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Abstract. Many problems of fundamental and practical importance contain
multiple scale solutions. Composite materials, flow and transport in porous media,
and turbulent flow are examples of this type. Direct numerical simulations of these
multiscale problems are extremely difficult due to the range of length scales in the
underlying physical problems. In this paper, we review the multiscale finite ele-
ment method introduced in [27, 28] and describe some of its applications, including
flow and transport in heterogeneous porous media. An important feature of the
multiscale finite element method is that it can be applied to problems with many
or continuous spectrum of scales without scale separation. Further, we introduce a
new multiscale analysis for convection dominated 3-D incompressible flow with mul-
tiscale solutions. The main idea is to construct semi-analytic multiscale solutions
locally in space and time, and use them to construct the coarse grid approximation
to the global multiscale solution. Such approach overcomes the common difficulty
associated with the memory effect and the non-uniqueness in deriving the effective
equations for incompressible flows with multiscale solutions. Qur multiscale analy-
sis provides an important guideline in designing a systematic multiscale method for
computing incompressible Euler and Navier-Stokes flow with multiscale solutions.

1 Introduction

Many problems of fundamental and practical importance have multiple scale solu-
tions. Composite materials, wave propagation in random media, flow and transport
through heterogeneous porous media, and turbulent flow are examples of this type.
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The direct numerical solution of multiple scale problems is difficult due to the wide
range of scales in the solution. It is almost impossible to resolve all the small scale
features by direct numerical simulations due to the limited capacity in computing
power. On the other hand, from an engineering perspective, it is often sufficient to
predict the macroscopic properties of the multiscale systems, such as the effective
conductivity, elastic moduli, permeability, and eddy diffusivity. Therefore, it is de-
sirable to develop a coarse grid method that captures the small scale effect on the
large scales, but does not require resolving all the small scale features.

In recent years, we have introduced a multiscale finite element method (Ms-
FEM) for solving partial differential equations with multiscale solutions [27, 28, 20,
9]. The central goal of this approach is to obtain the large scale solutions accu-
rately and efficiently without resolving the small scale details. The main idea is to
construct finite element base functions which capture the small scale information
within each element. The small scale information is then brought to the large scales
through the coupling of the global stiffness matrix. Thus, the effect of small scales
on the large scales is captured correctly. In our method, the base functions are
constructed from the leading order differential operator of the governing equation
within each element. This leading order operator is typically an elliptic operator
with highly oscillatory coefficients for composite materials, flow in porous media,
wave propagation in random media, or convection dominated transport with mul-
tiscale velocity field. As a consequence, the base functions are adapted to the local
microstructure of the differential operator. In the case of two-scale periodic struc-
tures, we have proved that the multiscale method indeed converges to the correct
solution independent of the small scale in the homogenization limit [28, 20, 9].

One of the main difficulties in deriving effective multiscale methods is to de-
rive accurate local microscopic boundary conditions that connect small scale solution
from one coarse grid block to the neighboring coarse grid blocks. If one naively im-
poses a smooth boundary condition for multiscale bases at the boundary of a coarse
grid element, it will create a mismatch between the global multiscale solution and
the approximate solution constructed by the multiscale numerical method. Using
homogenization theory, we have identified a resonance error which manifests as the
ratio between the physical small scale and the coarse grid mesh size [27, 20]. Our
analysis indicates that if we use inappropriate microscopic boundary conditions for
the multiscale bases, it will generate a boundary layer in the boundary corrector of
the multiscale base, which seems to be responsible for generating the resonance er-
ror. In the case when the coefficient has scale separation and periodic structure, we
can solve the periodic cell problem to construct the “ideal” microscopic boundary
condition which eliminates the artificial boundary layer in the boundary corrector.
In this special case, we also obtain an analytic formulation for the multiscale bases.
However, this approach can not be generalized to problems with many or continu-
ous spectrum of scales. On the other hand, our analysis indicates that interactions
of small scales are strongly localized for elliptic or parabolic problems. Motivated
by this observation, we propose an over-sampling technique which can effectively
reduce the resonance error [27]. The over-sampling technique is quite general and
can be applied to problems with many or continuous spectrum of scales.

We have applied the multiscale finite element method with the over-sampling
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technique to several applications, ranging from problems in composite material, to
wave propagation in random media, convection dominated transport, and two-phase
flow in heterogeneous porous media. The agreements between the coarse grid mul-
tiscale finite element calculations and the corresponding well-resolved calculations
are striking. We remark that from practical application view point, it is important
that multiscale computational methods can be applied to problems with an infinite
number of scales that are not separable. In many applications, such as transport
of flow through heterogeneous porous media, the multiscale coefficient such as per-
meability tensor has a continuous spectrum of scales without scale separation or
periodic structure. Therefore it is essential that we do not make explicit use of
the assumption on scale separation and periodic structure in our multiscale finite
element method.

We remark that the idea of using base functions governed by the differential
equations has been used in the finite element community, see e.g. [3]. In particular,
the multiscale finite element method is similar in spirit to the residual-free bubble
finite element method [6, 44] and the variational multiscale method [33, 7]. There
are also other multiscale methods that explore homogenization theory or separation
of scales to derive effective coarse grid methods, see e.g. [13, 37, 38, 24, 8, 10, 21].

While a lot of progress has been made in developing multiscale methods to
solve elliptic or diffusion dominated problems, there is only limited success in devel-
oping effective multiscale methods for convection dominated transport in heteroge-
neous media [39, 17, 35, 48, 19, 31]. One of the common difficulties for this problem
is the so-called nonlocal memory effect [46]. For nonlinear convection problems, it
is also difficult to characterize how small scales propagate in time and what kind of
small scale structures is preserved by the flow dynamically.

Recently, together with Dr. Danping Yang [30, 32], we have developed a sys-
tematic multiscale analysis for the 3-D incompressible Euler equations with highly
oscillating initial velocity field. The understanding of scale interactions for 3-D in-
compressible Euler and Navier-Stokes equations have been a major challenge. For
high Reynolds number flows, the degrees of freedom are so high that it is almost
impossible to resolve all small scales by direct numerical simulations. Deriving an ef-
fective equation for the large scale solution is very useful in engineering applications.
The nonlinear and nonlocal nature of the incompressible Euler or Navier-Stokes
equations makes it difficult to construct a properly-posed multiscale solution.

The key idea in constructing our multiscale solution for the Euler equation is
to reformulate the problem using a new phase variable to characterize the propa-
gation of small scales. This phase variable is essentially the backward flow map.
The multiscale structure of the solution becomes apparent in terms of this phase
variable. Our analysis is strongly motivated by the pioneering work of McLaughlin-
Papanicolaou-Pironneau (MPP for short) [39]. The main difference is that MPP
assumed that the small scales are convected by the mean flow, while we believe
that the small scales are convected by the full velocity field. In fact, by using
a Lagrangian description of the Euler equation, we can see that small scales are
indeed propagated by the Lagrangian flow map. By using a Lagrangian descrip-
tion, we can characterize the nonlinear convection of small scales exactly and turn
a convection dominated transport problem into an elliptic problem for the stream
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function. Thus, traditional homogenization result for elliptic problems can be used
to obtain a multiscale expansion for the stream function. At the end, we derive a
coupled multiscale system for the flow map and the stream function. In order for
the homogenized system to be well-posed, we need to impose a solvability condition,
which is to ensure that there is no secular growth term in the first order correction
of the flow map. The solvability condition can be interpreted as a projection or
filtering to remove the resonant velocity component. Such resonant velocity com-
ponent prevents the flow from fully mixing and can lead to the development of the
nonlocal memory effect [46].

