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Axisymmetric type II blowup solutions to the three dimensional
Keller-Segel system

Thomas Y. Hou! Van Tien Nguyen! Peicong Song!

Abstract
We construct axisymmetric solutions to the three-dimensional parabolic-elliptic Keller-Segel system
that blows up in finite time. In particular, the singularity is of type II, which admits locally a leading order
profile of the rescaled stationary solution of the two-dimensional system. Additionally, mass concentration
occurs along a one-dimensional ring in the plane. In the analysis, we rely on an approximate solution of
the eigenproblem associated with the linearized operator around the stationary solution as well as the
modulation dynamics to control the perturbation function and derive the accurate blowup rate.

1 Introduction

1.1 Setting of the Problem

We consider the three-dimensional Keller-Segel system

{atu(x, ) =V (Vu(x,t) —ux ) Vo, (x, 1) (x,t) € RS x R,

—AD,(x,t) = u(x,t), (8dKS)

where the 3D Poisson field is written as ®, = ﬁ‘x‘ * u. More generally, one can also consider the d-
dimensional Keller-Segel system, which we will discuss soon. The Keller-Segel system is a mathematical
model of Chemotazxis, a biological phenomenon describing the motion of organisms induced by chemical
signals, for example, the motions of slime mold Dictyostelium discoideum and the bacteria Escherichia coli.
It was first established by Patlak [28] and Keller & Segel [22]. We refer to [21] and [7] for a survey of this
model as well as related mathematical problems. Since the Keller-Segel system (in general dimension d)
takes a divergence form, its strong solutions preserve the total mass:

/ u(x,t)dx:/ u(x,0)dx:=M Vit>0.
Rd R4
In addition, the solutions admit an important scaling symmetry (besides the translation symmetries in space
and time): if u(x,t) is a solution, then so is
ur(x,t) := Nu(dx, \?t),
for any A > 0. We say that the solution u blows up in finite time T, if

lim sup |[u(t)|| oo (ra) = +00.
t—T

We say that the blowup at time T is of type I, if there exists some constant C' > 0, such that
limsup (7' — &) [|[u(t)|| oo (ray < C.

t—=T
Otherwise, the blowup is called type II. The aim of this work is to construct a type II finite time blowup
solution to the 3D system (3dKS) with its mass concentrating along a ring on the plane, i.e. {(z1,22,0) :
2% 4+ 23 = R?} with some R > 0.
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1.2 Previous Results

There are abundant results on both the well-posedness and singularity formation of Keller-Segel system in
dimension d. In particular, the blowup mechanisms can vary significantly in different dimensions. The case
d = 2 is called L'-critical, as the scaling transformation u — u, preserves the L'-norm of u. On the other
hand, the case d > 3 is called L'-supercritical, and the scaling transformation preserves the L% 2-norm.
The case d = 2. In the study of the 2D Keller-Segel system, the stationary state solution plays a fundamental
role:

8
. 1.1
(1+a% 4 23)? (1.1)

whose Poisson field is ¥y = —2log(x? + 23). It turns out that [ U = 8 is the critical mass threshold that
distinguishes between the global existence and finite time blowup. For M < 8, there is global existence of
solutions that diffuse to zero, for example, see [4, 1]. For M = 8, there exit infinite time blowup as well as
global regularity results [3, 14, 2]. For M > 8, there are various concrete examples of finite time blowup
results. A well-known stable single blowup takes the form

)= 3+ i) (50w =TT eV Tew

Uz, x2) :=

with @ — 0 and x*(¢) — x* as t — T in certain topology. Formal asymptotics and rigorous proofs can be
found in [20, 35, 31, 9, 8, 5]. Our work is closely related to this line of research. Indeed, the 3D axisymmetric
Keller-Segel system resembles a 2D one near the center of the blowup ring, which allows us to locally recover
the same blowup mechanism (in particular, the same blowup rate). See the next section for a detailed
discussion. There are other blowup scenarios, for example, the unstable ones in [8], as well as the multiple
collapsing blowup [33, 11]. It is worth mentioning that for the 2D Keller-Segel system there is no type I
blowup (for example, see Theorem 10 in [37]).

The case d > 3. Similar to the 2D case, there is a threshold on ||u(0)|| /2 that distinguishes between global
existence in time and finite time blowup. For small initial data, global existence results can be found in
[13, 36]. Different from the d = 2 case, for d > 3 there exist type I blowups, see [19, 34, 27, 12]. There is
also a type II radial collapsing sphere blowup, which was first formally constructed in [18] and then proved
rigorously in [10]. In this scenario, the blowup profile is a traveling wave solution of the viscous Burgers’
equation.

1.3 Statement of the Result

In (3dKS), we consider the axisymmetric setting and adopt the cylindrical coordinate

u=u(rz,t), r=\/a?+23, z=us.

By extension with 0, we can view u(r, z) as a 2D function, i.e., u(r, z) : R? — R. Denote B(l) := {(z1,22) €
R? : 22 + 23 < [?} to be the ball with radius [ > 0 in R?. For any function f(z1,22) : R*> — R, we define the
norm

3
1flle = fle sy + [1f(@1,22)(1+aF + 23)% || oo w2\ B1))-
The solutions we construct lie in the following function space:
E:={u:R* = R||ullg < +oo}.
Note, in particular, that & C LP(R?) for any p > 3.

Theorem 1 (Axisymetric type II blow up for the 3D Keller-Segel system). For any T > 0, there exists
initial data ug in the function space € and Ro > 0, such that the following holds for the associate solution
to (3dKS). It blows up at finite time T according to the dynamic

u(r, z,t) = )\21(t) (U +a(t)) (Tj\(i]:)(t), ﬁ) with u(r, z,0) = ug (r — Ry, 2),




such that:

e Law for the blowup scale:
A(t) = VT — e VG400 ooy (1.2)

e (Convergence to the stationary state profile:

lz(®)||le = 0 ast — T;

e Convergence of the blow up radius: there exists R. = R.(T,ug,Ro) > 0, such that R(t) — R. as
t—T.

Comments on the result.

(i) A new blowup scenario for the Keller-Segel system. To the best of our knowledge, this is the first blowup
result of this kind for the Keller-Segel system, whose leading order geometry is nonradial with a 1-dimensional
singular set. The solution we construct here converges in distribution to a Dirac measure supported on a
1-dimensional circle on the s = 0 plane. It is worth noting that similar blowup phenomenons occur in
other systems, for example, harmonic map flow into S? [16] and supercritical heat equation [15]. In our
case, the partial mass technique does not work and the linearized operator is essentially nonlocal. Indeed,
in the analysis we need to derive a sharp control on the sizes of the perturbation in different regions so that
they will not interfere with each other in order to close the bootstrap argument. It is interesting to see that
while the leading order dynamics near the blowup ring resembles the 2D Keller-Segel system, the one away
from it is still a 3D one and should be dealt with separately. This work provides a method of lifting a lower
dimensional blowup to a higher dimensional space, which may be applied to other systems.

(ii) Simplification of the spectral analysis. The spectral information of the linearized operator .£¢ (defined
in (1.6)) in the radial sector played an essential role in the analysis of [9, 8]. However, as shown in [9], the
precise construction of the eigenfunctions can be a heavy task. Since the eigenfunctions are only used to
construct an approximate solution, it suffices to only solve the eigen problems approximately, which greatly
simplifies our analysis. Indeed, through a simple asymptotic matching procedure, we obtain the first two
approximate eigenfunctions of .#$ with small enough generated errors, which are sufficient for our analysis.
See Proposition 1 for details. It is worth noting that a similar technique has been applied in a recent work
[11] to construct a finite time singularity formed by the collision of two collapsing solitons for the 2D Keller-
Segel system.

(ii) A robust approach. In our analysis, we completely avoid using the partial mass setting and control
both the redial and nonradial parts of the perturbation at the same time. We remark that the analysis
in [8] crucially used the partial mass setting for which the nonlocal operator .£¢ was transformed into a
local one which is self-adjoint in a weighted L? space. In our case, by enforcing suitable local orthogonality
conditions, we are able to obtain equivalence of norms as well as coercivity of the linearized operator for the
whole perturbation function. See Sect.2 for the discussion. Since the strategy provided here is simple and
not restricted to the radial sector, we expect it can be implemented to other problems.

(iv) Adapted inner product and coercivity of the linearized operator. The coercivity of the linearized operator
plays a crucial role in the control of the perturbation around the blowup ring. In this region, we deal with
a two-scale problem — the larger parabolic scale and the smaller soliton scale. The linearized operator .£$
has different limits in these two scales (partly due to the presence of the scaling term), each of which has its
own coercivity structure. Therefore, in order to obtain coercivity in both scales (i.e. the “global” coercivity)
we design a mixed inner product (see (2.22)) that is compatible with both structures according to the idea
of asymptotic matching. Moreover, it preserves norm equivalence for functions with the local orthogonality
conditions, which is important for the energy estimates. See Proposition 2 for details.

(v) Topological argument and stability restriction. In this work, we are not able to obtain stability results.
This relates to the fact that we only use rough information about the spectrum of the linearized operator.
Specifically, the ODE for certain modulation parameter is unstable, which can be controlled only with a
careful choice of initial data (i.e., an topological argument). See Sect.4 for details. With more refined



analysis (for example, that in [9, 8]), it is possible to establish stability at least on the axisymmetric level,
which is intuitively true as the leading order dynamics around the blowup ring is a 2D one which has already
been proved stable. This stability restriction can be viewed as “the price we pay for the simplification”.
It, however, remains unclear whether there is stability for general non-axisymmetric perturbation. This
interesting open question can be left as a future work.

(vi) Connection with the Nonlinear Schrédinger equations (NLS). Finally, we remark on the connection
between the Keller-Segel system and the Nonlinear Schrodinger equations:

0 (x, ) + AY(x, 1) + (x, 1) [Y(x, 1) =0, xeR% (NLS)

Here we summarize some blowup phenomenons of NLS that shares similarity with the Keller-Segel system.

The case p — 1 = % in (NLS) is called (L?-)critical and blowup occurs once the mass (i.e., [|¢/||12) is above

certain threshold. A stable blowup mechanism in this case enjoying the so-called “loglog” law can be found
in [29, 24, 23, 26]. In the supercritical cases p — 1 > %, there exist standing ring (referring to the sphere in
this context) blowup solutions (see [30, 32]) as well as collapsing ring blowup solutions (see [25]). It is worth
noting that all the blowup solutions mentioned above converge in a certain sense to some 1-dimensional
ground state solutions of (NLS). We also recommend [17] for a comprehensive review on NLS.

Notations. Unless otherwise specified, differential operators such as A, V and V- are understood as 2D
ones, and [ denotes the integration on R?. We denote the right half plane in R? as H := {(z1,22) €
R? : z; > 0}. For any function f(r,z) : H — R, we can interpret it as a 3D axisymmetric function via
f(x1,z0,23) == f(\/22 + 23, x3), and define its 3D Poisson field

1 N

Ppi=—
f 47T|(£L‘1,£L‘2,£L‘3)| *

where |(21,...,2,)| :== /2% + - - - + x2 denotes the standard Euclidean norm on R™. On the other hand, we
can extend f to some f:R? — R via a small modification on the boundary, for example, the one described

in (A.1). Then, we can define the 2D Poisson field for such function as

U= —% log(|(z1,x2)|) * f-

With a slight abuse of notation, we also use ® and ¥ to denote the Poisson fields for functions on R? and
R? (with suitable decay), respectively. We define the difference of the 2D and 3D Poisson fields as

Of :=Pp — Uy,
Now for v > 0, we denote
U,(x1,x2) := %U(zl/y, xa/V),
where U is the stationary solution defined in (1.1), and the 2D differential operator

_ 4
dv

1

Af(z1,22) = s f(@/v,22/v) = 2f + 2200, f + 2200, f = V - (21, 22) )-

v=1

Define x € C°(R?) to be a radially symmetric positive cutoff function with:

1 for |x| < 1,
M@—{ x| <

0, for |x| > 2.

With a little abuse of notation, we will denote x = x(|x|). Given two fixed constants 0 < {, < 1 < (* < 400

(which will be specified later in the analysis) and a small parameter v > 0, we denote (¢ := |x])
X(€) = x(¢/¢); X" (€)= x(¢/¢7),
xv(€) == x(¢/|logvl), Xv(€) := x(Cv/[logvl). (1.3)



We define the norms:

2,22 2 r2
T T
1= [ R e = [

where g, is the exponential weight function defined in (2.20). We denote the standard L?(R?) inner product
as (f, g) = fR2 fg. For any two positive quantities, A; < Az means that there exists some universal
(independent of any parameters in this problem) constant C > 0, such that A; < C'Ay. Similarly, 4; =
As means that there exists universal C' > 0, such that %Al < Ay < CA;. Universal constants will be
denoted generically as C' or §, the specific values of which may change from line to line. We use brackets to
specify the dependence of constants on other quantities. For example, C(A1, A3) will denote (generically) a
constant depending only on A; and As, the specific value of which may also vary in different places. The
expression A; = O(Asz) means that there exists a universal C, such that |A;| < CAy. We use ~ to denote
“asymptotically equivalent” under certain limiting process (which will always be specified), i.e., A; ~ A
means lim A;/As ~ 1.

1.4 Strategy of the Proof

Now we briefly describe the main steps of the proof of Theorem 1.
Step 1: Renormalization and linearization of the problem. By the scaling invariance of the solutions, we first
make change of variables according to the parabolic scaling and the standing ring scenario:

1 —R(t —R(t O B
u(r,z,t)——w<7r R(),E,T>, o= MY R(), Z:= i, T:/ ——— dt,
o M

2 poop ju I 2(t)
where p(t) := /T —t is the parabolic scale with blowup time 7' > 0. Define ¢ := v/72 + z2. Then, the
system for (w, ®,,) is

Orw=V-(Vw—wVd,) + (Orw — wOr®,,) — fAW + %[%w B:= —% =

1 1
T+R/u 2’

(a2 2 1 - _
<8’“+8z+7r+3/u8’“ B, = w.

Since the blowup solutions we construct are of type II, there exists a smaller scale v(t) — 0 as t — T,
beyond the parabolic scale. Such scale, named the soliton scale (or the blowup scale) will serve as a crucial
asymptotically small parameter in our analysis. Specifically, we consider the soliton change of variables:

1 Tz ds 1

r.z — _F _2 _
w(TVZ?T)_ﬁU (;7;78)7 pi= ;7 5— ;7 d_T_ﬁ

(1.4)

Define 7y := y/p? + £2. Note that ®,(p,&) = D, (7, Z). Then, the system for (v, ®,) is

1

dsv=V-(Vo—-ovVd,) + ————
( )t TR

R-
(8,0 — v0,®,) — (n+v°B) Av + V78PU ni=——,

v = .

1
- 824—324—78)@
( S p R ()
The 3D system (1.4) can be approximated by a 2D one in the parabolic scale (in a sense that will soon become
clear), i,e., in the region around the blowup ring (and away from the axis of symmetry). Linearization of
the system (1.4) around the stationary solution U, gives the leading order linearized operator:

1 1
ST = 25,0~ N = V(U AED) ~ gAS, with ] = vy (1.6)
Equivalently, the linearized operator around U for the system (1.5) is
1 1
Lf=LAf - 5zﬂAf =V - (UV(AS)) — 5u2Af, with A f = % — Uy



The core of the analysis lies within the parabolic scale (which includes the smaller soliton scale). We remark
that while most of the time our analysis is done using the parabolic variables, it is equivalent and sometimes
more convenient to work with soliton variables.

Step 2: Construction of approximate solution.

The blowup solutions we construct converge locally to the steady state profile U around the blowup ring.
More specifically, we will show that w in (1.4) decomposes as U, plus some controllable perturbation. How-
ever, due to the instability of the linearized operator in certain directions, orthogonality conditions need to
be imposed on the perturbation. This is done by the introduction of modulation parameters, the dynamics
of which gives us the blowup rate.

First of all, we construct the first two approximate eigenfunctions of the linearized operator .£$, correspond-
ing to the positive and “almost zero” eigenvalues, respectively:

1
Lipiy=1—i+5—— | piv+Ri, i=0,1,
o= (1204 gy ) oo+ R

where R; are some small errors. Then, exploiting the cancellation of ¢, — ¢g,,, we decompose the solution
as
w="U, + a(‘Pl,v - ‘PO.,V) +e,

where a = a(7) is a modulation parameter. Thus, we can write out the evolution for e:
Ore = ZLSe+ L(e)+ NL(e) + E, (1.7)

where both the extra linear term L(¢) and the nonlinear term N L(e) will be small in certain sense. It is
essential that e satisfies the local orthogonality conditions (We recall the definition of x. in (1.3)):

/ ex«(Q) drdz = / eAU,x«(C) drdz = / eVU,x«(¢) drdz =0, (1.8)
R?2 R?2 R2

which is preserved by the modulation parameters together with the even symmetry in Z-direction of the
solution. Through a study of the linearized operator, we can define an adapted inner product (-, -) . (see
(2.22)), such that its corresponding norm is equivalent to a weighted L? norm for any function satisfying
the orthogonality conditions (1.8). Moreover, for such functions, .Z$ (up to a slight modification) will be
coercive under the adapted inner product, in the sense of (2.37). This coercivity is crucial in the energy
estimates of €.

Step 3: Modulation dynamics and energy estimates. The generated error in (1.7), consisting mainly of the
modulation parameters, admits a further decomposition:

V,*x

R, .
F = MOdogﬁ()J, =+ M0d1<p111/ + —8;Ul, =+ E,
1%

where Mod; and E are terms defined in Proposition 4. Note that we have three modulation parameters
at hand, namely v(7),a(7) and R*T(T), which correspond precisely to the three orthogonality conditions in

(1.8). Projecting (1.7) onto these three directions together with the bootstrap assumptions on e yields the
modulation equations:

Vr _ v?
|M0d0| = ’GT — 2G/ﬁ (1 + ﬁg(v)) - 16V2 (7 - B)’ =0 (m) 5
a(r V2
IMod, | = \—aT + 85 =0 ()

log(v)
’ R,
n

_v
[logv] )2

the solution of which yields the blowup law given in (1.2). The energy estimates for € are done separately
in the inner zone (i.e., ¥ + 22 < 1) and the outer zone (i.e., #2 + 2% > 1). In the inner zone, a weighted
H'-norm of ¢ is controlled, thanks to the coercivity of .Z$. In the outer zone, we come back to the original



3D structure and control a weighted L°°-norm of € via the dissipative structure of the system. The estimates
of the two zones communicate in the intermediate area via an H?2-control of ¢ resulting from the parabolic
regularity of the system. Finally, combining the modulation equations and the energy estimates, we are able
to close the bootstrap argument for both the modulation parameters and the energy norms of ¢, and the
global-in-time (referring to the renormalized time variable 7) control of & implies the finite time blowup of
the solution of the original Keller-Segel system.

