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the front and avoid introducing numerical diffusion which
smooths out the front. In the case of irrotational flow, oneA level set formulation is derived for incompressible, immiscible

Navier–Stokes equations separated by a free surface. The interface can reformulate the problem in the boundary integral form
is identified as the zero level set of a smooth function. Eulerian so that it involves the motion of the free surface alone. In
finite difference methods based on this level set formulation are this case, it is possible to design high order accurate meth-
proposed. These methods are robust and efficient and are capable

ods as long as the fluid interface is smooth. This is essentialof computing interface singularities such as merging and reconnec-
in studying singularity formation in fluid interfaces [18, 23,tion. Numerical experiments are presented to demonstrate the effec-

tiveness of the methods. Q 1996 Academic Press, Inc. 30]. However, when the interface forms a singularity or
changes its topology, the tracking methods are difficult to
continue beyond the singularity time. Local surgery for
the moving grid points is required. This complicates the1. INTRODUCTION
solution procedure. Moreover, three-dimensional prob-
lems are notoriously more difficult to compute usingIn this paper, we derive a level set formulation for incom-

pressible, immiscible Navier–Stokes equations separated tracking methods, especially in the presence of merging.
The second approach is based on front capturing. Thisby a free surface. The flow we consider has discontinuous

density and viscosity. The effect of surface tension is also is the one we adopt in this paper. The capturing method
we consider is based on a level set formulation. In thisincluded. Based on this formulation, a second-order projec-

tion method can be used to approximate the evolution formulation, the boundary of a two-fluid interface is mod-
elled as the zero set of a smooth function f defined on theequations. This approach can be considered as a method

of front capturing type since no explicit information about entire physical domain. The boundary is then updated by
solving a nonlinear equation of the Hamilton–Jacobi typethe free surfaces is required in the solution procedure. The

free surface is recovered at the end of the computation on the whole domain. This level set formulation of the
moving interface was introduced by Osher and Sethian inby locating the zero level set of a smooth function. This

numerical method is efficient and is capable of simulating [27] and was capable of computing geometric properties
of highly complicated boundaries without explicitlyincompressible flow where change of topology in the fluid

interface occurs, such as merging and reconnection. tracking the interface. Hence, the moving boundary can
develop corners, cusps, and undergo topological changesMany physically interesting problems involve propaga-

tion of free surfaces. Water waves, boundaries between quite naturally. Moreover, the level set formulation gener-
alizes to three-dimensional problems easily. It eliminatesimmiscible fluids, vortex sheets, and Hele–Shaw flows are

examples of this kind. Numerical simulation of these free the problem of grid surgery encountered in the tracking
approach. One of the common difficulties in the front cap-surfaces presents a great challenge to numerical analysts

and computational scientists because the underlying physi- turing approaches is how to keep the interface thickness
finite and to preserve the mass conservation. For the levelcal problem is singular and is sensitive to small numerical

perturbations [13, 21]. There are two types of numerical set approach, as we will see later, this difficulty can be
overcome by using various fast re-initialization techniques.approaches for solving free surface problems in the context

of incompressible flows. One is based on front tracking The first fast re-initialization technique was developed and
implemented in [32].where the free interfaces are explicitly tracked. The bound-

ary integral method and some semi-Lagrangian front In this paper, we derive an equivalent weak formulation
of the incompressible multi-fluid flow by coupling the leveltracking methods are examples of this type; see, e.g., [1–3,

12, 22, 23, 28–30, 34, 35]. The advantage of this approach set formulation to the fluid equations. The effects of discon-
tinuous density, discontinuous viscosity, and surface ten-is to reduce the number of nodes needed to represent
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sion are taken into account. The equations governing the The fluid interface G corresponds to the zero level set
of f. We will show that the evolution equations can bemotion of unsteady, viscous, incompressible, immiscible

two-fluid system are the Navier–Stokes equations. In con- reformulated as
servation form, the equations are

r(ut 1 = ? uu) 5 2=p 1 rg 1 = ? (2eD)
r(ut 1 = ? (uu)) 5 2=p 1 rg 1 = ? (2eD), (1)

1 tk(f)=fd(f), (8)
where u is the velocity, and r and e are the discontinuous

­

­t
f 1 u ? = ? f 5 0, (9)density and viscosity fields, respectively. D is the rate of

deformation tensor, whose components are Dij 5 As(ui, j 1
uj,i). The density and viscosity are purely convected by the

where d(f) is a one-dimensional Dirac delta function andfluid velocity:
f is chosen in such way that =f is in the outward normal
direction when evaluated on G. The curvature k(f) can­

­t
(r) 1 = ? (ur) 5 0, (2) be expressed by f and its derivatives

­

­t
(e) 1 = ? (ue) 5 0. (3)

k(f) 5 2
f2

yfxx 2 2fxfyfxy 1 f2
xfyy

(f2
x 1 f2

y)3/2 . (10)

These equations are coupled to the incompressibility con-
dition Assume that we have chosen the initial level set function

such that f , 0 defines region 1 of the fluid and f . 0
= ? u 5 0. (4) defines region 2. Further, we assume that r1 and r2 are the

constant densities in region 1 and region 2, respectively,
Denote the stress tensor by s(x), which is given by and e1 and e2 are the constant viscosities in region 1 and

region 2, respectively. Then we have r 5 r1 1 (r2 2
r1)H(f), where H is the Heaviside function that satisfiess(x) 5 2pI 1 2eD, (5)
H(x) 5 1 for x . 0 and H(x) 5 0 for x , 0. Similarly we
have e 5 e1 1 (e2 2 e1)H(f). The evolution equationswhere I is the identity matrix, D is the deformation tensor,
can be solved either by a projection method or by a vortic-and p is the pressure. We let G denote the fluid interface.
ity-based method. The convection terms can be approxi-The effect of surface tension is to balance the jump of the
mated by high order ENO schemes [17] or by other highnormal stress along the fluid interface. This gives rise to a
order Godunov schemes. Apparently, this level set formu-free boundary condition for the discontinuity of the normal
lation works for both two-dimensional and three-dimen-stress across G [12, 14]
sional problems. There are no additional complications to
extend the method to three-dimensional problems.[sijnj]uG 5 tkni , (6)

