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alte
h.edu.Abstra
t. Many problems of fundamental and pra
ti
al importan
e have multiples
ale solutions. The dire
t numeri
al solution of multiple s
ale problems is diÆ
ultto obtain even with modern super
omputers. The major diÆ
ulty of dire
t solutionsis the s
ale of 
omputation. The ratio between the largest s
ale and the smallests
ale 
ould be as large as 105 in ea
h spa
e dimension. From an engineering perspe
-tive, it is often suÆ
ient to predi
t the ma
ros
opi
 properties of the multiple-s
alesystems, su
h as the e�e
tive 
ondu
tivity, elasti
 moduli, permeability, and eddydi�usivity. Therefore, it is desirable to develop a method that 
aptures the smalls
ale e�e
t on the large s
ales, but does not require resolving all the small s
alefeatures. This paper reviews some of the re
ent advan
es in developing systemati
multis
ale methods su
h as homogenization, numeri
al samplings, multis
ale �niteelement methods, variational multis
ale methods, and wavelets based homogeniza-tion. This paper is not intended to be a detailed survey and the dis
ussion is limitedby both the taste and expertise of the author.1 Introdu
tionMany problems of fundamental and pra
ti
al importan
e have multiple s
alesolutions. Composite materials, porous media, and turbulent transport inhigh Reynolds number 
ows are examples of this type. A 
omplete anal-ysis of these problems is extremely diÆ
ult. For example, the diÆ
ulty inanalyzing groundwater transport is mainly 
aused by the heterogeneity ofsubsurfa
e formations spanning over many s
ales. This heterogeneity is oftenrepresented by the multis
ale 
u
tuations in the permeability of media. For
omposite materials, the dispersed phases (parti
les or �bers), whi
h may berandomly distributed in the matrix, give rise to 
u
tuations in the thermalor ele
tri
al 
ondu
tivity; moreover, the 
ondu
tivity is usually dis
ontinuousa
ross the phase boundaries. In turbulent transport problems, the 
onve
tivevelo
ity �eld 
u
tuates randomly and 
ontains many s
ales depending on theReynolds number of the 
ow.The dire
t numeri
al solution of multiple s
ale problems is diÆ
ult evenwith the advent of super
omputers. The major diÆ
ulty of dire
t solutionsis the s
ale of 
omputation. For groundwater simulations, it is 
ommon that? Resear
h was in part supported by a grant DMS-0073916 from the NationalS
ien
e Foundation



2 Thomas Y. Houmillions of grid blo
ks are involved, with ea
h blo
k having a dimension oftens of meters, whereas the permeability measured from 
ores is at a s
ale ofseveral 
entimeters. This gives more than 105 degrees of freedom per spatialdimension in the 
omputation. Therefore, a tremendous amount of 
omputermemory and CPU time are required, and this 
an easily ex
eed the limit oftoday's 
omputing resour
es. The situation 
an be relieved to some degree byparallel 
omputing; however, the size of the dis
rete problem is not redu
ed.The load is merely shared by more pro
essors with more memory. Wheneverone 
an a�ord to resolve all the small s
ale features of a physi
al problem,dire
t solutions provide quantitative information of the physi
al pro
esses atall s
ales. On the other hand, from an engineering perspe
tive, it is often suf-�
ient to predi
t the ma
ros
opi
 properties of the multis
ale systems, su
has the e�e
tive 
ondu
tivity, elasti
 moduli, permeability, and eddy di�usiv-ity. Therefore, it is desirable to develop a method that 
aptures the smalls
ale e�e
t on the large s
ales, but does not require resolving all the smalls
ale features.The purpose of these le
ture notes is to review some re
ent advan
es in de-veloping multis
ale numeri
al methods that 
apture the small s
ale e�e
t onthe large s
ales, but do not require resolving all the small s
ale features. Theultimate goal is to develop a general method that works for problems with
ontinuous spe
trum of s
ales. Substantial progress has been made in re
entyears by 
ombining modern mathemati
al te
hniques su
h as homogeniza-tion, numeri
al samplings, and multiresolution. My le
tures 
an be roughlydivided into �ve parts. In Se
tion 2, I will review some homogenization the-ory for ellipti
 and hyperboli
 equations as well as for in
ompressible 
ows.This homogenization theory provides the 
riti
al guideline for designing ef-fe
tive multis
ale methods. Se
tion 3 is devoted to numeri
al homogenizationfor semilinear hyperboli
 systems using parti
le methods and sampling te
h-niques. For hyperboli
 systems, it is important to 
ompute the adve
tion ofsmall s
ale information a

urately and a

ount for the nonlinear intera
tionproperly. We also need to avoid 
ertain resonant sampling of the grid in orderto obtain 
onvergen
e. In Se
tion 4, we fo
us on some re
ent developmentsof numeri
al homogenization based on the multis
ale �nite element methods.We also dis
uss the issue of ups
aling one-phase and two-phase 
ows throughheterogeneous porous media. In Se
tions 5 and 6, I review the main ideasbehind the wavelet-based numeri
al homogenization method and the varia-tional multis
ale method. There are many other multis
ale methods whi
hwe will not 
over due to the limited s
ope of these le
tures. The above meth-ods are 
hosen be
ause they are similar philosophi
ally and the materials
omplement ea
h other very well. This paper is not intended to be a detailedsurvey of all available multis
ale methods. The dis
ussion is limited by s
opeof the le
tures and expertise of the author.



Numeri
al Approximations to Multis
ale Solutions in PDEs 32 Review of Homogenization TheoryIn this se
tion, we will review some 
lassi
al homogenization theory for ellipti
and hyperboli
 PDEs. This homogenization theory will play an essential rolein designing e�e
tive multis
ale numeri
al methods for partial di�erentialequations with multis
ale solutions.2.1 Homogenization Theory for Ellipti
 ProblemsConsider the se
ond order ellipti
 equationL(u") � � ��xi �aij (x=") ��xj�u" + a0(x=")u" = f; u"j�
 = 0; (2.1)where aij(y) and a0(y) are Y -periodi
 and satisfy aij(y)�i�j � ��i�i, with� > 0, and a0 > �0 > 0. Here we have used the Einstein summation notation,i.e. repeated index means summation with respe
t to that index.This model equation represents a 
ommon diÆ
ulty shared by severalphysi
al problems. For porous media, it is the pressure equation throughDar
y's law, the 
oeÆ
ient a" representing the permeability tensor. For 
om-posite materials, it is the steady heat 
ondu
tion equation and the 
oeÆ
ienta" represents the thermal 
ondu
tivity. For steady transport problems, it isa symmetrized form of the governing equation. In this 
ase, the 
oeÆ
ient a"is a 
ombination of transport velo
ity and vis
osity tensor.Homogenization theory is to study the limiting behavior u" ! u as "! 0.The main task is to �nd the homogenized 
oeÆ
ients, a�ij and a�0, and thehomogenized equation for the limiting solution u� ��xi �a�ij ��xj�u+ a�0u = f; uj�
 = 0: (2.2)De�ne the L2 and H1 norms over 
 as followskvk20 = Z
 jvj2 dx; kvk21 = kvk20 + krvk20: (2.3)Further, we de�ne the bilinear forma"(u; v) = Z
 a"i;j(x) �u�xj �v�xi dx+ Z
 a"0uv dx: (2.4)It is easy to show that 
1kuk21 � a"(u; u) � 
2kuk21; (2.5)with 
1 = min(�; �0), 
2 = max(kaijk1; ka0k1).The ellipti
 problem 
an also be formulated as a variational problem: �ndu" 2 H10 a"(u"; v) = (f; v); for all v 2 H10 (
); (2.6)where (f; v) is the usual L2 inner produ
t, R
 fv dx.



4 Thomas Y. HouSpe
ial Case: One-Dimensional Problem Let 
 = (x0; x1) and takea0 = 0. We have � ddx �a(x=")du"dx � = f; in 
 ; (2.7)where u"(x0) = u"(x1) = 0, and a(y) > �0 > 0 is y-periodi
 with period y0.By taking v = u" in the bilinear form, we haveku"k1 � 
:Therefore one 
an extra
t a subsequen
e, still denoted by u", su
h thatu" * u in H10 (
) weakly: (2.8)On the other hand, we noti
e thata" *m(a) = 1y0 Z y00 a(y) dy in L1(
) weak star: (2.9)It is tempting to 
on
lude that u satis�es:� ddx �m(a)dudx� = f;where m(a) = 1y0 R y00 a(y) dy is the arithmeti
 mean of a. However, this is nottrue. To derive the 
orre
t answer, we introdu
e�" = a" du"dx :Sin
e a" is bounded, and u"x is bounded in L2(
), so �" is bounded in L2(
).Moreover, sin
e �d�"dx = f , we have �" 2 H1(
). Thus we get�" ! � in L2(
) strongly;so that 1a" �" ! m(1=a)� in L2(
) weakly:Further, we note that 1a" �" = du"dx . Therefore, we arrive atdudx = m(1=a)�:On the other hand, �d�"dx = f implies � d�dx = f . This gives� ddx � 1m(1=a) dudx� = f: (2.10)This is the 
orre
t homogenized equation for u. Note that a� = 1m(1=a) is theharmoni
 average of a". It is in general not equal to the arithmeti
 averagea" = m(a).



Numeri
al Approximations to Multis
ale Solutions in PDEs 5Multis
ale Asymptoti
 Expansions. The above analysis does not gen-eralize to multi-dimensions. In this subse
tion, we introdu
e the multis
aleexpansion te
hnique in deriving homogenized equations. This te
hnique isvery e�e
tive and 
an be used in a number of appli
ations.We shall look for u"(x) in the form of asymptoti
 expansionu"(x) = u0(x; x=") + "u1(x; x=") + "2u2(x; x=") + � � � ; (2.11)where the fun
tions uj(x; y) are Y -periodi
 in y.Denote by A" the se
ond order ellipti
 operatorA" = � ��xi �aij (x=") ��xj� : (2.12)When di�erentiating a fun
tion �(x; x=") with respe
t to x, we have��xj = ��xj + 1" ��yj ;where y is evaluated at y = x=". With this notation, we 
an expand A" asfollows A" = "�2A1 + "�1A2 + "0A3; (2.13)where A1 = � ��yi �aij(y) ��yj� ; (2.14)A2 = � ��yi �aij(y) ��xj�� ��xi �aij(y) ��yj� ; (2.15)A3 = � ��xi �aij(y) ��xj �+ a0 : (2.16)Substituting the expansions for u" and A" into A"u" = f , and equating theterms of the same power, we getA1u0 = 0; (2.17)A1u1 + A2u0 = 0; (2.18)A1u2 + A2u1 +A3u0 = f: (2.19)Equation (2.17) 
an be written as� ��yi �aij(y) ��yj�u0(x; y) = 0; (2.20)where u0 is periodi
 in y. The theory of se
ond order ellipti
 PDEs [35℄implies that u0(x; y) is independent of y, i.e. u0(x; y) = u0(x). This simpli�esequation (2.18) for u1,� ��yi �aij(y) ��yj�u1 = � ��yi aij(y)� �u�xj (x):



6 Thomas Y. HouDe�ne �j = �j(y) as the solution to the following 
ell problem� ��yi �aij(y) ��yj��j = ��yi aij(y) ; (2.21)where �j is Y -periodi
. The general solution of equation (2.18) for u1 is thengiven by u1(x; y) = ��j(y) �u�xj (x) + ~u1(x) : (2.22)Finally, we note that the equation for u2 is given by��yi �aij(y) ��yj�u2 = A2u1 +A3u0 � f : (2.23)The solvability 
ondition implies that the right hand side of (2.23) must havemean zero in y, i.e. ZY (A2u1 +A3u0 � f) dy = 0:This solvability 
ondition for se
ond order ellipti
 PDEs with periodi
 bound-ary 
ondition [35℄ requires that the right hand side of equation (2.23) havemean zero with respe
t to the fast variable y. This solvability 
ondition givesrise to the homogenized equation for u:� ��xi �a�ij ��xj�u+m(a0)u = f ; (2.24)where m(a0) = 1jY j RY a0(y) dy anda�ij = 1jY j �ZY (aij � aik ��j�yk ) dy� : (2.25)Justi�
ation of formal expansions The above multis
ale expansion isbased on a formal asymptoti
 analysis. However, we 
an justify its 
onver-gen
e rigorously.Let z" = u" � (u+ "u1 + "2u2). Applying A" to z", we getA"z" = �"r" ;where r" = A2u2 + A3u1 + "A3u2. If f is smooth enough, so is u2. Thus wehave kr"k1 � 
:On the other hand, we havez"j�
 = �("u1 + "2u2)j�
:Thus, we obtain kz"kL1(�
) � 
":



Numeri
al Approximations to Multis
ale Solutions in PDEs 7It follows from the maximum prin
iple [35℄ thatkz"kL1(
) � 
"and therefore we 
on
lude thatku" � ukL1(
) � 
":Boundary Corre
tions The above asymptoti
 expansion does not takeinto a

ount the boundary 
ondition of the original ellipti
 PDEs. If we adda boundary 
orre
tion, we 
an obtain higher order approximations.Let �" 2 H1(
) denote the solution torx � a"rx�" = 0 in 
; �" = u1(x; x=") on �
:Then we have (u" � (u+ "u1(x; x=")� "�")) j�
 = 0:Moskow and Vogelius [52℄ have shown thatku" � u� "u1(x; x=") + "�"k0 � C!"1+!kuk2+!; (2.26)ku" � u� "u1(x; x=") + "�"k1 � C"kuk2; (2.27)where we assume u 2 H2+!(
) with 0 � ! � 1, and 
 is assumed to be abounded, 
onvex 
urvilinear polygon of 
lass C1. This improved estimate willbe used in the 
onvergen
e analysis of the multis
ale �nite element methodto be presented in Se
tion 4.2.2 Homogenization for hyperboli
 problemsIn this subse
tion, we will review some homogenization theory for semilin-ear hyperboli
 systems. As we will see below, homogenization for hyperboli
problems is very di�erent from that for ellipti
 problems. The phenomenaare also very ri
h.Consider the semilinear Carleman equations [14℄:�u"�t + �u"�x = v2" � u2";�v"�t � �v"�x = u2" � v2" ;with os
illatory initial data, u"(x; 0) = u"0(x), v"(x; 0) = v"0(x).Assume that the initial 
onditions are positive and bounded. Then it 
anbe shown that there exists a unique bounded solution for all times. Thus we
an extra
t a subsequen
e of u" and v" su
h that u" * u and v" * v as"! 0.



