origin. Further,
Cordoba and Martinez-Zorao constructed finite-time singularity of 3D incompressible
Euler equations with velocity in C3,1/2 \cap L2 and uniform C1,1/2 - \epsilon \cap L2 force.

The rest of this paper is organized as follows. In section 2, we briefly introduce the
numerical method. We present the evidence of the potential self-similar blow-up in
section 3, and provide the resolution study and scaling analysis for the case of \alpha = 0.1.
In section 4 we use the dynamic rescaling method to provide further evidence of the
potential blow-up. In section 5, we consider the potential finite-time blow-up in the
general case of the H\"older exponent \alpha and the dimension n. The sensitivity of the
potential blow-up to the initial data is considered in section 6, and the comparison of
our potential blow-up scenario with Elgindi's scenario in [20] is discussed in section 7.
Section 8 is devoted to a 1D model to study the potential self-similar blow-up of the
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1331

n-dimensional axisymmetric Euler equations. Some concluding remarks are made in
section 9.

2. Problem set up and numerical method. In this section, we give details
about the setup of the problem, the initial data, the boundary conditions, and some
basic properties of the equations, and our numerical method.

2.1. Boundary conditions and symmetries. We consider (1.5) in a cylinder
region

\scrD cyl = \{ (r, z) : 0\leq r\leq 1\} .

We impose a periodic boundary condition in z with period 1:

\omega 1(r, z) = \omega 1(r, z + 1), \psi 1(r, z) =\psi 1(r, z + 1).(2.1)

In addition, we enforce that (\omega 1,\psi 1) are odd in z at z = 0:

\omega 1(r, z) = - \omega 1(r, - z), \psi 1(r, z) = - \psi 1(r, - z).(2.2)

And this symmetry will be preserved dynamically by the 3D Euler equations.
At r = 0, it is easy to see that ur(0, z) = 0, so there is no need for the boundary

condition for \omega 1 at r = 0. Since \psi \theta = r\psi 1 will at least be C2-continuous, according
to [38, 39], \psi \theta must be an odd function of r. Therefore, we impose the following pole
condition for \psi 1:

\psi 1,r(0, z) = 0.(2.3)

We impose the no-flow boundary condition at the boundary r= 1:

\psi 1(1, z) = 0.(2.4)

This implies that ur(1, z) = 0. So there is no need to introduce a boundary condition
for \omega 1 at r= 1.

Due to the periodicity and the odd symmetry along the z-direction, (1.3) need
only be solved on the half-periodic cylinder

\scrD = \{ (r, z) : 0\leq r\leq 1,0\leq z \leq 1/2\} .

The above boundary conditions of \scrD show that there is no transport of the flow across
its boundaries. Indeed, we have

ur = 0 on r= 0 or 1, and uz = 0 on z = 0 or 1/2.

Thus, the boundaries of \scrD behave like ``impermeable walls"".

2.2. Initial data. Inspired by the potential blow-up scenario in [26], we propose
the following initial data for \omega 1 in \scrD :

\omega \circ 
1 =

 - 12000
\bigl( 
1 - r2

\bigr) 18
sin(2\pi z)

1 + 12.5cos2(\pi z)
.(2.5)

Later, we will see in section 6 that the self-similar singularity formation has some
robustness to the choice of initial data. We solve the Poisson equation (1.5b) to get
the initial value \psi \circ 

1 of \psi 1.
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1332 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 1. 3D profiles of the initial value  - \omega \circ 
1 and  - \psi \circ 

1 .

Fig. 2. The initial data for the angular vorticity \omega \theta .

Fig. 3. Initial velocity fields ur and uz.

The 3D profiles of (\omega \circ 
1 ,\psi 

\circ 
1) can be found in Figure 1. Since most parts of \omega \circ 

1 and
\psi \circ 
1 are negative, we negate them for better visual effect when generating figures. In

Figure 2, we show the 3D profile and pseudocolor plot of the angular vorticity \omega \theta at
t= 0. We can see that there is a sharp drop to zero of  - \omega \theta near r = 0, which is due
to the H\"older continuous of \omega \theta at r= 0.

We plot the initial velocity fields ur and uz in Figure 3. We can see that ur

is primarily positive near z = 0 and negative near z = 1/2 when r is small, and
uz is mainly negative when r is small. Such a pattern suggests a hyperbolic flow
near (r, z) = (0,0) as depicted in the heuristic diagram Figure 4, which will extend
periodically in z.

2.3. Self-similar solution. Self-similar solutions are a common and important
class of solutions to nonlinear PDEs that demonstrate their intrinsic structure and
properties. A self-similar solution is when the local profile of the solution remains
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1333

Fig. 4. A heuristic diagram of the hyperbolic flow.

nearly unchanged in time after rescaling the spatial and the temporal variables of the
physical solution. For example, for (1.5), the self-similar profile is the ansatz

\omega 1(x, t)\approx 
1

(T  - t)c\omega 
\Omega 

\biggl( 
x - x0
(T  - t)cl

\biggr) 
,

\psi 1(x, t)\approx 
1

(T  - t)c\psi 
\Psi 

\biggl( 
x - x0
(T  - t)cl

\biggr) 
,

(2.6)

for some parameters c\omega , c\psi , cl, x0, and T . Here T is considered as the blow-up time,
and x0 is the location of the self-similar blow-up. The parameters c\omega , c\psi , cl are called
scaling factors.

It is also important to notice that the 3D Euler equations (1.1) enjoy the following
scaling invariant property: if (u,\omega ,\psi ) is a solution to (1.1), then (u\lambda ,\mu , \omega \lambda ,\mu ,\psi \lambda ,\mu ) is
also a solution, where

u\lambda ,\mu (x, t) =
\lambda 

\mu 
u

\biggl( 
x

\lambda 
,
t

\mu 

\biggr) 
, \omega \lambda ,\mu (x, t) =

1

\mu 
\omega 

\biggl( 
x

\lambda 
,
t

\mu 

\biggr) 
, \psi \lambda ,\mu (x, t) =

\lambda 2

\mu 
\psi 

\biggl( 
x

\lambda 
,
t

\mu 

\biggr) 
,

and \lambda > 0, \mu > 0 are two constant scaling factors. In the case of the 3D axisymmetric
Euler equations with no swirl (1.5), the scaling invariant property can be equivalently
translated to the following: if (\omega 1,\psi 1) is a solution of (1.5), then\biggl\{ 

1

\lambda \alpha \mu 
\omega 1

\biggl( 
x

\lambda 
,
t

\mu 

\biggr) 
,
\lambda 

\mu 
\psi 1

\biggl( 
x

\lambda 
,
t

\mu 

\biggr) \biggr\} 
(2.7)

is also a solution.
If we assume the existence of the self-similar solution (2.6), then the new solutions

in (2.7) should also admit the same ansatz, regardless of the values of \lambda and \mu . As a
result, we must have

c\omega = 1+ \alpha cl, c\psi = 1 - cl.(2.8)

Therefore, the self-similar profile (2.7) of (1.5) only has one degree of freedom, for
example cl, in the scaling factors. In fact, cl cannot be determined by straightforward
dimensional analysis.

As a consequence of the ansatz (2.6) and the scaling relation (2.8), we have

\| \omega \theta (x, t)\| L\infty \sim 1

T  - t
, \| \psi 1,z(x, t)\| L\infty \sim 1

T  - t
,(2.9)

which always holds true regardless of the value of cl.
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1334 THOMAS Y. HOU AND SHUMAO ZHANG

2.4. Numerical method. Although the initial data are very smooth, the so-
lutions of Euler equations quickly become very singular and concentrate in a rapidly
shrinking region. Therefore, we use the adaptive mesh method to resolve the singular
profile of the solutions. A detailed description of the adaptive mesh method can be
found in [27, 43, 55]. Here we briefly introduce the idea behind the adaptive mesh
method. The specific parameter setting used for the experiments in this work can be
found in the appendix of [55].

The Euler equations (1.5) are originally posted as an initial-boundary value prob-
lem on the computational domain (r, z)\in [0,1]\times [0,1/2]. To capture the singular part
of the solution, we introduce two variables (\kappa , \eta )\in [0,1]\times [0,1], and the maps

r= r(\kappa ), z = z(\eta ),

where we assume these two maps and their derivatives are all analytically known. We
update these two maps from time to time according to some criteria and construct
these two maps as monotonically increasing functions. We will use these two maps
to map the physical domain in (r, z) to a computational domain in (\kappa , \eta ), so that
\omega 1(r(\kappa ), z(\eta )) and \psi 1(r(\kappa ), z(\eta )) as functions of (\kappa , \eta ) are relatively smooth. Let n\kappa ,
n\eta be the number of grid points along the r- and z- directions, respectively. And let
h\kappa = 1/n\kappa , h\eta = 1/n\eta be the mesh sizes along the r- and z-directions, respectively.
We place a uniform mesh on the computation domain of (\kappa , \eta ):

\scrM (\kappa ,\eta ) = \{ (ih\kappa , jh\eta ) : 0\leq i\leq n\kappa ,0\leq j \leq n\eta \} .

This is equivalent to covering the physical domain of (r, z) with the tensor-product
mesh:

\scrM (r,z) = \{ (r(ih\kappa ), z(jh\eta )) : 0\leq i\leq n\kappa ,0\leq j \leq n\eta \} .

With properly chosen maps of r = r(\kappa ) and z = z(\eta ), the mesh \scrM (r,z) can focus on
the singular part of the solution, so that the accuracy of the numerical solution can
be greatly improved.

As we will see in the following sections, the singular part of the solutions will
gradually move towards the origin. Thus we dynamically update the maps to accom-
modate the movement of the focused region. The update of the maps is based on
an adaptive strategy that quantitatively locates the singular part of the solution and
then decides the necessity to change the maps, as well as the parameters for the new
maps. Once we update the maps, we interpolate the solutions from the old mesh to
the new mesh and use the new computational domain. In our algorithm, we adopt a
second-order implementation for our adaptive mesh method. In section 3.3, we will
perform resolution study to confirm the order of accuracy of our numerical method.