This formulation, after we regularize the delta function,
is very similar to the one obtained by Brackbill et al. [9],where [p] denotes the jump of p across the interface, k is
except for the reconstruction of density and viscosity fromthe curvature of G, t is the surface tension coefficient, and
the level set function. Sussman et al. used our formulationn is a unit outward normal vector along G. Note that in
(8) and obtained interesting results in their study of gasthe case of inviscid flows, the above jump condition is
bubbles in water with a coarse grid and a large densityreduced to
jump [32]. One should note that only the zero level set is
physically relevant. We have a lot of freedom in extending[p]uG 5 tk. (7)
the level set function outside the interface. Later, we will
exploit this freedom in our formulation to introduce certainIn this case, the effect of the surface tension is to introduce
re-initialization of the level set function. This helps pre-a discontinuity in pressure across the interface proportional
serve mass conservation and keep the thickness of theto the (mean) curvature.
interface non-diffusive in time.Our level set formulation is based on the following ob-

servation. The effect of surface tension can be expressed
in terms of a singular source function which is defined by 2. DERIVATION OF THE LEVEL SET FORMULATION
our level set function. This and other similar ideas have
been used by several authors in the literature; see, e.g., Here we give a derivation of the weak equivalence be-

tween the level set formulation and the original free bound-[10, 28, 9, 35]. Let us denote by f the level set function.
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ary problem. Consider a volume of the fluid occupying a from the Stokes theorem that
region V with boundary ­V. We assume that the fluid
interface G intersects with the region V, dividing it into
two disjoint subregions V1 and V2 . For the body of fluid E

­V1

sijnj ds 5 E
V1

­sij

­xj
dx,

(13)in volume V enclosed by the material surface ­V, the
momentum is e

V
rudx and its rate of change is E

­V2

sijnj ds 5 E
V2

­sij

­xj
dx.

E
V

r
Du
Dt

dx,
For the surface force term over the free surface G, we use
the free boundary condition (6). We obtain

where Du/Dt 5 ut 1 u ? =u is the material derivative. By
Newton’s second law, this rate of change of momentum is E

G
[sijnj] ds 5 E

G
tkni ds. (14)

balanced by the forces acting on the volume V and the
surface V.

The force acting on the volume V is due to gravity. The We claim that
total volume force on V is given by

E
G

tkni ds 5 E
V

tk(f(x))d(f(x))fxi
dx, (15)E

V
rg dx.

where f is the level set function with f 5 0 corresponding
The i-component of the surface or contact force exerted to the fluid interface G.
across a surface element of area ds and the normal n may Suppose that the above equality has been established;
be represented as sijnjds, where sij is the stress tensor. The then the level set formulation follows easily. To see this,
total surface force exerted on V by the surrounding matter we substitute (13)–(15) into (12). The result is
is thus

E
V
Sr

Dui

Dt
2

­sij

­xj
2 rgi 2 tkd(f(x))fxiD dx 5 0. (16)E

­V
sijnj ds.

Since this holds for the arbitrary region V, we conclude thatTherefore the momentum balance for the selected portion
of fluid V is expressed by

r(ut 1 u ? =u) 2 rg 1 =p 2 = ? (2eD)
(17)

2 tkd(f)=f 5 0.E
V

r
Dui

Dt
dx 5 E

V
rgi dx 1 E

­V
sijnj ds. (11)

This gives rise to the equivalent weak formulation
Here we have used summation convention: sijnj 5
oj sijnj . Denote by G the portion of the fluid interface r(ut 1 = ? uu) 5 2=p 1 rg 1 = ? (2eD)

(18)which is contained inside V. Clearly G is a common bound-
1 tkd(f)=f.ary for V1 and V2 . Now, decompose the boundary integral

over ­V into boundary integrals over ­V1 and ­V2 , respec-
tively. We obtain Now we give a proof for (15). To prove (15), we need

to introduce a transverse level set function c which satisfies

E
V

r
Dui

Dt
dx 5 E

V
rgi dx 1 E

­V1

sijnj ds 1 E
­V2

sijnj ds (12)
=f ? =c 5 0, u=cu ? 0. (19)

1 E
G

[sijnj] ds,
The construction of such c will be given later. Introduce
a change of variables

where [sijnj] stands for the jump of sijnj across the fluid
interface G. For the first two surface force terms, we have x9 5 c(x, y), y9 5 f(x, y). (20)
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Such change of variables is well defined because increasing function. We define c by

c(x(s, t), y(s, t)) 5 c0(s). (28)
det S­(c, f)

­(x, y)D5 (fy , 2fx) ? (cx , cy)

(21) We will show that (28) defines c(x, y) in a small neighbor-
hood of G. This amounts to proving that (x(s, t), y(s, t))5 u=fu u=cu ? 0,
defines a one-to-one mapping from (s, t) to (x, y) in a
small neighborhood of G, or equivalently,where we have used the fact that (fy , 2fx) is parallel to

(cx , cy), and we assume that c is constructed in such a
way that (cx , cy) has the same direction as the tangent

det S­(x, y)
­(s, t)D? 0. (29)direction. With this change of variables, we have

From (26), we have by Taylor expanding the solutionE
V

(tkd(f)=f) dx 5 E
V9

(tkd(y9)=f)
1

u=fu u=cu
dx9 dy9

(22)
around t 5 0

(xt , yt) 5 =f(x(s, t), y(s, t))
(30)

5 E
f50

n
tk

u=cu
dx9.