8 Thomas Y. HouDenote um as the weak limit of um" , and vm as the weak limit of vm" . Bytaking the weak limit of both sides of the equations, we get�u1�t + �u1�x = v2 � u2;�v1�t � �v1�x = u2 � v2:By multiplying the Carleman equations by u" and v" respe
tively, we get�u2"�t + �u2"�x = 2u"v2" � 2u3";�v2"�t + �v2"�x = 2v"u2" � 2v3" :Thus the weak limit of u2" depends on the weak limit of u3" and the weak limitof u"v2" .Denote by w" as the weak limit of w". To obtain a 
losure, we would liketo express u"v2" in terms of the produ
t u" and v2" . This is not possible ingeneral. In this parti
ular 
ase, we 
an use the Div-Curl Lemma [53,54,58℄ toobtain a 
losure.The Div-Curl Lemma. Let 
 be an open set of RN and u" and v" be twosequen
es su
h thatu" * u; in �L2(
)�N weakly;v" * v; in �L2(
)�N weakly:Further, we assume thatdivu" is bounded in L2(
)( or 
ompa
t in H�1(
)) ;
url v" is bounded in �L2(
)�N2 (or 
ompa
t in �H�1(
)�N2 ):Let h�; �i denote the inner produ
t in RN , i.e.hu;vi = NXi=1 uivi:Then we have hu" � v"i* hu � vi weakly: (2.28)Remark 2.1. We remark that the Div-Curl Lemma is the simplest form ofthe more general Compensated Compa
tness Theory developed by Tartar[58℄ and Murat [53,54℄.Applying the Div-Curl Lemma to (u"; u") and (v2" ; v2") in the spa
e-timedomain, one 
an show that u"v2" = u" v2" . Similarly, one 
an show that u2"v" =
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al Approximations to Multis
ale Solutions in PDEs 9u2" v". Using this fa
t, Tartar [59℄ obtained the following in�nite hyperboli
system for um and vm [59℄:�um�t + �um�x = mum�1v2 �mum+1;�vm�t � �vm�x = mvm�1u2 �mvm+1:Note that the weak limit of um" , um, depends on the weak limit of um+1" ,um+1. Similarly, vm depends on vm+1. Thus one 
annot obtain a 
losed sys-tem for the weak limits u" and v" by a �nite system. This is a generi
 phe-nomenon for nonlinear partial di�erential equations with mi
rostru
ture. Itis often referred to as the 
losure problem. On the other hand, for the Carle-man equations, Tartar showed that the in�nite system is hyperboli
 and thesystem is well-posed.The situation is very di�erent for a 3� 3 system of Broadwell type [13℄:�u"�t + �u"�x = w2" � u"v"; (2.29)�v"�t � �v"�x = w2" � u"v"; (2.30)�w"�t + ��w"�x = u"v" � w2" ; (2.31)with os
illatory initial data, u"(x; 0) = u"0(x), v"(x; 0) = v"0(x) and w"(x; 0) =w"0(x). When � = 0, the above system redu
es to the original Broadwellmodel. We will refer to the above system as the generalized Broadwell model.Note that in the generalized Broadwell model, the right hand side of thew-equation depends on the produ
t of uv. If we try to obtain an evolutionequation for w2" , it will depend on the triple produ
t u"v"w". The Div-CurlLemma 
annot be used here to 
hara
terize the weak limit of this tripleprodu
t in terms of the weak limits of u", v" and w".Assume the initial os
illations are periodi
, i.e.u"0 = u0(x; x="); v"0 = v0(x; x="); w"0 = w0(x; x="):where u0(x; y); v0(x; y); w0(x; y) are 1-periodi
 in y.There are two 
ases to 
onsider.Case 1. � = m=n is a rational number. Let fU(x; y; t); V (x; y; t);W (x; y; t)gbe the homogenized solution whi
h satis�esUt + Ux = R 10 W 2 dy � UR 10 V dy;Vt � Vx = R 10 W 2 dy � UR 10 V dy;Wt + �Wx = �W 2 + 1n Z n0 U(x; y + (�� 1)z; t)V (x; y + (�+ 1)z; t) dz;



10 Thomas Y. Houwhere U jt=0 = u0(x; y); V jt=0 = v0(x; y) and W jt=0 = w0(x; y). Then wehave ku"(x; t)� U(x; x�t" ; t)kL1 � C";kv"(x; t)� V (x; x+t" ; t)kL1 � C";kw"(x; t)�W (x; x��t" ; t)kL1 � C":Case 2. � is an irrational number. Let fU(x; y; t); V (x; y; t);W (x; y; t)g bethe homogenized solution whi
h satis�esUt + Ux = R 10 W 2 dy � UR 10 V dy;Vt � Vx = R 10 W 2 dy � UR 10 V dy;Wt + �Wx = �W 2 + �R 10 U dy��R 10 V dy� :where U jt=0 = u0(x; y); V jt=0 = v0(x; y) and W jt=0 = w0(x; y). Then wehave ku"(x; t)� U(x; x�t" ; t)kL1 � C";kv"(x; t)� V (x; x+t" ; t)kL1 � C";kw"(x; t)�W (x; x��t" ; t)kL1 � C":We refer the reader to [37℄ for the proof of the above results.Note that when � is a rational number, the intera
tion of u" and v" 
angenerate a high frequen
y 
ontribution to w". This is not the 
ase when� is an irrational number. The rational � 
ase 
orresponds to a resonan
eintera
tion.The derivation and analysis of the above results rely on the following twoLemmas:Lemma 2.1. Let f(x); g(x; y) 2 C1. Assume that g(x; y) is n-periodi
 in y,then we haveZ ba f(x)g(x; x=") dx = Z ba f(x)� 1n Z n0 g(x; y) dy� dx+O("):Lemma 2.2. Let f(x; y; z) 2 C1. Assume that f(x; y; z) is 1-periodi
 in yand z. If 
2=
1 is an irrational number, then we haveZ ba f �x; x1+
1x" ; x2+
1x" � dx = Z ba �Z 10 Z 10 f(x; y; z) dy dz� dx+O("):The proof uses some basi
 ergodi
 theory. It 
an be seen easily by ex-panding in Fourier series in the periodi
 variables [37℄. For the sake of 
om-pleteness, we present a simple proof of the above homogenization result forthe 
ase of � = 0 in the next subse
tion.



Numeri
al Approximations to Multis
ale Solutions in PDEs 11Homogenization of the Broadwell Model In this subse
tion, we give asimple proof of the homogenization result in the spe
ial 
ase of � = 0. Thehomogenized equations 
an be derived by multis
ale asymptoti
 expansions[50℄.Consider the Broadwell model�tu+ �xu = w2 � uv in R � (0; T ); (2.32)�tv � �xv = w2 � uv in R � (0; T ); (2.33)�tw = uv � w2 in R � (0; T ); (2.34)with os
illatory initial valuesu(x; 0) = u0(x; x" ); v(x; 0) = v0(x; x" ); w(x; 0) = w0(x; x" ); (2.35)where u0(x; y); v0(x; y); w0(x; y) are 1-periodi
 in y. We introdu
e an extravariable, y, to des
ribe the fast variable, x=". Let the solution of the homog-enized equation be fU(x; y; t); V (x; y; t);W (x; y; t)g whi
h satis�es�tU + �xU + U Z 10 V dy � Z 10 W 2 dy = 0 in R � (0; T ); (2.36)�tV � �xV + V Z 10 U dy � Z 10 W 2 dy = 0 in R � (0; T ); (2.37)�tW +W 2 � Z 10 U(x; y � z; t)V (x; y + z; t) dz = 0 in R � (0; T ); (2.38)with initial values given byU(x; y; 0) = u0(x; y); V (x; y; 0) = v0(x; y); W (x; y; 0) = w0(x; y):(2.39)Note that U(x; y; t); V (x; y; t);W (x; y; t) are 1-periodi
 in y and the system(2.36)-(2.39) is a set of partial di�erential equations in (x; t) with y 2 [0; 1℄as a parameter. The global existen
e of the systems (2.32)-(2.35) and (2.36)-(2.39) has been established, see the referen
es 
ited in [32℄.Theorem 2.1. Let (u; v; w) and (U; V;W ) be the solutions of the systems(2.32)-(2.35) and (2.36)-(2.39), respe
tively. Then we have the following er-ror estimatemax0�t�T E(t) � h5(M(T )2 + 2TK(T )M(T )) exp(6M(T )T )i " := C1(T )";(2.40)where the error fun
tion E(t) is given byE(t) = maxx2R n ���u(x; t)� U(x; x�t" ; t)���+ ���v(x; t)� V (x; x+t" ; t)���+���w(x; t) �W (x; x" ; t)��� o



12 Thomas Y. Houand the 
onstants M(T ) and K(T ) are given byM(T ) = max(x;y;t)2R�[0;1℄�[0;T ℄�juj; jvj; jwj; jU j; jV j; jW j�; (2.41)N(T ) = max(x;y;t)2R�[0;1℄�[0;T ℄�j�xU j; j�tU j; j�xV j; j�tV j; j�xW j; j�tW j�: (2.42)This homogenization result was �rst obtained by M
Laughlin, Papani
o-laou and Tartar using an Lp norm estimate (0 < p <1) [50℄. Sin
e we needan L1 norm estimate in the 
onvergen
e analysis of our parti
le method, wegive another proof of this result in L1 norm. As a �rst step, we prove thefollowing lemma.Lemma 2.3. Let g(x; y) 2 C1(R � [0; 1℄) be 1-periodi
 in y and satisfy therelation R 10 g(x; y) dy = 0. Then for any " > 0 and for any 
onstants a andb, the following estimate holds��� Z ba g(x; x" ) dx��� � B(g)"+ jb� ajB(�xg)"; (2.43)where B(�) = max(x;y)2R�[0;1℄ j�(x; y)j for any fun
tion � de�ned on R�[0; 1℄.Proof. The estimate (2.43) is a dire
t 
onsequen
e of the identityg(x; x" ) = ddx Z xa g(x; s" ) ds� Z xa �g�x (x; s" ) dsand the estimates��� Z ba g(x; s" ) ds��� � B(g)"; ��� Z xa �g�x (x; s" ) ds��� � B(�xg)";whi
h follow from the 1-periodi
ity of g(x; y) in y and that R 10 g(x; y) dy = 0.This 
ompletes the proof. ut
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al Approximations to Multis
ale Solutions in PDEs 13Proof (of Theorem 2.1). Subtra
ting (2.36) from (2.32) and integrating theresulting equation along the 
hara
teristi
s from 0 to t, we getu(x; t)� U(x; x�t" ; t)= Z t0 hw(x � t+ s; s)2 �W (x� t+ s; x�t+s" ; s)2i ds+ Z t0 hW (x� t+ s; x�t+s" ; s)2 � R 10 W (x� t+ s; y; s)2 dyi ds� Z t0 hu(x� t+ s; s)v(x� t+ s; s)�U(x� t+ s; x�t" ; s)V (x� t+ s; x�t+2s" ; s)i ds� Z t0 U(x� t+ s; x�t" ; s)hV (x� t+ s; x�t+2s" ; s)� Z 10 V (x� t+ s; y; s) dyi ds:= (I)1 + � � �+ (I)4: (2.44)It is 
lear from the de�nition of E(t) and M(T ) thatj(I)1 + (I)3j � 2M(T ) Z t0 E(s) ds:To estimate (I)2, we de�ne for �xed (x; t) 2 R � [0; T ℄,g(x;t)(s; y) =W (x� t+ s; x�t" + y; s)2:Sin
e the 1-periodi
ity of W (x; y; t) in y impliesZ 10 W (x� t+ s; y; s)2 dy = Z 10 W (x� t+ s; x�t" + y; s)2 dy;we obtain by applying Lemma 2.1 thatj(I)2j = ��� Z t0 hg(x;t)(s; s" )� Z 10 g(x;t)(s; y) dyi ds����M(T )2"+ 2M(T )K(T )T":Similarly, we have (I)4 �M(T )2"+ 2M(T )K(T )T":Substituting these estimates into (2.44) we get���u(x; t)� U(x; x�t" ; t)��� � 2M(T ) Z t0 E(s) ds+ 2M(T )2"+ 4M(T )K(T )T":(2.45)



14 Thomas Y. HouSimilarly, we 
on
lude from (2.37)-(2.38) and (2.33)-(2.34) that���v(x; t)� V (x; x+t" ; t)��� � 2M(T ) Z t0 E(s) ds+ 2M(T )2"+ 4M(T )K(T )T";(2.46)���w(x; t) �W (x; x" ; t)��� � 2M(T ) Z t0 E(s) ds+M(T )2"+ 2M(T )K(T )T":(2.47)Now the desired estimate (2.40) follows from summing (2.45)-(2.47) and usingthe Gronwall inequality. utRemark 2.2. The homogenization theory tells us that the initial os
illatorysolutions propagate along their 
hara
teristi
s. The nonlinear intera
tion 
angenerate only low frequen
y 
ontributions to the u and v 
omponents. Onthe other hand, the nonlinear intera
tion of u; v on w 
an generate both lowand high frequen
y 
ontribution to w. That is, even if w has no os
illatory
omponent initially, the dynami
al intera
tion of u; v and w 
an generate ahigh frequen
y 
ontribution to w at later time. This is not the 
ase for the uand v 
omponents. Due to this resonant intera
tion of u; v and w, the weaklimit of u"v"w" is not equal to the produ
t of the weak limits of u"; v"; w".This explains why the Compensated Compa
tness result does not apply tothis 3� 3 system [59℄.Although it is diÆ
ult to 
hara
terize the weak limit of the triple produ
t,u"v"w" for arbitrary os
illatory initial data, it is possible to say somethingabout the weak limit of the triple produ
t for os
illatory initial data thathave periodi
 stru
ture, su
h as the ones studies here. Depending on � beingrational or irrational, the limiting behavior is very di�erent. In fa
t, one 
anshow that u"v"w" = u"v"w" when � is equal to an irrational number. This isnot true in general when � is a rational number.2.3 Conve
tion of mi
rostru
tureIt is most interesting to see if one 
an apply homogenization te
hnique toobtain an averaged equation for the large s
ale quantity for in
ompressibleEuler or Navier-Stokes equations. In 1985, M
Laughlin, Papani
olaou andPironneau [51℄ attempted to obtain a homogenized equation for the 3-Din
ompressible Euler equations with highly os
illatory velo
ity �eld. Morespe
i�
ally, they 
onsidered the following initial value problem:ut + (u � r)u = �rp;with r � u = 0 and highly os
illatory initial datau(x; 0) = U(x) +W (x; x="):
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al Approximations to Multis
ale Solutions in PDEs 15They then 
onstru
ted multis
ale expansions for both the velo
ity �eld andthe pressure. In doing so, they made an important assumption that the mi-
rostru
ture is 
onve
ted by the mean 
ow. Under this assumption, they
onstru
ted a multis
ale expansion for the velo
ity �eld as follows:u"(x; t) = u(x; t) + w( �(x;t)" ; t" ; x; t) + "u1( �(x;t)" ; t" ; x; t) +O("2):The pressure �eld p" is expanded similarly. From this ansatz, one 
an showthat � is 
onve
ted by the mean velo
ity:�t + u � r� = 0 ; �(x; 0) = x :It is a very 
hallenging problems to develop a systemati
 approa
h tostudy the large s
ale solution in three dimensional Euler and Navier-Stokesequations. The work of M
Laughlin, Papani
olaou and Pironneau providedsome insightful understanding into how small s
ales intera
t with large s
aleand how to deal with the 
losure problem. However, the problem is still not
ompletely resolved sin
e the 
ell problem obtained this way does not have aunique solution. Additional 
onstraints need to be enfor
ed in order to derivea large s
ale averaged equation. With additional assumptions, they managedto derive a variant of the k � " model in turbulen
e modeling.Remark 2.3. One possible way to improve the work of [51℄ is take into a
-
ount the os
illation in the Lagrangian 
hara
teristi
s, �". The os
illatorypart of �" in general 
ould have order one 
ontribution to the mean velo
ityof the in
ompressible Euler equation. With Dr. Danping Yang [41℄, we havestudied 
onve
tion of mi
rostru
ture of the 2-D and 3-D in
ompressible Eu-ler equations using a new approa
h. We do not assume that the os
illation ispropagated by the mean 
ow. In fa
t, we found that it is 
ru
ial to in
ludethe e�e
t of os
illations in the 
hara
teristi
s on the mean 
ow. Using thisnew approa
h, we 
an derive a well-posed 
ell problem whi
h 
an be used toobtain an e�e
tive large s
ale average equation.More 
an be said for a passive s
alar 
onve
tion equation.vt + 1"r � (u(x=")v) = ��v;with v(x; 0) = v0(x). Here u(y) is a known in
ompressible periodi
 (or station-ary random) velo
ity �eld with zero mean. Assume that the initial 
onditionis smooth.Expand the solution v" in powers of "v" = v(t; x) + "v1(t; x; x=") + "2v2(t; x; x=") + � � � :The 
oeÆ
ients of "�1 lead to��yv1 � u � ryv1 � u � rxv = 0:



