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Abstract. Many problems of fundamental and practical importance have multiple
scale solutions. The direct numerical solution of multiple scale problems is difficult
to obtain even with modern supercomputers. The major difficulty of direct solutions
is the scale of computation. The ratio between the largest scale and the smallest
scale could be as large as 10° in each space dimension. From an engineering perspec-
tive, it is often sufficient to predict the macroscopic properties of the multiple-scale
systems, such as the effective conductivity, elastic moduli, permeability, and eddy
diffusivity. Therefore, it is desirable to develop a method that captures the small
scale effect on the large scales, but does not require resolving all the small scale
features. This paper reviews some of the recent advances in developing systematic
multiscale methods such as homogenization, numerical samplings, multiscale finite
element methods, variational multiscale methods, and wavelets based homogeniza-
tion. This paper is not intended to be a detailed survey and the discussion is limited
by both the taste and expertise of the author.

1 Introduction

Many problems of fundamental and practical importance have multiple scale
solutions. Composite materials, porous media, and turbulent transport in
high Reynolds number flows are examples of this type. A complete anal-
ysis of these problems is extremely difficult. For example, the difficulty in
analyzing groundwater transport is mainly caused by the heterogeneity of
subsurface formations spanning over many scales. This heterogeneity is often
represented by the multiscale fluctuations in the permeability of media. For
composite materials, the dispersed phases (particles or fibers), which may be
randomly distributed in the matrix, give rise to fluctuations in the thermal
or electrical conductivity; moreover, the conductivity is usually discontinuous
across the phase boundaries. In turbulent transport problems, the convective
velocity field fluctuates randomly and contains many scales depending on the
Reynolds number of the flow.

The direct numerical solution of multiple scale problems is difficult even
with the advent of supercomputers. The major difficulty of direct solutions
is the scale of computation. For groundwater simulations, it is common that

* Research was in part supported by a grant DMS-0073916 from the National
Science Foundation



2 Thomas Y. Hou

millions of grid blocks are involved, with each block having a dimension of
tens of meters, whereas the permeability measured from cores is at a scale of
several centimeters. This gives more than 10° degrees of freedom per spatial
dimension in the computation. Therefore, a tremendous amount of computer
memory and CPU time are required, and this can easily exceed the limit of
today’s computing resources. The situation can be relieved to some degree by
parallel computing; however, the size of the discrete problem is not reduced.
The load is merely shared by more processors with more memory. Whenever
one can afford to resolve all the small scale features of a physical problem,
direct solutions provide quantitative information of the physical processes at
all scales. On the other hand, from an engineering perspective, it is often suf-
ficient to predict the macroscopic properties of the multiscale systems, such
as the effective conductivity, elastic moduli, permeability, and eddy diffusiv-
ity. Therefore, it is desirable to develop a method that captures the small
scale effect on the large scales, but does not require resolving all the small
scale features.

The purpose of these lecture notes is to review some recent advances in de-
veloping multiscale numerical methods that capture the small scale effect on
the large scales, but do not require resolving all the small scale features. The
ultimate goal is to develop a general method that works for problems with
continuous spectrum of scales. Substantial progress has been made in recent
years by combining modern mathematical techniques such as homogeniza-
tion, numerical samplings, and multiresolution. My lectures can be roughly
divided into five parts. In Section 2, I will review some homogenization the-
ory for elliptic and hyperbolic equations as well as for incompressible flows.
This homogenization theory provides the critical guideline for designing ef-
fective multiscale methods. Section 3 is devoted to numerical homogenization
for semilinear hyperbolic systems using particle methods and sampling tech-
niques. For hyperbolic systems, it is important to compute the advection of
small scale information accurately and account for the nonlinear interaction
properly. We also need to avoid certain resonant sampling of the grid in order
to obtain convergence. In Section 4, we focus on some recent developments
of numerical homogenization based on the multiscale finite element methods.
We also discuss the issue of upscaling one-phase and two-phase flows through
heterogeneous porous media. In Sections 5 and 6, I review the main ideas
behind the wavelet-based numerical homogenization method and the varia-
tional multiscale method. There are many other multiscale methods which
we will not cover due to the limited scope of these lectures. The above meth-
ods are chosen because they are similar philosophically and the materials
complement, each other very well. This paper is not intended to be a detailed
survey of all available multiscale methods. The discussion is limited by scope
of the lectures and expertise of the author.
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2 Review of Homogenization Theory

In this section, we will review some classical homogenization theory for elliptic
and hyperbolic PDEs. This homogenization theory will play an essential role
in designing effective multiscale numerical methods for partial differential
equations with multiscale solutions.

2.1 Homogenization Theory for Elliptic Problems
Consider the second order elliptic equation

0

L(ue) = B

(aij (z/e) %) ue + ag(z/e)us = f, ucloq =0, (2.1)
J

where a;;(y) and ag(y) are Y-periodic and satisfy a;;(y)&:&; > a&;&;, with

a > 0, and ag > ag > 0. Here we have used the Einstein summation notation,

i.e. repeated index means summation with respect to that index.

This model equation represents a common difficulty shared by several
physical problems. For porous media, it is the pressure equation through
Darcy’s law, the coefficient a. representing the permeability tensor. For com-
posite materials, it is the steady heat conduction equation and the coefficient
a. represents the thermal conductivity. For steady transport problems, it is
a symmetrized form of the governing equation. In this case, the coefficient a.
is a combination of transport velocity and viscosity tensor.

Homogenization theory is to study the limiting behavior u, - v ase — 0.
The main task is to find the homogenized coefficients, aj; and ag, and the
homogenized equation for the limiting solution u

o (., 0 .
“om <aij8.—77j> u+aju=f, ulagg=0. (2.2)
Define the L? and H' norms over (2 as follows

vl = /Q of* dz, o]} = [vllg + [IVol[5- (2.3)

Further, we define the bilinear form

Ou 0O
a®(u,v) = /Qaf](r)a—;ja;)z dx + /Q aguu dx. (2.4)
It is easy to show that

allul} < (i, 0) < ol (2.5)

with ¢; = min(e, ag), 2 = max(]|aij|so, ||a0||o0)-
The elliptic problem can also be formulated as a variational problem: find
u. € H
a®(u.,v) = (f,v), forall ve HL(Q), (2.6)

where (f,v) is the usual L? inner product, [, fvdz.
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Special Case: One-Dimensional Problem Let = (zq,z;) and take
ag = 0. We have

dzx

where u.(zo) = u-(z1) =0, and a(y) > ag > 0 is y-periodic with period yq.
By taking v = u,. in the bilinear form, we have

—% <a(w/a)du5> =f, in Q, (2.7)

Juclly < c.
Therefore one can extract a subsequence, still denoted by wu., such that
u. —u in  H(Q) weakly. (2.8)
On the other hand, we notice that
1 Yo
a® — m(a) = —/ a(y)dy in L(Q) weak star. (2.9)
Yo Jo

It is tempting to conclude that u satisfies:

i (@) =

where m(a) = yl—o 7% a(y) dy is the arithmetic mean of a. However, this is not
true. To derive the correct answer, we introduce
duf
cf=a .
¢ dx

Since a® is bounded, and uZ is bounded in L?(Q), so & is bounded in L?(12).
Moreover, since fddi; = f, we have & € H'(). Thus we get

&€ = ¢ in L*Q) strongly,

so that .
—& - m(1/a)§ in L2(Q)  weakly.
a

Further, we note that a%fg = ddiz. Therefore, we arrive at

du
i m(l/a)€.

On the other hand, fddi; = f implies 7% = f. This gives

f% (ﬁ%) =f (2.10)

This is the correct homogenized equation for u. Note that a* = m is the
harmonic average of a®. It is in general not equal to the arithmetic average
af =m(a).
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Multiscale Asymptotic Expansions. The above analysis does not gen-
eralize to multi-dimensions. In this subsection, we introduce the multiscale
expansion technique in deriving homogenized equations. This technique is
very effective and can be used in a number of applications.

We shall look for u.(x) in the form of asymptotic expansion

u-(z) = ug(z, v/e) + eus (z,x/e) + *us (v, 2/e) + -+, (2.11)

where the functions u;(z,y) are Y-periodic in y.
Denote by A® the second order elliptic operator

0 0
A= —— | ai (z/e) — ] . 2.12
- (a9 212
When differentiating a function ¢(z,z/e) with respect to z, we have
0 0 10
— =+
Ox; Ox; €0y;
where y is evaluated at y = z/e. With this notation, we can expand A° as
follows

A® =2 A + e Ay + %45, (2.13)

where
A (y)aiy) 7 (2.14)
A @)a%) A (y)aiyj) , (2.15)
Az = —6% (alj(y)%> + ag . (2.16)

Substituting the expansions for u. and A® into A°u. = f, and equating the
terms of the same power, we get

A1u0 = 0, (217)
Alul + A2UU = 0, (218)
A1UQ + Azul + A3UU = f (219)
Equation (2.17) can be written as
0 0
2 () —— ) = 0. 2.20
o (@it ) i) =0 (2.20)

where wg is periodic in y. The theory of second order elliptic PDEs [35]
implies that ug(z,y) is independent of y, i.e. ug(z,y) = uo(x). This simplifies
equation (2.18) for uq,

2 (s ) = (pos)) (o)
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Define x/ = x?(y) as the solution to the following cell problem
0 0 4 0
=% a2 v = La), 2.21
o (a J(y)ayj> X =g i) (2.21)

where Y/ is Y-periodic. The general solution of equation (2.18) for u; is then
given by

. Ou N
i (,9) = 7 () 5 (2) + i s) (2.22)
Lj
Finally, we note that the equation for uy is given by
9 a-l()i uwy = Asug + Agug — f (2.23)
E ”yayj 2 = AUy 3Ug . .

The solvability condition implies that the right hand side of (2.23) must have
mean zero in y, i.e.

/ (A2u1 + A3U0 — f) dy = 0.
Y

This solvability condition for second order elliptic PDEs with periodic bound-
ary condition [35] requires that the right hand side of equation (2.23) have
mean zero with respect to the fast variable y. This solvability condition gives
rise to the homogenized equation for wu:

0 <a* 0 ) w+ m(ao)u = f (2.24)

Bazi K 85[7]‘

where m(ag) = ‘L Jy ao(y) dy and

V]
.1 ox’
a;; = m (/Y(azg — Ak —Byk)dy> . (2.25)

Justification of formal expansions The above multiscale expansion is
based on a formal asymptotic analysis. However, we can justify its conver-
gence rigorously.

Let z. = u. — (u + euy + €2uy). Applying A° to z., we get

3 —
Afz, = —er.,

where r. = Ayus + Asuy + €Aszus. If f is smooth enough, so is uy. Thus we
have ||r:||c0 < c.
On the other hand, we have

25‘39 = 7(5’[141 +82U2)|99.

Thus, we obtain
||ZE||L00(BQ) S CE.
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It follows from the maximum principle [35] that
|2l Lo () < ce
and therefore we conclude that

llue — ullL=(q) < ce.

Boundary Corrections The above asymptotic expansion does not take
into account the boundary condition of the original elliptic PDEs. If we add
a boundary correction, we can obtain higher order approximations.

Let 6. € H*(2) denote the solution to

Ve -a°Vy0: =0in Q, 6. = uy(z,x/e) on ON.
Then we have
(ue — (u + eur(z,z/e) —€b:)) |oq = 0.
Moskow and Vogelius [52] have shown that
lue — u —eur(z,2/e) + b0 < Coe' ™ Jull2sw, (2.26)
llue —u —cus(z,z/e) + €b: |1 < Cel|u]|2, (2.27)

where we assume u € H*T(Q) with 0 < w < 1, and Q is assumed to be a
bounded, convex curvilinear polygon of class C'°°. This improved estimate will
be used in the convergence analysis of the multiscale finite element method
to be presented in Section 4.

2.2 Homogenization for hyperbolic problems

In this subsection, we will review some homogenization theory for semilin-
ear hyperbolic systems. As we will see below, homogenization for hyperbolic
problems is very different from that for elliptic problems. The phenomena
are also very rich.

Consider the semilinear Carleman equations [14]:

Ou. + % =02 —u?
ot ox £ ¢
Ov. B ov. R
ot ox € e’

with oscillatory initial data, u.(z,0) = u§(z), ve(z,0) = v§(z).

Assume that the initial conditions are positive and bounded. Then it can
be shown that there exists a unique bounded solution for all times. Thus we
can extract a subsequence of u. and v. such that u. — v and v. — v as
e —0.



8 Thomas Y. Hou

Denote u,, as the weak limit of u", and v, as the weak limit of v". By
taking the weak limit of both sides of the equations, we get

8u1 + 8“1
—— + —— = V2 — uy,
ot ox ’ 2
81)1 81)1
— — = = Uz — Vs.
ot ox 2T
By multiplying the Carleman equations by u. and v. respectively, we get
ou?  ou? 9 3
= 2u.v. — 2u_,
ot ox °e ¢’
o?  Ou? 9 3
+ —= = 2u.us — 2v;.
ot ox o ¢

Thus the weak limit of u? depends on the weak limit of u? and the weak limit
of u.v?.

Denote by w; as the weak limit of w.. To obtain a closure, we would like
to express u.v? in terms of the product w; and E This is not possible in
general. In this particular case, we can use the Div-Curl Lemma [53,54,58] to
obtain a closure.