3. Numerical evidence for a potential self-similar singularity. In this
section, we will focus on the case with H\"older exponent \alpha = 0.1, and provide numerical
evidences for the potential self-similar singularity observed from the 3D axisymmetric
Euler equations with no swirl and with H\"older continuous initial data. For the cases
with different values of H\"older exponent \alpha , we will present the results in section 5.

3.1. Evidence for a potential singularity. On 1024\times 1024 spatial resolution,
we use the adaptive mesh method to solve (1.5) with H\"older exponent \alpha = 0.1, until
the time when the smallest adaptive mesh size gets close to the machine precision.
The final time of the computation is at t= 1.6524635\times 10 - 3, after more than 6.5\times 104

iterations in time.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1335

Fig. 5. Curves of \| \omega 1\| L\infty , \| \omega \| L\infty , log log \| \omega \| L\infty ,
\int t
0 \| \omega (s)\| L\infty ds, \| \psi 1,z\| L\infty as functions of

time t.

In Figure 5, we plot the dynamic growth of several important quantities of the
solution. The magnitude of \omega 1 has grown significantly, especially near the end of
the computation. At the final time of the computation, \| \omega 1\| L\infty has increased by a
factor of around 5400, and \| \omega \| L\infty has increased by a factor of more than 560. We
also observe that the double logarithm curve of the maximum vorticity magnitude,
log log \| \omega \| L\infty , maintains a superlinear growth, and the time integral

\int t
0
\| \omega (s)\| L\infty ds

has rapid growth with strong growth inertia close to the stopping time. This provides
strong evidence for a potential finite-time blow-up of the 3D Euler equations by the
BKM blow-up criterion. We see rapid increase in \| \psi 1,z\| L\infty in time, which shows
very strong vortex stretching term  - (n - 2 - \alpha )\psi 1,z\omega 1 near the potential finite-time
blow-up. We analyze their scaling time t in section 3.4.

In Figure 6, we plot the 3D profiles of \omega 1, \psi 1, \omega 
\theta , \psi \theta , ur, and uz near the origin at

the end of our computation. We can see that \omega 1 is very concentrated near the origin,
and so is \omega \theta . Therefore, we further zoom-in around the origin and plot the local near
field profiles of \omega 1 and \omega \theta in Figure 7. We observe that the ``peak"" of  - \omega 1 locates at
the z-axis where r= 0, and is being pushed toward the origin as implied by the velocity
field ur, uz. We denote by (R1(t),Z1(t)) the position at which | \omega 1| achieves its max-
imum at time t. We have R1(t) = 0. At (R1(t),Z1(t)), the radial velocity ur is zero,
and the axial velocity uz is negative, which pushes (R1(t),Z1(t)) toward the origin.

In Figure 8, we plot the local velocity field near the maximum of  - \omega \theta and  - \omega 1,
respectively. We use the pseudocolor plots of  - \omega \theta and  - \omega 1 as the background, re-
spectively, for the figure in the left and the right subplots, and mark the maximum
of  - \omega \theta or  - \omega 1 with the red dot. The velocity field demonstrates a clear hyperbolic
structure as depicted by Figure 4. And the velocity field clearly pushes the maximum
(R1(t),Z1(t)) of  - \omega 1 toward the origin.

In Figure 9, we show the local streamlines near the maximum of  - \omega \theta in \BbbR 3. The
maximum of  - \omega \theta locates on the red ring centered at (0,Z1(t)) along the z-axis. In
the left figure, we plot a set of streamlines that travel through the maximum ring
from top to bottom. And in the right figure, we plot a set of streamlines that travel
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1336 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 6. Profiles of  - \omega 1,  - \psi 1,  - \omega \theta ,  - \psi \theta , ur, and  - uz near the origin at t= 1.6524635\times 10 - 3.

Fig. 7. Further zoomed-in profiles of  - \omega 1 and  - \omega \theta near the origin at t= 1.6524635\times 10 - 3.

Fig. 8. The local velocity field near the maximum of  - \omega \theta and  - \omega 1. The pseudocolor plot of
 - \omega \theta or  - \omega 1 is the background, and the red dot is its maximum. (Figure in color online.)

around the maximum ring from top to bottom. From Figure 9, we notice that the
streamlines are axisymmetric, and do not form swirl around the z-axis.

In Figure 10, we show the curve of the maximum location of  - \omega 1, Z1, and the
kinetic energy E, as functions of time. We can see that Z1(t) monotonically decreases
to zero with t. The curve of Z1(t) seems to be convex, especially in time windows
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1337

Fig. 9. The local streamlines near the origin. The green pole is the z-axis, and the red ring is
where  - \omega \theta achieves its maximum. (Figure in color online.)

Fig. 10. Curves of Z1 and E as functions of time t.

close to the stopping time. We refer to section 3.4 for more study of the behavior of
Z1(t). The kinetic energy E, which is defined as

E =
1

2

\int 
\scrD 
| u| 2 dx= \pi 

\int 1

0

\int 1/2

0

\Bigl( 
| ur| 2 + | uz| 2

\Bigr) 
rdrdz,

for our axisymmetric case with no swirl, is a conservative quantity of the 3D Euler
equations. In Figure 10, we can see that there is little change of the kinetic energy E as
a function of time t. In fact, the major reason for the change of E in our computation
is due to the update of adaptive mesh, where we need to interpolate \omega 1 and \psi 1 from
an old mesh to a new mesh. Since the new adaptive mesh will focus more on the near
field around the origin, the far field velocity field might lose some accuracy, leading to
a change in the kinetic energy E. However, such an update of adaptive mesh occurs
only 35 times out of the total 65000 iterations in time, and the change in the kinetic
energy E in each update is negligible. By the end of the computation, the change in
the kinetic energy E is at most 1.4\times 10 - 4 of the magnitude of E.

3.2. Evidence for a potential self-similar blow-up. We observe a potential
self-similar blow-up in our numerical solution. To check the self-similar property, we
visualize the local profile of the rescaled \omega 1 near the origin. Recall that (0,Z1) is the
maximum location of  - \omega 1, we define

\^\omega 1(\^r, \^z, t) = \omega 1 (Z1(t)\^r,Z1(t)\^z, t)/\| \omega 1(t)\| L\infty ,

as the rescaled version of \omega 1. The above definition rescales the magnitude of | \^\omega 1| to
1, and rescales the maximum location of | \^\omega 1| to (\^r, \^z) = (0,1). We plot the profiles
of  - \^\omega 1 near the origin at different time instants and the contours of  - \^\omega 1(\^r, \^z) at
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1338 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 11. Left and middle: Local profiles of  - \^\omega 1 at t = \{ 1.6507447, 1.6520384\} \times 10 - 3. Right:
Local contours of  - \^\omega 1 at t= \{ 1.6507447, 1.6512953, 1.6517173, 1.6520384\} \times 10 - 3.

Fig. 12. Cross sections of  - \^\omega 1 at different times.

different times in Figure 11. The profile of  - \^\omega 1 seems to change slowly in the late
time, indicating a potential self-similar structure of the blow-up profile near the origin.
In other words, x0 = 0 in the self-similar ansatz (2.6).

In Figure 12, we plot the cross sections of  - \^\omega 1 at \^r = 0 and \^z = 1. The cross
section at \^r = 0 shows a good potential for a self-similar blow-up, while the cross
section at \^z = 1 shows that the blow-up profile has not converged to a self-similar
profile yet. This is reasonable because although we are very close to the potential
blow-up time, the strong collapsing along the z-direction and the effect of round-off
errors prevent us from continuing the computation. We refer to section 4 where we
use the dynamic rescaling method and indeed observe numerically the convergence to
the potential self-similar profile.

3.3. Resolution study. We perform resolution study on the numerical solutions
of (1.5) to confirm the accuracy of our numerical solutions. We first simulate the
equations on spatial resolutions of 256k \times 256k with k = 1,2, . . . ,6. The highest
resolution we used is 1536 \times 1536. Next, for the numerical solution at resolution
256k \times 256k, we compute its sup-norm relative error in several chosen quantities at
selected time instants using the numerical solution at resolution 256(k+1)\times 256(k+1)
as the reference, for k = 1,2, . . . ,5. Finally, we use the relative error obtained above
to estimate the convergence order of the numerical method.

We consider two types of quantities. The first type is the function of the solutions.
Here we consider the magnitude of \omega 1, \| \omega 1\| L\infty , the maximum norm of vorticity,
\| \omega \| L\infty , and the kinetic energy E. We remark that \| \omega 1\| L\infty and \| \omega \| L\infty only depend
on the local field near the origin, and E should be considered as a global quantity. The
second type is the vector fields of \omega 1, \psi 1, u

r, and uz that are actively participating
in the simulated system (1.5).
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1339

Fig. 13. Relative errors and convergence orders of \| \omega 1\| L\infty , \| \omega \| L\infty , and E in sup-norm.

For each quantity, we use qk to represent the estimate we get at resolution 256k\times 
256k. Then the sup-norm relative error ek is defined as

ek = \| qk  - qk+1\| L\infty /\| qk+1\| L\infty .

If qk is a vector field, we first interpolate it to the reference resolution 256(k + 1)\times 
256(k + 1), and then compute the relative error as above. The convergence order of
the error \beta k at this resolution can be estimated via

\beta k = log

\biggl( 
ek - 1

ek

\biggr) \Big/ 
log

\biggl( 
k

k - 1

\biggr) 
.

In Figure 13, we plot the relative error of the quantities \| \omega 1\| L\infty , \| \omega \| L\infty , and
E for t \in [0,1.6 \times 10 - 3], and the convergence order of the error in the late time
t\in [1\times 10 - 3,1.6\times 10 - 3]. We observe a numerical convergence with order slightly higher
than 2. The convergence order is quite stable in the time interval of our computation.