16 Thomas Y. HouLet ek; k = 1; 2; 3 be the unit ve
tors in the 
oordinate dire
tions and let�k(y) satisfy the 
ell problem:��y�k � u � ry�k � u � ek = 0:Then we have v1(t; x; y) = 3Xk=1�k(y)v(t; x)�xk :The 
oeÆ
ients of "0 give��yv2 � u � ryv2 = u � rxv1 � 2�rx � ryv1 � ��xv + vt:The solvability 
ondition for v2 requires that the right hand side has zeromean with respe
t to y. This gives rise to the equation for homogenizedsolution v vt = ��xv � u � rxv1:Using the 
ell problem, M
Laughlin, Papani
olaou, and Pironneau obtained[51℄ vt = 3Xi;j=1(�Æij + �Tij ) �2v�xi�xj ;where �Tij = �ui�j :Nonlo
al memory e�e
t of homogenization It is interesting to notethat for 
ertain degenerate problem, the homogenized equation may have anonlo
al memory e�e
t.Consider the simple 2-D linear 
onve
tion equation:�u"(x; y; t)�t + a"(y)�u"(x; y; t)�x = 0;with initial 
ondition u"(x; y; 0) = u0(x; y).We assume that a" is bounded and u0 has 
ompa
t support. While it iseasy to write down the solution expli
itly,u"(x; y; t) = u0(x� a"(y)t; y);it is not an easy task to derive the homogenized equation for the weak limitof u".Using Lapla
e Transform and measure theory, Lu
 Tartar [60℄ showedthat the weak limit u of u" satis�es��tu(x; y; t) +A1(y) ��xu(x; y; t) = Z t0 Z �2�x2u(x� �(t� s); y; s)d�y(�) ds;
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al Approximations to Multis
ale Solutions in PDEs 17with u(x; y; 0) = u0(x; y), where A1(y) is the weak limit of a"(y), and �y is aprobability measure of y and has support in [min(a");max(a")℄.As we 
an see, the degenerate 
onve
tion indu
es a nonlo
al history de-pendent di�usion term in the propagating dire
tion (x). The homogenizedequation is not amenable to 
omputation sin
e the measure �y 
annot beexpressed expli
itly in terms of a".3 Numeri
al Homogenization Based on SamplingTe
hniquesHomogenization theory provides a 
riti
al guideline for us to design e�e
tivenumeri
al methods to 
ompute multis
ale problems. Whenever homogenizedequations are appli
able they are very useful for 
omputational purposes.There are, however, many situations for whi
h we do not have well-posed ef-fe
tive equations or for whi
h the solution 
ontains di�erent frequen
ies su
hthat e�e
tive equations are not pra
ti
al. In these 
ases we would like to ap-proximate the original equations dire
tly. In this part of my le
tures, we willinvestigate the possibility of approximating multis
ale problems using parti-
le methods together with sampling te
hnique. The 
lasses of equations we
onsider here in
lude semilinear hyperboli
 systems and the in
ompressibleEuler equation with os
illatory solutions.When we talk about 
onvergen
e of an approximation to an os
illatorysolution, we need to introdu
e a new de�nition. The traditional 
onvergen
e
on
ept is too weak in pra
ti
e and does not dis
riminate between solutionswhi
h are highly os
illatory and those whi
h are smooth. We need the errorto be small essentially independent of the wavelength in the os
illation whenthe 
omputational grid size is small. On the other hand we 
annot expe
t theapproximation to be well behaved pointwise. It is enough if the 
ontinuoussolution and its dis
rete approximation have similar lo
al or moving averages.De�nition 3.1 (Engquist [30℄). Let vn be the numeri
al approximationto u at time tn(tn = n�t), " represents the wave length of os
illation inthe solution. The approximation vn 
onverges to u as �t ! 0, essentiallyindependent of ", if for any Æ > 0 and T > 0 there exists a set s(";�t0) 2(0;�t0) with measure (s(";�t0)) � (1� Æ)�t0 su
h thatjju(�; tn)� vnjj � Æ; 0 � tn � Tis valid for all �t 2 s(";�t0) and where �t0 is independent of ".The 
onvergen
e 
on
ept of \essentially independent of "" is strong enoughto mimi
 the pra
ti
al 
ase where the high frequen
y os
illations are not wellresolved on the grid. A small set of values of �t has to be removed in order toavoid resonan
e between �t and ". Compare the almost always 
onvergen
efor the Monte Carlo methods [55℄.



18 Thomas Y. HouIt is natural to 
ompare our problem with the numeri
al approximationof dis
ontinuous solutions of nonlinear 
onservation laws. Sho
k 
apturingmethods do not produ
e the 
orre
t sho
k pro�les but the overall solutionmay still be good. For this the s
heme must satisfy 
ertain 
onditions su
has 
onservation form. We are here interested in analogous 
onditions on al-gorithms for os
illatory solutions. These 
onditions should ideally guaranteethat the numeri
al approximation in some sense is 
lose to the solution ofthe 
orresponding e�e
tive equation when the wave length of the os
illationtends to zero.There are three 
entral sour
es of problems for dis
rete approximationsof highly os
illatory solutions.(i) The �rst one is the sampling of the 
omputational mesh points (xj =j�x; j = 0; 1; :::). There is the risk of resonan
e between the mesh pointsand the os
illation. For example, if �x equals the wave length of theperiodi
 os
illation, the dis
rete initial data may only get values fromthe peaks of a 
urve like the upper envelope of the os
illatory solution.We 
an never expe
t 
onvergen
e in that 
ase. Thus �x 
annot be
ompletely independent of the wave length.(ii) Another problem 
omes from the approximation of adve
tion. The gr-oup velo
ity for the di�erential equation and the 
orresponding dis-
retization are often very di�erent [33℄. This means that an os
illatorypulse whi
h is not well resolved is not transported 
orre
tly even in av-erage by the approximation. Furthermore, dissipative s
hemes do notadve
t os
illations 
orre
tly. The os
illations are damped out very fastin time.(iii) Finally, the nonlinear intera
tion of di�erent high frequen
y 
omponentsin a solution must be modeled 
orre
tly. High frequen
y intera
tionsmay produ
e lower frequen
ies that in
uen
e the averaged solution. We
an show that this nonlinear intera
tion is well approximated by 
ertainparti
le methods applied to a 
lass of semilinear di�erential equations.The problem is open for the approximation of more general nonlinearequations.In [31,32℄, we studied a parti
le method approximation to the nonlinear dis-
rete Boltzmann equations in kineti
 theory of dis
rete velo
ity with mul-tis
ale initial data. In su
h equations, high frequen
y 
omponents 
an betransformed into lower frequen
ies through nonlinear intera
tions, thus af-fe
ting the average of solutions. We assume that the initial data are of theform a(x; x=") with a(x; y) 1-periodi
 in ea
h 
omponent of y. As we see fromthe homogenization theory in the previous se
tion, the behavior of os
illatorysolutions for the generalized Broadwell model is very sensitive to the velo
-ity 
oeÆ
ients. It depends on whether a 
ertain ratio among the velo
ity
omponents is a rational number or an irrational number.It is interesting to note that the stru
ture of os
illatory solutions for thegeneralized Broadwell model is quite stable when we perturb the velo
ity
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oeÆ
ient � around irrational numbers. In this 
ase, the resonan
e e�e
t ofu and v on w vanishes in the limit of "! 0. However, the behavior of os
il-latory solutions for the generalized Broadwell model be
omes singular whenperturbing around integer velo
ity 
oeÆ
ients. There is a strong intera
tionbetween the high frequen
y 
omponents of u and v, and the intera
tion inthe uv term would 
reate an os
illation of order O(1) on the w 
omponent. In[59℄, Tartar showed that for the Carleman model the weak limit of all powersof the initial data will uniquely determine the weak limit of the os
illatorysolutions at later times, using the Compensated Compa
tness Theorem. Wefound that this is no longer true for the generalized Broadwell model withinteger-values velo
ity 
oeÆ
ients [37℄.In [31,32℄, we showed that this subtle behavior for the generalized Broad-well model with os
illatory initial data 
an be 
aptured 
orre
tly by a parti
lemethod even on a 
oarse grid. The parti
le method 
onverges to the e�e
tivesolution essentially independent of ". For the Broadwell model, the hyper-boli
 part is solved exa
tly by the parti
le method. No averaging is thereforeneeded in the 
onvergen
e result. We also analyze a numeri
al approximationof the Carleman equations with variable 
oeÆ
ients. The s
heme is designedsu
h that parti
le intera
tion 
an be a

ounted for without introdu
ing in-terpolation. There are errors in the parti
le method approximation of thelinear part of the system. As a result, the 
onvergen
e 
an only be proved formoving averages. The 
onvergen
e proofs for the Carleman and the Broad-well equations have one feature in 
ommon. The lo
al trun
ation errors inboth 
ases are of order O(�t). In order to show 
onvergen
e, we need to takeinto a

ount 
an
ellation of the lo
al errors at di�erent time levels. This isvery di�erent from the 
onventional 
onvergen
e analysis for �nite di�eren
emethods. This is also the pla
e where numeri
al sampling be
omes 
ru
ial inorder to obtain error 
an
ellation at di�erent time levels.In the next two subse
tions, we present a 
areful study of the Broadwellmodel with highly os
illatory initial data in order to demonstrate the basi
idea of the numeri
al homogenization based on sampling te
hniques.3.1 Convergen
e of the Parti
le MethodNow we 
onsider how to 
apture this os
illatory solution on a 
oarse grid usinga parti
le method. Sin
e the dis
rete velo
ity 
oeÆ
ients are integers for theBroadwell model, we 
an express a parti
le method in the form of a spe
ial�nite di�eren
e method by 
hoosing �x = �t. Denote by uni ; vni ; wni theapproximations of u(xi; tn); v(xi; tn) and w(xi; tn) respe
tively with xi = i�xand tn = n�t. Our parti
le s
heme is given byuni = un�1i�1 +�t(w2 � uv)n�1i�1 ; (3.1)vni = vn�1i+1 +�t(w2 � uv)n�1i+1 ; (3.2)wni = wn�1i ��t(w2 � uv)n�1i ; (3.3)



20 Thomas Y. Houwith the initial 
onditions given byu0i = u(xi; 0); v0i = v(xi; 0); w0i = w(xi; 0): (3.4)To study the 
onvergen
e of the parti
le s
heme (3.1)-(3.4) we need the fol-lowing lemma, whi
h is a dis
rete analogue of Lemma 2.1.Lemma 3.1. Let g(x; y) 2 C3([0; T ℄ � [0; 1℄) be 1-periodi
 in y and satisfythe relation R 10 g(x; y) dy = 0. Let xk = kh and r = h=". If h 2 S("; h0) whereS("; h0) = f0 < h � h0 : kh" 62 �i� �jkj3=2 ; i+ �jkj3=2�;for i = 1; 2; � � � ; hkh0" i+ 1; 0 6= k 2 Z; 0 < " � 1g;then we have��� n�1Xk=0 g(xk; xk" )h��� � C0(1 + T )L(g)h� ; 8 n = 1; 2; � � � ; hTh i;where C0 is a 
onstant independent of h; "; T; � and g, andL(g) = max(x;y)2[0;T ℄�[0;1℄�j�3yg(x; y)j; j�x�3yg(x; y)j�:Moreover, it is obvious thatjS("; h0)j � h0�1� � 1Xk=1 k�3=2� � h(1� 3�):Proof. Sin
e g is 1-periodi
 in y with mean zero, it 
an be expanded in aFourier seriesg(x; y) = Xm 6=0 am(x)e2�imy ; where am(x) = Z 10 g(x; y)e�2�imy dy:Simple integration by parts yields thatjam(x)j � 1(2�jmj)3L(g); ja0m(x)j � 1(2�jmj)3L(g):Thus we have ��� n�1Xk=0 g(xk; xk" )h��� = ��� n�1Xk=0 Xm 6=0 am(xk)e2�imxk="h���= ��� Xm 6=0 n�1Xk=0 am(xk)e2�imkh="h���:
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ale Solutions in PDEs 21Summation by parts yields��� n�1Xk=0 am(xk)e2�ikh="��� � jam(xn�1) n�1Xk=0 e2�ikh="���+��� n�1Xk=0 � kXj=1 e2�imjh="�(am(xk)� am(xk+1))���� 2(1 + T )L(g)(2�jmj)3j1� e2�imh="j :But for h 2 S("; h0) we havej1� e2�imh="j = 2j sin(�mh=")j � 2��jmj3=2 :Hen
e, for h 2 S("; h0),n�1Xk=0 ���g(xk; xk" )h��� � 2(1 + T )L(g)h(2�)4� Xm 6=0 1jmj3=2 =: C0h(1 + T )L(g)� :This 
ompletes the proof. utNow we are ready to study the approximation property of the parti
les
heme (3.1)-(3.4). First denote byEn = maxi �ju(xi; tn)� uni j; jv(xi; tn)� vni j; jw(xi; tn)� wni j�: (3.5)Integrating (2.29) from 0 to tn along its 
hara
teristi
s, we getu(xi; tn) = u(xi � tn; 0) + Z tn0 (w2 � uv)(xi � tn + s; s) ds: (3.6)>From (3.1) we know thatuni = u0i�n + n�1Xk=0(w2 � uv)ki�k�t: (3.7)Subtra
ting (3.7) from (3.6) we obtain thatu(xi; tn)� uni= Z tn0 (w2 � uv)(xi � tn + s; s) ds� n�1Xk=0(w2 � uv)(xi � tk; tk)�t+ n�1Xk=0�th(w2 � uv)(xi � tk; tk)� (w2 � uv)ki�ki:= (II) + (III): (3.8)