The Div-Curl Lemma. Let Q be an open set of RN and u. and v. be two
sequences such that

u. —~u, in (L2(Q))N weakly,
Ve =V, in (L2(Q))N weakly.
Further, we assume that

divu, s bounded in L*(Q)( or compact in H *(Q)),
curlv. is bounded in (LZ(Q))N (or compact in (Hil(ﬂ))N ).

Let (-,-) denote the inner product in RN | i.e.

N
(u, V) = Z U;V;.
i=1

Then we have
(ue - ve) = (u-v) weakly. (2.28)

Remark 2.1. We remark that the Div-Curl Lemma is the simplest form of
the more general Compensated Compactness Theory developed by Tartar
[58] and Murat [53,54].

Applying the Div-Curl Lemma to (u.,u.) and (v2,v?2) in the space-time

domain, one can show that u.v2 = u; v2. Similarly, one can show that u2v. =
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u2 T. Using this fact, Tartar [59] obtained the following infinite hyperbolic
system for u,, and v, [59]:

Oty Ouy,

—— + —— = MUy 102 — MUmi1
ot ' oz " m
Ovm  Ovp,

—_— = MUm—_1Ug — TV 1-
ot ox " m

Note that the weak limit of u™, u,,, depends on the weak limit of u™*!,

Up41. Similarly, v, depends on v, 1. Thus one cannot obtain a closed sys-
tem for the weak limits u. and v, by a finite system. This is a generic phe-
nomenon for nonlinear partial differential equations with microstructure. It
is often referred to as the closure problem. On the other hand, for the Carle-
man equations, Tartar showed that the infinite system is hyperbolic and the
system is well-posed.

The situation is very different for a 3 x 3 system of Broadwell type [13]:

Oou., Ou. 9
= — . 2.2
5 + o W — UV, (2.29)
ov.  Ov. 9
_ 7 - — . 2.
5 5y — We T UeVss (2.30)
ow, ow, 9
= — . 2.31
5 + 5y Uele e (2.31)

with oscillatory initial data, u.(z,0) = u§(x), v.(z,0) = v§(z) and w.(z,0) =
w§(x). When a = 0, the above system reduces to the original Broadwell
model. We will refer to the above system as the generalized Broadwell model.

Note that in the generalized Broadwell model, the right hand side of the
w-equation depends on the product of uw. If we try to obtain an evolution
equation for w?, it will depend on the triple product u.v-w.. The Div-Curl
Lemma cannot be used here to characterize the weak limit of this triple
product in terms of the weak limits of u., v. and w:.

Assume the initial oscillations are periodic, i.e.

ug = wo(z, z/e), vy = vo(x,z/e), wy = wo(z,x/€).

where ug(z,y), vo(x,y), wo(z,y) are 1-periodic in y.
There are two cases to consider.

Case 1. & = m/n is a rational number. Let {U(z,y,t), V(x,y,t), W(z,y,t)}
be the homogenized solution which satisfies

U+ U, = [y W2dy — U [, V dy,
Vi~ Vo= [, W2dy — U [, Vdy,

. 1 /"
Wt + aWz = 7W2 + E/ U(T,y + (a - l)Z,t)V(’E,y + (a + I)Z/t) dz:
0
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where Uli—o = uo(z,y), Vi|i=o = vo(z,y) and W|i=g = wp(z,y). Then we
have
lue(z,t) = Uz, ==, t)|| = < Ce,
[ve (2, 1) = V (2, ZTHJ)HLOO < Ce,
|w: (z,t) = W (z, 228, 1) 1= < Ce.

Case 2. « is an irrational number. Let {U(z,y,t),V(z,y,t), W(z,y,t)} be
the homogenized solution which satisfies

Ui+ U, = [y W2dy — U [V dy,
Vi— Vo= [y Wdy — U [, V dy,
2 1 1

Wit aW, = =W+ [y Udy) (Jfy Vdy).

where Uli—o = uo(z,y), Vl]i—o = vo(z,y) and Wl;—¢ = wo(z,y). Then we
have

lue(z,t) = Uz, 25, t)|| L < Ce,

lve (@, 1) = V(z, 22, 1)L~ < C,

[we(z,t) = W (2, 2225, )| < Ce.

We refer the reader to [37] for the proof of the above results.

Note that when « is a rational number, the interaction of u. and v. can
generate a high frequency contribution to w.. This is not the case when
a is an irrational number. The rational a case corresponds to a resonance
interaction.

The derivation and analysis of the above results rely on the following two
Lemmas:

Lemma 2.1. Let f(z),g(z,y) € C'. Assume that g(z,y) is n-periodic in y,
then we have

[ 1watearae= [ 50 (3 [ swnar) a o

Lemma 2.2. Let f(z,y,2) € C'. Assume that f(x,y,z) is 1-periodic in y
and z. If v2/v1 is an irrational number, then we have

/abf(a:,“*%‘zmlz dw—/ (//fxy, dydz) dz + O(e).

The proof uses some basic ergodic theory. It can be seen easily by ex-
panding in Fourier series in the periodic variables [37]. For the sake of com-
pleteness, we present a simple proof of the above homogenization result for
the case of @ = 0 in the next subsection.
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Homogenization of the Broadwell Model In this subsection, we give a
simple proof of the homogenization result in the special case of a = 0. The
homogenized equations can be derived by multiscale asymptotic expansions
[50].

Consider the Broadwell model

Opu + Opu = w? —uv in R x (0,T), (2.32)

v — 8,v =w? —uvin R x (0,7), (2.33)
dyw = uv —w? in R x (0,7T), (2.34)

with oscillatory initial values

u(z,0) = uo(z, Z), v(z,0) =vo(x, Z), w(z,0)=wo(z, %) (2.35)

where ug(z,y),v0(x,y), wo(x,y) are 1-periodic in y. We introduce an extra
variable, y, to describe the fast variable, z/¢. Let the solution of the homog-
enized equation be {U(z,y,t), V(z,y,t), W(z,y,t)} which satisfies

1 1
8tU+5zU+U/ def/ W?dy =0in R x (0,T), (2.36)
Jo Jo

1 1
8tVfan+V/ Udyf/ W?dy =0in R x (0,7), (2.37)
0 Jo

1
atW+W2—/ Uz, y —z,t)V(z,y+2,t)dz=0in R x (0,7, (2.38)
0

with initial values given by
U(w7y0) = uo(a:7y), V(w7y0) = 1)0(37,?})7 W(w7y0) = wo(az,y)(239)

Note that U(z,y,t),V(z,y,t), W(z,y,t) are 1-periodic in y and the system
(2.36)-(2.39) is a set of partial differential equations in (z,t) with y € [0, 1]
as a parameter. The global existence of the systems (2.32)-(2.35) and (2.36)-

(2.39) has been established, see the references cited in [32].

Theorem 2.1. Let (u,v,w) and (U,V,W) be the solutions of the systems
(2.32)-(2.35) and (2.86)-(2.39), respectively. Then we have the following er-
ror estimate

max B(t) < [5(M(T)2 + 2T K (T)M(T)) exp(GM(T)T)} e := C1(T)e,(2.40)

where the error function E(t) is given by

B(t) = max { ‘u(a;,t) — U, z;t,t)‘ + ‘v(az,t) V(z, %“,t)‘

+‘w(az7t) - Wiz, §7t)‘ }
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and the constants M (T) and K(T) are given by

ol Jwl, UL VL W 241
N (VA EN RN L) (2.41)

(\BZU\,\atU|,|6zV\,\8tV|,|6zW\,\8tW\). (2.42)

max
(z,y,t)ERx[0,1]x[0,T]

This homogenization result was first obtained by McLaughlin, Papanico-
laou and Tartar using an L” norm estimate (0 < p < oo) [50]. Since we need
an L* norm estimate in the convergence analysis of our particle method, we
give another proof of this result in L norm. As a first step, we prove the
following lemma.

Lemma 2.3. Let g(z,y) € CY(R x [0,1]) be 1-periodic in y and satisfy the

relation fol g(z,y)dy = 0. Then for any € > 0 and for any constants a and
b, the following estimate holds

b
‘/ g(z, ) dz

where B(() = max(, y)erx0,1]|C(x,y)| for any function ¢ defined on Rx 0, 1].

< B(g)e + |b — a|B(d:9)e, (2.43)

Proof. The estimate (2.43) is a direct consequence of the identity

€T —_ d ¢ S wag S
se.t) =2 [ o pyas— [ Faas

and the estimates

b
‘/ g, 2)ds

which follow from the 1-periodicity of g(z,y) in y and that fol g(z,y)dy = 0.
This completes the proof. O

< B(0x9)e,

0
<Bl@e | [ G2
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Proof (of Theorem 2.1). Subtracting (2.36) from (2.32) and integrating the
resulting equation along the characteristics from 0 to £, we get

u(z,t) — Uz, &=L,1)

g

g

t
= / [w(m7t+s,s)2 — Wiz —1t+s, ’”7”3,5)2] ds
Jo

t

+ [W(a:—t—l—s, ””’t+s,s)2—f1W(a:—t+s,y,s)2dy] ds

€ 0

t
[u(r —t+s,8)v(x —t+s,s)

S— —

—U(a:—t—l—sz*t,s)V(:U—t—l—&%m,s)] ds
t
Ulr —t+s, 220 8) [V — 145, 25120 )

g

S~

—/1V(:U—t—|—s,y,s)dy] ds
=0+ 4+ D4 ' (2.44)
It is clear from the definition of E(t) and M(T) that
0+ s < 201(0) [ o) s
To estimate (I),, we define for fixed (z,t) € R x [0,T],
9y (8,y) = W(z —t+ s, 2L +y,5)°

Since the 1-periodicity of W (z,y,t) in y implies
1 1
/ W($7t+87y75)2dy:/ W(fE*t+S,zTﬂt+y,S)2dy,
Jo 0
we obtain by applying Lemma 2.1 that
t 1
el = | [ o5 = [ gentsv) o] as
0 0
< M(T)%e +2M(T)K(T)Te.
Similarly, we have

(D)a < M(T)*e +2M (1)K (T)Te.

Substituting these estimates into (2.44) we get

u(z,t) — Uz, %,t)‘ < 2M(T) /t E(s)ds + 2M (T)% + 4M (T) K (T)Te.
- (2.45)
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Similarly, we conclude from (2.37)-(2.38) and (2.33)-(2.34) that

v(a, t) — V(w, 22, t)‘ < 2M(T) ./Ot E(s)ds + 2M (T)2% + 4M(T)K(T()2Tié)

‘w(az,t) —W(a, f,t)‘ < 2M(T) /Ot E(s)ds + M(T)% + 2M(T)K(T)T(g2.47)

Now the desired estimate (2.40) follows from summing (2.45)-(2.47) and using
the Gronwall inequality. O

Remark 2.2. The homogenization theory tells us that the initial oscillatory
solutions propagate along their characteristics. The nonlinear interaction can
generate only low frequency contributions to the u and v components. On
the other hand, the nonlinear interaction of u, v on w can generate both low
and high frequency contribution to w. That is, even if w has no oscillatory
component initially, the dynamical interaction of u, v and w can generate a
high frequency contribution to w at later time. This is not the case for the u
and v components. Due to this resonant interaction of u, v and w, the weak
limit of u.v.w. is not equal to the product of the weak limits of u., v., w,.
This explains why the Compensated Compactness result does not apply to
this 3 x 3 system [59].

Although it is difficult to characterize the weak limit of the triple product,
usv.w, for arbitrary oscillatory initial data, it is possible to say something
about the weak limit of the triple product for oscillatory initial data that
have periodic structure, such as the ones studies here. Depending on a being
rational or irrational, the limiting behavior is very different. In fact, one can
show that u.v.w,; = u.v.w. when « is equal to an irrational number. This is
not true in general when « is a rational number.

2.3 Convection of microstructure

It is most interesting to see if one can apply homogenization technique to
obtain an averaged equation for the large scale quantity for incompressible
Euler or Navier-Stokes equations. In 1985, McLaughlin, Papanicolaou and
Pironneau [51] attempted to obtain a homogenized equation for the 3-D
incompressible Euler equations with highly oscillatory velocity field. More
specifically, they considered the following initial value problem:

ug + (u- V)u = —Vp,
with V - u = 0 and highly oscillatory initial data

u(z,0) =Ul(z) + W(x,z/e).
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They then constructed multiscale expansions for both the velocity field and
the pressure. In doing so, they made an important assumption that the mi-
crostructure is convected by the mean flow. Under this assumption, they
constructed a multiscale expansion for the velocity field as follows:

0(x,t)

’
g

L t) 4+ eun (2D g 1) + O(2).

g

uf(x,t) = u(z,t) + w(

The pressure field p® is expanded similarly. From this ansatz, one can show
that @ is convected by the mean velocity:

O +u-VO=0, 0(z,0) =x.

It is a very challenging problems to develop a systematic approach to
study the large scale solution in three dimensional Euler and Navier-Stokes
equations. The work of McLaughlin, Papanicolaou and Pironneau provided
some insightful understanding into how small scales interact with large scale
and how to deal with the closure problem. However, the problem is still not
completely resolved since the cell problem obtained this way does not have a
unique solution. Additional constraints need to be enforced in order to derive
a large scale averaged equation. With additional assumptions, they managed
to derive a variant of the k — € model in turbulence modeling.

