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Axisymmetric type II blowup solutions to the three dimensional

Keller-Segel system

Thomas Y. Hou∗, Van Tien Nguyen†, Peicong Song‡

Abstract

We construct axisymmetric solutions to the three-dimensional parabolic-elliptic Keller-Segel system

that blows up in finite time. In particular, the singularity is of type II, which admits locally a leading order

profile of the rescaled stationary solution of the two-dimensional system. Additionally, mass concentration

occurs along a one-dimensional ring in the plane. In the analysis, we rely on an approximate solution of

the eigenproblem associated with the linearized operator around the stationary solution as well as the

modulation dynamics to control the perturbation function and derive the accurate blowup rate.

1 Introduction

1.1 Setting of the Problem

We consider the three-dimensional Keller-Segel system
{
∂tu(x, t) = ∇ · (∇u(x, t) − u(x, t)∇Φu(x, t)) (x, t) ∈ R

3 × R,

−∆Φu(x, t) = u(x, t),
(3dKS)

where the 3D Poisson field is written as Φu = 1
4π|x| ∗ u. More generally, one can also consider the d-

dimensional Keller-Segel system, which we will discuss soon. The Keller-Segel system is a mathematical
model of Chemotaxis, a biological phenomenon describing the motion of organisms induced by chemical
signals, for example, the motions of slime mold Dictyostelium discoideum and the bacteria Escherichia coli.
It was first established by Patlak [28] and Keller & Segel [22]. We refer to [21] and [7] for a survey of this
model as well as related mathematical problems. Since the Keller-Segel system (in general dimension d)
takes a divergence form, its strong solutions preserve the total mass:

∫

Rd

u(x, t) dx =

∫

Rd

u(x, 0) dx :=M ∀ t > 0.

In addition, the solutions admit an important scaling symmetry (besides the translation symmetries in space
and time): if u(x, t) is a solution, then so is

uλ(x, t) := λ2u(λx, λ2t),

for any λ > 0. We say that the solution u blows up in finite time T , if

lim sup
t→T

‖u(t)‖L∞(Rd) = +∞.

We say that the blowup at time T is of type I, if there exists some constant C > 0, such that

lim sup
t→T

(T − t)‖u(t)‖L∞(Rd) ≤ C.

Otherwise, the blowup is called type II. The aim of this work is to construct a type II finite time blowup
solution to the 3D system (3dKS) with its mass concentrating along a ring on the plane, i.e. {(x1, x2, 0) :
x21 + x22 = R2} with some R > 0.
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1.2 Previous Results

There are abundant results on both the well-posedness and singularity formation of Keller-Segel system in
dimension d. In particular, the blowup mechanisms can vary significantly in different dimensions. The case
d = 2 is called L1-critical, as the scaling transformation u 7→ uλ preserves the L1-norm of u. On the other
hand, the case d ≥ 3 is called L1-supercritical, and the scaling transformation preserves the Ld/2-norm.
The case d = 2. In the study of the 2D Keller-Segel system, the stationary state solution plays a fundamental
role:

U(x1, x2) :=
8

(1 + x21 + x22)
2
, (1.1)

whose Poisson field is ΨU = −2 log(x21 + x22). It turns out that
∫
U = 8π is the critical mass threshold that

distinguishes between the global existence and finite time blowup. For M < 8π, there is global existence of
solutions that diffuse to zero, for example, see [4, 1]. For M = 8π, there exit infinite time blowup as well as
global regularity results [3, 14, 2]. For M > 8π, there are various concrete examples of finite time blowup
results. A well-known stable single blowup takes the form

u(x, t) =
1

λ(t)
(U + ũ(t))

(
x− x∗(t)

λ(t)

)
, λ(t) =

√
T − t e−

√
| log(T−t)|

2 +O(1)

with ũ → 0 and x∗(t) → x∗ as t → T in certain topology. Formal asymptotics and rigorous proofs can be
found in [20, 35, 31, 9, 8, 5]. Our work is closely related to this line of research. Indeed, the 3D axisymmetric
Keller-Segel system resembles a 2D one near the center of the blowup ring, which allows us to locally recover
the same blowup mechanism (in particular, the same blowup rate). See the next section for a detailed
discussion. There are other blowup scenarios, for example, the unstable ones in [8], as well as the multiple
collapsing blowup [33, 11]. It is worth mentioning that for the 2D Keller-Segel system there is no type I
blowup (for example, see Theorem 10 in [37]).
The case d ≥ 3. Similar to the 2D case, there is a threshold on ‖u(0)‖Ld/2 that distinguishes between global
existence in time and finite time blowup. For small initial data, global existence results can be found in
[13, 36]. Different from the d = 2 case, for d ≥ 3 there exist type I blowups, see [19, 34, 27, 12]. There is
also a type II radial collapsing sphere blowup, which was first formally constructed in [18] and then proved
rigorously in [10]. In this scenario, the blowup profile is a traveling wave solution of the viscous Burgers’
equation.

1.3 Statement of the Result

In (3dKS), we consider the axisymmetric setting and adopt the cylindrical coordinate

u = u(r, z, t), r =
√
x21 + x22, z = x3.

By extension with 0, we can view u(r, z) as a 2D function, i.e., u(r, z) : R2 → R. Denote B(l) := {(x1, x2) ∈
R

2 : x21 + x22 < l2} to be the ball with radius l > 0 in R
2. For any function f(x1, x2) : R

2 → R, we define the
norm

‖f‖E := ‖f‖H1(B(2)) + ‖f(x1, x2)(1 + x21 + x22)
3
4 ‖L∞(R2\B(1)).

The solutions we construct lie in the following function space:

E := {u : R2 → R | ‖u‖E < +∞}.

Note, in particular, that E ⊂ Lp(R2) for any p > 4
3 .

Theorem 1 (Axisymetric type II blow up for the 3D Keller-Segel system). For any T > 0, there exists
initial data u0 in the function space E and R0 > 0, such that the following holds for the associate solution
to (3dKS). It blows up at finite time T according to the dynamic

u(r, z, t) =
1

λ2(t)
(U + ũ(t))

(
r −R(t)

λ(t)
,
z

λ(t)

)
with u(r, z, 0) = u0 (r −R0, z) ,
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such that:

• Law for the blowup scale:

λ(t) =
√
T − te−

√
| log(T−t)|

2 +O(1) as t→ T ; (1.2)

• Convergence to the stationary state profile:

‖ũ(t)‖E → 0 as t→ T ;

• Convergence of the blow up radius: there exists R∗ = R∗(T, u0, R0) > 0, such that R(t) → R∗ as
t→ T .

Comments on the result.

(i) A new blowup scenario for the Keller-Segel system. To the best of our knowledge, this is the first blowup
result of this kind for the Keller-Segel system, whose leading order geometry is nonradial with a 1-dimensional
singular set. The solution we construct here converges in distribution to a Dirac measure supported on a
1-dimensional circle on the x3 = 0 plane. It is worth noting that similar blowup phenomenons occur in
other systems, for example, harmonic map flow into S

2 [16] and supercritical heat equation [15]. In our
case, the partial mass technique does not work and the linearized operator is essentially nonlocal. Indeed,
in the analysis we need to derive a sharp control on the sizes of the perturbation in different regions so that
they will not interfere with each other in order to close the bootstrap argument. It is interesting to see that
while the leading order dynamics near the blowup ring resembles the 2D Keller-Segel system, the one away
from it is still a 3D one and should be dealt with separately. This work provides a method of lifting a lower
dimensional blowup to a higher dimensional space, which may be applied to other systems.
(ii) Simplification of the spectral analysis. The spectral information of the linearized operator L ζ

ν (defined
in (1.6)) in the radial sector played an essential role in the analysis of [9, 8]. However, as shown in [9], the
precise construction of the eigenfunctions can be a heavy task. Since the eigenfunctions are only used to
construct an approximate solution, it suffices to only solve the eigen problems approximately, which greatly
simplifies our analysis. Indeed, through a simple asymptotic matching procedure, we obtain the first two
approximate eigenfunctions of L ζ

ν with small enough generated errors, which are sufficient for our analysis.
See Proposition 1 for details. It is worth noting that a similar technique has been applied in a recent work
[11] to construct a finite time singularity formed by the collision of two collapsing solitons for the 2D Keller-
Segel system.
(iii) A robust approach. In our analysis, we completely avoid using the partial mass setting and control
both the redial and nonradial parts of the perturbation at the same time. We remark that the analysis
in [8] crucially used the partial mass setting for which the nonlocal operator L ζ

ν was transformed into a
local one which is self-adjoint in a weighted L2 space. In our case, by enforcing suitable local orthogonality
conditions, we are able to obtain equivalence of norms as well as coercivity of the linearized operator for the
whole perturbation function. See Sect.2 for the discussion. Since the strategy provided here is simple and
not restricted to the radial sector, we expect it can be implemented to other problems.
(iv) Adapted inner product and coercivity of the linearized operator. The coercivity of the linearized operator
plays a crucial role in the control of the perturbation around the blowup ring. In this region, we deal with
a two-scale problem – the larger parabolic scale and the smaller soliton scale. The linearized operator L ζ

ν

has different limits in these two scales (partly due to the presence of the scaling term), each of which has its
own coercivity structure. Therefore, in order to obtain coercivity in both scales (i.e. the “global” coercivity)
we design a mixed inner product (see (2.22)) that is compatible with both structures according to the idea
of asymptotic matching. Moreover, it preserves norm equivalence for functions with the local orthogonality
conditions, which is important for the energy estimates. See Proposition 2 for details.
(v) Topological argument and stability restriction. In this work, we are not able to obtain stability results.
This relates to the fact that we only use rough information about the spectrum of the linearized operator.
Specifically, the ODE for certain modulation parameter is unstable, which can be controlled only with a
careful choice of initial data (i.e., an topological argument). See Sect.4 for details. With more refined
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analysis (for example, that in [9, 8]), it is possible to establish stability at least on the axisymmetric level,
which is intuitively true as the leading order dynamics around the blowup ring is a 2D one which has already
been proved stable. This stability restriction can be viewed as “the price we pay for the simplification”.
It, however, remains unclear whether there is stability for general non-axisymmetric perturbation. This
interesting open question can be left as a future work.
(vi) Connection with the Nonlinear Schrödinger equations (NLS). Finally, we remark on the connection
between the Keller-Segel system and the Nonlinear Schrödinger equations:

i∂tψ(x, t) + ∆ψ(x, t) + ψ(x, t)|ψ(x, t)|p−1 = 0, x ∈ R
d. (NLS)

Here we summarize some blowup phenomenons of NLS that shares similarity with the Keller-Segel system.
The case p − 1 = 4

d in (NLS) is called (L2-)critical and blowup occurs once the mass (i.e., ‖ψ‖L2) is above
certain threshold. A stable blowup mechanism in this case enjoying the so-called “loglog” law can be found
in [29, 24, 23, 26]. In the supercritical cases p− 1 > 4

d , there exist standing ring (referring to the sphere in
this context) blowup solutions (see [30, 32]) as well as collapsing ring blowup solutions (see [25]). It is worth
noting that all the blowup solutions mentioned above converge in a certain sense to some 1-dimensional
ground state solutions of (NLS). We also recommend [17] for a comprehensive review on NLS.

Notations. Unless otherwise specified, differential operators such as ∆, ∇ and ∇· are understood as 2D
ones, and

∫
denotes the integration on R

2. We denote the right half plane in R
2 as H := {(x1, x2) ∈

R
2 : x1 > 0}. For any function f(r, z) : H → R, we can interpret it as a 3D axisymmetric function via

f̃(x1, x2, x3) := f(
√
x21 + x22, x3), and define its 3D Poisson field

Φf :=
1

4π|(x1, x2, x3)|
∗ f̃,

where |(x1, . . . , xn)| :=
√
x21 + · · ·+ x2n denotes the standard Euclidean norm on R

n. On the other hand, we
can extend f to some f̄ : R2 → R via a small modification on the boundary, for example, the one described
in (A.1). Then, we can define the 2D Poisson field for such function as

Ψf := − 1

2π
log(|(x1, x2)|) ∗ f̄.

With a slight abuse of notation, we also use Φ and Ψ to denote the Poisson fields for functions on R
3 and

R
2 (with suitable decay), respectively. We define the difference of the 2D and 3D Poisson fields as

Θf := Φf −Ψf .

Now for ν > 0, we denote

Uν(x1, x2) :=
1

ν2
U(x1/ν, x2/ν),

where U is the stationary solution defined in (1.1), and the 2D differential operator

Λf(x1, x2) := − d

dν

∣∣∣∣
ν=1

1

ν2
f(x1/ν, x2/ν) = 2f + x2∂x1f + x2∂x2f = ∇ · ((x1, x2)f).

Define χ ∈ C∞
c (R2) to be a radially symmetric positive cutoff function with:

χ(x) =

{
1 for |x| ≤ 1,

0, for |x| ≥ 2.

With a little abuse of notation, we will denote χ = χ(|x|). Given two fixed constants 0 < ζ∗ ≪ 1 ≪ ζ∗ < +∞
(which will be specified later in the analysis) and a small parameter ν > 0, we denote (ζ := |x|)

χ∗(ζ) := χ(ζ/ζ∗), χ∗(ζ) := χ(ζ/ζ∗),

χν(ζ) := χ(ζ/| log ν|), χ̄ν(ζ) := χ(ζν/| log ν|). (1.3)
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We define the norms:

‖f‖2in :=

∫

R2

ν2f2χ2
ν̺ν

Uν
, ‖f‖2L2(Uν)

:=

∫

R2

ν2f2

Uν
,

where ̺ν is the exponential weight function defined in (2.20). We denote the standard L2(R2) inner product
as 〈f , g〉 :=

∫
R2 fg. For any two positive quantities, A1 . A2 means that there exists some universal

(independent of any parameters in this problem) constant C > 0, such that A1 ≤ CA2. Similarly, A1 ≈
A2 means that there exists universal C > 0, such that 1

CA1 ≤ A2 ≤ CA1. Universal constants will be
denoted generically as C or δ, the specific values of which may change from line to line. We use brackets to
specify the dependence of constants on other quantities. For example, C(A1, A2) will denote (generically) a
constant depending only on A1 and A2, the specific value of which may also vary in different places. The
expression A1 = O(A2) means that there exists a universal C, such that |A1| ≤ CA2. We use ∼ to denote
“asymptotically equivalent” under certain limiting process (which will always be specified), i.e., A1 ∼ A2

means limA1/A2 ≈ 1.

1.4 Strategy of the Proof

Now we briefly describe the main steps of the proof of Theorem 1.
Step 1: Renormalization and linearization of the problem. By the scaling invariance of the solutions, we first
make change of variables according to the parabolic scaling and the standing ring scenario:

u(r, z, t) =
1

µ2
w

(
r −R(t)

µ
,
z

µ
, τ

)
, r̄ :=

r −R(t)

µ
, z̄ :=

z

µ
, τ =

∫ t

0

1

µ2(t̃)
dt̃,

where µ(t) :=
√
T − t is the parabolic scale with blowup time T > 0. Define ζ :=

√
r̄2 + z̄2. Then, the

system for (w,Φw) is

∂τw = ∇ · (∇w − w∇Φw) +
1

r̄ +R/µ
(∂r̄w − w∂r̄Φw)− βΛw +

Rτ

µ
∂r̄w β := −µτ

µ
=

1

2
,

−
(
∂2r̄ + ∂2z̄ +

1

r̄ +R/µ
∂r̄

)
Φw = w.

(1.4)

Since the blowup solutions we construct are of type II, there exists a smaller scale ν(t) → 0 as t → T ,
beyond the parabolic scale. Such scale, named the soliton scale (or the blowup scale) will serve as a crucial
asymptotically small parameter in our analysis. Specifically, we consider the soliton change of variables:

w(r̄, z̄, τ) =
1

ν2
v
( r̄
ν
,
z̄

ν
, s
)
, ρ :=

r̄

ν
, ξ :=

z̄

ν
,

ds

dτ
=

1

ν2
.

Define γ :=
√
ρ2 + ξ2. Note that Φv(ρ, ξ) = Φw(r̄, z̄). Then, the system for (v,Φv) is

∂sv = ∇ · (∇v − v∇Φv) +
1

ρ+R/(µν)
(∂ρv − v∂ρΦv)−

(
η + ν2β

)
Λv + ν

Rτ

µ
∂ρv η := −νs

ν
,

−
(
∂2ξ + ∂2ρ +

1

ρ+R/(µν)
∂r̄

)
Φv = v.

(1.5)

The 3D system (1.4) can be approximated by a 2D one in the parabolic scale (in a sense that will soon become
clear), i,e., in the region around the blowup ring (and away from the axis of symmetry). Linearization of
the system (1.4) around the stationary solution Uν gives the leading order linearized operator:

L
ζ
ν f = L

ζ
0,νf − 1

2
Λf = ∇ · (Uν∇(M ζ

ν f))−
1

2
Λf, with M

ζ
ν f :=

f

Uν
−Ψf . (1.6)

Equivalently, the linearized operator around U for the system (1.5) is

L f = L0f − 1

2
ν2Λf = ∇ · (U∇(M f))− 1

2
ν2Λf, with M f :=

f

U
−Ψf .
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The core of the analysis lies within the parabolic scale (which includes the smaller soliton scale). We remark
that while most of the time our analysis is done using the parabolic variables, it is equivalent and sometimes
more convenient to work with soliton variables.
Step 2: Construction of approximate solution.
The blowup solutions we construct converge locally to the steady state profile U around the blowup ring.
More specifically, we will show that w in (1.4) decomposes as Uν plus some controllable perturbation. How-
ever, due to the instability of the linearized operator in certain directions, orthogonality conditions need to
be imposed on the perturbation. This is done by the introduction of modulation parameters, the dynamics
of which gives us the blowup rate.
First of all, we construct the first two approximate eigenfunctions of the linearized operator L ζ

ν , correspond-
ing to the positive and “almost zero” eigenvalues, respectively:

L
ζ
ν ϕi,ν =

(
1− i+

1

2 log(ν)

)
ϕi,ν +Ri, i = 0, 1,

where Ri are some small errors. Then, exploiting the cancellation of ϕ1,ν −ϕ0,ν , we decompose the solution
as

w = Uν + a(ϕ1,ν − ϕ0,ν) + ε,

where a = a(τ) is a modulation parameter. Thus, we can write out the evolution for ε:

∂τε = L
ζ
ν ε+ L(ε) +NL(ε) + E, (1.7)

where both the extra linear term L(ε) and the nonlinear term NL(ε) will be small in certain sense. It is
essential that ε satisfies the local orthogonality conditions (We recall the definition of χ∗ in (1.3)):

∫

R2

εχ∗(ζ) dr̄dz̄ =

∫

R2

εΛUνχ∗(ζ) dr̄dz̄ =

∫

R2

ε∇Uνχ∗(ζ) dr̄dz̄ = 0, (1.8)

which is preserved by the modulation parameters together with the even symmetry in z̄-direction of the
solution. Through a study of the linearized operator, we can define an adapted inner product 〈· , ·〉ν,∗ (see

(2.22)), such that its corresponding norm is equivalent to a weighted L2 norm for any function satisfying
the orthogonality conditions (1.8). Moreover, for such functions, L ζ

ν (up to a slight modification) will be
coercive under the adapted inner product, in the sense of (2.37). This coercivity is crucial in the energy
estimates of ε.
Step 3: Modulation dynamics and energy estimates. The generated error in (1.7), consisting mainly of the
modulation parameters, admits a further decomposition:

E = Mod0ϕ0,ν +Mod1ϕ1,ν +
Rτ

µ
∂r̄Uν + Ẽ,

where Modi and Ẽ are terms defined in Proposition 4. Note that we have three modulation parameters

at hand, namely ν(τ), a(τ) and Rτ (τ)
µ , which correspond precisely to the three orthogonality conditions in

(1.8). Projecting (1.7) onto these three directions together with the bootstrap assumptions on ε yields the
modulation equations:





|Mod0| =
∣∣∣aτ − 2aβ

(
1 + 1

2 log(ν)

)
− 16ν2

(
ντ
ν − β

)∣∣∣ = O
(

ν2

| log ν|

)
,

|Mod1| =
∣∣∣−aτ + a(τ)β

log(ν)

∣∣∣ = O
(

ν2

| log ν|2
)
,

∣∣∣Rτ

µ

∣∣∣ = O
(

ν
| log ν|

)
,

the solution of which yields the blowup law given in (1.2). The energy estimates for ε are done separately
in the inner zone (i.e., r̄2 + z̄2 . 1) and the outer zone (i.e., r̄2 + z̄2 & 1). In the inner zone, a weighted
H1-norm of ε is controlled, thanks to the coercivity of L ζ

ν . In the outer zone, we come back to the original
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3D structure and control a weighted L∞-norm of ε via the dissipative structure of the system. The estimates
of the two zones communicate in the intermediate area via an H2-control of ε resulting from the parabolic
regularity of the system. Finally, combining the modulation equations and the energy estimates, we are able
to close the bootstrap argument for both the modulation parameters and the energy norms of ε, and the
global-in-time (referring to the renormalized time variable τ) control of ε implies the finite time blowup of
the solution of the original Keller-Segel system.