In Table 1, we list the relative error and convergence order of the vector fields at
t= 1.6\times 10 - 3. The convergence order stays well above 2, suggesting at least a second-
order convergence for our numerical solver of the 3D axisymmetric Euler equations.

3.4. Scaling analysis. In this section, we quantify the scaling property of the
potential blow-up observed in our computation. This scaling analysis will give more
supporting evidence that the potential blow-up satisfies the BKM blow-up criterion.
It also uncovers more properties of the potential blow-up.

As discussed in (2.6) of section 2.3, if there is a self-similar blow-up, the scaling
invariant property of the 3D Euler equations will ensure that \| \omega \| L\infty \sim 1/(T  - t) and
\| \psi 1,z\| L\infty \sim 1/(T  - t). Therefore, we examine this property by regressing \| \omega \|  - 1

L\infty and
\| \psi 1,z\|  - 1

L\infty against t, respectively. More specifically, for a quantity v, which is either
\| \omega \|  - 1

L\infty or \| \psi 1,z\|  - 1
L\infty , we perform the least square fitting of the model

v\sim a \cdot (b - t),

in searching for constants a and b, where a is the negated slope of the fitted line, and
b can be considered as the estimate time of the blow-up. In Figure 14, we visualize
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1340 THOMAS Y. HOU AND SHUMAO ZHANG

Table 1
Relative errors and convergence orders of \omega 1, \psi 1, ur and uz in sup-norm.

Sup-norm relative error at t= 1.6\times 10 - 3

Mesh size \omega 1 Order \psi 1 Order

256\times 256 2.545\times 10 - 1 - 5.912\times 10 - 3 -

512\times 512 5.478\times 10 - 2 2.216 1.168\times 10 - 3 2.340

768\times 768 1.969\times 10 - 2 2.524 4.136\times 10 - 4 2.560

1024\times 1024 9.189\times 10 - 3 2.655 1.926\times 10 - 4 2.656

1280\times 1280 5.008\times 10 - 3 2.720 1.050\times 10 - 4 2.719

Sup-norm relative error at t= 1.6\times 10 - 3

Mesh size ur Order uz Order

256\times 256 2.035\times 10 - 2 - 8.095\times 10 - 3 -

512\times 512 3.954\times 10 - 3 2.364 1.533\times 10 - 3 2.310

768\times 768 1.405\times 10 - 3 2.552 5.793\times 10 - 4 2.556

1024\times 1024 6.540\times 10 - 4 2.658 2.699\times 10 - 4 2.655

1280\times 1280 3.594\times 10 - 4 2.682 1.472\times 10 - 4 2.719

Fig. 14. Linear fitting of 1/\| \omega \| L\infty and 1/\| \psi 1,z\| L\infty with time.

the data points and the fitted line using data between t = 1.6500174 \times 10 - 3 and
t= 1.6520384\times 10 - 3. The R2 of the fitting between \| \omega \|  - 1

L\infty and t is 1 - 1.28\times 10 - 4,
and the R2 of the fitting between \| \psi 1,z\|  - 1

L\infty and t is 1 - 1.21\times 10 - 5. Such high R2

values show strong linear relation between \| \omega \|  - 1
L\infty , \| \psi 1,z\|  - 1

L\infty , and t. Moreover, the
fittings of the two quantities estimate the blow-up time to be b = 1.6529356\times 10 - 3

and b = 1.6529325 \times 10 - 3, respectively. These two blow-up times agree with each
other up to six digits. Therefore, Figure 14 provides further evidence that the 3D
Euler equations develop a potential finite-time singularity.

We next move to fit the scaling factors cl and c\omega used in the self-similar ansatz
(2.6) of the solutions. Since the functions \Omega and \Psi are time-independent in (2.6), we
should have that

Z1 \sim (T  - t)cl , \| \omega 1\|  - 1
L\infty \sim (T  - t)c\omega ,

where we recall that Z1 = Z1(t) is the z-coordinate of the maximum location of
 - \omega 1. Due to the unknown powers cl and c\omega , the direct fitting of the above model
is nonlinear. Therefore, we turn to a searching algorithm for the power variable.
Specifically, for a quantity v, that is either Z1 or \| \omega 1\|  - 1

L\infty , we search for a power c
such that the linear regression of

v1/c \sim a \cdot (b - t)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

8/
24

 to
 1

31
.2

15
.2

20
.1

63
 b

y 
T

ho
m

as
 H

ou
 (

ho
u@

ac
m

.c
al

te
ch

.e
du

).
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1341

has the largest R2 value up to some error tolerance. We will start with a guessed
window of the power c, and then exhaust the value of c within the window up to
some error tolerance, and choose c with the largest R2 value. If the optimal c we
searched for falls on the boundary of the current window, we then adaptively adjust
the window size and location, and repeat the above procedure. When the optimal
searched c falls within the interior of the window, we stop the searching.

In Figure 15, we demonstrate the result of the searching. We can see that with the
chosen c, the linear regression achieves a very high R2 value, suggesting a strong linear
relation. The relative error between the estimated blow-up time and the previous
estimate smaller than 7.8 \times 10 - 5. Moreover, the searching suggests that cl \approx 4.20
and c\omega \approx 1.41, and these estimated values of cl and c\omega satisfy the scaling relation
c\omega = 1+ \alpha cl in (2.8) approximately.

It is worth emphasizing that the estimated cl is well above 1, and this explains
the convex curve of Z1(t) as observed in Figure 10 in section 3.1.

We remark that we did not perform the searching algorithm with \| \psi 1\| L\infty to find
out the scaling factor c\psi , so that we could check the other scaling relation c\psi = 1 - cl
in (2.8). This is because \| \psi 1\| L\infty is mainly affected by the far field behavior of
\psi 1, as shown in Figure 6. However, the self-similar ansatz (2.6) is only valid in the
near field, so such fitting is meaningless. In fact, the good fitting between \| \psi 1,z\|  - 1

L\infty 

and t already implies that c\psi = 1 - cl, because the self-similar ansatz suggests that
\| \psi 1,z\|  - 1

L\infty \sim (T  - t)c\psi +cl .
Finally, we perform the above fitting of different quantities using different spatial

resolutions, and summarize the results in Table 2. We can see that the fitting has
excellent quality at all spatial resolutions, and the fitted parameters are consistent
across different spatial resolutions.

Fig. 15. Linear fitting of Z
1/c
1 and \| \omega 1\|  - 1/c

L\infty with time.

Table 2
Fitting results of \| \omega \|  - 1

L\infty , \| \psi 1,z\|  - 1
L\infty , Z1, and \| \omega 1\|  - 1

L\infty at different mesh sizes.

Mesh size
1/‖ω‖L∞ 1/‖ψ1,z‖L∞

103 × b R2 103 × b R2

1024× 1024 1.6529356 0.99987 1.6529325 0.99999
1280× 1280 1.6527953 1.00000 1.6528189 1.00000
1536× 1536 1.6525824 1.00000 1.6527396 1.00000

Mesh size
Z1 1/‖ω1‖L∞

c 103 × b R2 c 103 × b R2

1024× 1024 4.20 1.6529889 0.99994 1.41 1.6530613 0.99986
1280× 1280 4.21 1.6527877 0.99999 1.42 1.6527894 1.00000
1536× 1536 4.25 1.6526864 1.00000 1.41 1.6526953 1.00000
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1342 THOMAS Y. HOU AND SHUMAO ZHANG

4. The dynamic rescaling formulation. In order to better study the potential
self-similar singularity as we have observed in section 3.2, we add extra scaling terms
to (1.5) and write

\~\omega 1,\tau +
\bigl( 
\~cl\xi + \~u\xi 

\bigr) 
\~\omega 1,\xi +

\bigl( 
\~cl\zeta + \~u\zeta 

\bigr) 
\~\omega 1,\zeta =

\Bigl( 
c\omega  - (1 - \alpha ) \~\psi 1,\zeta 

\Bigr) 
\~\omega 1,(4.1a)

 - \~\psi 1,\xi \xi  - \~\psi 1,\zeta \zeta  - 
3

\xi 
\~\psi 1,\xi = \~\omega 1\xi 

\alpha  - 1,(4.1b)

\~u\xi = - \xi \~\psi 1,\zeta , \~u\zeta = 2 \~\psi 1 + \xi \~\psi 1,\xi ,(4.1c)

where \~cl = \~cl(\tau ), \~c\omega = \~c\omega (\tau ) are scalar functions of \tau . In (4.1a), the terms \~cl\xi \partial \xi and
\~cl\zeta \partial \zeta stretch the solutions in space to maintain a finite support of the self-similar blow-
up solution. The term \~c\omega \~\omega 1 acts as a damping term to ensure that the magnitude
of \~\omega 1 remains finite. The combined effect of these terms dynamically rescales the
solution to capture the potential self-similar profile. Such dynamic rescaling strategy
has widely been used in the study of singularity formation of nonlinear Schr\"odinger
equations as in [45, 35, 36, 34, 47]. And recently it has been used to study singularity
formation of the 3D Euler equations as in [27, 6, 9].

If we define

\~c\psi (\tau ) = \~c\omega (\tau ) + (1 + \alpha )\~cl(\tau ),(4.2)

we can check that (4.1) admits the following solution:

\~\omega 1(\xi , \zeta , \tau ) = \~C\omega (\tau )\omega 1

\Bigl( 
\~Cl(\tau )\xi , \~Cl(\tau )\zeta , t(\tau )

\Bigr) 
,

\~\psi 1(\xi , \zeta , \tau ) = \~C\psi (\tau )\psi 1

\Bigl( 
\~Cl(\tau )\xi , \~Cl(\tau )\zeta , t(\tau )

\Bigr) 
,

(4.3)

where (\omega 1,\psi 1) is the solution to (1.5), and

\~C\omega (\tau ) = exp

\biggl( \int \tau 

0

\~c\omega (s)ds

\biggr) 
, \~C\psi (\tau ) = exp

\biggl( \int \tau 

0

\~c\psi (s)ds

\biggr) 
,

\~Cl(\tau ) = exp

\biggl( 
 - 
\int \tau 

0

\~cl(s)ds

\biggr) 
, t\prime (\tau ) = \~C\psi (\tau ) \~Cl(\tau ) = \~C\omega (\tau ) \~C

 - \alpha 
l (\tau ).