22 Thomas Y. HouLet M(T ) be de�ned as in (2.41) and N(T ) be given byN(T ) = maxnjuki j; jvki j; jwki j : i 2 Z; 0 � k � [T=�t℄o: (3.9)It 
an be shown that N(T ) is bounded for �nite time independent of ", see[32℄. Then it is 
lear that(III) � (M(T ) +N(T )) n�1Xk=0�tEk: (3.10)It remains to estimate (II). For 
onvenien
e, let � = w2 � uv and�(x; t) =W (x; x" ; t)2 � U(x; x�t" ; t)V (x; x+t" ; t):Then we have(II) = Z tn0 h�(xi � tn + s; s) ds��(xi � tn + s; s)i ds+h Z tn0 �(xi � tn + s; s) ds� n�1Xk=0�t�(xi � tk; tk)i+ n�1Xk=0 h�(xi � tk; tk)� �(xi � tk; tk)i�t:= (II)1 + � � �+ (II)3: (3.11)By Theorem 2.1 we getj(II)1 + (II)3j � 2TM(T )C1(T )": (3.12)To pro
eed further, let, for �xed (xi; tn),gni (s; y) =W (xi � tn + s; xi�tn" + y; s)2:It is 
lear that gni is 1-periodi
 in y. Now by Lemmas 2.1-2.2 we haveZ tn0 W (xi � tn + s; s)2 ds� n�1Xk=0W (xi � tk; tk)2�t= Z tn0 hgni (s; s" )� Z 10 gni (s; y) dyi ds+ Z tn0 Z 10 gni (s; y) dy ds� n�1Xk=0�t Z 10 gni (tn�k; y) dy� n�1Xk=0�thg(tn�k; tn�k" )� Z 10 gni (tn�k; y) dyi � C(T )("+�t); (3.13)
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ale Solutions in PDEs 23where we have used standard methods to estimate the se
ond term, sin
ethe derivative of gni with respe
t to s is independent of ". Here and in theremainder of this se
tion, we will always denote by C(T ) the various 
onstantswhi
h are independent of " and �t. Now similar to the reasoning leading to(3.13) we 
an obtain j(II)3j � C(T )("+�t): (3.14)>From (3.8)-(3.12) and (3.14) we �nally getju(xi; tn)� uni j � C(T )("+�t) + (M(T ) +N(T )) n�1Xk=0�tEk: (3.15)Similarly, we havejv(xi; tn)� vni j � C(T )("+�t) + (M(T ) +N(T )) n�1Xk=0�tEk ; (3.16)jw(xi; tn)� wni j � C(T )("+�t) + (M(T ) +N(T )) n�1Xk=0�tEk: (3.17)To summarize, we have the following theorem by summing (3.15)-(3.17) andapplying the Gronwall inequality.Theorem 3.1. Let (u; v; w) be the solution of (2.32)-(2.35) and (uni ; vni ; wni )be the solution of the parti
le s
heme (3.1)-(3.4). Assume that �t 2 S(";�t0)where S(";�t0) is de�ned in Lemma 3.1. Then the following estimate holdsmax1�n�[T=�t℄En � C(T )("+�t);where C(T ) is independent of " and �t, and En is de�ned as in (3.5).Remark 3.1. It is important that we perform the error analysis globally intime in order to a

ount for 
an
ellation of lo
al trun
ation errors at di�erenttime steps. As we 
an see from the analysis, the lo
al trun
ation error is oforder �t in one time step. If we do not take into a

ount the error 
an
ellationin time, we would obtain an error bound of order O(1) whi
h is an over-estimate. The error 
an
ellation is 
losely related to the sampling we 
hoose.This is the pla
e where we 
an see the di�eren
e between a good samplingand a resonant sampling.Remark 3.2. As we 
an see from the error analysis, error 
an
ellation alongLagrangian 
hara
teristi
s is essential in obtaining 
onvergen
e independentof the os
illation. This idea 
an be generalized to hyperboli
 systems withvariable 
oeÆ
ient velo
ity �elds. In the spe
ial 
ase of the Carleman modelwith variable 
oeÆ
ients, we have analyzed the 
onvergen
e of a parti
le



24 Thomas Y. Houmethod in [31℄. However, the parti
le method analyzed in [31℄ does not gen-eralize to multi-dimensions or 3� 3 systems. Together with a Ph.D. student,Razvan Fete
au, we have designed a modi�ed Lagrangian parti
le method.In this method, ea
h 
omponent of the solution is updated along its own
hara
teristi
. So there is no �xed grid. When we update one 
omponent ofthe solution, say u, we need values of the other 
omponents (say v and w)along the u 
hara
teristi
. We obtain these values by using some high or-der interpolation s
heme (su
h as Fourier interpolation or 
ubi
 spline). Thismodi�ed Lagrangian parti
le method in prin
iple works for any number offamilies of 
hara
teristi
s and for multi-dimensions. >From our preliminarynumeri
al experiments, it produ
es ex
ellent results for both the Broadwelland Carleman models, even in the os
illatory 
oeÆ
ients 
ase.Below we des
ribe brie
y the results we obtain for the variable 
oeÆ
ientCarleman equations ut + a(x; t)ux = v2 � u2 ; (3.18)vt � b(x; t)vx = u2 � v2 ; (3.19)with initial data u(x; 0) = u0(x; x="), v(x; 0) = v0(x; x="). In Figure 3.1, weillustrate the parti
le traje
tories for the u and v 
omponents.
t0t1
t2

xi�1 xi xi+1Fig. 3.1. S
hemati
 parti
le traje
tories for di�erent 
omponents.We 
hoose the os
illatory 
oeÆ
ients as follows:a(x; t) = 1 + 0:5 sin �xt" � and b(x; t) = 1 + 0:2 
os�xt" � :The initial 
onditions for u and v are 
hosen asu0(x; x=") = � 0:5 sin4(�(x � 3)=2)(1 + sin(2�(x� 3)="));0; jx� 4j < 1jx� 4j � 1(3.20)v0(x; x=") = � 0:5 sin4(�(x � 4)=2)(1 + sin(2�(x� 4)="));0; jx� 5j < 1jx� 5j � 1(3.21)
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al Approximations to Multis
ale Solutions in PDEs 25In our 
al
ulations, we 
hoose �x = 0:01, �t = �xp5 , and " = �xp2 �0:014. We plot the u-
hara
teristi
 in Figure 3.2. The 
oarse grid solution forthe u-
omponent is plotted in Figure 3.3a. We 
an see that it 
aptures verywell the high frequen
y information. In Figure 3.3b, we put the 
oarse gridsolution on top of the 
orresponding well-resolved solution. The agreementis very good. We also 
he
k the a

ura
y of the moving average [31℄ of thesolution and the average of its se
ond order moments. The results are plottedin Figure 3.4. Again, we observe ex
ellent agreement between the 
oarse grid
al
ulations and the well-resolved 
al
ulations.We have also performed the same 
al
ulations for the 3 � 3 Broadwellmodel with rational or irrational 
oeÆ
ient �. The subtle homogenizationbehavior is 
aptured 
orre
tly for both rational � and for irrational �. Wedo not present the results here.
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Fig. 3.2. A typi
al u-
hara
teristi
 traje
tory.3.2 Vortex methods for in
ompressible 
owsThe generalization of the parti
le method to the in
ompressible 
ows isthe vortex method. In [26℄, we have analyzed the 
onvergen
e of the vor-tex method for 2-D in
ompressible Euler equations with os
illatory vorti
ity�eld. Our analysis relies on the observation that there are tremendous 
an-
ellations among the lo
al errors at di�erent spa
e lo
ations in the velo
ityapproximation. Thus the lo
al errors do not add up to O(1) as predi
ted bythe 
lassi
al error estimate in the 
ase where the grid size is large 
omparedto the os
illatory wavelength.Consider the 2-D in
ompressible Euler equation in vorti
ity form:!t + (u � r)! = 0
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Fig. 3.3. (a): Coarse grid solution u at time t = 1:28. (b): Putting the 
oarse gridsolution u on top of a well-resolved 
omputation (solid line).
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Fig. 3.4. (a): The averaged solution u (dashdot line); the solid line represents a verywell resolved 
omputation. (b): The averaged se
ond order moment u2 (dashdotline); the solid line represents a very well resolved 
omputation.with os
illatory initial vorti
ity !(x; 0) = !0(x; x=").De�ne the parti
le traje
tory, denoted as X(t; �),dX(t; �)dt = u(X(t; �); t); X(0; �) = �:Vorti
ity is 
onserved along 
hara
teristi
s:!(X(t; �); t) = !0(�):On the other hand, velo
ity 
an be expressed in terms of vorti
ity by theBiot-Savart law:u(X(t; �); t) = Z K(X(t; �)�X(t; �0))!0(�0)d�0with K given by K(x) = (�x2; x1)=(2�jxj2).
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al Approximations to Multis
ale Solutions in PDEs 27The Biot-Savart kernelK has a singularity at the origin. To regularize thekernel, Chorin introdu
ed the vortex blob method (see, e.g. [17℄, repla
ing Kby KÆ = K � �Æ , �Æ = 1Æ2 � �xÆ � ; Æ = h�; with � < 1:� is typi
ally 
hosen as a variant of Gaussian.The vortex blob method is given bydXhi (t)dt =Xj KÆ(Xhi (t)�Xhj (t))!jh2;where Xhi (0) = �i, and wj = w0(�j ; �j=").Together with Weinan E, we have proved that the vortex method 
on-verges essentially independent of " [26℄.The 
ase studied in [26℄ deals with bounded os
illatory vorti
ity. Thisassumption leads to strong 
onvergen
e of the velo
ity �eld. It is more phys-i
al to 
onsider homogenization for highly os
illatory velo
ity �eld. Wouldthe vortex blob method still 
apture the 
orre
t large s
ale solution with arelatively 
oarse grid (or small number of parti
les)? Together with a Ph.D.student, Razvan Fete
au, we have re
ently derived a modi�ed vortex methodfor the 
oarse (or ma
ro) parti
le system by 
ombining a lo
al subgrid 
or-re
tion with a model redu
tion te
hnique.4 Numeri
al homogenization based on Multis
aleFEMsIt is natural to 
onsider the possibility of generalizing the sampling te
h-nique to se
ond order ellipti
 equations with highly os
illatory 
oeÆ
ients.In [3℄, we showed that �nite di�eren
e approximations 
onverge essentiallyindependent of the small s
ale " for one-dimensional ellipti
 problems. Inseveral spa
e dimensions we found that only in the 
ase of rapidly os
illatingperiodi
 
oeÆ
ients do the above results generalize, in a weaker form. In the
ase of almost periodi
 or random 
oeÆ
ients in several spa
e dimensions weshowed, both theoreti
ally and with a simple 
ounterexample, that numeri
alhomogenization by sampling does not work eÆ
iently. New ideas seem to beneeded.In order to over
ome the diÆ
ulty we mentioned above for the sam-pling te
hnique, we have introdu
ed a multis
ale �nite element method (Ms-FEM) for solving partial di�erential equations with multis
ale solutions, see[38,40,39,28,16,61,1℄. The 
entral goal of this approa
h is to obtain the larges
ale solutions a

urately and eÆ
iently without resolving the small s
aledetails. The main idea is to 
onstru
t �nite element base fun
tions whi
h
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apture the small s
ale information within ea
h element. The small s
ale in-formation is then brought to the large s
ales through the 
oupling of theglobal sti�ness matrix. Thus, the e�e
t of small s
ales on the large s
ales is
orre
tly 
aptured. In our method, the base fun
tions are 
onstru
ted fromthe leading order homogeneous ellipti
 equation in ea
h element. As a 
on-sequen
e, the base fun
tions are adapted to the lo
al mi
rostru
ture of thedi�erential operator. In the 
ase of two-s
ale periodi
 stru
tures, we haveproved that the multis
ale method indeed 
onverges to the 
orre
t solutionindependent of the small s
ale in the homogenization limit [40℄.In pra
ti
al 
omputations, a large amount of overhead time 
omes from
onstru
ting the base fun
tions. In general, these multis
ale base fun
tions are
onstru
ted numeri
ally, ex
ept for 
ertain spe
ial 
ases. Sin
e the base fun
-tions are independent of ea
h other, they 
an be 
onstru
ted independentlyand 
an be done perfe
tly in parallel. This greatly redu
es the overhead timein 
onstru
ting these bases. In many appli
ations, it is important to obtain as
ale-up equation from the �ne grid equation. Our multis
ale �nite elementmethod 
an be used for a similar purpose [61℄. The advantage of derivinga s
ale-up equation is that one 
an perform many useful tests on the s
ale-up (
oarse grid) model with di�erent boundary 
onditions or sour
e terms.This would be very expensive if we have to perform all these tests on a �negrid. For time dependent problems, the s
aled-up equation also allows forlarger time steps. This results in additional 
omputational saving. Anotheradvantage of the method is its ability to s
ale down the size of a large s
ale
omputation. This o�ers a big saving in 
omputer memory.It should be mentioned that many numeri
al methods have been devel-oped with goals similar to ours. These in
lude wavelet based numeri
al ho-mogenization methods [10,21,19,45℄, methods based on the homogenizationtheory (
f. [9,25,18,34℄), variational multis
ale methods [42,12,43℄, matrix-dependent multigrid based homogenization [45,19℄, generalized p-FEM in ho-mogenization [47,48℄, and some ups
aling methods based on simple physi
aland/or mathemati
al motivations (
f. [23,49℄). The methods based on thehomogenization theory have been su

essfully applied to determine the e�e
-tive 
ondu
tivity and permeability of 
ertain 
omposite materials and porousmedia. However, their range of appli
ations is usually limited by restri
tiveassumptions on the media, su
h as s
ale separation and periodi
ity [7,44℄.They are also expensive to use for solving problems with many separate s
alessin
e the 
ost of 
omputation grows exponentially with the number of s
ales.But for the multis
ale method, the number of s
ales does not in
rease theoverall 
omputational 
ost exponentially. The ups
aling methods are moregeneral and have been applied to problems with random 
oeÆ
ients withpartial su

ess (
f. [23,49℄). But the design prin
iple is strongly motivatedby the homogenization theory for periodi
 stru
tures. Their appli
ation tononperiodi
 stru
tures is not always guaranteed to work.



Numeri
al Approximations to Multis
ale Solutions in PDEs 29We remark that the idea of using base fun
tions governed by the dif-ferential equations has been applied to 
onve
tion-di�usion equation withboundary layers (see, e.g., [6℄ and referen
es therein). With a motivation dif-ferent from ours, Babuska et al. applied a similar idea to 1-D problems [5℄and to a spe
ial 
lass of 2-D problems with the 
oeÆ
ient varying lo
ally inone dire
tion [4℄. However, most of these methods are based on the spe
ialproperty of the harmoni
 average in one-dimensional ellipti
 problems. Asindi
ated by our 
onvergen
e analysis, there is a fundamental di�eren
e be-tween one-dimensional problems and genuinely multi-dimensional problems.Spe
ial 
ompli
ations su
h as the resonan
e between the mesh s
ale and thephysi
al s
ale never o

ur in the 
orresponding 1-D problems.4.1 Multis
ale Finite Element Methods for Ellipti
 PDEs.In this se
tion we 
onsider the multis
ale �nite element method applied tothe following problemL"u := �r � (a(x" )ru) = f in 
; u = 0 on � = �
; (4.1)where 
 is a 
onvex polygon in R2 . " is assumed to be a small parameter,and a(x) = (aij(x=")) is symmetri
 and satis�es �j�j2 � aij�i�j � �j�j2, forall � 2 R2 and with 0 < � < �. Furthermore, aij(y) are smooth periodi
fun
tion in y in a unit 
ube Y . We will always assume that f 2 L2(
). Infa
t, the smoothness assumption on aij 
an be relaxed. In [27℄, Efendiev hasproved 
onvergen
e of the multis
ale �nite element method in the 
ase whereaij is only pie
ewise 
ontinuous. Efendiev has also obtained 
onvergen
e ofMsFEM in the 
ase where aij is random [27℄.Let u0 be the solution of the homogenized equationL0u0 := �r � (a�ru0) = f in 
; u0 = 0 on �; (4.2)where � = �
 and a�ij = 1jY j ZY aik(y)(Ækj � ��j�yk ) dy;and �j(y) is the periodi
 solution of the 
ell problem�ry � (a(y)ry�j) = ��yi aij(y) in Y; ZY �j(y) dy = 0:It is 
lear that u0 2 H2(
) sin
e 
 is a 
onvex polygon. Denote by u1(x; y) =��j(y)�u0(x)�xj and let �" be the solution of the problemL"�" = 0 in 
; �"(x) = u1(x; x" ) on �: (4.3)Our analysis of the multis
ale �nite element method relies on the followinghomogenization result obtained by Moskow and Vogelius [52℄.