This work is organized as follows. In Sect.2, we construct the first two approximate eigenfunctions of the
linearized operator, and then explore its coercivity properties. Sect.3 is the heart of the analysis, including the
setup of the bootstrap assumptions, derivation of the modulation equations, and energy estimates. Finally,
we close the bootstrap argument in Sect.4 and conclude the proof of the main theorem.

2 Properties of the linearized operator

This section is devoted to the study of the linearized operator

L
ζ
ν f = ∇ ·

(
Uν∇M

ζ
ν f
)
− βΛf = L

ζ
0,νf − βΛf.

First of all, we construct the first two approximate eigenfunctions of L ζ
ν in Proposition 1, which will be

important building blocks of the approximate solution of the Keller-Segel system. We also describe their
asymptotic behaviors and generated errors, which will be helpful in the energy estimates. Next, we study the
operator M ζ

ν , the appearance of which is natural from a linearization of the free energy functional associated
to the two-dimensional Keller-Segel equation:

F(f) =

∫

R2

f
(
log f − 1

2
Ψf

)
dx.

Its definiteness and norm equivalence properties will motivate our definition of the adapted inner product,
with which we are able to prove the crucial coercivity result for L ζ

ν (Proposition 2). We will adopt the
soliton variables (ρ, ξ) instead of the parabolic ones (r̄, z̄) when it is more convenient, though these two
settings are equivalent in terms of analysis.

2.1 Two approximate eigenfunctions

In [9], the authors used the partial mass setting to derive a complete description of the spectrum of L ζ
ν in

the radial setting. Here we derive only rough information of the spectrum via a simple asymptotic matching
procedure, which is sufficient for our purpose of constructing blowup solutions.

Proposition 1 (Two approximate eigenfunctions). Consider β > 0 and 0 < ν ≪ 1 to be fixed. There are
two smooth radial functions ϕ0,ν and ϕ1,ν , with supports in {ζ : ζ ≤ 2| log ν|}, that solve

L
ζ
ν ϕi,ν = 2β

(
1− i+

1

2 log(ν)

)
ϕi,ν +Ri, i = 0, 1.

(i) (Approximate eigenfunctions)

ϕi,ν(ζ) = − 1

16ν4
ϕin
i (ζ/ν)χm + ϕex

i (ζ)(1 − χm)χν = − 1

16ν4
ΛU(ζ/ν)χν + ϕ̃i(ζ),

where ϕin
i and ϕex

i are defined by (2.4) and (2.8), and the cutoff function χm(ζ) = χ(ζ/ζm) is defined at the
beginning of the proof. In particular, we have the pointwise estimates for k = 0, 1, 2:

|∂kζ ϕ̃0(ζ)|+ |∂kζ ν∂ν ϕ̃0(ζ)| .
(
ν2ζ2−k log2(2 + ζ/ν)

(ν + ζ)6
+

ζ2−k

| log ν|(ν + ζ)4

)
(1 + log(ζ)1{ζ>1}),

|∂kζ ϕ̃1(ζ)|+ |∂kζ ν∂ν ϕ̃1(ζ)| .
ζ2−k

(ν + ζ)4
(1 + log(ζ)1{ζ>1}),

(2.1)
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and the improved estimate near the origin,

|∂kζ ν∂ν(ϕ1,ν − ϕ0,ν)| .
(
ν2ζ2−k log2(2 + ζ/ν)

(ν + ζ)6
+

1

| log(ν)| ·
ζ2−k

(ν + ζ)2(1 + ζ)2

)
(1 + log(ζ)1{ζ>1}), k = 0, 1, 2,

|∂kζ (ϕ1,ν − ϕ0,ν)| .
ζ2−k

(ν + ζ)4
(1 + log(ζ)1{ζ>1}), k = 0, 1, 2.

(2.2)

(ii) (Pointwise estimates of Ri)

∣∣∂kζRi(ζ)
∣∣ . ζ2−k

(ν + ζ)2(1 + ζ)2
| log(ν + ζ)|
| log(ν)| +

ν2ζ2−k log2(2 + ζ/ν)

(ν + ζ)4
k = 0, 1, 2,

∣∣∣∣
∫

ζ<1

Ri(ζ)ζdζ

∣∣∣∣ .
1

| log ν| .

(2.3)

Proof of Proposition 1. We proceed as follows: First, we construct the inner approximate eigenfunctions by
iterate inversions of the linearized operator. Second, we solve the outer approximate eigen problems whose
eigenfunctions are well known. Third, we match the inner eigenfunctions with the outer ones by specifying
the O(| log ν|−1) part of the approximate eigenvalues. Finally, the pointwise estimates follow directly from
the explicit construction of the (global) eigenfunctions.

The construction of ϕin
i : Fix a small constant ζm > 0 (the subscript “m” stands for “matching”), and ζ = ζm

will be our matching spot. Denote χm(ζ) := χ(ζ/ζm). Now, consider the inner region, i.e., ζ ∈ (0, ζm) or
γ ∈ (0, ζm/ν). The inner eigenproblem, in the soliton variables, is equivalent to

L0ϕ
in
i := ∇ ·

(
U∇

(
ϕin
i

U
−Ψin

i

))
= ν2βΛϕin

i + 2ν2β(1 − i+ α̃i,ν)ϕ
in
i ,

where

−(∂2γ +
1

γ
∂γ)Ψ

in
i = ϕin

i ,

and α̃i,ν is a next-order part of the approximate eigenvalues to be solved. We look for an approximate
solution which takes the form:

ϕin
i = ΛU + ν2ci,2V2 + ν2c̃i,2Ṽ2 + ν4di,4V4,# + ν4d̃i,4Ṽ4,# + ν4ci,4V4 + ν4c̃i,4Ṽ4, (2.4)

where
L0V2 = ΛU, L0Ṽ2 = Λ2U, L0V4,# = ΛV2,

L0Ṽ4,# = ΛṼ2, L0V4 = V2, L0Ṽ4 = Ṽ2,

and ci,2, di,4, ci,4, c̃i,2, d̃i,4, c̃i,4 are constants (may depend on α̃i,ν) that will be chosen to improve the ap-
proximation and matching errors. The building block functions above can be solved explicitly (as the
corresponding second order ODE admits explicit solutions). Their asymptotic behaviors, as γ → ∞ are:

V2 =
4

γ2
+O

(
log2(γ)

γ4

)
, Ṽ2 = − 8

γ2
+O

(
log2(γ)

γ4

)
, V4,# = 1 +O

(
log2(γ)

γ2

)
,

Ṽ4,# = −2 +O
(
log2(γ)

γ2

)
, V4 = log(γ)− 5

4
+O

(
log2(γ)

γ2

)
, Ṽ4 = −2 log(γ) +

7

2
+O

(
log2(γ)

γ2

)
.

(2.5)
and their asymptotic behavior as γ → 0+ are (with order of derivative k = 0, 1, 2):

V
(k)
2 ∼ γ2−k, Ṽ

(k)
2 ∼ γ2−k, V

(k)
4,# ∼ γ4−k,

Ṽ
(k)
4,# ∼ γ4−k, V

(k)
4 ∼ γ2−k, Ṽ

(k)
4 ∼ γ2−k.

(2.6)
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We remark that although these building block functions are not linearly independent at the leading order,
some of them are in fact necessary in order to obtain cancellations in the generated error. This again (as
we have already seen in the formal asymptotic matching in the previous section) emphasizes the idea of
“iterative inversions of L0”, which is a natural way of improving the generated error in the soliton scale.
The inner generated error in the soliton variable is defined as

Rγ
i := L0ϕ

in
i − βν2Λϕin

i − 2βν2(1− i+ α̃i,ν)ϕ
in
i

= ν2
(
ci,2ΛU + c̃i,2Λ

2U − βΛ2U − 2β(1− i+ α̃i,ν)ΛU
)

+ ν4
(
di,4ΛV2 + d̃i,4ΛṼ2 + ci,4V2 + c̃i,4Ṽ2 − βci,2ΛV2 − βc̃i,4ΛṼ2

− 2βci,2(1− i+ α̃i,ν)V2 − 2βc̃i,2(1− i + α̃i,ν)Ṽ2

)

− βν6
(
di,4ΛV4,# + d̃i,4ΛṼ4,# − ci,4ΛV4 − c̃i,4ΛṼ4

)

− 2βν6(1− i+ α̃i,ν)
(
di,4V4,# + d̃i,4Ṽ4,# − ci,4V4 − c̃i,4Ṽ4

)
.

To cancel out the O(ν2) terms in Rγ
i , we choose

ci,2 = 2β(1− i+ α̃i,ν), c̃i,2 = β.

Similarly, to cancel out the O(ν4) terms, we choose

di,4 = 2β2(1− i+ α̃i,ν), d̃i,4 = β2,

ci,4 = 4β2(1− i+ α̃i,ν)
2, c̃i,4 = 2β2(1− i+ α̃i,ν),

and the error becomes

Rγ
i =− β3ν6

(
ΛṼ4,# + 2(1− i+ α̃i,ν)ΛV4,# + 2(1− i+ α̃i,ν)ΛṼ4 + 4(1− i+ α̃i,ν)

2ΛV4

)
(2.7)

− 2β3ν6(1− i+ α̃i,ν)
(
Ṽ4,# + 2(1− i+ α̃i,ν)V4,# + 2(1− i+ α̃i,ν)Ṽ4 + 4(1− i+ α̃i,ν)

2V4

)
.

The construction of ϕex
i : Then, we work in the outer region, i.e., ζ ∈ (ζm,+∞). In this region, we have

Uν(ζ) . ν2 and ∂ζΨUν (ζ) ∼ − 4
ζ , hence, the operator L ζ

ν behaves like the Hermite operator in dimension 6:

H = ∂2ζ +
5

ζ
∂ζ − βΛ,

and we formally have L ζ
ν = H + O(ν2) when ζ ≥ ζm. Thus, we consider the approximate of the outer

eigenfunction of the form
ϕex
i (ζ) = Ωi(ζ) + ϕ̃ex

i (ζ), (2.8)

for some lower order term ϕ̃ex
i (ζ) ∼ O(α̃i,ν) and the leading term Ωi solves

(H − 2β(1− i))Ωi(ζ) = 0, with Ωi(ζ) ∼
1

ζ4
as ζ → 0.

The solutions without exponential growth at infinity are

Ω0(ζ) =
1

ζ4
, Ω1(ζ) =

1

ζ4
+

β

2ζ2
.

We remark that the eigen problem for the operator H actually determines our eigenvalues to the leading
order, i.e., H f = λf has solutions in the class of functions with suitable decay when λ = 2β(1− i) (i = 0, 1).
Next, we consider the next order which solves:

(H − 2β(1− i)) ϕ̃ex
i = 2βα̃i,νΩi.
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The solutions (without exponential growth and homogeneous modes) are

(2βα̃0,ν)
−1ϕ̃ex

0 (ζ) = − log(ζ)

βζ4
− 1

β2ζ6
− βζ2 − 2

β2ζ4
e

βζ2

2

∫ +∞

ζ

1

r3
e−

βr2

2 dr,

(2βα̃1,ν)
−1ϕ̃ex

1 (ζ) = − 1

ζ4
e

βζ2

2

∫ +∞

ζ

(βr2 + 2)2

2β2r3
e−

βr2

2 dr +

(
− log(ζ)

β
+

1

β2ζ2

)
βζ2 + 2

2ζ4
.

(2.9)

Their asymptotic behaviors, as ζ → 0+, are

(2βα̃0,ν)
−1ϕ̃ex

0 (ζ) = − 1

4ζ2
+
β

32

(
1− 2E− 2 log(

β

2
)− 4 log(ζ)

)
+O(ζ2 log(ζ)),

(2βα̃1,ν)
−1ϕ̃ex

1 (ζ) = − 1

4ζ2
+
β

32

(
−3 + 2E+ 2 log(

β

2
) + 4 log(ζ)

)
+O(ζ2 log(ζ)),

(2.10)

where E is the Euler constant. One remark: certain cancellation occurs in (2.9) as ζ → 0+, so that the
leading order behavior is 1/ζ2 rather that log(ζ)/ζ4 or 1/ζ6, which may seem likely given the expression of
(2.10).

Matching ϕin
i and ϕex

i : Now in the matching region ν ≪ ζ ≪ 1, we are going to match the normalized inner

solution − 1
16ν4ϕ

in
i (ζ/ν) with the outer solution ϕex

i (ζ). By the asymptotic (2.5) and the choice of constants
above we have

− 1

16ν4
ϕin
i (ζ/ν) =

1

ζ4
+
β(i − α̃i,ν)

2ζ2
− β2

16

(
2(1− 2i) + (10i− 1)α̃i,ν + (4 − 8i)α̃i,ν log(ζ)

−(4− 8i)α̃i,ν log(ν) + 4α̃2
i,ν(log(ζ)− log(ν) − 5

4
)
)
+O(ν2), ∀ ζ & 1,

(2.11)

and by the asymptotic (2.10) we have

ϕex
i (ζ) =

1

ζ4
+
β(i − α̃i,ν)

2ζ2
+
β2α̃i,ν(1− 2i)

16
(1 + 2i− 2E− 2 log(β) + 2 log(2)− 4 log(ζ))

+O(α̃i,νζ
2 log(ζ)), ∀ ζ ≪ 1.

(2.12)

Note that the first two terms of (2.11) and (2.12) already match. Now we are ready to determine α̃i,ν .
First of all, due to the α̃i,ν log(ν) term in (2.11), we must have α̃i,ν = O(1/| log ν|) in order to minimize the
matching error of (2.11) and (2.12). Furthermore, since the third term in (2.12) is of size O(1/| log ν|), in
order to improve the matching error by | log ν|−1 the O(1) parts in the third term of (2.11) must be canceled:

2(1− 2i)− (4 − 8i)α̃i,ν log(ν) = O(1/| log ν|),

and one simple choice is

α̃i,ν =
1

2 log(ν)
i = 1, 2.

With this choice of α̃i,ν we obtain the matching error:

− 1

16ν4
ϕin
i (ζ/ν) − ϕex

i (ζ) = O
(

1

log(ν)

)
, ∀ 1

4
ζm ≤ ζ ≤ 4ζm. (2.13)

Finally, using ϕin
i and ϕex

i , we construct the global approximate eigenfunctions as

ϕi,ν(ζ) := − 1

16ν4
ϕin
i (ζ/ν)χm(ζ) + (1− χm(ζ))χν (ζ)ϕ

ex
i (ζ)

:= − 1

16ν4
ΛU(ζ/ν)χν(ζ) + ϕ̃i(ζ).
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Pointwise estimates: As for the pointwise estimate, we first note by (2.9) that

|∂kζϕex
0 (ζ)| . 1

ζ6−k
+

log(ζ)

ζ4+k
, |∂kζϕex

1 (ζ)| . log(ζ)

ζ2+k
+

1

ζ6−k
, ∀ ζ ≫ 1.

Then, (2.1) follows from this far field estimate and the asymptotics (2.6)(2.11). Note that the pointwise
value of ϕ̃0,ν is O(| log ν|−1) smaller than that of ϕ̃1,ν in the region ζ ≈ 1, because when i = 0 there is a
gain of 1/| log ν| in the O(1/ζ2) term in (2.11). This is important in the upcoming derivation of modulation
estimates. To derive the improved estimate near the origin, we note that for V (γ) = V2(γ) or Ṽ2(γ):

∣∣∣∣ν∂ν
(

1

ν2
V (ζ/ν)

)∣∣∣∣ =
∣∣∣∣
1

ν2
(ΛγV )(ζ/ν)

∣∣∣∣ .
ν2ζ2 log2(1 + ζ/ν)

(ν + ζ)6
,

Besides, for V (γ) = V4(γ) or Ṽ4(γ) (the leading order of which is log growth at infinity), note that

|∂kζ ν∂ν(α̃1,νV (ζ/ν))| . 1

| log(ν)|
ζ2−k

(ν + ζ)2
+
ν2ζ2 log2(1 + ζ/ν)

(ν + ζ)4
, k = 0, 1, 2.

Combining these facts gives us (2.2). Now we estimate the generated error:

Ri := L
ζ
ν ϕi,ν(ζ)− 2β(1− i+ α̃i,ν)ϕi,ν(ζ)

= − 1

16ν4
χm(ζ)

(
L

ζ
ν − 2β(1− i+ α̃i,ν)

)
ϕin
i (ζ/ν) + (1− χm(ζ))χν (ζ)

(
∂2ζ +

1

ζ
∂ζ − ∂ζΨUν (ζ) · ∂ζ

)
ϕex
i (ζ)

− ∂ζUν(ζ) · ∂ζΨex
i,m(ζ) + 2(1− χm(ζ))χν(ζ)Uν(ζ)ϕ

ex
i (ζ) − (1− χm(ζ))χν (ζ)βΛϕ

ex
i (ζ)

− 1

8ν5
∂γϕ

in
i (ζ/ν)χ′

m(ζ)− 1

16ν4
ϕin
i (ζ/ν)χ′′

m(ζ) − 1

16ν4ζ
ϕin
i (ζ/ν)χ′

m(ζ) +
1

16ν4
ϕin
i (ζ/ν)χ′

m(ζ)∂ζΨUν (ζ)

−
(
∂ζΨ

in
i,m(ζ) − χm(ζ)∂ζΨ

in
i,∗(ζ)

)
∂ζUν(ζ) + βζχ′

m(ζ)
1

16ν4
ϕin
i (ζ/ν)

− 2χ′
mχν∂ζϕ

ex
i − χ′′

mχνϕ
ex
i − 1

ζ
χ′
mχνϕ

ex
i + χ′

mχνϕ
ex
i (ζ)∂ζΨUν (ζ) + βζχ′

mχνϕ
ex
i (ζ)

+ 2(1− χm)χ′
| log ν|∂ζϕ

ex
i + (1− χm)χ′′

| log ν|ϕ
ex
i +

1

ζ
(1− χm)χ′

| log ν|ϕ
ex
i

− (1 − χm)χ′
| log ν|ϕ

ex
i (ζ)∂ζΨUν (ζ)− βζ(1 − χm)χ′

| log ν|ϕ
ex
i (ζ)

:= Rin
i +Rex

i +Rbd
i ,

where we denote

−(∂2ζ +
1

ζ
∂ζ)Ψ

in
i,m(ζ) = − 1

16ν4
ϕin
i (ζ/ν)χm(ζ), −(∂2ζ +

1

ζ
∂ζ)Ψ

in
i,∗(ζ) = − 1

16ν4
ϕin
i (ζ/ν),

−(∂2ζ +
1

ζ
∂ζ)Ψ

ex
i,m(ζ) = ϕex

i (ζ)(1 − χm(ζ)).

We assume that the supports of χ′
m and χ′

| log ν| are disjoint so that the terms containing χ′
mχ

′
| log ν| are all zero

which we do not write out in the expression of Ri. Note that for the outer solutions, we treat (1−χm)χνϕ
ex
i

as a whole, which is different from the case of the inner solutions. This is because the singularity of ϕex
i at

the origin only allows the existence of the Poisson field of (1 − χm)ϕex
i , not of ϕex

i . As for the inner error,
note that

Rin
i (ζ) = −16

ν6
Rγ

i (ζ/ν)χm(ζ).