Remark 2.3. One possible way to improve the work of [51] is take into ac-
count the oscillation in the Lagrangian characteristics, 6.. The oscillatory
part of 8. in general could have order one contribution to the mean velocity
of the incompressible Euler equation. With Dr. Danping Yang [41], we have
studied convection of microstructure of the 2-D and 3-D incompressible Eu-
ler equations using a new approach. We do not assume that the oscillation is
propagated by the mean flow. In fact, we found that it is crucial to include
the effect of oscillations in the characteristics on the mean flow. Using this
new approach, we can derive a well-posed cell problem which can be used to
obtain an effective large scale average equation.

More can be said for a passive scalar convection equation.
1
v+ =V - (u(z/e)v) = alv,
€

with v(z,0) = vo(z). Here u(y) is a known incompressible periodic (or station-
ary random) velocity field with zero mean. Assume that the initial condition
is smooth.

Expand the solution v® in powers of €

v° = wv(t,x) +evy (t,z,2/e) + 2va(t, z,z/e) + - --
The coefficients of e ! lead to

alAyvy —u-Vyor —u- Vo =0.
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Let ex, £ = 1,2,3 be the unit vectors in the coordinate directions and let
x*(y) satisfy the cell problem:

aAyxk fu-Vka —u-ep =0.

Then we have

3
;)
1(t,z,y) = ’“ .
DIl ark
k=1
The coefficients of £° give
aAyvy —u-Vyvs =u- Vv —2aV, - Vyur —algv + vy

The solvability condition for vy requires that the right hand side has zero
mean with respect to y. This gives rise to the equation for homogenized
solution v

vy = alAzv —u- V.

Using the cell problem, McLaughlin, Papanicolaou, and Pironneau obtained
[51]

> (o am, 5
v = « ole
= 9 7 90

where ar,; = —u;x/.

Nonlocal memory effect of homogenization It is interesting to note
that for certain degenerate problem, the homogenized equation may have a
nonlocal memory effect.
Consider the simple 2-D linear convection equation:
Ouc(z,y,t) +a6(y)8u5(a:,y,t) _0,
ot ox

with initial condition wu.(z,y,0) = ug(x,y).
We assume that a. is bounded and ug has compact support. While it is
easy to write down the solution explicitly,

us (2, y,t) = uo(r — ac(y)t,y),

it is not an easy task to derive the homogenized equation for the weak limit
of u..

Using Laplace Transform and measure theory, Luc Tartar [60] showed
that the weak limit u of u. satisfies

0
Eu(m,y,t)-l-Al( )a—u x,y,t / /8 su(z — At — 5),y, 8)duy, (N) ds,
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with u(z,y,0) = uo(x,y), where A, (y) is the weak limit of a.(y), and p, is a
probability measure of y and has support in [min(a. ), max(ac)].

As we can see, the degenerate convection induces a nonlocal history de-
pendent diffusion term in the propagating direction (z). The homogenized
equation is not amenable to computation since the measure p, cannot be
expressed explicitly in terms of a..

3 Numerical Homogenization Based on Sampling
Techniques

Homogenization theory provides a critical guideline for us to design effective
numerical methods to compute multiscale problems. Whenever homogenized
equations are applicable they are very useful for computational purposes.
There are, however, many situations for which we do not have well-posed ef-
fective equations or for which the solution contains different frequencies such
that effective equations are not practical. In these cases we would like to ap-
proximate the original equations directly. In this part of my lectures, we will
investigate the possibility of approximating multiscale problems using parti-
cle methods together with sampling technique. The classes of equations we
consider here include semilinear hyperbolic systems and the incompressible
Euler equation with oscillatory solutions.

When we talk about convergence of an approximation to an oscillatory
solution, we need to introduce a new definition. The traditional convergence
concept is too weak in practice and does not discriminate between solutions
which are highly oscillatory and those which are smooth. We need the error
to be small essentially independent of the wavelength in the oscillation when
the computational grid size is small. On the other hand we cannot expect the
approximation to be well behaved pointwise. It is enough if the continuous
solution and its discrete approximation have similar local or moving averages.

Definition 3.1 (Engquist [30]). Let v™ be the numerical approximation
to u at time t,(t, = nAt), € represents the wave length of oscillation in
the solution. The approximation »™ converges to u as At — 0, essentially
independent of ¢, if for any 6 > 0 and T' > 0 there exists a set s(e, Aty) €

(0, Atg) with measure (s(g, Atg)) > (1 — 0) Aty such that
[lu(-,t,) —v"|| <4, 0<t, <T
is valid for all At € s(e, Aty) and where Aty is independent of €.

The convergence concept of “essentially independent of €” is strong enough
to mimic the practical case where the high frequency oscillations are not well
resolved on the grid. A small set of values of At has to be removed in order to
avoid resonance between At and €. Compare the almost always convergence
for the Monte Carlo methods [55].
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It is natural to compare our problem with the numerical approximation
of discontinuous solutions of nonlinear conservation laws. Shock capturing
methods do not produce the correct shock profiles but the overall solution
may still be good. For this the scheme must satisfy certain conditions such
as conservation form. We are here interested in analogous conditions on al-
gorithms for oscillatory solutions. These conditions should ideally guarantee
that the numerical approximation in some sense is close to the solution of
the corresponding effective equation when the wave length of the oscillation
tends to zero.

There are three central sources of problems for discrete approximations
of highly oscillatory solutions.

(i) The first one is the sampling of the computational mesh points (z; =
JjAz,j =0,1,...). There is the risk of resonance between the mesh points
and the oscillation. For example, if Az equals the wave length of the
periodic oscillation, the discrete initial data may only get values from
the peaks of a curve like the upper envelope of the oscillatory solution.
We can never expect convergence in that case. Thus Az cannot be
completely independent of the wave length.

(ii) Another problem comes from the approximation of advection. The gr-
oup velocity for the differential equation and the corresponding dis-
cretization are often very different [33]. This means that an oscillatory
pulse which is not well resolved is not transported correctly even in av-
erage by the approximation. Furthermore, dissipative schemes do not
advect oscillations correctly. The oscillations are damped out very fast
in time.

(iii) Finally, the nonlinear interaction of different high frequency components
in a solution must be modeled correctly. High frequency interactions
may produce lower frequencies that influence the averaged solution. We
can show that this nonlinear interaction is well approximated by certain
particle methods applied to a class of semilinear differential equations.
The problem is open for the approximation of more general nonlinear
equations.

In [31,32], we studied a particle method approximation to the nonlinear dis-
crete Boltzmann equations in kinetic theory of discrete velocity with mul-
tiscale initial data. In such equations, high frequency components can be
transformed into lower frequencies through nonlinear interactions, thus af-
fecting the average of solutions. We assume that the initial data are of the
form a(z,z/¢) with a(z,y) 1-periodic in each component of y. As we see from
the homogenization theory in the previous section, the behavior of oscillatory
solutions for the generalized Broadwell model is very sensitive to the veloc-
ity coefficients. It depends on whether a certain ratio among the velocity
components is a rational number or an irrational number.

It is interesting to note that the structure of oscillatory solutions for the
generalized Broadwell model is quite stable when we perturb the velocity
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coefficient a around irrational numbers. In this case, the resonance effect of
u and v on w vanishes in the limit of ¢ — 0. However, the behavior of oscil-
latory solutions for the generalized Broadwell model becomes singular when
perturbing around integer velocity coefficients. There is a strong interaction
between the high frequency components of u and v, and the interaction in
the uv term would create an oscillation of order O(1) on the w component. In
[59], Tartar showed that for the Carleman model the weak limit of all powers
of the initial data will uniquely determine the weak limit of the oscillatory
solutions at later times, using the Compensated Compactness Theorem. We
found that this is no longer true for the generalized Broadwell model with
integer-values velocity coeflicients [37].

In [31,32], we showed that this subtle behavior for the generalized Broad-
well model with oscillatory initial data can be captured correctly by a particle
method even on a coarse grid. The particle method converges to the effective
solution essentially independent of €. For the Broadwell model, the hyper-
bolic part is solved exactly by the particle method. No averaging is therefore
needed in the convergence result. We also analyze a numerical approximation
of the Carleman equations with variable coefficients. The scheme is designed
such that particle interaction can be accounted for without introducing in-
terpolation. There are errors in the particle method approximation of the
linear part of the system. As a result, the convergence can only be proved for
moving averages. The convergence proofs for the Carleman and the Broad-
well equations have one feature in common. The local truncation errors in
both cases are of order O(At). In order to show convergence, we need to take
into account cancellation of the local errors at different time levels. This is
very different from the conventional convergence analysis for finite difference
methods. This is also the place where numerical sampling becomes crucial in
order to obtain error cancellation at different time levels.

In the next two subsections, we present a careful study of the Broadwell
model with highly oscillatory initial data in order to demonstrate the basic
idea of the numerical homogenization based on sampling techniques.

3.1 Convergence of the Particle Method

Now we consider how to capture this oscillatory solution on a coarse grid using
a particle method. Since the discrete velocity coefficients are integers for the
Broadwell model, we can express a particle method in the form of a special
finite difference method by choosing Az = At. Denote by ul', v}, w} the
approximations of u(z;, t"), v(z;, t") and w(x;, t") respectively with z; = iAz
and t" = nAt. Our particle scheme is given by

up = up + At(w? —uv) T (3.1
ol = q;z’.?ll + At(w® — uv);:ll,

n __ n—1 2 n—1
wi =w]  — At(w® —uv)] T,
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with the initial conditions given by

ud = u(z;,0), v =uv(x;,0), wd=w(z;,0). (3.4)

To study the convergence of the particle scheme (3.1)-(3.4) we need the fol-
lowing lemma, which is a discrete analogue of Lemma 2.1.

Lemma 3.1. Let g(z,y) € C3([0,T] x [0,1]) be 1-periodic in y and satisfy
the relation fol g(z,y)dy = 0. Let x, = kh andr = h/e. If h € S(g, ho) where

kh . T . T
S(E,ho)={0<h§ho-?€(1*|k‘—3/2ﬂ+‘k|—3/2),
) khq
fom:1,2,---,[T} +1,0£k€ Z,0<e <1},
then we have

n—1

‘Zg(mk,%)h‘§w7 vn:m,...,[f},

where Cy is a constant independent of h,e,T,T and g, and

L(g) = 29(x,y)|,10.059(x,y)] ).
()= max  (109ry)] 10:550(r. 1))

Moreover, it is obvious that

1S(e. ho)| > h0(1 - Tiiﬁﬂ) > h(1 - 37).
k=1

Proof. Since g is 1-periodic in y with mean zero, it can be expanded in a
Fourier series

1
5) = 3 an(@)e?™ ™, where an(e) = [ gla,ple > dy
m#0 0

Simple integration by parts yields that

1 1

lam(z)| < L(g), lap(z)] < @nm))?

~ (27|m])?

L(g).

Thus we have

n—1 n—1
TR p—
k=0

k=0 m=#0

n—1
_ ‘ Z Zam(mk)emrimkh/sh

m#0 k=0
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Summation by parts yields

n—1 n—1

‘ Z am(xk)e%rikh/s < |am($n71) Z e27rikh/s

k=0 k=0

+‘ :;; (ile%imjh/s) (am () — A (Tra1))

2(1+T)L(yg)
= (2n|m|)?|1 — e2rimh/=|’

But for h € S(e, hg) we have

o 2T
_ o2mimh/e| _ :
I1—e | = 2|sin(mrmh/e)| > e
Hence, for h € S(e, hy),

n—1

Tg 20+ T)L(g)h 1 Coh(1+T)L(g)
E Tp, — h‘ < E =: .
k=0 ‘g(rlﬁ € < (2m)tr m#£0 im|[3/2 T

This completes the proof. 0O

Now we are ready to study the approximation property of the particle
scheme (3.1)-(3.4). First denote by

E" = max (\u(mi,t”) —upl, [o(zi,t") —of|, Jw(z;, ") — w?\). (3.5)
K3

Integrating (2.29) from 0 to ¢" along its characteristics, we get
o
u(z;, t") = u(z; — t",0) + / (w? — uv)(z; — t" + s, 5) ds. (3.6)
0

;From (3.1) we know that

n—1

ul! =ud , + Z(w2 —uv)? AL (3.7)
k=0

Subtracting (3.7) from (3.6) we obtain that

u(mi, t") — ul
n n—1
= / (w? — uv)(z; — t" + 5,5) ds — Z(w2 —uv)(z; — t* tF) At
0 k=0

n—1
+ Z At[(w2 — uv)(z; — t*, %) — (w® — 'U/U)i'cfk}
k=0

.= (II) + (I10). (3.8)
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Let M (T) be defined as in (2.41) and N(T') be given by
N(T) = max{|uf\, k|, [wk] ci € 2,0 <k < [T/At]}. (3.9)

It can be shown that N(T) is bounded for finite time independent of €, see
[32]. Then it is clear that

(ITT) < (M(T) + N(T)) ni: AtE*. (3.10)
k=0

2

It remains to estimate (II). For convenience, let # = w® — uv and

O(x,t) =W(z, £

e’

t)? — Uz, &=L )V (z, 2L ).