5 =f(x(s), y(s)) 1 O(t).

Let (x(s), y(s)) be a parameterization of the interface G
On the other hand, differentiating (26) with respect to swith s being an arclength variable. Then we have along
and integrating in t will givethe interface f 5 0,

(xs , ys)(s, t) 5 (xs(s), ys(s)
dx9 5 dc(x(s), y(s)) 5 (cxxs 1 cyys) ds

(23)
5 (cx , cy) ? (xs , ys) ds. 1 Et

0

d
ds

=f(x(s, t9), y(s, t9)) dt9 (31)

5 T(s) 1 O(t),Recall that (cx , cy) is parallel to the tangent vector of G
and has the same direction as (xs , ys). Further, we note

where T is the unit tangent vector of G. Recall that =f isthat (xs , ys) is the unit tangent vector since s is an arclength
orthogonal to the tangent vector T along G. Therefore, forvariable. We obtain
utu small, we obtain

dx9 5 u=cu ds. (24)

det S­(x, y)
­(s, t)D5 u=fu uTu 1 O(t)

(32)Therefore, we obtain

5 u=fuf50 1 O(t) ? 0.

E
V

tkd(f)=f dx 5 E
f50

tkn ds 5 E
G

tkn ds. (25)
This shows that c(x, y) is well defined in a small neighbor-
hood of G. Clearly, it follows from (28) that

This proves (15).
We now show how to construct c with the desired prop-

0 5
d
dt

c(x(s, t), y(s, t)) 5 cxxt 1 cyyt 5 =c ? =f. (33)erties. Since the integrand in (22) contains a Dirac delta
function d(f), it is sufficient to construct the transverse
level set function c in a small neighborhood of the interface This proves the orthogonality of =f and =c. Moreover,
G. We first define a coordinate transformation (x(s, t), we have from (28) that
y(s, t)) by

xscx 1 yscy 5
d
ds

c0(s) (34)d
dt

(x(s, t), y(s, t)) 5 =f(x(s, t), y(s, t)), (26)

xtcx 1 ytcy 5 0. (35)
(x(s, 0), y(s, 0)) 5 (x(s), y(s)), (27)

Since c90(s) ? 0 and the coefficient matrix is nonsingular,
we conclude that (cx , cy) ? 0. This shows that u=cu ? 0where (x(s), y(s)) is a parameterization of G. We will solve

for (26) for both t . 0 and t , 0. Let c0(s) be any smooth in a small neighborhood of G.
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We remark that the orientation of =c is determined by section. First, we need to introduce a regularization for
the singular Dirac delta function, d, and the discontinuousthe sign of c90(s). This can be seen from (34). In our case,

we choose c0(s) to be an increasing function of s. There- Heaviside function, H. As in [28], we define the regularized
delta function d« asfore, =c along the interface has the same direction as the

unit tangent vector (xs , ys).
Before we conclude this section, we would like to point

out that Tryggvasion’s formulation [35] can be derived by d«(x) ;5As(1 1 cos(fx/«))/« if uxu , «,

0 otherwise,
(40)

an argument similar to that given above. If x(s, t) is a
parameterization of the fluid interface, with s being the
arclength variable and t being the time variable, and d(x)

and we define a corresponding regularized Heaviside func-is the two-dimensional Dirac delta function, then it is easy
tion H« asto show that

H«(x)E
V
E

G
tk(x(x, t))nd(x 2 x(s, t)) ds dx 5 E

G
tk(x(s, t))n ds

E
V

d(x 2 x(s, t)) dx ;5
0 if x , 2«

(x 1 «)/(2«) 1 sin(fx/«)/(2f) if uxu # «,

1 if x . «.

(41)

5 E
G

tk(x(s, t))n ds.

The above Heaviside function satisfies the relation dH«(x)/
This implies that dx 5 d«(x). Using the regularized Heaviside function H« ,

we can define the corresponding regularized density func-
r(ut 1 = ? (uu)) 5 2=p 1 rg 1 = ? (2eD) tion r and the regularized viscosity e as

1 E
G

tk(x(s, t))d(x 2 x(s, t))n ds.
(36)

r«(x) 5 r1 1 (r2 2 r1)H«(f(x)), (42)

e«(x) 5 e1 1 (e2 2 e1)H«(f(x)), (43)Note that the singular source term in this formulation is
nonlocal. This is in contrast with our local expression for

where f is the level set function. With this regularization,the singular source term in the level set formulation.
the resulting evolution equations are well posed. We canTo complete the evolution equation in Tryggvason’s for-
consider r« and e« as smooth variable density and variablemulation (also see Peskin [28]), we need to convect the
viscosity. Then the second-order projection method forinterface position x(s, t) by the fluid velocity:
variable density problems introduced in [5] can be used to
discretize the momentum equations. We refer the readerd

dt
x(s, t) 5 u(x(s, t), t), (37) to [5] for a detailed description of the projection method

for variable density problems. Some implementation issues
x(s, 0) 5 x(s). (38) for applying the projection method to the level set formula-

tion are discussed in [32]. We will not repeat the discus-
Here s is a purely Lagrangian variable; it is not the same sion here.
as the arclength variable for t . 0. Thus we need to modify From now on, we will focus our attention on a simpler
Eq. (36) by taking the arclength metric uxsu into account in problem: the Bousinesq approximation to the Navier–
the singular source term: Stokes equations with variable densities. This corresponds

to the case where the variation in the density is small. In
this case, the momentum equations are reduced tor(ut 1 = ? uu) 5 2=p 1 = ? (2eD) 1 rg