By (2.7), we have, for ζ ∈ [0, ζm],

∣∣∣∣∂
k
ζ

(
1

ν6
Rγ

i (ζ/ν)

)∣∣∣∣ .
ν2ζ2−k log2(2 + ζ/ν)

(ν + ζ)4
+
ζ2−k| log(ν + ζ)|
(ν + ζ)2| log ν| .
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As for the outer error, we calculate that

Rex
i = (1− χm)χν

(
∂2ζ +

1

ζ
∂ζ − ∂ζΨUν · ∂ζ

)
ϕex
i − ∂ζUν · ∂ζΨex

i,m

+ 2(1− χm)χνUνϕ
ex
i − (1 − χm)χνβΛϕ

ex
i

= (1− χm)χν(H − 2β(1− i+ α̃i,ν))ϕ
ex
i (ζ) + (1 − χm)χν

(
4ζ

ζ2 + ν2
− 4

ζ

)
∂ζϕ

ex
i

+
32ν2ζ

(ζ2 + ν2)3
∂ζΨ

ex
i,m +

16ν2

(ζ2 + ν2)2
(1− χm)χνϕ

ex
i (ζ)

= α̃i,ν(1− χm)χνϕ̃
ex
i (ζ) − 4ν2

ζ(ζ2 + ν2)
(1 − χm)χν∂ζϕ

ex
i (ζ)

+
32ν2ζ

(ζ2 + ν2)3
∂ζΨ

ex
i,m +

16ν2

(ζ2 + ν2)2
(1− χm)χνϕ

ex
i (ζ).

Thus, by the asymptotic behavior at ζ → ∞ of the outer solutions as well as their Poisson fields, we have

|∂kζRex
i (ζ)| . 1

log2(ν)
· log(1 + ζ)

ζ2
, ∀ζ ≥ ζm, ∀ k = 0, 1, 2.

Now we come to the boundary error Rbd
i . First, note that suppχ′

m ⊂ [ζm, 2ζm], by the matching condition
(2.13), the terms involving the derivatives of χm cancel in pairs. For example,

∣∣∣∣∂
k
ζ

(
− 1

8ν4
∂ζϕ

in
i (ζ/ν)χ′

m(ζ) − 2∂ζϕ
ex
i (ζ)χ′

m(ζ)

)∣∣∣∣ .
1

| log ν| ,

and the rest are similar. Second, we note that suppχ′
| log ν| ⊂ [| log ν|, 2| log ν|], and we have the decay

property

|ϕex
i (ζ)| . log(ζ)

(1 + ζ)2
.

Then, any term involving the derivative of χν is of size at most O(1/| log ν|). It then remains to estimate
the terms involving Poisson fields. Note that for a 2D radial symmetric Poisson problem with Neumann
boundary condition (we assume S to have certain regularity which is the case in our problem):

−(∂2ζ +
1

ζ
∂ζ)Ψ(ζ) = S(ζ),

the Poisson field satisfies

∂ζΨ(ζ) =
1

ζ

∫ ζ

0

rS(r) dr.

Using this, we obtain that

∂ζΨ
in
i,m(ζ)− χm(ζ)∂ζΨ

in
i,∗(ζ) ≡ 0, ∀ ζ ∈ [0, ζm],

and
∂ζΨ

in
i,m(ζ)− χm(ζ)∂ζΨ

in
i,∗(ζ) ≡ const., ∀ ζ ∈ [2ζm,+∞).

Besides, for ζ > ζm, ∂ζUν . ν2/ζ5, which finishes the pointwise estimate for the boundary error. Finally,
the estimate of the partial mass follows directly from the pointwise estimate of the generated error.

2.2 Coercivity of the Linearized Operator

The main goal of this section is to establish the coercivity of the linearized operator L ζ
ν (after a slight

modification) under certain adapted inner products.
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2.2.1 Properties of the Operator M ζ
ν

To begin with, we collect several properties of M ζ
ν , in particular, boundedness and definiteness.

Lemma 1. Let f be a function on R
2 with

∫
R2(1 + |y|2)f2 +

∫
R2

|∇f |2
U < +∞. Then, there exist universal

constants c, C > 0, such that
∫

R2

U |∇M f |2 ≥ c

∫

R2

|∇f |2
U

− C
(
| 〈f , ΛU〉 |2 + | 〈f , ∇U〉 |2

)
.

In the parabolic variables, the inequality equivalently becomes
∫
Uν |∇M

ζ
ν f |2 ≥ c

∫ |∇f |2
Uν

− C
(
ν2| 〈f , ΛUν〉 |2 + ν4| 〈f , ∇Uν〉 |2

)
.

Proof. The proof follows the same tactic as in [31]. First of all, by Hardy’s inequality and the estimates of
Poisson fields (A.14)(A.15), we have the a priori bounds

∫

R2

(1 + |y|2)g2 .

∫

R2

(1 + |y|2)2|∇g|2 = 8

∫

R2

|∇g|2
U

,

∫

R2

|∇Ψg|2
1 + |y|2 .

∫

R2

(1 + |y|2)g2 .

∫

R2

(1 + |y|4)|∇g|2,
∫

R2

|Ψg|2
1 + |y|4 .

∫

R2

(1 + |y|2)g2 .

∫

R2

(1 + |y|4)|∇g|2.

(2.14)

Moreover, note that

∫

R2

U |∇M f |2 =

∫

R2

U

∣∣∣∣∇
(
f

U

)
−∇Ψf

∣∣∣∣
2

≥ 1

2

∫

R2

U

∣∣∣∣∇
(
f

U

)∣∣∣∣
2

−
∫

R2

U |∇Ψf |2,

and through integration by parts,

∫

R2

U

∣∣∣∣∇
(
f

U

)∣∣∣∣
2

=

∫

R2

U

∣∣∣∣
∇f
U

− f∇ΨU

U

∣∣∣∣
2

=

∫

R2

|∇f |2
U

+
|∇ΨU |2f2

U
−
∫

R2

2f∇f · ∇ΨU

U

=

∫

R2

|∇f |2
U

+
|∇ΨU |2f2

U
+

∫

R2

f2∇ ·
(∇ΨU

U

)

=

∫

R2

|∇f |2
U

− f2.

Then, by Poisson field estimates, we obtain the sub-coercivity estimate:
∫

R2

U |∇M f |2 &

∫

R2

|∇f |2
U

− C

∫

R

(1 + |y|)f2. (2.15)

Assume, by contradiction, that there exists a sequence of functions {fn} that satisfies

∫

R2

(1 + |y|2)f2
n < +∞,

∫

R2

|∇fn|2
U

= 1, 〈fn , ΛU〉 = 〈fn , ∇U〉 = 0, and lim
n→+∞

∫

R2

U |∇M fn|2 = 0.

Then, by (2.14) and
∫
|∆Ψfn |2 =

∫
f2
n < +∞, we know from Sobolev embedding that there exist some f

and Ψ, such that (up to a subsequence)

fn ⇀ f, in H1(R2), and fn → f, in L2
loc(R

2),

Ψfn → Ψ, in H1
loc(R

2).

13



In particular, the convergence above holds in the sense of distribution (i.e., in D′(R2)), and −∆Ψ = f in

D′(R2). Since
∫
R2 U |∇M fn|2 → 0, ∇M fn → 0 in D′(R2) so that ∇

(
f
U −Ψ

)
= 0 in D′(R2). In summary,

we have 


−∆Ψ = f,

∇
(

f
U −Ψ

)
= 0,

in D′(R2).

From standard lower semi-continuity estimates, we have
∫

R2

|∇f |2
U

≤ 1,

∫

R2

|∇Ψ|2
1 + |y|2 +

Ψ2

1 + |y|4 . 1.

Then, by elliptic regularity which is bootstrapped by the relation ∇
(

f
U −Ψ

)
= 0, we know that (f,Ψ) ∈

C∞(R2), and in particular Ψ = Ψf . By Lemma 2.1 in [31], we obtain

f ∈ Span{ΛU, ∂y1U, ∂y2U}.
Since the orthogonality conditions pass to f , i.e., 〈f , ΛU〉 = 〈f , ∇U〉 = 0, we deduce that f ≡ 0. On the
other hand, since by assumption

∫
f2
n(1 + |y|2) are uniformly bounded, by local strong convergence we have

lim
n→+∞

∫

R2

f2
n(1 + |y|) =

∫

R2

f2(1 + |y|).

Then, by sub-coercivity (2.15),
∫

R2

f2(1 + |y|) & lim
n→+∞

1

C

(∫

R2

|∇fn|2
U

−
∫

R2

U |∇M fn|2
)

=
1

C
,

which contradicts the fact that f ≡ 0. In summary, there exists some c > 0 such that
∫

R2

U |∇M f |2 ≥ c

∫

R2

|∇f |2
U

, (2.16)

for any f with
∫ |∇f |2

U < +∞ satisfying the orthogonality conditions. Finally, for general f , define

F := f − 〈f , ΛU〉
〈ΛU , ΛU〉ΛU −

∑

i=1,2

〈f , ∂yiU〉
〈∂yiU , ∂yiU〉∂yiU.

Applying (2.16) to F completes the proof.

The following lemma implies norm equivalence on some finite codimensional function space, which will
motivates our design of the adapted inner product.

Lemma 2. The quadratic form (f, g) 7→
∫
R2 fM ζ

ν g is symmetric. Moreover, for any f such that
∫
R2 f

2/Uν <
+∞ and

∫
R2 |∇f |2/Uν < +∞, we have the estimates

∫

R2

Uν |M ζ
ν f |2 .

∫

R2

f2

Uν
, (2.17)

∫

R2

Uν |∇M
ζ
ν f |2 .

∫

R2

|∇f |2
Uν

, (2.18)

and
∫

R2

fM
ζ
ν f ≥ 1

C

∫

R2

f2

Uν
− C

(
ν4| 〈f , ΛUν〉 |2 + ν6| 〈f , ∇Uν〉 |2 + | 〈f , 1〉 |2

)
, (2.19)

for some universal C > 0. In addition, if
∫
R2 f = 0, we have the definiteness
∫

R2

fM
ζ
ν f ≥ 0.
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Proof. The symmetry of the quadratic form follows from the symmetry:

〈f , Ψg〉 = 〈Ψf , g〉 = − 1

2π

∫ ∫
log |x− y|f(x)g(y) dxdy.

By (A.16) (taking α = 1) and Hardy’s inequality,

∫
Uν |∇Ψf |2 .

∫
ν2(1 + log(ζ/ν))

(ν + ζ)6

∫
f2(ν + ζ)2 .

1

ν2

∫
|∇f |2(ν + ζ)4 .

∫ |∇f |2
Uν

.

This completes the proof of (2.18). As for the rest, see Lemma 2.1 and Proposition 2.3 in [31].

2.2.2 Adapted Inner Product and Coercivity

Define the weight functions

̺ν(ζ) := e−
βζ2

2 , ̺(γ) := e−
βν2γ2

2 , (2.20)

Observe the following two decompositions of the linearized operator (written in soliton variables):

L f = ∇ · (U∇M f)− bΛf =
1

ω
∇ · (ω∇f) + 2(U − b)f −∇U · ∇Ψf , (2.21)

where we denote b := βν2 and ω := 1
U ̺. In the near field, i.e., γ ≪ 1

ν , according to the first decomposition in
(2.21) the scaling term bΛf becomes negligible, and the coercivity of ∇M (Lemma 1) leads to the coercivity
of L with some appropriate inner product in this domain. In the far field, i.e., γ ≫ 1

ν , the terms ∇U · ∇Ψf

and Uf become negligible due to the fast decay of ∇U and U , according to the second decomposition in
(2.21). Therefore, L will be coercive with the weighted L2-inner product (with ω as the weight function)
in this domain. In order to obtain coercivity in the whole domain, we define the mixed inner product which
adapts to both coercivity structures:

〈f , g〉∗ :=

∫

R2

fgχ̄2
νω −

∫

R2

√
̺χ̄νfΨ√

̺χ̄νg =

∫

R2

√
̺χ̄νfM (

√
̺χ̄νg),

or equivalently, in the parabolic variables

〈ε , ϑ〉ν,∗ :=

∫

R2

√
̺νχνεM

ζ
ν (
√
̺νχνϑ), (2.22)

where we recall χ̄ν(γ) := χ(γν/| log ν|) and χν(ζ) := χ(ζ/| log ν|). One remark: thanks to Lemma 2, we
know that for any f satisfying the orthogonality condition

∫

R2

fΛUχ(2γν/c0)
√
̺ =

∫

R2

f∇Uχ(2γν/c0)
√
̺ =

∫

R2

fχ(γν/ζ∗) = 0,

where c0 > 0 is some fixed constants and b is small enough, there holds the equivalence of norms:

1

C

∫
f2χ̄2

νω ≤ 〈f , f〉∗ ≤ C

∫
f2χ̄2

νω.

Besides, we need to modify the linearized operator a little bit to adapt to the inner product:

L̃ f := ∆f −∇U · ∇Ψ√
̺χ̄νf −∇f · ∇ΨU + 2Uf − bΛf,

or equivalently,
L̃

ζ
ν ε := ∆ε−∇Uν · ∇Ψ̃ε −∇ε · ∇ΨUν + 2Uνε− βΛε,

where Ψ̃ε := Ψχν
√
̺νε. Applying the aforementioned ideas, we are able to prove the following proposition.
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Proposition 2 (Coercivity estimate). There exist constants δ, ζ∗, C, b∗ > 0, such that for any 0 < b < b∗,

and any ε satisfying
∫ ε2+|∇ε|2

U < +∞ and

∫

R2

εΛUχ(γν/ζ∗) =

∫

R2

ε∇Uχ(γν/ζ∗) = 0,

we have 〈
L̃ ε , ε

〉
∗
≤ −δ

(∫

R2

|∇ε|2χ̄2
ν

U
̺+ b

∫

R2

ε2χ̄2
ν

U
̺

)
+ Cν100‖ε‖2L∞(γ≥| log ν|/ν)

Proof. Define χ̄0(γ) := χ(γν/ζ0), and decompose

ε = χ̄0ε+ (1− χ̄0)ε := ε1 + ε2,

where 0 < ζ0 = ζ0(ε) ≪ 1 is a parameter to be determined. Though the specific value of ζ0 depends on ε,
we will see that there exists a universal constant ζ∗ > 0 such that ζ∗ < ζ0 for any ε. Thus,

〈
L̃ ε , ε

〉
∗
=
〈
L̃ ε1 , ε1

〉
+
〈
L̃ ε2 , ε2

〉
+
〈
L̃ ε1 , ε2

〉
+
〈
L̃ ε2 , ε1

〉
.

For brevity, in the following we denote

‖f‖L2
ω
:=

(∫
f2̺

U

) 1
2

.

Coercivity of
〈
L̃ ε1 , ε1

〉
∗
: Since χ̄νε1 = ε1 and

√
̺χ̄νL̃ ε1 = L (

√
̺ε1) + (1−√

̺χ̄ν)∇Ψ√
̺ε1 · ∇U + [χ̄ν

√
̺, L +∇U · ∇Ψ·]ε1,

by integration by parts, we have

〈
L̃ ε1 , ε1

〉
∗
= −

∫
U |∇M (ε1

√
̺)|2 + b

∫ √
̺ε1y · ∇M (

√
̺ε1) +

∫
(1−√

̺χ̄ν)∇Ψ√
̺ε1 · ∇UM (

√
̺ε1)

+

∫
[χ̄ν

√
̺, L +∇U · ∇Ψ·]ε1M (

√
̺ε1).

By Lemma 1, we have

−
∫
U |∇M (ε1

√
̺)|2 ≤ −c

∫ |∇(ε1
√
̺)|2

U
+ C

(
| 〈ε1

√
̺ , ΛU〉 |2 + | 〈ε1

√
̺ , ∇U〉 |2

)
.

By the local orthogonality conditions

∫

R2

εΛUχ(2γν/ζ∗) =

∫

R2

ε∇Uχ(2γν/ζ∗) = 0

where ζ∗ < ζ0, we obtain

| 〈ε1
√
̺ , ΛU〉 | =

∣∣∣∣
∫
ε1(

√
̺− χ(2γν/ζ∗))ΛU

∣∣∣∣

≤
(∫

ε21̺

U

) 1
2
(∫

(ΛU)2Uρ−1(
√
̺− χ(2γν/ζ∗))

2

) 1
2

. ν2
(∫

ε21̺

U

) 1
2

. ν

(∫ |∇ε1|2̺
U

) 1
2
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where we use the Poincaré inequality (taking α = 2 in this case):

∫
ε21̺(1 + γ)2+α ≤ C

ζα0
να

∫
ε21(1 + γ)2 ≤ C2

∫
|∇ε1|2(1 + γ)4 ≤ C3 ζ

α
0

να

∫ |∇ε1|2̺
U

, ∀ α ≥ 0, (2.23)

for some universal C > 0 when ζ0 is sufficiently small. Similar estimate holds for |
〈
ε1
√
̺ , ∇U

〉
|. Thus,

when b is sufficiently small (recall that b := βν2), there exists a universal δ > 0 such that

−
∫
U |∇M (ε1

√
̺)|2 ≤ −δ

∫ |∇ε1|2̺
U

. (2.24)

Note, by (2.23), that ∫ |ε1∇(
√
̺)|2

U
=

∫
b2|y|2ε21̺

4U
. ζ40

∫ |∇ε1|2ρ
U

.

Therefore, when ζ0 is small enough,

1

2

∫ |∇ε1|2̺
U

≤
∫ |∇(

√
̺ε1)|2
U

≤ 2

∫ |∇ε1|2̺
U

.

Besides, by Lemma 2 and Poincaré inequality,

∣∣∣∣b
∫ √

̺ε1y · M (
√
̺ε1)

∣∣∣∣ . b

(∫
̺ε21|y|2
U

) 1
2
(∫ |∇(

√
̺ε1)|2
U

) 1
2

. ζ20

∫ |∇ε1|2̺
U

.

Thus, when b and ζ0 are sufficiently small, we have

−
∫
U |∇M (ε1

√
̺)|2 + b

∫ √
̺ε1y · ∇M (

√
̺ε1) ≤ −δ

∫ |∇ε1|2̺
U

for some universal δ > 0. Next, by (A.12) and (A.13), we know that

|Ψε1
√
̺(y)|2 . log2(4 + |y|)

∫
ε21̺

U
, |∇Ψε1

√
̺(y)|2 .

∫ |∇(
√
̺ε1)|2
U

.

Therefore, by the above pointwise estimates of the Poisson field and (2.17),

∣∣∣∣
∫
(1 −√

̺χ̄ν)∇Ψ√
̺ε1 · ∇UM (

√
̺ε1)

∣∣∣∣

≤
(∫ |∇(

√
̺ε1)|2
U

) 1
2
(∫

(1 −√
̺χ̄ν)

2 |∇U |2
U

) 1
2
(∫

U |∇M (
√
̺ε1)|2

) 1
2

≤
(∫ |∇(

√
̺ε1)|2
U

) 1
2
(∫

(1 −√
̺χ̄ν)

2 |∇U |2
U

) 1
2
(∫

ε21ρ

U

) 1
2

.

Note that when
√
bγ ≪ 1, 1−√

̺ = bγ2

4 +O(b2γ4). Then, we have the estimates

∣∣∣∣
∫
(1 −√

̺χ̄ν)
2 |∇U |2

U

∣∣∣∣ .
∣∣∣∣∣

∫

{|y|<b−
1
3 }

b2γ4

(1 + γ)6

∣∣∣∣∣+
∣∣∣∣∣

∫

{|y|≥b−
1
3 }

1

(1 + γ)6

∣∣∣∣∣ . b
5
4 .

Combining with the previous estimate and (2.23), we obtain

∣∣∣∣
∫
(1−√

̺χ̄ν)∇Ψ√
̺ε1 · ∇UM (

√
̺ε1)

∣∣∣∣ . b
1
8

∫ |∇ε1|2̺
U

. (2.25)
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For the remaining terms, since ∇(χ̄ν)ε1 = 0 (because of their disjoint supports),

[χ̄ν
√
̺, L +∇U · ∇Ψ·]ε1 = −2∇(

√
̺) · ∇ε1 −∆(

√
̺)ε1 +∇(

√
̺) · ∇ΨUε1 + by · ∇(

√
̺)ε1.

Therefore, by (2.23) we have

∫ |[χ̄ν
√
̺, L +∇U · ∇Ψ·]ε1|2

U
.

∫ b2γ2|∇ε1|2̺+
(
b2 + b4γ4 + b2γ2

(1+γ)2

)
ε21̺

U
. ζ20 b

∫ |∇ε1|2̺
U

.