This work is organized as follows. In Sect.2, we construct the first two approximate eigenfunctions of the
linearized operator, and then explore its coercivity properties. Sect.3 is the heart of the analysis, including the
setup of the bootstrap assumptions, derivation of the modulation equations, and energy estimates. Finally,
we close the bootstrap argument in Sect.4 and conclude the proof of the main theorem.

2 Properties of the linearized operator

This section is devoted to the study of the linearized operator
L5 =V - (UNMf) = BAS = Z5,f — BAS.

First of all, we construct the first two approximate eigenfunctions of .Z¢ in Proposition 1, which will be
important building blocks of the approximate solution of the Keller-Segel system. We also describe their
asymptotic behaviors and generated errors, which will be helpful in the energy estimates. Next, we study the
operator .Z¢, the appearance of which is natural from a linearization of the free energy functional associated
to the two-dimensional Keller-Segel equation:

= [ F(1os s = 5u7) ax

Its definiteness and norm equivalence properties will motivate our definition of the adapted inner product,
with which we are able to prove the crucial coercivity result for .25 (Proposition 2). We will adopt the
soliton variables (p,&) instead of the parabolic ones (7, Z) when it is more convenient, though these two
settings are equivalent in terms of analysis.

2.1 Two approximate eigenfunctions

In [9], the authors used the partial mass setting to derive a complete description of the spectrum of .Z$ in
the radial setting. Here we derive only rough information of the spectrum via a simple asymptotic matching
procedure, which is sufficient for our purpose of constructing blowup solutions.

Proposition 1 (Two approximate eigenfunctions). Consider 8 > 0 and 0 < v < 1 to be fized. There are
two smooth radial functions o, and 1, with supports in {¢: ¢ < 2|logv|}, that solve

1
LLpiy = 2ﬂ(1—i+ 7)gaiy+Ri, i=0,1.
’ 2log(v)/ 7"
(i) (Approximate eigenfunctions)

1€)== 2 (C/)m + (O = X = 75 AU ) + 5:(€),

where ™ and p$* are defined by (2.4) and (2.8), and the cutoff function x.m(¢) = x((/Cm) is defined at the
beginning of the proof. In particular, we have the pointwise estimates for k =0,1,2:

2> Flog’(2 4 ¢/v) ¢*
(v +¢)° [Togv|(v + O)*

(1 +1og(¢)Lie>1y);

195 20(0)] + 9410, 50(C)] < ( ) (1 + 1og(O) Loy,
o (2.1)

0831(0)] + 1081, 61(Q)] S [CETGE



and the improved estimate near the origin,

2 27k1 2 ) 1 2—k
(o el S (TG T GreRTeR) (1 RE L), k=012
2—k

(o1 = 0| S el +OBO L) k= 0,12
(2.2)

(7) (Pointwise estimates of R;)

2—k 22—k 2

CROIS o crarar Nogt)l T @O /< | = |lo§;u|)

2.3

Proof of Proposition 1. We proceed as follows: First, we construct the inner approximate eigenfunctions by
iterate inversions of the linearized operator. Second, we solve the outer approximate eigen problems whose
eigenfunctions are well known. Third, we match the inner eigenfunctions with the outer ones by specifying
the O(|logv|™!) part of the approximate eigenvalues. Finally, the pointwise estimates follow directly from
the explicit construction of the (global) eigenfunctions.

The construction of pi*: Fix a small constant (,,, > 0 (the subscript “m” stands for “matching”), and ¢ = ¢y,
will be our matching spot. Denote x.,(¢) := x(¢/¢m). Now, consider the inner region, i.e., ¢ € (0,(y) or
v € (0, /v). The inner eigenproblem, in the soliton variables, is equivalent to

=9 (09 (5 - ) ) = oA £ 200 )
where

1 . .
(02 + ;87)\1/;“ = in

and &;, is a next-order part of the approximate eigenvalues to be solved. We look for an approximate
solution which takes the form:

= AU +12¢i oV + 12E oVo + v d; Vi + V0 di aVi gy + Vi aVi + 11 4V, (2.4)

where B
ZoVo = AU, LoVo = NU, LViy = AVa,

LoV =AVa, LVi=Va, LVi=Va,
and ci72,di74,ci74,éi,2,cii,4,éi,4 are constants (may depend on &;,) that will be chosen to improve the ap-

proximation and matching errors. The building block functions above can be solved explicitly (as the
corresponding second order ODE admits explicit solutions). Their asymptotic behaviors, as v — oo are:

4 log” -~ 8 log” log?
‘/2:_2+O<og4(7))7 V2:__2+O(og4(7)>7 ‘/4)#:1+O<0g2(7)>7
v v v gl v
- log*(~) 5 log?(MY 7 log*(~)
(2.5)
and their asymptotic behavior as v — 0% are (with order of derivative k = 0,1, 2):
(k) 2k yr(k) 2—k (k) 4—k
Vol ey W ey Vv
2 2 ~4,# (2.6)

o (k - k - k ,
‘Q(,#ZNV“ k. V4()~72 k. V4()~72 k.



We remark that although these building block functions are not linearly independent at the leading order,
some of them are in fact necessary in order to obtain cancellations in the generated error. This again (as
we have already seen in the formal asymptotic matching in the previous section) emphasizes the idea of
“iterative inversions of .%,”, which is a natural way of improving the generated error in the soliton scale.
The inner generated error in the soliton variable is defined as

R} = L™ — BrPAg" — 2B (1 — i + &))"
=12 (¢;2AU + & 2A°U — BA’U — 2B(1 — i + @5, )AU)
+ vt (di,4A‘/2 + Czi,4A‘~/2 +ciaVo + 51‘,4‘72 — BeiaAVy — ﬂ&i,4A‘~/2
— 2Beia(1 = i+ Gi)Ve — 2602(1 — i + 1,1
- g (dz‘,4AV4,# 4+ diaAViy — c;aAVy — 51‘,4/\‘74>
=281 —i+du,) (di,4V4,# +diaVay —ciaVa — 5i,4‘74) .
To cancel out the O(v?) terms in R}, we choose
Cia=201—-i+d&,.), &a2=2_0.
Similarly, to cancel out the O(v*) terms, we choose
dia =2B%(1 —i+ &), CL‘,4 = 3%,
cia=4B2(1—i+a;,)? Ga=2B8°(1—i+di,),
and the error becomes
RY = = B0 (AVag + 201 = i+ iy )AVag + 201 = i @ )AVs + 4(1 = i + G5,,)2AV2 ) (2.7)
= 2851 i i) (Vi 201 = i Gi Vi +2(1 = i + Gi)Va +4(1 — i+ Gin)*Va )

The construction of ¢$*: Then, we work in the outer region, i.e., ( € ((n,+00). In this region, we have

U, (¢) Sv*and 0,9y, (¢) ~ —%, hence, the operator .Z$ behaves like the Hermite operator in dimension 6:
5 b
%:8<+28C—BA,

and we formally have .25 = J# + O(v?) when ¢ > (,,. Thus, we consider the approximate of the outer
eigenfunction of the form

07 (¢) = (C) + &7(0), (2.8)

for some lower order term ¢$*(¢) ~ O(&;,,) and the leading term €2; solves

(A —28(1— i) (C) =0, with Q(C) ~ <—14 as ¢ — 0.

The solutions without exponential growth at infinity are

1 1 B

We remark that the eigen problem for the operator 7 actually determines our eigenvalues to the leading
order, i.e., 7 f = Af has solutions in the class of functions with suitable decay when A = 28(1—1) (i = 0,1).
Next, we consider the next order which solves:

Q0(C)

(A =2B(1 — i) g7 = 260 ,8%.



The solutions (without exponential growth and homogeneous modes) are

log(¢) 1 BC2—2657<2 /+°° 1 a2
¢

T PG pa pe T

(2860,,) ™ G(¢) =

)

(2.9)
e 1 s [T (Br2+2)2 _s2 log(¢ 1\ B¢2+2
(2B8a1,,) 1801 Q)= —Feﬂg /C (;BTB)G E dr + (— Ogﬁ( )+ BQCQ) 2¢4
Their asymptotic behaviors, as ¢ — 0T, are
1
(280, G5(6) =~ i3 + 55 (1 2B~ 210w(5) — 110(0)) + O 1ox(0)
(2.10)
(2601, B(6) = iz + 35 3+ 2B+ 2108(5) + 4108(0)) + 06 w0

where E is the Euler constant. One remark: certain cancellation occurs in (2.9) as ¢ — 0T, so that the
leading order behavior is 1/¢2 rather that log(¢)/¢* or 1/¢%, which may seem likely given the expression of
(2.10).

Matching ¢i* and ¢¢*: Now in the matching region v < ( < 1, we are going to match the normalized inner

solution — 157" ((/v) with the outer solution ¢*(¢). By the asymptotic (2.5) and the choice of constants

above we have

1 . 1
—W@n@/’/) = I +

ﬂ(l - &i,u) _ ﬂ_2
22 16

(4 8i)ds, log(v) + 462, (108(¢) ~ loa(v) — 2)) + O(), V(2 1,

(ﬂ1—20+(mi—U&W%%4—80@ngo
(2.11)

and by the asymptotic (2.10) we have

ex 1 ﬂ T — ~i,u ﬁ2~i7y 1 — 27, .
O =at (%3 ), ba & )ﬂ+m—2E—2bﬂm+2bg%—4ng) (2.1

+0(@,,¢%log(€)), V(<1

Note that the first two terms of (2.11) and (2.12) already match. Now we are ready to determine &; ,.
First of all, due to the &; , log(v) term in (2.11), we must have &;, = O(1/|logv|) in order to minimize the
matching error of (2.11) and (2.12). Furthermore, since the third term in (2.12) is of size O(1/|logv|), in
order to improve the matching error by |logv|~! the O(1) parts in the third term of (2.11) must be canceled:

2(1— 2i) — (4 — 8i)ds,, log(v) = O(1/| log v,

and one simple choice is

1
iy = ——— 1=1,2.
%, 2log(v) ‘
With this choice of &;, we obtain the matching error:
1 in ex 1 1
LA 0 =0 () ¥ gn SC <G (213)

Finally, using !* and ¢$*, we construct the global approximate eigenfunctions as

i (Q) 1= =5 ? (/Y Q) + (1= xm(O)xw (O9F(€)

::_IégAU«/me@>+¢x<%
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Pointwise estimates: As for the pointwise estimate, we first note by (2.9) that

1 log(¢ ox log(¢) 1
<6k+z4g—£k)a 87Ol < Zi’“)JFCM’ V(> L

Then, (2.1) follows from this far field estimate and the asymptotics (2.6)(2.11). Note that the pointwise
value of @g, is O(|logv|™!) smaller than that of @7, in the region ¢ & 1, because when i = 0 there is a
gain of 1/|logv| in the O(1/¢?) term in (2.11). This is important in the upcoming derivation of modulation
estimates. To derive the improved estimate near the origin, we note that for V(y) = Va(y) or Va(7):

V22 log® (14 ¢/v)
w+0Q8 7

Besides, for V() = Vi(v) or Vi(7) (the leading order of which is log growth at infinity), note that

I B S 'S0 T (R 9/
~ Tlog(v)] (v + ()2 w+or

Combining these facts gives us (2.2). Now we estimate the generated error:

R = ZL50iu(C) = 2B(1 — i+ di)pin(Q)
= —F;Xm(C) (f,f - 2ﬁ(1 —1+ di,u)) (Piﬂ(C/V) + (1 - Xm(C))Xu(C) (a? + %8( — 8<\IJUU (C) . 6<> spfx(g)
= 0U(Q) - 0c35,(C) + 21 = X (O QU9 () = (1= xm (O (QBAL(C)

1 . 1 . 1 ) 1 .
= 5 el N = A NGO = e /X + A (X0 b0, (€)

0805 (Ol <

v, (%V(C/u))‘ _

VI %

0k, (61, V (¢/v)

k=0,1,2.

— (Be,(0) = Xm (DY () D) + B () e (C/0)

ex X 1 ex ex ex
— 22X X Oc o5 — X X5 —innxm + X Xv 27 (€)W, (€) + B Xy (C)

1
+2(1 = Xm )X 10g v 925 + (1 = X)X 1og v ¥ + Z(l = Xm )X 1og 1| P5
= (1 = Xm)X[ 10g 1| #5 ()0 ¥, (€) = BE(L = Xm) X[ 10g 1| 5 (C)

= R™ + R™ + R},

where we denote

~(0} + L0V (O) =~ (O —(OF + TV =~ ()
(02 + 0V (O) = KO~ xn(O)).

¢

We assume that the supports of x/,, and Xi log »| ar€ disjoint so that the terms containing X;nXi log »| ar€ all zero

which we do not write out in the expression of R;. Note that for the outer solutions, we treat (1 — xm )X ™
as a whole, which is different from the case of the inner solutions. This is because the singularity of ¢§* at
the origin only allows the existence of the Poisson field of (1 — x,,)¢5*, not of ¢§*. As for the inner error,
note that

RO =~ 0 B (C/1)xn(©)
By (2.7), we have, for ¢ € [0, (],

ey V¢ log?(2+ ¢/v) | (*Hlog(v + Q)|
o (uﬁm“/”))’s wrOT w0yl
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As for the outer error, we calculate that

ex 1
R = (1 - o)t (ag =

+2(1 = Xm )Xo U s — (1 — xm ) Xw BAGS

9¢ — 0¥y, - 34) 07 = 0cUy - 0¥,

4 4
=1 = xm)xp(H =281 —i+ &)™ () + (1 — Xm)xw (7@ fUQ - E) ey
3202¢ ox 1612 ox
+ (2 +VV2)3 8C\IJi7m + mu = Xm)Xv i (C)
- ~ 412
= Oéi,u(l - Xm)XV@?X(C) - w(l — Xm)Xy(?C(pZGX(C)
3202¢ ox 1612 o
T (2 :Vz)g OcWiim + m(l = Xm)xw#7(C)-

Thus, by the asymptotic behavior at ( — oo of the outer solutions as well as their Poisson fields, we have

k pex 1 log(1+C)
PERTOIS (o 2

V¢ > Cm, VE=0,1,2.

Now we come to the boundary error R?d. First, note that supp x},, C [Cm, 2(m], by the matching condition
(2.13), the terms involving the derivatives of x,, cancel in pairs. For example,

1 ; 1
8k — it / — 20, ! <
¢ (- 50 (C/N©) ~ O (@) )| S o
and the rest are similar. Second, we note that supp x{,,,,| C [|logv|,2[logv|], and we have the decay
property
log(¢)

1+¢)?*

Then, any term involving the derivative of x, is of size at most O(1/|logv|). It then remains to estimate
the terms involving Poisson fields. Note that for a 2D radial symmetric Poisson problem with Neumann
boundary condition (we assume S to have certain regularity which is the case in our problem):

(Ol <

1

—(H?
(<+C

9)¥(¢) = S(C),

the Poisson field satisfies ¢
1
0c¥(Q) = Z/ rS(r) dr.
0

Using this, we obtain that

DV (C) = Xm(QO VR (C) =0, V¢ €[0,Gul,
and . .
W (€) = Xm (OO V() = const., V(€ [2(m, +00).
Besides, for ¢ > (n, 0:U, < v?/¢5, which finishes the pointwise estimate for the boundary error. Finally,
the estimate of the partial mass follows directly from the pointwise estimate of the generated error. O
2.2 Coercivity of the Linearized Operator

The main goal of this section is to establish the coercivity of the linearized operator .Z$ (after a slight
modification) under certain adapted inner products.

12



2.2.1 Properties of the Operator .#¢

To begin with, we collect several properties of .#$, in particular, boundedness and definiteness.

Lemma 1. Let f be a function on R? with [o,(1+ |y|*)f + [5e % < +00. Then, there exist universal
constants ¢,C > 0, such that

2
[owageze [ B _cqyanpvi vop).
R2 R2

In the parabolic variables, the inequality equivalently becomes
¢ rp2 [Vf[? _ 2 2 4 2
UM 2 e [ LR -0 (P14, AU+ 0 (7, VU ).

Proof. The proof follows the same tactic as in [31]. First of all, by Hardy’s inequality and the estimates of
Poisson fields (A.14)(A.15), we have the a priori bounds

\V4 2
/ <1+Iy|2)925/ (1+|y|2)2|Vg|2:8/ Val*
R2 R2 R2 U
[V, 2
/Rz e S LA+ S [ a+iyDIvel, (2.14)

|\I/g|2 / 2 2 / 4 2
i~ [ [ S| @ Vgl?.
[ < [asipees [ asmorms

2

Moreover, note that

2
1
/U|v,///f|2=/ vlv (L — V¥, z—/ vlv (L —/ UIV&;)?,
R2 R2 U ’ 2 R2 U R2 ’
and through integration by parts,
[ / Vi V|
UV|= = U|l— —
\/1;2 ‘ <U R2 U U
f/ IVf|2+|V\Iful2f2_/ 2/V/ - Viy
o Jre U U R2 U
_ [ IVIE L IVIPf? oo (VYU
_/R2 v U + sz v U
\V/ 2
R2
Then, by Poisson field estimates, we obtain the sub-coercivity estimate:
\v4 2
[ovasez [ B [arwpre (2.15)
R?2 r2 U R

Assume, by contradiction, that there exists a sequence of functions { f,,} that satisfies

2
[asipiz<ro [ EEL 0 goan = ooy =0 aa i [ ovas <o
R2 R2 U n—+00 [p2

Then, by (2.14) and [|AU; |2 = [ f2 < 400, we know from Sobolev embedding that there exist some f
and W, such that (up to a subsequence)

fo—f, in HY(R?), and f, — f, in L} (R?),
Uy — U, in HL (R?).