The new equations (4.1) leave us with two degrees of freedom: we are free to
choose \{ \~cl(\tau ), \~c\omega (\tau )\} . This allows us to impose the following normalization conditions:

\~\omega 1(0,1, \tau ) = - 1, \~\omega 1,\zeta (0,1, \tau ) = 0, for \tau \geq 0.(4.4)

These two conditions will help fix the maximum value of  - \~\omega 1 at 1 and the maximum
location at (\xi , \zeta ) = (0,1).

One way to enforce the normalization conditions, as used in many literatures like
[27, 40], is to first enforce them at \tau = 0 using the scaling invariant relation (2.7), and
then enforce their time derivatives to be zero

\partial 

\partial \tau 
\~\omega 1(0,1, \tau ) = 0,

\partial 

\partial \tau 
\~\omega 1,\zeta (0,1, \tau ) = 0, for \tau \geq 0.(4.5)

Using (4.1a), the above conditions are equivalent to

\~cl(\tau ) = - 2 \~\psi 1(0,1, \tau ) - (1 - \alpha ) \~\psi 1,\zeta \zeta (0,1, \tau )
\~\omega 1(0,1, \tau )

\~\omega 1,\zeta \zeta (0,1, \tau )
,

\~c\omega (\tau ) =(1 - \alpha ) \~\psi 1,\zeta (0,1, \tau ).

(4.6)
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1343

However, it is hard to evaluate (4.6) accurately, because it requires calculating second-
order derivatives. More importantly, due to the complicated nonlinear nature of
(4.1a), even if (4.6) can be accurately evaluated, the temporal discretization (Runge--
Kutta method) makes it difficult to enforce (4.4) exactly for the next time step. As a
result, imposing (4.5) is not as helpful to preserve the normalization conditions (4.4) in
the following time steps. The maximum magnitude and location will gradually change
in time, which makes it difficult to compute the self-similar profile numerically.

4.1. The operator splitting strategy. To enforce the normalization condi-
tions (4.4) accurately at every time step, we utilize the operator splitting method and
rewrite (4.1a) as

\~\omega 1,\tau = F (\~\omega 1) +G(\~\omega 1),(4.7)

where F (\~\omega 1) = - \~u\xi \~\omega 1,\xi  - \~u\zeta \~\omega 1,\zeta  - (1 - \alpha ) \~\psi 1,\zeta \~\omega 1 contains the original terms in (1.5a),
and G(\~\omega 1) =  - \~cl\xi \~\omega 1,\xi  - \~cl\zeta \~\omega 1,\zeta + \~c\omega \~\omega 1 is the linear part that controls the rescaling.
Here we view \~\psi 1 as a function of \~\omega 1 through the Poisson equation (4.1b). The operator
splitting method allows us to solve (4.1a) by solving \~\omega 1,\tau = F (\~\omega 1) and \~\omega 1,\tau = G(\~\omega 1)
alternatively.

We can use the standard Runge--Kutta method to solve \~\omega 1,\tau = F (\~\omega 1). As for
\~\omega 1,\tau =G(\~\omega 1), we notice that there is a closed form solution for the initial value problem

\~\omega 1(\xi , \zeta , \tau ) = \~C\omega (\tau )\~\omega 1

\Bigl( 
\~Cl(\tau )\xi , \~Cl(\tau )\zeta ,0

\Bigr) 
,(4.8)

where \~C\omega (\tau ) = exp
\bigl( \int \tau 

0
\~c\omega (s)ds

\bigr) 
and \~Cl(\tau ) = exp

\bigl( 
 - 
\int \tau 
0
\~cl(s)ds

\bigr) 
.

In the first step, solving \~\omega 1,\tau = F (\~\omega 1) will violate the normalization conditions
(4.4). But we will correct this error in the second step by solving \~\omega 1,\tau =G(\~\omega 1) with a
smart choice of \~Cl and \~C\omega in (4.8). In other words, at every time step when we solve
\~\omega 1,\tau = G(\~\omega 1), we can exactly enforce (4.4) by properly choosing \~Cl and \~C\omega in (4.8).
We could also adopt Strang's splitting [53] for better temporal accuracy.

4.2. Numerical settings. Now we numerically solve the dynamic rescaling for-
mulation (4.1). For the initial condition, we use the solution obtained from the final
iteration of the adaptive mesh method in section 3.1, and use the relation (2.7) to
enforce the normalization conditions (4.5). Now that the maximum location of \~\omega 1 is
pinned at (\xi , \zeta ) = (0,1), we focus on a large computational domain

\scrD \prime = \{ (\xi , \zeta ) : 0\leq \xi \leq D,0\leq \zeta \leq D/2\} ,

with domain size D= 1\times 105. The reason for such large domain size is because under
the normalization of the dynamic rescaling formulation, the original computational
domain (r, z) \in [0,1] \times [0,1/2] is now equivalent to (\xi , \zeta ) \in [0,1/Z1] \times [0,1/2/Z1].
This domain grows large quickly as Z1 tends to zero. While we adopt the boundary
conditions at \xi = 0 and \zeta = 0 of (1.5) in section 2.1, we need to find a good far field
boundary conditions for \~\psi 1. Due to extra stretching terms, the far field boundary
for \~\psi 1 will no longer correspond to the far field boundary for \psi 1, namely r = 1 and
z = 1/2. However, we notice that \psi 1,r decays rapidly with respect to r, and \psi 1,z

decays rapidly with respect to z. For example, Figure 16 shows the decay of \psi 1,r as
r\rightarrow 1 and the decay of \psi 1,z as z\rightarrow 1/2 for the solution to (1.5) at t= 1.6524635\times 10 - 3.
Therefore, it is reasonable to impose the zero Neumann boundary condition at the
far field boundaries of \scrD \prime : \xi = D and \zeta = D/2. Due to the size of the computation
domain\scrD \prime and the presence of the vortex stretching terms, the error introduced by this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1344 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 16. Decay of the derivatives of \psi 1.

Fig. 17. Left: Curves of the normalized quantities \| \~\omega 1(\tau )\| L\infty and Z1(\tau ). Right: Curve of the
relative time derivative strength \| \~\omega 1,\tau (\tau )\| L\infty /\| \~\omega 1(\tau )\| L\infty .

boundary condition will have little influence on the near field around (\xi , \zeta ) = (0,1).
We will discuss in detail the influence of the domain size D in section 4.4 and in the
end of section 5.1.

We remark that we still need the adaptive mesh in the r- and z-directions, because
we not only need to cover a very large field, but also need to focus around (\xi , \zeta ) = (0,1).
The adaptive mesh that we use to solve the dynamic rescaling formulation will not
change during the computation, since the dynamically rescaled vorticity has its maxi-
mum location fixed at (\xi , \zeta ) = (0,1) for all times instead of traveling toward the origin.

4.3. Convergence to the steady state. We solve (4.1) until it converges to
a steady state. In the left subplot of Figure 17, we monitor how the normalization
conditions (4.5) are enforced. The two normalized quantities, \| \~\omega 1(\tau )\| L\infty and Z1(\tau ),
are essentially fixed at 1, and in fact, they deviate from 1 by less than 5.14\times 10 - 4. In
the right subplot of Figure 17, We view the system (4.1) as an ODE of \~\omega 1 as in (4.7),
and plot the relative strength of the time derivative

\| \~\omega 1,\tau \| L\infty /\| \~\omega 1\| L\infty = \| F (\~\omega 1) +G(\~\omega 1)\| L\infty /\| \~\omega 1\| L\infty ,

as a function of time \tau . This relative strength of the time derivative has a decreasing
trend and drops below 8.18\times 10 - 6 near the end of the computation, which implies
that we are very close to the steady state.

When the solution of (4.1) converges to a steady state, \~\omega 1 and \~\psi 1 are independent
of the time \tau . Therefore, we should have the following relation from (4.3):

\omega 1(r, z, t)\sim \~C - 1
\omega (\tau (t))\~\omega 1

\Bigl( 
\~C - 1
l (\tau (t))r, \~C - 1

l (\tau (t))z
\Bigr) 
,

\psi 1(r, z, t)\sim \~C - 1
\psi (\tau (t)) \~\psi 1

\Bigl( 
\~C - 1
l (\tau (t))r, \~C - 1

l (\tau (t))z
\Bigr) 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1345

where \tau = \tau (t) is the rescaled time variable. Comparing the above relation with the
ansatz stated in (2.6), we conclude that

cl = - \~cl
\~c\omega + \alpha \~cl

, c\omega =
\~c\omega 

\~c\omega + \alpha \~cl
, c\psi =

\~c\psi 
\~c\omega + \alpha \~cl

.(4.9)

We remark that assuming (4.2), the above relation naturally guarantees that the
scaling relation (2.8) holds true.

In Figure 18, we show the curves of scaling factors \~cl, \~c\omega for the dynamic rescaling
formulation (4.1) and cl, c\omega for the self-similar ansatz (2.6). We observe a relatively
fast convergence to the steady state as time increases. The converged values cl = 4.549
and c\omega = 1.455 are close to the approximate values obtained in section 3.4. Moreover,
they also satisfy the relation (2.8).

The approximate steady states of \~\omega 1 and \~\psi 1 are plotted in Figure 19. We see
that both \~\omega 1 and \~\psi 1 are relatively flat in \xi , suggesting a possible 1D structure of
their profiles. While both functions have weak dependence on \xi ,  - \~\omega 1 seems to tilt up

Fig. 18. Convergence curves of the scaling factors using dynamic rescaling method. Top row:
\~cl and \~c\omega . Bottom row: cl and c\omega .