Then, by (2.17), (2.23) and Cauchy’s inequality, we obtain
∣∣∣∣
∫
[χ̄ν

√
̺, L +∇U · ∇Ψ·]ε1M (

√
̺ε1)

∣∣∣∣ . ζ20

∫ |∇ε1|2̺
U

. (2.26)

Finally, combining (2.24), (2.25), (2.26) and Poincaré inequality (2.23), it holds, when ζ0 and b are sufficiently
small, that 〈

L̃ ε1 , ε1

〉
∗
≤ −δ

(∫ |∇ε1|2̺
U

+ b

∫
ε21̺

U

)
. (2.27)

for some universal δ > 0.

Coercivity of
〈
L̃ ε2 , ε2

〉
∗
: First, integrate by parts and we have

〈
L̃ ε2 , ε2

〉
∗
= −

∫
|∇ε2|2χ̄2

νω +

∫
ε22∇ · (ωχ̄ν∇χ̄ν) +

∫
2(U − b)ε22χ̄

2
νω

−
∫

∇U · ∇Ψχ̄ν
√
̺ε2ε2χ̄

2
νω −

∫ √
̺χ̄νL̃ ε2Ψ√

̺χ̄νε2 .

As for the second term above, observe that ∇χ̄ν is supported in {| log ν|/ν ≤ γ ≤ 2| log ν|/ν} and

e−
bγ2

2 ≤ e−
β| log ν|2

2 . νN , ∀ | log ν|
ν

≤ γ ≤ 2| log ν|
ν

for any fixed N ≫ 1 when ν is sufficiently small. Thus, we have the estimate
∣∣∣∣
∫
ε22∇ · (ωχ̄ν∇χ̄ν)

∣∣∣∣ ≤ ν100‖ε‖2L∞(γ≥| log ν|/ν). (2.28)

Besides, since 2(U − b) ≤ −b when γ > ζ0/ν and ν is small enough, we have
∫

2(U − b)ε22χ̄
2
νω ≤ −b

∫
ε22χ̄

2
νω. (2.29)

For the fourth term, we use the 2D Hardy–Littlewood–Sobolev (HLS) inequality (A.20):

‖∇Ψ√
̺χ̄νε2‖L4 .

(∫
ε22χ̄

2
ν̺

U

) 1
2

= ‖ε2χ̄ν‖L2
ω
,

and estimate by Cauchy’s inequality that

∣∣∣∣
∫

∇U · ∇Ψχ̄ν
√
̺ε2ε2χ̄

2
νω

∣∣∣∣ ≤
(∫

χ̄2
νε

2
2ω

) 1
2

(∫

{γ≥ζ0/ν}
|∇U |4ω2

) 1
4

‖∇Ψ√
̺χ̄νε2‖L4 . b

5
4

∫
ε22χ̄

2
νω. (2.30)

For the remaining terms, we divide them into three groups:
∫ √

̺χ̄νL̃ ε2Ψ√
̺χ̄νε2 =

∫ √
̺χ̄νΨ√

̺χ̄νε2∆ε2 +

∫ √
̺χ̄νΨ√

̺χ̄νε2(−∇ε2 · ∇ΨU − b∇ · (yε2) + 2ε2U)

−
∫ √

̺χ̄νΨ√
̺χ̄νε2∇Ψ√

̺χ̄νε2 · ∇U
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As before, by (A.12), we have the pointwise estimate of the Poisson field

|Ψ√
̺χ̄νε2(y)|2 . log(4 + |y|)

∫
ε22χ̄

2
νω.

Integrating by parts, we have

∫ √
̺χ̄νΨ√

̺χ̄νε2∆ε2 =

∫
∆(

√
̺χ̄νΨ√

̺χ̄νε2)ε2.

By chain rule, when the derivative hits χ̄ν , we use the L∞-control of ε2 as before, and when the derivative
hits elsewhere we use either the pointwise estimate of Ψ√

̺χ̄νε2 or the L4-estimate of ∇Ψ√
̺χ̄νε2 :

∣∣∣∣
∫
(2∇χ̄ν · ∇(

√
̺Ψ√

̺χ̄νε2) + ∆χ̄ν
√
̺Ψ√

̺χ̄νε2)ε2

∣∣∣∣ . ν100‖ε2χ̄ν‖L2
ω
· ‖ε2‖L∞(γ≥| log ν|/ν),

∣∣∣∣
∫

∇√
̺ · ∇Ψ√

̺χ̄νε2ε2

∣∣∣∣ . b‖γ
√
U‖L4(γ≥ζ0/ν)‖∇Ψ√

̺χ̄νε2‖L4‖ε2χ̄ν‖L2
ω
. b

5
4 ‖ε2χ̄ν‖2L2

ω
,

∣∣∣∣
∫

∆(
√
̺)Ψ√

̺χ̄νε2ε2

∣∣∣∣ . ‖(b+ b2γ2) log(4 + γ)
√
U‖L2(γ≥ζ0/ν)‖ε2χ̄ν‖2L2

ω
. b

5
4 ‖ε2χ̄ν‖2L2

ω
,

∣∣∣∣
∫
χ̄2
ν̺ε

2
2

∣∣∣∣ .
b2

ζ40
‖ε2χ̄ν‖2L2

ω
.

In summary, we obtain

∣∣∣∣
∫

∆(
√
̺χ̄νΨ√

̺χ̄νε2)ε2

∣∣∣∣ . ν100‖ε2χ̄ν‖L2
ω
· ‖ε2‖L∞(γ≥| log ν|/ν) + b

5
4 ‖ε2χ̄ν‖2L2

ω
. (2.31)

The estimate of the second group is more direct:

∣∣∣∣
∫ √

̺χ̄νΨ√
̺χ̄νε2(−∇ε2 · ∇ΨU − b∇ · (yε2) + 2ε2U)

∣∣∣∣

. ‖ε‖2L2
ω

(∫

{ζ0/ν≤γ≤| log ν|/ν}
(U2 + b2)U log2(4 + γ)

) 1
2

+ ‖ε2χ̄ν‖L2
ω
‖χ̄ν∇ε2‖L2

ω

(∫

{ζ0/ν≤γ≤| log ν|/ν}
(b2γ2 + |∇ΨU |2)U log2(4 + γ)

) 1
2

. b
5
4 ‖ε2χ̄ν‖2L2

ω
+ b

1
4 ‖χ̄ν∇ε2‖2L2

ω
. (2.32)

For the last term, Cauchy’s inequality yields

∣∣∣∣
∫ √

̺χ̄νΨ√
̺χ̄νε2∇Ψ√

̺χ̄νε2 · ∇U
∣∣∣∣ . ‖ε2χ̄ν‖L2

ω
‖Ψ√

̺χ̄νε2‖L4‖ log(4 + γ)∇U‖
L

4
3 (γ≥ζ0/ν)

. b
3
2 ‖ε2χ̄ν‖2L2

ω
. (2.33)

Then, combine (2.31), (2.32) and (2.33), and we obtain

∣∣∣∣
∫ √

̺χ̄νL̃ ε2Ψ√
̺χ̄νε2

∣∣∣∣ . b
5
4 ‖ε2χ̄ν‖2L2

ω
+ b

1
4 ‖χ̄ν∇ε2‖2L2

ω
+ ν100‖ε2‖2L∞(γ≥| log ν|/ν). (2.34)

Finally, combining (2.28), (2.29), (2.30) and (2.34), we have

〈
L̃ ε2 , ε2

〉
∗
≤ −δ

(
‖χ̄ν∇ε2‖2L2

ω
+ b‖χ̄νε2‖2L2

ω

)
+ Cν100‖ε2‖2L∞(γ≥| log ν|/ν), (2.35)
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for some universal δ, C > 0, when ζ0 is sufficiently small.

Estimates of
〈
L̃ ε1 , ε2

〉
∗
+
〈
L̃ ε2 , ε1

〉
∗
: The methods to estimate these interaction terms are the same as

the previous ones. We remark that the interaction happens only in a relatively small region as ζ0 is meant
to be small. We will later exploit this smallness to control the interaction terms. Through integration by
parts,

〈
L̃ ε1 , ε2

〉
∗
+
〈
L̃ ε2 , ε1

〉
∗
= −2

∫
ω∇ε1 · ∇ε2 + 4

∫
(U − b)ε1ε2ω

−
∫

∇U · ∇Ψ√
̺ε1ε2ω −

∫ √
̺χ̄νL̃ ε1Ψ√

̺χ̄νε2 −
∫

∇U · ∇Ψ√
̺ε2ε1ω −

∫ √
̺χ̄νL̃ ε2Ψ√

̺χ̄νε1 .

Note that the terms on the second line above are all lower-order terms, as we estimated in the previous steps.
For the second term on the right-hand side,

4

∫
(U − b)ε1ε2 ≤ −2b

∫
χ̄0(1 − χ̄0)ε

2 ≤ 0,

which has the desired sign. Thus, it remains to estimate the first term. Since ∇ε1 = χ̄0∇ε+ ν
ζ0
(∇χ)(γν/ζ0)ε

and ∇ε2 = (1− χ̄0)∇ε− ν
ζ0
(∇χ)(γν/ζ0)ε, we have

∣∣∣∣
∫
ω∇ε1 · ∇ε2

∣∣∣∣ =
∣∣∣∣∣

∫

{ζ0/ν≤γ≤2ζ0/ν}
ω∇ε1 · ∇ε2

∣∣∣∣∣ .
∫

{ζ0/ν≤γ≤2ζ0/ν}
|∇ε|2ω +

∫

{ζ0/ν≤γ≤2ζ0/ν}

ε2

(1 + γ)2
ω.

In summary, we have the estimate

∣∣∣
〈
L̃ ε1 , ε2

〉
∗
+
〈
L̃ ε2 , ε1

〉
∗

∣∣∣ .
∫

{ζ0/ν≤γ≤2ζ0/ν}
|∇ε|2ω +

∫

{ζ0/ν≤γ≤2ζ0/ν}

ε2

(1 + γ)2
ω + l.o.t., (2.36)

where the lower order terms (l.o.t.) can be absorbed into other terms when b is small enough.

Global coercivity: Now we are ready to derive the full coercivity based on the established estimates. First,by
(2.27), (2.35) and (2.36), when b is sufficiently small, there exist universal constants δ, c, C > 0 such that

〈
L̃ ε , ε

〉
∗
≤ −δ

∫ (
bε2 + |∇ε|2

)
χ̄2
νω + C

∫

{ζ0/ν≤γ≤2ζ0/ν}

(
|∇ε2|+ ε2

(1 + γ)2

)
ω

+Cν100‖ε2‖2L∞(γ≥| log ν|/ν).

By the Hardy-Poincaré type inequality (A.18), there exists C′ > 0 such that
∫

{γ≤ 1
ν }

ε2

(1 + γ)2
ω ≤

∫
ε2χ2(γν)

(1 + γ)2
ω ≤ C′

∫

{γ≤ 2
ν }
(bε2 + |∇ε|2)ω.

We choose an integer N0 > 0 such that

N0 >
4CC′

δ
,

and fix 0 < ζ∗ ≪ 1 small enough such that ζ∗2N0 will satisfy all the smallness requirements for ζ0 in the
previous steps. Now we apply the following dyadic argument:

δ

2

∫ (
bε2 + |∇ε|2

)
χ̄2
νω ≥ δ

2

∫

{γ≤ 2
ν }

(
bε2 + |∇ε|2

)
ω ≥ δ

4C′

∫

{γ≤ 1
ν }

(
|∇ε|2 + ε2

(1 + γ)2

)
ω

≥
N0−1∑

j=0

δ

4C′

∫

{ ζ∗2j

ν ≤γ≤ ζ∗2j+1

ν }

(
|∇ε|2 + ε2

(1 + γ)2

)
ω

≥ N0δ

4C′ min
0≤j≤N0

{∫

{ ζ∗2j

ν ≤γ≤ ζ∗2j+1

ν }

(
|∇ε|2 + ε2

(1 + γ)2

)
ω

}
.
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Let 0 ≤ n0 ≤ N0 be the integer such that

∫

{ ζ∗2n0

ν ≤γ≤ ζ∗2n0+1

ν }

(
|∇ε|2 + ε2

(1 + γ)2

)
ω = min

0≤j≤N0

{∫

{ ζ∗2j

ν ≤γ≤ ζ∗2j+1

ν }

(
|∇ε|2 + ε2

(1 + γ)2

)
ω

}
,

and define ζ0 = ζ∗2n0 . It follows by the choice of ζ0 and the definition of N0 that

C

∫

{ζ0/ν≤γ≤2ζ0/ν}

(
|∇ε2|+ ε2

(1 + γ)2

)
ω <

δ

2

∫ (
bε2 + |∇ε|2

)
χ̄2
νω.

This completes the proof of the proposition.

The coercivity result can be stated equivalently in the parabolic variables:

Corollary 1. There exist constants δ, ζ∗, C, ν∗ > 0, such that for any 0 < ν < ν∗ and any ε satisfying∫ ε2+|∇ε|2
Uν

< +∞ and the orthogonality conditions

∫

R2

εΛUνχ(ζ/ζ∗)
√
̺ν =

∫

R2

ε∇Uνχ(ζ/ζ∗)
√
̺ν = 0,

we have 〈
L̃

ζ
ν ε , ε

〉
ν,∗

≤ −δ
(∫

R2

|∇ε|2χ2
ν

Uν
̺ν +

∫

R2

ε2χ2
ν

Uν
̺ν

)
+ Cν100‖ε‖2L∞(ζ≥1/ν). (2.37)

At the end of this section, we introduce a higher-order coercivity result of the linearized operator L0,
which will be used in the H1 energy estimate in the inner region.

Proposition 3 (Higher order dissipation structure). There exists δ > 0, such that for any ε that satisfies∫ ε2+|∇ε|2+|∇(2)ε|2
U < +∞ and the orthogonal conditions

〈ε , ΛU〉 = 〈ε , ∂ρU〉 = 〈ε , ∂ξU〉 = 0,

it holds that
∫ |L0ε|2

U
> δ

(∫
(1 + γ)4|∆ε|2 +

∫
(1 + γ)2|∇ε|2 +

∫
ε2 +

∫ |∇Ψε|2
(1 + γ)4

)
.

Proof. See Proposition 2.8 in [31]. We remark that although the orthogonality conditions there are different,
the proof remains valid as long as ε lies in some subspace whose intersection with Span {ΛU, ∂ρU, ∂ξU} is
{0}. In particular, it can be applied here.

3 Construction of Blowup Solutions

In this section, we start constructing the finite time blowup solution. We first decompose the whole solution
into an approximate one plus a perturbation function, where we will introduce modulation parameters
driving the evolution of the perturbation. We setup the bootstrap assumptions in Definition 1, and then
derive modulation equations in Lemma 3. Finally, we perform a series of energy estimates in the inner region
and outer region, respectively, for the perturbation.

3.1 Decomposition of the Solution and Formulation of the Linearized Problem

Consider the following decomposition of the solution:

w(r̄, z̄, τ) = Uν(ζ) + P (ζ, τ) + ε(r̄, z̄, τ) :=W (ζ, τ) + ε(r̄, z̄, τ), (3.1)
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where we denote
P (ζ, τ) := a(τ)(ϕ1,ν (ζ) − ϕ0,ν(ζ)).

Now we study the evolution of the solution in the near field. Inserting the decomposition w = Uν + P + ε
into (1.4), we obtain the equation for ε

∂τε = L
ζ
ν ε+ L(ε) +NL(ε) + E, (3.2)

where the extra linear terms

L(ε) = −∇ · (W∇Θε + P∇Ψε + ε∇(ΦW −ΨUν ))

+
1

r̄ +R/µ
(∂r̄ε− ε∂r̄ΦW −W∂r̄Φε) +

Rτ

µ
∂r̄ε,

the nonlinear terms

NL(ε) = −∇ · (ε∇Φε)−
1

r̄ +R/µ
ε∂r̄Φε.

and the generated error

E = −Pτ + L
ζ
ν P −∇ · (W∇ΘW + P∇ΨP ) +

(ντ
ν

− β
)
ΛUν

+
1

r̄ +R/µ
(∂r̄W −W∂r̄ΦW ) +

Rτ

µ
∂r̄W,

where we can compute that

Pτ = aτ (ϕ1,ν(ζ)− ϕ0,ν(ζ)) + +a(τ)
ντ
ν
ν∂ν(ϕ1,ν(ζ) − ϕ0,ν(ζ)).

We require ε to be even in z-variable (which is preserved by the evolution) and impose the local orthogonality
conditions:

∫

R2

εχ∗(ζ) dr̄dz̄ =

∫

R2

εΛUνχ∗(ζ) dr̄dz̄ =

∫

R2

ε∇Uνχ∗(ζ) dr̄dz̄ = 0, (3.3)

which are preserved by the modulation parameters a(τ), ν(τ), Rτ /µ and the even symmetry in z. Recall the
definition of the inner norm

‖f‖in :=

(∫

R2

ν2f2χ2
ν

Uν
e−

βζ2

2

) 1
2

.

Proposition 4 (Decomposition of the generated error). The generated error can be decomposed as

E = Mod0ϕ0,ν +Mod1ϕ1,ν +
Rτ

µ
∂r̄Uν + Ẽ, (3.4)

where

Mod0 = aτ − 2aβ

(
1 +

1

2 log(ν)

)
− 16ν2

(ντ
ν

− β
)
,

Mod1 = −aτ +
a(τ)β

log(ν)
.

Then, we have the weighted L2-estimate for the error:

‖Ẽ‖in .
ν2 + |a|
| log ν| +

∣∣∣ντ
ν

∣∣∣ |a|
| log ν| + |a|

√
| log ν| ·

∣∣∣∣
Rτ

µ

∣∣∣∣+
a2

ν
.
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In addition, we have the following estimates for the local L2-projections of Ẽ onto 1,ΛUν,∇Uν :

∣∣∣
〈
Ẽ , χ∗

〉∣∣∣ . ν2 + |a|
| log ν| +

∣∣∣ντ
ν

∣∣∣ |a|
| log ν| + a2| log ν|,

∣∣∣
〈
Ẽ , χ∗ΛUν

〉∣∣∣ . 1 +
a2

ν4
+
∣∣∣ντ
ν

· a
ν2

∣∣∣+ |a|,
∣∣∣
〈
Ẽ , ∂r̄Uνχ∗

〉∣∣∣ .
∣∣∣∣
aRτ

ν4µ

∣∣∣∣ ,
∣∣∣
〈
Ẽ , ∂z̄Uνχ∗

〉∣∣∣ = 0.

(3.5)

Proof. Recall, from Proposition 1, that

L
ζ
ν ϕi,ν = 2β

(
1− i+

1

2 log(ν)

)
ϕi,ν +Ri,

and

ϕi,ν(ζ) = − 1

16ν2
ΛUν(ζ)χ∗ + ϕ̃i(ζ).

We obtain the decomposition (3.4), with

Ẽ = −a(τ)ντ
ν
ν∂ν(ϕ1,ν(ζ)− ϕ0,ν(ζ)) −∇ · (W∇ΘW + P∇ΨP )

+
(ντ
ν

− β
)
(ΛUν(ζ) + 16ν2ϕ0,ν(ζ)) +

1

r̄ +R/µ
(∂r̄W −W∂r̄ΦW ) +

Rτ

µ
∂r̄P + a(τ)(R1 −R0).

(3.6)

The proof of the estimates relies on the pointwise estimates derived in Proposition 1.

Estimate of ‖Ẽ‖in: First, by (2.2),

‖ν∂ν(ϕ1,ν − ϕ0,ν)‖2in .

∫ +∞

0

ν4ζ5 log4(2 + ζ/ν) log2(4 + ζ)

(ν + ζ)8
e−

ζ2

2 dζ +
1

log2(ν)

∫ +∞

0

ζ5 log2(4 + ζ)e−
ζ2

2 dζ

.
1

| log ν|2 .

Second, by (2.1)

‖ΛUν + 16ν2ϕ0,ν‖2in = ‖16ν2ϕ̃0,ν‖2L2
ων

. ν4
∫ +∞

0

ν4ζ5 log4(2 + ζ/ν) log2(4 + ζ)

(ν + ζ)8
e−

ζ2

2 dζ + ν4
∫ +∞

0

ζ5 log2(4 + ζ)

| log ν|2(ν + ζ)4
e−

ζ2

2 dζ

.
ν4

| log ν|2 .