1 E
G

tk(x(s, t))d(x 2 x(s, t))nuxsu ds.
(39)

ut 1 = ? (uu) 5 2=p 1 = ? (2eD) 1 r9g
(44)

1 tkd(f(x))=f,
This subtle fact has not been clearly stated in the literature.

where r9 describes the density variation of the fluids [36].
3. FINITE DIFFERENCE DISCRETIZATIONS r9 is convected by the fluid velocity

In this section, we describe finite difference discretiz-
r9t 1 u ? =r9 5 0. (45)ations for the level set formulation derived in the previous
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For clarity, we will drop the prime in r9. With our regular- stream function formulation. An N 3 N grid (with spacing
h 5 1/N) is laid on the domain V. We consider continuousization, we can rewrite the momentum equations as
time approximations ci, j (t) to c(ih, jh; t). Approximations
gi, j , ui, j , vi, j , ri, j , and fi, j are defined similarly. Introduceut 1 = ? (uu) 5 2=p 1 = ? (2e«D) 1 r«g

(46) the following difference operators:
1 tkd«(f(x))=f.

Dx
0 fi, j 5 ( fi11, j 2 fi21, j)/2h (centered),

Using a MAC grid and the projection method [15, 11, 6],
it is easy to discretize the above equations. We remark Dx

2 fi, j 5 ( fi, j 2 fi21, j)/h (backward),
that a numerical study of interface motion with a large

Dx
1 fi, j 5 ( fi11, j 2 fi, j)/h (forward).density ratio has been carried out successfully by Sussman

et al. in [32] using our formulation.
The operators D y

0 , D y
0 , and D y

1 are defined similarly. TheWe can also formulate the problem in the vorticity-
centered difference approximation to the Laplacian is de-stream function variables. Assume that viscosity difference
noted by Dh which can be written asis sufficiently small so that we can assume the viscosities for

the two fluids are the same. Consider the two-dimensional
Dh 5 Dx

2Dx
1 1 Dy

2Dy
1 . (50)case. Let x 5 (x, y) and u 5 (u, v). Define the vorticity

variable g 5 curl(u) 5 vx 2 uy . In terms of the vorticity
In terms of these difference operators, we approximateformulation, we obtain
Eqs. (47)–(49) by

gt 1 u ? =g 5 eDg 2 grx 1 t(kd«(f)fy)x 2 t(kd«(f)fx)y .
dgi, j

dt
5 2ui, jD x

0gi, j 2 vi, jD
y
0gi, j 1 eDhgi, j 2 gD x

0ri, j

(51)
By direct calculations, we can show that

1 t(D x
0ki, jD

y
0fi, j 2 D y

0ki, jD x
0fi, j)d«(fi, j),(kd«(f)fy)x 2 (kd«(f)fx)y) 5 (kxd«fy 2 kyd«fx).

dfi, j

dt
5 2ui, jDx

0fi, j 2 vi, jD
y
0fi, j 1 nDhfi, j , (52)Therefore, the vorticity equations can be rewritten as

gt 1 u ? =g 5 eDg 2 grx 1 t(kxd«fy 2 kyd«fx). (47)

ki, j 5 2

(D y
0fi, j)2D x

2D x
1fi, j 2 2D x

0fi, jD
y
0fi, jD x

0D
y
0fi, j

1 (D x
0fi, j)2D y

2D y
1fi, j

(D x
0fi, j)2 1 (D y

0fi, j)2)3/2 , (53)And the velocity field is related to the vorticity field
through a stream function c. That is,

ri, j 5 r1 1 (r2 2 r1)H«(fi, j), (54)

u 5 cy , v 5 2cx , (48) Dhci, j 5 2gi, j , (55)

ui, j 5 D y
0ci, j , (56)and c satisfies

vi, j 5 2D x
0ci, j , (57)

Dc 5 2g. (49)

where n is a numerical viscosity for the level set equation.
Now it is a trivial matter to discretize (47)–(49). To present In practice, we take n 5 O(h2). We need to introduce
the method more easily, some simplifying assumptions are the numerical viscosity only when the interface G forms
made on the domain and the boundary conditions. First, a singularity and changes its topology. In general, if a
we consider flows in a unit square domain V and assume discretization of upwinding type is used in the convection
the flow is periodic in the x-direction. The boundary condi- terms, it will introduce some amount of numerical viscosity.
tions at y 5 0 and y 5 1 are assumed to be no-slip and Here, we want to illustrate that a second-order numerical
no-flow boundary conditions; i.e., u 5 0, v 5 0. A corre- viscosity is sufficient to stabilize a centered difference dis-
sponding vorticity boundary condition can be obtained in cretization when the interface forms a singularity. Actually,
terms of the stream function. More general domains can since the discontinuity in the fluid velocity is a contact
be considered by mapping the domain into a rectangular discontinuity, the usual upwinding discretization for the
or a circular domain; see [19]. convection terms may be more diffusive than the high

order centered difference discretization using second-or-
3.1. Centered Difference Approximations

der numerical diffusion. The reason for choosing a second-
order diffusion is because the smallest scale associated withIn this subsection, we consider centered difference ap-

proximations to the level set formulation in the vorticity the second-order diffusion is of the order (n)1/2 and we
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need to have a few grid points per wavelength to resolve will not remain a distance function at later times. For large
time computation, it would be desirable to keep the levelthe smallest scales. In our calculations using centered dif-

ference approximations, we use n P (4h)2. The results set function as a distance function. This will ensure that
the front has a finite thickness of order « for all time. Incompare favorably with the corresponding calculations us-

ing high order ENO schemes for the inviscid level set [32], an iterative procedure was proposed to re-initialize
the level set function at each time step so that the re-equation for f.