13



In particular, the convergence above holds in the sense of distribution (i.e., in D’(R?)), and —AV¥ = f in
D'(R?). Since [z U|VA fr|* = 0, VA f, — 0 in D'(R?) so that V (% - \If) =0 in D'(R?). In summary,

we have

A=, in D' (R
V(%—\II):O, in D'(R?).

From standard lower semi-continuity estimates, we have

2 \112 \112
J L2 L L
r2 U r2 1+ 1yl L+ yl

Then, by elliptic regularity which is bootstrapped by the relation V (% — \I/) = 0, we know that (f, ¥) €
C>(R?), and in particular ¥ = ;. By Lemma 2.1 in [31], we obtain

f € Span{AU, 0,,U, 0,,U}.

Since the orthogonality conditions pass to f, i.e., (f, AU) = (f, VU) = 0, we deduce that f = 0. On the
other hand, since by assumption [ f2(1+ |y|?) are uniformly bounded, by local strong convergence we have

Jim [ opasiyh= [ P

Then, by sub-coercivity (2.15),

[orasmnz i ([ EEE- [ uwase) -2,

which contradicts the fact that f = 0. In summary, there exists some ¢ > 0 such that

2
/ UIVAf|? > c/ m, (2.16)
R2 R2 U
for any f with [ % < +o0 satisfying the orthogonality conditions. Finally, for general f, define
F=f——1——AU - ———0,,U.
a2 w0 0007
Applying (2.16) to F' completes the proof. O

The following lemma implies norm equivalence on some finite codimensional function space, which will
motivates our design of the adapted inner product.

Lemma 2. The quadratic form (f,g) — fR2 fAE g is symmetric. Moreover, for any f such that fR2 f?/u, <
400 and [o, |V f|?/U, < 400, we have the estimates

2
/ vassrs [ L (2.17)
R2 R2 Uu
2
/ U VA5 fI? S / NIE (2.18)
R2 R2 Ul/
and
[orassz g [ L - aump i, v+ 1a 0 P). (219)
for some universal C' > 0. In addition, if fRQ = 0, we have the definiteness
/ fAMSf>0.
R2
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Proof. The symmetry of the quadratic form follows from the symmetry:

(705} =¥y )=~ [ [logbx =~ y1(x1g(y) dxdy.

y (A.16) (taking o = 1) and Hardy’s inequality,

Joavugps [PUERID [ cp s 2 [ivrpoors [

This completes the proof of (2.18). As for the rest, see Lemma 2.1 and Proposition 2.8 in [31]. O

2.2.2 Adapted Inner Product and Coercivity
Define the weight functions

82 Br3~2

() i=e 2, o(y)i=e 7T, (2.20)

Observe the following two decompositions of the linearized operator (written in soliton variables):

LF =V (UVAMF) —bAS = %V-(wVf)+2(U—b)f—VU-V\IJf, (2.21)

where we denote b := Bv? and w := %g. In the near field, i.e., 7 < %, according to the first decomposition in
(2.21) the scaling term bA f becomes negligible, and the coercivity of V.# (Lemma 1) leads to the coercivity
of £ with some appropriate inner product in this domain. In the far field, i.e., v > %, the terms VU - VU
and U f become negligible due to the fast decay of VU and U, according to the second decomposition in
(2.21). Therefore, . will be coercive with the weighted L?-inner product (with w as the weight function)
in this domain. In order to obtain coercivity in the whole domain, we define the mixed inner product which
adapts to both coercivity structures:

9). = /R2 foxow — /R2 VoxXu ¥ jax,g = /R2 vexvl 4 (Vexvy),

or equivalently, in the parabolic variables

= [ VBN (a0, 2.22)

where we recall y,(v) := x(yv/|logv|) and x,(¢) := x(¢/|logv|). One remark: thanks to Lemma 2, we
know that for any f satisfying the orthogonality condition

/ FAU X2/ co)r/B = / FYUX@yv/eo) /G = / X)) =
R2 R2 R2

where ¢y > 0 is some fixed constants and b is small enough, there holds the equivalence of norms:

[P <c [ P
Besides, we need to modify the linearized operator a little bit to adapt to the inner product:
Lf=Af—VU -V g, 5 —Vf VU +2Uf —bAS,

or equivalently, ~ B
ZLle:=NAe —VU, - VU, — Ve VU +2U,c — BAe,

where ¥, := V., /aoe- Applying the aforementioned ideas, we are able to prove the following proposition.

15



Proposition 2 (Coercivity estimate). There exist constants 6, (x, C, b, > 0, such that for any 0 < b < b,

2 2
and any € satisfying [ % < +o00 and

/ AU X (/) = / EVUx(/C) = 0,
RQ R2

we have i Vo2 g2
<$€, 6>* <-4 (/R2 T”QH/W TVQ) + CV P el|T o0 (4> 10g vl /)
Proof. Define xo(7v) := x(vv/{), and decompose
e =xoe+ (1 —Xo)e :=¢1 + €2,

where 0 < (o = (o(e) < 1 is a parameter to be determined. Though the specific value of {; depends on ¢,
we will see that there exists a universal constant (, > 0 such that (. < (y for any €. Thus,

<j5, £>* = <.,2551 , <€1> + <j52, £2> + <.,2551 , £2> + <j52, 51>.

For brevity, in the following we denote

2.\ 2
Iz = ([ 52)"

Coercivity of <j51 , 51> : Since y,e1 = €1 and

VoxuZLer = L(Joe1) + (1 = Vo, )VV ze, - VU + [Xu/0, L + VU - VU Jey,
N

by integration by parts, we have
(Zer.a) == [UFAEVDE+0 [ Vi Va0 + [(0- Va0V o, - VUG
+/[)ZV\/§, L+ VU -VV.]e1.#(\/oe1).
By Lemma 1, we have
- [omacier < [N o vp avp +ieve, vor ).
By the local orthogonality conditions
/R AUXw/G.) = /R VUX(@w/C) =0

where (. < (p, we obtain

113, ATY| = ] [atve- x(2w/<*))AU’

= (/% : /(AU)QUp‘l(\/——x(2w/C*))2>;

1

2 2 2 %
<2 [82) < /LEHQ
(%) = (/%

16



where we use the Poincaré inequality (taking o = 2 in this case):

2 2+a [ 2 2 2 2 4 360 [Veil*o
ot 4P <08 [ty <0 [[WalPasq)t st [EEL vazo,  (223)

for some universal C' > 0 when (p is sufficiently small. Similar estimate holds for | <51\/§, VU> |. Thus,

when b is sufficiently small (recall that b:= 3v?), there exists a universal § > 0 such that

2
—/U|V%(51¢E)|2 < —5/%.

e1V(Vo)I” bly|*eto [Vei?p
| e

Therefore, when (p is small enough,

2 2 2
1/|V€1I 0 </|V(\/§€1)| <2/|V€1| 0
2 v - v - U

Besides, by Lemma 2 and Poincaré inequality,

Note, by (2.23), that

}b/\/@fly'/fl(\/@?l)‘ §b</ 951|Y|2> </M)% ch/ |V5(}|29'

Thus, when b and (y are sufficiently small, we have

_/U|v///(gl\/§)|2+b/¢§€1y-V%(¢§€1) = _5/%

for some universal § > 0. Next, by (A.12) and (A.13), we know that

elo |V (/021)|?
W GO Slog(a+ly) [ L (9w, mm)P s [

Therefore, by the above pointwise estimates of the Poisson field and (2.17),

‘/(1 — Vo)V g, - VUM (o2

<(/ w) (Jo-vaurSE) ([ 'V///wel)f)%

S</w>é(/(1—@m2@>é</%ﬂ>é

Note that when vVby < 1,1 — /o = % + O(b%y*). Then, we have the estimates
<

L VUP / b2
1— o)’ ——| < . T
}/( vex) U {yl<b-33 (1 +7)°

Combining with the previous estimate and (2.23), we obtain

[N

o

<b

1
o
gyi>o~3y (1+7)°

L[ Vel
‘/(1 — V)V e, ~VU///(\/§51)‘ < bg/%.

17
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For the remaining terms, since V(x,)e1 = 0 (because of their disjoint supports),

[)_(V\/E, L+ VU - V\I/.]El = —2V(\/§) - Ve, — A(\/E)El + V(\/E) -VUypyer + by - V(\/E)El
Therefore, by (2.23) we have

s £ 450 TeF | UNGTCA Ghaad 10) S L [
U ~ v ’

Then, by (2.17), (2.23) and Cauchy’s inequality, we obtain

2
sq [Fate (2.26)

Finally, combining (2.24), (2.25), (2.26) and Poincaré inequality (2.23), it holds, when ¢, and b are sufficiently

small, that
_ 2 2
(e} <o ([0 [22)). .27)

Coercivity of <j82 , £2> : First, integrate by parts and we have

‘/[)_(U\/E, f—F VU - V‘Iﬁ]é‘l%(\/éal)

for some universal 6 > 0.

<$52, €9 /|V52|2xuw + /agv (WX, Vi) +/2(U — b)a%x%.)

— / VU - Vs, /ger2Xow — / NN
As for the second term above, observe that Vy, is supported in {|logv|/v <~y < 2|logv|/v} and

by2 B log v|2 logv
e—% S 6_723 5 VN7 v | g | S ,7 S
v v

2| logv|

for any fixed N > 1 when v is sufficiently small. Thus, we have the estimate

VlOO”EH%“’(yZHogVVU)' (228)

’ / &3V - (WX V)| <

Besides, since 2(U — b) < —b when v > (o/v and v is small enough, we have

/ (U = b)e2xw < b/s%;’(ﬁw. (2.29)

For the fourth term, we use the 2D Hardy-Littlewood—Sobolev (HLS) inequality (A.20):

1
252 2
£2Xuv0 .
I gl S ([ 222) = ooz,

and estimate by Cauchy’s inequality that

1 i
’/VU~V\I/XV\/§8252>_(,%w‘ < </>‘<is§w) (/{ / }|VU|4w2> IV e llze S %/agxy (2.30)
¥2>Co/v

For the remaining terms, we divide them into three groups:

/ N / N / VBT Jagen(—Ven - VU — DY - (yea) + 250

—/\/@ZU\II\/@ZV@V\I!\/@ZV52 -VU

18



As before, by (A.12), we have the pointwise estimate of the Poisson field
0 a3 Slog+Iy) [ e
Integrating by parts, we have

/\/E)_(V\I/\/E)ZUEQAEQ = /A(\/E)_(V\I/\/EXVEZ)EQ.

By chain rule, when the derivative hits y,, we use the L>-control of 5 as before, and when the derivative
hits elsewhere we use either the pointwise estimate of ¥y, e, or the L*-estimate of V¥ NGIEE

< V100||€2XV||L§, “|leall oo (v>10g v /1)

/ (29X - V(I g5ses) + AXov/DT a5,e )2

_ 5 _
/V\/E'V‘I’\/@zmﬁz SOIVWTULarcom) IV asaeallislleaxn | oz S b4 lleaxullzs

_ 5 _
S (b + b2 log(4 + PV 2o lleaivZe S b leaivlZa.

/A(\/@‘I’\/@zuaﬁz

/ X5053

In summary, we obtain

b2 _ 2
S —4||52Xv||L2-
Co “

_ 5 _
S Peaxullze - lle2ll Lo (v2(10gvl/v) + b llE2X0 (172 (2.31)

\ [ avau e

The estimate of the second group is more direct:

‘/ VoxXuV jox,e. (—Vez - VU — bV - (yea) + 2€2U)‘

SIelt: ([ (% + )V log?(4+ )
“ \JHCo/v<y<|logv|/v}

+ leatollze % Veallze /
{Co/v<y<]logv|/v}

S bifleaxwlliz + b 1% Ves |3 (2.32)

2

(VB

(b~ + VO 2)U log? (4 + 7)>

For the last term, Cauchy’s inequality yields

L3 (y2¢o/v)

< b leanalls. (2:33)

'/\/EXV\P\/@XUEZV‘P\/EXM 'VU‘ S lle2xw )22 ¥ yox,enll el log(4 +1)VU 4

Then, combine (2.31), (2.32) and (2.33), and we obtain

‘/ VoXuZeaV sz, | S b le2xu |72 + b 1% VealFz + v %le2l 7o (3] 1og /o) (2.34)
Finally, combining (2.28), (2.29), (2.30) and (2.34), we have
(e e2) <=0 (I Verlts +blesla ) + Cv el (s o (2.35)
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for some universal §, C' > 0, when (; is sufficiently small.

Estimates of <.,2551 , 82> + <.,2552 , £1> : The methods to estimate these interaction terms are the same as
* *

the previous ones. We remark that the interaction happens only in a relatively small region as (y is meant
to be small. We will later exploit this smallness to control the interaction terms. Through integration by
parts,

<jal , 52>* + <.Z2€2, 51>* = —2/wV51 -Veg + 4/(U —b)ereqw

- /VU VU e, Eow — /\@zy.z?sl\pmm - /VU-V\I/\/EEQalw— /\/@zy.z?szxpmugl.

Note that the terms on the second line above are all lower-order terms, as we estimated in the previous steps.
For the second term on the right-hand side,

4/(U — b)51€2 S —2b/)_(0(1 — )_(0)82 S O,

which has the desired sign. Thus, it remains to estimate the first term. Since Vey = XoVe+ £(Vx)(yv/¢o)e
and Vez = (1 = x0)Ve — £(Vx)(7v/Co)e, we have

}/stl - Veq

In summary, we have the estimate

&2

S/ |V€|2w+/ ——w
{Co/v<v<2Co/v} (Go/v<r<aco/vy (L)

wVeq - Veg

‘/{CO/VS’YS2C0/V}

2
< / Velw + / =
{Co/v<v<2¢o/v} (Co/v<r<acowy (L)

where the lower order terms (l.o.t.) can be absorbed into other terms when b is small enough.

‘<j51 , 52>* + <jsg , 51> w + lLo.t., (2.36)

*

Global coercivity: Now we are ready to derive the full coercivity based on the established estimates. First,by
(2.27), (2.35) and (2.36), when b is sufficiently small, there exist universal constants d, ¢, C' > 0 such that

2
Pe, e §—5/ be? + |Vel? X%w—l—C’/ (v52 +‘€7)w
< >* ( Vel {Co/v<y<2¢o/v} Vel (1+7)2

100 2
+Cv " le2|| Lo (v 10g vl /1)

By the Hardy-Poincaré type inequality (A.18), there exists C’ > 0 such that

2 2.2
/ < sw < / cX (FYVQ)w < C’/ (be? + |Ve*)w.
vty (T+7) (1+7) (<2}

We choose an integer Ny > 0 such that

4cc’

5
and fix 0 < ¢, < 1 small enough such that (,2™° will satisfy all the smallness requirements for (y in the
previous steps. Now we apply the following dyadic argument:

5/ 2 2\ —2 5/ 2 2 d / ( 2 e >
— be” + |Ve|?) xpw > = be* + |Vel?)w > Vel + —— | w
2 DAV g f L, OV ez g o, IV
No—1
5 < ) e? )
_ _ Vel + — |w
jz::o AT Jyeezl cyc ettty Vet T

N 2
> 0 min / , , |Vel? + = wl.
4C" 0<j<No (2] g taritly (147)2

No >

v
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Let 0 < ng < Ny be the integer such that

82 82
Ve + ——— Jw= mi Vel + —— :
/{}(' i +<1+v>2>°’ 02Ny /{}(' i +<1+v>2>°’

and define (p = (,2"°. It follows by the choice of {yp and the definition of Ny that

g2 )
C (|V£2| + 7) w< —/ be? + |Vel?) Y2w
{Co/v<r<2¢0 v} (147)? 2 )

This completes the proof of the proposition. O
The coercivity result can be stated equivalently in the parabolic variables:
Corollary 1. There exist constants 9,(y,C v, > 0, such that for any 0 < v < v, and any € satisfying

2 2
J % < +oo and the orthogonality conditions

/ EAULX(C/C)VEs = / VUL X(C/C)VE = 0.
R2 R2

we have v |2 ) 5 o
> € XV € XV
<$§5, £>U* <=4 (/}R? TQU + /R2 U—Qu> + CVlOOHEHQLw(Ql/V)' (2.37)

At the end of this section, we introduce a higher-order coercivity result of the linearized operator %,
which will be used in the H' energy estimate in the inner region.

Proposition 3 (Higher order dissipation structure). There exists § > 0, such that for any e that satisfies

2 2 (2) .12
J % < 400 and the orthogonal conditions

(e, AU) = (e, 0,U) = (e, 0:U) =0,

|-Zoel? / A A2 / 2 / V[?
/ i >0 (L+)HAe? + [ (14 7v)3 Vel e“ + L

Proof. See Proposition 2.8 in [31]. We remark that although the orthogonality conditions there are different,
the proof remains valid as long as ¢ lies in some subspace whose intersection with Span {AU, 9,U, 0:U} is
{0}. In particular, it can be applied here. O

it holds that

3 Construction of Blowup Solutions

In this section, we start constructing the finite time blowup solution. We first decompose the whole solution
into an approximate one plus a perturbation function, where we will introduce modulation parameters
driving the evolution of the perturbation. We setup the bootstrap assumptions in Definition 1, and then
derive modulation equations in Lemma 3. Finally, we perform a series of energy estimates in the inner region
and outer region, respectively, for the perturbation.

3.1 Decomposition of the Solution and Formulation of the Linearized Problem

Consider the following decomposition of the solution:

w(7, 2,7) = U, (C) + P(C, 1) + (7, 2,7) := W(C, 1) + &(7, Z,7), (3.1)
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where we denote
P(C,7) = a(7) (1,0 (C) — o (C)).