Third, by (2.2),

‖∂r̄P‖2in =

∥∥∥∥a(τ)
r̄

ζ
∂ζ(ϕ1,ν − ϕ0,ν)

∥∥∥∥
2

in

. a2
∫
ζ2 log2(4 + ζ)

(ν + ζ)4
e−

ζ2

2 dr̄dz̄ . a2| log ν|.

Fourth, by (2.3), we have |Ri(ζ)(ν + ζ)2e−
ζ2

4 | . 1
| log ν|(1+ζ)4 for any ζ ≥ 0, and it follows that

‖Ri‖in .
1

| log ν| .

Next, we estimate the term ∇ · (P∇ΨP ) = ∂ζP∂ζΨ − P 2. By (2.2) we obtain the following pointwise
estimates (k = 0, 1, 2):

|∂kζP (ζ)| .
|a|ζ2−k log(2 + ζ)

(ν + ζ)4
, (3.7)
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and for ζ = O(1),

|∂ζΨP (ζ)| =
∣∣∣∣∣
a(τ)

ζ

∫ ζ

0

r(ϕ1,ν (r)− ϕ0,ν(r)) dr

∣∣∣∣∣ .
|a|
ζ

∫ ζ

0

r3

(ν + r)4
dr .

|a|
ζ

log(1 + ζ4/ν4). (3.8)

Then, we have

‖∂ζP∂ζΨP ‖2in . a4
∫ +∞

0

ζ log2(4 + ζ)

(ν + ζ)4
log2(1 + ζ/ν)e−

ζ2

2 dζ .
a4

ν2
,

and

‖P 2‖2in . a4
∫ +∞

0

ζ9 log4(4 + ζ)

(ν + ζ)12
e−

ζ2

2 dζ .
a4

ν2
.

Finally, by Lemma 9, we know that

∇ΦW (ζ) = ∇ΨW (ζ) +O(µs), ∀ ζ > 0,

for some s > 0. It follows, in particular, that ‖∇ΘW‖L∞(ζ≤ζ∗) = O(µs/νl). Thus, the rest terms are all of

lower orders (recall that µ = O(νk) for any k > 0 ). This, combined with the estimates above, concludes the
local L2-estimate of Ẽ. Similarly, based on pointwise estimates (2.1)(2.2)(2.3), we can derive the estimates
of the local L2-projections.

Estimate of
〈
Ẽ , χ∗

〉
: First, through integration by parts,

|〈∇ · (P∇ΨP ) , χ∗〉| =
∣∣∣∣
∫
P∇ΨP · ∇χ∗

∣∣∣∣ ≤ a2| log ν|.

Second, by the eigenproblem equation, we note that

L
ζ
ν ϕ0,ν = 2β

(
1 +

1

2 log(ν)

)
ϕ0,ν +R0,

⇐⇒ ϕ̃0 = ϕ0,ν +
1

16ν2
ΛUν(ζ)χν(ζ) =

1

2β + β/ log(ν)

(
L

ζ
ν ϕ0,ν −R0

)
+

1

16ν2
ΛUν(ζ)χν(ζ),

where

L
ζ
ν ϕ0,ν = ∇ ·

(
Uν∇

(
ϕ0,ν

Uν
−Ψϕ0,ν

))
− βΛϕ0,ν

= ∇ ·
(
Uν∇

(
ϕ̃0

Uν
−Ψϕ̃0

))
− βΛϕ̃0 +

β

16ν2
Λ2Uν , ∀ ζ ≤ ζ∗.

By the divergence structure and pointwise estimate (2.1), we have

∣∣∣∣
∫
χ∗Λϕ̃0 dr̄dz̄

∣∣∣∣ =
∣∣∣∣
∫
ζ∂ζχ∗ϕ̃0 dr̄dz̄

∣∣∣∣ .
1

| log ν| ,

and
∣∣∣∣
∫
χ∗∇ ·

(
Uν∇

(
ϕ̃0

Uν
−Ψϕ̃0

))∣∣∣∣ =
∣∣∣∣
∫
∂ζχ∗Uν∂ζ

(
ϕ̃0

Uν
−Ψϕ̃0

)∣∣∣∣

=

∣∣∣∣
∫
∂ζχ∗ (∂ζϕ̃0 − ϕ̃0∂ζΨUν − Uν∂ζΨϕ̃0)

∣∣∣∣ .
1

| log ν| ,
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since by (2.1),

|∂ζΨϕ̃0(ζ)| .
∣∣∣∣∣
1

ζ

∫ ζ

0

r3

(ν + r)4| log ν| +
ν2r3 log(1 + r/ν)

(ν + r)6
dr

∣∣∣∣∣ .
log(1 + ζ/ν)

| log ν|ζ .

In addition, due to the cancellation 2Uν(ζ)/ν
2 + ΛUν(ζ)/ν

2 = O(ν2) for ζ ∈ [ζ∗/2, ζ∗],
∣∣∣∣
∫
χ∗

1

2 + 1/ log(ν)
· 1

16ν2
Λ2Uν +

1

16ν2
ΛUν

∣∣∣∣ =
∣∣∣∣
∫

1

2 + 1/ log(ν)
· ∂ζχ∗
16ν2

ζΛUν +
∂ζχ∗
16ν2

ζUν

∣∣∣∣

.

∣∣∣∣
∫
∂ζχ∗
32ν2

ζΛUν +
∂ζχ

∗

16ν2
ζUν

∣∣∣∣+
1

| log ν| ·
∣∣∣∣
∫
∂ζχ∗
ν2

ζΛUν

∣∣∣∣ .
1

| log ν| ,

and by (2.3), ∣∣∣∣
∫
χ∗R0 dr̄dz̄

∣∣∣∣ .
1

| log ν| .

Combining these estimates we obtain

∣∣〈ΛUν + 16ν2ϕ0,ν , χ∗
〉∣∣ . ν2

| log ν| .

Note that ν∂ν(ν
−2V (ζ/ν)) = −ν−2ΛV (ζ/ν), where V = V2 or V = Ṽ2 in the construction of ϕi,ν in

Proposition 1. Exploiting this divergence structure, we have the estimate

∣∣∣
〈
a
ντ
ν
ν∂ν(ϕ1,ν − ϕ0,ν) , χ∗

〉∣∣∣ .
∣∣∣aντ
ν

∣∣∣
(
ν2 +

∫ 2ζ∗

0

ζ3

| log ν|(ν + ζ)2
dζ

)
.
∣∣∣ντ
ν

∣∣∣ |a|
| log ν| .

The estimates of the rest terms are more straightforward

|〈aRi , χ∗〉| . |a|
∫ 2ζ∗

0

ζ3

(ν + ζ)2
log(ζ)

| log(ν)| +
νζ3

(ν + ζ)3
dζ .

|a|
| log ν| ,

|〈∂r̄P , χ∗〉| = 0,

Estimate of the rest terms: The methods are similar, and we briefly summarize them below.

For
〈
Ẽ , ΛUνχ∗

〉
:

∣∣〈P 2 , ΛUνχ∗
〉∣∣ . a2

∫ 2ζ∗

0

ν2ζ5

(ν + ζ)12
dζ .

a2

ν4
,

∣∣〈ΛUν + 16ν2ϕ0,ν , ΛUνχ∗
〉∣∣ . 1

| log ν|

∫ 2ζ∗

0

ν4ζ3

(ν + ζ)8
dζ + ν6

∫ ζ∗

0

ζ3 log(1 + ζ/ν)

(ν + ζ)10
dζ . 1,

∣∣∣
〈
a
ντ
ν
ν∂ν(ϕ1,ν − ϕ0,ν) , ΛUνχ∗

〉∣∣∣ .
∣∣∣aντ
ν

∣∣∣
∫ 2ζ∗

0

ν4ζ3

(ν + ζ)10
+

ν2ζ3

| log ν|(ν + ζ)6
dζ .

∣∣∣ντa
ν3

∣∣∣ ,

|〈∂ζP∂ζΨP , ΛUνχ∗〉| . a2
∫ 2ζ∗

0

ν2ζ log(1 + ζ/ν)

(ν + ζ)8
dζ .

a2

ν4
,

|〈aRi , ΛUνχ∗〉| . |a|
∫ 2ζ∗

0

ν2ζ3 log(ζ)

| log ν|(ν + ζ)6
+

ν3ζ3

(ν + ζ)7
dζ . |a|,

|〈∂r̄P , ΛUνχ∗〉| = 0.

For
〈
Ẽ , ∂r̄Uνχ∗

〉
:

|〈∂r̄P , ∂r̄Uνχ∗〉| . a

∫
ν2r̄2χ∗
(ν + ζ)10

dr̄dz̄ .
a

ν4
,

and the other terms are all zero.
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3.2 Bootstrap Regime and Modulation Equations

As we will see in the energy estimates, it only suffices to estimate the gradient of ε in the region ζ . 1.
Thus, we define

ε∗ := χ∗ε.

Recall that χ∗(ζ) = χ(ζ/ζ∗) and

‖f‖2L2(Uν)
:=

∫
ν2f2

Uν
.

Now, we are ready to setup our bootstrap assumptions:

Definition 1 (Bootstrap). We say that a solution w of (1.4) lies in the bootstrap regime BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1)
if it satisfies the following: on time interval [τ0, τ∗], w admits the decomposition (3.1) where the perturbation
ε satisfies the locally orthogonal decomposition (3.3). In addition, the following estimates holds on [τ0, τ∗]:
(i) (Modulation parameters)

1

K1
e−

√
βτ+M0 ≤ν(τ) ≤ K1e

−
√
βτ+M0 ,

|a(τ)− 8ν2(τ)| ≤ K2ν
2

| log ν| ,∣∣∣∣
Rτ

µ

∣∣∣∣ ≤
K3ν

| log ν|

(ii) (Remainders)

‖ε‖in ≤ K4
ν2

| log ν| ,

‖∇ε∗‖L2(Uν) ≤ K5
ν2

| log ν| ,

‖ε‖H2( 1
2 ζ

∗≤ζ≤4ζ∗) ≤ K6
ν2

| log ν| ,

‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗) ≤

K7√
βτ +M0

e−2
√
βτ+M0 .

Note that by the bootstrap assumptions on ν and ‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗), we have

‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗) ≤

K7C(K1)ν
2

| log ν| .

The reason why we make such assumption on ‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗) is a technical treatment to avoid the

oscillatory behavior of ν in time when doing integration, the details of which can be found in Lemma 7.

Lemma 3 (Modulation equations). Assume that the solution is in the bootstrap regime
BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1) defined in Definition 1. Then, the following estimates hold for any τ ∈ [τ0, τ∗]:

|Mod0| =
∣∣∣∣aτ − 2aβ

(
1 +

1

2 log(ν)

)
− 16ν2

(ντ
ν

− β
)∣∣∣∣ ≤ C

(
‖ε‖in + ‖∇ε∗‖L2(Uν)

)
+
C(Ki)ν

2

| log ν|2 ,

|Mod1| =
∣∣∣∣−aτ +

a(τ)β

log(ν)

∣∣∣∣ ≤
C(K1,K2,K4,K5)ν

2

| log ν|2 +
C(Ki)ν

2

| log ν|3 ,∣∣∣∣
Rτ

µ

∣∣∣∣ ≤
C(K4,K5)ν

| log ν| +
C(Ki)ν

| log ν|2 .

(3.9)
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Proof. The strategy of the proof is the following: Since the evolution of the modulation parameters is
determined by the preservation of the (local) orthogonality conditions (3.3), we take time derivatives of the
orthogonality equations and use energy bounds for ε to obtain the desired estimates.

Estimate of Mod1 by projection to χ∗: By the orthogonality condition (3.3), we obtain

0 =
d

dτ
〈ε , χ∗〉 = 〈∂τε , χ∗〉 =

〈
L

ζ
ν ε+ L(ε) +NL(ε) + E , χ∗

〉
. (3.10)

Recall that (as 〈∂r̄Uν , χ∗〉 = 0)

〈E , χ∗〉 = Mod0 〈ϕ0,ν , χ∗〉+Mod1 〈ϕ1,ν , χ∗〉+
〈
Ẽ , χ∗

〉
.

Then, by (2.4) (3.5) and the fact that
〈

1
ν2ΛUν , χ∗

〉
= O(1), we have

| 〈ϕ0,ν , χ∗〉 | . 1, | 〈ϕ1,ν , χ∗〉 | & | log ν|,
∣∣∣
〈
Ẽ , χ∗

〉∣∣∣ . ν2 + |a|
| log ν| +

∣∣∣aντ
ν

∣∣∣+ C(Ki)ν
3. (3.11)

We remark that the gain of | log ν| in 〈ϕ1,ν , χ∗〉 will enable us to control Mod1 by Mod0 and gain a | log ν|
smallness in the estimate of Mod1. Next, we estimate the terms containing ε. Since the operator M ζ

ν is
self-adjoint in (L2(R2), 〈· , ·〉), which follows from the self-adjointness of (−∆)−1, we have

|
〈
L

ζ
ν ε , χ∗

〉
| =

∣∣〈Uν∇M
ζ
ν (ε)− βyε , ∇χ∗

〉∣∣

≤
∣∣〈M ζ

ν (ε) , ∇ · (Uν∇χ∗)
〉∣∣+ |〈βyε , ∇χ∗〉| .

Since ∇·(Uν∇χ∗) is compactly supported in [ζ∗, 2ζ∗] and is of size O(ν2), i.e., |∇·(Uν∇χ∗)| . ν21{ζ∗≤ζ≤2ζ∗},
by (2.17) we have the estimate:

∣∣〈M ζ
ν (ε) , ∇ · (Uν∇χ∗)

〉∣∣ .
∫

{ζ∗≤ζ≤2ζ∗}
|ε|+ |〈∇Ψε , Uν∇χ∗〉| . ‖ε‖in + ν2‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗),

where we use the pointwise estimate of the Poisson field by (A.14) and (A.15):

‖∇Ψε‖L∞(ζ∗≤ζ≤2ζ∗) .

(∫
ε2(1 + ζ)

1
3

) 1
2

.
1

ν2
‖ε‖in + ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗). (3.12)

It follows that
|
〈
L

ζ
ν ε , χ∗

〉
| . ‖ε‖in + ν2‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗). (3.13)

Due to Lemma 9, we neglect the terms of order O(µs) and estimate the rest terms in L(ε). By (3.12) and
the pointwise estimates (3.7) and (3.8), we have

∣∣∣∣
〈
−∇ · (P∇Ψε + ε∇(ΨW −ΨUν )) +

Rτ

µ
∂r̄ε , χ∗

〉∣∣∣∣ =
∣∣∣∣
〈
P∇Ψε + ε∇ΨP +

Rτ

µ
e1ε , ∇χ∗

〉∣∣∣∣

.

( |a|
ν2

+

∣∣∣∣
Rτ

µ

∣∣∣∣
)
‖ε‖in + |a| · ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗).

(3.14)

Finally, for the nonlinear terms, neglect the part of order O(µ). By Cauchy’s inequality and (3.12), we have:

|〈−∇ · (ε∇Ψε) , χ∗〉| = |〈ε∇Ψε , ∇χ∗〉| ≤ ‖ε‖in‖∇Ψε‖L∞(ζ∗≤ζ≤2ζ∗)

≤
(

1

ν2
‖ε‖in + ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗)

)
‖ε‖in. (3.15)
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By (3.10) and collecting all the estimates (3.11)(3.13)(3.14)(3.15), we obtain

|Mod1| .
1

| log ν|

(
|Mod0|+

(
1 +

|a|
ν2

+

∣∣∣∣
Rτ

µ

∣∣∣∣
)
‖ε‖in + (ν2 + |a|)‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗)

+
1

ν2
‖ε‖2in +

1

ν2
‖ε‖in‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗) +

ν2 + |a|
| log ν| +

∣∣∣aντ
ν

∣∣∣+ C(Ki)ν
3

)

.
|Mod0|
| log ν| +

ν2C(K1,K2,K4)

| log ν|2 +
C(Ki)ν

2

| log ν|3 . (3.16)

Estimate of Mod0 by projection to ΛUνχ∗: Similarly, we compute

0 =
d

dτ
〈ε , ΛUνχ∗〉 = 〈∂τε , ΛUνχ∗〉+ 〈ε , ∂τΛUνχ∗〉

=
〈
L

ζ
ν ε+ L(ε) +NL(ε) + E , ΛUνχ∗

〉
+
〈
ε ,

ντ
ν
ν∂νΛUνχ∗

〉
. (3.17)

Note, by (2.4) and (3.5), that

|〈ϕi,ν , ΛUνχ∗〉| &
1

ν2
〈ΛUν , ΛUνχ∗〉 &

1

ν4
,
∣∣∣
〈
Ẽ , ΛUνχ∗

〉∣∣∣ . 1 +
a2

ν4
+
C(Ki)

| log ν| .

Through integration by parts and Cauchy’s inequality,

∣∣∣
〈
L

ζ
0,νε , ΛUνχ∗

〉∣∣∣ = |〈∇ε− ε∇ΨUν − Uν∇Ψε , ∇(ΛUνχ∗)〉|

≤
(
‖ε‖in + ‖∇ε∗‖L2(Uν)

) ∣∣∣∣
〈
Uν

ν2
, (∇(ΛUνχ∗))

2

〉∣∣∣∣
1
2

+ |〈∇ΨεUν , ∇(ΛUνχ∗)〉|

.
1

ν4
(
‖ε‖in + ‖∇ε∗‖L2(Uν)

)
+

1

ν3
‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗),

where we apply pointwise estimates of Poisson field (A.16) (A.17) to estimate

∣∣∣∣
∫

ν4∇Ψε

(ν + ζ)9

∣∣∣∣ .
∣∣∣∣∣

∫
ν4(1 + ζ/ν)

(ν + ζ)10

(∫
ε∗(ν + ζ)2

) 1
2

∣∣∣∣∣+
∣∣∣∣
∫

ν4

(ν + ζ)9

∣∣∣∣ · ‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗)

.
1

ν4
‖∇ε∗‖L2(Uν) +

1

ν3
‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗).

Besides,

|〈Λε , ΛUνχ∗〉| ≤
∣∣∣∣
〈
Uν

ν2
, (y · ∇(ΛUνχ∗))

2

〉∣∣∣∣
1
2

· ‖ε‖in .
1

ν3
‖ε‖in.

For L(ε), by (2.2) and similar methods as adapted above:

|〈∇P · ∇Ψε , ΛUνχ∗〉| .
|a|
ν4

‖∇ε∗‖L2(Uν) +
|a|
ν3

‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗),

|〈Pε , ΛUνχ∗〉| .
∣∣∣∣
〈
Uν

ν2
, (PΛUνχ∗)

2

〉∣∣∣∣
1
2

‖ε‖in ≤ |a|
ν5

‖ε‖in,

|〈∇ε · ∇ΨP , ΛUνχ∗〉| .
∣∣∣∣
〈
Uν

ν2
, (∇ΨPΛUνχ∗)

2

〉∣∣∣∣
1
2

‖∇ε∗‖in ≤ |a|
ν4

‖∇ε∗‖in,
∣∣∣∣
〈
Rτ

µ
∂r̄ε , ΛUνχ∗

〉∣∣∣∣ .
1

ν3

∣∣∣∣
Rτ

µ

∣∣∣∣ ‖∇ε
∗‖in.
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As for the nonlinear term,

|〈∇ε · ∇Ψε , ΛUνχ∗〉| . ‖∇ε∗‖L2(Uν)

(∫
Uν

ν2
(ΛUν)

2|∇Ψε|2
) 1

2

.
1

ν4
‖∇ε∗‖2in +

1

ν3
‖∇ε∗‖L2(Uν)‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗),

and

∣∣〈ε2 , ΛUνχ∗
〉∣∣ . 1

ν6
‖ε‖2in.

At last, ∣∣∣
〈
ε ,

ντ
ν
ν∂νΛUνχ∗

〉∣∣∣ . 1

ν3

∣∣∣ντ
ν

∣∣∣ ‖ε‖in.

Inserting all these estimates into (3.17), we obtain

|Mod0| . |Mod1|+ ‖ε‖in + ‖∇ε∗‖L2(Uν) +
C(Ki)ν

2

| log ν|2 .