It is not difficult to modify the above discretizations to initialized level set function remains a distance function
from the front. Specifically, given a level set function, f0 ,make a fourth-order centered difference discretizations.

As was pointed out in [24, 8], a fourth-order method is at time t, solve for the steady state solution of the equation
more effective than the second-order discretization. It re-
quires fewer points per wavelength to resolve the small- ­

­t
f 5 sgn(f0)(1 2 u=fu)est scales.

f(x, 0) 5 f0(x),3.2. High-Order ENO Discretizations for
the Convection Terms

where sgn is the sign function. The solution f will haveNow we describe a high-order ENO discretization for
the same sign and the same zero level set as f0 , and itthe convection terms. Since we are interested in computing
satisfies u=fu 5 1, and so it is a distance function for theaccurately the convection of the interface position, we will
front.use the non-conservative form of the ENO scheme. Let

Another important issue is mass conservation. For in-us illustrate how to discretize the convection terms by a
compressible flows, the total mass is conserved in time.second-order ENO scheme. Define a minmod function as
However, the numerical discretization of the level set for-
mulation does not preserve this property in general. Even
with the above reinitialization procedure for the level set

minmod(u, v) 5 5sgn(u)min(uuu, uvu) if u ? v . 0,

0 otherwise.
(58) function, it has been found that a considerable amount of

total mass is lost in time. To overcome this difficulty, Hou
[20] recently proposed to introduce another re-initializa-

Here sgn is the sign function. Then the second-order dis- tion procedure aimed at preserving the total mass in time.
cretization of the convection term ufx is given by Motivated by the observation that numerical diffusion in-

troduces a normal motion proportional to the interface’s
local curvature (see, e.g., [25]), he introduces a re-initializa-ui, j(Dx

2fi, j 1
h
2

minmod(Dx
2Dx

1fi, j , Dx
2Dx

1fi21, j)),
tion procedure to remedy this effect. The re-initialization
procedure involves solving the following perturbed Hamil-if ui, j . 0, (59)
ton–Jacobi equation to a steady state,

ui, j(Dx
1fi, j 2

h
2

minmod(Dx
2Dx

1fi, j , Dx
2Dx

1fi11, j)),
­

­t
f 1 (A0 2 A(t))(2P 1 k)u=fu 5 0

otherwise.

f(x, 0) 5 f0(x),
Similarly we can define the second-order ENO discretiza-
tion for the convection term in the y-direction, vfy . A where A0 denotes the total mass for the initial condition
third-order ENO discretization has also been used in our at t 5 0 and A(t) denotes the total mass corresponding to
calculations. For a derivation of the discretization, we refer the level set function f(t) in the above re-initialization
the reader to [17, 31]. process. P is a positive constant. It helps stabilize this re-

The finite difference method which uses the ENO initialization procedure. The above perturbed Hamilton–
scheme for the convection terms differs from the centered Jacobi equation may look ill-posed by itself. But since we
difference scheme described in the previous subsection will solve this perturbed Hamilton–Jacobi equation with
only in the way the convection terms are discretized. The the governing level set equation and the solution procedure
discretizations of all other terms are the same as before. for the governing level set equation introduces numerical

viscosity, the combined fractional step method can be
3.3. Re-Initialization of Level Set Functions

shown to be stable. Moreover, since we will perform this
and Mass Conservation

re-initialization at every time step, the difference in the
mass, (A0 2 A(t)), is of order O(h2) in the smooth region.In general, even if we initialize the level set function f

as a signed distance from the front, the level set function So this re-initialization step does not change the overall
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second-order accuracy of the method. More discussions almost indistinguishable. A coarser grid calculation gives
a similar result qualitatively. But there is a difference inand numerical examples can be found in [20]. In principle,

this allows conservation of the total mass up to an arbitrary the detailed structure such as the time of merging, and the
fine structure in the rollup region. If one is only interestedaccuracy, depending on the stopping criteria for obtaining

a steady state solution. A numerical example is included in the gross features of the interface motion for large times,
then a coarse grid calculation would be sufficient. But ifin this paper to demonstrate the effect of this mass-preserv-

ing re-initialization procedure. The result is quite encour- the detailed information during the topological transition
has a great impact on the solution structure at later times,aging.
then a fine grid calculation is necessary. Here we focus our
attention to test the capability of the method in capturing4. NUMERICAL RESULTS
the fine scale structure when we resolve the physical solu-
tion. For this purpose, we make sure that we have enoughIn this section, we will apply our numerical method to

several problems. The first one is the merging of two fluid numerical resolution so that the physical effects of the
viscosity and surface tension are accurately captured.bubbles with the same density. The second one is the inter-

action of three-density interfaces. The last one is the study Coarse grid calculations for the large time dynamics of
water drops in the air with large density jumps have beenof the Rayleigh–Taylor instability for a periodic jet under

the influence of gravity. We also perform a resolution study carried out by Sussman, Smereka, and Osher using our
formulation [32].to verify convergence of the method. In the first numerical

example, we use a second-order projection method in solv-
ing the Navier–Stokes equations and we use a second-

4.1. Merging Two Bubbles with the Same Density
order ENO scheme in the discretization of the convection
terms. In the second and third examples, we use a fourth- In our first example, we compute the interaction of two

fluid bubbles of the same density under the influence oforder centered difference scheme to approximate the invis-
cid Euler equations in the vorticity stream function formu- gravity. The fluid is at rest initially. Viscosity for the fluid

inside the two bubbles is equal to e 5 0.00025. Viscositylation. A second-order explicit numerical viscosity is used
to avoid introducing numerical oscillations. From our com- for fluid outside the bubbles is equal to e 5 0.0005. The

surface tension is set to zero in this example. The effectputational experiences, we find that the second-order ENO
scheme is more robust, especially when we have a large of surface tension will be considered in the next example.