For computational purpose, it is more convenient to derive a homogenized
equation in the Eulerian formulation. By using the key observation from our mul-
tiscale analysis in the Lagrangian formulation, we derive a well-posed homogenized
equation in the velocity-pressure formulation. In our multiscale analysis in the Eu-
lerian frame, we use the phase variable to describe the propagation of small scales in
the velocity field, but use the Eulerian variable to describe the large scale solution.
Since we treat the convection of small scales exactly by the phase variable, there
is no convection term in the cell problem for the small scale velocity field. As a
consequence, we can solve for the cell problem with a relatively large time step.
Moreover, for fully mixed flow, we expect that the small scale solution would reach
a statistical equilibrium relatively fast in time. In this case, we may need only to
compute a small number of time steps in the cell problem to evaluate the Reynolds
stress term in the homogenized equation for the averaged velocity. Moreover, we
may express the Reynolds stress term as the product of an eddy diffusivity and the
deformation tensor of the averaged velocity field, see e.g. [45, 36, 12, 25]. For fully
mixed homogeneous flow, the eddy diffusivity is close to be a constant in space. In
this case, we need only to solve one representative cell problem and use the solution
of this representative cell problem to evaluate the eddy diffusivity. This would give
a self-consistent coarse grid model that couples the evolution of the small and large
scales dynamically.

The rest of the paper is organized as follows. In Section 2, we review the
multiscale finite element method, describe the issue of microscopic boundary condi-
tions for the multiscale bases. We then introduce the over-sampling technique and
discuss the convergence property of the method. In Section 3, we present several
applications of the multiscale finite element methods, including wave propagation
in periodic and random media, convection enhanced diffusion, flow and transport in
heterogeneous porous media. We also discuss how to use our multiscale method to
upscale one-phase and two-phase flow. In Section 4, we describe some recent work
in deriving nonlinear homogenization for the 3-D incompressible Euler equation.

2 Multiscale Finite Element Method

In this section, we briefly review the multiscale finite element method which was
introduced in [27, 28] and has been applied to compute elliptic problems with highly
oscillating coefficient, wave propagation in multiscale media, convection enhanced
diffusion, transport of flow in strongly heterogeneous porous media. The multiscale
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finite element method (MsFEM for short) is designed to effectively capture the large
scale behavior of the solution without resolving all the small scale features. The
main idea of our multiple scale finite element method consists of construction of
finite element base functions which contain the small scale information within each
coarse grid element. The small scale information is then brought into the large
scales through the coupling of the global stiffness matrix.

It should be noted that MsFEM is different from the traditional domain de-
composition method in an essential way, although the two methods appear to be
similar. First of all, the design purposes are different. MsFEM is used as a method
to obtain the correct discretization of the large scale problem on a relatively coarse
grid, while the domain decomposition is an iterative method for solving the problem
on a fine grid which resolves the small scales. One of the key features of MsFEM is
that the construction of the base functions is a local operation within the coarse grid
elements. Thus, the construction of the base function in one element is decoupled
from that in another element. In contrast, in domain decomposition methods, the
decomposed subdomains are still coupled together.

The decoupled construction of the multiple scale bases provides some advan-
tages in the computation. First, the construction can be carried out perfectly in
parallel. In effect, we break a large scale computation into many smaller and inde-
pendent pieces. Thus, the method is automatically adapted to parallel computers.
In addition, there is a great advantage in computer memory usage. Once the small
scale information within an element is gathered into the global stiffness matrix, the
memory used for those base functions can be reused to construct bases of the next
element. Thus, we can sequentially sample a large amount of fine scale information
from many elements with limited memory. Therefore, MSFEM is less constrained
by the limit of computer memory than the direct methods. Another important
feature of this approach is that small scale solutions can be reconstructed locally
from the coarse grid computation by using the multiscale bases as interpolation
bases. This feature is especially useful when we try to upscale two-phase flow in
heterogeneous media. Moreover, by constructing the multiscale bases adaptively in
space and time, we can recover the fine scale detail using only a fraction of time
that is required for a direct fine grid simulation.

2.1 MsFEM for elliptic problems with oscillating coefficients

We will use the elliptic problem with highly oscillating coefficients as an example
to illustrate the main idea of MsFEM. We consider the following elliptic problem:

Lu:=-V-(@x)Vu)=f inQ, w=0 ondqQ, 1)
where a(x) = (af;(x)) is a positive definite matrix. This model equation represents
a common difficulty shared by several physical problems. For flow in porous media,
it is the pressure equation through Darcy’s law. The coefficient a° represents the
permeability tensor. For composite materials, it is the steady heat conduction

equation and the coefficient a® represents the thermal conductivity. For steady
transport problems with divergence-free velocity field, it is a symmetrized form of
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the governing equation. In this case, the coefficient a. is a combination of transport
velocity and viscosity tensor.

To simplify the presentation of the finite element formulation, we assume the
domain is an unit square = (0,1) x (0,1). The variational problem of (1) is to
seek u € H}(Q) such that

a(u,v) = f(v), Vv e Hy(Q), (2)

where

_ . Ov Ou _ /
a(u,v) /Qaz] 92: 9z, dx and f(v) vadx,

where we have used the Einstein summation notation. A finite element method is
obtained by restricting the weak formulation (2) to a finite dimensional subspace
of H}(Q). For 0 < h < 1, let K" be a partition of by a collection of rectangles K
with diameter < h, which is defined by an axi-parallel rectangular mesh. In each
element K € K", we define a set of nodal basis {¢%,i = 1,...,d} with d being the
number of nodes of the element. The subscript K will be neglected when bases in
one element are considered. In our multiscale finite element method, ¢’ satisfies

L =0 in K e K" (3)

Let x; € K (j = 1,...,d) be the nodal points of K. As usual, we require ¢*(x;) =
d;j. One needs to specify the boundary condition of ¢’ to make (3) a well-posed
problem (see below). For now, we assume that the base functions are continuous
across the boundaries of the elements, so that

VP =span{¢t :i=1,...,d; K € K"} c H}(Q).

In the following, we study the approximate solution of (2) in V", i.e., to find u" € V"
such that
a(ul,v) = f(v), Yv e V. (4)

Note that this formulation of the multiscale method is not restricted to the rectan-
gular elements. It can also be applied to triangular elements which are more flexible
in modeling complicated geometries.

2.2 Microscopic boundary conditions for multiscale bases

The choice of boundary conditions in defining the multiscale bases will play a crucial
role in approximating the multiscale solution. Intuitively, the boundary condition
for the multiscale base function should reflect the multiscale oscillation of the so-
lution u across the boundary of the coarse grid element. To gain insight, we first
consider the special case of periodic homogenization, i.e. when a‘(x) = a(x,x/e),
with a(x,y) being periodic in y. Using standard homogenization theory [4], we can
perform multiscale expansion for the base function, ¢¢, as follows (y = x/¢):

¢° = po(x) + €1 (x,y) + 8°(x) + O(€)
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where ¢g is the effective solution, ¢, is the first order corrector. The boundary
corrector ¢ is chosen so that the boundary condition of ¢¢ on 0K is exactly satisfied.
By solving a periodic cell problem for x7,

9
Vy - a(X,y) Vy X! = 6—y,aij(x,>') (5)

with zero mean, we can express the first order corrector ¢; as follows: ¢;(x,y) =
—x? % . The boundary corrector, 8¢, then satisfies
J

Vx-a(X,x/€) Yx0°=0 in K
with boundary condition

0lox = (¢° — (do + €d1(x,%/€)) |ox -

In general, the boundary condition of §¢ has O(1) oscillations. This leads to
formation of a boundary layer of thickness O(€) near 0K [4]. This boundary layer is
completely numerical. It is due to the fact that we try to approximate the oscillatory
solution of a global elliptic problem by linear superposition of a collection of local
base functions whose boundary conditions are not conformed with the oscillatory
solution across the edge of the local element.

Note that ¢¢ corresponds to the base function of the homogenized equation,
which does not contain any multiscale feature. Thus, we can approximate ¢g by
a simple linear finite element base. If we impose a linear boundary condition for
¢¢(x) over OK, i.e., ¢°lax = dolak, then this will induce an oscillatory boundary
condition for 6¢:

0%|ox = —d1(x,%/€)|oK -

As we mentioned earlier, this will introduce a numerical boundary layer to 6¢,
which will lead to the so-called resonance error (see discussion below) [27, 20]. To
avoid this resonance error, we need to incorporate the multi-dimensional oscillatory
information through the cell problem into our boundary condition for ¢¢, i.e. to set
&lox = (o + €1(x,%x/€))|ox . In this case, the boundary condition for §¢|sx = 0.
Therefore, we have 8¢ = 0. In this case, we have an analytic expression for the
multiscale base functions ¢¢ as follows:

¢ = o (X) + ed1 (X, X/e) ) (6)

with ¢1(x,y) = —x?(x, y)% and X7 is the solution of the cell problem (5).