Now we study the evolution of the solution in the near field. Inserting the decomposition w = U, + P + ¢
into (1.4), we obtain the equation for e

Ore = LS+ L(e)+ NL(e) + E, (3.2)
where the extra linear terms

L(E) =-V- (WVGE + PV\IJE + EV(‘I)W - \I/UU))
1

R,
+ m(@;& - aﬁffbw — Waf(l)g) + 76;8,

the nonlinear terms

1

NL(e)=-V - (eVD.) — ma

07 ..

and the generated error

E = _PT+$,§P—V- (WV@W—I—PV\IJP)‘F (%r _B) AU,
1

R
+ —— (W — Wby ) + —0;W,
77+R/u( w) I

where we can compute that

Pr = ar(p1.0(6) = 20.0(0) + +a(7) 20, (91 (C) = 90,0 (0))-

We require € to be even in z-variable (which is preserved by the evolution) and impose the local orthogonality
conditions:

/ax*(C) dfd,z:/ eAU,x«(C) dfdz:/ eVU,x«(¢) drdz = 0, (3.3)
]RZ ]RZ

R2

which are preserved by the modulation parameters a(7),v(7), R; /i and the even symmetry in z. Recall the
definition of the inner norm .
= ([ )
in 1= ——=Ye .
in - UV

Proposition 4 (Decomposition of the generated error). The generated error can be decomposed as
R, -
E = MOdogDQW + MOdl(pl)V + —0:U, + F, (34)
I

where

Mody = a, — 2af3 <1 + ﬁg(v)) — 1602 (”7* - 8).
a(7)B

log(v)”

Then, we have the weighted L?-estimate for the error:

a
9l | o) /Tiog o]

|log v|

Mod; = —a, +

a2
+—.

B 2
1Bl < 21l
1%

. Vr
"~ Jlogr|

B
o

v
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In addition, we have the following estimates for the local L?-projections of E onto 1,AU,, VU, :

V2 + |al

(5. x| % llogo,
IlogVI
(B, x.A0,)| 5 2], (3.5)
. RT .
‘<E7 aFUVX*> 5 a4 ) ‘<E7 62UVX*> =0.
viu
Proof. Recall, from Proposition 1, that
L, =2p it~ Vo + B
V‘Pl,v - 210g(V) Sﬁz,u ‘3

and
pin(() =—
We obtain the decomposition (3.4), with

AATCxe + 3:(0).

E =—a(t)=v0,(¢1,(C) — 00 (C) = V- (WVOw + PVIp)

] (3.6)

+ (”77 — 8) (AUL(C) + 160200, (€)) + S TGS CE IR %aprr o(r)(R1 — Ro).

The proof of the estimates relies on the pointwise estimates derived in Proposition 1.
Estimate of || E||i,: First, by (2.2),

Ol 2 oA Q) 2L [T e
I0ulors — el S [ = E A o [ Closta 0 i

< 1
™ [logv|?

Second, by (2.1)
IAU, + 160 po,0 [, = [116v* P00 (17
5V4/+°° V¢ logh(2 + (/) log? 440 -2 gty /+°° Clog(4+0) ¢ .
0 0

(v+¢)8 |logv|?(v + ()*
4
v
<
~ [logv|?”
Third, by (2.2),
_ 2 2
log“(44+¢) _¢
8.-P|2 = Lo (o1 — vou)|l < /4‘7 T didz < a?|log ).
10-Pl5 G(T)C (P10 — o) s OFIL rdz < a”|logv|

_é
Fourth, by (2.3), we have |R;(¢)(v + {)?e~ 7| < W

1
|Rillin S ——.
[Tog 1]

for any ¢ > 0, and it follows that

Next, we estimate the term V - (PVW¥p) = 9:PI:¥ — P?. By (2.2) we obtain the following pointwise

estimates (k =0,1,2):

|al¢**log(2 + ¢)
v+

0EP(O)] S (3.7)
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and for ¢ = O(1),

a\T ¢
Q/o 7(@1,0(1) = o, (1)) dr

0cVp(C)] = c

¢ 3
e %/0 (uim dr S |gﬂlog(l + vt (3.8)

Then, we have

00 2
e 0 L0 12 e e s S,

POV p|3 < 4/
”C ¢ P”mwa’ 0 (V—I—C)4 v

and

P22 < gt e C910g4(4+4)6—§ de < a_4'
1Pl < S
" 0 v+ v?

Finally, by Lemma 9, we know that
Vew (¢) = V¥w(() +O0(k*), V{¢>0,

for some s > 0. It follows, in particular, that [|[VOw ||pec<c.) = O(u®/v'). Thus, the rest terms are all of
lower orders (recall that u = O(v¥) for any k > 0 ). This, combined with the estimates above, concludes the
local L?-estimate of E. Similarly, based on pointwise estimates (2.1)(2.2)(2.3), we can derive the estimates
of the local L2-projections.

Estimate of <E, X*>5 First, through integration by parts,

(V- (PV¥p), x«)| = '/PV\IJP - Vx«| < a?|logv|.
Second, by the eigenproblem equation, we note that
Lo, =281+ 1 +R
v <pO1V - 2 log(lj) <P0,v 0,
1 1 1
Do = v A v v = ¢ v A v v
= 90 = oo+ 152 AU (O (C) 35 1 B/Toa(0) (L5 o, — Ro) + T2 MU (O (©);

where

jI/C(pO-,V =V <va <<p[jv.'1j - \Ijapo,,/)) - ﬂASﬁO,u

Po . B2
=V-(U, — — Uy —BA AU, < G
v < V<DV W)) b S00_'—161/2 veses
By the divergence structure and pointwise estimate (2.1), we have

< 1 ,
~ |logv|

Jrew (5 (2 =) | fooriae (32 -0

1
= Ocxx (Ocpo — @0 Vy, — U, 0 Vs,)| S —,
’/ CX ( CSDO SOO ¢*U, ¢ 490) ~ |10gV|

‘/X*A(ﬁo drdz

= ‘ / (Dexo drdz

and
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since by (2.1),

< log(1+¢/v)
~  |logv[¢

1 /C rs v2r3log(1+r/v)
¢Jo (v+r)tlogy| (v+r)°

In addition, due to the cancellation 2Ul,(C)/1/2 + AU, () /v? = O(V?) for ¢ € [¢4/2, (4l

0¥, (O] S

1 1 O X% Oc X+
. AU, + —— AU, L XX AU, U,
‘/X 2+ 1/log(v) 16u2 + 16 2 51 Togly) 1602200 T 1ge0
e X+ 3<x /30(* 1
< U, AU,
N}/32 260 +16 2 |1ogu| ¢ |10g1/|7
and by (2.3),
1
‘/X*RO ardz |10gVI

Combining these estimates we obtain

2

[(AU, + 160000, x+)| S

[Tog 1]’

Note that vd,(v=2V((/v)) = —v2AV((/v), where V = Vi or V = V4 in the construction of ¢;, in

Proposition 1. Exploiting this divergence structure, we have the estimate

2¢x 3
vy vy ¢ vr | lal
a—v0, (Y10 — Pou), *><‘ 1/2+/ ———d( | S |— .
‘< v (Sol, $o, ) X ~ v < 0 |10gV|(V ¥ <)2 C ~ |10gV|
The estimates of the rest terms are more straightforward
¢ log(Q) v¢? lal
of xSl [ ¥ a5
et Slel [ e ol * e Tiogy

|<8FP5 X*>| = 07

Estimate of the rest terms: The methods are similar, and we briefly summarize them below.
For <E, AU,,X*>:

2<5 2

2 A < g2 v
(P2, UVX*MN@/O o d¢ <

P

12 A “ Clog(1+¢/v)
2 6
00 1600 O S Ty [, g 60, g 65
2Cx 4,3 23
vy vy viC ve( vra
—_ 81/ v v aAUU * <‘ ¢ S |—5 )
‘<a v v (9017 $o, ) X > ~ 0 (I/ ¥ C)lo + |10g1/|(y ¥ C)G CN 3

2¢ 2 1 9

|<6<P6<WP,AUVX*>|,§@2/O %d“%j
v2¢31og() V33

|logv|(v + ()¢ + v+ Q)7 d¢ < lal,

2Cx
(aR; . AU, X.)| < |al /
0
(0P, AU, x.)| = 0.

For <E, 8;Ul,x*>:

- - < -
@P. U Sa [ 2

and the other terms are all zero.
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3.2 Bootstrap Regime and Modulation Equations

As we will see in the energy estimates, it only suffices to estimate the gradient of ¢ in the region ¢ < 1.
Thus, we define

e* = x"e.

2 £2
2 _ [/
1122w, -—/ U,

Now, we are ready to setup our bootstrap assumptions:

Recall that x*(¢) = x(¢/¢*) and

Definition 1 (Bootstrap). We say that a solution w of (1.4) lies in the bootstrap regime BS(7o, 7w, (*, Mo, { Ki}_,)
if it satisfies the following: on time interval [T9, T«], w admits the decomposition (3.1) where the perturbation

€ satisfies the locally orthogonal decomposition (3.3). In addition, the following estimates holds on [ro, Tx]:

(i) (Modulation parameters)

KL6—¢BT+—MO <u(7) < Kye~VFTFIT,
1

K21/2

[ logv|’
< KgV

= |logv|

la(r) — 81*()] <

’ B
I

(#) (Remainders)

2

< Ky——

2

K—
*Tlog o]’

1/2

llellrz( 1 <e<ac) < Kﬁmv

Vel 2w,y <

3 K7 —2\/Br¥ M,
(14 O)2 || poo(empry < ——t—e °.
H ( C) HL (€=¢*) = /ﬂT+M0

Note that by the bootstrap assumptions on v and ||e(1 + ()2 l| oo (¢ ¢y, We have

K7O(K1)I/2

3
1 2 oo * <

The reason why we make such assumption on |le(1 + C)%HLOO(<2<*) is a technical treatment to avoid the
oscillatory behavior of v in time when doing integration, the details of which can be found in Lemma 7.

Lemma 3 (Modulation equations). Assume that the solution is in the bootstrap regime
BS(70, 7x, C*, Mo, {K;}!_,) defined in Definition 1. Then, the following estimates hold for any T € [10,T+]:

1 9 (Vr . C(K;)v?
Modo| = |ar —2af (1 + 21og(1/)) 16v ( v ﬁ)‘ < C lelln+ 17" Nz w) + [logv|?’
2 N2
Mody| = |—ay + a(T)B < C(K1, Ko, K4, K5)v C(K;)v , (3.9)
log(v) |log V|2 | log v/[?3
& < C(K4,K5)V C(Kl)y
[ | log v| [ logv|?”
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Proof. The strategy of the proof is the following: Since the evolution of the modulation parameters is
determined by the preservation of the (local) orthogonality conditions (3.3), we take time derivatives of the
orthogonality equations and use energy bounds for € to obtain the desired estimates.

Estimate of Mod; by projection to x.: By the orthogonality condition (3.3), we obtain

0= diT (e, x+) = (0re, xu) = (L5 + L(e) + NL(e) + E, x.)- (3.10)
Recall that (as (0;U, , x«) =0)
(E, x+) = Modo (@o,u ; X«) +Modi (1,0, Xx) + <E x*> :
Then, by (2.4) (3.5) and the fact that (AU, , x.) = O(1), we have

vr

+ C(K;)vP. (3.11)

~ V2 + al
vy Xx* <1; vy X* 2 |1 ’ ’<E’ *><
{0 XD | S 1 {1, xa) | 2 [Tog ] X=/1~ Tiog ]

+a

v

We remark that the gain of |logv| in (p1,,, x«) will enable us to control Mod; by Mody and gain a | logv|
smallness in the estimate of Mod;. Next, we estimate the terms containing €. Since the operator .Z¢ is
self-adjoint in (L?(R?), (-, -)), which follows from the self-adjointness of (—A)~!, we have

| <$1/<87 X*> | = ‘<qu'//u€(5) — Bye, VX*>‘
< ‘<///1§(5) Ve (UVVX*)H + [{Bye , Vx|
Since V- (U, Vx.) is compactly supported in [, 2¢,] and is of size O(v?), i.e., |V- (U, Vx| S v*1¢, <c<2c.}
by (2.17) we have the estimate:

3
(A5 (), V- (U, VX)) 5/ lel + KV Pe, U Vx| S llellin + v2]le(l + €)% [l o c¢0),
{6 <¢<2¢.}

where we use the pointwise estimate of the Poisson field by (A.14) and (A.15):

1
1) ? 1 3
IV,|lpoe(c.<c<2¢) S (/ e*(1+ C)S) < ;HEHin + e+ Q)2 ||oe(czcr)- (3.12)

It follows that .
[(Zse, xa) | S llellin + V2 le(t + O 2 [l Loe(czc)- (3.13)

Due to Lemma 9, we neglect the terms of order O(1*) and estimate the rest terms in L(g). By (3.12) and
the pointwise estimates (3.7) and (3.8), we have

‘<—V . (PV\IJE + EV(\IJW — \I/UV)) + %8?5, X*>

R,
= }<PV\I/5 +eVVUp + 7616, VX*>

(3.14)

la| | Rs 3
lellin + [al - le(1 + )2 oo (¢ c.)-

< (=L _T
”(V2+’u

Finally, for the nonlinear terms, neglect the part of order O(u). By Cauchy’s inequality and (3.12), we have:

=V (eV¥e), xa)| = eV, V)| < lellinll Vel oo (. <c<2c.)

1 3
= (ﬁ'gni’“ +le+0)> ||L°°<<><*>> lellin- (3.15)
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y (3.10) and collecting all the estimates (3.11)(3.13)(3.14)(3.15), we obtain

o (|Modo| + (1 + M +

)anm 2 + laDlle(1 + O lmiencr)

(5

1 s v? + |af
+;H«EH?HJF;llEHinHE(l+C)2HL°°(<2<*>+7|1 +la

< |M0d0| I/2O(K1,K2,K4) C(Kl)VQ
™~ [logv| [log v|? [logv|*

(3.16)

Estimate of Modg by projection to AU, x4: Similarly, we compute

0= e, Alxa) = {0re, AU + {5, 9-AT, )

= (Lbe+ L)+ NL(e) + E, AUy, ) + <g, V—VTU(?UAU,,X*> . (3.17)

N

Note, by (2.4) and (3.5), that

2 )
<142 C(Ki)
14

1 1 ~
|<90i,u ) AUVX*>| 2 2 <AU,,, AUVX*> 2 A ’<E7 AUUX*>

|logv|’

Through integration by parts and Cauchy’s inequality,

’<$0€V5, AU,,X*>

= (Ve — eV, — U, V., V(AU,x.))|

+ (VU , V(AU X))

IN

(|\a||m+ 19l | (55 - (FAV))?)

* 3
S F (llellin + IVe* | 2,)) + ﬁ”g(l +C) 2L (¢cc),

where we apply pointwise estimates of Poisson field (A.16) (A.17) to estimate

¥l 5| [ (o) |+ oo

* 1 3
S Vel + S llelt + OF ez

e+ € |z (eer

Besides,
1
lellin S g lleflin-

e, A0 < (- TP )

For L(g), by (2.2) and similar methods as adapted above:

(VP -V, AT S 19 i) + D1+ O s

Uy : la|
e, AU 5[5 - (AU el < el

1
UV 2 * a *
(Vv AU £ (S (Tweat? ) 19 < v

(i)
I v3

Hin-
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As for the nonlinear term,
1
2

* UU
(Ve - VU, AU X S IVE 2w, (/ﬁ(AUu)2|V\If€|2>

1 N 1 « 3
S FHVE 13 + EHVE 2w lle(X + )2 |l noe(cx¢),

and
2 AU, < 1 2
|<€ ) UX*>| ~ EHE”in'
At last,
T 1 T
‘<5, V—V&,AUUX*> S I lle]lin-
v v
Inserting all these estimates into (3.17), we obtain
% C Kl I/2
|M0d0| 5 |M0d1| + HEHin + HVE ”LZ(UV) + (7)2
|log |
Combining with (3.16), we can further refine
C(Ki)VQ
M d < C in V * o
| Y 0| > (”EH +H € ||L2(Uu)) + |10g1/|2
Ky, Ko, Ky, K5)1? K)v?
|M0d1| S C( 1,42, Irg, 5)V C( )V )
[ log v|? [log v?

Estimate of % by projection to 0:U, x«: As before, we compute 0 = 9, (¢, 97U, ). Note that

<E7 8FUVX*> = % <37:U1,, 8FUVX*> + <E7 anvX*> ,

where

R,
V2
The estimates of the scalar products with terms containing ¢ are similar, with everything amplified by 1/v

compared to the scalar products with AU, (since [0;U,| < L|AU,| for any ¢ < 2¢*), and we will not repeat
them here. To summarize, we have

<

~

<6FUU7 anuX*> 2 %a ‘<E7 anuX*>

C(K4,K5)V C(Kl)y
| log v| [logv|?”

’ R,
I

A direct consequence of the modulation estimates is the following control on |%=|.
Corollary 2. Assume that the solution is in the bootstrap regime given in Definition 1. Then, it holds that

Vr

< C(Ks, K4, K5)

3.18
lTog ] (3.18)

v

Proof. Inserting |a — 8v?| < Illizg”j‘ into the estimate of |[Modg + Mod;| given by (3.9), the result follows. O
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3.3 Energy Estimates
3.3.1 [L? Inner Estimate

Now we establish an important L?-monotonicity result for . One technical treatment is needed to avoid a
loophole in the energy estimates: Due to an incompatibility between the decomposition of generated error
and the local orthogonality conditions, the modulation estimates are not small enough to close the L? energy
estimate. However, by projecting out the direction of the first approximate eigenfunction, we are able to
get rid of this issue. This is possible thanks to the special structure of the adapted inner product as well as
the slow decay of the stationary solution (e.g. U does not belong to L'), which makes the aforementioned
projection an acceptable modification to the original norm.

Note, by Lemma 2 and orthogonality conditions (3.3), we have

2

2 (xv)’ov 2 (xv)*ov e2(xv)’ov
/ Wler o [0 o [, vadsionva s [ e
Thus, (¢, €),, = [ exv/0v S (eX1/0v) is equivalent to the norm ||e[|Z. Define

fXV\/QV(pO,V'//,S(EXV\/Qu) < HEHin
IXI/\/ QU@O,U%UC(XV\/QLKPOJJ) ~ |10gV|

do =

as we have

logl/
’/ XU\/ QUSDO,U%UC(EXU\/E) ~ HEHII‘U ’/ XUV QUSDO v (900 VXV\/ QV) | | .
We project out the g, direction of €, and consider the evolution of
/EXUV Qu%g(&_){u\/@) —dp /EXV\/ Qu'//zs(Xu\/ QUSDO,U)
Xvy/Ovpo, IJ%C(EXV Qu))2
= [xova s ) - L VeI el
I Xun/@o 0.0 S (X Jor o) ¥
Recall that o, = — 1552 AU, xv + o, and
%IE(XV\/E<PO,V) =—c5 T ///5(——/\[] (XV\/ OvXv — 1)) + ///,E(Xy\/ Qv@O)-

]2
We also recall the pointwise estimate
PO Mog(l+¢fy) |
(v +¢)° [logv|(v +¢)*

In the following argument, since %(XU,/QUXV — 1) and @g are always estimated together, for brevity we
denote

195 20(0)] + 1041, 30(C)] < < ) (14 1og(Q)Ligory).