The initial positions of the two bubbles correspond to twodensity ratio. On the other hand, the fourth-order centered
difference scheme with a second-order numerical viscosity circles. The lower one is centered at (0.5, 0.35) with radius

0.1. The upper one is centered at (0.5, 0.65) with radius 0.15.is more accurate and less diffusive.
The purpose of our numerical experiments is to demon- We take the density inside the two bubbles to be 1 and

the density outside the bubbles to be 10. Since the twostrate that detailed interfacial structures during a topologi-
cal transition can be captured accurately using our level bubbles have a lighter density than that of the background

fluid, they will rise in time. In this study, it is reasonableset formulation. For this reason, we have performed a
series of resolution studies. There are a few numerical to impose simple periodic boundary conditions in both di-

rections.parameters that might affect the convergence of the solu-
tion. One is the numerical grid size, h. One is the smoothing Our first calculation uses a second-order projection

method. We use the second-order ENO scheme in theparameter, «, for the regularized delta function. In our
calculations, we relate these two parameters by the rela- discretization of the convection term. The time discretiza-

tion is performed using a second Adams–Bashforthtion, « 5 2.5h. The numerical viscosity is also related to
the grid size h. For the second-order ENO scheme, it will method. In Fig. 1a, we plot the evolution of the two bubbles

at time t 5 0.0, 0.1, 0.2, 0.3, 0.325, 0.4, 0.45, 0.5, using 256 3produce a numerical viscosity proportional to O(h2) in the
smooth region. When a topological change takes place in 256 grid points. We can see that the bottom portions of

the bubbles travel the fastest. As time evolves, the lowera free interface, it signals the formation of a singularity.
In that case, it is natural to expect that these numerical bubble produces a jet, moving upward. In the process, two

opposite signed vorticity fields are created in the wake ofregularization parameters would have a strong effect for
the fine structure of the interface. On the other hand, as the large bubble. This produces a lower pressure region

behind the large bubble and generates flow streaming intowe refine the mesh size, we expect that the numerical
solution converges to a weak viscosity solution. the symmetry line of the flow. As a result, the front portion

of the small bubble becomes narrower and sharper. AtThe numerical solutions we present here are mostly car-
ried out using a 256 3 256 grid. These numerical solutions time t 5 3, we see that the head of the small bubble almost

catches up with the bottom of the large bubble. In the nextare well resolved. When we compare these solutions with
the corresponding 512 3 512 grid calculations, they are moment, t 5 0.325, the two bubbles merge into a single
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FIG. 1. Second-order ENO approximations for two bubbles of the same density. The density ratio between the bubbles and the background is
1 : 10. Here N 5 256, e1 5 0.0005, e2 5 0.00025, « 5 0.01, and t 5 0; t 5 0, 0.1, 0.2, 0.3 for the first row, and t 5 0.325, 0.4, 0.45, 0.5 for the second row.

bubble. At this time, the interface conjunction forms a cusp initial bubble interfaces are still the same as in Fig. 1. In
Fig. 2, we plot the interface positions at t 5 0.0, 0.1, 0.2,singularity. This sharp cusp is smoothed out by viscosity in

time. At time t 5 0.4, the interface becomes smooth again. 0.3, 0.375, 0.4, 0.45, 0.5. We observe that the bubbles merge
right before t 5 0.4. The cusp singularity at the time ofOn the other hand, the vorticity created in the bottom of

the large bubble generates a rollup. The bottom part of merging is regularized quickly by the surface tension and
the fluid viscosity. We can see that the head of the smallthe small bubble forms a jet which tries to penetrate

through the stem of the merged bubble. By t 5 0.5, we bubble is rounder than that without surface tension. Also
the ‘‘legs’’ of the small bubble are relatively straight andobserve that a secondary topological change takes place

in several regions. The drops in the rollup region of the do not roll up. This is because the surface tension has an
additional regularization effect near the region of large cur-large bubble have pinched off.

Next, we consider the effect of surface tension. In Fig. vature.
2, we compute the interaction of two bubbles using the
second-order ENO discretization and 256 3 256 grid

4.2. Interaction of Bubbles of Three-density Interfaces
points. Again a second-order projection method is used in
the discretization of the Navier–Stokes equations and the We now illustrate how to generalize the level set formu-

lation to include the interaction of three-density interfaces.second-order Adams–Bashforth method is used in the time
integration. The surface tension is taken to be t 5 0.005. Let us denote the density of the bubble on the top by r1 ,

the density of the bubble on the bottom by r2 , and theWith the other parameters being the same, our numerical
experiments show that it takes a longer time for the two background density by r3 . Furthermore, we denote the

interface position of the bubble on the top as f 5 d1 , thebubbles to merge in the case with surface tension. The
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FIG. 2. Second-order ENO approximations for two bubbles of the same density. The density ratio between the bubbles and the background is
1 : 10. Here N 5 256, e1 5 0.0005, e2 5 0.00025, « 5 0.01, and t 5 0.005; t 5 0, 0.1, 0.2, 0.3 for the first row, and t 5 0.375, 0.4, 0.45, 0.5 for the
second row.