The above example is to illustrate the difficulty in designing the appropriate
boundary condition for the base function. Of course, except for problems with
periodic structure, we can not use this approach to compute the multiscale base
functions in general. Later we introduce a more effective over-sampling technique
to overcome the difficulty of designing the appropriate microscopic boundary con-
ditions for the base functions.
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2.3 Convergence Analysis

Convergence analysis has been carried out for the multiscale finite element method
in the case when the coefficient, a(x), has a scale separation and periodic structure,
although this assumption is not required by our method. What distinguishes our
multiscale finite element method from the traditional finite element method is that
MsFEM gives a convergence result uniform in € as € tends to zero. To obtain a
sharp convergence rate, we need to use the multiscale solution structure given by
the homogenization theory [4]. In particular, we rely on a sharp homogenization
estimate which uses the boundary corrector [41]. In the case when the boundary
conditions of the base functions are linear, we have proved the following convergence
result in [28§].

Theorem 2.1. Let a®(x) = a(x/e) with a(y) being periodic in y and smooth. Let
u € H2(Q) be the solution of (1) and uy, be the multiscale finite element approzima-
tion obtained from the space spanned by the multiscale bases with linear boundary
conditions. Then we have

e\ 1/2
e = wnllm < Ch+e)lflia+C(5) " luolle, (7)

where ug € H2() N W1H°(Q) is the solution of the homogenized equation.

We refer to [28] for the detail of the analysis. We remark that convergence
analysis for elliptic problems with multiple scales and for problems with random
coeflicients has been obtained by Efendiev in his Ph.D. dissertation [18]. Moreover,
he proved that the above convergence theorem is still valid when the coefficient (a(y)
is only piecewise smooth. We would like to point out that in the one-dimensional
case the multiscale finite element method can reproduce the exact solution at the
coarse grid nodal points without making any assumption of the scale separation and
periodic structure of the coefficient [28].

2.4 The over-sampling technique

As we can see from the above theorem, MSFEM indeed gives the correct homoge-
nized result as € tends to zero. This is in contrast with the traditional finite element
which does not give the correct homogenized result as € — 0. For the linear finite
element method, the error would grow like O(h?/€?). On the other hand, we also
observe that when h ~ €, the multiscale method attains large error in both H! and
L? norms. This is what we call the resonance effect between the grid scale,h, and
the small scale, €, of the problem. As we indicated earlier, the boundary layer in
the first order corrector seems to be the main source of the resonance effect. By
a judicious choice of boundary conditions for the base functions, we can eliminate
the boundary layer in the first order corrector. This would give a nice conserva-
tive difference structure in the discretization, which in turn leads to cancellation of
resonance errors and gives an improved rate of convergence.

Motivated by our convergence analysis, we propose an over-sampling technique
to overcome the difficulty due to scale resonance [27]. The idea is quite simple and

2004/2/4
page
—P



easy to implement. The main observation is that the boundary layer in the boundary
correction 8¢ is strongly localized, with the width of order O(e). If we sample in a
domain with size larger than h + ¢ and use only the interior sampled information to
construct the bases, we can reduce the influence of the boundary layer in the larger
sample domain on the base functions significantly. As a consequence, we obtain an
improved rate of convergence.

Specifically, let 4/ be the base functions satisfying the homogeneous elliptic
equation in the larger domain S O K. We then form the actual base ¢’ by linear
combination of 17,

d
¢t = Z cij .
i=1

The coefficients c;; are determined by condition ¢¢(x;) = d;;. The corresponding 6°
for ¢* are now free of boundary layers. Our extensive numerical experiments have
demonstrated that the over-sampling technique does improve the numerical error
substantially in many applications.

Note that the over-sampling technique results in a non-conforming MsFEM
method. In [20], we perform a careful estimate of the nonconforming errors in both
H' norm and the L? norm. The analysis shows that the non-conforming error is
indeed small, consistent with our numerical results [27, 29]. Our analysis also reveals
a cell resonance, which is the mismatch between the mesh size and the “perfect”
sample size. In case of a periodic structure, the “perfect” sample size is the length of
an integer multiple of the period. This cell resonance was first revealed by Santosa
and Vogelius in [40]. When the sample size is an integer multiple of the period,
then the cell resonance error is identically zero [40, 20]. In the error expansion, this
resonance effect appears as a higher order correction. In numerical computations,
we found that the cell resonance error is generically small, and is almost negligible
for random coefficients. Nonetheless, it is possible to completely eliminate this
cell resonance error by using a Petrov-Galerkin formulation [52], i.e. to use the
over-sampling technique to construct the base functions but using piecewise linear
functions as test functions. This reduces the nonconforming error and eliminates
the resonance error completely.

We remark that the over-sampling technique is different from the overlapping
domain decomposition method. The domain decomposition method is an iterative
method to solve the fine grid solution globally, while MsFEM with over-sampling is
a method to derive an accurate coarse grid approximation by capturing the effect
of small scales on large scales locally. On the other hand, in collaboration with
Aarnes [1], we have shown that the multiscale finite element method can be used to
construct nearly optimal preconditioner for domain decomposition methods applied
to elliptic problems with highly oscillating and high aspect ratio coefficients. Multi-
scale finite element method has also been used to upscale absolute permeability [51]
where we analyze the source of upscaling error in some existing upscaling methods
and demonstrate how the over-sampling technique can be used effectively to reduce
the upscaling error.
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2.5 Convergence and Accuracy

Except for special cases when the coefficient has periodic structure or is separable
in space variables, we in general need to compute the multiscale bases numerically
using a subgrid mesh. To assess the accuracy of our multiscale method, we compare
MsFEM with a traditional linear finite element method (FEM for short) using a
subgrid mesh, hy; = h/M. The multiscale bases are computed using the same
subgrid mesh. Note that MsFEM only captures the solution at the coarse grid h,
while FEM tries to resolve the solution at the fine grid hs;. Our extensive numerical
experiments demonstrate that the accuracy of MSFEM on the coarse grid h is
comparable to that of the corresponding well-resolved FEM calculation at the same
coarse grid. In some cases, MSFEM is even more accurate than FEM (see below
and the next section).

First, we demonstrate the convergence in the case when the coefficient has
scale separation and periodic structure. In Table 1 we present the result for

_ 2+ Psin(27x, /e) 2 + sin(27 s [€)
a(x/e) = 2+ Pcos(2mz2/e) 2+ Psin(2mwxy /e)
flx)y=-1 and u|aq = 0. 9)

(P =18), ®)

The convergence of three different methods are compared for fixed e/h = 0.64,
where “-L” indicates that linear boundary condition is imposed on the multiscale
base functions, “os” indicates the use of over-sampling, and LFEM stands for linear
FEM.

N c MsFEM-L MsFEM-os-L LFEM
TEN> | rate | [[E]lz | rate || MN | [[E]e
16 | 0.04 | 3.54e4 7785 256 | 1.34e4

32 | 0.02 | 3.90e-4 | -0.14 | 3.83e-5 | 1.02 || 512 | 1.34e-4
64 | 0.01 | 4.04e-4 | -0.05 | 1.97e-5 | 0.96 || 1024 | 1.34e-4
128 | 0.005 | 4.10e-4 | -0.02 | 1.03e-5 | 0.94 || 2048 | 1.34e-4

Table 1. Convergence for periodic case.

We see clearly the scale resonance in the results of MSFEM-L and the (almost)
first order convergence (i.e., no resonance) in MsFEM-os-L. Evident also is the error
of MsFEM-os-L being smaller than those of LFEM obtained on the fine grid. In
[28, 27], more extensive convergence tests have been presented.