Combining with (3.16), we can further refine

|Mod0| ≤ C
(
‖ε‖in + ‖∇ε∗‖L2(Uν)

)
+
C(Ki)ν

2

| log ν|2 ,

|Mod1| ≤
C(K1,K2,K4,K5)ν

2

| log ν|2 +
C(Ki)ν

2

| log ν|3 .

Estimate of Rτ

µ by projection to ∂r̄Uνχ∗: As before, we compute 0 = ∂τ 〈ε , ∂r̄Uν〉. Note that

〈E , ∂r̄Uνχ∗〉 =
Rτ

µ
〈∂r̄Uν , ∂r̄Uνχ∗〉+

〈
Ẽ , ∂r̄Uνχ∗

〉
,

where

〈∂r̄Uν , ∂r̄Uνχ∗〉 &
1

ν4
,
∣∣∣
〈
Ẽ , ∂r̄Uνχ∗

〉∣∣∣ .
∣∣∣∣
Rτ

ν2µ

∣∣∣∣ .

The estimates of the scalar products with terms containing ε are similar, with everything amplified by 1/ν
compared to the scalar products with ΛUν (since |∂r̄Uν | . 1

ν |ΛUν | for any ζ ≤ 2ζ∗), and we will not repeat
them here. To summarize, we have

∣∣∣∣
Rτ

µ

∣∣∣∣ ≤
C(K4,K5)ν

| log ν| +
C(Ki)ν

| log ν|2 .

A direct consequence of the modulation estimates is the following control on | ντν |.

Corollary 2. Assume that the solution is in the bootstrap regime given in Definition 1. Then, it holds that

∣∣∣ντ
ν

∣∣∣ ≤ C(K2,K4,K5)

| log ν| . (3.18)

Proof. Inserting |a− 8ν2| ≤ K2ν
2

| log ν| into the estimate of |Mod0 +Mod1| given by (3.9), the result follows.
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3.3 Energy Estimates

3.3.1 L2 Inner Estimate

Now we establish an important L2-monotonicity result for ε. One technical treatment is needed to avoid a
loophole in the energy estimates: Due to an incompatibility between the decomposition of generated error
and the local orthogonality conditions, the modulation estimates are not small enough to close the L2 energy
estimate. However, by projecting out the direction of the first approximate eigenfunction, we are able to
get rid of this issue. This is possible thanks to the special structure of the adapted inner product as well as
the slow decay of the stationary solution (e.g. U does not belong to L1), which makes the aforementioned
projection an acceptable modification to the original norm.
Note, by Lemma 2 and orthogonality conditions (3.3), we have

∫
ε2(χν)

2̺ν
Uν

− Cν2
∫
ε2(χν)

2̺ν
Uν

.

∫
εχν

√
̺νM

ζ
ν (εχν

√
̺ν) .

∫
ε2(χν)

2̺ν
Uν

.

Thus, 〈ε , ε〉ν,∗ =
∫
εχν

√
̺νM

ζ
ν (εχν

√
̺ν) is equivalent to the norm 1

ν2 ‖ε‖2in. Define

d0 :=

∫
χν

√
̺νϕ0,νM ζ

ν (εχν
√
̺ν)∫

χν
√
̺νϕ0,νM

ζ
ν (χν

√
̺νϕ0,ν)

.
‖ε‖in
| log ν| ,

as we have
∣∣∣∣
∫
χν

√
̺νϕ0,νM

ζ
ν (εχν

√
̺ν)

∣∣∣∣ .
1

ν2
‖ε‖in,

∣∣∣∣
∫
χν

√
̺νϕ0,νM

ζ
ν (ϕ0,νχν

√
̺ν)

∣∣∣∣ &
| log ν|
ν2

.

We project out the ϕ0,ν direction of ε, and consider the evolution of
∫
εχν

√
̺νM

ζ
ν (εχν

√
̺ν)− d0

∫
εχν

√
̺νM

ζ
ν (χν

√
̺νϕ0,ν)

=

∫
εχν

√
̺νM

ζ
ν (εχν

√
̺ν)−

(
∫
χν

√
̺νϕ0,νM ζ

ν (εχν
√
̺ν))

2

∫
χν

√
̺νϕ0,νM

ζ
ν (χν

√
̺νϕ0,ν)

∼ 1

ν2
‖ε‖2in.

Recall that ϕ0,ν = − 1
16ν2ΛUνχν + ϕ̃0, and

M
ζ
ν (χν

√
̺νϕ0,ν) = − 1

8ν2
+ M

ζ
ν (−

1

16ν2
ΛUν(χν

√
̺νχν − 1)) + M

ζ
ν (χν

√
̺νϕ̃0).

We also recall the pointwise estimate

|∂kζ ϕ̃0(ζ)|+ |∂kζ ν∂νϕ̃0(ζ)| .
(
ν2ζ2−k log(1 + ζ/ν)

(ν + ζ)6
+

ζ2−k

| log ν|(ν + ζ)4

)
(1 + log(ζ)1{ζ>1}).

In the following argument, since 1
ν2 (χν

√
̺νχν − 1) and ϕ̃0 are always estimated together, for brevity we

denote

ϕ̄0 := − 1

16ν2
ΛUν(χν

√
̺νχν − 1) + χν

√
̺νϕ̃0.

By the pointwise estimates, it is helpful to note that
∫ |ϕ̄0|2

Uν
.

1

ν2
,

∫ |∇ϕ̄0|2
Uν

.
| log ν|
ν2

.

Lemma 4 (Control of ‖ε‖in). Let w be a solution in the bootstrap regime BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1). Then,
the following estimate holds on [τ0, τ∗]:

d

dτ

(
1

2

∫
εχν

√
̺νM

ζ
ν (εχν

√
̺ν)−

d0
2

∫
ε
√
̺νχνM

ζ
ν (ϕ0,ν

√
̺νχν)

)

≤ − δ0
ν2
(
‖ε‖2in + ‖∇ε‖2in

)
+

Cν2

| log ν|2 +
C(Ki)ν

2

| log ν| 73
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Proof. The first half of the proof estimates the main part (i.e., the leading order dynamics)
d
dτ

1
2

∫
εχν

√
̺νM

ζ
ν (εχν

√
̺ν) which yields damping. Then, the second half deals with the correction term,

which projects out the Mod0 direction of the main part.
Step 1: Leading order dynamics

First of all, by (3.2) and recall the definition of 〈· , ·〉ν,∗ in (2.22), we have

1

2

d

dτ
〈ε , ε〉ν,∗ = 〈∂τε , ε〉ν,∗ +

1

2

〈
∂

∂τ

(
̺νχ

2
ν

Uν

)
, ε2
〉
−
〈
∂

∂τ
(
√
̺νχν) ε , Ψ̃ε

〉

=
〈
L̃

ζ
ν ε , ε

〉
ν,∗

+
〈
(L ζ

ν − L̃
ζ
ν )ε , ε

〉
ν,∗

+ 〈L(ε) , ε〉ν,∗ + 〈NL(ε) , ε〉ν,∗ + 〈E , ε〉ν,∗

+
1

2

〈
∂

∂τ

(
̺νχ

2
ν

Uν

)
, ε2
〉
−
〈
∂

∂τ
(
√
̺νχν) ε , Ψ̃ε

〉
.

Damping term: By the coercivity of the modified linearized operator (2.37), we have the damping

〈
L̃

ζ
ν ε , ε

〉
ν,∗

≤ −δ
(∫

ε2χ2
ν̺ν
Uν

+

∫ |∇ε|2χ2
ν̺ν

Uν

)
+ Cν100‖ε‖2L∞(ζ≥1/ν),

for some universal δ, C > 0.
Estimate of term (L ζ

ν − L̃ ζ
ν )ε: Note that

(L ζ
ν − L̃

ζ
ν )ε = ∇Uν · (∇Ψ̃ε −∇Ψε) = ∇Uν · ∇Ψ(

√
̺νχν−1)ε,

Integrating by parts, we have

〈
∇Uν · ∇Ψ(

√
̺νχν−1)ε , ε

〉
ν,∗ =

∫ √
̺νχν∇Uν · ∇Ψ(1−√

̺νχν)εM
ζ
ν (
√
̺νχνε)

=

∫ √
̺νχνUν(1 −

√
̺νχν)εM

ζ
ν (
√
̺νχνε)

−
∫
Uν∇(

√
̺νχν) · ∇Ψ(1−√

̺νχν)εM
ζ
ν (
√
̺νχνε)

−
∫ √

̺νχνUν∇Ψ(1−√
̺νχν )ε · ∇M

ζ
ν (
√
̺νχνε)

=: I + II + III.

By Cauchy’s inequality and (2.17), we obtain

|I| .
(∫

̺νχ
2
νUν(1−

√
̺νχν)

2ε2
) 1

2
(∫

ε2χ2
ν̺ν
Uν

) 1
2

.

Then, applying Uν(ζ)(1−
√
̺νχν)

2 . (ν+ζ)2, inequality (A.19), the control of the outer norm, and Cauchy’s
inequality, we have the estimate

|I| ≤ δ

10

(∫
(ε2 + |∇ε|2)χ2

ν̺ν
Uν

)
+ Cν2

∫
ε2χ2

ν̺ν
Uν

+ Cν100‖ε‖2L∞(ζ≥ζ∗).

Next, by (A.14) and (A.15), we have the pointwise estimate of the Poisson field (taking α = 1
4 ):

∫ 2π

0

|∇Ψ(1−√
̺νχν)ε(θ, ζ)|2 dθ .

1 + 1{ζ≤1} log ζ

(1 + ζ)
1
2

∫
(1−√

̺νχν)
2ε2(1 + ζ)

1
2

. C(ζ∗)
1 + 1{ζ≤1} log ζ

(1 + ζ)
1
2

(
‖ε‖2in + ‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗)

)
, (3.19)
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where we apply (1−√
̺νχν)

2(1+ ζ)
1
2 . (ν+ ζ)41{ζ<1} +(1+ ζ)

1
2
1{ζ≥1}. Then, by Cauchy’s inequality and

(2.17),

|II| . 1

ν
‖ε‖in

(∫
Uν |∇(

√
̺νχν)|2 · |∇Ψ(1−√

̺νχν )ε|2
) 1

2

.
1

ν
‖ε‖in

(∫ +∞

0

Uν |∇(
√
̺νχν)|2ζ

∫ 2π

0

|∇Ψ(1−√
̺νχν)ε|2 dθdζ

) 1
2

. C(ζ∗)
| log ν|
ν

‖ε‖in
(
‖ε‖in + ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗)

)
.

For III, using (2.18), (A.19) and Cauchy’s inequality, we have

|III| ≤ C

(∫
Uν̺νχ

2
ν · |∇Ψ(1−√

̺νχν)ε|2
) 1

2
(∫ |∇(

√
̺νχνε)|2
Uν

) 1
2

≤ δ

10

(∫
(ε2 + |∇ε|2)χ2

ν̺ν
Uν

)
+ C(ζ∗)| log ν|2

(
‖ε‖2in + ‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗)

)
.

Finally, combining the estimates of I, II, III above, we obtain

∣∣∣∣
〈
(L ζ

ν − L̃
ζ
ν )ε , ε

〉
ν,∗

∣∣∣∣ ≤
δ

5

(∫
(ε2 + |∇ε|2)χ2

ν̺ν
Uν

)
+ C(ζ∗)| log ν|2

(
‖ε‖2in + ‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗)

)
.

Estimate of term L(ε): In the following, we denote the O(µs) terms (under the bootstrap assumption) as

the lower order terms (l.o.t.), as µs = O(νk) for any fixed k > 0 when ν is sufficiently small. By Lemma 9,
we know that

L(ε) = −∇ · (ε∇ΨP + P∇Ψε) +
Rτ

µ
∂r̄ε+ l.o.t..

Integrating by parts, we obtain

〈−∇ · (ε∇ΨP + PΨε) , ε〉ν,∗ =

∫
∇(

√
̺νχν) · (ε∇ΨP + P∇Ψε)M

ζ
ν (

√
̺νχνε)

+

∫ √
̺νχν(ε∇ΨP + PΨε) · ∇M

ζ
ν (
√
̺νχνε).

By Lemma 2, inequality (A.19), and the control of the outer L∞-norm, we first have

∫
Uν |M ζ

ν (ε
√
̺νχν)|2 .

1

ν2
‖ε‖2in,

∫
Uν |∇M

ζ
ν (ε

√
̺νχν)|2 .

1

ν2

(
‖ε‖2in + ‖∇ε‖2in + ν100‖ε‖2L∞(ζ≥ζ∗)

)
.

(3.20)
Then, thanks to Cauchy’s inequality, it remains to estimate

∫
(̺νχ

2
ν + |∇(

√
̺χν)|2)(|ε∇ΨP |2 + |P∇Ψε|2)

1

Uν
.

By the pointwise estimate |∇ΨP (ζ)| . |a(τ)| log(1 + ζ/ν)/ζ .
|a|
ν and (A.19), we have

∫
(̺νχ

2
ν + |∇(

√
̺νχν)|2)

|ε∇ΨP |2
Uν

.
|a|2
ν4

(
‖ε‖2in + ‖∇ε‖2in + ν100‖ε‖2L∞(ζ≥ζ∗)

)
.

For the other part, we consider the decomposition ∇Ψε = ∇Ψ̃ε +∇Ψ(1−√
̺νχν )ε. By (3.19),

∫
(̺νχ

2
ν + |∇(

√
̺νχν)|2)

|P∇Ψ(1−√
̺νχν)ε|2

Uν
≤ C(ζ∗)a2

ν2

(
‖ε‖2in + ‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗)

)
.
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By the Hardy-Littlewood-Sobolev inequality (A.21):

‖∇Ψ̃ε‖L4 .
1

ν
‖ε‖in‖Uν‖

1
2

L2 .
1

ν
3
2

‖ε‖in,

we have

∫
(̺νχ

2
ν + |∇(

√
̺νχν)|2)

|P∇Ψ̃ε|2
Uν

. ‖∇Ψ̃ε‖2L4

(∫
(̺νχ

2
ν + |∇(

√
̺νχν)|2)2P 4

U2
ν

) 1
2

.
a2

ν5
‖ε‖2in.

For the last term in L(ε), by Cauchy’s inequality,

∣∣∣∣
Rτ

µ
〈ε , ∂r̄ε〉ν,∗

∣∣∣∣ .
1

ν2

∣∣∣∣
Rτ

µ

∣∣∣∣ ‖ε‖in‖∇ε‖in.

Finally, collecting all the estimates above and by the bootstrap assumptions, we obtain
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3,

where the second inequality above holds when ν is sufficiently small.
Estimate of the nonlinear term NL(ε): Again, the terms of order O(µs) are treated as lower order terms.
It then suffices to estimate the term −∇ · (ε∇Ψε). Integrate by parts, and we have

〈−∇ · (ε∇Ψε) , ε〉ν,∗ =

∫
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√
̺νχν) · (ε∇Ψε)M

ζ
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√
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̺νχνε∇Ψε · ∇M

ζ
ν (
√
̺νχνε).

As before, by Cauchy’s inequality and (3.20), it suffices to estimate

∫
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2
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√
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1
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.

To this end, we decompose ∇Ψε = ∇Ψχ∗ε+∇Ψ(1−χ∗)ε, where we recall χ
∗(ζ) := χ(ζ/ζ∗). For the first part,

We further decompose:
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2
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√
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2
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√
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:= T1 + T2.

By Cauchy’s inequality, Sobolev embedding H1(R2) →֒ L4(R2), and HLS inequality (A.20),
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+
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)
.

By the L∞ control of ε in the far field, Cauchy’s inequality, and HLS inequality,

|T2| .
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In summary, by the inequality (A.19), we obtain

∫
(̺νχ

2
ν + |∇(

√
̺νχν)|2)ε2|∇Ψεχ∗ |2 1

Uν
.
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√
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.
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| log ν|2
∫
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ν
√
̺ν

Uν
. (3.21)

For the second part, we apply (A.17), and obtain (choosing p = 3
2 )

‖∇Ψ(1−χ∗)ε‖L∞ . ‖(1− χ∗)ε‖L∞ + ‖(1− χ∗)ε‖
L

3
2
. ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗).

It follows that
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2
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√
̺νχν)|2)ε2|∇Ψε(1−χ∗)|2

Uν

. ‖ε(1 + ζ)
3
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2
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√
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)
.

(3.22)

Finally, combining (3.21) and (3.22), we obtain the nonlinear estimate

∣∣∣〈NL(ε) , ε〉ν,∗
∣∣∣ ≤ C(Ki)

| log ν|

∫
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3
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∫
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3,

where the second inequality holds when ν is sufficiently small.
Estimate of the generated error E: Recall that

E = Mod0ϕ0,ν +Mod1ϕ1,ν +
Rτ

µ
∂r̄Uν + Ẽ.

By the algebraic identity M ζ
ν (ΛUν) = −2, the orthogonality conditions (3.3) and the decomposition ϕi,ν =

− 1
16ν2ΛUνχν + ϕ̃i, we have

∣∣∣〈ε , Modiϕi,ν〉ν,∗
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√
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Similarly, by the algebraic identity M ζ
ν (∇Uν) = 0, we have
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ζ
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As for Ẽ, by Cauchy’s inequality,

∣∣∣∣
〈
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〉
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In summary, we have

∣∣∣〈ε , E −Mod0ϕ0,ν〉ν,∗
∣∣∣ ≤ 3δ

10ν2
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ν2
|Mod1|2 +

C(ν2 + |a|)
| log ν|2 +

C(Ki)ν
2

| log ν|3 .

Estimate of time derivative terms: Once We note ∂
∂τ

= ντ
∂
∂ν
, then the estimates are straight forward from

definition. First, we have

∣∣∣∣
〈
∂
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2
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)
, ε2
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ντ
ν

(
1

ν2
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.

Second, by ∂ν(
√
̺νχν) =

ζντ
| log ν|2νχ

′(ζ/| log ν|)√̺ν and (A.12), we have
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Conclusion of Step 1: Finally, collecting all the estimates above, and we obtain, when ν is sufficiently small,
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√
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∫
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4. (3.23)

Step 2: Correction term estimate

Now we are to estimate the extra terms induced by ∂τ (d0
∫
εχν

√
̺νM

ζ
ν (χν

√
̺νϕ0,ν)). We write
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Estimate of d0
∫
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√
̺νM ζ

ν (χν
√
̺νϕ0,ν): Plug in the evolution equation for ε:

∂τε = ∆ε−∇ · (Uν∇Ψε + ε∇ΨUν )− βΛε+ L(ε) +NL(ε) + E,

and we estimate term by term. First of all, through integration by parts and Cauchy’s inequality,
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where we use the estimate |
∫
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√
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∫
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Similarly, by the pointwise estimates of the Poisson field (A.16) (A.17), we have the estimate

∣∣∣∣d0
∫
χν

√
̺ν∇ · (Uν∇Ψε + ε∇ΨUν )M

ζ
ν (χν

√
̺νϕ0,ν)

∣∣∣∣ .
1

| log ν| 12 ν2
(‖ε‖2in + ‖∇ε‖2in) + ‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗).

and (the extra linear term is smaller, but here a rough estimate is enough)
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As for the scaling term, the estimate is similar to the ∆ε term:
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For the nonlinear term, by the estimates of Poisson filed and Cauchy’s inequality:
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where we use the estimates

∣∣∣∣
d0
ν2

∫
χν

√
̺νζ∂ζΨεε

∣∣∣∣ .
|d0|
ν

(∫
ε2χ2

ν̺ν(ν + ζ)4

ν2

) 1
2

(∫

{ζ≤|2 log ν|}

ζ2

(ν + ζ)4
|∇Ψε|2

) 1
2

.
‖ε‖2in

ν2| log ν|

(
1

ν
‖∇ε‖in + | log ν| 12 ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗)

)
,

∣∣∣∣d0
∫
ζχν

√
̺ν∂ζΨεεM

ζ
ν (ϕ̄0)

∣∣∣∣ . |d0|
(∫

ζ2(ν + ζ)2ε2χ2
ν̺ν

ν2

) 1
2
(∫

ν2

(ν + ζ)2
|∇Ψε|2|M ζ

ν (ϕ̄0)|2
) 1

2

.
‖ε‖2in

ν2| log ν|

(
1

ν
‖∇ε‖in + | log ν| · ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗)

)
,

∣∣∣∣d0
∫
χν

√
̺νε∇Ψε · ∇M

ζ
ν (ϕ̄0)

∣∣∣∣ . |d0|
(∫

(ν + ζ)2ε2χ2
ν̺ν

ν2

) 1
2
(∫

ν2

(ν + ζ)2
|∇Ψε|2|∇M

ζ
ν (ϕ̄0)|2

) 1
2

.
‖ε‖in‖∇ε‖in
ν2| log ν| 12

(
1

ν
‖∇ε‖in + | log ν| · ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗)

)
.