interface position of the bubble on the bottom as f 5 d2 , the bubble on the top is given by the level set f 5 d1 , the
interface for the bubble in the bottom is given by f 5 d2 .with d1 . d2 . The level set function f is chosen such that

f . d1 corresponds to the region occupied by the bubble In Fig. 3, we illustrate the method by considering the
interaction of two fluid bubbles with different densitieson the top; f # d2 corresponds to the region occupied by

the bubble on the bottom; and d1 . f . d2 corresponds using 256 3 256 grid points. The density for the bubble
on the top is 60, the density for the bubble on the bottomto the background fluid. Then it is easy to show that the

density function r(x) can be expressed as is 1, and the background density is 3600. This example is
designed to produce a strong interaction among different
interfaces within a short time. This particular choice ofr(x) 5 (r1 2 r3)H(f(x) 2 d1) (60)
density ratio is clearly motivated by the purpose of testing

1 (r3 2 r2)H(f(x) 2 d2) 1 r2 . our numerical method rather than from a physical consid-
eration, for the density ratio is beyond the validity of the

The singular source term for the surface tension now be- Bousinesq approximation. Here we consider the inviscid
comes Euler equations and use a fourth-order centered differ-

ence approximation to the vorticity stream-function for-
k(d(f(x) 2 d1) 1 d(f(x) 2 d2))=f. (61) mulation. A second-order numerical viscosity is used for

the Euler equations and for the level set equations, respec-
tively. In our calculation, the numerical viscosity is takenThe curvature k is computed in the same way as before.

At the end of the calculations, the interface position for to be e 5 0.000125 for the Euler equations, and the
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FIG. 3. Fourth-order difference approximations for two fluid bubbles with different densities. The density ratio is 1 : 60 : 3600 with the bottom
bubble being the lightest. Numerical viscosity for the Euler equations is equal to 0.00025. Numerical viscosity for the level set equations is equal
to 0.000125; t 5 0 and « 5 0.015; t 5 0.1, 0.15, 0.2 for the first row (N 5 256), and t 5 0.275, 0.325, 0.35 for the second row (N 5 512).

numerical viscosity is taken to be n 5 0.00025 for the resolutions to 512 3 512 for times larger than t 5 0.2.
Part of the interface that has rolled up pinches off beforelevel set equation. The time integration is carried out

using a fourth-order Runge–Kutta method. The initial t 5 0.275; two smaller bubbles are detached from the
bottom bubble and have their own dynamics. As theinterfaces of the bubbles are of elliptical shapes. The

problem is set up in such a way that both bubbles will region in between the top portions of two bubbles be-
comes thinner and thinner in time, they eventually pinchrise in time, and the bottom bubble rises the fastest. As

the bottom bubble rises in time, we see that the top off at t 5 0.325 and t 5 0.35, respectively. In the process,
many small scale structures are produced due to theportions of the bubble interfaces are almost in contact.

But they cannot merge into a single bubble in this case unstable stratification of the fluids.
There is no re-initialization used in this numerical exam-because the densities are different for these two bubbles.

In the meantime, the bubble in the bottom forms a strong ple. Also the level set function can develop a steep gradient
when two bubbles with different densities approach eachjet and develops a rollup. We plot the solutions at t 5

0.1, 0.15, 0.2, 0.275, 0.325, 0.35. We increase our numerical other. Alternative approaches to motion of multiple junc-
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tions which include merging have been studied in [37, 33]. 4.4. An Area-Preserving Re-initialization
These methods use several level set functions.

In this subsection, we present some preliminary results
of the level set method with area-preserving re-initializa-
tion. As we mentioned before, this amounts to re-initializ-4.3. Vortex Sheet Rollup in a Periodic Jet
ing the level set function at every time step until the level

In this example, we would like to illustrate that the level
set function satisfies the following perturbed Hamilton–

set formulation can be used naturally to compute vortex
Jacobi equation to a steady state,

sheet rollup due to the Rayleigh–Taylor instability. It is
well known that without additional regularization, the un-
derlying physical problem is ill-posed. Small numerical er- ­

­t
f 1 (A0 2 A(t))(2P 1 k)u=fu 5 0

rors can be amplified rapidly in time [1, 23, 30]. In the
level set formulation, the regularization comes from the f(x, 0) 5 f0(x),
numerical viscosity in the discretization of the convection
terms. As we will see from our numerical example, this where A0 denotes the total mass for the initial condition
second-order numerical viscosity is sufficient to stabilize at t 5 0, A(t) denotes the total mass corresponding to the
the method. The method can compute naturally beyond level set function f(t) in the above re-initialization process.
the curvature singularity due to the Rayleigh–Taylor insta- We took P 5 1 in our test. The total mass A(t) is computed
bility and produces a nice rollup. We remark that since we from the formula
keep the level set function as a distance function in time,
the viscous regularization in the level set equation is in fact A(t) 5 O

i,j
(d2 1 (d1 2 d2)H«(f(i, j)))h2,

a curvature regularization. This curvature regularization is
an intrinsic geometrical regularization. When we apply this
curvature regularization to the Lagrangian boundary inte- where d1 and d2 are the densities inside and outside the

fluid interface, respectively. To accelerate the convergence,gral formulation, it also gives a stable discretization which
can compute beyond the curvature singularity in vortex we took a larger time step in solving this equation. In Fig.