€ e

Then we have

o,
(1) = / [0($i—t"+s,s) ds—@(wi—t”—l—s,s)] ds
0
n n—1
+ [ / O(x; —t" +s,8)ds — Z AtO(z; — tk,tk)]
70 k=0

+ nil [@(wi —t* ) — 0(x; — tk,tk)} At
k=0
=11 + - + (I)5. (3.11)
By Theorem 2.1 we get
[(IT); + (I1)3] < 2T M (T)C1(T)e. (3.12)
To proceed further, let, for fixed (z;,t"),
97 (s,y) = W(x; —t" + s, % +y,8)>%.

It is clear that g7 is 1-periodic in y. Now by Lemmas 2.1-2.2 we have
n n—1
/ W(z; —t" +s,5)*ds — Z W (z; — t*, t*)2 At
0 k=0
t" 1
[ oo [ areaar]as
0 Jo
t" 1 n—1 1
+/ / g?(s,y)dde*ZAt/ g1 (1", y) dy
Jo Jo —o 0

=S arfgr ) = [t ] < o@)e + an, @13
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where we have used standard methods to estimate the second term, since
the derivative of g with respect to s is independent of . Here and in the
remainder of this section, we will always denote by C(T') the various constants
which are independent of € and At. Now similar to the reasoning leading to
(3.13) we can obtain

(I1)3] < C(T) (e + At). (3.14)

;From (3.8)-(3.12) and (3.14) we finally get
n—1
u(w;, t") —uf'| < C(T)(e + At) + (M(T) + N(T)) > _ AtE*. (3.15)
k=0
Similarly, we have

|o(z;,t") — '] < C(T)(e + At) + (M(T) + N(T)) ni AtE*, (3.16)
k=0

Jw (i, t") — wl'| < C(T)(e + At) + (M(T) + N(T)) ni AtEF. (3.17)
k=0

To summarize, we have the following theorem by summing (3.15)-(3.17) and
applying the Gronwall inequality.

Theorem 3.1. Let (u,v,w) be the solution of (2.82)-(2.35) and (ul, vl , wl)

be the solution of the particle scheme (3.1)-(3.4). Assume that At € S(e, Atg)
where S(g, Aty) is defined in Lemma 3.1. Then the following estimate holds

max E" < C(T)(e + At)
1<n<([T/ At

3

where C(T) is independent of € and At, and E™ is defined as in (3.5).

Remark 3.1. It is important that we perform the error analysis globally in
time in order to account for cancellation of local truncation errors at different
time steps. As we can see from the analysis, the local truncation error is of
order At in one time step. If we do not take into account the error cancellation
in time, we would obtain an error bound of order O(1) which is an over-
estimate. The error cancellation is closely related to the sampling we choose.
This is the place where we can see the difference between a good sampling
and a resonant sampling.

Remark 3.2. As we can see from the error analysis, error cancellation along
Lagrangian characteristics is essential in obtaining convergence independent
of the oscillation. This idea can be generalized to hyperbolic systems with
variable coefficient velocity fields. In the special case of the Carleman model
with variable coefficients, we have analyzed the convergence of a particle
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method in [31]. However, the particle method analyzed in [31] does not gen-
eralize to multi-dimensions or 3 x 3 systems. Together with a Ph.D. student,
Razvan Fetecau, we have designed a modified Lagrangian particle method.
In this method, each component of the solution is updated along its own
characteristic. So there is no fixed grid. When we update one component of
the solution, say u, we need values of the other components (say v and w)
along the u characteristic. We obtain these values by using some high or-
der interpolation scheme (such as Fourier interpolation or cubic spline). This
modified Lagrangian particle method in principle works for any number of
families of characteristics and for multi-dimensions. ;From our preliminary
numerical experiments, it produces excellent results for both the Broadwell
and Carleman models, even in the oscillatory coefficients case.

Below we describe briefly the results we obtain for the variable coefficient
Carleman equations

ug + a(z, t)u, = v? —u? (3.18)

v — bz, t)v, = u® —v?, (3.19)

with initial data u(z,0) = ue(x,x/€), v(2,0) = vo(z,z /). In Figure 3.1, we
illustrate the particle trajectories for the u and v components.

Ti—1 Z; Ti+1
Fig. 3.1. Schematic particle trajectories for different components.

We choose the oscillatory coefficients as follows:

a(z,t) =1+ 0.5sin () and b(z,t) = 1+ 0.2cos (£).

£

The initial conditions for w and v are chosen as

_ J05sin*(n(z —3)/2)(1 +sin(2n(z — 3)/e)), |z —4|<1
i {0’ |z — 4] > 1
(3.20)
vo (. 7/e) = {0.5 sin (m(z — 4)/2)(1 + sin(2n(z — 4)/e)), |z — 5| <1
o v |z —5]>1

(3.21)
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In our calculations, we choose Az = 0.01, At = A—z, and ¢ = Az/2 ~
0.014. We plot the u-characteristic in Figure 3.2. The coarse grid solution for
the u-component is plotted in Figure 3.3a. We can see that it captures very
well the high frequency information. In Figure 3.3b, we put the coarse grid
solution on top of the corresponding well-resolved solution. The agreement
is very good. We also check the accuracy of the moving average [31] of the
solution and the average of its second order moments. The results are plotted
in Figure 3.4. Again, we observe excellent agreement between the coarse grid
calculations and the well-resolved calculations.

We have also performed the same calculations for the 3 x 3 Broadwell
model with rational or irrational coefficient a. The subtle homogenization
behavior is captured correctly for both rational a and for irrational a. We
do not present the results here.

0.3r

0.15[

0.1

3.6 3.65 3.7 3.75 3.8 3.85 3.9

Fig. 3.2. A typical u-characteristic trajectory.

3.2 Vortex methods for incompressible flows

The generalization of the particle method to the incompressible flows is
the vortex method. In [26], we have analyzed the convergence of the vor-
tex method for 2-D incompressible Euler equations with oscillatory vorticity
field. Our analysis relies on the observation that there are tremendous can-
cellations among the local errors at different space locations in the velocity
approximation. Thus the local errors do not add up to O(1) as predicted by
the classical error estimate in the case where the grid size is large compared
to the oscillatory wavelength.

Consider the 2-D incompressible Euler equation in vorticity form:

wi+ (u-Vw=0
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Fig. 3.3. (a): Coarse grid solution u at time ¢ = 1.28. (b): Putting the coarse grid
solution u on top of a well-resolved computation (solid line).
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Fig. 3.4. (a): The averaged solution % (dashdot line); the solid line represents a very
well resolved computation. (b): The averaged second order moment u? (dashdot
line); the solid line represents a very well resolved computation.

with oscillatory initial vorticity w(z,0) = wg(z,z/€).
Define the particle trajectory, denoted as X (¢, ),

dX(t,«a)

pra u(X(t,),t)

, X(0,0) =a.
Vorticity is conserved along characteristics:

w(X(t, ), t) = wo(a).

On the other hand, velocity can be expressed in terms of vorticity by the
Biot-Savart law:

u(X(t,a),t) = / K(X(t,a) — X(t,a))we(a)d o

with K given by K (z) = (—x2,21)/(27|z|?).
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The Biot-Savart kernel K has a singularity at the origin. To regularize the
kernel, Chorin introduced the vortex blob method (see, e.g. [17], replacing K
by Ks = K * (s,

46:5% (%)7 0 =h7, witho < 1.

( is typically chosen as a variant of Gaussian.
The vortex blob method is given by

dxh (1)
dt

=D Ks(X[(t) = X} (t))w;h?,

where X!(0) = a;, and w; = wo (e, a;/€).

Together with Weinan E, we have proved that the vortex method con-
verges essentially independent of € [26].

The case studied in [26] deals with bounded oscillatory vorticity. This
assumption leads to strong convergence of the velocity field. It is more phys-
ical to consider homogenization for highly oscillatory velocity field. Would
the vortex blob method still capture the correct large scale solution with a
relatively coarse grid (or small number of particles)? Together with a Ph.D.
student, Razvan Fetecau, we have recently derived a modified vortex method
for the coarse (or macro) particle system by combining a local subgrid cor-
rection with a model reduction technique.

4 Numerical homogenization based on Multiscale
FEMs

It is natural to consider the possibility of generalizing the sampling tech-
nique to second order elliptic equations with highly oscillatory coefficients.
In [3], we showed that finite difference approximations converge essentially
independent of the small scale € for one-dimensional elliptic problems. In
several space dimensions we found that only in the case of rapidly oscillating
periodic coefficients do the above results generalize, in a weaker form. In the
case of almost periodic or random coefficients in several space dimensions we
showed, both theoretically and with a simple counterexample, that numerical
homogenization by sampling does not work efficiently. New ideas seem to be
needed.

In order to overcome the difficulty we mentioned above for the sam-
pling technique, we have introduced a multiscale finite element method (Ms-
FEM) for solving partial differential equations with multiscale solutions, see
[38,40,39,28,16,61,1]. The central goal of this approach is to obtain the large
scale solutions accurately and efficiently without resolving the small scale
details. The main idea is to construct finite element base functions which
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capture the small scale information within each element. The small scale in-
formation is then brought to the large scales through the coupling of the
global stiffness matrix. Thus, the effect of small scales on the large scales is
correctly captured. In our method, the base functions are constructed from
the leading order homogeneous elliptic equation in each element. As a con-
sequence, the base functions are adapted to the local microstructure of the
differential operator. In the case of two-scale periodic structures, we have
proved that the multiscale method indeed converges to the correct solution
independent of the small scale in the homogenization limit [40].

In practical computations, a large amount of overhead time comes from
constructing the base functions. In general, these multiscale base functions are
constructed numerically, except for certain special cases. Since the base func-
tions are independent of each other, they can be constructed independently
and can be done perfectly in parallel. This greatly reduces the overhead time
in constructing these bases. In many applications, it is important to obtain a
scale-up equation from the fine grid equation. Our multiscale finite element
method can be used for a similar purpose [61]. The advantage of deriving
a scale-up equation is that one can perform many useful tests on the scale-
up (coarse grid) model with different boundary conditions or source terms.
This would be very expensive if we have to perform all these tests on a fine
grid. For time dependent problems, the scaled-up equation also allows for
larger time steps. This results in additional computational saving. Another
advantage of the method is its ability to scale down the size of a large scale
computation. This offers a big saving in computer memory.

It should be mentioned that many numerical methods have been devel-
oped with goals similar to ours. These include wavelet based numerical ho-
mogenization methods [10,21,19,45], methods based on the homogenization
theory (cf. [9,25,18,34]), variational multiscale methods [42,12,43], matrix-
dependent multigrid based homogenization [45,19], generalized p-FEM in ho-
mogenization [47,48], and some upscaling methods based on simple physical
and/or mathematical motivations (cf. [23,49]). The methods based on the
homogenization theory have been successfully applied to determine the effec-
tive conductivity and permeability of certain composite materials and porous
media. However, their range of applications is usually limited by restrictive
assumptions on the media, such as scale separation and periodicity [7,44].
They are also expensive to use for solving problems with many separate scales
since the cost of computation grows exponentially with the number of scales.
But for the multiscale method, the number of scales does not increase the
overall computational cost exponentially. The upscaling methods are more
general and have been applied to problems with random coefficients with
partial success (cf. [23,49]). But the design principle is strongly motivated
by the homogenization theory for periodic structures. Their application to
nonperiodic structures is not always guaranteed to work.
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We remark that the idea of using base functions governed by the dif-
ferential equations has been applied to convection-diffusion equation with
boundary layers (see, e.g., [6] and references therein). With a motivation dif-
ferent from ours, Babuska et al. applied a similar idea to 1-D problems [5]
and to a special class of 2-D problems with the coefficient varying locally in
one direction [4]. However, most of these methods are based on the special
property of the harmonic average in one-dimensional elliptic problems. As
indicated by our convergence analysis, there is a fundamental difference be-
tween one-dimensional problems and genuinely multi-dimensional problems.
Special complications such as the resonance between the mesh scale and the
physical scale never occur in the corresponding 1-D problems.

4.1 Multiscale Finite Element Methods for Elliptic PDEs.

In this section we consider the multiscale finite element method applied to
the following problem

Lou:=-V-(a(2)Vu)=f inQ, u=0 onT =099, (4.1)

where ) is a convex polygon in R?. ¢ is assumed to be a small parameter,
and a(z) = (a;j(x/e)) is symmetric and satisfies a|¢|? < a;;&:& < BI€]?, for
all £ € R? and with 0 < a < 3. Furthermore, a;;(y) are smooth periodic
function in y in a unit cube Y. We will always assume that f € L?(Q2). In
fact, the smoothness assumption on a;; can be relaxed. In [27], Efendiev has
proved convergence of the multiscale finite element method in the case where
ai; is only piecewise continuous. Efendiev has also obtained convergence of
MSFEM in the case where a;; is random [27].
Let ug be the solution of the homogenized equation

Loug := -V - (a*Vug) =f inQ, wuy=0 onT, (4.2)
where I' = 00 and
L1 X’
a;; = m/yaik(y)(ékj - B—yk)dy’

and x’(y) is the periodic solution of the cell problem
8 ‘ .
—Vy - (ay)Vyx') = 5 —aij(y) Y, / X' (y) dy = 0.
Yi Y
It is clear that ug € H2(f) since Q is a convex polygon. Denote by u; (z,y) =
_Xj (y) 3150(@

Tj

and let 6. be the solution of the problem
L. =0 inQ, 6.(x)=wu(z,%) onT. (4.3)

Our analysis of the multiscale finite element method relies on the following
homogenization result obtained by Moskow and Vogelius [52].
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Lemma 4.1. Let ug € H2(Q) be the solution of (4.2), 0- € H*(QQ) be the
solution to (4.8) and ui(z) = —x?(x/€)Oug(x)/dx;. Then there exists a con-
stant C independent of ug,e and Q such that

lu—uo —e(ur = 0c) .o < Ce(luo 2.0 + || fllo.0)-

Now we are going to introduce the multiscale finite element methods. Let
Th be aregular partition of € into triangles. Let {z; }'j]:1 be the interior nodes
of the mesh 7; and {1/)j}]J:1 be the nodal basis of the standard linear finite
element space W;, C HJ(Q). Denote by S; = supp(¢);) and define ¢’ with
support in S; as follows:

L.¢"=0 inK, ¢ =1; ondK VK €T, KCS,. (4.4)

It is obvious that ¢ € H(S;) C Hg (). Finally, let V;, C Hg(2) be the finite
element space spanned by {¢ ;.]:1.