Do = T 2AU (xvvVorxy — 1) + Xu/0uPo-

By the pointwise estimates, it is helpful to note that

/|850|2 /|V<Po|2 |10gV|
u, ~ '

Lemma 4 (Control of ||¢]|in). Let w be a solution in the bootstrap regime BS(1o, T, (*, Mo, { K;}T_,). Then,
the following estimate holds on [1o, Ti]:

dilT (1 /EX,,\/Q_U/// (exv/0r) — —/a\/g_yxy (sﬁom/e_uxy))

50 Cv? (K
<2 (||€H + HVEH?n) + [log v|? + |10g1/|§
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Proof. The first half of the proof estimates the main part (i.e., the leading order dynamics)

%% [ eXu\/OvAS (eX1+\/0v) Which yields damping. Then, the second half deals with the correction term,
which projects out the Modg direction of the main part.

Step 1: Leading order dynamics

First of all, by (3.2) and recall the definition of (-, -),, , in (2.22), we have

1d _ 1 0 QVXI% 2 9 T,
§£<E,E>V7*—<8TE,E>V7*+§<6—T< B > ,e7 ) — a—T(\/Exl,)E,\I/5
- <j,§a, 5> + <($5 — e, 5> +(L(e), &), + (NL(e), &), + (E, ),
1/0 QVX:QJ 2 0 =

Damping term: By the coercivity of the modified linearized operator (2.37), we have the damping

2.2 2.2
¢ €°X,0v IVel*xy o0 100 1|12
<$l,a, 5>V7* <=6 (/ U, +/ U, +Cv HEHLOO(CZI/V)’

for some universal §,C' > 0.
Estimate of term (£$ — £¢)e: Note that

(LS — L8)e = VU, - (V. — V) = VU, - VI( 5oy, -1
Integrating by parts, we have
(VUL -V aryn—1)e s 5>V7* = /\/Q_uXVVUu : V\I’(p\/@xy)s///f(\/@)(ug)
- /\/@_UXVUV(l — Vouxw)e s (\ouxve)
- /UVV(\/EXu) VY an)e S (Vouxve)

- / VU1 omre - VAl (Txe)
= I+ 1T +1II.

By Cauchy’s inequality and (2.17), we obtain

2 2,2, \ 73
s ([entvn-vaers) ([55e)

Then, applying U, (¢)(1—/0,x»)? < (v+()?, inequality (A.19), the control of the outer norm, and Cauchy’s
inequality, we have the estimate

§ ([ (E+IVeP)xior e2X0v
|I| S E </ U + CVZ/T + CVlOOHEH%QQ(CZC*).

Next, by (A.14) and (A.15), we have the pointwise estimate of the Poisson field (taking o = ):

T+ 1y logC [ 2201 . )}
A [a-vE s

1+ ]]‘{Cﬁl} IOgC
(1+¢)?

21
/ VU oy (6.C) dB <
0

SO (lelZ+ e+ O Eeeney) - (319)
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where we apply (1 — /oy xv)?(1+ Oz < (v+ O Lyecy +(1+ )z 1{¢>13- Then, by Cauchy’s inequality and
(2.17),

1
2

1
1115 Slelh [ 0IVVEP V¥ e

N|=

1 +oo 27
Sl ([T OITWEAIRE [ 190 e i)

« | logv 3
< 0 e (el + I+ OF i)

For II1, using (2.18), (A.19) and Cauchy’s inequality, we have

3 v 2\ 2
vV 0uXvE)|
|III| <C </ UUQUXIQ/ ’ |V\IJ(1—‘/QVXV)€|2> < U )

< ([
— 10 U,

* 3
)+ € Nog v (Il + 1+ O o))
Finally, combining the estimates of I, 11,1 above, we obtain

<I([Exlvetie
-5 U,

(25 - Z99e. )

)+ G0 (el + 10+ O cacn)

V%

Estimate of term L(e): In the following, we denote the O(p*) terms (under the bootstrap assumption) as

the lower order terms (l.o.t.), as u® = O(v*) for any fixed k > 0 when v is sufficiently small. By Lemma 9,
we know that

R,
L(e) = -V - (eVUp + PVVL,) + jafs +1lo.t..

Integrating by parts, we obtain
(~V - (eVUp + PUL), &), = /V(\/@xu) (VU p 4+ PV A (Trxe)

+ / SOV p + PU.) - Tl (Jorxne).

By Lemma 2, inequality (A.19), and the control of the outer L>°-norm, we first have

1 1
[0t e a P £ el [ OV EVEE S 5 (Il + 190+ 7 el cacey)
(3.20)
Then, thanks to Cauchy’s inequality, it remains to estimate

1
[0 + IV Wa) P (Tl + [PV

By the pointwise estimate |V p(¢)| < |a(7)|log(1+ ¢/v)/¢ < % and (A.19), we have

[eVUp* _ |af?
/(QVX?/ + |V(\/QUXV)|2)U7 N s (H5||12n + [IVelf, + VlOOHEHQLOO(CZC*)) :

For the other part, we consider the decomposition V¥, = V¥, + VY1 gy By (3.19),

|qujl— l,,,€|2 C *£L2
[z + 1V Py )

3
(el + 121+ OF 3 e ) -
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By the Hardy-Littlewood-Sobolev inequality (A.21):
~ < 1 i< 1
IV¥e|lrs S —llellinllUnllf2 S —5 ll]lin,
14 V2

we have

PYRL (e + IV(Va)PPPN o
[+ 1vvaam T < wws. ( o < Ll

For the last term in L(e), by Cauchy’s inequality,

R;
— (e, Ore
u< )

1
S = €llinll Velfin-

Uy [ v

Finally, collecting all the estimates above and by the bootstrap assumptions, we obtain

RT% 2 4 Vel?)x2o, C
(" = )(/ TR0 ) s a1 4 O oy + O B

v U,
5 g2 +|Vel?)x20, Cla 3 »
< o ([T ) s D14 O oy + 00 B

(ZE). o).

where the second inequality above holds when v is sufficiently small.
Estimate of the nonlinear term NL(e): Again, the terms of order O(u®) are treated as lower order terms.
It then suffices to estimate the term —V - (eVW,.). Integrate by parts, and we have

(V- (V). 2, = [ V) (VUMM T0) + [ VExeV e Vs (VEne).
As before, by Cauchy’s inequality and (3.20), it suffices to estimate
1
(et + R E PP

To this end, we decompose VW, = VW, .. + VW _, .., where we recall x*(¢) := x(¢/¢*). For the first part,
We further decompose:

1 . 1
[+ NWa) P Ve P = [0 + 19RO PV P

+ / (03 + IV (VB2 (1 — () [V
= Tl + TQ.

By Cauchy’s inequality, Sobolev embedding H!(R?) — L*(R?), and HLS inequality (A.20),

I (/M) S llex13= - (/}v(w>
< (/W) (f |V€|;(x*)2+/52(u+52)2(x*)2>'

By the L control of € in the far field, Cauchy’s inequality, and HLS inequality,
) +¢)?°

v2

T S Ve

)

7215 251 b vo) [
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In summary, by the inequality (A.19), we obtain
1 Vel2 + £2)%2 /o0
/(:QVX12/+ |v(\/0_uXu)|2)52|v\I}aX |2 < ( 4”‘5”2 +V2C /|V€| )/(| El +; )XU\/Q_

C(K:) [ (Vel’ +)xiver
< |10gu|2/ i (3.21)

For the second part, we apply (A.17), and obtain (choosing p = %)

V¥ a—yoelle SN =X el + 1(1=x")ell 3 S lle(t + )2 llzescr)-

It follows that

/ (evxi + IV (Vorxw)|*)e
Uy

2 2\ .2
3 (ovxy + IV(/ouxu)|)e

S+ O e o | o (322)

1 3

e+ O eiczery (lellE+ Vel + 7l F e ) -

<

Finally, combining (3.21) and (3.22), we obtain the nonlinear estimate
C(K; Vel? +e2)y2 /50
0 [T+ DT g,
|log V| U,

(Vel® +over
= 10 U,

(NL(), &),.| <

(KZ)ng

where the second inequality holds when v is sufficiently small.
Estimate of the generated error E: Recall that

R, _
E = MOdogDQW + MOdlcpl)V + —0;U, + E.
1

By the algebraic identity .S (AU,) = —2, the orthogonality conditions (3.3) and the decomposition ¢; , =

— 6o —L AU, x, + @;, we have

<€ s MOdZ Sﬁi,u>

1
S |M0dz| (‘/E\/Q_UXV%V( (1 - \/Q_UXU AU
|M0d |2

‘/s@xu S (Xu/ 00 Bi)

V,*x

< gl

Similarly, by the algebraic identity .S (VU,) = 0, we have

<|fevanas (Fov.a - va))

< )
~ 1002

[ cvme s (o)

el + v*[log v| -

As for E, by Cauchy’s inequality,

‘<E,s>

[SE

<

Q

E? ) s CW?+a]) C(K;)V?
in S in .
lel </ U,,) 101/2HE|| + |log v|? * |log v|3
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In summary, we have

C(?+la|)  C(K;)V?
|log v|? [logv|3

36, C )
]<s, B —Modogo,),,.| < 7ol + 5 Mods * +

V,*x

Estimate of time derivative terms: Once We note 62 = ufaﬁ, then the estimates are straight forward from
definition. First, we have

0 (ovxy 2 vr (1 2 100 112
‘<5_T( U, € 57 ﬁ”‘gHin_'—V lelzoocscny | -

Second, by 9, (v/8rx) = s X (¢/|log v])y/2r and (A.12), we have

<587 (\/@Xu) ) \i}a> .

)

' S % lell ez e lellin < Nlellf + 1™

Conclusion of Step 1: Finally, collecting all the estimates above, and we obtain, when v is sufficiently small,

1
0 [ eVEt e En) — Moda [ /Bt (oo, /T

C(KQ)V2

Toaa C(K ;). (3.23)

5 2 2 C 2
< e (llellf, + IVell?,) + ;|M0d1| +

Step 2: Correction term estimate
Now we are to estimate the extra terms induced by 9, (do [ EXun/0v S (Xur/0vp0)). We write

5, <do [ e (x,,@wo,») = 240 [ Ocexu/ B xB0,)
+ 2dO /EaT(XU\/E)'//IE(XU\/Q_USDO,u) + 2dO /EXV\/Q_U'%VC((?T@O)

_ 1 1
+ 2do/axl,\/ﬁg0087 (a) + 2dy0; <_W) /axl,\/@

1 2
+0, (/ o000, S (X u5> :
(f XV\/ QUSDO,U%UC (XV\/ Qu‘pO,u)) X ¢ @07 (X ¢ )

Estimate of dy f OrEXua /g,,,///l,c(x,,‘ /0,%0,,): Plug in the evolution equation for e:

0,e=Aec—V - (U, VU, 4+eVUy )—BAe + L(e)+ NL(e) + E,

and we estimate term by term. First of all, through integration by parts and Cauchy’s inequality,

do [ X/ TA M x/To0)| S 5 |do [ xo/Tobe|+ o [ xovBBe S (o)
d,
B [+ @ewva]+a [uvave -V V@)
+ldo [ Ao S(o0)
1
S (lellE + IVEI2) + el eyl
V2| logv|3
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where we use the estimate | [ ex, /20| < [log |2 (f(v + ()2e2xu/80)? + (f (v + ()*e®X01/0r) 7, and (when
v is sufficiently small)

/c4 u+< xuv/or _ / Clr+ Qo | / ¢+ xor
~ {<<|logu\%} v? {(¢>l1og w3} v?
IlogVI
7||V 15 + %Nl Foo (s cey-

Similarly, by the pointwise estimates of the Poisson field (A.16) (A.17), we have the estimate

3
(el + I1VellZ) + le@ +€) 2 [T ey

do / XTIV - (U, T, + eV, )M (xor/Brp0n)| <

~

|logv|2 12
and (the extra linear term is smaller, but here a rough estimate is enough)

O

= Tlogrltv ————(llellfy + IVelli) + CUE)e( + O 2 [Tx zer) + O)-

do / NV B L(E) A (X B0 | <

As for the scaling term, the estimate is similar to the Ae term:

(llellf, + 1Vellf) + 0@ ).

1
do / o TBAMS (Yo Bog00)| <

~ v2|logu|3

For the nonlinear term, by the estimates of Poisson filed and Cauchy’s inequality:

~

d
& / Vvvan) - Viee| + | do / V@) - VUeedtS(@o)

do / XV BNL(E)AS (xun/Br00.)| <

do / ATV, VA (20)
< lell, + | Vell2,

v2|log |2

Lol ([ el oy} e A%
</ Z ) </{C<|2logv|} (V+<)4|VLIJE| )

el 2
S ool ||V€||m+|10gV| e+ Q)2 lloeczcn ) -

2 [Tog V]
i ([ L) ([ o plasenr)

el 3
S ||V8||1n+|10gV| le(t+ Q)2 llLec=¢) ) -

2[Tog 7]
sl ([ LN ([ 0w pi s

1 3
(19elln + 1og1- 11+ O lam(escr ) -

( Vel + [log 4] - [le(1 + O} |Lm<<2<*>),

where we use the estimates

do
/ /B0

do / XN T e M (20)

dO/XU\/EEV\IJa : v'//rf(@O)

< ||€Hin|\V€|\lin
V2| logv|2

Finally, for the generative error,

[Modi| - [leflin _[lellin
V2 [log v|?

+ C(K:)v|ellins

do / o8 (E = Modogo.n )4 (xo/am0.)| <

36



where we use the estimate |fE~XW/g,,| < % + C(K;)v® and the fact [ 0:U,Xu\/00 A5 (90,0 X1+/00)=0.
Finally, combining all these estimates, we obtain

lellf, + IVellf, v?

< O(K;) K;)

do /(376 — Modo$o,0) X/ 0o (Xu\/00P0,0)

v2|logv|3 [logv|3”

Estimate of the rest time derivative terms: By 0:x, /0, = m’%;{((ﬂ logv|) and the L* estimate of €
in the far field, we have

do / <0, (o B0) S (oo JBm000)| < CUR N,

when v is sufficiently small. Similarly, by Cauchy’s inequality, we have

1
doOr <_W> /EXU\/Q_V

2 2
BN R A 1

do / X B (9 (%0)

1
+ do/EXu\/Q_u@oaf (7) ‘ +

V2| log v|

For the last term,

) < 1 )‘ < 0, (™2 [ @o)| +10; [ ot (o)l < V2
[ Xun/@r oty (xun/Oroow) )|~ ([ Xun/@r 0wty (xur/Orpow))? = |logv|

Then, we obtain

1
o,
(f XoA/0r 00,05 (X /00900

Finally, all the estimates above yields

C (K |lell,
v logv|

<

~

) </ xy\/Ewo,u///,f(xux/EE)>2

2
o (a0 [ exn 5 (om0 ) = 2oty [ vunTrgon- 5 exomn) + 0 (CU) ) (20)

Step 3: Conclusion:

Combining (3.23) and (3.24) yields the final result. O

3.3.2 H! Inner Estimate

By orthogonality conditions (3.3) and Lemma 1, we know that there exists a universal C' > 0, such that

1 |V€*|2 2 ¢ * % _/ C(-*\|2 /|v£*|2
&[Sl -l < - [ g enasen = [vivaser <e [ B

Thus, [U,|V.#¢(e*)|? is equivalent to the norm ||Ve*||r2(p,) (with some negligible error).

Lemma 5 (Control of |Ve*|| 12, )). Let w be a solution in the bootstrap regime BS(7o, s, ¢*, Mo, {K;}1_,).
Then, the following estimate holds on [1o, Ts]:

1d

C
20 ik

* C 3
U |Vt () < = (IVelf + lellf) + 5lle( + O F e exery
C 2 C *7Ki 2
L OO K
[logv|* ~ [logv[?

)

for some universal C, some C(C*, K;) dependent on {¢*} U {K;}_,, and any constant K > 0.
i=1
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Proof. First of all, the evolution of £* is:

d
EE* = Zoﬁya* + [x*,féy]a +X"V0ov (—BAe + L(e)+ NL(¢) + E) ,

based on which we compute that

s |GV =[OV )Vt 0.) + 5 [(0.0,)9 5
+/U,,v//z,§(a*)~v <saT (U%»
= / Ly MLy ) + / UNAMS () -Vt (X (=BAe + L(e) + NL(e)))
+ / UML) VS (B + [ 25,

n % /(8TUV)|V//15(E*)|2 +/UVV///5(€*) 'V (5*87 <U_>) '

Coercivity in H?: Denote 5 := Zoﬁys*, and decompose

g9 = agAU, + a10:U, + &9,

where
a0 — <€2, AUU> . <€2, 877U1,>
O AU, AU TN (0:U,, 050,
By (A.16) and Cauchy’s inequality, We have the estimate
1 C(K;
ol €7 [ 1(Ve" = U, = 00,) - VAT § 519 2 € T8,
V2 |log v|

Similarly, we have
™ |logv|

Then, by the algebraic identities .#$(AU,) = —2 , .#5(VU,) = 0, the divergence form of e, and (2.19), we

have |22|2 lea?  C(K;)
¢ — [ i)~ [ 120 & [ 2 s
/52//11, (e2) /52///u (€2) / U, / U, + [logv|?’

where we denote for two non-negative quantities A = B, if there exists a universal constant ¢ > 0, such that

|a]

2
cA < B < 1A Then, we are to show that [ % is equivalent to certain weighted H?-norm for *. Define

~k o, ok <€* ) AUU>
£ =c¢ AT, | AU,,}AUV

(e*, VU,)

VU, =" — cy AU, — ¢y - VU,
VU, , VU, = Ta ©

Thus, we have
(", AU,) = (", VU,) =0.