Fig. 19. Steady states of  - \~\omega 1 and  - \~\psi 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

8/
24

 to
 1

31
.2

15
.2

20
.1

63
 b

y 
T

ho
m

as
 H

ou
 (

ho
u@

ac
m

.c
al

te
ch

.e
du

).
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1346 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 20. Top 10 eigenvalues of the Jacobian with the largest real part.

Fig. 21. Cross sections of steady states of  - \~\omega 1 with different domain size D.

around \xi = 0 a little bit. The shape of the steady states looks similar to the shape of
the profiles we obtained via the adaptive mesh at the stopping time in Figure 7.

To study the stability of the steady states, we linearize the time-evolution equation
(4.1) of \~\omega 1 near the steady states, and compute the eigenvalues of the Jacobian matrix.
The top few eigenvalues with largest real part are plotted in Figure 20. We see that the
eigenvalues have negative real part, which demonstrates the stability of our potential
self-similar finite-time blow-up.

4.4. The domain size study. Ideally, the dynamic rescaling formulation (4.1)
should be solved in the first quadrant \scrD \prime 

\infty = \{ (\xi , \zeta ) : \xi \geq 0, \zeta \geq 0\} . In section 2, we
use a large rectangular region \scrD \prime = [0,D] \times [0,D/2], with domain size D = 105, to
approximate the unbounded domain \scrD \prime 

\infty and propose using the Neumann boundary
condition at the far field.

We study how the domain size would influence our steady state solution by ex-
tending the domain size and considering D = 1\times 105,2\times 105,4\times 105,8\times 105. Using
these four different domain sizes, we solve the dynamic rescaling formulation (4.1) to
its steady state. Figure 21 is the cross section comparison of the steady state of \~\omega 1.
We also list the scaling factor cl with different domain size D in Table 3. We can see
that, with significant larger domain size, the steady state is nearly the same, and the
scaling factor is almost the same. This shows our choice of domain size D = 105 is
large enough to approximate the steady state well.

5. The H\"older exponent and the dimension in the potential blow-up.
Starting this section, we will no longer fix the H\"older exponent \alpha = 0.1.

5.1. The H\"older exponent \bfitalpha . In his study of the finite-time blow-up of the
axisymmetric Euler equations with no swirl and with H\"older continuous initial data

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1347

Table 3
The scaling factor cl with different domain size D.

D 1\times 105 2\times 105 4\times 105 8\times 105

cl 4.549 4.546 4.545 4.545

Fig. 22. Steady states of  - \~\omega 1 with different \alpha in \BbbR 3.

[20], Elgindi assumes that \alpha is very close to zero, smaller than 10 - 14. Such small
value of \alpha is used to control the higher order terms of \alpha in Elgindi's proof. However,
as stated in Conjecture 8 of [18] by Drivas and Elgindi, such a blow-up may still hold
for a range of \alpha \in (0,1/3) for the 3D Euler equations. For \alpha > 1/3, it has been shown
by [54, 50, 51, 49, 16, 1] that the solution will be globally regular.

Therefore, we try different H\"older exponent \alpha and explore the window of \alpha that
admits potential finite-time blow-up. For each \alpha , we first use the adaptive mesh
method to solve (1.5) close enough to its potential blow-up time, and then use the dy-
namic rescaling method (4.1) to continue the computation and capture the self-similar
profile.

For our 3D axisymmetric Euler equations with initial data (2.5) with \alpha = 0.0,
0.1, 0.2, 0.3, we obtain strong evidence for the formation of self-similar singularity.
The steady states of the solutions are plotted in Figure 22. We can see that as \alpha 
increases, \~\omega 1 will have weaker dependence on \xi , and the self-similar profile becomes
more and more one-dimensional. We plot the cross sections of the steady states of
\~\omega 1 in Figure 23. As \alpha increases,  - \~\omega 1(\xi ,1) becomes more and more flat, especially in
the local window around \xi = 0. Moreover,  - \~\omega 1(0, \zeta ) seems to be insensitive to the
value of \alpha . The cross sections of the stead states of \~\psi 1 in Figure 24 shows that as \alpha 
increases,  - \~\psi 1(0, \zeta ) becomes more and more like a linear function.

As \alpha increases, cl increases rapidly. We can see from Table 4 that cl is more
than 100 when \alpha = 0.3. Such large cl can cause a lot of trouble for our adaptive
mesh method, as the collapsing speed of the solution is extremely fast. Fortunately,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1348 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 23. Cross sections of steady states of  - \~\omega 1 with different \alpha . Top row: On a local window.
Bottom row: On a larger window.

Fig. 24. Cross sections of steady states of  - \~\psi 1 with different \alpha .

Table 4
The scaling factor cl with different \alpha in the 3D case.

\alpha 0.00 0.05 0.10 0.15 0.20 0.25 0.30

cl 3.248 3.771 4.549 5.818 8.270 15.00 112.8

the dynamic rescaling method is stable with large cl, as the extra stretching term
can control the rate of collapse. Based on observation of the rapid increase of cl as
\alpha approaches \alpha \ast , we conjecture that cl will tend to infinity as \alpha tends to \alpha \ast . It is
interesting to notice that when \alpha = 0.0, the scaling factor cl is approximately 3.248,
which doesn't seem special nor implies any degeneracy. In fact, when \alpha = 0, our initial
data (2.5) of \omega 1 is smooth in the axisymmetric variable (r, z), but when we lift it to
\BbbR 3, the vorticity \omega = \omega \theta e\theta will have singularity due to the coordinate singularity of
e\theta . In this case, the symmetry axis can be viewed as a boundary in the (r, z)-plane.

For \alpha > 0.30, like \alpha = 0.31,0.40,0.50, we observe that although \| \~\omega \| L\infty grows
rapidly in the initial stage, it eventually slows down and starts to decrease, and the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1349

Fig. 25. Evidence of non-blow-up for \alpha = 0.31 in \BbbR 3.

Fig. 26. Decay of the derivatives of \psi 1 with different \alpha .

dynamic rescaling formulation fails to converge to a steady state. For example, in
the case of \alpha = 0.31 shown in Figure 25, the double logarithm of \| \omega \| L\infty becomes
sublinear in the late stage, and \| \omega \|  - 1

L\infty seems to decay slowly to zero, which would
violate the BKM blow-up criterion. While the value \alpha = 0.31 is still far from the
critical case of \alpha = 1/3, we remark that this could be due to the fact that the stability
of the steady states becomes weaker as \alpha tends to the critical value \alpha \ast . The largest
real part of the eigenvalues of the Jacobian matrix, like we plotted in Figure 20, is
 - 2.26 when \alpha = 0.1,  - 1.89 when \alpha = 0.2, and  - 0.53 when \alpha = 0.3. This shows
that the steady states are less stable when \alpha approaches \alpha \ast . Another reason is that
\~c\omega + \alpha \~cl is very close to zero as \alpha tends to the critical value \alpha \ast . Thus, numerical
errors may cause \~c\omega + \alpha \~cl to change sign dynamically when \alpha approaches \alpha \ast , which
leads to non-blow-up. In order to capture the blow-up behavior as \alpha approaches \alpha \ast ,
we need much higher resolution to prevent \~c\omega +\alpha \~cl to change sign, which poses great
numerical challenges in accuracy and computational time. We also note that the
domain size D of the computational domain \scrD \prime needs to be enlarged as \alpha approaches
the critical value \alpha \ast . In Figure 26, we plot the decay of derivatives of \psi 1 at the
end of adaptive mesh method computation, which is also the starting point of the
dynamic rescaling formulation computation. We can see that \psi 1,r decays slower with
a larger \alpha , which implies that we need a larger domain size D to ensure that the
zero Neumann boundary condition is appropriate. This further poses challenges in
accuracy and computational time. Despite the numerical difficulty, the consistent
potential blow-up behavior for \alpha \leq 0.3 makes us believe that the 3D Euler equations
could also develop potential self-similar blow-up for all \alpha < 1/3.

5.2. The dimension \bfitn . We extend the numerical study from the 3D case to
the higher-dimensional case, and show that the critical value \alpha \ast is close to 1 - 2

n in
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1350 THOMAS Y. HOU AND SHUMAO ZHANG

the n-dimensional case. It is expected that the higher the dimension, the easier it is
for a perfect fluid to form a singularity in finite time; see section 6 of [18]. We provide
some numerical evidence to support such point of view.

In the n-dimensional case, we still use

u(x, t) :\BbbR n \times [0, T )\rightarrow \BbbR n, and p(x, t) :\BbbR n \times [0, T )\rightarrow \BbbR ,

to denote the n-D vector field of the velocity and the n-D scalar field of the pressure,
respectively, where x= (x1, x2, . . . , xn)\in \BbbR n. Then the n-dimensional Euler equations
can be written as

ut + u \cdot \nabla u= - \nabla p,(5.1a)

\nabla \cdot u= 0.(5.1b)

Next, we introduce r=
\sqrt{} \sum n - 1

k=1 x
2
k, z = xn, and the unit vectors

er = (x1/r,x2/r, . . . , xn - 1/r,0), ez = (0,0, . . . ,0,1) .

Similar to the 3D case, we call an n-D vector field v : \BbbR n \rightarrow \BbbR n to be axisymmetric
and no swirl if the following ansatz applies:

v= vr(r, z)er + vz(r, z)ez.(5.2)

The axisymmetric n-D Euler equations with no swirl can be written in the vorticity-
stream function form as

\omega \theta t + ur\omega \theta r + uz\omega \theta z =
n - 2

r
ur\omega \theta ,(5.3a)

 - \psi \theta rr  - \psi \theta zz  - 
n - 2

r
\psi \theta r +

n - 2

r2
\psi \theta = \omega \theta ,(5.3b)

ur = - \psi \theta z , uz =
n - 2

r
\psi \theta +\psi \theta r ,(5.3c)

where we introduce the angular vorticity \omega \theta and angular stream function \psi \theta as \omega \theta =
urz  - uzr and  - \Delta \psi \theta = \omega \theta , similar to the 3D axisymmetric Euler equations.