With above notation we can introduce the following discrete problem: find
up € Vj, such that

(a(£)Vun, Von) = (f,0n) ¥ vn € Vi, (4.5)

where and hereafter we denote by (-,-) the L? inner product in L*().

As we will see later, the choice of boundary conditions in defining the
multiscale bases will play a crucial role in approximating the multiscale so-
lution. Intuitively, the boundary condition for the multiscale base function
should reflect the multiscale oscillation of the solution u across the boundary
of the coarse grid element. By choosing a linear boundary condition for the
base function, we will create a mismatch between the exact solution u and
the finite element approximation across the element boundary. In the next
section, we will discuss this issue further and introduce an over-sampling
technique to alleviate this difficulty. The over-sampling technique plays an
important role when we need to reconstruct the local fine grid velocity field
from a coarse grid pressure computation for two-phase flows. This technique
enables us to remove the artificial numerical boundary layer across the coarse
grid boundary element.

We remark that the multiscale finite element method with linear boundary
conditions for the multiscale base functions is similar in spirit to the residual-
free bubbles finite element method [11] and the variational multiscale method
[42,12]. In a recent paper [57], Dr. G. Sangalli derives a multiscale method
based on the residual-free bubbles formulation in [11] and compares it with
the multiscale finite element method described here. There are many striking
similarities between the two approaches. In Section 6, we will discuss the
variational multiscale method in some more detail and compare it with the
multiscale finite element method.

To gain some insight into the multiscale finite element method, we next
perform an error analysis for the multiscale finite element method in the
simplest case, i.e. we use linear boundary conditions for the multiscale base
functions.
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4.2 Error Estimates (h < €)
The starting point is the well-known Cea’s lemma.

Lemma 4.2. Let u be the solution of (4.1) and up be the solution of (4.5).
Then we have
lu—unlho<C inf |lu—wvslhe
vh EVh

Let I, : C(Q) — Wy, C H(Q) be the usual Lagrange interpolation

operator:
J

pu(z) = ula;)p;(z) VueC(Q)

j=1
and I : C(2) — Vj, be the corresponding interpolation operator defined
through the multiscale base function ¢

J
Ihu(z) = Zu(mj)w (z) YueCQ).

=1
;From the definition of the basis function ¢¢ in (4.4) we have
L.(Ihu)=0 in K, Iyu=TIu ondK, (4.6)
for any K € Tp.

Lemma 4.3. Let u € H?(Q2) be the solution of (4.1). Then there exists a
constant C' independent of h,e such that

lu—Thulloo + hllu— Tl o < Ch*(|u

2.0+ || flloQ) (4.7)

Proof. At first it is known from the standard finite element interpolation
theory that

lu—pulloq +hllu — Myullie < CR(lulzg + 1 fllog).  (4.8)

On the other hand, since IIu—Ipu = 0 on K, the standard scaling argument
yields

|| Hpu — Ihu ||0,K < Ch|Hhu — Ihu\LK VKeT,. (49)

To estimate |IIpu — Ipul x we multiply the equation in (4.6) by Ipu —Ipu €
H}(K) to get
(a(2)VInu, V(Iu — Tpu)) k. =0,

where (-,-) denotes the L? inner product of L?(K). Thus, upon using the
equation in (4.1), we get

(a(%)V(Ihu — Hhu), V(Ihu — Hhu))K
= (a(
= (a(

m |8

)WV(u —Ipu), V(I — Opu)) g — (a(2)Vu, V(Iyu — Hu))

m |8

YWV(u —pu), V(I — Opu)) g — (f, Inu — Mpu) k.
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This implies that
Ihu — Opuly x < Chlulax + || Inu — Mpu okl f|lo.x-
Hence
[hu — Hpulyx < Ch(lulzx + 1 fllo.x), (4.10)
where we have used (4.9). Now the lemma follows from (4.8)-(4.10). O
In conclusion, we have the following estimate by using Lemmas 4.2-4.3.

Theorem 4.1. Let u € H?(Q) be the solution of (4.1) and u, € V}, be the
solution of (4.5). Then we have

lu —up 1,0 < Ch(|u

2,0+ [ fllog) (4.11)

Note that the estimate (4.11) blows up like h/e as e = 0 since |u |20 =
O(1/e). This is insufficient for practical applications. In next subsection we
derive an error estimate which is uniform as e — 0.

4.3 Error Estimates (h > ¢€)

In this section, we will show that the multiscale finite element method gives
a convergence result uniform in € as € tends to zero. This is the main feature
of this multiscale finite element method over the traditional finite element
method. The main result in this subsection is the following theorem.

Theorem 4.2. Let u € H?(Q) be the solution of (4.1) and up € V}, be the
solution of (4.5). Then we have

ey 1/2
Ju—unlia <o+l floa+C(5) Tluolhmca  (412)

where ug € H?(Q) N W1>°(Q) is the solution of the homogenized equation
(4.2).

To prove the theorem, we first denote by
J
ui(z) = Iyuo(x) = Y uo(z;)¢’ (x) € V.
j=1

iJFrom (4.6) we know that L.u; = 0 in K and u; = [Ipug on 0K for any
K € Tp. The homogenization theory in Lemma 3.1 implies that

ur — ug — e(unn — 61c) |1, < Ce(|| fllo,x + | u10 |2,K), (4.13)
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where uyq is the solution of the homogenized equation on K:
Louig =0 in K, wup = Il ug on 0K, (4.14)
uyp is given by the relation

. Ou
un (.y) = —X (1) 5=
)

in K, (4.15)

and . € H'(K) is the solution of the problem:
L6 =0 in K, 6i.(z) =un(z, %) on dK. (4.16)
It is obvious from (4.14) that
urg = lpug in K, (4.17)
since ITpug is linear on K. From Lemma 3.1 and (4.13) we obtain that

lu —wurlle <lluo — w10+ [[e(wr —un) o
+||e(b: — b12) |l + Cel| f lo,0, (4.18)

where we have used the regularity estimate || ug|l2,0 < C|| fllo,o. Now it

remains to estimate the terms at the right-hand side of (4.18).
Lemma 4.4. We have

| uo — uro [l1,0 < Ch| fllo.a, (4.19)
le(ur —un) o < Ch+ o) flloa- (4.20)

Proof. The estimate (4.19) is a direct consequence of the standard finite
element interpolation theory since ug = Ipug by (4.17). Next we note that
X’ (z/e) satisfies

1 llo.co.2 + €l VX llooc < C (4.21)

for some constant C' independent of h and . Thus we have, for any K € Tp,

.0
lle(ur —un) llo,x < Cell X]%(UO — puo) llo,x < Chelug |2,k
T
O(ug — Tpuo)
a.’Ej
ClI V(uo — Hpuo) llo,x + Celug |2,k

C(h+¢€)|uoax-

eV (u1 — un) llo.x = ell VO ) llo,x

<
<

This completes the proof. O
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Lemma 4.5. We have
||565||1’Q S C\/EHUUHLCX%Q +C€|U0‘27Q. (422)

Proof. Let ¢ € C§°(R*) be the cut-off function which satisfies ( = 1 in
O\Qs/2, ¢ =01in Q5,0 < (< 1in R, and |V¢| < C/d in Q, where for any
6 > 0 sufficiently small, we denote by Qs as

O = {z € Q: dist(z,00) > §}.

With this definition, it is clear that 6. — Cuy = 6. + ((x?Ouo/0x;) € H} ().
Multiplying the equation in (4.3) by 6. — Cu1, we get
; aU(]

(a($)VO., V(6. + ija—xj)) =0,

which yields, by using (4.21),

| V8- [lo,o < C|| V(¢x! Oug/0z;) |lo,0
< OV X 0ug/0xj o, + Cll (VX! Oug [0z [|0,0
+C| (X! 00/ 0%x; |0,

D D
< Cv\am'53"‘0\/\39\‘5;"‘0\%\2,97 (4.23)

where D = || ug ||1,00,0 and the constant C is independent of the domain .
From (4.23) we have

E
e, < O(— + V)||u 0.0+ Celu
ll€be [lo.o < (\/S Mo (11,000 luo 2.0

< CVelluo |1 00,0 + Celug |2.0- (4.24)
Moreover, by applying the maximum principle to (4.3), we get
18- [lo.00.2 < [|X?uo /0 [lo,00,00 < Clluo |1 00,0- (4.25)
Combining (4.24) and (4.25) completes the proof. 0O

Lemma 4.6. We have
eN1/2
el < C(5) " lluo lh oo (4.26)

Proof. First we remember that for any K € Ty, 6. € H!(K) satisfies

E) a(Hhuo)

L. =0 in K, 6. =— ()21
! o e ==X (3 oz,

n OK. (4.27)

By applying maximum principle and (4.21) we get

Ie 10,00, K S Xl hUQ Lj10,00,0K S uo ||1,00,K -
|| 6 || < |Ix/0(Ilpuo)/ Oy || < Clluo|
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Thus we have
|| 8015 ||079 S CEH Uo ||170079. (428)

On the other hand, since the constant C in (4.23) is independent of Q, we
can apply the same argument leading to (4.23) to obtain

1eV6i- losc < Cell Tntio |1 oo i (VIDK]/VE + /]I -8/2) + Ce| Thug |s.x
€
< CVh| ug ||1,00,K(% +/5)
< Cv hEH Ug ||1,oo,K:

which implies that

ey 1/2
1eVbi oo < C(=) " lluo -
This completes the proof. O

Proof (of Theorem 3.2.). The theorem is now a direct consequence of (4.18)
and the Lemmas 4.4-4.6 and the regularity estimate ||ug||2,0 < C|| flo.q-
O

Remark 4.1. As we pointed out earlier, the multiscale FEM indeed gives
correct homogenized result as € tends to zero. This is in contrast with the
traditional FEM which does not give the correct homogenized result ase — 0.
The error would grow like O(h?/e?). On the other hand, we also observe
that when h ~ e, the multiscale method attains large error in both H!
and L? norms. This is what we call the resonance effect between the grid
scale (h) and the small scale (¢) of the problem. This estimate reflects the
intrinsic scale interaction between the two scales in the discrete problem. Qur
extensive numerical experiments confirm that this estimate is indeed generic
and sharp. From the viewpoint of practical applications, it is important to
reduce or completely remove the resonance error for problems with many
scales since the chance of hitting a resonance sampling is high. In the next
subsection, we propose an over-sampling method to overcome this difficulty.

4.4 The Over-Sampling Technique

As illustrated by our error analysis, large errors result from the “resonance”
between the grid scale and the scales of the continuous problem. For the two-
scale problem, the error due to the resonance manifests as a ratio between
the wavelength of the small scale oscillation and the grid size; the error be-
comes large when the two scales are close. A deeper analysis shows that the
boundary layer in the first order corrector seems to be the main source of the
resonance effect. By a judicious choice of boundary conditions for the base



36 Thomas Y. Hou

function, we can eliminate the boundary layer in the first order corrector.
This would give a nice conservative difference structure in the discretization,
which in turn leads to cancellation of resonance errors and gives an improved
rate of convergence.

Motivated by our convergence analysis, we propose an owver-sampling
method to overcome the difficulty due to scale resonance [38]. The idea is
quite simple and easy to implement. Since the boundary layer in the first or-
der corrector is thin, O(g), we can sample in a domain with size larger than
h + € and use only the interior sampled information to construct the bases;
here, h is the mesh size and ¢ is the small scale in the solution. By doing
this, we can reduce the influence of the boundary layer in the larger sample
domain on the base functions significantly. As a consequence, we obtain an
improved rate of convergence.

Specifically, let 47 be the base functions satisfying the homogeneous el-
liptic equation in the larger domain S O K. We then form the actual base ¢’
by linear combination of 7,

d
¢ = eyl
=1

The coefficients ¢;; are determined by condition ¢*(x;) = d;;. The correspond-
ing 0! for ¢' are now free of boundary layers. Our extensive numerical ex-
periments have demonstrated that the over-sampling technique does improve
the numerical error substantially in many applications. On the other hand,
the over-sampling technique results in a non-conforming MsFEM method. In
[28], we perform a careful estimate of the nonconforming errors in both H!
norm and the L? norm. The analysis shows that the non-conforming error
is indeed small, consistent with our numerical results [38,39]. Our analysis
also reveals another source of resonance, which is the mismatch between the
mesh size and the “perfect” sample size. In case of a periodic structure, the
“perfect” sample size is the length of an integer multiple of the period. We
call the new resonance the “cell resonance”. In the error expansion, this reso-
nance effect appears as a higher order correction. In numerical computations,
we found that the cell resonance error is generically small, and is rarely ob-
served in practice. Nonetheless, it is possible to completely eliminate this cell
resonance error by using the over-sampling technique to construct the base
functions but using piecewise linear functions as test functions. This reduces
the nonconforming error and eliminates the resonance error completely.