/E*VUU

By the local orthogonality conditions (3.3), we estimate that

/E*AU,,

e S v2 St llLe,  feaf S vt < V0l e
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Then, by the estimates above and Proposition 3 (in the parabolic variables),

L et L5 AF2 1 1
/7| 0& | _/7| 0[*] | _5( |5| +;/(V—|—<)2|VE~*|2+;/§*2>
Ae*|? 1 N 1 . .
5(/!+—2/(V+C)2|Va P e 2) — A2
5 Ac*|? 1
5(/';' +—/(V—|—<)2|V€*|2+§/8*2>,

when v is small enough. Since €* is compactly supported, integration by parts yields the following control
(one can, for example, apply the density argument by considering the functions in D(R?) first):

/|V<2s|<2p<c (/|Aa <2P+/|Va |2¢2P~ 2) p=1,2.

It follows that there exists some ¢’ > 0, such that

/w%f*'? (/ |V @ e | u+§) . /(V+C) Vet 4 1 /5*2)'

For brevity, in the following we denote

v 1
||5*||§12 . /| € | I/+<) = /(I/—I—C) |VE |2 /8*2.

Finally, gather all the results above, and we obtain

. . . O . v+ 2 E* 2
- [ s 2y < 01 + 5 ([ o+ [LELED)

V

Y

Y

< =33, + 7 (el + 1Velf) < =8'lle s +ﬁ’
and
22
/gOCV *%C(Xéu )< =4 U

for some universal 6,8’,C' > 0. In other words, it means that there is a partial H2-damping (i.e., damping

in a certain finite codimensional subspace) and a full H?-damping with an error of size m.
Estimate of the scaling term —fAe: Note that
—ﬂ/UUV///,f(a ) - VA (T Ae) = —2ﬂ/U |V AS (e ﬂ/U VM (E*) - VM (XY - Ve),

where the first term of the right—hand side has the desirable sign. As for the second term, by the identities

& =y-V ( ) + X VU“ and Uy.ger =y - VU, —2U.. (since * is compacted supported, the Poisson

ﬁelds are all well deﬁned so that this identity can be verified by computing the Laplacian on the right-hand

side), we have

y-VU,.e*
Us

2e*

ME(Xy - Ve) =y VM (") — My - V(X )e) + -

+2.45(e%) —
Then, through integration by parts, Cauchy’s inequality and (2.18), we obtain

1 2 1 2
(el + 21Vl

‘B [uvase) vasiy-va| <c
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for some C' = C(¢*). It follows that
. . 1 1
-6 [O.5.5() V500 o) < € (Gl + VIR, )

Estimate of L(e) As before, we neglect the terms of order O(p*), thanks to (A.3). Thus,

L(e) = =V - (eV¥p 4 PVV,) + &(%a +1lo.t..
I

~ U

on the structure of .Z¢, specifically #$AU, = —2 and .#$VU, = 0. First, we note that

Recall the pointwise estimates |VUp ()| < la and |8§P(C)| hS %. The following estimate relies

/ggﬁg(x*v (VT + PYD,)) = /v (VT p+ PV ()
— / UNMS () -NAM(VX - VUpe + Vx* - VE_P),

where we use the decomposition €2 = €5 + agAU, + 107U, and f V- (e*V¥p+ Px*V¥.) = 0. By Cauchy’s
inequality, we obtain

52 . * * 2
‘/V~(€*V\IJP+PX*V\115)///,§(52) 0 [& +0(<*)/ IV - (e*VTp + Py VI,

<
— 10/ U, U,
<918
— 10/ U,

* CL2 2 a’2 3112
+ 0 (LVel+ G+ OF s )

la]

and
‘ [0S VAT TV wsm\ <€)y (llellZ + IVl + e+ OF Beenes))

where we use the elliptic regularity

/ VO P <C(¢r) / V.2 + 2. (3.25)
¢*<(<2¢* ¢ <¢<agr

With the same argument, we can estimate

R ) £2
(v oy <« 2 [ 2
‘/EQJ/ZU(X . (?Ta)‘ < 10/Uu+

In summary, we obtain

R, |*C
” ;(Hsll?ﬁ IVell,)-

R + == (llellix + IVell3,) -

U, v

[etstcren| <

Estimate of the nonlinear term NL(g): We neglect the term of order O(p®), and as before, rely on the

structure of .ZS. First, we write

/52///5(X*v (eVT,)) = /52///,5(v (e*VT,)) — /va///f(a*) NS (VX -VTe). (3.26)
Then, we are to derive L>-bounds for V¥, and e. Denote ¢*(v) = v?e*(vy). Then, V¥ (7) = vV« (17y).
By Sobolev embedding and the pointwise estimates of the Poisson field (A.14)(A.15), we have

C(C*, Ki)l/2

VU,
H q |10gV|

L= SIVE |2 + [V lr2 < CC)Ve 2w,y <
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Thus,
C(C*K;)v

[V e <
|log v|

Moreover, by (A.17), we have
* * 3
IVEaygellne SNA=xellre + 10 =xell 3 S Ne@+ ) ey < CK)V™.

In summary, we've shown that

C *,Ki v
|90, < SEED
[Tog 7]
Similarly, Sobolev embedding yields

O(Ki)l/2

o < * < 4,2 e* < 4,2 E%CE .
ol 5 10" le S 021" g 507 [ enct(ea) + i

It then follows that

CKZ' ~ ~ CKi
el S [ eatlen) + S0D = [ apsien + S0
|log v |log v

Now coming back to (3.26), by Cauchy’s inequality, we obtain

[ ess @ -evwa| < (g + Selin) [ 24 CELD e 4 vl

and

. . C* ¢
[ o5 i) sy vwe)| < LB + Sl + el o)

where we again use (3.25). In summary, by the bootstrap assumptions, we have the estimate

) 22 O, Ky)v?
C * s
’/52/// NL(e ))’ 1 U + Tog PP + O(p),

when v is sufficiently small.

Estimate of the rest terms : We write

X", Ly, e = —2VX* - Ve — eAx* + VX" - VI, + V- (U, Ve — X U,V + U, V" - V..

First of all, by Cauchy’s inequality,

] [ 0T VA 29 Ve = a4 eV V)| < 5 (VeI + )

Second, by the pointwise estimates of the Poisson field, the bootstrap assumptions and inequality (A.17),
‘/Eg///(V (U, VU — x*UUV\IJE))‘ = ‘/ég//l(v (U, VU — x*U,,V\IIE))‘

s

SE U—+—|| e(1+¢)* HLw(<><)+C(< Ki)v®

IN

+ } / 0l (V- (UpX" Vet _yo))
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Similarly, we have the estimate
c
055 SO V)| < S (IR + el + O Ko
To summarize, we have

‘/52//% x* .,?OCU

C C 3 *
< o 2 G UVelR A+ 1el2) + 1+ O gy + O K
The estimate of the generated error relies on the structure of the operator .Z5. Note that
- / UNAME () - VM (X E) = / 0.l (X" E)

=— Z Modi/U,,V//lf(a*) M (—ﬁ(x* — 1)AU,,+¢Z-) +a0/X*E+/52///§(X*E).

i=0,1
Then, by Cauchy’s inequality, the estimates of £ and the estimate for [Mod;| in (3.9), we obtain

o g C
&9 X S o= - — \I€ €llin
B < 55 [ g +om (el + 19e03) +

C(?+la|)  C(K;)V?
|log |2 |logv|3

Finally, for the extra time derivative terms, note that 9, = “rvd,, and the estimates are straightforward:

5 [V + [05.056) 9 (0. (1)) £ il (el + Vel

u2| log V|

Conclusion: Collecting all the estimates above, we obtain:

1d C c 3
2 [V < G TR+ ) + ol + OF s
C?+la)  C(C Kiv?
Tog? T [loguP
for some universal constants ¢’,C' > 0 and constant C'(K;) depending on K; (1 <14 < 7). O

3.3.3 Higher Order Estimates in the Middle Range

Lemma 6 (H? control of ¢ in the middle range). Let w be a solution in the bootstrap regime
BS(70, 7w, C*, Mo, {K;}(_,). Then, for any 0 < (1 < (2 and T € [10, 7] we have the following estimate

C (&, ) Kar? C(&,G)Kiv? n C (¢, G, Kiv?
Tog ] Flog o2 Nlog o

o) S _6(C1=C2)||5H%13(<1,<2) + [Modo| +

)

with the norm || - || g2 (¢, ,c,) defined in (3.32), and positive constants §(C1,(2) and C(C1,¢2) depending only
on Clv <2.

Proof. The main idea of the proof is the parabolic regularity together with pointwise estimates in the middle
range. To start with, from the control of the inner norm of £, we have

K2

2 < m < b)
lellz2iei<e<se) < ClG, @)llellin < C(G §2)|1 ol

The evolution of € can be written as

0,e=0Ac+G-Ve+Fe—VW - -VU_, -V - (eVU,)+ E + lo.t,
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where we recall W = U, + P and
R,
F:=2W =28, G:=-VUy —fy +—e;.
I
Here l.o.t. (lower order terms) denotes the terms that, up to second derivatives, can be estimated in the

middle range with order O(u*), and hence negligible in our analysis (we will omit it in the rest of this proof).
Note that in the middle range %Cl < ( < 8(2, we have for k =0,1,2,

a
W] < (61, @) (2 +la()) 108wl < 0 (14+141)).
Also, by (3.4), (3.6), (2.1), and Lemma 3, we have for any ¢ € [£(1,8(2] and any k > 0,

C(G1, Q)v? n C(Gr, G, Ky)v?

oME < Mod
| ¢ |— (ClaCQ)l Y 0|+ |10gV| |1OgV|2

For j = 0,1, 2, we define a family of cutoff functions:

(C)_ 1; 221—j<1 §<S227j<2;
VTN 0, 0 Ce0, Gl U R iG, +oo).

For brevity, we denote C'(K;) := C((1,(, K; : 1 <i < 7).
L2-evolution: Compute that

1d

23 lexoll32 = (xo (Ae +G-Ve+Fe — VW - VU, — V- (V) + E) , x0¢) .

First of all, by Cauchy’s inequality,

K3v

{(XoAe, x08) = —[x0Vell72 — (Ve, 2x0eVxo) < ——HX0V5||L2 + 0, G) s og |

Next, due to the pointwise estimates |F| + |G| < 1, we obtain

K3v

(ex0, xo0 (Fe+G-Ve)) < _HXOV€||L2 "'C(Cl’@)“ gy|2

By Hardy-Littlewood-Sobolev (HLS) inequality, (A.12) and (A.17), we have the following estimates of Poisson
field:

Ko

N 3” HlnN|1 |7 ||

V¥ \VAV/

L S lle(l+ C)%HLOO (> S Kov” (3.27)

Thus, by (3.27), .
C(K;)vz

VW - VUV .
<EX07X0 > |1OgV|2

As for the nonlinear term, using (3.27) and the Sobolev embedding W1?(R?) — L7 (R?) (p < 2), we have

C(ClaC?uKi) C(C17C27Ki)y4

v 2
|10gV| ”XO EHLQ + |10g1/|3

—(exo0, xoV - (eVV,)) < H5||L2(%<1§<§8<2)HV(X0€)||%2 +

Finally, by the pointwise estimate of F,

C(<17<2)K4V2|M0d0| + C(<17<2)V4 C(ClaCQaKi)V4
[log v | log v|? |log v|3

(ex0, Exo) <
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In summary, we have

d 2 1 2 Kyv? C(¢1, vt | C(G, G, Kiv?
- <2 24 1 Mod
dTHXOE”L2 = 4HX0VEHL2+O(<15<2)|10gu|| Y 0|+ |10gV|2 |10gV|3

(3.28)

Evolution of first derivatives: Denote by 0 either 0r or ds. Then,

1d
55”8%”%2 = (x10(Ae 4+ G -Ve+ Fe = VW -VU, — V- (eV¥,) + E) , x10¢).
Similarly,
1
(x10A¢, dex1) = —||x1VOe||32 — (VOe, 2x1Vx10¢) < —§||X1V85||2L2 + C||0exo|| 22,
and
1 9 9 K3t
(Bex1, x10(G - Ve + Fe)) < 1—6HX1V85HL2 + C(C1,C)||0exoll72 + C(Cl,Cg)W.

Next, through integration by parts and estimates of the Poisson field,

— (x10e, x10(VW - VI,)) = (x]9%, VW - VU.) + (20x1x10e , VIV - VI,

C(Clv <25 Ki)u5
[logv[>

A

1
5lad%ellzz + Clloexollzz +

As for the nonlinear term, by the Sobolev embedding H?(R?) — L>°(R?), we have
lexallze < llexollze + IxoVel Lz + [xaV®el| 2.
Then, through integration by parts, the L> estimate above, Sobolev embedding and (3.27), we obtain

— (x10e, x10 (V- (VV.))) = (x10%, Ve - VU, — &%) + (20x1x10¢, Ve - VU, — &%)

< C(Cr, ¢, Ky) C(C1, G, Ki) C(C1,C2)K3V4'

6 2
< ™ og Mogo] 1020l + =300 0

19%ex1 72 +
Finally, through the integration by parts,

(x10e, OEx1) = — <<€, 8()(%8E)> < C(Cl,CQ)m|Modo| +

K4I/2 C(C17C2)K4I/4 C(<17C27Ki)1/4
lo |log v|2 [log v|3 '

In summary, when v is sufficiently small, we have

C (1, ) Kav?

d 1
EHXlVEH%Z < —ZHXlV(z)EH%z + C(C17<2)||VEXOH%2 + |10gV|

C(G, @)Kt C(C, o, Ki)v!
|log v/|? [logv[3

|M0d0|

(3.29)

Evolution of second derivatives: Denote generically % a second order partial derivative (e.g. 070z, 9:05).
Then,

1d

Ed—TH@QanH%g = (x20° (Ae+ G- Ve+ Fe — VW - VU, — V- (eVU,) + E) , x20%¢).

The estimates of the first three terms are identical:

1
<X282AE, 825X2> = —HXQV(?QEH%; - <V82€, 2X2VX2825> < —§||X2V82EH%2 + C||828X1||%2,
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C(C1,C2)K3V4'

and
IaVo%elZ: + C(Gr 0 exallze + CGr Gloexollie + =220

1
<825x2, x20%(G - Ve + .7:5)> < 16

Next, through integration by parts once,
— <x2826, x20% (VW - V\I!8)> = <x§835 + 2x20x20% , V(OW) - V¥, + VW - V((?\IIE)> )

The estimates are the same as before, except for the VW - V(0¥ ) term, which is done in the following way:

by elliptic regularity, HLS inequality, (A.14) and (A.15),

VO 066 [ 2400616 [
{3¢1¢<4G} {261<¢<4¢}

C(Gr, H
- %Hg”ﬁﬂr CCu @l + O e (cscr)-

|V, |2 (3.30)

/{éC*<C<2C*}

Thus, we have

— (x20%, x20* (VW - VI.)) < —|[x20% |32 + C(C1, @) IIxa VPel[7 + C(Gr, &) IxoVell3»

C(CrsCoy Ki)v° +C’(C1,C2)|a|2 Kiv!

V3 |logv|?

+ ool

[ log v|?

As for the nonlinear terms, integrate by parts once:
—(x20%¢, x20° (V- (eV.))) = (x30°¢ + 2x20x20% , V(0e) - V¥, + Ve - V(9T,) — 2c0¢e) .

Note that all the local terms (i.e., terms not involving the Poisson field) together with the term V(0e) - VI
can be estimated in the same way as before. It then remains to deal with the term Ve - V(0U.). By the

Sobolev embedding H?(R?) — L (R?),
IVexallz= S IVPexallzz + IV exallzz + I Vexol| 2.

This, together with (3.30), gives
C ) 7Ki
1V - @) 2 < L4 2ED) (1@ i1 1 IV @z + [ Vexollze)
|log v

Therefore, we obtain the nonlinear estimate
C C 7C 7Ki CK21/4
- (e o (V- (900) £ B Gl +0(6,6) (199l + [Vexoll:) + o

The estimate for E is the same:

C(&, @)Kt C(Cr, G, Kt
|logv|?

C(C1, Go) Kqr/?
2 2 _ 2,292 <L ZA>m AT R
(x20%¢, O®Ex2) = (e, O*(x30°E)) < [log v/| [Modo| + |log v|?

In summary, when v is sufficiently small we have

d 1
4oV ®es < -V Oels + 06 6) (IVPexalls + [ 9exol:)
C(ClaC?)KZVLI C(ClaC?uKi)V4 3.31
logop O3

2
C(Ci, G2)Kyv Mods| +

[log v| [log v|?

+
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Conclusion: Combining (3.28) (3.29) and (3.31), we know that there exists Cyp = Co((1,2) > 0 sufficiently
large, such that once we define

1 1
lellFrzcer.cay = lexollze + = IVexallze + =511 VP exalzs, (3.32)
Co C2

1 1
lellFracer.cay = IVexollZz2 + = IVPexallZe + = IV exal 2o,
Co C2

it holds that

(G, G2) Kyv?

C(¢, K3t | O, G, Ki)v?
|log v| '

[ log v|? |log v|?

|M0d0| +

d 2 1 2
a2 e < —gllelim e +

Finally, the result follows form the Poincaré inequality

C (61, ) Kar®
[logv|

||E| H2(¢1,¢2) < C/HEHHE(Q,@) +

3.3.4 Far Field Estimate

Lemma 7 (L control of ¢ in the far field). There exists M > 0, such that for any Mo > M and ¢* > M,
the following holds. Let w be a solution in the bootstrap regime BS(7o, T, (*, Mo, {K;}I_;). Then, for any
T € [10, T+] we have the following estimate
3 . v3(r) 3
||€(7—)(1 + C)Q HLDO(CZC*) S C(< 7Kl)m (”E(TO)(l + C(TO))Q HLDO(CZC*) + HE(TO)HLOO(CZ%C*))
CKq e 2P+ C(C* Ky, Ky, K5, Kg)e 2VPT Mo C(¢* | K;)e2VPT T

c* VBT + My VBT + My + BT + My
(3.33)

Proof. To derive the far field L>°-control, we go all the way back to the original 3D system (3dKS), where we
exploit the dissipating structure of the heat operator. Consider the following decomposition of the solution:
1 r—R

u(x,t) = FW( .

z )+ 1 (T—R z
y T —€ y T
Jz 2 ou p

)7

where we recall r = |(x1,22)|, 2 = z3, x = (z1,22,23), T = —log(T —t) + log(T), and p = VT —t =
e~ 7/2H10(T)/2 (without loss of generality, we can assume 7 = 1 in the following). Besides, recall that

W(r z,7) = U,(T,z) + P(F, z,7),

where we denote 7 := (r — R)/p and Z := z/u as before. One remark: since R, i depend on time, so do 7, z,
and we will specify their time dependence whenever necessary. Let n(7, Z) be a smooth cutoff function such

that
1
n(7,z) =1 when V2 + 22 > (%, n(7,z) =0 when /72 4+ 22 < 54‘*.