Finally, for the generative error,
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where we use the estimate |
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Finally, combining all these estimates, we obtain
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Estimate of the rest time derivative terms: By ∂τχν
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when ν is sufficiently small. Similarly, by Cauchy’s inequality, we have
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Then, we obtain
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Finally, all the estimates above yields
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Step 3: Conclusion:

Combining (3.23) and (3.24) yields the final result.

3.3.2 H1 Inner Estimate

By orthogonality conditions (3.3) and Lemma 1, we know that there exists a universal C > 0, such that
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Lemma 5 (Control of ‖∇ε∗‖L2(Uν)). Let w be a solution in the bootstrap regime BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1).
Then, the following estimate holds on [τ0, τ∗]:
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for some universal C, some C(ζ∗,Ki) dependent on {ζ∗} ∪ {Ki}7i=1, and any constant K > 0.
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Proof. First of all, the evolution of ε∗ is:
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Coercivity in H2: Denote ε2 := L
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By (A.16) and Cauchy’s inequality, We have the estimate
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|(∇ε∗ − Uν∇Ψε∗ − ε∗∇ΨUν ) · ∇(ΛUν)| .
1

ν2
‖∇ε∗‖L2 .

C(Ki)

| log ν| .

Similarly, we have

|a1| .
C(Ki)ν

| log ν| .

Then, by the algebraic identities M ζ
ν (ΛUν) = −2 ,M ζ

ν (∇Uν) = 0, the divergence form of ε2, and (2.19), we
have ∫

ε2M
ζ
ν (ε2) =

∫
ε̃2M

ζ
ν (ε̃2) ≈

∫ |ε̃2|2
Uν

≈
∫ |ε2|2

Uν
+

C(Ki)

| log ν|2 ,

where we denote for two non-negative quantities A ≈ B, if there exists a universal constant c > 0, such that

cA ≤ B ≤ 1
cA. Then, we are to show that

∫ |ε2|2
Uν

is equivalent to certain weighted H2-norm for ε∗. Define

ε̃∗ := ε∗ − 〈ε∗ , ΛUν〉
〈ΛUν , ΛUν〉

ΛUν −
〈ε∗ , ∇Uν〉

〈∇Uν , ∇Uν〉
· ∇Uν := ε∗ − c1ΛUν − c2 · ∇Uν .

Thus, we have
〈ε̃∗ , ΛUν〉 = 〈ε̃∗ , ∇Uν〉 = 0.

By the local orthogonality conditions (3.3), we estimate that

|c1| . ν2
∣∣∣∣
∫
ε∗ΛUν

∣∣∣∣ . ν4‖ε∗‖L2 , |c2| . ν4
∣∣∣∣
∫
ε∗∇Uν

∣∣∣∣ . ν6‖ε∗‖L2 .

38



Then, by the estimates above and Proposition 3 (in the parabolic variables),

∫ |L ζ
0,νε

∗|2
Uν

=

∫ |L ζ
0,ν ε̃

∗|2
Uν

≥ δ

(∫ |∆ε̃∗|2
Uν

+
1

ν2

∫
(ν + ζ)2|∇ε̃∗|2 + 1

ν2

∫
ε̃∗2
)

≥ δ

(∫ |∆ε∗|2
Uν

+
1

ν2

∫
(ν + ζ)2|∇ε∗|2 + 1

ν2

∫
ε∗2
)
− Cν4‖ε∗‖2L2

≥ δ

2

(∫ |∆ε∗|2
Uν

+
1

ν2

∫
(ν + ζ)2|∇ε∗|2 + 1

ν2

∫
ε∗2
)
,

when ν is small enough. Since ε∗ is compactly supported, integration by parts yields the following control
(one can, for example, apply the density argument by considering the functions in D(R2) first):

∫
|∇(2)ε∗|2ζ2p ≤ C(p)

(∫
|∆ε∗|2ζ2p +

∫
|∇ε∗|2ζ2p−2

)
, p = 1, 2.

It follows that there exists some δ′ > 0, such that

∫ |L ζ
0,νε

∗|2
Uν

≥ δ′
(∫ |∇(2)ε∗|2(ν + ζ)4

ν2
+

1

ν2

∫
(ν + ζ)2|∇ε∗|2 + 1

ν2

∫
ε∗2
)
.

For brevity, in the following we denote

‖ε∗‖2H2
#
:=

∫ |∇(2)ε∗|2(ν + ζ)4

ν2
+

1

ν2

∫
(ν + ζ)2|∇ε∗|2 + 1

ν2

∫
ε∗2.

Finally, gather all the results above, and we obtain

−
∫

L
ζ
0,νε

∗
M

ζ
ν (L

ζ
0,νε

∗) ≤ −δ′‖ε∗‖2H2
#
+
C

ν2

(∫
(ν + ζ)2|∇ε∗|2 +

∫
(ν + ζ)2(ε∗)2

ν2

)

≤ −δ′‖ε∗‖2H2
#
+
C

ν4
(
‖ε‖2in + ‖∇ε‖2in

)
≤ −δ′‖ε∗‖2H2

#
+

C(Ki)

| log ν|2 ,

and

−
∫

L
ζ
0,νε

∗
M

ζ
ν (L

ζ
0,νε

∗) ≤ −δ
∫

ε̃22
Uν
,

for some universal δ, δ′, C > 0. In other words, it means that there is a partial H2-damping (i.e., damping
in a certain finite codimensional subspace) and a full H2-damping with an error of size 1

| log ν|2 .

Estimate of the scaling term −βΛε: Note that

−β
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (χ

∗Λε) = −2β

∫
Uν |∇M

ζ
ν (ε

∗)|2 − β

∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (χ

∗y · ∇ε),

where the first term of the right-hand side has the desirable sign. As for the second term, by the identities
y·∇ε∗

Uν
= y · ∇

(
ε∗

Uν

)
+ y·∇Uνε

∗

U2
ν

and Ψy·∇ε∗ = y · ∇Ψε∗ − 2Ψε∗ (since ε∗ is compacted supported, the Poisson

fields are all well defined, so that this identity can be verified by computing the Laplacian on the right-hand
side), we have

M
ζ
ν (χ

∗y · ∇ε) = y · ∇M
ζ
ν (ε

∗)− M
ζ
ν (y · ∇(χ∗)ε) +

y · ∇Uνε
∗

U2
ν

+ 2M ζ
ν (ε

∗)− 2ε∗

Uν
.

Then, through integration by parts, Cauchy’s inequality and (2.18), we obtain
∣∣∣∣β
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (χ

∗y · ∇ε)
∣∣∣∣ ≤ C

(
1

ν2
‖ε‖2in +

1

ν2
‖∇ε‖2in

)
,
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for some C = C(ζ∗). It follows that

−β
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (χ

∗Λε) ≤ C

(
1

ν2
‖ε‖2in +

1

ν2
‖∇ε‖2in

)
.

Estimate of L(ε) As before, we neglect the terms of order O(µs), thanks to (A.3). Thus,

L(ε) = −∇ · (ε∇ΨP + P∇Ψε) +
Rτ

µ
∂r̄ε+ l.o.t..

Recall the pointwise estimates |∇ΨP (ζ)| . |a|
ν and |∂kζP (ζ)| .

|a|ζ2−k log(4+ζ)
(ν+ζ)4 . The following estimate relies

on the structure of M ζ
ν , specifically M ζ

ν ΛUν = −2 and M ζ
ν ∇Uν = 0. First, we note that

∫
ε2M

ζ
ν (χ

∗∇ · (ε∇ΨP + P∇Ψε)) =

∫
∇ · (ε∗∇ΨP + Pχ∗∇Ψε)M

ζ
ν (ε̃2)

−
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (∇χ∗ · ∇ΨP ε+∇χ∗ · ∇ΨεP ),

where we use the decomposition ε2 = ε̃2+ a0ΛUν + a1∂r̄Uν and
∫
∇· (ε∗∇ΨP +Pχ∗∇Ψε) = 0. By Cauchy’s

inequality, we obtain
∣∣∣∣
∫

∇ · (ε∗∇ΨP + Pχ∗∇Ψε)M
ζ
ν (ε̃2)

∣∣∣∣ ≤
δ

10

∫
ε̃22
Uν

+ C(ζ∗)

∫ |∇ · (ε∗∇ΨP + Pχ∗∇Ψε)|2
Uν

≤ δ

10

∫
ε̃22
Uν

+ C(ζ∗)

(
a2

ν4
‖∇ε‖2in +

a2

ν2
‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗)

)
,

and
∣∣∣∣
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (∇χ∗ · ∇ΨP ε+∇χ∗ · ∇ΨεP )

∣∣∣∣ ≤ C(ζ∗)
|a|
ν3

(
‖ε‖2in + ‖∇ε‖2in + ‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗)

)
,

where we use the elliptic regularity
∫

ζ∗≤ζ≤2ζ∗

|∇(2)Ψε|2 ≤ C(ζ∗)

∫

1
2 ζ

∗≤ζ≤4ζ∗

|∇Ψε|2 + ε2. (3.25)

With the same argument, we can estimate

∣∣∣∣
∫
ε2M

ζ
ν (χ

∗Rτ

µ
∂r̄ε)

∣∣∣∣ ≤
δ

10

∫
ε̃22
Uν

+

∣∣∣∣
Rτ

µ

∣∣∣∣
2
C

ν2
(‖ε‖2in + ‖∇ε‖2in).

In summary, we obtain
∣∣∣∣
∫
ε2M

ζ
ν (χ

∗L(ε))

∣∣∣∣ ≤
δ

5

∫
ε̃22
Uν

+
C(ζ∗,Ki)

ν

(
‖ε‖2in + ‖∇ε‖2in

)
.

Estimate of the nonlinear term NL(ε): We neglect the term of order O(µs), and as before, rely on the

structure of M ζ
ν . First, we write

∫
ε2M

ζ
ν (χ

∗∇ · (ε∇Ψε)) =

∫
ε̃2M

ζ
ν (∇ · (ε∗∇Ψε))−

∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (∇χ∗ · ∇Ψεε). (3.26)

Then, we are to derive L∞-bounds for ∇Ψε and ε. Denote q∗(γ) = ν2ε∗(νγ). Then, ∇Ψq∗(γ) = ν∇Ψε∗(νγ).
By Sobolev embedding and the pointwise estimates of the Poisson field (A.14)(A.15), we have

‖∇Ψq∗‖L∞ . ‖∇q∗‖L2 + ‖∇Ψq∗‖L2 ≤ C(ζ∗)‖∇ε∗‖L2(Uν) ≤
C(ζ∗,Ki)ν

2

| log ν| .
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Thus,

‖∇Ψε∗‖L∞ ≤ C(ζ∗Ki)ν

| log ν| .

Moreover, by (A.17), we have

‖∇Ψ(1−χ∗)ε‖L∞ . ‖(1− χ∗)ε‖L∞ + ‖(1− χ∗)ε‖
L

3
2
. ‖ε(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗) ≤ C(Ki)ν

2.

In summary, we’ve shown that

‖∇Ψε‖L∞ ≤ C(ζ∗,Ki)ν

| log ν| .

Similarly, Sobolev embedding yields

‖q∗‖L∞ . ‖q∗‖H2 . ν2‖ε∗‖H2
#
. ν2

∫
ε2M

ζ
ν (ε2) +

C(Ki)ν
2

| log ν| .

It then follows that

‖ε∗‖L∞ .

∫
ε2M

ζ
ν (ε2) +

C(Ki)

| log ν| =
∫
ε̃2M

ζ
ν (ε̃2) +

C(Ki)

| log ν|
Now coming back to (3.26), by Cauchy’s inequality, we obtain

∣∣∣∣
∫
ε2M

ζ
ν (∇ · (ε∗∇Ψε))

∣∣∣∣ ≤
(
δ

20
+
C‖ε‖in
ν

)∫
ε̃22
Uν

+
C(ζ∗,Ki)

| log ν|2ν2
(
‖ε‖2in + ‖|∇ε‖2in

)
,

and
∣∣∣∣
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (∇χ∗ · ∇Ψεε)

∣∣∣∣ ≤
C(ζ∗,Ki)

ν
‖∇ε‖2in +

C(ζ∗)

ν3
(‖ε‖4in + ‖ε‖4L∞(ζ≥ζ∗)),

where we again use (3.25). In summary, by the bootstrap assumptions, we have the estimate

∣∣∣∣
∫
ε2M

ζ
ν (χ

∗NL(ε))

∣∣∣∣ ≤
δ

4

∫
ε̃22
Uν

+
C(ζ∗,Ki)ν

2

| log ν|3 +O(µs),

when ν is sufficiently small.

Estimate of the rest terms : We write

[χ∗,L ζ
0,ν ]ε = −2∇χ∗ · ∇ε− ε∆χ∗ + ε∇χ∗ · ∇ΨUν +∇ · (Uν∇Ψε∗ − χ∗Uν∇Ψε) + Uν∇χ∗ · ∇Ψε.

First of all, by Cauchy’s inequality,

∣∣∣∣
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (−2∇χ∗ · ∇ε− ε∆χ∗ + ε∇χ∗ · ∇ΨUν )

∣∣∣∣ ≤
C

ν2
(
‖∇ε‖2in + ‖ε‖2in

)
.

Second, by the pointwise estimates of the Poisson field, the bootstrap assumptions and inequality (A.17),

∣∣∣∣
∫
ε2M (∇ · (Uν∇Ψε∗ − χ∗Uν∇Ψε))

∣∣∣∣ =
∣∣∣∣
∫
ε̃2M (∇ · (Uν∇Ψε∗ − χ∗Uν∇Ψε))

∣∣∣∣

≤
∣∣∣∣
∫
ε̃2M (∇ · (Uν(1− χ∗)∇Ψε∗)

∣∣∣∣+
∣∣∣∣
∫
ε̃2M (∇ · (Uνχ

∗∇Ψε(1−χ∗))

∣∣∣∣

≤ δ

10

∫
ε̃22
Uν

+
C

ν2
‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗) + C(ζ∗,Ki)ν

3.
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Similarly, we have the estimate
∣∣∣∣
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (Uν∇χ∗ · ∇Ψε)

∣∣∣∣ ≤
C

ν2
(
‖∇ε‖2in + ‖ε‖2in

)
+ C(ζ∗,Ki)ν

3.

To summarize, we have

∣∣∣∣
∫
ε2M

ζ
ν ([χ

∗,L ζ
0,ν ]ε)

∣∣∣∣ ≤
δ

10

∫
ε̃22
Uν

+
C

ν2
(
‖∇ε‖2in + ‖ε‖2in

)
+
C

ν2
‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗) + C(ζ∗,Ki)ν

3.

The estimate of the generated error relies on the structure of the operator M ζ
ν . Note that

−
∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν (χ

∗E) =

∫
ε2M

ζ(χ∗E)

= −
∑

i=0,1

Modi

∫
Uν∇M

ζ
ν (ε

∗) · ∇M
ζ
ν

(
− 1

16ν2
(χ∗ − 1)ΛUν + ϕ̃i

)
+ a0

∫
χ∗Ẽ +

∫
ε̃2M

ζ
ν (χ

∗Ẽ).

Then, by Cauchy’s inequality, the estimates of Ẽ and the estimate for |Modi| in (3.9), we obtain

∣∣∣∣
∫
ε2M

ζ
ν (χ

∗E)

∣∣∣∣ ≤
δ

10

∫
ε̃22
Uν

+
C

ν2
(
‖ε‖2in + ‖∇ε‖2in

)
+
C(ν2 + |a|)
| log ν|2 +

C(Ki)ν
2

| log ν|3 .

Finally, for the extra time derivative terms, note that ∂τ = ντ
ν ν∂ν , and the estimates are straightforward:

1

2

∫
(∂τUν)|∇M

ζ
ν (ε

∗)|2 +
∫
Uν∇M

ζ
ν (ε

∗) · ∇
(
ε∗∂τ

(
1

Uν

))
≤ C(Ki)

ν2| log ν|
(
‖ε‖2in + ‖∇ε‖2in

)
.

Conclusion: Collecting all the estimates above, we obtain:

1

2

d

dτ

∫
Uν |∇M

ζ
ν (ε

∗)|2 ≤ C

ν2
(
‖∇ε‖2in + ‖ε‖2in

)
+
C

ν2
‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗)

+
C(ν2 + |a|)
| log ν|2 +

C(ζ∗,Ki)ν
2

| log ν|3 ,

for some universal constants δ′, C > 0 and constant C(Ki) depending on Ki (1 ≤ i ≤ 7).

3.3.3 Higher Order Estimates in the Middle Range

Lemma 6 (H2 control of ε in the middle range). Let w be a solution in the bootstrap regime
BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1). Then, for any 0 < ζ1 < ζ2 and τ ∈ [τ0, τ∗] we have the following estimate

d

dτ
‖ε‖2H2

∗(ζ1,ζ2)
≤ −δ(ζ1, ζ2)‖ε‖2H2

∗(ζ1,ζ2)
+
C(ζ1, ζ2)K4ν

2

| log ν| |Mod0|+
C(ζ1, ζ2)K

2
4ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 ,

with the norm ‖ · ‖H2
∗(ζ1,ζ2)

defined in (3.32), and positive constants δ(ζ1, ζ2) and C(ζ1, ζ2) depending only
on ζ1, ζ2.

Proof. The main idea of the proof is the parabolic regularity together with pointwise estimates in the middle
range. To start with, from the control of the inner norm of ε, we have

‖ε‖L2( 1
8 ζ1≤ζ≤8ζ2) ≤ C(ζ1, ζ2)‖ε‖in ≤ C(ζ1, ζ2)

K4ν
2

| log ν| .

The evolution of ε can be written as

∂τε = ∆ε+ G · ∇ε+ Fε−∇W · ∇Ψε −∇ · (ε∇Ψε) + E + l.o.t,
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where we recall W = Uν + P and

F := 2W − 2β, G := −∇ΨW − βy +
Rτ

µ
e1.

Here l.o.t. (lower order terms) denotes the terms that, up to second derivatives, can be estimated in the
middle range with order O(µs), and hence negligible in our analysis (we will omit it in the rest of this proof).
Note that in the middle range 1

8ζ1 ≤ ζ ≤ 8ζ2, we have for k = 0, 1, 2,

|∂(k)ζ W | ≤ C(ζ1, ζ2)
(
ν2 + |a(τ)|

)
, |∂(k+1)

ζ ΨW | ≤ C(ζ1, ζ2)

(
1 +

|a|
ν

)
.

Also, by (3.4), (3.6), (2.1), and Lemma 3, we have for any ζ ∈ [ 18ζ1, 8ζ2] and any k ≥ 0,

|∂(k)ζ E| ≤ C(ζ1, ζ2)|Mod0|+
C(ζ1, ζ2)ν

2

| log ν| +
C(ζ1, ζ2,Ki)ν

2

| log ν|2 .

For j = 0, 1, 2, we define a family of cutoff functions:

χj(ζ) =

{
1, 1

22−j ζ1 ≤ ζ ≤ 22−jζ2,

0, ζ ∈ [0, 1
23−j ζ1] ∪ [23−jζ2,+∞).

For brevity, we denote C(Ki) := C(ζ1, ζ2,Ki : 1 ≤ i ≤ 7).
L2-evolution: Compute that

1

2

d

dτ
‖εχ0‖2L2 = 〈χ0 (∆ε+ G · ∇ε+ Fε−∇W · ∇Ψε −∇ · (ε∇Ψε) + E) , χ0ε〉 .

First of all, by Cauchy’s inequality,

〈χ0∆ε , χ0ε〉 = −‖χ0∇ε‖2L2 − 〈∇ε , 2χ0ε∇χ0〉 ≤ −1

2
‖χ0∇ε‖2L2 + C(ζ1, ζ2)

K2
4ν

4

| log ν|2 .