4.5 Performance and Implementation Issues

The multiscale method given in the previous section is fairly straightforward
to implement. Here, we outline the implementation and define some notations
that are used in the discussion below. We consider solving problems in a unit
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square domain. Let N be the number of elements in the = and y directions.
The mesh size is thus h = 1/N. To compute the base functions, each element
is discretized into M x M subcell elements with mesh size hy = h/M. To
implement the over-sampling method, we partition the domain into sampling
domains and each of them contains many elements. From the analysis and
numerical tests, the size of the sampling domains can be chosen freely as
long as the boundary layer is avoided. In practice, though, one wants to
maximize the efficiency of over-sampling by choosing the largest possible
sample size which reduces the redundant computation of overlapping domains
to a minimum.

In general, the multiscale (sampling) base functions are constructed nu-
merically, except for certain special cases. They are solved in each K or
S using standard FEM. The linear systems are solved using a robust multi-
grid method with matrix dependent prolongation and ILLU smoothing (MG-
ILLU, see [62]). The global linear system on ) is solved using the same
method. Numerical tests show that the accuracy of the final solution is in-
sensitive to the accuracy of base functions.

Since the base functions are independent of each other, their construction
can be carried out in parallel perfectly. In our parallel implementation of
over-sampling, the sample domains are chosen such that they can be handled
within each processor without communication. The multigrid solver is also
modified to better suit the parallelization. In particular, the ILLU smoothing
is replaced by Gauss-Seidel iterations. More implementation details can be
found in [38].

Cost and Performance In practical computations, a large amount of over-
head time comes from constructing the base functions. On a sequential ma-
chine, the operation count of our method is about twice that of a conventional
FEM for a 2-D problem. However, due to good parallel efficiency, this differ-
ence is reduced significantly on a massively parallel computer. For example,
using 256 processors on an Intel Paragon, our method with N = 32 and
M = 32 only spends 9% more CPU time than the conventional linear FEM
method using 1024 x 1024 elements [38]. Note that this comparison is made
for a single solve of the problem. In practice, multiple solves are often re-
quired, then the overhead of base construction is negligible. A detailed study
of MsFEM’s parallel efficiency has been conducted in [38]. It was also found
that MsFEM is helpful for improving multigrid convergence when the coef-
ficient a. has very large contrast (i.e., the ratio between the maximum and
minimum of a.).

Significant computational savings can be obtained for time dependent
problems (such as two-phase flows) by constructing the multiscale bases adap-
tively. Multiscale base functions are updated only for those coarse grid ele-
ments where the saturation changes significantly. In practice, the number of
such coarse grid elements are small. They are concentrated near the interface
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separating oil and water. Also, the cost of solving a base function in a small
cell is more efficient than solving the fine grid problem globally because the
condition number for solving the local base function in each coarse grid ele-
ment is much smaller than that of the corresponding global fine grid pressure
system. Thus, updating a small number of multiscale base functions dynam-
ically is much cheaper than updating the fine grid pressure field globally.

Another advantage of the multiscale finite element method is its ability
to scale down the size of a large scale problem. This offers a big saving in
computer memory. For example, let N be the number of elements in each
spatial direction, and M be the number of subcell elements in each direction
for solving the base functions. Then there are total (M N)™ (n is dimension)
elements at the fine grid level. For a traditional FEM, the computer memory
needed for solving the problem on the fine grid is O(M™N™). In contrast,
MsFEM requires only O(M™ + N™) amount of memory. For a typical value
of M = 32 in a 2-D problem, the traditional FEM needs about 1000 times
more memory than MsFEM.

Convergence and Accuracy Since we need to use an additional grid to
compute the base function numerically, it makes sense to compare our Ms-
FEM with a traditional FEM at the subcell grid, hy = h/M. Note that
MsFEM only captures the solution at the coarse grid h, while FEM tries to
resolve the solution at the fine grid hs. Our extensive numerical experiments
demonstrate that the accuracy of MSFEM on the coarse grid h is comparable
to that of FEM on the fine grid. In some cases, MsFEM is even more accurate
than the FEM (see below and the next section).
As an example, in Table 4.1 we present the result for

_ 2+ Psin(2nz/e) 2 + sin(2ny/e)
a(x/e) = 2+ Pcos(2my/e) 2+ Psin(2nz/e)
flx)=-1 and ulao = 0. (4.30)

(P=18), (4.29)

The convergence of three different methods are compared for fixed e/h =
0.64, where “-L” indicates that linear boundary condition is imposed on the
multiscale base functions, “os” indicates the use of over-sampling, and LFEM
stands for standard FEM with linear base functions. We see clearly the scale

MsFEM-L |MsFEM-os-L LFEM

[|E||;2 | rate | || E||;2 | rate ||MN| || E||;2
16 | 0.04 |3.54e-4 7.78e-5 256 [1.34e-4
32 (0.02 |3.90e-4|-0.14(3.83e-5| 1.02 || 512 |1.34e-4
64 | 0.01 |4.04e-4|-0.05({1.97e-5| 0.96 (|1024|1.34e-4
128(0.005|4.10e-4{-0.02({1.03e-5| 0.94 (|2048|1.34e-4

N | ¢

Table 4.1. Convergence for periodic case.

resonance in the results of MsFEM-L and the (almost) first order convergence
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(i.e., no resonance) in MsFEM-os-L. Evident also is the error of MsFEM-os-L
being smaller than those of LFEM obtained on the fine grid. In [40,38], more
extensive convergence tests have been presented.

4.6 Applications

Flow in Porous Media One of the main application of our multiscale
method is the flow and transport through porous media. This is a fundamen-
tal problem in hydrology and petroleum engineering. Here, we apply MsFEM
to solve the single phase flow, which is a good test problem in practice.

We model the porous media by random distributions of a. generated using
a spectral method. In fact, a. = @10°?, where p is a random field represents
porosity, and a and (3 are scaling constants to give the desired contrast of
a.. In particular, we have tested the method for a porous medium with a
statistically fractal porosity field (see Figure 4.1). The fractal dimension is
2.8. Such a model is widely used as the areal field in the oil industry. We note
that the problem has a continuous scale because of the fractal distribution.

0.8

0.6

0.4

0 0.2 0.4 0.6 0.8 1

Fig.4.1. Porosity field with fractal dimension of 2.8 generated using the spectral
method.

The pressure field due to uniform injection is solved and the error is
shown in Figure 3.2. The horizontal dash line indicates the error of the LFEM
solution with N = 2048. The coarse-grid solutions are obtained with different
number of elements, NV, but fixed N M = 2048. We note that error of MsFEM-
os-L almost coincide with that of the well-resolved solution obtained using
LFEM. However, MsFEM without over-sampling is less accurate. MsFEM-O
indicates that oscillatory boundary conditions, obtained from solving some
reduced 1-D elliptic equations along 0K (see [38]), are imposed on the base
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Fig.4.2. The I*-norm error of the solutions using various schemes for a fractal
distributed permeability field.

functions. The decay of error in MsFEM is because of the decay of small
scales in a.. The next figure shows the results for a log-normally distributed
ae. In this case, the effect of scale resonance shows clearly for MsFEM-L,
i.e., the error increases as h approaches €. Here € ~ 0.004 roughly equals
the correlation length. Using the oscillatory boundary conditions (MsFEM-
O) gives better results, but it does not completely eliminate resonance. On
the other hand, the multiscale method with over-sampling agrees extremely
well with the well-resolved calculation. One may wonder why the errors do
not decrease as the number of coarse grid elements increase. This is because
we use the same subgrid mesh size, which is the same as the well-resolved
grid size, to construct the base functions for various coarse grid sizes (N =
32,64,128, etc). In some special cases, one can construct multiscale base
functions analytically. In this case, the errors for the coarse grid computations
will indeed decrease as the number of coarse grid elements increase.

Fine Scale Recovery To solve transport problems in the subsurface forma-
tions, as in oil reservoir simulations, one needs to compute the velocity field
from the elliptic equation for pressure, i.e v = —a.Vu, here u is pressure.
In some applications involving isotropic media, the cell-averaged velocity is
sufficient, as shown by some computations using the local upscaling methods
(cf. [23]). However, for anisotropic media, especially layered ones (Figure 4.4),
the velocity in some thin channels can be much higher than the cell average,
and these channels often have dominant effects on the transport solutions. In
this case, the information about fine scale velocity becomes vitally important.
Therefore, an important question for all upscaling methods is how to take
those fast-flow channels into account.
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Fig.4.3. The I>-norm error of the solutions using various schemes for a log-
normally distributed permeability field.

Fig.4.4. A random porosity field with layered structure.

For MsFEM, the fine scale velocity can be easily recovered from the multi-
scale base functions, noting that they provide interpolations from the coarse
h-grid to the fine hs-grid. Using the over-sampling technique, the error in
velocity is O(e/h), as proved in [28]. We remark that the resonance effect
seems unavoidable in the velocity. On the other hand, our numerical tests
indicate that the error is small when € &~ h. The cell-averaged velocity can
also be obtained and its error is even smaller.

To demonstrate the accuracy of the recovered velocity and effect of small-
scale velocity on the transport problem, we show the fractional flow result of
a “tracer” test using the layered medium in Figure 4.4: a fluid with red color
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Fig.4.5. (a): Fine grid horizontal velocity field, N = 1024. (b): Recovered hori-
zontal velocity field from the coarse grid /N = 64 calculation using multiscale bases.
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Fig.4.6. (a): Fine grid saturation at ¢t = 0.06, N = 1024. (b): Saturation computed
using the recovered velocity field from the coarse grid calculation.

originally saturating the medium is displaced by the same fluid with blue
color injected by flow in the medium at the left boundary, where the flow is
created by a unit horizontal pressure drop. The linear convection equation
is solved to compute the saturation of the red fluid (for details, see [24]). To
demonstrate that we can recover the fine grid velocity field from the coarse
grid pressure calculation, we plot the horizontal velocity fields obtained by
two methods. In Figure 4.5a, we plot the horizontal velocity field obtained
by using a fine grid (N = 1024) calculation. In Figure 4.5b, we plot the same
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horizontal velocity field obtained by using the coarse grid pressure calculation
with N = 64 and using the multiscale finite element bases to interpolate the
fine grid velocity field. We can see that the recovered velocity field captures
very well the layer structure in the fine grid velocity field. Further, we use
the recovered fine grid velocity field to compute the saturation in time. In
Figure 4.6a, we plot the saturation at ¢ = 0.06 obtained by the fine grid
calculation. Figure 4.6b shows the corresponding saturation obtained using
the recovered velocity field from the coarse grid calculation. The agreement
is striking.

We also check the fractional flow curves obtained by the two calculations.
The fractional flow of the red fluid, defined as F = [ S,cqv, dy/ [ v, dy (S
being the saturation), at the right boundary is shown in Figure 4.7. The
top pair of curves are the solutions of the transport problem using the cell-
averaged velocity obtained from a well-resolved solution and from MsFEM;
the bottom pair are solutions using well-resolved fine scale velocity and the
recovered fine scale velocity from the MSFEM calculation. Two conclusions
can be made from the comparisons. First, the cell-averaged velocity may
lead to a large error in the solution of the transport equation. Second, both
recovered fine scale velocity and the cell-averaged velocity obtained from
MsFEM give faithful reproductions of respective direct numerical solutions.
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1 e MFEM (recovered) --- A
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MFEM (coarse) -
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Fig. 4.7. Variation of fractional flow with time. DNS: well-resolved direct numerical
solution using LFEM (N = 512). MsFEM: over-sampling is used (N = 64, M = 8).

Scale-up of one-phase flows The multiscale finite element method has
been used in conjunction with some moment closure models to obtain an
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upscaled method for one-phase flows, see, e.g. [27,29,16]. Note that the mul-
tiscale finite element method presented above does not conserve mass. For
long time integration, it may lead to significant loss of mass. This is an unde-
sirable feature of the method. In a recent work with Zhiming Chen [16], we
have designed and analyzed a mixed multiscale finite element method, and
we have applied this mixed method to study the scale up of one-phase flows
and found that mass is conserved very well even for long time integration.
Below we describe our results in some detail.