Denote e.(7, 2z, 7) := &(F, Z,7)n(7, Z). Then, the evolution equation for €, can be written as

1 1 .
Drew = (af + 02 + T) e = She + R—&;s* +S(7, z,7), (3.34)
I

—— 0,
T+ R/u
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where

S(’f,é,T) = ’l’](AW -V (EV(I)W + WV(I)E + qu)g + WV(I)W) — ﬁ(s@;@w + Waf(l)g + 65;@5
W) + —— oW — faw + Brgw —a W) e — 2V Vi — — e
TEW 7:_"_]_%/‘ur 2 'LLT T n n 7:_i_]%/‘urn

N~

R,
+=((r,z)-Vn)e — 78;775

= 77( — V- (eVOy + WV, +eVD,) — (€0:w + WP, + €07P.) + Modopo,,

_
_—I—R/

~ 1 R,
+ Modip1,, + E) — Ane —2Ve - Vn — - R/ Orme + = 5 ((7,2) - Vn)e — 76;175 (3.35)

Now, due to the parabolic scaling, it is natural to relate (3.34) to the standard heat equation. Denote

1 E(T—R(T) z
p2(r) " p(r) T u(r

Then, @ solves the following heat equation with an axisymmetric force:

u(x,t) =

),T), x € R%. (3.36)

1 r—R z
oa(x,t) = APg(x,t) + —S Z —lo 3.37
Wu(x, t) u(x, 1) 7 ( PR g(T —1)). (3.37)

Now, we consider the evolution of (3.34) in the time interval [y, 7], or equivalently, that of (3.37) in [to, t].

Given the initial data @(x,t9) = Uo(x), the solution of (3.37) can be expressed by the convolution of the 3D
heat kernel:

u(x,t) = H(x —X,t—tg)up(x) dx
R3
t=to 1 71, 30)| — R(s +1 ;
+/ H(x — %t —to — 5)— S(K”Cl’”” (stt) ,—10g(T—t0—3)> dsds,
0 RS (s +to) n(s +to) n(s + to)
where
1 _lx?
H(x,t) = —e 3t .
(4nt)2

Thus, we obtain an explicit expression for e, through the relation (3.36) (c.o(7, 2) 1= e.(T, Z,70)):

Ex T,Z,T
e o i)+ ) W) () - RO)
G (4m(e=T0 —e~T))3 <_ 4(e=70 —e7T) [(M(TO) (r+ M(T))
. R(To) - R(mo)y2 . o M) o .
~ (p+ #(TO)) (9)) +(P+ e )" sin®(60) + (M(To) q) D «0(P,q) dfdpdg

_ 5+ 20 cos “+ 5+ BD sin’ M(T>2—~2
5+ 20 o)+ (4 ) si(0) + (A= — 4] ) (5,7 avap
- 52((;)) | H 25,87 70)200(,0) dpdd + ZQEg ar | H2,5,679)S(5,4,7) dpdq
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The expression above is nothing but the convolution with the heat kernel written in cylindrical coordinates,
i.e., H. In the following estimates, we make use of the two key properties of the heat kernel: total mass 1
(in R?) and exponential decay. As before, denote the time-dependent variable ¢ := /72 + z2. Observe that

0 < o(r,70) e S|
o(1,79) == =1l-c¢ .
12(7o)

First of all, when ((7) < 2¢* ’L ((:f’)), since the heat kernel has total mass 1, we have

_ p2(7)
|I(F, 2, 7)| < 2r0)

lexollLo-

=

Thus, in this domain we have

[N

(7)
(10)

Second, when ((7) > 20740 je ¢(r)LEL > 2¢* denoting B(§) C R? to be the ball centered at

1(T) u(ro) =
(%ﬁ %2) with radius § (to be determined), we split the integral into two parts:

2 T . o o 2 T
I(7,2,7) = i (1) H(7, 2,p, G, T, 70)€x,0(P, ) dpdg + 52((70))

3 p
I

_ 3 ®
(112(7, 2, ) (1 + €) 2 || oo (¢= <c<2¢ uro) /u(r)) < 4C llexollnes- (3.38)

[

/ H(F,E,ﬁ, 67 T, TO)E*,O(ﬁu Cj) dﬁdq
R2\ B(§)

= Jl (7:7 z, T) + JQ(Fv z, T)'
By the decay property of ¢, we have the estimate

(7 77| < p2(7) llex(o)(1 +<(TO))%||L°°(C2C*).

THAn) (14 EE () - )3

(3.39)

Meanwhile, by the exponential decay of H , we have

pi(r) 9
w2 (o) o(1,70)

82
|2(F 2, 7)| S e 70 [lew (o) Lo (3.40)

Therefore, when ¢* is large enough, choosing § := 4 /((7) :((:0)) and combining (3.39)(3.40), we have

< 1 p2(7)
T (1+¢(r)E pz(ro)

Besides, we note that for large My > 0, by the bootstrap assumption it holds that

|1 (7, 2, 7)|

(Iler0) (1 + € (r0) 2 e ey + lle(r0)l= ) (3.41)

\/T/2+Mo++/70/2+Mo

M(T) _ e—%(r—ro) _ (e—(\/T/2+M0—\/7—0/2+M0)>
(7o)

100
—(y/7/2+Mo—+/70/2+Mo) 100< v (1)
< (e ) < OE) gy (3.42)

In summary, by (3.38)(3.41), we have when * is sufficiently large:

111(7, 2, 7) (1 + C(7)) 2 | Lo () < O(KY) V;(T) lle(To) (1 + ¢(70)) 2 || Lo e3¢y + llew(mo) Iz )
v3(7o)

where C' is some universal constant. This completes the estimate for I.
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Next, according to (3.35), we can decompose the source term as

S=nV-S1+ Sa+ 53 —2V - (eVn),

1
T+R/u
where (plugging in the definition of E)

S1=—-eVoy — WV, — VO, — WVOy — PVUp,
SQ = —7'](5877(1)1/{/ + Waf(l)g + 58?(1)5) — 77(1 — X(CV))((?,?W + W8*¢W) — 8777']57

53 = nMOdOSDO,u + nMOdl@l,u - nayryau((pl,u ®o, u) + n (_ - ﬁ) (AUU + 161/2900,11)

R- 1, R, nx(¢v)
+n—0:W +na(R1 — Ry) + Ane + =((7, 2) - Vn)e — —0xne + —="(0:W + WO-Dw ).
77# na(ky 0) n 2(( ) Vn) 0 n r—l—R/u( w)
By the bootstrap assumption, the pointwise estimates in Proposition 1, the Poisson field estimates (A.3)(A.4)
(A.16)(A.17), and the L> control on the boundary ||e[|p(¢c-<¢<ac) S ll€ll a2 (2e-<c<acy S C(CF) ‘Ilffjg”jl, we
obtain the pointwise estimates

3 O 3
[151(7, 2, 7)(1 4 Q) 2 [ oo (c¢) < C—*Hf(ﬂ(l + )2 |lnoe(ezes) + C(K;)v(r)?,

) c ; v

182(7, 2, 7) (1 + ¢) 2| Lo < C—*Ila(f)(1 + 02 Lo czen) +C(C) |I126gu| + CEwr), (349
ClMody| . Ker?  CUK)U(r)?

|| S3(7, z T)(l-i-C) 2o < I +C(¢ )|1ogy| [logv(T)|?2 "

Through integration by parts,

% H N
+ pin) ok ZT / VO D o AV - (98, — 2Vne) dpd
4 R

o Vo(r,Hpi(7) p 2 p+ R(7)/u(T)
T pi(n) i(r)
::/ r — Iy o(7, 2, 7,7) dT + ”—Iz (T, 2,7, 7)dT.
o i (7) o o (T, F)pi (7)
Observe that kernels % and /o (T, ?)Vfl share similar properties with H: bounded total mass and

exponential decay, which are all we need in deriving the estimate for I;. Thus, by (3.42) and (3.43), with a
similar argument we can show that

| B2a(7 2,7 F) L+ () Loz
< CNTTRTAITT (|153(7)(1 + () Hla + ISP + ) lamcacn)
CK, e=2VBT+Mo C(C*,Kl,K4,K57K6)€_2m (", K)e “HETH
T BT+ M * VBT + My + BT + My ’

and

127 2,7, )1+ (7)) s e
< QIO VITENG (|155(F) (14 () e + I(1S1(7) — 29me(F) (A +¢() 11 )
CK7 6—2\/BT+1\40 C(<*7K17K6)6—2\/BT+1\40

N3
& VETL T R
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Finally, it remains to estimate the time integrals:

T 1 T
/ k(1) d%:/ e s a7 < 8,

0 H%(T) To
and
G . /T B /t (T-ts 1 -
= —— aT = — =
o o (T, Pt () o VI—e T 0 (T—1)5 \Vt—1
L(r-ts 1
g/ ( )j ~dt§10+(’)((T—t)§).
-1 (T —=t)5 \/t — 1
This completes the proof of the Lemma. O

4 Existence of Blowup Solutions

Now with the energy estimates and modulation equations, we are ready to prove the existence of blowup so-
lutions. It suffices to show that there exist certain initial data (g9, vp, ag, Ro) and parameters ¢*, K1, ..., K7,
such that the evolution (3.2) will be trapped in some bootstrap regime BS(K; : 1 < ¢ < 7) for all 7 € [0, +00).
Roughly speaking, ¢* is chosen first which depends on some of the universal constants in the estimates, then
K; (the order of dependence among which will be specified shortly), and finally vy (or equivalently, My in
the bootstrap statement), so that C(¢*, K;)/|logv| will have the smallness we want.

The following lemma will help us close the bootstrap for €.

Lemma 8. Let f(7) > 0 be a differentiable function in 7. Let v(T) be the parameter in the Bootstrap regime
BS(70, 7w, C*, Mo, {K;}_,). Suppose we have the following differential inequality

Kvk(T)

(1) < =0f(1)+ Tog V()2

for some constants 6, K > 0 and k > 1. Then, there exists constant C(8,k),M > 0, such that for any
log(v(0))? = Mo > M, we have

Kvk(r)  KC(8,k, Ky, Ko, Ky, K5)U" s

< T 4.1

|f(7-)| — 6| 10gV|2 |10g1/|3 + f(O)e ’ ( )
holds for any T € [0, 7.].

Proof. The proof applies Gronwall’s inequality and integration by parts. First, we have by Gronwall’s
inequality,

T KvFR(s)
) <e % f(0 —l—e_‘sT/ s g, 4.2
Through integration by parts, we have
T k T k k T k k
/ Evk(s) g0, ¢ Kvi(r)  KvH0) _5/ vis) (_kvi(s) o 2() N s g4
o [logr(s)?  [logr(m)? [logr(0)]* 4 Jo v(s) \|logr(s)*  (logur(s))®

Then, by the estimate of |”7,| in (3.18) and the bootstrap assumption for v, we have

K TV’(S)< kvk(s)  20k(s) >55 ‘ KkC (K, Ky, Ky, Ks5) [T eds—kVBs+Mo
’5‘/0 v(s) \Jlogv(s)]?2 (logr(s))? e’ ds| < 5 /0 (ﬁS—I—MQ)% ds (4.4)
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By change of variables (z := +/8s + M) and integration by parts,
/T e0s—k/Bs+ Mo /\/BT-HWO 2 s
0

( E Btk G Mo, iy
ﬂS + My)z

—F€
i,  B?

e%m2_km—%M0 Vv BT+ My /BT Mo ( 1 >/ %1271617%]\40 .
= 7]@ — k e X
0x?(x — %) o /e Vo dx2(x — %)

Ced7—kVBT+Mo C VBT+Mo 2 s2 ., s
< g + / 7 —kx 3 Mo : dx
5(p7 + M)} | Mod

—__e>B
VMo B2
Therefore, when Mj is sufficiently large, we have

T eés—k\/,@s—i-Mo 0667'—](}\/67'-‘1-]\40
/ — ds < —. (4.5)
o (Bs+ Mo)? (BT + Mo))=
Finally, inserting (4.5), (4.4) and (4.3) back into (4.2), we obtain the result. O

Now we are ready to prove the main proposition, which will conclude the proof of Theorem 1.

Proposition 5. There exist a choice of parameters (¢*, Moy, {K;}'_,) and initial data for w, such that the
solution w of (1.4) will be trapped in the bootstrap regime BS(0, +o0, C*, Mo, {K;}1_,).

Proof. The proof proceeds as follows. First by specifying the dependence on the parameters (¢*, {K;}y_, Mo),
we exploit the energy estimates to show that the remainder € will always be trapped in the bootstrap regime,
given sufficiently small initial data. Then, as for the modulation parameters, the main part is to apply a
topological argument to show the existence of an initial a(0) such that the parameter a(7) will remain
trapped in the bootstrap regime for all time. The rest part (v and R, /u) follows directly from the |Mod,|
estimates and time integration.

Trapping e: Suppose w is a solution trapped in some bootstrap regime BS(7o, 7«, (*, Mo, {K;}7_,). Since
the parameter My is chosen at last to make C(¢*, K;)/|logv| arbitrarily small, it suffices to keep track
of only the leading order terms in the energy estimates. In the following, when we say “M;,” is large
enough, it means M is chosen large depending on (* and all K;’s. First of all, choose ¢* > C and
K7 > (*C((*, K1, K4, K5, Kg) for the constants C((*, K1, K4, K5, Kg) in (3.33). Then, for small enough
initial £(0) (e.g., ||e(0)(1 + C%)||Lm(<2<*) +11e@)lpezicsy S v3(0) suffices) that is even in z-variable and
satisfies the orthogonality conditions (3.3) and large enough My, by (3.33), we have

20Ky e VP Mo [ o2V BT+ Mo
< )
¢ VBT My T 2vBT+ My

As for the middle range H?-estimate, by (4.1), [Modo| estimate (3.9) and Lemma 6 (taking ¢; = $¢* and
C2 = 2¢*), we have

()1 + Q)2 [l (czey < v e 0,7, (4.6)

C(¢*)(Ka + VELK5)v° < Ko1”
[log v ~ 2|log V|

lell 22 ce<c<acey < CC) el m2(ace 2¢) < V7 € 0,7, (4.7)

once we take K2 > C(¢*)(K3? + K4K5) and £(0) to be small enough. For the H! estimate, define
1 d 1 .
lele = 52 (5 [ oxon @i eunm) - [ evmtsionin) + 5 [vIvaiE)P

where K > 1 is to be determined. Then, by Lemma 4, Lemma 5 ,(4.6), and the equivalence of norms, we
have

dy o (BoK*=C) 0 2y CK*?  CE)KF o
el < =/ : i
dT”EHH“ ~ V2 (HEHm + ||VE||IH) + |10gV|2 + (C*)Q |10g7/|2
(00K>—C) n  CK**  CK)K; v
< ———llellzn + 2 )2 2"
C(¢C*) v |logv]| (¢*)?  |logv|
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Thus, we can choose K? = C(K1)K2/K3? > 1, and by (4.1) we obtain

1

. CCW?  CC)K2?
L (K2 el + Ve g, ) < Cleliy < oty S

Sollog v Dol log vP?

V1 e 0,7,

when M, is sufficiently large and £(0) is sufficiently small. Thus, choosing K2 > (CO) 4 and K7 > C(C )
above, we obtain

K2v - K2v
lellf, < ma Ve 22w,y < Wv V7 e [0,7]. (4.8)

Collecting (4.6), (4.7) and (4.8), we see that all the bootstrap constants are improved by a factor of 5. As
a summary, it is helpful to recap the dependence of the parameters:

C *
K; > C(C*,Kl,K4,K5,K6) — K5 > C(C*)Kﬁ — K¢ > C(C*)\/ KKy — K5 > (C )K4

oy 9
— K>~ = > C

Trapping modulation parameters: First of all, simply choosing K3 > C'(K4, K5) in (3.9), we have

& O(K4, K5)V KgV
p [logv| 7 2[logv|
Denote @ := a — 802, and the bootstrap assumption on a is equivalent to || < IlogVI Then, inserting the
decomposition into the Mod;-equation gives
ﬁ _ ﬂ + ELT < O(KQ,K4,K5)
v 2logy  16v2| | log v|?
It follows that p - O Ky, KCy)
el 1 2 _ _ ar OgV 25 4, 5
dT( og"v) =8 812 [log v
Integrating in [0, 7], we have
" a-(s)logv(s) " O(K», K4, K5)
] 2 — (log 1(0))? —/Ld 0/461. 4.10
(logv(7)) (logv(0))” + BT 0 812(s) s+ 0 [og V| S ( )

Note, through integration by parts, that
T a,(s)logy(s) a(t)logv(t)  a(0)logw(0) /T _ logv(s)\’
ds = - - d
/0 82(s) T 8iA(r) 8,2(0) , O Ry )
= O(Kz =+ C(Kg, Ky, K5)\/ BT)

where we use (3.18) and
T 1
|, gty 45 VBT Mo~ Vi 5 VR

when M, is large enough. Therefore, once we choose K1 > C(K2, K4, K5), by (4.10) and the estimate above
we obtain

2 VBT < /BT Mot O(C(Ks Ka Ke) (L4 VAD) <« K1~ yBrii;
K - - 2 '

Finally, we control a(7). By the [Modg|-estimate in (3.9) and the decomposition a = 8% + @, we have

O(K4, K5)V2

@ — 24| <
[Tog 1]

(4.11)
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We choose Ky > C(Ky4, K5), and claim that there exits an initial a(0) € [—%, %], such that a

will be trapped for all time. Before proving this claim, we summarize the dependence of these parameters:
K> C(K27K4,K5) — Ky > O(K4,K5), K3 > O(K4,K5). (412)

Combining (4.9) and (4.12), it is clear that there exist parameters (* and {K;}!_; that satisfy all these
constraints. Now we prove the claim. First of all, we fix the parameters (¢*,{K;}/_;) and other initial
conditions according to the aforementioned discussion. Then, suppose, for contradiction, that for any ag :=
a(0) € [— ﬁ;”jég))l, |Ili)2g”j((8))‘], the corresponding solution w; will exit the bootstrap regime in finite time. We
denote the supremum of time that w,, stays in the bootstrap regime by 7,,. Note that when 7 = 7,,, since

IJ2 Ta,
Jav 7l Denote I := [~ K, K], then

all other bootstrap constants are improved by 1, we have |@(7,,)| =
we obtain a map 9 : [ — {—Ks, K>}, defined as

ao|logv(0)|  a(7a,)|log v(7a, )|

VTR0 T T ()

First of all, this map is continuous due to the standard continuous dependence of the solutions on the initial

data. Second, if |a(7)| = ‘Il?gyu :)‘ for any time 7, by (4.11), we have

V2 T
i (1) = 2Ba(t) + O (C(KL@”()) '

|log v (T

Thus, a(7) is nonzero and have the same sign as a(7) (since we choose Ky > C(K4,Kjs)). Then, for

any 71 > 7 (and |7' — 7| suitably small), we will have |a(7")| > %,
As a consequence, v is the identity map when restricting on 01 = {— K>, K3}. However, now since I =

“1({K32}) Ny~ ({—K3}) which is the union of two disjoint nonempty (as 1)(+K3) = +K5) open sets, this
gives a contradiction as I is topologically connected (this is in fact a special case of the Brouwer fixed point

theorem). O

existing the bootstrap regime.