30 Thomas Y. HouLemma 4.1. Let u0 2 H2(
) be the solution of (4.2), �" 2 H1(
) be thesolution to (4.3) and u1(x) = ��j(x=")�u0(x)=�xj . Then there exists a 
on-stant C independent of u0; " and 
 su
h thatku� u0 � "(u1 � �") k1;
 � C"(ju0 j2;
 + k f k0;
):Now we are going to introdu
e the multis
ale �nite element methods. LetTh be a regular partition of 
 into triangles. Let fxjgJj=1 be the interior nodesof the mesh Th and f jgJj=1 be the nodal basis of the standard linear �niteelement spa
e Wh � H10 (
). Denote by Si = supp( i) and de�ne �i withsupport in Si as follows:L"�i = 0 in K; �i =  i on �K 8 K 2 Th;K � Si: (4.4)It is obvious that �i 2 H10 (Si) � H10 (
). Finally, let Vh � H10 (
) be the �niteelement spa
e spanned by f�igJi=1.With above notation we 
an introdu
e the following dis
rete problem: �nduh 2 Vh su
h that (a(x" )ruh;rvh) = (f; vh) 8 vh 2 Vh; (4.5)where and hereafter we denote by (�; �) the L2 inner produ
t in L2(
).As we will see later, the 
hoi
e of boundary 
onditions in de�ning themultis
ale bases will play a 
ru
ial role in approximating the multis
ale so-lution. Intuitively, the boundary 
ondition for the multis
ale base fun
tionshould re
e
t the multis
ale os
illation of the solution u a
ross the boundaryof the 
oarse grid element. By 
hoosing a linear boundary 
ondition for thebase fun
tion, we will 
reate a mismat
h between the exa
t solution u andthe �nite element approximation a
ross the element boundary. In the nextse
tion, we will dis
uss this issue further and introdu
e an over-samplingte
hnique to alleviate this diÆ
ulty. The over-sampling te
hnique plays animportant role when we need to re
onstru
t the lo
al �ne grid velo
ity �eldfrom a 
oarse grid pressure 
omputation for two-phase 
ows. This te
hniqueenables us to remove the arti�
ial numeri
al boundary layer a
ross the 
oarsegrid boundary element.We remark that the multis
ale �nite element method with linear boundary
onditions for the multis
ale base fun
tions is similar in spirit to the residual-free bubbles �nite element method [11℄ and the variational multis
ale method[42,12℄. In a re
ent paper [57℄, Dr. G. Sangalli derives a multis
ale methodbased on the residual-free bubbles formulation in [11℄ and 
ompares it withthe multis
ale �nite element method des
ribed here. There are many strikingsimilarities between the two approa
hes. In Se
tion 6, we will dis
uss thevariational multis
ale method in some more detail and 
ompare it with themultis
ale �nite element method.To gain some insight into the multis
ale �nite element method, we nextperform an error analysis for the multis
ale �nite element method in thesimplest 
ase, i.e. we use linear boundary 
onditions for the multis
ale basefun
tions.



Numeri
al Approximations to Multis
ale Solutions in PDEs 314.2 Error Estimates (h < ")The starting point is the well-known Cea's lemma.Lemma 4.2. Let u be the solution of (4.1) and uh be the solution of (4.5).Then we have ku� uh k1;
 � C infvh2Vh ku� vh k1;
:Let �h : C(�
) ! Wh � H10 (
) be the usual Lagrange interpolationoperator: �hu(x) = JXj=1 u(xj) j(x) 8 u 2 C(�
)and Ih : C(�
) ! Vh be the 
orresponding interpolation operator de�nedthrough the multis
ale base fun
tion �Ihu(x) = JXj=1 u(xj)�j(x) 8 u 2 C(�
):>From the de�nition of the basis fun
tion �i in (4.4) we haveL"(Ihu) = 0 in K; Ihu = �hu on �K; (4.6)for any K 2 Th.Lemma 4.3. Let u 2 H2(
) be the solution of (4.1). Then there exists a
onstant C independent of h; " su
h thatku� Ihu k0;
 + hku� Ihu k1;
 � Ch2(ju j2;
 + k f k0;
): (4.7)Proof. At �rst it is known from the standard �nite element interpolationtheory thatku��hu k0;
 + hku��hu k1;
 � Ch2(ju j2;
 + k f k0;
): (4.8)On the other hand, sin
e �hu�Ihu = 0 on �K, the standard s
aling argumentyields k�hu� Ihu k0;K � Chj�hu� Ihuj1;K 8 K 2 Th: (4.9)To estimate j�hu� Ihuj1;K we multiply the equation in (4.6) by Ihu��hu 2H10 (K) to get (a(x" )rIhu;r(Ihu��hu))K = 0;where (�; �)K denotes the L2 inner produ
t of L2(K). Thus, upon using theequation in (4.1), we get(a(x" )r(Ihu��hu);r(Ihu��hu))K= (a(x" )r(u��hu);r(Ihu��hu))K � (a(x" )ru;r(Ihu��hu))K= (a(x" )r(u��hu);r(Ihu��hu))K � (f; Ihu��hu)K :



32 Thomas Y. HouThis implies thatjIhu��huj1;K � Chju j2;K + k Ihu��hu k0;Kk f k0;K :Hen
e jIhu��huj1;K � Ch(ju j2;K + k f k0;K); (4.10)where we have used (4.9). Now the lemma follows from (4.8)-(4.10). utIn 
on
lusion, we have the following estimate by using Lemmas 4.2-4.3.Theorem 4.1. Let u 2 H2(
) be the solution of (4.1) and uh 2 Vh be thesolution of (4.5). Then we haveku� uh k1;
 � Ch(ju j2;
 + k f k0;
): (4.11)Note that the estimate (4.11) blows up like h=" as " ! 0 sin
e ju j2;
 =O(1="). This is insuÆ
ient for pra
ti
al appli
ations. In next subse
tion wederive an error estimate whi
h is uniform as "! 0.4.3 Error Estimates (h > ")In this se
tion, we will show that the multis
ale �nite element method givesa 
onvergen
e result uniform in " as " tends to zero. This is the main featureof this multis
ale �nite element method over the traditional �nite elementmethod. The main result in this subse
tion is the following theorem.Theorem 4.2. Let u 2 H2(
) be the solution of (4.1) and uh 2 Vh be thesolution of (4.5). Then we haveku� uh k1;
 � C(h+ ")k f k0;
 + C� "h�1=2ku0 k1;1;
; (4.12)where u0 2 H2(
) \ W 1;1(
) is the solution of the homogenized equation(4.2).To prove the theorem, we �rst denote byuI(x) = Ihu0(x) = JXj=1 u0(xj)�j(x) 2 Vh:>From (4.6) we know that L"uI = 0 in K and uI = �hu0 on �K for anyK 2 Th. The homogenization theory in Lemma 3.1 implies thatkuI � uI0 � "(uI1 � �I") k1;K � C"(k f k0;K + juI0 j2;K); (4.13)
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al Approximations to Multis
ale Solutions in PDEs 33where uI0 is the solution of the homogenized equation on K:L0uI0 = 0 in K; uI0 = �hu0 on �K; (4.14)uI1 is given by the relationuI1(x; y) = ��j(y)�uI0�xj in K; (4.15)and �I" 2 H1(K) is the solution of the problem:L"�I" = 0 in K; �I"(x) = uI1(x; x" ) on �K: (4.16)It is obvious from (4.14) thatuI0 = �hu0 in K; (4.17)sin
e �hu0 is linear on K. From Lemma 3.1 and (4.13) we obtain thatku� uI k1;
 � ku0 � uI0 k1;
 + k "(u1 � uI1) k1;
+k "(�" � �I") k1;
 + C"k f k0;
; (4.18)where we have used the regularity estimate ku0 k2;
 � Ck f k0;
. Now itremains to estimate the terms at the right-hand side of (4.18).Lemma 4.4. We haveku0 � uI0 k1;
 � Chk f k0;
; (4.19)k "(u1 � uI1) k1;
 � C(h+ ")k f k0;
: (4.20)Proof. The estimate (4.19) is a dire
t 
onsequen
e of the standard �niteelement interpolation theory sin
e uI0 = �hu0 by (4.17). Next we note that�j(x=") satis�es k�j k0;1;
 + "kr�j k0;1;
 � C (4.21)for some 
onstant C independent of h and ". Thus we have, for any K 2 Th,k "(u1 � uI1) k0;K � C"k�j ��xj (u0 ��hu0) k0;K � Ch"ju0 j2;K ;k "r(u1 � uI1) k0;K = "kr(�j �(u0 ��hu0)�xj ) k0;K� Ckr(u0 ��hu0) k0;K + C"ju0 j2;K� C(h+ ")ju0 j2;K :This 
ompletes the proof. ut



34 Thomas Y. HouLemma 4.5. We havek "�" k1;
 � Cp"ku0 k1;1;
 + C"ju0 j2;
: (4.22)Proof. Let � 2 C10 (R2 ) be the 
ut-o� fun
tion whi
h satis�es � � 1 in
n
Æ=2, � � 0 in 
Æ, 0 � � � 1 in R2 , and jr�j � C=Æ in 
, where for anyÆ > 0 suÆ
iently small, we denote by 
Æ as
Æ = fx 2 
 : dist(x; �
) � Æg:With this de�nition, it is 
lear that �" � �u1 = �" + �(�j�u0=�xj) 2 H10 (
).Multiplying the equation in (4.3) by �" � �u1, we get(a(x" )r�";r(�" + ��j �u0�xj )) = 0;whi
h yields, by using (4.21),kr�" k0;
 � Ckr(��j�u0=�xj) k0;
� Ckr� � �j�u0=�xj k0;
 + Ck �r�j�u0=�xj k0;
+Ck ��j�2u0=�2xj k0;
� Cpj�
j � ÆDÆ + Cpj�
j � ÆD" + Cju0 j2;
; (4.23)where D = ku0 k1;1;
 and the 
onstant C is independent of the domain 
.From (4.23) we havek "�" k0;
 � C( "pÆ +pÆ)ku0 k1;1;
 + C"ju0 j2;
� Cp"ku0 k1;1;
 + C"ju0 j2;
: (4.24)Moreover, by applying the maximum prin
iple to (4.3), we getk �" k0;1;
 � k�j�u0=�xj k0;1;�
 � Cku0 k1;1;
: (4.25)Combining (4.24) and (4.25) 
ompletes the proof. utLemma 4.6. We havek "�I" k1;
 � C� "h�1=2ku0 k1;1;
: (4.26)Proof. First we remember that for any K 2 Th, �I" 2 H1(K) satis�esL"�I" = 0 in K; �I" = ��j(x" )�(�hu0)�xj on �K: (4.27)By applying maximum prin
iple and (4.21) we getk �I" k0;1;K � k�j�(�hu0)=�xj k0;1;�K � Cku0 k1;1;K :
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ale Solutions in PDEs 35Thus we have k "�I" k0;
 � C"ku0 k1;1;
: (4.28)On the other hand, sin
e the 
onstant C in (4.23) is independent of 
, we
an apply the same argument leading to (4.23) to obtaink "r�I" k0;K � C"k�hu0 k1;1;K(pj�Kj=pÆ +pj�Kj � Æ=") + C"j�hu0 j2;K� Cphku0 k1;1;K( "pÆ +pÆ)� Cph"ku0 k1;1;K ;whi
h implies that k "r�I" k0;
 � C� "h�1=2ku0 k1;1;
:This 
ompletes the proof. utProof (of Theorem 3.2.). The theorem is now a dire
t 
onsequen
e of (4.18)and the Lemmas 4.4-4.6 and the regularity estimate ku0 k2;
 � Ck f k0;
.utRemark 4.1. As we pointed out earlier, the multis
ale FEM indeed gives
orre
t homogenized result as " tends to zero. This is in 
ontrast with thetraditional FEM whi
h does not give the 
orre
t homogenized result as "! 0.The error would grow like O(h2="2). On the other hand, we also observethat when h � ", the multis
ale method attains large error in both H1and L2 norms. This is what we 
all the resonan
e e�e
t between the grids
ale (h) and the small s
ale (") of the problem. This estimate re
e
ts theintrinsi
 s
ale intera
tion between the two s
ales in the dis
rete problem. Ourextensive numeri
al experiments 
on�rm that this estimate is indeed generi
and sharp. From the viewpoint of pra
ti
al appli
ations, it is important toredu
e or 
ompletely remove the resonan
e error for problems with manys
ales sin
e the 
han
e of hitting a resonan
e sampling is high. In the nextsubse
tion, we propose an over-sampling method to over
ome this diÆ
ulty.4.4 The Over-Sampling Te
hniqueAs illustrated by our error analysis, large errors result from the \resonan
e"between the grid s
ale and the s
ales of the 
ontinuous problem. For the two-s
ale problem, the error due to the resonan
e manifests as a ratio betweenthe wavelength of the small s
ale os
illation and the grid size; the error be-
omes large when the two s
ales are 
lose. A deeper analysis shows that theboundary layer in the �rst order 
orre
tor seems to be the main sour
e of theresonan
e e�e
t. By a judi
ious 
hoi
e of boundary 
onditions for the base