In its simplest form, neglecting the effect of gravity, compressibility, cap-
illary pressure, and considering constant, porosity and unit mobility, the gov-
erning equations for the flow transport in highly heterogeneous porous media
can be described by the following partial differential equations [46], [63], and
27]

div(K(z)Vp) =0, (4.31)
oS
> +V-VS=0, (4.32)

where p is the pressure, S is the water saturation, K(z) = (K;;(z)) is the
relative permeability tensor, and v = —K(x)Vp is the Darcy velocity. The
highly heterogeneous properties of the medium are built into the permeabil-
ity tensor KC(z) which is generated through the use of sophisticated geological
and geostatistical modeling tools. The detailed structure of the permeability
coefficients makes the direct simulation of the above model infeasible. For
example, it is common in real simulations to use millions of grid blocks, with
each block having a dimension of tens of meters, whereas the permeability
measured from cores is at a scale of centimeters [49]. This gives more than
10° degrees of freedom per spatial dimension in the computation. This makes
a direct simulation to resolve all small scales prohibitive even with today’s
most powerful supercomputers. On the other hand, from an engineering per-
spective, it is often sufficient to predict the macroscopic properties of the
solutions. Thus it is highly desirable to derive effective coarse grid models
to capture the correct large scale solution without resolving the small scale
features. Numerical upscaling is one of the commonly used approaches in
practice.

Now we describe how the (mixed) multiscale finite element can be com-
bined with the existing upscaling technique for the saturation equation (4.32)
to get a complete coarse grid algorithm for the problem (4.31)-(4.32). The nu-
merical upscaling of the saturation equation has been under intensive study
in the literature [24,29,46,36,66,64]. Here, we use the upscaling method pro-
posed in [29] and [27] to design an overall coarse grid model for the problem
(4.31)-(4.32). The work of [29] for upscaling the saturation equation involves
a moment closure argument. The velocity and the saturation are separated
into a local mean quantity and a small scale perturbation with zero mean.
For example, the Darcy velocity is expressed as v = vq + v’ in (4.32), where
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vy is the average of velocity v over each coarse element, v/ = (v}, v}) is the
deviation of the fine scale velocity from its coarse scale average. After some
manipulations, an average equation for the saturation S can be derived as
follows [29]:

95 1 95— 2 (D0 25),

where the diffusion coefficients D;;(z,t) are defined by

Dii(w,t) = (|vi(2))Li (1), Dij(x,t) =0, fori# j,

3

(|vi(z)|) stands for the average of |v}(z)| over each coarse element. L?(z,t)
is the length of the coarse grid streamline in the z; direction which starts at
time ¢ at point z, i.e.

t
10, 1) = / yils) ds,
where y(s) is the solution of the following system of ODEs

dy(s)
ds

=vo(y(s)), y(t) ==

Note that the hyperbolic equation (4.32) is now replaced by a convection-
diffusion equation. The convection-dominant parabolic equation (4.33) is
solved by the characteristic linear finite element method [22], [56] in our
simulation. The flow transport model (4.31)-(4.32) is solved in the coarse
grid as follows:

1. Solve the pressure equation (4.31) by the over-sampling mixed multiscale
finite element method and obtain the fine scale velocity field using the
multiscale basis functions.

2. Compute the coarse grid average vo and the fine scale deviation (|v}(x)])
on the coarse grid.

3. At each time step, solve the convection-diffusion equation (4.33) by the
characteristic linear finite element method on the coarse grid in which
the lengths L?(z,t) of the streamline are computed for the center of each
coarse grid element.

The mixed multiscale finite element method can be readily combined with
the above upscaling model for the saturation equation. The local fine grid ve-
locity v’ will be constructed from the multiscale finite element base functions.
The main cost in the above algorithm lies in the computation of multiscale
bases which can be done a priori and completely in parallel. This algorithm is
particularly attractive when multiple simulations must be carried out due to
the change of boundary and source distribution as it is often the case in engi-
neering applications. In such a situation, the cost of computing the multiscale
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base functions is just an over-head. Moreover, once these base functions are
computed, they can be used for subsequent time integration of the saturation.
Because the evolution equation is now solved on a coarse grid, a larger time
step can be used. This also offers additional computational saving. For many
oil recovery problems, due to the excessively large fine grid data, upscaling
is a necessary step before performing many simulations and realizations on
the upscaled coarse grid model. If one can coarsen the fine grid by a factor
of 10 in each dimension, the computational saving of the coarse grid model
over the original fine model could be as large as a factor 10,000 (three space
dimensions plus time).

We perform a coarse grid computation of the above algorithm on the
coarse 64 x 64 mesh. The fractional flow curve using the above algorithm is
depicted in Figure 4.8. It gives excellent agreement with the “exact” fractional
flow curve. The contour plots of the saturation S on the fine 1024 x 1024 mesh
at time t = 0.25 and ¢ = 0.5 computed by using the “exact” velocity field
are displayed in Figure 4.10. In Figure 4.9, we show the contour plots of the
saturation obtained using the recovered velocity field from the coarse grid
pressure calculation N = 64. We can see that the the contour plots in Figure
4.9 approximate the “exact” ones in Figure 4.10 in certain accuracy but the
sharp oil/water interfaces in Figure 4.10 are smeared out. This is due to the
parabolic nature of the upscaled equation (4.33). We have also performed
many other numerical experiments to test the robustness of this combined
coarse grid model. We found that for permeability fields with strong layered
structure, the above coarse grid model is very robust. The agreement with
the fine grid calculations is very good. We are currently working toward some
qualitative and quantitative understanding of this upscaling model.

Finally, we remark that the upscaling equation (4.33) uses small scale
information v’ of the velocity field to define the diffusion coefficients. This
information can be constructed locally through the mixed multiscale basis
functions. This is an important property of our multiscale finite element
method. It is clear that solving directly the homogenized pressure equation

div(K* (2)Vp*) = 0

will not provide such small scale information. On the other hand, whenever
one can afford to resolve all the small scale feature by a fine grid, one can use
fast linear solvers, such as multigrid methods, to solve the pressure equation
(4.31) on the fine mesh. ;From the fine grid computation, one can easily
construct the average velocity vg and its deviation v'. However, when multiple
simulations must be carried out due to the change of boundary conditions,
the pressure equation (4.31) will then have to be solved again on the fine
mesh. The multiscale finite element method only solves the pressure equation
once on a coarse mesh, and the fine grid velocity can be constructed locally
through the finite element bases. This is the main advantage of our mixed
multiscale finite element method. This process becomes more difficult for the
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F(t)

Fig. 4.8. The accuracy of the coarse grid algorithm. Solid line is the “exact” frac-
tional flow curve using mixed finite element method solving the pressure equation.
The slash-dotted line is the fractional flow curve using above coarse grid algorithm.

RE e

a0 a0

30t

10f

Fig. 4.9. The contour plots of the saturation S computed using the upscaled model
on a 64 x 64 mesh at time ¢t = 0.25 (left) and ¢t = 0.5 (right).
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Fig. 4.10. The contour plots of the saturation S computed on the fine 1024 x 1024
mesh using the “exact” velocity field at time ¢ = 0.25 (left) and ¢ = 0.5 (right).
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nonlinear two-phase flow due to the dynamic coupling between the pressure
and the saturation. We are now investigating the possibility of upscaling
the two-phase flow by using multiscale finite element base functions that are
constructed from the one-phase flow (time independent). In this case, we
need to provide corrections to the pressure equation to account for the scale
interaction near the oil/water interface.

It should be noted that some adaptive scale-up strategies have also been
developed [24,66]. The idea is to refine the mesh around the fast-flow chan-
nels in order to capture their effect directly. The approach seems to work well
when the channels are isolated. For MsFEM, it is also possible to adjust the
coarse mesh adaptively based on the recovered velocity. In particular, one
does not need to use the fine recovered velocity in the regions with no fast-
flow channels; in those regions, the coarse mesh and cell-averaged velocity
are sufficient. On the other hand, one can simply keep the fine mesh when
the channels are too many. How to develop a consistent upscaling equation
for the saturation equation is still open when the capillary pressure effect
is neglected, which is the common practice in oil reservoir simulations. One
approach is to combine grid adaptivity with multiscale modeling. We use a
dynamic adaptive coarse grid [15] to capture the isolated small scale fea-
tures, such as the flow channels and use the multiscale finite element method
to capture the small scale feature within each adaptive coarse grid block. By
doing this, we take into account the local flow orientation and anisotropy in
upscaling the saturation equation. We are also investigating the possibility
to develop a consistent upscaling model for the saturation equation by com-
bining multiscale finite element methods and systematic multiscale modeling
for the saturation equation.

5 Wavelet-based Homogenization (WBH)

The material in this section is based on the work of Borobantu and Engquist
in [21] and the lectures given by Engquist in the Morningside Summer School
on Multiscale Analysis and Computation in Beijing in August, 1997. Please
also consult with the related work of Brewster and Beylkin in [10] for integral
differential equations.

We begin by considering a simple, elliptic equation. Let u* be the variable
in question defined on the domain 2. We study the boundary-value problem

=V -a.(z)Vui (z) = f(z), x €8
B.C. for wu°®, x € 00

where a.(z) = a(z1 /e, z2/¢€), and a(y1,y2) is 1-periodic in y1, yo.

As we discussed in Section 1, one can derive a homogenized equation
using the multiscale expansion technique. Roughly speaking, homogenization
is a mathematical method that allows us to upscale differential equations.
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This method not only offers formulae for upscaling but also provides tools
for producing rigorous mathematical convergence proofs.

The homogenization problem can be stated in various formulations. A
classical formulation, see e.g. Bensoussan et al. [7], is the following: Consider
a family of operators L. indexed by the small parameter . For any function
f, let u® solve the problem

L.u® = f. (5.1)

Assume that u® — u, as € — 0. The homogenization problem is to find an
operator L such that

Lu=f. (5.2)

The homogenized equation does not contain the e-scale and it can be solved
on a coarse grid. In some cases L has a closed form analytic expression [7].
If that is not the case, but the general structure of L is known, a numerical
approximation is still possible [23].

The following diagram describes two common approaches to a coarse grid
discretization of the multiscale problem, L.u® = f.

Lou® = f
ey O\
Lu = f LE7hui = f57h
0N\ Ov

Lyug = fu

where & stands for homogenization, ¢ stands for discretization (for example,
finite element methods, etc.); O stands for numerical upscaling (sampling,
wavelet based homogenization, etc, - - ).

Homogenization is a model reduction. In the traditional analysis, reduc-
tion is often based on physical conservation (derivation from first principles).
For example, in fluid mechanics, fundamental particle interaction — kinetic
model (Boltzmann equation) — Navier-Stokes equation (Hydrodynamic ap-
proximation). ;From the Navier-Stokes equations, one can further derive tur-
bulence models, the Euler equations, and potential equations.

In contrast, one can derive reduced models using numerical techniques
starting from the discretized problem. Wavelet-Based-Homogenization, Sam-
pling, Multigrid are some of examples in discrete model reduction.

The framework for the wavelet based method is discrete. The operator L
is a finite-dimensional approximation of the original differential operator. It
can be written in the form

L=P(A A h),
where A is a collection of difference operators, A is a discretized variable
coefficient, typically diagonal matrices, and h represents the grid size. We
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seek a homogenized, discrete, operator L that can be written in a form similar
to L, _

L=P(A H,h)
but with A > h and the structure of H close to the structure of A, typically
diagonal dominant and sparse. We interpret H as the subgrid model of A.

If A corresponds to a material coefficient, H can be seen as the effective
material coefficient.

3

5.1 Wavelets

For multiscale problems, the first important concept is to define scales, what
we mean by large scales and what we mean by small scales. The classical
way is to use the Fourier series or Fourier transform as a systematic way of

defining scales
u(z) = Zajei”.
J

Note that the Fourier bases, e¥*, are global. This introduces some difficulty
in characterizing local small scales. Wavelets introduce orthonormal bases
which are localized in space or time. This offers some very attractive features
which have important applications in signal and image processing.

When solving differential equations, we often express the solution as a
linear combination of some pre-determined basis

u(z) = Z appr(x).
k

For example, i (z) = ¢(x — xy) in finite element method. It is a translation
operator, whereas in the spectral method, we have

u(x) = Z ajp;(x)

where @;(z) = e¥”, which is a dilation operator.
Using both translation and dilation, the functions are expressed by wave-

lets
u(@) =Y ajrtin,
ik

where 11, (z) = 27/2(27x — k).
Example: A well-known example of wavelet basis is the Haar wavelet

Hji(z) = 22H 2z — k),
where

1, if 0<z<1/2,
H(z)y=< -1, if 1/2<z<1,
0, otherwise.
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Note that the mean of H(x) is zero, [ H(x)dz = 0.

We now describe a subgrid scale model within the framework of wavelet
based multiresolution analysis (MRA). A wavelet representation lends itself
naturally to analyzing the fine and coarse scales as well as the localization
properties of a function. For a detailed description of MRA we refer the
reader to the book by Daubechies [20]. For fast wavelet algorithms, we refer
the reader to [8].

We consider a ladder of spaces V; C Vji; which are spanned by the
dilates and integer translates of one shape-function ¢ € Vj:

Vy =span{¢ i (x) = 272¢(27x — k)}.

The functions ¢ form an L2-orthonormal basis. The orthogonal comple-
ment of V; in V41 is denoted by W; and it is generated by another orthonor-
mal basis ¢ () = 27/%% (272 — k), where 1) is called the mother wavelet.
The transformation

Wy Vign Wi Vs

that maps the basis {¢s+1,x} into {11k, dsy1.x} is an orthogonal operator
and we denote its inverse by W7. The product W;W;_; - -- W,y maps Vit
into Vy & ZO<]‘<J Wj is called the wavelet transform and it can be optimally
implemented using the fast wavelet transform. We denote by P; and @); the
L?-projections onto V; and W;.