We would like to note that here we consider axisymmetric and no swirl condition
together in (5.2) because if the velocity has component on a direction orthogonal to
er and ez, then the incompressibility condition \nabla \cdot u = 0 will inevitably introduce
dependence on variable other than r and z when the dimension n is greater than 3,
even if this component only depends on r and z at time t= 0.

Since we focus on C\alpha continuous initial data for the angular vorticity \omega \theta , we intro-
duce (\omega 1,\psi 1) similarly as in (1.4), and rewrite the n-D axisymmetric Euler equations
with no swirl in the below

\omega 1,t + ur\omega 1,r + uz\omega 1,z = - (n - 2 - \alpha )\psi 1,z\omega 1,(5.4a)

 - \psi 1,rr  - \psi 1,zz  - 
n

r
\psi 1,r = \omega 1r

\alpha  - 1,(5.4b)

ur = - r\psi 1,z, uz = (n - 1)\psi 1 + r\psi 1,r.(5.4c)

Roughly speaking, the dimension n controls the strength of the vortex stretching
term  - (n - 2 - \alpha )\psi 1,z\omega 1 and the velocity in the z-direction uz = (n - 1)\psi 1 + r\psi 1,r.
It also modifies the Poisson equation for \psi 1. It seems natural to conjecture that the
singularity formation will be more likely in the high-dimensional case because of the
stronger vortex stretching term  - (n - 2 - \alpha )\psi 1,z\omega 1.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1351

Fig. 27. Steady states of  - \~\omega 1 with different \alpha in \BbbR 10.

In the following, for each combination of \alpha and n, we first use the adaptive mesh
method to solve (5.4) close enough to its possible blow-up time, and then use the
dynamic rescaling formulation to continue the computation to capture the potential
self-similar structure.

The steady states of  - \~\omega 1 and  - \~\psi 1 for \alpha = 0.1,0.3,0.5,0.7 when the dimension
n= 10 are plotted in Figure 27. In Figures 28 and 29, we provide the cross sections of
the steady states  - \~\omega 1 and  - \~\psi 1 for different \alpha when n= 10. Similar to the n= 3 case,
we see that as \alpha increases, the steady state becomes flatter in \xi . The cross section in
\zeta shows the different decay rates for different values of \alpha . It is also very interesting to
see that the \zeta -cross section of  - \~\psi 1 seems to be well approximated by a linear function
of \zeta in the near field.

In Table 5, we showed how cl grows with \alpha when n= 10. Similar to the observation
in section 5.1, we see cl quickly increases with \alpha , and has the trend to go to infinity
as \alpha approaches \alpha \ast . We remark that in our computation, we found \alpha \ast > 0.72. As
in the 3D case in section 5.1, we need to solve the dynamic rescaling formulation
on a larger computational domain with higher accuracy and longer physical time to
reach the steady states for larger \alpha . Based on our observation in the n= 3 case and
n= 10 case, we conjecture that for our example, the critical value \alpha \ast = 1 - 2

n , which
means our example would potentially support Conjecture 8 of [18] and extend it to
the n-dimensional case.

We next study how the dimension n influences the finite-time blow-up. We fix
\alpha = 0.1 and try different choices of dimensions n= 3,4,5,6,8,10 using the same initial
data

\omega \circ 
1 =

 - 12000
\bigl( 
1 - r2

\bigr) 18
sin(2\pi z)

1 + 12.5 sin2(\pi z)
.

We note that this initial data will lead to the same steady state phenomenon as the
initial data in (2.5), as we will study in detail in section 6. We choose to report results
in the n-dimensional case on this initial data because it takes less time to develop a
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1352 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 28. Cross sections of steady states of  - \~\omega 1 with different \alpha in \BbbR 10. Top row: On a local
window. Bottom row: On a larger window.

Fig. 29. Cross sections of steady states of  - \~\psi 1 with different \alpha in \BbbR 10.

Table 5
The scaling factor cl with different \alpha in the n-D case, where n= 10.

\alpha 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

cl 2.155 2.432 2.811 3.363 4.244 5.897 10.16 47.14

potential blow-up, since the initial vorticity concentrates more near the origin, which
helps reduce our computational cost.

In Table 6, we report the estimated blow-up times T and scaling factors cl for
different dimensions. It is not surprising that the blow-up time of the same initial
data is shorter for the higher-dimensional case, because the vortex stretching term has
a larger amplification coefficient. However, the scaling factor cl is smaller for larger
n. Intuitively, the velocity component uz seems to be stronger with larger n. This
phenomenon suggests that in the high-dimensional case, the dimension-related term
 - n
r \partial r in the Poisson equation controls \psi 1 and therefore weakens the collapsing speed

of the solution. We also remark that the decay of cl with n significantly slows down
in Table 6. It is tempting to speculate if there is a limit of cl as n approaches infinity.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1353

Table 6
Estimated blow-up times T and scaling factors cl in different dimensions with \alpha = 0.1.

n 3 4 5 6 8 10

104 \times T 4.183 3.589 2.877 2.498 2.089 1.866

cl 4.549 3.218 2.851 2.680 2.514 2.432

Fig. 30. Cross sections of steady states of  - \~\omega 1 with different n with \alpha = 0.1. Top row: On a
local window. Bottom row: On a larger window.

Fig. 31. Cross sections of steady states of  - \~\psi 1 with different n with \alpha = 0.1.

In Figures 30 and 31, we provide the cross sections of the steady states of  - \~\omega 1

and  - \~\psi 1 from the dynamic rescaling formulation. We observe that the cross sections
change with n. But as n becomes larger than 5, the difference quickly narrows down.
This would give more evidence that there is some nontrivial limit as n goes to infinity.
It would be very interesting to further explore this infinite dimension limit in the
future.

6. Sensitivity of the potential blow-up to initial data. We study the sen-
sitivity of the potential self-similar blow-up to initial data. In addition to the initial
data (2.5), we consider the following cases:
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1354 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 32. Profiles of the initial data in all three cases.

\omega \circ ,1
1 =

 - 12000
\bigl( 
1 - r2

\bigr) 18
sin(2\pi z)

1 + 12.5 sin2(\pi z)
,

\omega \circ ,2
1 = - 6000cos

\Bigl( \pi r
2

\Bigr) 
sin(2\pi z)

\bigl( 
2 + exp

\bigl( 
 - r2 sin2(\pi z)

\bigr) \bigr) 
,

\omega \circ ,3
1 =

 - 12000
\bigl( 
1 - r2

\bigr) 18
sin(2\pi z)3

1 + 12.5 sin2(\pi z)
.

(6.1)

We show the profiles of these three initial data in Figure 32. In case 1, \omega \circ ,1
1 is a

perturbation of \omega \circ 
1 by setting cosine in the denominator to be sine, which is adopted

as the initial data for the n-D case in section 5.2. In case 2, \omega \circ ,2
1 has a decay rate in

r slower than
\bigl( 
1 - r2

\bigr) 18
, and is no longer a simple tensor product of r and z. In case

3, \omega \circ ,3
1 has an improved regularity in \rho =

\surd 
r2 + z2 near the origin. Indeed, we have,

with \omega 1(r, z,0) = \omega \circ ,3
1 (r, z),

\omega \theta (r, z,0) = r\alpha \omega \circ ,3
1 (r, z)\sim r\alpha z3 = \rho 3+\alpha cos\alpha \theta sin3 \theta .

While for the original choice of the initial data (2.5), \omega \theta (r, z,0)\sim \rho 1+\alpha cos\alpha \theta sin\theta .
For all three cases, we only solve the 3D axisymmetric Euler equations with

\alpha = 0.3, due to the limited computational resources. As shown in Table 4, for our
original initial data, cl = 112.8 is very large, which suggests that our choice of \alpha is
very close to the borderline between the blow-up and non-blow-up. If the blow-up
profile of the above initial data agrees with our original initial data well, we then have
good confidence that they should have the same behavior for other settings of \alpha .

We solve the 3D axisymmetric Euler equations with the above initial data by first
using the adaptive mesh method to get close enough to the potential blow-up time, and
then using the dynamic rescaling method to capture the potential self-similar solution.

6.1. The first two cases: Same regularity near the origin. For the first
and second cases, we show the fitting of 1/\| \omega \| L\infty with time t in Figure 33, and the
curve of the scaling factor cl in Figure 34. We can see that in both cases, \| \omega \| L\infty 

scales like 1/(T  - t), which implies a finite-time blow-up. Moreover, cl converges to
112.8, matching the value of cl we obtained using the original initial data well. In
Figure 35, we show the cross sections of the steady state of  - \~\omega 1 in comparison with
the result obtained using the original initial data. There is no visible difference be-
tween the three steady states presented. In fact, even on the whole computational
domain \scrD \prime =

\bigl\{ 
(\xi , \zeta ) : 0\leq \xi \leq 1\times 105,0\leq \zeta \leq 5\times 104

\bigr\} 
in the dynamic rescaling com-

putation, the steady states in the first and second cases only differ by 3.13\times 10 - 10

and 5.29\times 10 - 10, respectively from the steady state using our original initial data \omega \circ 
1

in the relative sup-norm.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1355

Fig. 33. Fitting of 1/\| \omega \| L\infty with time t in the first and second cases.

Fig. 34. Curves of the scaling factor cl in the first and second cases.

Fig. 35. Cross sections of the steady states of  - \~\omega 1 in the first and second cases.