36 Thomas Y. Houfun
tion, we 
an eliminate the boundary layer in the �rst order 
orre
tor.This would give a ni
e 
onservative di�eren
e stru
ture in the dis
retization,whi
h in turn leads to 
an
ellation of resonan
e errors and gives an improvedrate of 
onvergen
e.Motivated by our 
onvergen
e analysis, we propose an over-samplingmethod to over
ome the diÆ
ulty due to s
ale resonan
e [38℄. The idea isquite simple and easy to implement. Sin
e the boundary layer in the �rst or-der 
orre
tor is thin, O("), we 
an sample in a domain with size larger thanh + " and use only the interior sampled information to 
onstru
t the bases;here, h is the mesh size and " is the small s
ale in the solution. By doingthis, we 
an redu
e the in
uen
e of the boundary layer in the larger sampledomain on the base fun
tions signi�
antly. As a 
onsequen
e, we obtain animproved rate of 
onvergen
e.Spe
i�
ally, let  j be the base fun
tions satisfying the homogeneous el-lipti
 equation in the larger domain S � K. We then form the a
tual base �iby linear 
ombination of  j , �i = dXj=1 
ij j :The 
oeÆ
ients 
ij are determined by 
ondition �i(xj) = Æij . The 
orrespond-ing �i" for �i are now free of boundary layers. Our extensive numeri
al ex-periments have demonstrated that the over-sampling te
hnique does improvethe numeri
al error substantially in many appli
ations. On the other hand,the over-sampling te
hnique results in a non-
onforming MsFEM method. In[28℄, we perform a 
areful estimate of the non
onforming errors in both H1norm and the L2 norm. The analysis shows that the non-
onforming erroris indeed small, 
onsistent with our numeri
al results [38,39℄. Our analysisalso reveals another sour
e of resonan
e, whi
h is the mismat
h between themesh size and the \perfe
t" sample size. In 
ase of a periodi
 stru
ture, the\perfe
t" sample size is the length of an integer multiple of the period. We
all the new resonan
e the \
ell resonan
e". In the error expansion, this reso-nan
e e�e
t appears as a higher order 
orre
tion. In numeri
al 
omputations,we found that the 
ell resonan
e error is generi
ally small, and is rarely ob-served in pra
ti
e. Nonetheless, it is possible to 
ompletely eliminate this 
ellresonan
e error by using the over-sampling te
hnique to 
onstru
t the basefun
tions but using pie
ewise linear fun
tions as test fun
tions. This redu
esthe non
onforming error and eliminates the resonan
e error 
ompletely.4.5 Performan
e and Implementation IssuesThe multis
ale method given in the previous se
tion is fairly straightforwardto implement. Here, we outline the implementation and de�ne some notationsthat are used in the dis
ussion below. We 
onsider solving problems in a unit
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ale Solutions in PDEs 37square domain. Let N be the number of elements in the x and y dire
tions.The mesh size is thus h = 1=N . To 
ompute the base fun
tions, ea
h elementis dis
retized into M �M sub
ell elements with mesh size hs = h=M . Toimplement the over-sampling method, we partition the domain into samplingdomains and ea
h of them 
ontains many elements. From the analysis andnumeri
al tests, the size of the sampling domains 
an be 
hosen freely aslong as the boundary layer is avoided. In pra
ti
e, though, one wants tomaximize the eÆ
ien
y of over-sampling by 
hoosing the largest possiblesample size whi
h redu
es the redundant 
omputation of overlapping domainsto a minimum.In general, the multis
ale (sampling) base fun
tions are 
onstru
ted nu-meri
ally, ex
ept for 
ertain spe
ial 
ases. They are solved in ea
h K orS using standard FEM. The linear systems are solved using a robust multi-grid method with matrix dependent prolongation and ILLU smoothing (MG-ILLU, see [62℄). The global linear system on 
 is solved using the samemethod. Numeri
al tests show that the a

ura
y of the �nal solution is in-sensitive to the a

ura
y of base fun
tions.Sin
e the base fun
tions are independent of ea
h other, their 
onstru
tion
an be 
arried out in parallel perfe
tly. In our parallel implementation ofover-sampling, the sample domains are 
hosen su
h that they 
an be handledwithin ea
h pro
essor without 
ommuni
ation. The multigrid solver is alsomodi�ed to better suit the parallelization. In parti
ular, the ILLU smoothingis repla
ed by Gauss-Seidel iterations. More implementation details 
an befound in [38℄.Cost and Performan
e In pra
ti
al 
omputations, a large amount of over-head time 
omes from 
onstru
ting the base fun
tions. On a sequential ma-
hine, the operation 
ount of our method is about twi
e that of a 
onventionalFEM for a 2-D problem. However, due to good parallel eÆ
ien
y, this di�er-en
e is redu
ed signi�
antly on a massively parallel 
omputer. For example,using 256 pro
essors on an Intel Paragon, our method with N = 32 andM = 32 only spends 9% more CPU time than the 
onventional linear FEMmethod using 1024� 1024 elements [38℄. Note that this 
omparison is madefor a single solve of the problem. In pra
ti
e, multiple solves are often re-quired, then the overhead of base 
onstru
tion is negligible. A detailed studyof MsFEM's parallel eÆ
ien
y has been 
ondu
ted in [38℄. It was also foundthat MsFEM is helpful for improving multigrid 
onvergen
e when the 
oef-�
ient a" has very large 
ontrast (i.e., the ratio between the maximum andminimum of a").Signi�
ant 
omputational savings 
an be obtained for time dependentproblems (su
h as two-phase 
ows) by 
onstru
ting the multis
ale bases adap-tively. Multis
ale base fun
tions are updated only for those 
oarse grid ele-ments where the saturation 
hanges signi�
antly. In pra
ti
e, the number ofsu
h 
oarse grid elements are small. They are 
on
entrated near the interfa
e



38 Thomas Y. Houseparating oil and water. Also, the 
ost of solving a base fun
tion in a small
ell is more eÆ
ient than solving the �ne grid problem globally be
ause the
ondition number for solving the lo
al base fun
tion in ea
h 
oarse grid ele-ment is mu
h smaller than that of the 
orresponding global �ne grid pressuresystem. Thus, updating a small number of multis
ale base fun
tions dynam-i
ally is mu
h 
heaper than updating the �ne grid pressure �eld globally.Another advantage of the multis
ale �nite element method is its abilityto s
ale down the size of a large s
ale problem. This o�ers a big saving in
omputer memory. For example, let N be the number of elements in ea
hspatial dire
tion, and M be the number of sub
ell elements in ea
h dire
tionfor solving the base fun
tions. Then there are total (MN)n (n is dimension)elements at the �ne grid level. For a traditional FEM, the 
omputer memoryneeded for solving the problem on the �ne grid is O(MnNn). In 
ontrast,MsFEM requires only O(Mn +Nn) amount of memory. For a typi
al valueof M = 32 in a 2-D problem, the traditional FEM needs about 1000 timesmore memory than MsFEM.Convergen
e and A

ura
y Sin
e we need to use an additional grid to
ompute the base fun
tion numeri
ally, it makes sense to 
ompare our Ms-FEM with a traditional FEM at the sub
ell grid, hs = h=M . Note thatMsFEM only 
aptures the solution at the 
oarse grid h, while FEM tries toresolve the solution at the �ne grid hs. Our extensive numeri
al experimentsdemonstrate that the a

ura
y of MsFEM on the 
oarse grid h is 
omparableto that of FEM on the �ne grid. In some 
ases, MsFEM is even more a

uratethan the FEM (see below and the next se
tion).As an example, in Table 4.1 we present the result fora(x=") = 2 + P sin(2�x=")2 + P 
os(2�y=") + 2 + sin(2�y=")2 + P sin(2�x=") (P = 1:8); (4.29)f(x) = �1 and uj�
 = 0: (4.30)The 
onvergen
e of three di�erent methods are 
ompared for �xed "=h =0:64, where \-L" indi
ates that linear boundary 
ondition is imposed on themultis
ale base fun
tions, \os" indi
ates the use of over-sampling, and LFEMstands for standard FEM with linear base fun
tions. We see 
learly the s
aleMsFEM-L MsFEM-os-L LFEMN " jjEjjl2 rate jjEjjl2 rate MN jjEjjl216 0.04 3.54e-4 7.78e-5 256 1.34e-432 0.02 3.90e-4 -0.14 3.83e-5 1.02 512 1.34e-464 0.01 4.04e-4 -0.05 1.97e-5 0.96 1024 1.34e-4128 0.005 4.10e-4 -0.02 1.03e-5 0.94 2048 1.34e-4Table 4.1. Convergen
e for periodi
 
ase.resonan
e in the results of MsFEM-L and the (almost) �rst order 
onvergen
e
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e) in MsFEM-os-L. Evident also is the error of MsFEM-os-Lbeing smaller than those of LFEM obtained on the �ne grid. In [40,38℄, moreextensive 
onvergen
e tests have been presented.4.6 Appli
ationsFlow in Porous Media One of the main appli
ation of our multis
alemethod is the 
ow and transport through porous media. This is a fundamen-tal problem in hydrology and petroleum engineering. Here, we apply MsFEMto solve the single phase 
ow, whi
h is a good test problem in pra
ti
e.We model the porous media by random distributions of a" generated usinga spe
tral method. In fa
t, a" = �10�p, where p is a random �eld representsporosity, and � and � are s
aling 
onstants to give the desired 
ontrast ofa". In parti
ular, we have tested the method for a porous medium with astatisti
ally fra
tal porosity �eld (see Figure 4.1). The fra
tal dimension is2.8. Su
h a model is widely used as the areal �eld in the oil industry. We notethat the problem has a 
ontinuous s
ale be
ause of the fra
tal distribution.

Fig. 4.1. Porosity �eld with fra
tal dimension of 2:8 generated using the spe
tralmethod.The pressure �eld due to uniform inje
tion is solved and the error isshown in Figure 3.2. The horizontal dash line indi
ates the error of the LFEMsolution with N = 2048. The 
oarse-grid solutions are obtained with di�erentnumber of elements,N , but �xedNM = 2048.We note that error of MsFEM-os-L almost 
oin
ide with that of the well-resolved solution obtained usingLFEM. However, MsFEM without over-sampling is less a

urate. MsFEM-Oindi
ates that os
illatory boundary 
onditions, obtained from solving someredu
ed 1-D ellipti
 equations along �K (see [38℄), are imposed on the base
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Fig. 4.2. The l2-norm error of the solutions using various s
hemes for a fra
taldistributed permeability �eld.fun
tions. The de
ay of error in MsFEM is be
ause of the de
ay of smalls
ales in a". The next �gure shows the results for a log-normally distributeda". In this 
ase, the e�e
t of s
ale resonan
e shows 
learly for MsFEM-L,i.e., the error in
reases as h approa
hes ". Here " � 0:004 roughly equalsthe 
orrelation length. Using the os
illatory boundary 
onditions (MsFEM-O) gives better results, but it does not 
ompletely eliminate resonan
e. Onthe other hand, the multis
ale method with over-sampling agrees extremelywell with the well-resolved 
al
ulation. One may wonder why the errors donot de
rease as the number of 
oarse grid elements in
rease. This is be
ausewe use the same subgrid mesh size, whi
h is the same as the well-resolvedgrid size, to 
onstru
t the base fun
tions for various 
oarse grid sizes (N =32; 64; 128, et
). In some spe
ial 
ases, one 
an 
onstru
t multis
ale basefun
tions analyti
ally. In this 
ase, the errors for the 
oarse grid 
omputationswill indeed de
rease as the number of 
oarse grid elements in
rease.Fine S
ale Re
overy To solve transport problems in the subsurfa
e forma-tions, as in oil reservoir simulations, one needs to 
ompute the velo
ity �eldfrom the ellipti
 equation for pressure, i.e v = �a"ru, here u is pressure.In some appli
ations involving isotropi
 media, the 
ell-averaged velo
ity issuÆ
ient, as shown by some 
omputations using the lo
al ups
aling methods(
f. [23℄). However, for anisotropi
 media, espe
ially layered ones (Figure 4.4),the velo
ity in some thin 
hannels 
an be mu
h higher than the 
ell average,and these 
hannels often have dominant e�e
ts on the transport solutions. Inthis 
ase, the information about �ne s
ale velo
ity be
omes vitally important.Therefore, an important question for all ups
aling methods is how to takethose fast-
ow 
hannels into a

ount.
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Fig. 4.3. The l2-norm error of the solutions using various s
hemes for a log-normally distributed permeability �eld.

Fig. 4.4. A random porosity �eld with layered stru
ture.For MsFEM, the �ne s
ale velo
ity 
an be easily re
overed from the multi-s
ale base fun
tions, noting that they provide interpolations from the 
oarseh-grid to the �ne hs-grid. Using the over-sampling te
hnique, the error invelo
ity is O("=h), as proved in [28℄. We remark that the resonan
e e�e
tseems unavoidable in the velo
ity. On the other hand, our numeri
al testsindi
ate that the error is small when " � h. The 
ell-averaged velo
ity 
analso be obtained and its error is even smaller.To demonstrate the a

ura
y of the re
overed velo
ity and e�e
t of small-s
ale velo
ity on the transport problem, we show the fra
tional 
ow result ofa \tra
er" test using the layered medium in Figure 4.4: a 
uid with red 
olor
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Fig. 4.5. (a): Fine grid horizontal velo
ity �eld, N = 1024. (b): Re
overed hori-zontal velo
ity �eld from the 
oarse grid N = 64 
al
ulation using multis
ale bases.