Next, we illustrate the convergence of the multiscale finite element method
when the coefficient is random and has no scale separation nor periodic structure.
In Figure 1, we show the results for a log-normally distributed a°. In this case,
the effect of scale resonance shows clearly for MsFEM-L, i.e., the error increases
as h approaches €. Here € ~ 0.004 roughly equals the correlation length. Even
the use of an oscillatory boundary conditions (MSFEM-O), which is obtained by
solving a reduced 1-D problem along the edge of the element, does not help much
in this case. On the other hand, MSFEM with over-sampling agrees very well with
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Figure 1. The I2-norm error of the solutions using various schemes for a
log-normally distributed permeability field.

the well-resolved calculation. One may wonder why the errors do not decrease as
the number of coarse grid elements increases. This is because we use the same
subgrid mesh size as the well-resolved grid size to construct the base functions for
various coarse grid sizes (N = 32,64,128, etc). If we use multiscale bases that are
obtained analytically or computed with very high precision, then the errors indeed
decay as the coarse grid mesh decreases. The above calculations demonstrate that
by using locally constructed multiscale finite element bases, we can recover the
well-resolved calculation at the coarse grid with comparable accuracy. This is quite
remarkable since the local bases are not the restrictions of the well-resolved solution
of the global elliptic problem to the coarse grid elements. Here the well-resolved
calculation corresponds to a 2048 by 2048 linear finite element calculation. The
error is computed by extrapolating the 2048 x 2048 and the 4096 x 4096 linear finite
element solutions. The accuracy of the extrapolated solution is of the order of 107,

3 Applications of MsFEM

In this section, we apply the multiscale finite element method to a few applications.
The applications we consider are wave propagation in heterogeneous media, con-
vection enhanced diffusion, and flow and transport in heterogeneous porous media.

3.1 Wave Propagation in Heterogeneous Media

The multiscale finite element method can be easily extended to time dependent
wave equation. Wave propagation in heterogeneous media is an important problem
that has rich multiscale phenomena and a wide range of applications in geoscience
and medical imaging.
Consider the wave equation in a heterogeneous media:
0%u

52 = V-a*(x)Vu + F(x,t), uli=o = f(X), (ut)|i=0 = 9(x) .
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For this wave equation, we can construct the multiscale finite element bases in the
same way as we did for the elliptic problem, i.e.

V-a(x)V¢* =0,

with appropriate boundary condition on the edge of each element K (e.g. using the
over-sampling technique).

Using a similar coefficient as in Table 1 and with zero forcing, we have per-
formed the following convergence study (the work described in this subsection was
carried out by a former postodc, Dr. Yu Zhang). In this study, we choose e = 0.005,
and the well-resolved calculation is obtained by using a 2048 x 2048 fine grid. We
compare the multiscale finite element calculation with both the well-resolved solu-
tion, denoted as u, and the homogenized solution, denoted as ug. We can see that
the multiscale finite element calculations converge to the well-resolved solution with
a rate comparable to that for the homogenized solution.

N | [lun —ull | [lun —uoll
32 | 0.03068 | 0.030370

64 | 0.01435 | 0.013994

128 | 0.0067795 | 0.00646126
256 | 0.0031569 | 0.00281998

Table 2. Errors of multiscale finite element calculations for the wave equa-
tion with periodic oscillating coefficient.

We have also computed the wave equation with a random coefficient which
has a continuous spectrum of scale and has a fractal dimension of 2.8 (see [27] for
a description of this random medium). The initial condition is given as a sym-
metric Gaussian pulse with zero initial velocity. For deterministic homogeneous
media, it is known that the solution will remain symmetric in time. But for random
homogeneous media, we found that the solution develops asymmetry in its wave
front dynamically, which is completely due to the randomness of the wave speed
coefficient.

The computational cost for the wave propagation using MsFEM is significantly
reduced compared with the direct simulation using a fine grid. This is because the
computational cost in computing the multiscale bases is only at time ¢ = 0. Once
we have generated the multiscale bases initially, we can compute the corresponding
stiffness matrix for the coarse grid. The subsequent calculations are all done using a
coarse spatial grid and a coarse time step. In comparison, a fine grid with small time
step must be used for each fine grid simulation. The saving can be quite significant.

3.2 Convection Enhanced Diffusion

Another interesting application is the large time behavior of the convection diffu-
sion equation with a rapidly oscillating velocity field and a slowly varying initial
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condition: or
5t +us(x) VI =e AT, T(x,0)=To(x),

where the velocity field us is divergence-free and § characterizes the small scale
in the velocity field. After rescaling the space and time variables, x' = x/§ and
t' = t/52, we obtain the rescaled convection diffusion as follows (still use x and t):

oT

E+u(x/6) VT:eAT, T(X,O):To(x).
Under appropriate assumption on u (see, e.g. [23]), it can be shown that T con-
verges to an effective solution T* as d tends to zero for each € > 0 fixed:

oT*
ot
We call o, the effective diffusivity. In general, we have o, > ¢. How does o, scale
with € as € tends to zero is a problem of considerable interest. The answer depends
on the geometry of the streamlines associated with the velocity field u.

One of the well-known cases is the cellular flow in which the stream function
is given by

=0 AT, T*(x,0) = Ty(x).

H(x) = ﬁ sin(2may /6) sin(2rz55) ,
and the velocity field is given by u = (= Hy,, H;,). In this case, it has been shown
analytically that o, ~ C'v/e as e = 0 (see e.g. [22]).

In the Ph.D. dissertation of Dr. Peter Park [42], he has applied the multiscale
finite element method to compute the effective diffusivity as € — 0. The multiscale
bases are constructed by satisfying the following steady equation:

u(x/6) - Vo' =e A g°,

with appropriate boundary conditions. By applying the Galerkin finite element
method with the above multiscale bases and discretizing in time implicitly, we can
obtain a finite element discretization similar to that considered before.

To compute the effective diffusivity, we use the following formula [22]

1 2
_tlggoél //|X| (x,8))

with initial condition equal to a Dirac delta function Ty = §(x). With a relatively
coarse grid (16 by 16) and a subgrid hy, = 1/512, we obtain the following results for
the effective diffusivity o, for different values of § and e in Table 3 [42].

As we can see from Table 3, when the velocity field is smooth, i.e. § =1, the
effective diffusivity is of the same order as the molecular diffusivity ¢, i.e. g, ~ Ce.
But for highly oscillating velocity field with small 6 (§ = 0.01), we see that the
effective diffusivity reveals the scaling o, ~ C4/e as € tends to zero (note that
% ~ 0.7071). This verifies the theoretical result for the effective diffusivity for the
cellular flow. Since the velocity field is steady, the multiscale bases are computed
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€ Oc ratio Oe ratio ¢ ratio
=1 6=0.1 6 =0.05
0.04 0.03252 0.03265 0.03275

0.02 | 0.02092 | 0.6432 | 0.02316 | 0.7093 | 0.02355 | 0.7191
0.01 | 0.01141 | 0.5454 | 0.01643 | 0.7094 | 0.01665 | 0.7070
0.005 | 0.00619 | 0.5425 | 0.01300 | 0.7912 | 0.01233 | 0.7405
0.0025 | 0.00344 | 0.5557 | 0.01046 | 0.8046 | 0.00872 | 0.7072

Table 3. The diffusivity scaling for the cellular flow.

only at ¢ = 0. The subsequent computation in time uses a coarse grid in space
(H = 1/16) and a large time step. This is much cheaper than performing the
calculation using a fine space grid which has to resolve § and uses a small time step.

In this particular example, we can solve the corresponding cell problem to
construct the multiscale bases, which leads to additional computational saving. In
general, the velocity field is generated by solving the Navier-Stokes equation, whose
solution would not have scale separation nor periodic structure. For certain random
velocity, the convection diffusion equation may exhibit anomalous diffusion behavior
(see, e.g. [23]). The effective diffusivity may depend on some nonlocal geometric
property of the velocity field. We have also investigated the anomalous diffusion
induced by a nonlocal random velocity field by supplementing the local multiscale
bases with a nonlocal base to capture the nonlocal interaction of small scales [42].