6.2. The third case: Improved regularity near the origin. For the third
case, the fitting of 1/\| \omega \| L\infty and the curve of the scaling factor cl is shown in Figure 36.
We observe that 1/\| \omega \| L\infty has a good linear fitting with time, suggesting a finite-
time blow-up. However, cl converges to 19.44 which is clearly different from 112.8,
suggesting that there might be a new blow-up mechanism. In Figure 37, we compare
the steady states of \omega \circ ,3

1 and \omega \circ 
1 in the 3D profiles and the 2D contours. The steady

state of \omega \circ ,3
1 has a slower change near z = 0. This might be caused by the smoothness

of the initial data near z = 0, because we have \omega \circ ,3
1 \sim r\alpha z3, in contrast to \omega \circ 

1 \sim r\alpha z
near (r, z) = (0,0). The steady state of the third case develops a channel-like structure
that is not parallel to either axis.

The new blow-up scenario in the third case provides some support of Conjecture
9 of [18], in which the authors conjectured that the 3D Euler equations could still
develop a finite-time blow-up for initial data that are C\infty in \rho . In our future study,
we plan to investigate the potential blow-up using a class of initial data of the form
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1356 THOMAS Y. HOU AND SHUMAO ZHANG

Fig. 36. Fitting of 1/\| \omega \| L\infty and curve of the scaling factor cl in the third case.

Fig. 37. Profiles and contours of the steady states of  - \~\omega 1 in the original and third cases.

\omega \circ ,4
1 = - 12000

\bigl( 
1 - r2

\bigr) 18
sin(2\pi z)2k+1,

with a positive integer k, so that \omega \circ ,4
1 \sim r\alpha z2k+1 = \rho 2k+1+\alpha cos\alpha \theta sin2k+1 \theta is C2k+1

in \rho .

7. Comparison with Eligindi's singularity. In this section, we compare our
blow-up scenario with the scenario in [20] studied by Elgindi.

Elgindi introduced a polar coordinate system on the (r, z)-plane to construct his
blow-up solution. More specifically, he introduced

\rho =
\sqrt{} 
r2 + z2, \theta = arctan

\Bigl( z
r

\Bigr) 
.

Then for a H\"older exponent \alpha , he introduced a change of variable R= \rho \alpha and defined
the variables

\Omega (R,\theta ) = \omega \theta (r, z), \Psi (R,\theta ) =
1

\rho 2
\psi \theta (r, z).
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1357

In this setting, (1.3) can be rewritten as

\Omega t + (3\Psi + \alpha R\Psi R)\Omega \theta  - (\Psi \theta  - \Psi tan\theta )\Omega R = (2\Psi tan\theta + \alpha R\Psi R tan\theta +\Psi \theta )\Omega ,

(7.1a)

 - \alpha 2R2\Psi RR  - \alpha (5 + \alpha )R\Psi R  - \Psi \theta \theta + (\Psi tan\theta )\theta  - 6\Psi =\Omega .

(7.1b)

Elgindi's analysis of (7.1b) establishes the following leading order approximation
for small \alpha :

\Psi (R,\theta ) =
1

4\alpha 
sin(2\theta )L12(\Omega )(R) + lower order terms,(7.2)

where

L12(\Omega )(R) =

\int \infty 

R

\int \pi 
2

0

\Omega (s, \theta )
K(\theta )

s
dsd\theta ,

with K(\theta ) = 3sin\theta cos2 \theta . If we plug in the approximation (7.2) to (7.1a), neglecting
lower order terms of \alpha , and (time) scaling out some constant factor, we arrive at
Elgindi's fundamental model

\Omega t =
1

\alpha 
L12(\Omega )\Omega ,(7.3)

which admits self-similar finite-time blow-up. In his analysis, Elgindi chose the fol-
lowing self-similar solution of the fundamental model (7.3):

\Omega (R,\theta , t) =
c

1 - t
F

\biggl( 
R

1 - t

\biggr) \bigl( 
sin\theta cos2 \theta 

\bigr) \alpha /3
,(7.4)

where c > 0 is some fixed constant, and F (z) = 2z/(1 + z)2.
One difference between our blow-up scenario and Engindi's blow-up scenario is

how the scaling factor cl depends on \alpha . We rewrite (7.4) as

\Omega =
c

1 - t
F

\biggl( 
\rho \alpha 

1 - t

\biggr) \biggl( 
r2z

\rho 3

\biggr) \alpha /3
=

c

1 - t
F

\Biggl( \Biggl( 
\rho 

(1 - t)
1/\alpha 

\Biggr) \alpha \Biggr) \biggl( 
r2/3z1/3

\rho 

\biggr) \alpha 
.

If we let G(z) = F (z\alpha ), we see

\Omega =
c

1 - t
G

\Biggl( 
\rho 

(1 - t)
1/\alpha 

\Biggr) \biggl( 
r2/3z1/3

\rho 

\biggr) \alpha 
.

Since r2/3z1/3/\rho is homogeneous, we may conclude that the scaling factors for the
self-similar blow-up solution (7.4) are

cl = 1/\alpha , c\omega = 2.

Note that this also satisfies the relation c\omega = 1 + \alpha cl in (2.8). This implies that cl
decreases as \alpha increases, and cl will tend to infinity as \alpha \rightarrow 0. However, as shown in
Tables 4 and 5, our cl increases as \alpha increases. In the limit of \alpha \rightarrow 0, our solution
is well behaved and we observed a finite value of the scaling factor cl when \alpha = 0,
as reported in Table 4, while Elgindi's case needs some renormalization and cl tends
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1358 THOMAS Y. HOU AND SHUMAO ZHANG

to infinity. The scaling factor cl in our case goes to infinity when \alpha approaches to the
critical value \alpha \ast which is close to 1/3.

Furthermore, the regularity of our initial data as a function of \rho is different from
that of Elgindi's initial data. Around (r, z) = (0,0), Elgindi's initial condition has the
following leading order behavior:

\Omega \sim \rho \alpha 
\bigl( 
sin\theta cos2 \theta 

\bigr) \alpha /3
= r2\alpha /3z\alpha /3.

However, our initial condition gives

\omega \theta = r\alpha \omega \circ 
1 \sim r\alpha z = \rho 1+\alpha cos\alpha \theta sin\theta .

These two leading order scaling properties differ from each other in that
\bullet Elgindi's initial condition of \omega \theta has a C\alpha H\"older continuity in \rho , whereas ours

is C1,\alpha in \rho ,
\bullet Elgindi's initial condition of \omega \theta is H\"older continuous in both z = 0 and r= 0,

whereas our initial condition is H\"older continuous in r= 0 but smooth in z.
In Conjecture 8 of [18], the authors conjectured that the initial data could be C\infty 

in \rho for finite-time blow-up of the 3D axisymmetric Euler equations with no swirl.
Our initial data slightly improves the regularity of the initial data in \rho . In section 6.2,
we also briefly explored the initial data with higher regularity in \rho .

In Lemma 4.33 of [18], the authors stated that the limiting equations at \alpha = 0
of (7.1) can blow up in finite time for initial data of \Omega that only has a C\alpha -H\"older
continuity near r = 0 for \alpha < 1/3. Our study shows that the blow-up of the ax-
isymmetric Euler equations does not require to have H\"older continuity of the initial
vorticity along the z-direction. The essential driving force for the finite-time blow-up
comes from the H\"older continuity of the initial vorticity along the r-direction.

8. A 1D model of the potential self-similar blow-up. From Figures 23
and 28 in section 5, we observe that as \alpha approaches the critical value \alpha \ast ,  - \~\omega 1 will
become very flat in \xi . This inspires us to conjecture that in the \alpha \rightarrow \alpha \ast limit,  - \~\omega 1

will eventually become a function of \zeta only in a relatively large domain. Based on
this observation, we assume that

\omega 1(r, z) = \omega 1(0, z),(8.1)

and derive a 1D model for the n-D Euler equations (5.4).
At r= 0, the velocity fields (5.4c) become ur = 0, uz = (n - 1)\psi 1. Therefore, the

vorticity equation (5.4a) becomes

\omega 1,t(0, z) + (n - 1)\psi 1(0, z)\omega 1,z(0, z) = - (n - 2 - \alpha )\psi 1,z(0, z)\omega 1(0, z).

As for the Poisson equation (5.4b), we use the Green's function Gn,\alpha (r, r
\prime , z, z\prime ) for

the operator Ln,\alpha = r1 - \alpha 
\bigl( 
 - \partial rr  - n

r \partial r  - \partial zz
\bigr) 
. We have

\psi 1(r, z) =

\int 
(r\prime ,z\prime )\in \scrD 

Gn,\alpha (r, r
\prime , z, z\prime )\omega 1(r

\prime , z\prime )dr\prime dz\prime ,

=

\int 
(r\prime ,z\prime )\in \scrD 

Gn,\alpha (r, r
\prime , z, z\prime )\omega 1(0, z

\prime )dr\prime dz\prime ,

and therefore,

\psi 1(0, z) =

\int 1/2

0

Hn,\alpha (z, z
\prime )\omega 1(0, z

\prime )dz\prime ,
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1359

where

Hn,\alpha (z, z
\prime ) =

\int 1

0

Gn,\alpha (0, r
\prime , z, z\prime )dr\prime .

Putting these equations together, and omitting the r-coordinate when there is no
ambiguity, we have the following closed system in one dimension: for z \in [0,1/2], \omega 1

and \psi 1 are functions of z whose evolution in time is governed by the equations

\omega 1,t + (n - 1)\psi 1\omega 1,z = - (n - 2 - \alpha )\psi 1,z\omega 1,(8.2a)

\psi 1 = Tn,\alpha \omega 1,(8.2b)

where Tn,\alpha is an integral transform with kernel function Hn,\alpha :

Tn,\alpha \omega 1 =

\int 1/2

0

Hn,\alpha (z, z
\prime )\omega 1(z

\prime )dz\prime .