Theorem 1 is directly implied by Proposition 5, except for the part ||@(t)||¢ — 0 ast — T. This is because
the inner region (which is controlled by an H! norm) and outer region (which is controlled by an L norm)
for the perturbation e in the bootstrap assumptions is divided at the parabolic scale (¢ ~ 1), while the
definition of || - ||¢ makes such division in the soliton scale ({ ~ v). However, the former can easily imply the
latter. To see this, note that by Lemma 6 (and the proof therein) and Lemma 8, we have ||e|| g2 <c<cx) =
O(|logv|™!). Thus, by the Sobolev embedding H* «— L in 2D, we have ||| foo(<c<c+) = O(]logv|™?
Combining with the far field L> control of &, we obtain ||e(1 +¢)2 | Lo ey = O(logv|~1). Tt follows that
lg(1+~)3 Lo (y>1) = O(Vv/|logr|) = 0 as t — T (we recall q(p, &,t) = v?e(vp, v, t)), so that we actually
have the weighted L* control of @ (the notation in Theorem 1) from the soliton scale, i.e., v > 1. This
completes the proof of Theorem 1.

A Appendix: Estimates and inequalities

Estimates of the Poisson Fields

On R?, we denote the cylindrical coordinate by (r, 6, z), and denote 7 := 7 — R/u where we assume 0 < p < 1
to be a small parameter tending to zero. Let u = u(F z) be an axisymmetric function centered around the
ring with radius R/ on the plane z = 0. Let @, 4W|x| xu be its 3D Poisson field. Then, we are to define a
2D Poisson field as an approximation to the 3D one in a sense that will soon become cleer. Define a function
on (7,z) € R? by

a7, 2) = u(F, z), 7> —R/pu,
T | w(=2R/u— 7, 2), 7 < —R/pu.
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Let n(x) be a smooth cutoff function in 1D, such that
0<nx)<1, n)=1 Vzel0,+o0), andnx)=0 Vze (—oo,—1].

Now, define u., (7, z) := n(r)u(7, ), which is a smooth extension of u to R?, and

1
U, = ——log|(7, )| * us. (A1)
27
One remark is that the choice of definition for the 2D Poisson field of w is not unique. In the following
analysis, we will see that what matters is that ¥, solves the Poisson equation on the half plane:

— (02 + O)U(F,2) = u(F,2), V(7 2)€[-R/u,+0) xR,

and V&, has certain decay property. In general, it works if we extend u to a function on the whole R?
with suitably small modification, and then consider its convolution with the 2D fundamental solution to the
Laplace equation. In our case, since u, and u differ little in LP? norms when viewed as R2-functions (with
an extension by zero for u) estimates of ¥, follow from those of u. The following lemma illustrates that
the difference between VU, (7, z) and V®, (7, z) can be controlled pointwisely when u(7, z) satisfies certain
decay property.

Lemma 9 (Difference of 2D and 3D Poisson fields). Assume u(r, z) to be a function with suitable decay in
R? and denote its 2D Poisson field by ¥, := —5=log|(r, z)| *u. We can also interpret u(r,z), (r,z) € H:=
{(r,2) : v > 0}, to be an axisymmetric function in R3, in which case we can define its 3D Poisson field by
®, = —~—xu (x € R¥). Denote by B, (1) C R? the ball centered at (x,%y) with radius | > 0. Assume the
47|x| (z,y)
following decay property of u(r, z):
3

[u(r, 2)(1+ (r = R/)? + 2) T || Lo 82\ B s .0y (¢) < Lioos (4.2)

[[u(r, Z)HLz(B(R/u’D)(C*)) < Lz, [[Vu(r, Z)HLz(B(R/M,O)(C*)) < Lj.

where ¢* > 0 is fizred, and Lo, Lo, LYy > 0 are some constants. Then, there exists p* > 0 such that for any
0 < p < p*, it holds that given any % < s < 1 we have the following estimates on the gradients of Poisson
fields:

(i) (Near field approximation)

|V, (r,z) = VO, (r, 2)| < C1(Loo + L2 + Ly)p™,  V (r,2) € Br/u0) ("), (A.3)
(#) (Far-field control)
|V(I)u(’l”, Z)| < CQ(LOO + LQ)IUKa v (Ta Z) € H\B(R/H,O)(/Lis)' (A4)
Here k > 0, and k,C1,Cy are all universal constants depending only on s.

Proof. The strategy of the proof is to exploit the explicit expressions of the Poisson fields, especially its
decay behaviors in the far field. A key observation is that: away from the axis of symmetry the fundamental
solution of the 3D axisymmetric Poisson equation is asymptotically close to that of the 2D Poisson equation.
We also note that, by our construction, u, shares the same control (up to a universal constant) of u as in
(A.2).

Proof of (i). First of all, the Poisson fields are expressed as

VU, (rz)= VEs(r, 2,7, 2)u(r, 2) didz, V®,(r,z) = / VE;(r, z, 7, 2)u(7, Z) didz,
R2 H
where
. L (r=72=2)
VE(r 2,7, 2) = 21 (r—7)2 4 (2 — 2)?’
P (r — Feos(8), 2 — 3) (A.5)
VE;(r,z,7,2) = ’ do.

27 Jo (r2 — 2ri cos(0) + 72 4 (z — 2)2)2
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From (A.5), one can get the decay property of the Poisson fields:

1
By(r,2,73)| S Es(r, 2,7 2)| S
|V 2(T,Z,T,Z)| N ((7«_71)24_(2_2)2)%’ |v 3(T;Z;T;Z)| ~ (r—f)2+(z—2)2’

il

when (r — 7)% + (z — 2)? > 1. In the following estimates of integrals, we denote d := /(r — 7)2 + (2 — 22)
and d := \/(F — R/)2 + 22 for brevity. We always bear in mind that p — 0, which is much smaller than
any fixed constant. Now, we assume (r,2) € B(r/,,0) (4~ °). By the expansion of elliptic integrals, one can
show that (for example, see [6] for a related discussion) for any (7, 2) € B, .)(2p~°),

VEs(r, z,72) = \/EVEQ(T; 2,7 2)+ O (\/nglog(d)> = (14+0O(u'"*)) VEx(r, 2,7 %) + O (ulog(d)) .

Thus, by Hardy’s inequality and Cauchy’s inequality,

/ VE;(r, 2,7, 2)u(F, 2) — VEo(r, 2,7, 2)u(7, 2) diidz
B(T,z)(ztu'is)

<

S / (1 - \/E> VEy(r,z,7 2)u(f, 2) didz
Br,z)(217%) r

it o
B(r,z)(2lu‘73)

ST LY+ pt /
B(r,z) (207 *)\B(r,2)(¢*)

Pt Ly 4 A | Lo e caszuoy - Nl Laer caszuoy + 1t log(w)] - lull Las, . 200
pt oLy + pt e log ()] (L2 + L) - (A.6)

+ u/ |log(d)u(7, 2)| didz
Br,2y(2u~%)
didz + pll log(d)llL2(s,, ., @u—2)) - ullL2(B, ., 2u-)
u(r, 2 o s
[N g7z + 0= log()| - Nl o221

S
S

It remains to estimate the tails of the integrals. Observe that d/2 < d < 2d for any (7, %) € H\ B,y (21~%).
By the decay property of u, u, and the fundamental solutions, we have

d s :
/ VE;3(r,z, T, 2)u(f, 2) didz| < Loo/ %L/“ did3 < Loo(u? + p2571).(AT)
H\B(r,-)(20™*) H\B(,..)(2u=°) d-72
and
1 s
/ VEs(r, 2,7, 3)uy (F, ) did3| < Lao / — didZ < Loop®. (A.8)
R2\B(r,.)(2u~*) R2\B(,. .)(2u~°) d2

Combining (A.6) (A.7) (A.8) gives (i).

Proof of (ii). Denoting do := /(r — R/p) 4+ 2% — u~* > 3%, we decompose the domain of integration
into three parts:
Dy = B(nz)(do), Dy = B(R/M,O) (u75/2), D3 = H\(Dl U DQ).

For the first part, by the decay rates of u and VEj3, we have the estimate

VE3(r, 2,7 2)u(F, 2) didz| <

D,

/ VEs(r, 2,7, 2)u(F, 7) didz| +
B(r,z)(C)

/ VEBs(r, 2,7, 3)u(F, 3) didz|
Di\Br,z)(C)
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: on B, .y and do > p1~*/2, we have

where C' > 0 is some fixed constant. Since |u(7, 2)| S Lood,
s oy (uf +u¥1).
3

/ VE;(r, z, 7, 2)u(, Z) didz
B, (C)

As for the second integral, by the decay of u, we obtain
- T
<[ Blu(2)
Di\B(r,z)(0)
1

/ VE3 (’f', Z, f, g)u( ) drdz
Di\B(r,z) (C)
< LOO/ L = didz
Di\B(r,2(C) d*
R 0) 1
< / / o+ R/p+ ycos( )3 L aoay.
(do +ycos(0) +p=s)2 ¥
Fixing another constant 0 < ¢ < 1, when ¢ := —cos(f) > 1 — ¢, we have the estimates
do do — 6 1 odo do — 1 do 1
/ 0% 3-—dy:/ 0% 3-—d:v§/ — dz
c (do—ody+p=s)z ¥y c (do—xz4+pus):z =T ¢ (dp—x+1)2x
log(do) s
< < uzllo
S S w2 [log(p)l,
Vdo
and by Holder’s inequality,
do — 1
07 - —dx

W=
N
»
|
—_

/dU R/p
¢ (do—0y+ps

5.1 ddo
dy:R;ﬁS_/
¢ (W(do—w)+1)i @
1 3
gdr | Sp
)2

3 too 1 3 +o0
swd ([ ) ([ G
c a3 o (pwz+1
When ¢ := — cos() < 1 — ¢, the estimate is more straight forward
D do—dy+R/p 1 do+ R/ do 1 do+ R/
/ - i Loy Dot Bln / Ly < IR g dy) S (uF 4+ 8 log()]
o (do—dy+p =)z Yy (do+p=5)2Jo ¥y (do+p=°)2
In summary, we obtain
/ VEs(r, 2,7, 2)u(F, 2) did (G + D) og()] + pé* ) (A.9)
Dy
For the second domain,
i ( ),u drdz <,LL2571L2+L lu2sfl/ L
~ 1 Ve
(A.10)

R
/ VEs(r,z, 7, 2)u(r, 2) didz| < / u(T,
D2 D2 /'L
S Lop® !+ Loop®* 7",

Finally, for the third domain, observe that d < 3d in this domain. Thus, we have the estimate
T2+ R
75” dv S Loo(p?® + p2*1).

<LOO/ d+ B/Mdd < Lo /
D3 d2+ s €Tr2
(A.11)
O

VE;3(r,z, 7, Z)u(F, 2) didz

D3
Finally, collecting (A.9)(A.10)(A.11), we obtain (ii)
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Now we derive some useful estimates for the 2D Poisson field. For convenience, in the following we will
switch between the Cartesian coordinate y = (p, €) and the polar coordinate (7, 8) from time to time, where
p=rsind, £ = ycosf. The specific choice of coordinates will be clear from the context.

Lemma 10 (Pointwise estimates of the 2D Poisson field). The following pointwise estimates of 2D Poisson
fields hold:

(i) For u and its 2D Poisson field V,, := —% log |y| * u, we have for any o > 0,
o 2
U012 . +|l—= <ca/ 2(y)(1 + )2 dy, A.12
19+ [y, =6 ey (A12)

with constant Cy, > 0 depending on . Moreover, szu = 0, we have the improved estimate

Wl < Co [ W)+ ay. (A1)

(ii) If uw = u(y) is a radial function on R?, we have for 0 < a < 1:

/OV ru(r) dr

On the other hand, if u is without radial component, then for any 0 < a < 2, we have (in the polar
coordinates)

2 2

SO+ Loy log0) g [ P+ (A1)

8,0, (7)) = _r
70, Wu ()] 117

2T
/ [0 (3,0)2 + 22|V W (1, 0)[2 d0 < A2(1 +7) "2 (1 + Ly 1y | log(7)]) / P(y)(1 4+ dy.  (A.15)
0 R2

It is also convenient to write equivalently in the parabolic variables ( { = vy ) in our setting:

<2

GOV S (14 Loy 108/ (2 o

/ w?(v+¢)** dx  (radial) 0 < o < 1,
R2

27
|G OR + TGO 5 P+ 1+ Lganlionc/mD [ G+ o ™

(without radial component) 0 < o < 2.
(iii) For any 1 < p < 2, we have the following estimate based on the L™ -norm of u:
[VWullze < C(p) (lJullze + [lullze) - (A.17)

Proof. See Lemma 7.2 in [31] for a proof of (i) and (iii). As for (ii), (A.14) follows directly from the explicit
expression of 9;¥, when u is radial and Cauchy’s inequality. To prove (A.15), we expend both u and ¥,
into trigonalmetric series:

+oo +oo
u(v,0) =Y uI(y)sin(6) + 3w (7) cos(j6),
Jj=1 j=1

+o00 too
(v, 0) = Z W (y) sin(j6) + Z W () cos(j6).

By —AV,, = u, we have
2

1 ‘ o
- (‘93 0 %) Vil () =ut(y) 21,

o7



which admits explicit solutions

.yt _ X oo +,5 =5 dy — ’Yﬁ;l K +,5 i g
LU () = ) u™ (y)y Yy 5 u™(y)y y.
Y 0

By Cauchy’s inequality, we have

1
B +w B §
<A (14 7) (14 Ty log ) ( / (w9 (4))2(1 + )y dy) ,
Y

and

/07 u®I (y)y' dy‘ < (/07 y (14 y) e dy) : (/Ov(ui’j(y))Q(l +y)*y dy) :

<A1 4 ) ( | awra gy dy) g

0

where all constants of the inequalities above are independent of j. It follows that
+,7 2 < 1
(NS 7

+oo
O, T (NP S (L4 Ly logWI)/ (W™ () (1 +y)**y dy.
0

+oo )
V(1 + L1y log v]) / (W9 ()2 (1 + 9)*y dy,

Finally, by Parseval’s identity, we obtain

27
/ W, ) + 22 VT (3, 0) d0 < 35" 20EI ()2 + 305 4210, 0 () 2
0

+ j>1 + j>1

+oo
(1+11{7<1}|10g7|/ ZZ () (1 +y)**y dy

7j>1
S0+ 1penlogr)) [ )P+ iy) d
which is (A.15).

Inequalities

Here is one Hardy-Poincaré type inequality:

Lemma 11. Let b > 0 be a small parameter. Then, there exists a universal constant C > 0, such that for

any function € on R2, it holds that (ly| ==, y € R?)
72 72
/11@2 (1 +7)%e® + *v*(1 + 7)*e?) e F <C g (be® + |Ve?) (1+ y)ie= T (A.18)

If we change of variable v := ¢/\/b, an equivalent form of this inequality is written as

[ (o0 2he 1) e <0 [ (24 9 (V4 )t (A.19)
R2 R2
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Proof. Tt suffices to prove (A.18). Denote y = (y1,y2). Integrating by parts, we have for ¢ = 1,2,

3 2 oy 9 _b¥? 2 4y 2 b2
2 [ (yi+y;)edice” = =~ [(1+3y;)e"e” = + [ b(y; +3y;)ee” 2.
By Cauchy’s inequality,

+2 1 ~2
< C/(l + ) Vel + — [ (1+3yP)ePe E,

o
i+ Y5 )e0;

for some constant C' > 0. Thus, we have
2y 2 22 2 2 4 -2
(1++%)ete™ = <C | (b +|Vel?) (1+7)'e
R2 R2
The other part is similar. Integrate by parts:

72 72 72
2/b(yi +y)ediee” F = /bQ(yi2 +yf)eteE — /b(l +5yl)ete E

Then, apply the Cauchy’s inequality

by2

'72 72 1
‘/b(yl + yf)s@iae_bT < C’/(l + ”y)4|V5|2e_bT + 10 /172(yi2 +y%)e%e” 2,

and it follows that ) )
/b272(1 +y)te2e T < c/ (be® + |Vel?) (1 +7)te 7.
RQ

The proof is thus complete. O

We recall the Hardy-Littlewood-Sobolev (HLS) inequality in R™: for 0 < s < n, 1 < p < ¢ < oo with

L—1_ 5 wehave
¢ p n

*f

|X|n75 La < C”f”L”?

where C' = C(p). Now combining the 2D HLS (p > 2) and Holder inequality, we obtain:

1
IV, e S H— * U

~

1
< < 2
Sl g S VW (A.20)

for any weight function W. A useful corollary in our setting is the following:

p—2

2 Svoor |lev/A/ ULz (A.21)

1
IVUlie S llell 2o < llev/ VU220 /0712
L2+p L
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