5a, we repeat the calculation presented in Fig. 1, using thesheets and produces a rollup solution similar to those ob-
tained by Krasny [23]. area-preserving re-initialization. We stop the re-initializa-

tion procedure when the relative error between the totalIn Fig. 4, we study the rollup of a periodic jet due to
the Rayleigh–Taylor instability. The fluid in between the mass at the current time and the initial mass is less than

1025. Throughout the calculation, the number of iterationstwo fluid interfaces has constant density d1 , and the rest
of the fluid has density d2 . In this example, d1 5 10 and required to satisfy this error tolerance is about 5 or 6. For

most of the time, it is within 2 or 3 iterations. The totald2 5 20. The initial interface positions consist of sinusoidal
perturbations of flat interfaces. The inviscid Euler equa- mass as a function of time is plotted in Figure 6a. We

clearly observe an excellent conservation of total mass intions are discretized with N 5 256. A fourth-order central
difference scheme is used with an explicit second-order time. In comparison, a considerable amount of mass is lost

towards the end of the calculation without using such a re-numerical viscosity n 5 0.00025 in the convection terms
for both the Euler equations and the level set equation. « initialization; see Fig. 6b. Note that the distance function

re-initialization has been used in the calculation presentedis chosen to be 0.02. The time integration is carried out
using a fourth-order Runge–Kutta method. As before, the in Fig. 6b. This shows that the distance function re-initial-

ization itself is not enough to conserve the total mass. Itproblem is double-periodic in two directions. The flow is
at rest initially. The motion is driven by gravity only. As is designed mainly to maintain the finite thickness of the

interface. On the other hand, since we use a relatively finetime increases, we see the effect of gravity forms a bottle
neck. The formation of the bottle neck becomes very clear mesh in this calculation, the loss of total mass has not yet

polluted the accuracy of the fluid interface. If we compareat t 5 0.3. For t $ 0.35, we see that the bottle neck turns
into a jet that falls down very rapidly and produces a strong Fig. 5a with Fig. 1, they look almost the same, except for

a small difference in the last picture at t 5 0.5. We overlaprollup due to the Rayleigh–Taylor instability. As time in-
creases further, the flow generates tighter rolls. In the mean the two solutions with and without the area-preserving re-

initialization at t 5 0.4 in Fig. 5b. They are almost indistin-time, the small perturbations in the outer arms produce
secondary rollups; see the figure at t 5 0.65. This process guishable from each other.

We also perform a convergence test for our level setrepeats itself and generates more and more small-scale
structures in time. A level set formulation for vortex mo- method. In the following table, we illustrate the numerical

errors for the density, the level set function, and the veloc-tion including vortex sheets in two and three dimensions
has been proposed and tested by Harabetian, Osher, and ity in the discrete L2 norm for N 5 64, 128, 256, « 5

2.5h. This convergence test is performed for the calculationShu [16].
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FIG. 4. Fourth-order centered difference approximations for a periodic jet. The density is equal to 10 in the region bounded by the two interfaces
and equal to 20 elsewhere. Here N 5 256, n 5 e 5 0.00025, t 5 0, and « 5 0.02; t 5 0.1, 0.3, 0.35 for the first row and t 5 0.45, 0.55, 0.65 for the
second row.
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FIG. 5. (a) The same calculation as in Fig. 1 with area-preserving re-initialization. The total area is conserved up to 5 digits. (b) The same
calculation as in Fig. 1. We overlap the solution at t 5 0.4 obtained with area-preserving re-initialization on top of the solution obtained without
area-preserving re-initialization. The two pictures are almost indistinguishable.
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FIG. 6. (a) The same calculation as in Fig. 1. The total area is a function of time. This is with area-preserving re-initialization. The normalized
area is a function of time, N 5 256, del 5 0.01, err 5 1.d 2 5. (b) The same calculation as in Fig. 1. The total area is a function of time. This is
without area-preserving re-initialization. The normalized area is a function of time, N 5 256, del 5 0.01, reinitialization.

presented in Fig. 2 with surface tension and the area-pre- effects of discontinuous density, discontinuous viscosity,
and surface tension can all be taken into account naturally.serving re-initialization. Since the way we approximate the

discrete delta function is relatively crude, in general we Using various re-initialization techniques, it is possible to
keep the level set function as a distance function and tocan expect only first-order convergence in the presence of

surface tension; see, e.g., [7]. We clearly observe conver- enforce mass conservation in time. As in [35], the front
has a finite thickness of order O(h) which does not changegence of first-order accuracy.

Table I illustrates the convergence before the change of in time. The numerical diffusion introduced in the convec-
tion step for the smooth level set function does not diffusetopology takes place at t 5 0.3. Table II illustrates the

convergence after the change of topology takes place at the front. This would not have been the case if we used a
capturing scheme of Godunov type to solve for the densityt 5 0.4.
equation directly, since the density has a contact disconti-
nuity across the interface. From our computational experi-
ences, we find that the second-order ENO scheme is more5. CONCLUSION
robust than a corresponding centered difference scheme

In summary, we have derived a level set formulation with explicit numerical viscosity, especially when we have
for incompressible, immiscible multi-fluid flow. A second- a large density ratio. On the other hand, the fourth-order
order projection method or vorticity-based method can centered difference scheme with a second-order numerical
be used to discretize the fluid equations in the level set viscosity is more accurate and less diffusive. In both cases,
formulation. The numerical method is purely Eulerian. the method is efficient and is capable of handling topologi-
There is no explicit tracking of the fluid interfaces. The cal change in the fluid interfaces, such as merging and
fluid interface is recovered at the end of the calculation reconnection. It can be generalized to three-dimensional
by locating the zero level set of a smooth function. The problems fairly easily.

TABLE I TABLE II

Convergence Study at t 5 0.4.Convergence Study at t 5 0.3.

Coarse 64 vs 256 Fine 128 vs 256 Coarse 64 vs 256 Fine 128 vs 256

r 0.0892 0.0399r 0.0810 0.0352
u 0.0620 0.0242 u 0.0614 0.0286

f 0.00998 0.00310f 0.00598 0.00183
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