8.1. The kernel function \bfitH \bfitn ,\bfitalpha . We look for a more explicit expression for
the kernel Hn,\alpha .

Following the idea in [27], we view  - \partial rr - n
r \partial r - \partial zz as the Laplacian operator in

the (n+ 2)-dimensional space for axisymmetric functions. The fundamental solution
for the (n+ 2)-dimensional Laplace equation is

\Phi 0(x) =
\Gamma (n/2)

4\pi n/2+1

1

| x| n ,

for x \in \BbbR n+2. Now, since we have zero Dirichlet boundary conditions at r = 1,
z = 0, z = 1/2, we can obtain the Green's function for the above equation by properly
symmetrizing the fundamental solution of the Laplace equation, which gives us

Gn,\alpha (r, r
\prime , z, z\prime ) =

\sum 
m\in \BbbZ 

\bigl( 
G\circ 
n,\alpha (r, r

\prime , z +m,z\prime ) - G\circ 
n,\alpha (r, r

\prime , - z +m,z\prime )

 - G\circ 
n,\alpha (1, rr

\prime , z +m,z\prime ) +G\circ 
n,\alpha (1, rr

\prime , - z +m,z\prime )
\bigr) 
,

where

G\circ 
n,\alpha (r, r

\prime , z, z\prime ) =C(n)
r\prime 
n+\alpha  - 1

An/2
2F1 (n/2, n/2, n,B) ,

with \Gamma being the Gamma function, 2F1 being the Gauss hypergeometric function, and

A= (r+ r\prime )
2
+ (z  - z\prime )

2
, B = 4rr\prime /A, C(n) =

2n - 2

\pi 

\Gamma (n/2)2

\Gamma (n)
.

In fact, it is easy to check that Gn,\alpha satisfies the boundary conditions:

Gn,\alpha (1, r
\prime , z, z\prime ) =Gn,\alpha (r, r

\prime ,0, z\prime ) =Gn,\alpha (r, r
\prime ,1/2, z\prime ) = 0.

We notice that the Gaussian hypergeometric function 2F1 has the property that

2F1(n/2, n/2, n,0) = 1. Therefore, we know that

G\circ 
n,\alpha (0, r

\prime , z, z\prime ) =
C(n)r\prime 

n+\alpha  - 1\Bigl( 
r\prime 2 + (z  - z\prime )

2
\Bigr) n/2 , G\circ 

n,\alpha (1,0, z, z
\prime ) = 0.

Therefore, we arrive at an expression for Hn,\alpha :
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1360 THOMAS Y. HOU AND SHUMAO ZHANG

Hn,\alpha (z, z
\prime ) =

\int 1

0

Gn,\alpha (0, r
\prime , z, z\prime )dr\prime 

=C(n)

\int 1

0

\sum 
m\in \BbbZ 

\left(   rn+\alpha  - 1\Bigl( 
r2 + (z +m - z\prime )

2
\Bigr) n/2  - rn+\alpha  - 1\Bigl( 

r2 + (z  - m+ z\prime )
2
\Bigr) n/2

\right)   dr.

From Hn,\alpha , we can also find the integral transform for \psi 1,z:

\psi 1,z(z) =

\int 1/2

0

\partial zHn,\alpha (z, z
\prime )\omega 1(z

\prime )dz\prime ,

with

\partial zHn,\alpha (z, z
\prime )

= nC(n)

\int 1

0

\sum 
m\in \BbbZ 

\left(   rn+\alpha  - 1 (z +m - z\prime )\Bigl( 
r2 + (z +m - z\prime )

2
\Bigr) n/2+1

 - rn+\alpha  - 1 (z  - m+ z\prime )\Bigl( 
r2 + (z  - m+ z\prime )

2
\Bigr) n/2+1

\right)   dr.

In Figures 38 and 39, we show the profiles of the kernel functions Hn,\alpha and \partial zHn,\alpha 

for various combinations of (n,\alpha ). Figure 38 shows that the smaller \alpha will make Hn,\alpha 

and \partial zHn,\alpha larger in scale. And this corresponds to the fact that smaller \alpha is easier to
develop the blow-up. In Figure 39, we see that as the dimension n increases, the profile
of Hn,\alpha seems to become shorter and thinner, which makes the velocity component
uz = (n - 1)\psi 1 smaller. This phenomenon is consistent with Table 6 where larger n
tends to have a slower collapsing rate.

Fig. 38. Profiles of Hn,\alpha and \partial zHn,\alpha as functions of z\prime for different \alpha with n= 3 and z = 0.1.

Fig. 39. Profiles of Hn,\alpha and \partial zHn,\alpha as functions of z\prime for different n with \alpha = 0.3 and z = 0.1.
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SINGULARITY OF THE AXISYMMETRIC EULER EQUATIONS 1361

8.2. Numerical simulation. Although the assumption (8.1) of our 1D model
is based on our observation in the large \alpha scenario, we simulate the 1D system (8.2)
numerically with different choices of \alpha to show its approximation to the n-D axisym-
metric Euler equations (5.4).

Similar to our study in section 5.1, we use the adaptive mesh method to solve
(8.2), and then compute the potential self-similar blow-up profile by solving the steady
state of the following dynamic rescaling formulation:

\~\omega 1,\tau +
\Bigl( 
\~cl\zeta + (n - 1) \~\psi 1

\Bigr) 
\~\omega 1,\zeta =

\Bigl( 
\~c\omega  - (n - 2 - \alpha ) \~\psi 1,\zeta 

\Bigr) 
\~\omega 1,(8.3a)

\~\psi 1 = T \prime 
n,\alpha \~\omega 1.(8.3b)

Here we use T \prime 
n,\alpha to distinguish from the integral transform Tn,\alpha in (8.2), because

T \prime 
n,\alpha is on the large domain \scrD \prime with zero Neumann boundary condition in the far

field, the same as the setup in section 4.2. In our computation, we use the late stage
solution of (5.4) as the initial data to (8.2). To calculate the integral transform Tn,\alpha 
numerically, we first temporarily lift up \omega 1 from the 1D axis of z to the 2D plane
of (r, z) by relation (8.1), then solve the Poisson equation (5.4b) on the (r, z)-plane
for \psi 1, and finally restrict \psi 1 to the symmetry axis to obtain its value on the z-axis.
The same method goes for the integral transform T \prime 

n,\alpha , but on different computational
domain (\scrD \prime ) and with a different boundary condition in the far field.

Since the dimension n would not be critical in the comparison, we only consider
the 3D case (n= 3) here, with H\"older exponent \alpha = 0.0,0.1,0.2,0.3. In Figure 40, we
compare the steady state of  - \~\omega 1(0, \zeta ) from the 3D axisymmetric Euler equations and
the 1D model. When \alpha = 0.3, the two steady states match with each other quite well,
with a relative sup-norm error of 1.5\times 10 - 3 on the \zeta -axis. It is interesting to see that
at small \alpha , the two steady states are also close to each other. The relative sup-norm
error at \alpha = 0.0 is smaller than 2.7\times 10 - 2 on the \zeta -axis.

In Table 7, we report the comparison of the scaling factor c1Dl of our 1D model
and the scaling factor cl for the 3D axisymmetric Euler equations. As \alpha increases,

Fig. 40. Comparison of the steady state of  - \~\omega 1(0, \zeta ) with different \alpha .
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1362 THOMAS Y. HOU AND SHUMAO ZHANG

Table 7
Scaling factor comparison between the 1D model and the 3D axisymmetric Euler equations.

\alpha 0.0 0.1 0.2 0.3

cl 3.248 4.549 8.270 112.8

c1\mathrm{D}l 3.374 4.682 8.464 114.8

the 1D model (8.2) can better approximate the 3D axisymmetric Euler equation in
the relative error sense. This shows that our 1D model (8.2) can serve as a good
model to understand the blow-up mechanism for the potential self-similar blow-up of
the n-dimensional Euler equations. Although the 1D model is derived based on the
flatness of \omega 1 as a function of \xi as \alpha is close to the critical value \alpha \ast , the agreement
of cl between the 1D model and the 3D Euler equations is still quite good for smaller
values of \alpha , which is quite surprising.

9. Concluding remarks. In this paper, we have numerically studied the sin-
gularity formation in the axisymmetric Euler equations with no swirl when the initial
condition for the angular vorticity is C\alpha H\"older continuous. With carefully-chosen ini-
tial data and specially-designed adaptive mesh, we have solved the solution very close
to the potential blow-up time, and obtained strong convincing numerical evidence
for the singularity formation by numerically examining the BKM blow-up criterion.
Scaling analysis and dynamic rescaling method have further suggested the poten-
tial self-similar blow-up. We observed the potential self-similar blow-up in finite time
when the H\"older exponent \alpha is greater than or equal to 0, and is smaller than a critical
value \alpha \ast , and this upper bound \alpha \ast is larger than 0.3, and have the potential to be 1/3.
This result supports Conjecture 8 of [18]. Since when \alpha > 1/3, the axisymmetric Euler
equations with no swirl admit global regularity [54, 50, 51, 49, 16, 1], this would po-
tentially close the gap between blow-up and non-blow-up, leaving only the critical case
of \alpha = 1/3. We also extend this result to the high-dimensional case, and find that, in
general, the critical value \alpha \ast for the n-D axisymmetric Euler equation is close to 1 - 2

n .
The potential blow-up observed in this paper is insensitive to the perturbation

of initial data. And our initial study suggested that the regularity of the initial data
around the origin would determine its scaling properties and the shape of the self-
similar blow-up profile. Compared with Elgindi's blow-up result reported in [20],
our potential blow-up scenario has very different scaling properties. The regularity
properties of the initial condition of the two initial data are also quite different.

Inspired by our numerical observations, we proposed a simple 1D model to cap-
ture the leading order behavior of the n-dimensional Euler equations. Our numerical
experiments showed that the 1D model can develop approximately the same potential
finite-time blow-up as the original n-dimensional Euler equations. This 1D model
could play a role similar to the leading order system derived by Elgindi in [20] in the
analysis of the finite-time singularity of the 3D Euler equations.

Acknowledgments. We would like to thank Mr. Xiang Qin and Mr. Xiuyuan
Wang from Peking University for helpful discussion.
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