3.3 Flow and Transport in Porous Media

The flow and transport problems in porous media are considered in a hierarchi-
cal level of approximation. At the microscale, the solute transport is governed
by the convection-diffusion equation in a homogeneous fluid. However, for porous
media, it is very difficult to obtain full information about the pore structure. Cer-
tain averaging procedure has to be carried out, and the porous medium becomes
a continuum with certain macroscopic properties, such as the porosity and per-
meability. Through the use of sophisticated geological and geostatistical modeling
tools, engineers and geologists can now generate highly detailed, three dimensional
representations of reservoir properties. Such models can be particularly important
for reservoir management, as fine scale details in formation properties, such as thin,
high permeability layers or thin shale barriers, can dominate reservoir behavior.
The direct use of these highly resolved models for reservoir simulation is not gen-
erally feasible because their fine level of detail (tens of millions grid blocks) places
prohibitive demands on computational resources. Therefore, the ability to coarsen
these highly resolved geologic models to levels of detail appropriate for reservoir
simulation (tens of thousands grid blocks), while maintaining the integrity of the
model for purpose of flow simulation (i.e., avoiding the loss of important details),
is clearly needed.

We consider a heterogeneous system which represents two-phase immiscible
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flow. Our interest is in the effect of permeability heterogeneity on two-phase flow.
Therefore, we neglect the effect of compressibility and capillary pressure, and con-
sider porosity to be constant. This system can be described by writing Darcy’s law
for each phase (all quantities are dimensionless):

v, = Fri®eg, (10)

Hj

where v; are the Darcy’s velocity for the phase j (j = o, w oil, water), p is pressure, S
is water saturation, K¢ is the permeability tensor, k,; is the relative permeabilities
of each phase and p; is the viscosity of the phase j. The Darcy’s law for each
phase coupled with mass conservation, can be manipulated to give the pressure and
saturation equations:

V- (A(S)KVp) =0, (11)
%§+uVVf@)=& (12)

which can be solved subject to some appropriate initial and boundary conditions.
The parameters in the above equations are given by

krw(S) | kro(S)

A= + ) (13)
Hw Ho
_ krw(s)/ﬂw
T = 08w+ Rt -
u’ =vy +v, = —AS)KVp. (15)

Fine Scale Recovery

To solve transport problems in the subsurface formations, as in oil reservoir sim-
ulations, one needs to compute the velocity field from the elliptic equation for
pressure, i.e u® = —A(S)K¢Vp. In some applications involving isotropic media, the
cell-averaged velocity is sufficient, as shown by some computations using the local
upscaling methods (cf. [15]). However, for anisotropic media, especially layered
ones (Figure 2), the velocity in some thin channels can be much higher than the cell
average, and these channels often have dominant effects on the transport solutions.
In this case, the information about fine scale velocity becomes vitally important.
Therefore, an important question for all upscaling methods is how to take those
fast-flow channels into account.

For MsFEM, the fine scale velocity can be easily recovered from the multiscale
base functions, noting that they provide interpolations from the coarse h-grid to
the fine hs-grid. To demonstrate the accuracy of the recovered velocity and effect of
small-scale velocity on the transport problem, we show the fractional flow result of a
“tracer” test using the layered medium in Figure 2: a fluid with red color originally
saturating the medium is displaced by the same fluid with blue color injected by flow
in the medium at the left boundary, where the flow is created by a unit horizontal
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Figure 3. (a): Fine grid horizontal velocity field, N = 1024. (b): Re-
covered horizontal velocity field from the coarse grid calculation (N = 64) using
multiscale bases.

pressure drop. The transport equation is solved to compute the saturation of the
red fluid (see [16] for more details).

To illustrate that we can recover the fine grid velocity field from the coarse
grid pressure calculation, we plot the horizontal velocity fields obtained by two
methods. In Figure 3a, we plot the horizontal velocity field obtained by using a fine
grid (N = 1024) calculation. In Figure 3b, we plot the same horizontal velocity field
obtained by using the coarse grid pressure calculation with NV = 64 and using the
multiscale finite element bases to interpolate the fine grid velocity field. We can see
that the recovered velocity field captures very well the layer structure in the fine grid
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Figure 4. (a): Fine grid saturation att = 0.06, N = 1024. (b): Saturation
computed using the recovered velocity field from the coarse grid calculation (N = 64)
using multiscale bases.

velocity field. Further, we use the recovered fine grid velocity field to compute the
saturation in time. In Figure 4a, we plot the saturation at ¢ = 0.06 obtained by the
fine grid calculation with N = 1024. Figure 4b shows the corresponding saturation
obtained using the recovered velocity field from the coarse grid calculation with
N = 64. Most detail fine scale fingering structures in the well-resolved saturation
are captured very well by the corresponding calculation using the recovered velocity
field from the coarse grid pressure calculation. The agreement is striking.

We also check the fractional flow curves obtained by the two calculations.
The fractional flow of the red fluid, defined as F' = [ Syequ§ dy/ [u§ dy (S being
the saturation, u§ being the horizontal velocity component), at the right boundary
is shown in Figure 5. The top pair of curves are the solutions of the transport
problem using the cell-averaged velocity obtained from a well-resolved solution and
from MsFEM; the bottom pair are solutions using well-resolved fine scale velocity
and the recovered fine scale velocity from the MSFEM calculation. Two conclusions
can be made from the comparisons. First, the cell-averaged velocity may lead to
a large error in the solution of the transport equation. Second, both the recovered
fine scale velocity and the cell-averaged velocity obtained from MsFEM give faithful
reproductions of respective direct numerical solutions.

We remark that a finite volume version of the multiscale finite element method
has been developed by the petroleum engineers from Chevron Petroleum Technology
Co. [34]. They also found that by updating the multiscale bases adaptively in space
and time, they can recover the fine scale detail of the well-resolved calculation. The
percentage of the multiscale bases that need to be updated is small (only a few
percent of the total number of bases). In some sense, the multiscale finite element
method also offers an efficient approach to capture the fine scale details using only a
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Figure 5. Variation of fractional flow with time. DNS: well-resolved direct
numerical solution using LFEM (N = 512). MsFEM: over-sampling is used (N =
64, M =8).

small fraction of the computational time required for a direct numerical simulation
using a fine grid.

3.4 Scale-up of one-phase flows

The multiscale finite element method has been used in conjunction with some mo-
ment closure models to obtain an upscaled method for one-phase flows, see, e.g.
[18, 19, 9]. Note that the multiscale finite element method presented above does
not conserve mass exactly. For long time integration, it may lead to loss of mass.
This is an undesirable feature of the method. In a recent work with Dr. Zhiming
Chen [9], we have designed and analyzed a mixed multiscale finite element method.
We then applied this mixed method to study the scale up of one-phase flows and
found that mass is conserved very well even for long time integration. Below we
describe our results in some detail.

In its simplest form, neglecting the effect of gravity, compressibility, capillary
pressure, and considering constant porosity and unit mobility, the governing equa-
tions for the flow transport in highly heterogeneous porous media can be described
by the following partial differential equations ([35],[47],[18])

V- (K (x)Vp) = 0, (16)
as . B
E +ut-VS = 0, (17)

where p is the pressure, S is the water saturation, K¢(x) = (K§;(x)) is the relative
permeability tensor, and u¢ = —K(x)Vp is the Darcy velocity.

Now we describe how the (mixed) multiscale finite element can be combined
with the existing upscaling technique for the saturation equation (17) to get a
complete coarse grid algorithm for the problem (16)-(17). The numerical upscal-
ing of the saturation equation has been under intensive study in the literature
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[16, 19, 35, 26, 48, 49]. The problem is very challenging mathematically without
capillary pressure because of the nonlocal memory effect [46]. On the other hand, if
the capillary effect becomes important, the saturation equation becomes diffusion
dominated transport. In this case, homogenization result has been obtained [5] and
numerical upscaling method can be designed [2].