5.2 Introduction to Wavelet-Based Homogenization (WBH)

Given the fully discrete solution operator on a fine grid, the underlying idea of
wavelet-based homogenization is to find an operator of lower dimension that
extracts only the coarse scales of the solution. The numerical homogenization
can be described as the following process:

LEUE = f — L57hu2 = fh — LHUH = fH .
The wavelet-based homogenization is described as follows:

. Start from the discretized differential equation;

. Represent the operator and the solution in wavelet basis;
. Project to the (coarse and small) scale spaces;

. Compress the operator after transformation.

=~ O N =

We illustrate the main idea by considering the following differential equa-
tion

4 (ag(x)%ug(x)) ~ f(@),

where a. (z) = a(%£). Discretizing the equation on a fine mesh h gives L. puj, =
frn. We denote by Lj.; the discrete operator on the finest level. We have

LU =F.
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If we use a centered difference approximation to the derivative operator, we
have

Ly = h™ A, diag(a.)A

where Ajup = ugyy — uyg is the forward difference operator, and A_wuy =
up —ug_1 is the backward difference operator, which satisfies A_ = AI. Here
diag(a) is the diagonal matrix with diagonal entry given by a(x;).

We first identify the pointwise value with coefficient in the space of V4.
A linear operator Lj; acting on the space Vj;1 can be decomposed into
four operators Ljy; = Ay + By + Cj + Ly acting on the subspace Wj; and
V;, where

A;=QsL11Qy : Wy — Wy
By =QsLyj1 Py Vy— W,
Cyj=PsLj1Qy: Wy =V,
Ly=P;Lj 1Py Vi— V.

Applying the transformation Wy on L 11, we have for U € V4,

Ay B,;] |:QJU] 7 (5.3)

WLy Wi (WiU) = Cy,Ly||PU

or simply

A; B
WiLiaWy = [ Cj LJ’} .

Let us now consider
Lj U =F, UF e V.

This equation may originate from a finite difference, finite element or finite
volume discretization of a given equation. We identify U as a piecewise con-
stant approximation of u(z), the solution to the continuous problem. After
the same wavelet transformation as in (5.3), we have

AJ BJ Uh _ Fh
<CJ LJ> <Ul “\F )’ Un, Fr € Wy, U, F, eV,

where U, = QU and U; = P;U and similarly for F. For the Haar basis
this means that Uj is essentially the high frequency part and U, is the low
frequency part of U. The first equation is

Uy = A;l(Fh — B‘]Ul).
Eliminating U}, yields the equation for U,
(Ly — C;A;'By)U = F; — C; A7 Fy,.



Numerical Approximations to Multiscale Solutions in PDEs 53

Our new “coarse grid operator” is the Schur complement
L;=L;-C;A;'By, (5.5)

which includes subgrid phenomena via CJA;lBJ. We also get the homoge-
nized right hand side, B
F;=F —C;A;'Fy.

Note that this is in fact a block Gaussian elimination procedure. Further
note that the above procedure can be repeated on L; to get L;_; and so
on. To make this efficient in real applications it is necessary to be able to
approximate L; with a sparse matrix. This sparse matrix can be seen as a
discretization of a local differential operator.

There is a striking relation between the Schur complement L; in (5.5) and
the analytically homogenized operator (2.24)-(2.25) in Section 1, repeated
here for convenience,

- 0 . 0 _ 1 _
Lu = ~om (aij amiamj> u+ <|Y /Yao(y) dy) T, (5.6)
where
e U 0, X W)
a;; = Y] /y(az] ik I ) dy. (5.7)

The first terms in (5.5) and (5.7) both represent averaged operators, L; in a
discrete sense and

1 0?

in an integral sense. In both formulations a correction term is subtracted
from the average. Furthermore, in the correction term x is the solution of an
elliptic equation and A;l is a discrete positive definite operator.

The above discussion on one-dimensional problems can be generalized to
two-dimensional problems. In the two-dimensional case, the maps

Wy :VJ+1 - W,;eV, (59)
can be written as a tensor product of one-dimensional transforms,
W2 =W; o W;.

A linear operator Ljy; that acts on the space Vj;; can be decomposed
in a way similar to the one-dimensional case. To get a convenient matrix
representation we use YW = PW, instead of WW. The matrix P is a suitable
permutation. The equation

LJHU:F, U,FEVJ+1,
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can then be transformed to

Ay By Un\ _ ( Fn
(@) (@)=(7) wmew. vrev

and the coarse grid operator is again the Schur complement,
Ly=L;—C;A;'By.

Note that the high frequency part of U can be decomposed as

Unn
Un = {Ulh } s U €W ;0Wy, UpeVy;oW;, UyeW;eV).
Uni

Similar tensor product extensions can be made also for high dimensions.

Unlike the homogenized operator L in the continuous case, the discrete
“homogenized” operator, L, is a nonlocal dense operator, since AY is dense.
For elliptic operators, A, is diagonally dominant. The compression property
of wavelets makes it possible to approximate A;l by a sparse matrix. This
is an essential property that makes this numerical homogenization procedure
efficient. This discrete homogenization procedure can be applied recursively
to yield a coarse grid operator, L; at a desired coarse level.

It turns out that it is more effective to write Ly in a conservative form.
In the 1-D case, this amounts to expressing L as follows:

- 1

Ly = WA+HA7 ;
where Ay u; = ujp1 —uj; and A_uj; = uj—u;_1, and H is a strongly diagonal
dominant matrix.

We look at the extreme case when a(z) = @+a(x) is the sum of a constant
and the highest frequency represented on the grid, i.e., a(x,,) = a+|a|(—1)™.
We have that @ and a are represented as constant vectors in the bases of V;
and Wy. The fact that a(z) > 0 implies |a| < |al.

The following theorem shows that the wavelet homogenized operator
#AJrHA, equals the discrete form ah1—2A+A, of the classically homoge-
nized equation, apart from a second order error term of order h2.

Theorem 5.1. [21] Let a(z) = a+a € V41 be such thata € Vy is a constant

and the oscillatory part a € Wy has constant amplitude and satisfies the

condition |a| < @. Let Ly1q = WA+GA, and a be the harmonic average

1 /”l 1 B
a=|— ——dz .
2h Jy a(x)
Then there exists a function v(z) with a continuous and bounded fourth

derivative such that

— 1 .
IZ0 = a5 A4 A vlloc < CR* || oo
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In practice, we want to approximate the homogenized operator L; by a
sparse approximation. Due to the decay in the off-diagonal entries, we can
approximate Ly by a band-diagonal matrix f,],,, where v is the band-width.
Let us consider the operator band defined by

band(M, v); ; = {0, otherwise.

We have in fact two obvious strategies available for producing ZJ’,/: We can
set directly L, = band(L;,v) or use the homogenized coefficient form and
build ZJ’,/ = h1—2A+ band(H,v — 2)A_. Both approaches produce small per-
turbations of L. However, important properties, such as divergence form,
are lost in the first approach and numerical experiments show that v needs
to be rather large to compensate for this. The second approach produces L,
in divergence form. Moreover, the approximation error can be estimated, as
in the following result:

Theorem 5.2. [21] If the conditions of Theorem 5.1 are valid, then we have

2(a + |al) <1

|H — band(H, v)|| < Cp”, P=———F1= .
6a — 2|al

If v is the discretization of a smooth function v(zx), then
(L = Lypvllos < Cplv" ||

In the current approach, the numerical homogenization starts from a fine
grid, and the operator is global. It would be nice to derive a local procedure to
implement this idea. Further, it remains to study the decay rate of H;; away
from diagonal for more general a. and more general wavelet bases. One also
needs to find an efficient way of computing L ; (incomplete LU decomposition
of A). Compare with multigrid method and preconditional conjugate gradient
method.

6 Variational Multiscale Method

In this section, we will briefly review the main idea of the variational multi-
scale method introduced by Hughes and Brezzi et al in [42,12,43].
Consider an abstract variational problem: Find u € V such that

a(u,v) = F(v), forall veV, (6.1)

where V' is a Hilbert space, a(,-) is a continuous and coercive bilinear form
on V', and F(-) is a continuous linear form on V.

A typical example is the elliptic problem (2.1) in Section 1. In this case,
we have

a(u,v) = /Q a:(x)Vu - Vudr + /Q ag(z)uvdz, F(v)= /Qf(r)v(r) dx.
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If we choose V = H} (), then the above variational problem is equivalent to
the elliptic equation (2.1) in Section 1.

The classical Galerkin approximation of (6.1) consists of taking a finite
dimensional subspace V}, of V and solving (6.1) in V},, i.e. find up € V}, such
that

a(uh,vh) = F(’Uh), for all vy € Vj,. (62)

Let 7T, = {K} be a triangulation of Q, hx = diam{K}, h = maxg h.
Typically V}, consists of continuous functions which are polynomials of some
degrees on a triangular element K.

To be specific, we consider piecewise linear elements. We set

Vh = {vg € Hy (), vg|k is linear in each K}.

The variational problem (6.2) can be written as follows: Find ugp € V}
such that

a(ug,vg) = F(vg), forall vg € VS, (6.3)

Here, up represents the resolvable part of the solution.
Let V}} be a closed subspace of H}(f2) such that V2 nVy = {0}.
Further, we define
Vi =Vhaovh (6.4)

We can consider V, as the augmented space of V.

Using the decomposition Vj, = Vlg S Vg, we can express any v, € Vp as
the sum of a resolvable part, vg € Vlg, and an unresolvable part, vy € Vg in
a unique way:

’Uh:’UR-f-’UUEVIQEBVUb.

In turn, the variational problem (6.2) can be expressed as follows: Find u;, =
up +uy € V& VY such that
a(ur +uy,vg) = F(vg), forallvy € VP (6.5)
a(ug + uy,vy) = F(uy), forallvy € Vg .

Using the bilinearity of a(-,-), equation (6.6) can be written as
a(uy,vy) = — (a(ug,) — F() (vy), forallvy € V5 . (6.7)

Problem (6.7) can be “solved” for any up € V}, and the solution can be
formally written as

uy = M(EUR — f)7 (68)

where the operator £ is defined as in (2.1), M is a linear solution opera-
tor from H1(Q) to H}(Q). One can also view M as the fine grid solution
operator or the discrete Green function operator acting on the unresolvable
scales.



Numerical Approximations to Multiscale Solutions in PDEs 57

Substituting the unresolvable part of the solution, uyy = M (Lug — f) into
equation (6.5) for the resolvable part, we get

a(ug,vr) + a(M(Lugr — f),vr) = (f,vr), forallvg € V}% . (6.9)

effect of the space v

The term a(M(Lug — f),vR) represents the contribution of small scales
to large scales, which resembles the so-called “Reynolds stress” term in tur-
bulence modeling.

Solving uy exactly would be as expensive as solving the fine grid solution
globally. In order to localize the computation of u, the authors in [42,12,43]
made the following assumption:

Vo = @KH&(K).

In other words, they take into account only those unresolvable scales that
vanish on the boundaries of the coarse grid elements. In some sense, the multi-
scale finite element method with linear boundary conditions for the multiscale
base functions is very similar to the variational multiscale method described
here. As we see from the analysis of the multiscale finite element method in
[38,28], by forcing the unresolvable bases to vanish on the boundaries of the
coarse grid elements, the resulting multiscale method may introduce O(1)
errors when the physical small scale is of the same order as the coarse grid
size.

Using the assumption uy| g = 0, uy can be uniquely decomposed among
each element, K:

UU:ZUU7K7 UU’KGH&(K).
K

The variational problem now becomes: Find up, = up+uy = ur+> 5 UK €
Vlg @ Vi such that

a(ug + uy,vg) = F(vg), forallug e V}; (6.10)
a(uR + UU,K;UU,K)K = F('UU,K)K s for all VUK € H&(K), A K,(Gll)

where a(ur + uy k,vu,k)k and F(vy k)i are the restrictions of a(ur +
uy,k,vu,k) and F(vy k) on K respectively. Again, we obtain an equation
for ug as

a(ugr,vRr) + Za(quK,vR)K = F(vg), forallvge€ Vﬁ, VK. (6.12)
K

The “local equation” for uy, g becomes

a(71U’K,’l}(j7K)K = f[a(uR, ) — F(‘)”K(UU,K); for VUK S H&(K)
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Equivalently, we have

Lupk =— (Lur — f), in K, with uyx =0 ondK.
—_————
residual

In some sense, the un-resolvable bases, {uy i}, play the same role as the
residual-free bubbles in the residual-free bubbles finite element method in-
troduced by Brezzi and Russo in [11]. Let g/¢ be the Green function on K
for operator L, i.e.

L’gf(m):éy(m), for = €K, gf:O on 0K.

Then we can write uy, i formally as

T /K o5 (@) (Cur — £)(y) dy.

This is not very practical since it is expensive to construct the Green func-
tion numerically in each element. In [42,12,43], various approximations to
the discrete Green function are proposed to study the stabilizing residual-
free bubble method. Hughes and his co-workers have also applied this idea to
a number of interesting applications [43]. Recently, Todd Arbogast has intro-
duced a subgrid upscaling method for two-phase flow in porous media using
a similar approach [2]. From the analytical view point, the variational multi-
scale method or the residual-free bubble approach provides a good framework

to design multiscale methods in a systematic way.
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