Fig. 4.6. (a): Fine grid saturation at t = 0:06, N = 1024. (b): Saturation 
omputedusing the re
overed velo
ity �eld from the 
oarse grid 
al
ulation.originally saturating the medium is displa
ed by the same 
uid with blue
olor inje
ted by 
ow in the medium at the left boundary, where the 
ow is
reated by a unit horizontal pressure drop. The linear 
onve
tion equationis solved to 
ompute the saturation of the red 
uid (for details, see [24℄). Todemonstrate that we 
an re
over the �ne grid velo
ity �eld from the 
oarsegrid pressure 
al
ulation, we plot the horizontal velo
ity �elds obtained bytwo methods. In Figure 4.5a, we plot the horizontal velo
ity �eld obtainedby using a �ne grid (N = 1024) 
al
ulation. In Figure 4.5b, we plot the same
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ale Solutions in PDEs 43horizontal velo
ity �eld obtained by using the 
oarse grid pressure 
al
ulationwith N = 64 and using the multis
ale �nite element bases to interpolate the�ne grid velo
ity �eld. We 
an see that the re
overed velo
ity �eld 
apturesvery well the layer stru
ture in the �ne grid velo
ity �eld. Further, we usethe re
overed �ne grid velo
ity �eld to 
ompute the saturation in time. InFigure 4.6a, we plot the saturation at t = 0:06 obtained by the �ne grid
al
ulation. Figure 4.6b shows the 
orresponding saturation obtained usingthe re
overed velo
ity �eld from the 
oarse grid 
al
ulation. The agreementis striking.We also 
he
k the fra
tional 
ow 
urves obtained by the two 
al
ulations.The fra
tional 
ow of the red 
uid, de�ned as F = R Sredvx dy= R vx dy (Sbeing the saturation), at the right boundary is shown in Figure 4.7. Thetop pair of 
urves are the solutions of the transport problem using the 
ell-averaged velo
ity obtained from a well-resolved solution and from MsFEM;the bottom pair are solutions using well-resolved �ne s
ale velo
ity and there
overed �ne s
ale velo
ity from the MsFEM 
al
ulation. Two 
on
lusions
an be made from the 
omparisons. First, the 
ell-averaged velo
ity maylead to a large error in the solution of the transport equation. Se
ond, bothre
overed �ne s
ale velo
ity and the 
ell-averaged velo
ity obtained fromMsFEM give faithful reprodu
tions of respe
tive dire
t numeri
al solutions.
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Fig. 4.7. Variation of fra
tional 
ow with time. DNS: well-resolved dire
t numeri
alsolution using LFEM (N = 512). MsFEM: over-sampling is used (N = 64, M = 8).S
ale-up of one-phase 
ows The multis
ale �nite element method hasbeen used in 
onjun
tion with some moment 
losure models to obtain an
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aled method for one-phase 
ows, see, e.g. [27,29,16℄. Note that the mul-tis
ale �nite element method presented above does not 
onserve mass. Forlong time integration, it may lead to signi�
ant loss of mass. This is an unde-sirable feature of the method. In a re
ent work with Zhiming Chen [16℄, wehave designed and analyzed a mixed multis
ale �nite element method, andwe have applied this mixed method to study the s
ale up of one-phase 
owsand found that mass is 
onserved very well even for long time integration.Below we des
ribe our results in some detail.In its simplest form, negle
ting the e�e
t of gravity, 
ompressibility, 
ap-illary pressure, and 
onsidering 
onstant porosity and unit mobility, the gov-erning equations for the 
ow transport in highly heterogeneous porous media
an be des
ribed by the following partial di�erential equations [46℄, [63℄, and[27℄ div(K(x)rp) = 0; (4.31)�S�t + v � rS = 0; (4.32)where p is the pressure, S is the water saturation, K(x) = (Kij(x)) is therelative permeability tensor, and v = �K(x)rp is the Dar
y velo
ity. Thehighly heterogeneous properties of the medium are built into the permeabil-ity tensor K(x) whi
h is generated through the use of sophisti
ated geologi
aland geostatisti
al modeling tools. The detailed stru
ture of the permeability
oeÆ
ients makes the dire
t simulation of the above model infeasible. Forexample, it is 
ommon in real simulations to use millions of grid blo
ks, withea
h blo
k having a dimension of tens of meters, whereas the permeabilitymeasured from 
ores is at a s
ale of 
entimeters [49℄. This gives more than105 degrees of freedom per spatial dimension in the 
omputation. This makesa dire
t simulation to resolve all small s
ales prohibitive even with today'smost powerful super
omputers. On the other hand, from an engineering per-spe
tive, it is often suÆ
ient to predi
t the ma
ros
opi
 properties of thesolutions. Thus it is highly desirable to derive e�e
tive 
oarse grid modelsto 
apture the 
orre
t large s
ale solution without resolving the small s
alefeatures. Numeri
al ups
aling is one of the 
ommonly used approa
hes inpra
ti
e.Now we des
ribe how the (mixed) multis
ale �nite element 
an be 
om-bined with the existing ups
aling te
hnique for the saturation equation (4.32)to get a 
omplete 
oarse grid algorithm for the problem (4.31)-(4.32). The nu-meri
al ups
aling of the saturation equation has been under intensive studyin the literature [24,29,46,36,66,64℄. Here, we use the ups
aling method pro-posed in [29℄ and [27℄ to design an overall 
oarse grid model for the problem(4.31)-(4.32). The work of [29℄ for ups
aling the saturation equation involvesa moment 
losure argument. The velo
ity and the saturation are separatedinto a lo
al mean quantity and a small s
ale perturbation with zero mean.For example, the Dar
y velo
ity is expressed as v = v0 + v0 in (4.32), where
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ale Solutions in PDEs 45v0 is the average of velo
ity v over ea
h 
oarse element, v0 = (v01;v02) is thedeviation of the �ne s
ale velo
ity from its 
oarse s
ale average. After somemanipulations, an average equation for the saturation S 
an be derived asfollows [29℄: �S�t + v0 � rS = ��xi�Dij(x; t) �S�xj �; (4.33)where the di�usion 
oeÆ
ients Dij(x; t) are de�ned byDii(x; t) = hjv0i(x)jiL0i (x; t); Dij(x; t) = 0; for i 6= j;hjv0i(x)ji stands for the average of jv0i(x)j over ea
h 
oarse element. L0i (x; t)is the length of the 
oarse grid streamline in the xi dire
tion whi
h starts attime t at point x, i.e. L0i (x; t) = Z t0 yi(s) ds;where y(s) is the solution of the following system of ODEsdy(s)ds = v0(y(s)); y(t) = x:Note that the hyperboli
 equation (4.32) is now repla
ed by a 
onve
tion-di�usion equation. The 
onve
tion-dominant paraboli
 equation (4.33) issolved by the 
hara
teristi
 linear �nite element method [22℄, [56℄ in oursimulation. The 
ow transport model (4.31)-(4.32) is solved in the 
oarsegrid as follows:1. Solve the pressure equation (4.31) by the over-sampling mixed multis
ale�nite element method and obtain the �ne s
ale velo
ity �eld using themultis
ale basis fun
tions.2. Compute the 
oarse grid average v0 and the �ne s
ale deviation hjv0i(x)jion the 
oarse grid.3. At ea
h time step, solve the 
onve
tion-di�usion equation (4.33) by the
hara
teristi
 linear �nite element method on the 
oarse grid in whi
hthe lengths L0i (x; t) of the streamline are 
omputed for the 
enter of ea
h
oarse grid element.The mixed multis
ale �nite element method 
an be readily 
ombined withthe above ups
aling model for the saturation equation. The lo
al �ne grid ve-lo
ity v0 will be 
onstru
ted from the multis
ale �nite element base fun
tions.The main 
ost in the above algorithm lies in the 
omputation of multis
alebases whi
h 
an be done a priori and 
ompletely in parallel. This algorithm isparti
ularly attra
tive when multiple simulations must be 
arried out due tothe 
hange of boundary and sour
e distribution as it is often the 
ase in engi-neering appli
ations. In su
h a situation, the 
ost of 
omputing the multis
ale
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tions is just an over-head. Moreover, on
e these base fun
tions are
omputed, they 
an be used for subsequent time integration of the saturation.Be
ause the evolution equation is now solved on a 
oarse grid, a larger timestep 
an be used. This also o�ers additional 
omputational saving. For manyoil re
overy problems, due to the ex
essively large �ne grid data, ups
alingis a ne
essary step before performing many simulations and realizations onthe ups
aled 
oarse grid model. If one 
an 
oarsen the �ne grid by a fa
torof 10 in ea
h dimension, the 
omputational saving of the 
oarse grid modelover the original �ne model 
ould be as large as a fa
tor 10,000 (three spa
edimensions plus time).We perform a 
oarse grid 
omputation of the above algorithm on the
oarse 64� 64 mesh. The fra
tional 
ow 
urve using the above algorithm isdepi
ted in Figure 4.8. It gives ex
ellent agreement with the \exa
t" fra
tional
ow 
urve. The 
ontour plots of the saturation S on the �ne 1024�1024meshat time t = 0:25 and t = 0:5 
omputed by using the \exa
t" velo
ity �eldare displayed in Figure 4.10. In Figure 4.9, we show the 
ontour plots of thesaturation obtained using the re
overed velo
ity �eld from the 
oarse gridpressure 
al
ulation N = 64. We 
an see that the the 
ontour plots in Figure4.9 approximate the \exa
t" ones in Figure 4.10 in 
ertain a

ura
y but thesharp oil/water interfa
es in Figure 4.10 are smeared out. This is due to theparaboli
 nature of the ups
aled equation (4.33). We have also performedmany other numeri
al experiments to test the robustness of this 
ombined
oarse grid model. We found that for permeability �elds with strong layeredstru
ture, the above 
oarse grid model is very robust. The agreement withthe �ne grid 
al
ulations is very good. We are 
urrently working toward somequalitative and quantitative understanding of this ups
aling model.Finally, we remark that the ups
aling equation (4.33) uses small s
aleinformation v0 of the velo
ity �eld to de�ne the di�usion 
oeÆ
ients. Thisinformation 
an be 
onstru
ted lo
ally through the mixed multis
ale basisfun
tions. This is an important property of our multis
ale �nite elementmethod. It is 
lear that solving dire
tly the homogenized pressure equationdiv(K�(x)rp�) = 0will not provide su
h small s
ale information. On the other hand, wheneverone 
an a�ord to resolve all the small s
ale feature by a �ne grid, one 
an usefast linear solvers, su
h as multigrid methods, to solve the pressure equation(4.31) on the �ne mesh. >From the �ne grid 
omputation, one 
an easily
onstru
t the average velo
ity v0 and its deviation v0. However, when multiplesimulations must be 
arried out due to the 
hange of boundary 
onditions,the pressure equation (4.31) will then have to be solved again on the �nemesh. The multis
ale �nite element method only solves the pressure equationon
e on a 
oarse mesh, and the �ne grid velo
ity 
an be 
onstru
ted lo
allythrough the �nite element bases. This is the main advantage of our mixedmultis
ale �nite element method. This pro
ess be
omes more diÆ
ult for the
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y of the 
oarse grid algorithm. Solid line is the \exa
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urve using mixed �nite element method solving the pressure equation.The slash-dotted line is the fra
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urve using above 
oarse grid algorithm.
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ontour plots of the saturation S 
omputed using the ups
aled modelon a 64 � 64 mesh at time t = 0:25 (left) and t = 0:5 (right).
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ontour plots of the saturation S 
omputed on the �ne 1024�1024mesh using the \exa
t" velo
ity �eld at time t = 0:25 (left) and t = 0:5 (right).



48 Thomas Y. Hounonlinear two-phase 
ow due to the dynami
 
oupling between the pressureand the saturation. We are now investigating the possibility of ups
alingthe two-phase 
ow by using multis
ale �nite element base fun
tions that are
onstru
ted from the one-phase 
ow (time independent). In this 
ase, weneed to provide 
orre
tions to the pressure equation to a

ount for the s
aleintera
tion near the oil/water interfa
e.It should be noted that some adaptive s
ale-up strategies have also beendeveloped [24,66℄. The idea is to re�ne the mesh around the fast-
ow 
han-nels in order to 
apture their e�e
t dire
tly. The approa
h seems to work wellwhen the 
hannels are isolated. For MsFEM, it is also possible to adjust the
oarse mesh adaptively based on the re
overed velo
ity. In parti
ular, onedoes not need to use the �ne re
overed velo
ity in the regions with no fast-
ow 
hannels; in those regions, the 
oarse mesh and 
ell-averaged velo
ityare suÆ
ient. On the other hand, one 
an simply keep the �ne mesh whenthe 
hannels are too many. How to develop a 
onsistent ups
aling equationfor the saturation equation is still open when the 
apillary pressure e�e
tis negle
ted, whi
h is the 
ommon pra
ti
e in oil reservoir simulations. Oneapproa
h is to 
ombine grid adaptivity with multis
ale modeling. We use adynami
 adaptive 
oarse grid [15℄ to 
apture the isolated small s
ale fea-tures, su
h as the 
ow 
hannels and use the multis
ale �nite element methodto 
apture the small s
ale feature within ea
h adaptive 
oarse grid blo
k. Bydoing this, we take into a

ount the lo
al 
ow orientation and anisotropy inups
aling the saturation equation. We are also investigating the possibilityto develop a 
onsistent ups
aling model for the saturation equation by 
om-bining multis
ale �nite element methods and systemati
 multis
ale modelingfor the saturation equation.5 Wavelet-based Homogenization (WBH)The material in this se
tion is based on the work of Borobantu and Engquistin [21℄ and the le
tures given by Engquist in the Morningside Summer S
hoolon Multis
ale Analysis and Computation in Beijing in August, 1997. Pleasealso 
onsult with the related work of Brewster and Beylkin in [10℄ for integraldi�erential equations.We begin by 
onsidering a simple, ellipti
 equation. Let u" be the variablein question de�ned on the domain 
. We study the boundary-value problem�r � a"(x)ru"(x) = f(x); x 2 
B:C: for u"; x 2 �
where a"(x) = a(x1="; x2="), and a(y1; y2) is 1-periodi
 in y1; y2.As we dis
ussed in Se
tion 1, one 
an derive a homogenized equationusing the multis
ale expansion te
hnique. Roughly speaking, homogenizationis a mathemati
al method that allows us to ups
ale di�erential equations.
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al Approximations to Multis
ale Solutions in PDEs 49This method not only o�ers formulae for ups
aling but also provides toolsfor produ
ing rigorous mathemati
al 
onvergen
e proofs.The homogenization problem 
an be stated in various formulations. A
lassi
al formulation, see e.g. Bensoussan et al. [7℄, is the following: Considera family of operators L" indexed by the small parameter ". For any fun
tionf , let u" solve the problem L"u" = f: (5.1)Assume that u" * u, as " ! 0. The homogenization problem is to �nd anoperator L su
h that Lu = f: (5.2)The homogenized equation does not 
ontain the "-s
ale and it 
an be solvedon a 
oarse grid. In some 
ases L has a 
losed form analyti
 expression [7℄.If that is not the 
ase, but the general stru
ture of L is known, a numeri
alapproximation is still possible [23℄.The following diagram des
ribes two 
ommon approa
hes to a 
oarse griddis
retization of the multis
ale problem, L"u" = f .L"u" = f| . }&Lu = f L";hu"h = f";h} & ~.LHuH = fHwhere | stands for homogenization, } stands for dis
retization (for example,�nite element methods, et
.); ~ stands for numeri
al ups
aling (sampling,wavelet based homogenization, et
, � � � ).Homogenization is a model redu
tion. In the traditional analysis, redu
-tion is often based on physi
al 
onservation (derivation from �rst prin
iples).For example, in 
uid me
hani
s, fundamental parti
le intera
tion �! kineti
model (Boltzmann equation) �! Navier-Stokes equation (Hydrodynami
 ap-proximation). >From the Navier-Stokes equations, one 
an further derive tur-bulen
e models, the Euler equations, and potential equations.In 
ontrast, one 
an derive redu
ed models using numeri
al te
hniquesstarting from the dis
retized problem. Wavelet-Based-Homogenization, Sam-pling, Multigrid are some of examples in dis
rete model redu
tion.The framework for the wavelet based method is dis
rete. The operator Lis a �nite-dimensional approximation of the original di�erential operator. It
an be written in the form L = P (�; A; h);where � is a 
olle
tion of di�eren
e operators, A is a dis
retized variable
oeÆ
ient, typi
ally diagonal matri
es, and h represents the grid size. We



50 Thomas Y. Houseek a homogenized, dis
rete, operator L that 
an be written in a form similarto L, L = P (�; H; h);but with h� h and the stru
ture of H 
lose to the stru
ture of A, typi
allydiagonal dominant and sparse. We interpret H as the subgrid model of A.If A 
orresponds to a material 
oeÆ
ient, H 
an be seen as the e�e
tivematerial 
oeÆ
ient.5.1 WaveletsFor multis
ale problems, the �rst important 
on
ept is to de�ne s
ales, whatwe mean by large s
ales and what we mean by small s
ales. The 
lassi
alway is to use the Fourier series or Fourier transform as a systemati
 way ofde�ning s
ales u(x) =Xj ajeijx:Note that the Fourier bases, eijx, are global. This introdu
es some diÆ
ultyin 
hara
terizing lo
al small s
ales. Wavelets introdu
e orthonormal baseswhi
h are lo
alized in spa
e or time. This o�ers some very attra
tive featureswhi
h have important appli
ations in signal and image pro
essing.When solving di�erential equations, we often express the solution as alinear 
ombination of some pre-determined basisu(x) =Xk ak'k(x):For example, 'k(x) = '(x� xk) in �nite element method. It is a translationoperator, whereas in the spe
tral method, we haveu(x) =Xj aj'j(x)where 'j(x) = eijx, whi
h is a dilation operator.Using both translation and dilation, the fun
tions are expressed by wave-lets u(x) =Xj;k ajk jk ;where  jk(x) = 2j=2 (2jx� k).Example: A well-known example of wavelet basis is the Haar waveletHjk(x) = 2j=2H(2jx� k) ;where H(x) =8<:1; if 0 � x � 1=2;�1; if 1=2 < x � 1;0; otherwise:
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al Approximations to Multis
ale Solutions in PDEs 51Note that the mean of H(x) is zero, RRH(x) dx = 0.We now des
ribe a subgrid s
ale model within the framework of waveletbased multiresolution analysis (MRA). A wavelet representation lends itselfnaturally to analyzing the �ne and 
oarse s
ales as well as the lo
alizationproperties of a fun
tion. For a detailed des
ription of MRA we refer thereader to the book by Daube
hies [20℄. For fast wavelet algorithms, we referthe reader to [8℄.We 
onsider a ladder of spa
es VJ � VJ+1 whi
h are spanned by thedilates and integer translates of one shape-fun
tion � 2 V0:VJ = spanf�J;k(x) = 2J=2�(2Jx� k)g:The fun
tions �J;k form an L2-orthonormal basis. The orthogonal 
omple-ment of VJ in VJ+1 is denoted byWJ and it is generated by another orthonor-mal basis  J;k(x) = 2J=2 (2Jx � k), where  is 
alled the mother wavelet.The transformation WJ : VJ+1 !WJ � VJthat maps the basis f�J+1;kg into f J+1;k; �J+1;kg is an orthogonal operatorand we denote its inverse by WT . The produ
t WJWJ�1 � � �W0 maps VJ+1into V0�P0�j�J Wj is 
alled the wavelet transform and it 
an be optimallyimplemented using the fast wavelet transform. We denote by Pj and Qj theL2-proje
tions onto Vj and Wj .5.2 Introdu
tion to Wavelet-Based Homogenization (WBH)Given the fully dis
rete solution operator on a �ne grid, the underlying idea ofwavelet-based homogenization is to �nd an operator of lower dimension thatextra
ts only the 
oarse s
ales of the solution. The numeri
al homogenization
an be des
ribed as the following pro
ess:L"u" = f ! L";hu"h = fh ! LHuH = fH :The wavelet-based homogenization is des
ribed as follows:1. Start from the dis
retized di�erential equation;2. Represent the operator and the solution in wavelet basis;3. Proje
t to the (
oarse and small) s
ale spa
es;4. Compress the operator after transformation.We illustrate the main idea by 
onsidering the following di�erential equa-tion � ddx �a"(x) ddxu"(x)� = f(x) ;where a"(x) = a(x" ). Dis
retizing the equation on a �ne mesh h gives L";hu"h =fh. We denote by LJ+1 the dis
rete operator on the �nest level. We haveLJ+1U = F:



52 Thomas Y. HouIf we use a 
entered di�eren
e approximation to the derivative operator, wehave LJ+1 = h�2�+ diag(a")��where �+uk = uk+1 � uk is the forward di�eren
e operator, and ��uk =uk�uk�1 is the ba
kward di�eren
e operator, whi
h satis�es �� = �T+. Herediag(a) is the diagonal matrix with diagonal entry given by a(xi).We �rst identify the pointwise value with 
oeÆ
ient in the spa
e of VJ+1.A linear operator LJ+1 a
ting on the spa
e VJ+1 
an be de
omposed intofour operators LJ+1 = AJ + BJ + CJ + LJ a
ting on the subspa
e WJ andVJ , where AJ = QJLJ+1QJ : WJ !WJBJ = QJLJ+1PJ : VJ ! WJCJ = PJLJ+1QJ : WJ ! VJLJ = PJLJ+1PJ : VJ ! VJ :Applying the transformation WJ on LJ+1, we have for U 2 VJ+1,WJLJ+1WTJ (WJU) = �AJ BJCJ LJ � �QJUPJU � ; (5.3)or simply WJLJ+1WTJ = �AJ BJCJ LJ � : (5.4)Let us now 
onsiderLJ+1U = F; U; F 2 VJ+1:This equation may originate from a �nite di�eren
e, �nite element or �nitevolume dis
retization of a given equation. We identify U as a pie
ewise 
on-stant approximation of u(x), the solution to the 
ontinuous problem. Afterthe same wavelet transformation as in (5.3), we have�AJ BJCJ LJ ��UhUl � = �FhFl � ; Uh; Fh 2 WJ ; Ul; Fl 2 VJ ;where Uh = QJU and Ul = PJU and similarly for F . For the Haar basisthis means that Uh is essentially the high frequen
y part and Ul is the lowfrequen
y part of U . The �rst equation isUh = A�1J (Fh �BJUl):Eliminating Uh yields the equation for Ul(LJ � CJA�1J BJ)Ul = Fl � CJA�1J Fh:



Numeri
al Approximations to Multis
ale Solutions in PDEs 53Our new \
oarse grid operator" is the S
hur 
omplementLJ = LJ � CJA�1J BJ ; (5.5)whi
h in
ludes subgrid phenomena via CJA�1J BJ . We also get the homoge-nized right hand side, �FJ = Fl � CJA�1J Fh:Note that this is in fa
t a blo
k Gaussian elimination pro
edure. Furthernote that the above pro
edure 
an be repeated on �LJ to get �LJ�1 and soon. To make this eÆ
ient in real appli
ations it is ne
essary to be able toapproximate �LJ with a sparse matrix. This sparse matrix 
an be seen as adis
retization of a lo
al di�erential operator.There is a striking relation between the S
hur 
omplement �Lj in (5.5) andthe analyti
ally homogenized operator (2.24)-(2.25) in Se
tion 1, repeatedhere for 
onvenien
e,Lu = � ��xi �a�ij ��xi�xj�u+� 1jY j ZY a0(y) dy�u ; (5.6)where a�ij = 1jY j ZY (aij � aik ��j(y)�yk ) dy: (5.7)The �rst terms in (5.5) and (5.7) both represent averaged operators, LJ in adis
rete sense and �0�Xij 1jY j ZY aij dy1A �2�xi�xj (5.8)in an integral sense. In both formulations a 
orre
tion term is subtra
tedfrom the average. Furthermore, in the 
orre
tion term � is the solution of anellipti
 equation and A�1j is a dis
rete positive de�nite operator.The above dis
ussion on one-dimensional problems 
an be generalized totwo-dimensional problems. In the two-dimensional 
ase, the mapsWJ : VJ+1 !WJ �VJ (5.9)
an be written as a tensor produ
t of one-dimensional transforms,W2dJ =WJ 
WJ :A linear operator LJ+1 that a
ts on the spa
e VJ+1 
an be de
omposedin a way similar to the one-dimensional 
ase. To get a 
onvenient matrixrepresentation we use fW = PW , instead of W . The matrix P is a suitablepermutation. The equationLJ+1U = F; U; F 2 VJ+1;
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an then be transformed to�AJ BJCJ LJ ��UhUl � = �FhFl � ; Uh; Fh 2WJ ; Ul; Fl 2 VJ ;and the 
oarse grid operator is again the S
hur 
omplement,�LJ = LJ � CJA�1J BJ :Note that the high frequen
y part of U 
an be de
omposed asUh = 24UhhUlhUhl 35 ; Uhh 2 WJ 
WJ ; Ulh 2 VJ 
WJ ; Uhl 2 WJ 
 VJ :Similar tensor produ
t extensions 
an be made also for high dimensions.Unlike the homogenized operator L in the 
ontinuous 
ase, the dis
rete\homogenized" operator, LJ , is a nonlo
al dense operator, sin
e A1J is dense.For ellipti
 operators, AJ is diagonally dominant. The 
ompression propertyof wavelets makes it possible to approximate A�1J by a sparse matrix. Thisis an essential property that makes this numeri
al homogenization pro
edureeÆ
ient. This dis
rete homogenization pro
edure 
an be applied re
ursivelyto yield a 
oarse grid operator, LI at a desired 
oarse level.It turns out that it is more e�e
tive to write LJ in a 
onservative form.In the 1-D 
ase, this amounts to expressing LJ as follows:LJ = 1(2h)2�+H�� ;where �+uj = uj+1�uj and ��uj = uj�uj�1, and H is a strongly diagonaldominant matrix.We look at the extreme 
ase when a(x) = a+~a(x) is the sum of a 
onstantand the highest frequen
y represented on the grid, i.e., a(xm) = a+ j~aj(�1)m.We have that a and ~a are represented as 
onstant ve
tors in the bases of VJand WJ . The fa
t that a(x) > 0 implies j~aj < jaj.The following theorem shows that the wavelet homogenized operator1h2�+H�� equals the dis
rete form � 1h2�+�� of the 
lassi
ally homoge-nized equation, apart from a se
ond order error term of order h2.Theorem 5.1. [21℄ Let a(x) = a+~a 2 VJ+1 be su
h that a 2 V0 is a 
onstantand the os
illatory part ~a 2 WJ has 
onstant amplitude and satis�es the
ondition j~aj < a. Let LJ+1 = 1(h=2)2�+a�� and � be the harmoni
 average� =  12h Z 2h0 1a(x) dx!�1 :Then there exists a fun
tion v(x) with a 
ontinuous and bounded fourthderivative su
h thatkLJv � � 1h2�+��vk1 � Ch2kv(4)kL1 :
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al Approximations to Multis
ale Solutions in PDEs 55In pra
ti
e, we want to approximate the homogenized operator �LJ by asparse approximation. Due to the de
ay in the o�-diagonal entries, we 
anapproximate LJ by a band-diagonal matrix LJ;� where � is the band-width.Let us 
onsider the operator band de�ned byband(M; �)i;j = �Mi;j ; if 2ji� jj � � � 1 ;0; otherwise:We have in fa
t two obvious strategies available for produ
ing LJ;� : We 
anset dire
tly LJ;� = band(LJ ; �) or use the homogenized 
oeÆ
ient form andbuild LJ;� = 1h2�+ band(H; � � 2)��. Both approa
hes produ
e small per-turbations of LJ . However, important properties, su
h as divergen
e form,are lost in the �rst approa
h and numeri
al experiments show that � needsto be rather large to 
ompensate for this. The se
ond approa
h produ
es LJ;�in divergen
e form. Moreover, the approximation error 
an be estimated, asin the following result:Theorem 5.2. [21℄ If the 
onditions of Theorem 5.1 are valid, then we havekH � band(H; �)k � C�� ; � = 2(a+ j~aj)6a� 2j~aj < 1:If v is the dis
retization of a smooth fun
tion v(x), thenk(LJ � LJ;�vk1 � C��kv00kL1 :In the 
urrent approa
h, the numeri
al homogenization starts from a �negrid, and the operator is global. It would be ni
e to derive a lo
al pro
edure toimplement this idea. Further, it remains to study the de
ay rate of Hij awayfrom diagonal for more general a" and more general wavelet bases. One alsoneeds to �nd an eÆ
ient way of 
omputing LJ (in
omplete LU de
ompositionof A). Compare with multigrid method and pre
onditional 
onjugate gradientmethod.6 Variational Multis
ale MethodIn this se
tion, we will brie
y review the main idea of the variational multi-s
ale method introdu
ed by Hughes and Brezzi et al in [42,12,43℄.Consider an abstra
t variational problem: Find u 2 V su
h thata(u; v) = F (v); for all v 2 V; (6.1)where V is a Hilbert spa
e, a(�; �) is a 
ontinuous and 
oer
ive bilinear formon V , and F (�) is a 
ontinuous linear form on V .A typi
al example is the ellipti
 problem (2.1) in Se
tion 1. In this 
ase,we havea(u; v) = Z
 a"(x)ru � rv dx+ Z
 a0(x)uv dx; F (v) = Z
 f(x)v(x) dx:
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hoose V = H10 (
), then the above variational problem is equivalent tothe ellipti
 equation (2.1) in Se
tion 1.The 
lassi
al Galerkin approximation of (6.1) 
onsists of taking a �nitedimensional subspa
e Vh of V and solving (6.1) in Vh, i.e. �nd uh 2 Vh su
hthat a(uh; vh) = F (vh); for all vh 2 Vh: (6.2)Let Th = fKg be a triangulation of 
, hK = diamfKg, h = maxK hK .Typi
ally Vh 
onsists of 
ontinuous fun
tions whi
h are polynomials of somedegrees on a triangular element K.To be spe
i�
, we 
onsider pie
ewise linear elements. We setV hR = �vR 2 H10 (
); vRjK is linear in ea
h K	 :The variational problem (6.2) 
an be written as follows: Find uR 2 V hRsu
h that a(uR; vR) = F (vR); for all vR 2 V hR : (6.3)Here, uR represents the resolvable part of the solution.Let V bU be a 
losed subspa
e of H10 (
) su
h that V hR \ VU = f0g.Further, we de�ne Vh = V hR � V bU : (6.4)We 
an 
onsider Vh as the augmented spa
e of V hR .Using the de
omposition Vh = V hR � V bU , we 
an express any vh 2 Vh asthe sum of a resolvable part , vR 2 V hR , and an unresolvable part , vU 2 V bU ina unique way: vh = vR + vU 2 V hR � V bU :In turn, the variational problem (6.2) 
an be expressed as follows: Find uh =uR + uU 2 V hR � V bU su
h thata(uR + uU ; vR) = F (vR) ; for all vR 2 V hR (6.5)a(uR + uU ; vU ) = F (vU ) ; for all vU 2 V bU : (6.6)Using the bilinearity of a(�; �), equation (6.6) 
an be written asa(uU ; vU ) = � (a(uR; �)� F (�)) (vU ) ; for all vU 2 V bU : (6.7)Problem (6.7) 
an be \solved" for any uR 2 V hR , and the solution 
an beformally written as uU =M(LuR � f); (6.8)where the operator L is de�ned as in (2.1), M is a linear solution opera-tor from H�1(
) to H10 (
). One 
an also view M as the �ne grid solutionoperator or the dis
rete Green fun
tion operator a
ting on the unresolvables
ales.
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ale Solutions in PDEs 57Substituting the unresolvable part of the solution, uU =M(LuR�f) intoequation (6.5) for the resolvable part, we geta(uR; vR) + a(M(LuR � f); vR)| {z }e�e
t of the spa
e V bU = (f; vR); for all vR 2 V hR : (6.9)The term a(M(LuR � f); vR) represents the 
ontribution of small s
alesto large s
ales, whi
h resembles the so-
alled \Reynolds stress" term in tur-bulen
e modeling.Solving uU exa
tly would be as expensive as solving the �ne grid solutionglobally. In order to lo
alize the 
omputation of uU , the authors in [42,12,43℄made the following assumption:VU = �KH10 (K):In other words, they take into a

ount only those unresolvable s
ales thatvanish on the boundaries of the 
oarse grid elements. In some sense, the multi-s
ale �nite element method with linear boundary 
onditions for the multis
alebase fun
tions is very similar to the variational multis
ale method des
ribedhere. As we see from the analysis of the multis
ale �nite element method in[38,28℄, by for
ing the unresolvable bases to vanish on the boundaries of the
oarse grid elements, the resulting multis
ale method may introdu
e O(1)errors when the physi
al small s
ale is of the same order as the 
oarse gridsize.Using the assumption uU jK = 0, uU 
an be uniquely de
omposed amongea
h element, K: uU =XK uU;K ; uU;K 2 H10 (K):The variational problem now be
omes: Find uh = uR+uU = uR+PK uU;K 2V hR � VU su
h thata(uR + uU ; vR) = F (vR) ; for all vR 2 V hR (6.10)a(uR + uU;K ; vU;K)K = F (vU;K)K ; for all vU;K 2 H10 (K); 8 K;(6.11)where a(uR + uU;K ; vU;K)K and F (vU;K)K are the restri
tions of a(uR +uU;K ; vU;K) and F (vU;K) on K respe
tively. Again, we obtain an equationfor uR asa(uR; vR) +XK a(uU;K ; vR)K = F (vR) ; for all vR 2 V hR ; 8 K: (6.12)The \lo
al equation" for uU;R be
omesa(uU;K ; vU;K)K = �[a(uR; �)� F (�)℄jK(vU;K); for vU;K 2 H10 (K):



58 Thomas Y. HouEquivalently, we haveLuU;K = � (LuR � f)| {z }residual ; in K; with uU;K = 0 on �K:In some sense, the un-resolvable bases, fuU;Kg, play the same role as theresidual-free bubbles in the residual-free bubbles �nite element method in-trodu
ed by Brezzi and Russo in [11℄. Let gKy be the Green fun
tion on Kfor operator L, i.e.LgKy (x) = Æy(x); for x 2 K; gKy = 0 on �K:Then we 
an write uU;K formally asuU;K = � ZK gKy (x)(LuR � f)(y) dy:This is not very pra
ti
al sin
e it is expensive to 
onstru
t the Green fun
-tion numeri
ally in ea
h element. In [42,12,43℄, various approximations tothe dis
rete Green fun
tion are proposed to study the stabilizing residual-free bubble method. Hughes and his 
o-workers have also applied this idea toa number of interesting appli
ations [43℄. Re
ently, Todd Arbogast has intro-du
ed a subgrid ups
aling method for two-phase 
ow in porous media usinga similar approa
h [2℄. From the analyti
al view point, the variational multi-s
ale method or the residual-free bubble approa
h provides a good frameworkto design multis
ale methods in a systemati
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