In many oil reservoir applications, capillary effect is so small that it is neglected
in practice. So we must face the nonlocal memory effect induced by the convection
dominated transport. Here we use the upscaling method proposed in [19] and [18]
to design an overall coarse grid model for the problem (16)-(17). The work of [19]
for upscaling the saturation equation involves a moment closure argument. The
velocity and the saturation are separated into a local mean quantity and a small
scale perturbation with zero mean. For example, the Darcy velocity is expressed as
u® = ug+u' in (17), where uy is the average of velocity u over each coarse element,
u’ is the deviation of the fine scale velocity from its coarse scale average. If one
ignores the third order terms containing the fluctuations of velocity and saturation,
one can obtain an average equation for the saturation S as follows [19]:

oS 0 oS
E + Uup VS = 6—%<D”(X,t)£),

(18)
where the diffusion coefficients D;;(x,t) are defined by
Dyi(x,1) = ([u;(x)[)L{(x,t), Dij(x,t) =0, fori#j,

where (|uj(x)|) stands for the average of |u}(x)| over each coarse element. The
function LY(x,t) is the length of the coarse grid streamline in the z; direction
which starts at time ¢ at point x, i.e.

¢
) = [ wo)ds
0
where y(s) is the solution of the following system of ODEs

dy(s)
ds

=uo(y(s)), y(t)=x

Note that the hyperbolic equation (17) is now replaced by a convection-diffusion
equation. One should note that the induced diffusion term is history dependent.
In some sense, it captures the nonlocal history dependent memory effect described
by Tartar in the simple shear flow problem [46]. The convection diffusion equation
(18) will be solved by the characteristic linear finite element method [14, 43] in our
simulation.

The mixed multiscale finite element method can be readily combined with the
above upscaling model for the saturation equation. The local fine grid velocity u’
can be reconstructed from the multiscale finite element bases. We perform a coarse
grid computation of the above algorithm on the coarse 64 x 64 mesh. The fractional
flow curve using the above algorithm is depicted in Figure 6. It gives excellent
agreement with the “exact” fractional flow curve which is obtained using a fine
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1024 x 1024 mesh. We also compare the contour plots of the saturation S obtained
by the upscaled equation with those obtained by using a well-resolved calculation.
We found that the the upscaled saturation captures the overall large scale structure
of the fine grid saturation, but the sharp oil/water interfaces are smeared out. This
is due to the parabolic nature of the upscaled equation (18).

The main cost in the above algorithm lies in the computation of multiscale
bases which can be done a priori and completely in parallel. This algorithm is
particularly attractive when multiple simulations must be carried out due to the
change of boundary and source distribution as it is often the case in engineering
applications. In such a situation, the cost of computing the multiscale base functions
is just an over-head. Moreover, once these base functions are computed, they can
be used for subsequent time integration of the saturation. Because the evolution
equation is now solved on a coarse grid, a larger time step can be used. This also
offers additional computational saving. For many oil recovery problems, due to
the excessively large fine grid data, upscaling is a necessary step before performing
many simulations and realizations on the upscaled coarse grid model. If one can
coarsen the fine grid by a factor of 10 in each dimension, the computational saving
of the coarse grid model over the original fine model could be as large as a factor
10,000 (three space dimensions plus time).

F(

Figure 6. The accuracy of the coarse grid algorithm. Solid line is the
well-resolved fractional flow curve. The slash-dotted line is the fractional flow curve
using above coarse grid algorithm.

Upscaling the two-phase flow

Upscaling the two-phase flow is more difficult due to the dynamic coupling
between the pressure and the saturation. One important observation is that the
fluctuation in saturation is relatively small away from the oil/water interface. In
this region, the multiscale bases are essentially the same as those generated by the
corresponding one-phase flow (time independent). In practice, we can design an
adaptive strategy to update the multiscale bases in space and time. The percentage
of multiscale bases that need to be updated is relatively small (a few percent of
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the total number of the bases). The upscaling of the saturation equation based on
moment closure argument can be generalized to the two-phase flow as long as the
fluctuation of the velocity field u’ can be accurately recovered from the coarse grid
computation [35, 19]. As we discussed from the previous subsection, this is indeed
one of the main advantages of the multiscale finite element method.

It remains to develop a more systematic multiscale analysis to upscale the
two-phase flow with heterogeneous media. While the upscaled saturation equation
based on moment closure approximation is simple and easy to implement, it is hard
to estimate its modeling error as the fluctuations in velocity or saturation are not
small in practice. With Dr. Danping Yang [31], we have recently developed a new
multiscale analysis for convection dominated transport equation which allows us
to upscale the saturation without making the moment closure approximation. It is
based on a delicate multiscale analysis of the transport equation. We are now trying
to generalize the analysis to the two-phase flow [50]. The objective is to derive a
systematic upscaling for the two-phase flow in heterogeneous porous media which
do not have scale separation or periodic structure.

4 Nonlinear homogenization for 3-D Euler equations

The upscaling of the nonlinear transport equation in two-phase flows shares some
of the common difficulties in deriving the effective equations for the incompress-
ible Euler equations. With Dr. Danping Yang [30], we have recently developed
a systematic multiscale analysis for the incompressible 3-D Euler equations. The
understanding of scale interactions for 3-D incompressible Euler and Navier-Stokes
equations has been a major challenge. For high Reynolds number flows, the de-
grees of freedom are so high that it is almost impossible to resolve all small scales
by direct numerical simulations. Deriving an effective equation for the large scale
solution is very useful in engineering applications, see e.g. [45, 36, 12, 25]. In de-
riving a large eddy simulation model, one usually needs to make certain closure
assumptions. The accuracy of such closure models is hard to measure a priori.
It varies from application to application. For many engineering applications, it is
desirable to design a subgrid-based large scale model in a systematic way so that
we can measure and control the modeling error. The main difficulty in deriving
effective equations systematically is the strong nonlinear interaction of small scales
and the lack of scale separation. Our ultimate goal is to develop a new multiscale
analysis that can effectively average infinitely many scales without assuming scale
separation. The challenge is to do this in such a way that we can account for the
modeling error systematically when averaging out small scales.
We consider the 3-D incompressible Navier-Stokes equation

uj + (u®- V)u® + Vp* =v Au, (19)
V-uf =0, (20)
with multiscale initial data u®(x,0) = u§(x). Here u®(¢,x) and p°(¢,x) are velocity

and pressure respectively, v is viscosity. For the time being, we consider only
the infinite domain and assume that the solution decays to zero sufficiently fast at
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infinity. As a first step, we assume that the initial condition has scale separation and
periodic structure. That is, we assume that u(x,0) = U(x) + W(x, X). Moreover
we assume that U and W are smooth, W(x,y) is periodic in y and has mean zero.
In order for the small scale solution to survive the diffusion, the viscosity v must be
of the order O(€?). In this case, the diffusion term will not enter the homogenized
equation nor the cell problem. To simplify the derivation, we consider only the
inviscid case with v = 0. The question of interest is how to derive a homogenized
equation for the averaged velocity field as e — 0.

The homogenization of the Euler equation with oscillating data was first stud-
ied by McLaughlin-Papanicolaou-Pironneau (MPP for short) in 1985 [39]. Since
the Euler equation is nonlinear and nonlocal, it is not clear whether the solution
will preserve the two-scale structure of the initial data dynamically. Intuitively,
nonlinear interaction may generate new scales dynamically. Therefore constructing
an appropriate multiscale expansion for the nonlinear Euler equation is a difficult
task. Motivated by some physical argument, MPP made the assumption that the
small scale oscillation is convected by the mean flow. Based on this assumption,
they made the following multiscale expansions for velocity and pressure:

u‘(x,t) = u(x,t) + w(x,t, 0():’ 2 , z) + euy (-, @7 Z) +
o(x,t) t o(x,t) t
pet) = oo, ) + e t, PO by g OO0 by

where w(x,t,y,7), wi(x,t,y,7), m, and p; are assumed to be periodic in both y
and 7, and the phase 6 is convected by the mean velocity field u

%+u-vx0:0, 0(x,0) =x. (21)

By substituting the above multiscale expansions into the Euler equation and equat-

ing coefficients of the same order, MPP obtained a periodic cell problem for w(x, t,y, 7),

u;(x,t,y,7), m, and p;. On the other hand, it is not clear whether the resulting
cell problem for w(x,t,y,7), etc has a solution that is periodic in both y and 7.
Even if such solution exists, it may not be unique. Additional assumptions were
imposed on the solution of the cell problem in order to derive a variant of the k — e
model. Instead of using the rate of energy dissipation €, they used the mean helicity
together with the mean kinetic energy k to derive a closure for the mean velocity
equation.

The idea of introducing a phase function in the multiscale expansion to de-
scribe the propagation of small scale velocity field is ingenious and insightful. If
one naively looks for multiscale expansion in the form of w(¢,x,t/¢e,x/€), then one
would not be able to derive a well-posed cell problem for the (7,y) variables (here
T =t/e,y = x/€).

With Dr. Danping Yang [30], we have recently revisited this problem. Our
study shows that the phase variable 8¢ should be convected by the full oscillatory
velocity field, u®:

00¢
ot

+u-Vif°=0, 0x,0)=x. (22)
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This becomes obvious when we formulate the 2-D Euler equations in vorticity form

(i, 1) = (0 (x, ), 151

)5

where @ is the initial vorticity. Similar conclusion can be drawn for the 3-D Euler
equation, see below. On the other hand, it is not clear what is the multiscale
structure of 6°(x,t) since its structure is coupled to the multiscale structure of
u¢. By allowing ¢ develops multiscale structure, we embed multiscale structure
within multiscale expansions. This approach is quite nonconventional. To derive a

well-posed cell problem is quite a challenge. If one naively expands 6¢(x,t) into
x t
af(xat) :00(X7t)+601(xat7€72) +, (23)

it will lead to generation of infinite number of scales at ¢ > 0. On the other hand,
it is clear that if we substitute a multiscale expansion of ¢ into the velocity field,
the first order correction term #; would have O(1) contribution to the oscillatory
velocity field, w, which in turn will contribute to the averaged solution u.

Lagrangian description of the Euler equations

The key idea in our multiscale analysis for the Euler equation is to reformulate
the problem using 6¢ as a new variable. The multiscale structure of the solution
becomes very apparent in terms of the §¢ variable. This amounts to using a La-
grangian description of the Euler equations. Specifically, we introduce a change of
variables from x to a:  a = 6°(x,t). It is easy to see that the inverse of this map,
denoted as x = X¢(a, t), is the Lagrangian flow map:

0X¢(a,t)
ot

In terms of the a variable, the vorticity of the 3-D Euler equation has a simple
expression (see, e.g., page 32 of [11]):

=u‘(X(a,t),t), X(a,0)=a. (24)

oX¢ o'
(J‘)E()(€ (a7 t)7t) = —(Oé,t)(:)()(a, -

da €
where w® = V, x u® is vorticity, and @y is the initial vorticity. Velocity can be
computed from the stream function ¢, i.e. u® = V, x ¢¢. Further, the stream
function, ¢, satisfies

) (25)

— At = wE .

In terms of the a variable, we have

0X¢ . @
—Va - -/ALATVOﬂ/)6 = o (aat)wO(aJ g) > (26)
where A = (88—)5)_1. Using |%—)g| = 1, we can express A in terms of %—’S. Now

we can see clearly that the small scale solution is propagated along the Lagrangian
trajectory as a function of a/e.
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4.1 Multiscale analysis in Lagrangian frame

The objective of our multiscale analysis is to obtain an averaged equation for the
well-mixing long time solution of the Euler equations. For this reason, we look for
multiscale solutions of the form (y = a/e, T = t/e):

v = 9Ot a) + epM(t, a1 y) + O(E)
X = XO (¢t a) + XY (t, o, 7,y) + O(€?),

where (1) and X are periodic functions with respect to y and have zero mean.
By performing careful multiscale analysis, we can obtain the homogenized
equations for both 2-D and 3-D Euler equations. For simplicity, we only state the
main result for the 2-D Euler equation. In the 3-D Euler equation, there will be
interaction between the small scales in the Jacobian of the Lagrangian flow map
and the multiscale initial vorticity, which reflects the effect of vortex stretching.
Such effect is absent in the 2-D Euler equation. For the 2-D Euler equation, the
homogenized equations for X(©, X1 and 4(©, () are given as follows:

X — v, XOvLy® =09, XO| _;=q, (27)
0. X" — vy XW(Vyp@ 4+ viy) = v XOVIyp® XM, =0, (28)

Vy - (A AT Vyp ™) + Vy - (Ag AL Vop @) = wo, (29)
Vo - ((AoADIVath @) = (w1) = Va - (Ao Af Vy1p™)), (30)

where VL = (=045, 00, ), wo = curly W(X,y), w1 (y) = curly U(x) + curly W(x,y),
Ap = Vo X© 4+ v XD is the leading order term in the expansion of the Jacobian
matrix of A4, and (f) stands for averaging of f with respect to y over one period.
It can be shown that |Ag| = 1, which implies the well-posedness of the elliptic
equations for the stream functions 4/° and ¢'. Note that equation (29) is a second
order elliptic equation for the first order corrector ¢(!) as a function of y with
periodic boundary condition. It plays a similar role as the cell problem for the
standard elliptic homogenization. Since the vorticity is of order 1/e, it enters the
cell problem as a forcing term in the right hand side of the elliptic cell problem. As
in elliptic homogenization, we can factor out the slowly varying component V ,t)(%)
from equation (29) for 1)), Then we can derive an effective equation for 1)(°) whose
effective coefficient is defined through a cell problem that is independent of 1(®).

The elliptic problems (29)-(30) for 4(® and ) are clearly solvable with
appropriate boundary condition. However, to avoid the secular growth of the mul-
tiscale expansion, we need to ensure that €X(1) — 0 as € — 0. For this purpose, we
need to derive a solvability condition for the X(1) equation (28).

A solvability condition

As we mentioned above, we need to ensure that eX(1(-, -, 2, %) —0ase—0.
Let w = V;wﬁ(l) be the cell velocity, and Y (y, ) be the cell characteristic, i.e. for
each « and ¢ fixed, Y (y,7) satisfies

dy

& =~ Y0 =y
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We decompose the cell velocity field into two parts:
W(t7 Q, T, Y) =W (ta Qa,T, y) + Wy (ta Qa,T, y)

To avoid the secular growth term, we need to remove the non-mixable part of the
cell velocity, wo, which corresponds to

1 T
s s [ walt, i, Yy, m))dr > n(t,a,y) 0.
0

In another word, we will use the following projection method for w:

1 /T
w(t,a,1,y) <+ W(t,a,T,y)—limT_moT/ w(t,a,7,Y(y,7))dr .
0

For the Navier-Stokes equations, viscosity and random forcing play the role
to eliminate the non-mixable component of the flow velocity. Eliminating this non-
mixable component is essential for the flow to be fully mixed, and to reveal certain
universality and scale similarity. For inviscid Euler equations without external
forcing, the projection method provides a systematic way to eliminate the non-
mixable component. It can be also viewed as an acceleration method for the flow
to be fully mixed.

4.2 Multiscale analysis in the Eulerian frame

For computational purpose, it is more convenient to derive a homogenized equa-
tion in the Eulerian formulation. As we see from the multiscale analysis in the
Lagrangian frame, the key is to introduce a new phase variable, 6¢(¢,x), to charac-
terize the propagation of the small scales in the fluid flow. This phase variable is
convected by the full flow velocity. The multiscale structure of the solution becomes
apparent using this new variable. In deriving the multiscale analysis in the Eulerian
frame, we use the new phase variable to describe the propagation of the small scale
component of the velocity field, but use the Eulerian variable to describe the large
scale averaged solution.

One advantage of this approach is that we can characterize the nonlinear
convection of small scales exactly using this phase variable and turn a convection
dominated transport problem into an elliptic problem for the pressure. Thus, our
multiscale finite element methods for elliptic problems described earlier can be used
to obtain a multiscale approximation for the small scale pressure equation.

Guided by our multiscale analysis in the Lagrangian frame, we look for mul-
tiscale expansions of the velocity field and the pressure of the following form:

u (t7 X) = ll(t, X) + W(ta X, T, Y) + eu(l)(t, X, T, Y) + 62U(2) (ta X, T, y) T (31)
pé (t7 X) = p(ta X) + q(t7 X, T, y) + Cp(l) (t7 X, T, y) + 62p(2) (t7 X, T, y) T (32)

where 7 = t/e and y = 6°(t,x)/e. We assume that w, and ¢ have zero mean with
respect to y and 7. Note that we do not assume that w and ¢ are periodic in 7.
The phase function 8¢ satisfies the following evolution equation:

0; +u*-Vo°=0, 6°0,x)=x. (33)
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Based on the multiscale analysis in the Lagrangian frame, we can show that #¢ has
the following multiscale expansion:

6 = 0(t,x) + 6V (¢, x, 7, %) 4onn (34)

It is important that the multiscale expansion for 8¢ is defined implicitly. If one tries
to expand ¢ as a function of x/e and /e as in (23), one will not be able to obtain
a well-posed cell problem.

Expanding the Jacobian matrix, we get V,0¢ = B(®) +eBM) +. ... Substituting
the expansion into the Euler equation and matching the terms of the same order,
we obtain

.
el w+BO v,g=0, (35)
€ : guW +B(0)Tvyp(1) =

- <8t(u +w)+((u+w) -Vy(ut+tw)+Vs(p+q) + B(I)Tqu) , (36)

where B© " stands for the transpose of B0,

Further, we note that a necessary condition for the solvability of u(!) is that
the right hand side of (36) has zero mean in with respect to y and 7. Since w and
q have zero mean in y and 7, we obtain the following homogenized equation for u
by averaging the right hand side of (36) with respect to y and T,

Su+u-Vyu+ ((w-Vy)w)* + (B(I)Tqu)* = —V.p, (37)

where (f)* stands for average of variable f with respect to y and 7. Moreover, we
can show by using the weak formulation of the Euler equation and the multiscale
expansions of u¢ and p¢ that (B(l)Tqu)* = (wV,-w)*. Thus the effective equation
for u becomes

Ou+u-Vyu+V, - (ww)* =—-V,up, ul;= =U(x), (38)
V-u=0. (39)

where ww is a matrix with entry in the ith row and jth column equal to w;w;.
We remark that it is essential to combine the multiscale analysis in the strong
form with the weak formulation of the Euler equation in order to derive a closed
homogenized equation. The reason is because we allow multiscale structure in 6¢
within the multiscale expansion of the velocity field. If we consider only coefficient
equations derived by substituting the multiscale expansions into the Euler equation
and matching each order of €, we will lose certain important conservative properties
of the original Euler equation. We will not be able to derive a closed set of homog-
enized equations. In some sense, the weak formulation provides us with additional
information that complements the multiscale analysis using asymptotic expansions.
The equation for the small scale velocity field w is given by (35):

Orw + B(O)Tqu =0, 7>0; (40)
T
(B(O) vy) -w =0, W|'r=0 = W(x,y). (41)
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. T . .
Moreover, it can be shown that B(® Vyq has zero mean in y and 7 respectively.
This guarantees the existence of a periodic solution for w. Moreover, w will be
T
bounded for large 7 since B(*) V¢ has zero mean in 7.
Further, we can derive the evolution equations for 8 and (") as follows

0+ (u-V,)8 =0, 6lio=x, (42)

and
0,60 + (w-V,)0 =0, 6]~ =0. (43)

From 6 and 6V, we can compute the Jacobian matrix B(®) as follows:
B© = (1-D,6M)"'v,6 . (44)

As in the Lagrangian case, we also need to impose a solvability condition for
61). The condition is the same as before, i.e. the T-average of the cell velocity w
must be zero in order for ef(Y) — 0 as e = 0 (recall 7 = t/e). For this reason,
we must project the non-mixable part of the cell velocity to zero, i.e. we apply a
projection on w to filter out the component of w that has nonzero mean in 7:

1 T
w +— w— lim —/ w dT.
T—oo T 0

In practice, this projection step can be carried out locally when we integrate the
equation from t,, = nAt to t,41 = (n + 1)At, with At being the coarse grid time
step. In this case, the time average window width T should be set to T' = At/e.

The equation for the first order correction, u!), is given by satisfying the
Euler equation to O(1)

d-u) + B(O)Tvyp(l) =— (at(u +w)+ (u+w)-Vy(u+w)+V,(p+4q) + B(I)Tqu) ,

l-1(1)|‘I'=0 =0 ’

BT uV =V, w- (BD'V,) w

We have used the necessary condition for the solvability of u(*) to derive the ho-
mogenized equation for u. If u{") exists and remains bounded, then it will not affect
the homogenized equation for u and the cell problem for w. To establish the con-
vergence of the multiscale expansion, we need to justify that eu) — 0 as e — 0. It
is easier to study this issue by transforming the problem into the Lagrangian frame.
In the Lagrangian frame, the coefficients in the multiscale expansion of the stream
function are governed by elliptic equations (see (29)-(30)), whose solvability can be
analyzed more easily. The velocity field in the Eulerian frame can be expressed in
terms of the Lagrangian stream function and the flow map. The solvability con-
dition for u can be derived from the corresponding cell problem for the second
order correction of the flow map, X®.

The above multiscale analysis can be generalized to problems with general
multiscale initial data without scale separation and periodic structure. In fact, we
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have recently developing a multiscale analysis for the incompressible Euler equation
with an infinitely number of scales that are not separable [32]. For initial velocity
that has an infinite number of scales, the Fourier coefficients of the initial velocity
must satisfy certain decaying property in order to have a bounded energy. We make
only a very mild decay assumption in the Fourier spectrum of the initial velocity
field, i.e. |ig| < C|k|~(1*9) for large |k|, where § is a small positive coefficient. This
decay property is consistent with the Kolmogorov spectrum in the inertial range.
The analysis developed for the two-scale velocity field provides us with the critical
guideline for this more difficult case.

Another way to generalize the above multiscale analysis for problems with
many scales is to develop the discrete homogenization analysis. Let H denote
the coarse grid mesh size, and h denote the fine grid mesh size. The discrete
homogenization is to derive a coarse grid equation that captures correctly the large
scale behavior of the well-resolved solution at the fine mesh. By setting € to H, and
rescaling the subgrid cell problem by H, we can formally decompose the discrete
solution into a large scale component plus a subgrid scale component. The large
scale solution corresponds to the “numerically homogenized” solution, and the local
fine grid problem corresponds to the small scale cell problem represented by the fine
grid solution within each coarse grid block. We can carry out a similar multiscale
analysis as before and derive essentially the same set of effective equations. Instead
of using periodic boundary condition for w and ¢ as a function of y, we need to
develop a microscopic boundary condition at the boundary of a coarse grid block.
Since the cell problem is elliptic, we can apply the over-sampling technique to
alleviate the difficulty associated with numerical boundary layer near the edge of
the coarse grid block.

We are currently performing careful numerical study to validate our multi-
scale analysis by comparing the large scale solution obtained by our homogenized
equations with that from a well-resolved direct numerical simulation. An impor-
tant feature of the resulting cell problem for w is that there is no convection in the
fast variable because we treat convection exactly by using the new phase variable.
Therefore we can use relatively large time step in 7 when we solve the cell problem.
Efficient elliptic solver such as multigrid method [53] can be used to solve the cell
problem at each time step. Moreover, when the flow is fully mixed, we expect that
the space average of the Reynolds stress term, i.e. (ww), will reach to a statis-
tical equilibrium relatively fast in time. As a consequence, we may need to solve
for the cell problem in 7 for only a small number of fast time steps to obtain the
space-time average of the Reynolds stress term, (ww)*. Moreover, we may express
the Reynolds stress term as the product of an eddy diffusivity and the deforma-
tion tensor of the averaged velocity field, as in the large eddy simulation models
[45, 36, 12, 25]. For fully mixed homogeneous flow, the eddy diffusivity is supposed
to be a constant in space. In this case, we need only to solve one representative
cell problem and use the solution of this representative cell problem to evaluate the
eddy diffusivity. This would give a self-consistent coarse grid model that couples
the evolution of the small and large scales dynamically.
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