Next, due to the pointwise estimates |F|+ |G| . 1, we obtain

〈εχ0 , χ0 (Fε+ G · ∇ε)〉 ≤ 1

8
‖χ0∇ε‖2L2 + C(ζ1, ζ2)

K2
4ν

4

| log ν|2 .

By Hardy-Littlewood-Sobolev (HLS) inequality, (A.12) and (A.17), we have the following estimates of Poisson
field:

‖∇Ψεχ∗‖L4 .
1

ν
3
2

‖ε‖in .
K4

√
ν

| log ν| , ‖∇Ψε(1−χ∗)‖L∞ . ‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗) . K7ν

2. (3.27)

Thus, by (3.27),

−〈εχ0 , χ0∇W · ∇Ψε〉 .
C(Ki)ν

9
2

| log ν|2 .

As for the nonlinear term, using (3.27) and the Sobolev embedding W 1,p(R2) →֒ L
2p

2−p (R2) (p < 2), we have

−〈εχ0 , χ0∇ · (ε∇Ψε)〉 . ‖ε‖L2( 1
8 ζ1≤ζ≤8ζ2)‖∇(χ0ε)‖2L2 +

C(ζ1, ζ2,Ki)

| log ν| ‖χ0∇ε‖2L2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 .

Finally, by the pointwise estimate of E,

〈εχ0 , Eχ0〉 ≤
C(ζ1, ζ2)K4ν

2

| log ν| |Mod0|+
C(ζ1, ζ2)ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 .
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In summary, we have

d

dτ
‖χ0ε‖2L2 ≤ −1

4
‖χ0∇ε‖2L2 + C(ζ1, ζ2)

K4ν
2

| log ν| |Mod0|+
C(ζ1, ζ2)ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 . (3.28)

Evolution of first derivatives: Denote by ∂ either ∂r̄ or ∂z̄ . Then,

1

2

d

dτ
‖∂εχ1‖2L2 = 〈χ1∂ (∆ε+ G · ∇ε+ Fε−∇W · ∇Ψε −∇ · (ε∇Ψε) + E) , χ1∂ε〉 .

Similarly,

〈χ1∂∆ε , ∂εχ1〉 = −‖χ1∇∂ε‖2L2 − 〈∇∂ε , 2χ1∇χ1∂ε〉 ≤ −1

2
‖χ1∇∂ε‖2L2 + C‖∂εχ0‖2L2,

and

〈∂εχ1 , χ1∂(G · ∇ε+ Fε)〉 ≤ 1

16
‖χ1∇∂ε‖2L2 + C(ζ1, ζ2)‖∂εχ0‖2L2 + C(ζ1, ζ2)

K2
4ν

4

| log ν|2 .

Next, through integration by parts and estimates of the Poisson field,

−〈χ1∂ε , χ1∂(∇W · ∇Ψε)〉 =
〈
χ2
1∂

2ε , ∇W · ∇Ψε

〉
+ 〈2∂χ1χ1∂ε , ∇W · ∇Ψε〉

≤ 1

8
‖χ1∂

2ε‖2L2 + C‖∂εχ0‖2L2 +
C(ζ1, ζ2,Ki)ν

5

| log ν|2 .

As for the nonlinear term, by the Sobolev embedding H2(R2) →֒ L∞(R2), we have

‖εχ1‖L∞ . ‖εχ0‖L2 + ‖χ0∇ε‖L2 + ‖χ1∇(2)ε‖L2 .

Then, through integration by parts, the L∞ estimate above, Sobolev embedding and (3.27), we obtain

−〈χ1∂ε , χ1∂ (∇ · (ε∇Ψε))〉 =
〈
χ2
1∂

2ε , ∇ε · ∇Ψε − ε2
〉
+
〈
2∂χ1χ1∂ε , ∇ε · ∇Ψε − ε2

〉

≤ C(ζ1, ζ2,Ki)

| log ν| ‖∂2εχ1‖2L2 +
C(ζ1, ζ2,Ki)

| log ν| ‖∂εχ0‖2L2 +
C(ζ1, ζ2)K

2
4ν

4

| log ν|2 .

Finally, through the integration by parts,

〈χ1∂ε , ∂Eχ1〉 = −
〈
ε , ∂(χ2

1∂E)
〉
. C(ζ1, ζ2)

K4ν
2

| log ν| |Mod0|+
C(ζ1, ζ2)K4ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 .

In summary, when ν is sufficiently small, we have

d

dτ
‖χ1∇ε‖2L2 ≤ −1

4
‖χ1∇(2)ε‖2L2 + C(ζ1, ζ2)‖∇εχ0‖2L2 +

C(ζ1, ζ2)K2ν
2

| log ν| |Mod0|

+
C(ζ1, ζ2)K

2
4ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 . (3.29)

Evolution of second derivatives: Denote generically ∂2 a second order partial derivative (e.g. ∂r̄∂r̄, ∂r̄∂z̄).
Then,

1

2

d

dτ
‖∂2εχ2‖2L2 =

〈
χ2∂

2 (∆ε+ G · ∇ε+ Fε−∇W · ∇Ψε −∇ · (ε∇Ψε) + E) , χ2∂
2ε
〉
.

The estimates of the first three terms are identical:

〈
χ2∂

2∆ε , ∂2εχ2

〉
= −‖χ2∇∂2ε‖2L2 −

〈
∇∂2ε , 2χ2∇χ2∂

2ε
〉
≤ −1

2
‖χ2∇∂2ε‖2L2 + C‖∂2εχ1‖2L2 ,
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and

〈
∂2εχ2 , χ2∂

2(G · ∇ε+ Fε)
〉
≤ 1

16
‖χ2∇∂2ε‖2L2 + C(ζ1, ζ2)‖∂2εχ1‖2L2 + C(ζ1, ζ2)‖∂εχ0‖2L2 +

C(ζ1, ζ2)K
2
4ν

4

| log ν|2 .

Next, through integration by parts once,

−
〈
χ2∂

2ε , χ2∂
2 (∇W · ∇Ψε)

〉
=
〈
χ2
2∂

3ε+ 2χ2∂χ2∂
2ε , ∇(∂W ) · ∇Ψε +∇W · ∇(∂Ψε)

〉
.

The estimates are the same as before, except for the ∇W ·∇(∂Ψε) term, which is done in the following way:
by elliptic regularity, HLS inequality, (A.14) and (A.15),

∫

{ 1
2 ζ∗≤ζ≤2ζ∗}

|∇(2)Ψε|2 ≤ C(ζ1, ζ2)

∫

{ 1
4 ζ1≤ζ≤4ζ2}

ε2 + C(ζ1, ζ2)

∫

{ 1
4 ζ1≤ζ≤4ζ2}

|∇Ψε|2 (3.30)

≤ C(ζ1, ζ2)

ν3
‖ε‖2in + C(ζ1, ζ2)‖ε(1 + ζ)

3
2 ‖2L∞(ζ≥ζ∗).

Thus, we have

−
〈
χ2∂

2ε , χ2∂
2 (∇W · ∇Ψε)

〉
≤ 1

8
‖χ2∂

3ε‖2L2 + C(ζ1, ζ2)‖χ1∇(2)ε‖2L2 + C(ζ1, ζ2)‖χ0∇ε‖2L2

+
C(ζ1, ζ2,Ki)ν

5

| log ν|2 +
C(ζ1, ζ2)|a|2

ν3
K2

4ν
4

| log ν|2 .

As for the nonlinear terms, integrate by parts once:

−
〈
χ2∂

2ε , χ2∂
2 (∇ · (ε∇Ψε))

〉
=
〈
χ2
2∂

3ε+ 2χ2∂χ2∂
2ε , ∇(∂ε) · ∇Ψε +∇ε · ∇(∂Ψε)− 2ε∂ε

〉
.

Note that all the local terms (i.e., terms not involving the Poisson field) together with the term ∇(∂ε) ·∇Ψε

can be estimated in the same way as before. It then remains to deal with the term ∇ε · ∇(∂Ψε). By the
Sobolev embedding H2(R2) →֒ L∞(R2),

‖∇εχ2‖L∞ . ‖∇(3)εχ2‖L2 + ‖∇(2)εχ1‖L2 + ‖∇εχ0‖L2.

This, together with (3.30), gives

‖∇ε · ∇(∂Ψε)‖L2 .
C(ζ1, ζ2,Ki)

| log ν|
(
‖∇(3)εχ2‖L2 + ‖∇(2)εχ1‖L2 + ‖∇εχ0‖L2

)
.

Therefore, we obtain the nonlinear estimate

−
〈
χ2∂

2ε , χ2∂
2 (∇ · (ε∇Ψε))

〉
≤ C(ζ1, ζ2,Ki)

| log ν| ‖∂3εχ2‖2L2 + C(ζ1, ζ2)
(
‖∇(2)εχ1‖2L2 + ‖∇εχ0‖2L2

)
+
CK2

4ν
4

| log ν|2

The estimate for E is the same:

〈
χ2∂

2ε , ∂2Eχ2

〉
=
〈
ε , ∂2(χ2

2∂
2E)

〉
≤ C(ζ1, ζ2)K4ν

2

| log ν| |Mod0|+
C(ζ1, ζ2)K4ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3

In summary, when ν is sufficiently small we have

d

dτ
‖χ2∇(2)ε‖2L2 ≤ −1

4
‖χ2∇(3)ε‖2L2 + C(ζ1, ζ2)

(
‖∇(2)εχ1‖2L2 + ‖∇εχ0‖2L2

)

+
C(ζ1, ζ2)K4ν

2

| log ν| |Mod0|+
C(ζ1, ζ2)K

2
4ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 . (3.31)
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Conclusion: Combining (3.28) (3.29) and (3.31), we know that there exists C0 = C0(ζ1, ζ2) > 0 sufficiently
large, such that once we define

‖ε‖2H2
∗(ζ1,ζ2)

:= ‖εχ0‖2L2 +
1

C0
‖∇εχ1‖2L2 +

1

C2
0

‖∇(2)εχ2‖2L2 , (3.32)

‖ε‖2H3
∗(ζ1,ζ2)

:= ‖∇εχ0‖2L2 +
1

C0
‖∇(2)εχ1‖2L2 +

1

C2
0

‖∇(3)εχ2‖2L2 ,

it holds that

d

dτ
‖ε‖2H2

∗(ζ1,ζ2)
≤ −1

8
‖ε‖2H3

∗(ζ1,ζ2)
+
C(ζ1, ζ2)K4ν

2

| log ν| |Mod0|+
C(ζ1, ζ2)K

2
4ν

4

| log ν|2 +
C(ζ1, ζ2,Ki)ν

4

| log ν|3 .

Finally, the result follows form the Poincaré inequality

‖ε‖H2
∗(ζ1,ζ2)

≤ C′‖ε‖H3
∗(ζ1,ζ2)

+
C(ζ1, ζ2)K4ν

2

| log ν| .

3.3.4 Far Field Estimate

Lemma 7 (L∞ control of ε in the far field). There exists M > 0, such that for any M0 ≥M and ζ∗ > M ,
the following holds. Let w be a solution in the bootstrap regime BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1). Then, for any
τ ∈ [τ0, τ∗] we have the following estimate

‖ε(τ)(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗) ≤ C(ζ∗,K1)

ν3(τ)

ν3(τ0)

(
‖ε(τ0)(1 + ζ(τ0))

3
2 ‖L∞(ζ≥ζ∗) + ‖ε(τ0)‖L∞(ζ≥ 1

2 ζ
∗)

)

+
CK7

ζ∗
e−2

√
βτ+M0

√
βτ +M0

+
C(ζ∗,K1,K4,K5,K6)e

−2
√
βτ+M0

√
βτ +M0

+
C(ζ∗,Ki)e

−2
√
βτ+M0

βτ +M0
.

(3.33)

Proof. To derive the far field L∞-control, we go all the way back to the original 3D system (3dKS), where we
exploit the dissipating structure of the heat operator. Consider the following decomposition of the solution:

u(x, t) =
1

µ2
W (

r −R

µ
,
z

µ
, τ) +

1

µ2
ε(
r −R

µ
,
z

µ
, τ),

where we recall r = |(x1, x2)|, z = x3, x = (x1, x2, x3), τ = − log(T − t) + log(T ), and µ =
√
T − t =

e−τ/2+log(T )/2 (without loss of generality, we can assume T = 1 in the following). Besides, recall that

W (r̄, z̄, τ) = Uν(r̄, z̄) + P (r̄, z̄, τ),

where we denote r̄ := (r−R)/µ and z̄ := z/µ as before. One remark: since R, µ depend on time, so do r̄, z̄,
and we will specify their time dependence whenever necessary. Let η(r̄, z̄) be a smooth cutoff function such
that

η(r̄, z̄) ≡ 1 when
√
r̄2 + z̄2 ≥ ζ∗, η(r̄, z̄) ≡ 0 when

√
r̄2 + z̄2 <

1

2
ζ∗.

Denote ε∗(r̄, z̄, τ) := ε(r̄, z̄, τ)η(r̄, z̄). Then, the evolution equation for ε∗ can be written as

∂τε∗ =

(
∂2r̄ + ∂2z̄ +

1

r̄ +R/µ
∂r̄

)
ε∗ −

1

2
Λε∗ +

Rτ

µ
∂r̄ε∗ + S(r̄, z̄, τ), (3.34)
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where

S(r̄, z̄, τ) = η
(
∆W −∇ · (ε∇ΦW +W∇Φε + ε∇Φε +W∇ΦW )− 1

r̄ +R/µ
(ε∂r̄ΦW +W∂r̄Φε + ε∂r̄Φε

+W∂r̄ΦW ) +
1

r̄ +R/µ
∂r̄W − 1

2
ΛW +

Rτ

µ
∂r̄W − ∂τW

)
−∆ηε− 2∇ε · ∇η − 1

r̄ +R/µ
∂r̄ηε

+
1

2
((r̄, z̄) · ∇η) ε− Rτ

µ
∂r̄ηε

= η
(
−∇ · (ε∇ΦW +W∇Φε + ε∇Φε)−

1

r̄ +R/µ
(ε∂r̄ΦW +W∂r̄Φε + ε∂r̄Φε) +Mod0ϕ0,ν

+Mod1ϕ1,ν + Ẽ
)
−∆ηε− 2∇ε · ∇η − 1

r̄ +R/µ
∂r̄ηε+

1

2
((r̄, z̄) · ∇η) ε− Rτ

µ
∂r̄ηε (3.35)

Now, due to the parabolic scaling, it is natural to relate (3.34) to the standard heat equation. Denote

u(x, t) :=
1

µ2(τ)
ε∗(

r −R(τ)

µ(τ)
,
z

µ(τ)
, τ), x ∈ R

3. (3.36)

Then, u solves the following heat equation with an axisymmetric force:

∂tu(x, t) = ∆(3)u(x, t) +
1

µ4
S(
r −R

µ
,
z

µ
,− log(T − t)). (3.37)

Now, we consider the evolution of (3.34) in the time interval [τ0, τ ], or equivalently, that of (3.37) in [t0, t].
Given the initial data u(x, t0) = u0(x), the solution of (3.37) can be expressed by the convolution of the 3D
heat kernel:

u(x, t) =

∫

R3

H(x− x̃, t− t0)u0(x̃) dx

+

∫ t−t0

0

∫

R3

H(x− x̃, t− t0 − s)
1

µ4(s+ t0)
S

( |(x̃1, x̃2)| −R(s+ t0)

µ(s+ t0)
,

x̃3
µ(s+ t0)

,− log(T − t0 − s)

)
dx̃ds,

where

H(x, t) =
1

(4πt)
3
2

e−
|x|2

4t .

Thus, we obtain an explicit expression for ε∗ through the relation (3.36) (ε∗,0(r̄, z̄) := ε∗(r̄, z̄, τ0)):

ε∗(r̄, z̄, τ) =

µ2(τ)

µ2(τ0)

∫ +∞

−∞

∫ +∞

−R(τ0)

µ(τ0)

∫ 2π

0

µ3(τ0)(p̃+
R(τ0)
µ(τ0)

)

(4π(e−τ0 − e−τ ))
3
2

exp

(
− µ2(τ0)

4(e−τ0 − e−τ )

[( µ(τ)
µ(τ0)

(
r̄ +

R(τ)

µ(τ)

)

−
(
p̃+

R(τ0)

µ(τ0)

)
cos(θ)

)2
+
(
p̃+

R(τ0)

µ(τ0)

)2
sin2(θ) +

( µ(τ)
µ(τ0)

z̄ − q̃
)2]
)
ε∗,0(p̃, q̃) dθdp̃dq̃

+

∫ τ

τ0

µ2(τ)

µ2(τ̃)
dτ̃

∫ +∞

−∞

∫ +∞

−R(τ̃)
µ(τ̃)

∫ 2π

0

µ3(τ̃)(p̃ + R(τ̃)
µ(τ̃) )

(4π(e−τ̃ − e−τ ))
3
2

exp

(
− µ2(τ̃)

4(e−τ̃ − e−τ )

[(µ(τ)
µ(τ̃)

(
r̄ +

R(τ)

µ(τ)

)

−
(
p̃+

R(τ̃)

µ(τ̃)

)
cos(θ)

)2
+
(
p̃+

R(τ̃)

µ(τ̃)

)2
sin2(θ) +

(µ(τ)
µ(τ̃)

z̄ − q̃
)2]
)
S(p̃, q̃, τ̃) dθdp̃dq̃

=:
µ2(τ)

µ2(τ0)

∫

R2

Ĥ(r̄, z̄, p̃, q̃, τ, τ0)ε∗,0(p̃, q̃) dp̃dq̃ +

∫ τ

τ0

µ2(τ)

µ2(τ̃)
dτ̃

∫

R2

Ĥ(r̄, z̄, p̃, q̃, τ, τ̃)S(p̃, q̃, τ̃) dp̃dq̃

=: I1(r̄, z̄, τ) + I2(r̄, z̄, τ).
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The expression above is nothing but the convolution with the heat kernel written in cylindrical coordinates,
i.e., Ĥ . In the following estimates, we make use of the two key properties of the heat kernel: total mass 1
(in R

3) and exponential decay. As before, denote the time-dependent variable ζ :=
√
r̄2 + z̄2. Observe that

0 < σ(τ, τ0) :=
e−τ0 − e−τ

µ2(τ0)
= 1− eτ0−τ < 1.

First of all, when ζ(τ) ≤ 2ζ∗ µ(τ0)
µ(τ) , since the heat kernel has total mass 1, we have

|I1(r̄, z̄, τ)| ≤
µ2(τ)

µ2(τ0)
‖ε∗,0‖L∞ .

Thus, in this domain we have

‖I1(r̄, z̄, τ)(1 + ζ)
3
2 ‖L∞(ζ∗≤ζ≤2ζ∗µ(τ0)/µ(τ)) ≤ 4ζ∗

3
2
µ

1
2 (τ)

µ
1
2 (τ0)

‖ε∗,0‖L∞ . (3.38)

Second, when ζ(τ) > 2ζ∗ µ(τ0)
µ(τ) , i.e., ζ(τ) µ(τ)

µ(τ0)
≥ 2ζ∗, denoting B(δ) ⊂ R

2 to be the ball centered at

( µ(τ)
µ(τ0)

r̄, µ(τ)
µ(τ0)

z̄) with radius δ (to be determined), we split the integral into two parts:

I1(r̄, z̄, τ) =
µ2(τ)

µ2(τ0)

∫

B(δ)

Ĥ(r̄, z̄, p̃, q̃, τ, τ0)ε∗,0(p̃, q̃) dp̃dq̃ +
µ2(τ)

µ2(τ0)

∫

R2\B(δ)

Ĥ(r̄, z̄, p̃, q̃, τ, τ0)ε∗,0(p̃, q̃) dp̃dq̃

=: J1(r̄, z̄, τ) + J2(r̄, z̄, τ).

By the decay property of ε∗, we have the estimate

|J1(r̄, z̄, τ)| ≤
µ2(τ)

µ2(τ0)

‖ε∗(τ0)(1 + ζ(τ0))
3
2 ‖L∞(ζ≥ζ∗)

(1 + µ(τ)
µ(τ0)

ζ(τ) − δ)
3
2

. (3.39)

Meanwhile, by the exponential decay of Ĥ , we have

|J2(r̄, z̄, τ)| .
µ2(τ)

µ2(τ0)

δ√
σ(τ, τ0)

e
− δ2

σ(τ,τ0) ‖ε∗(τ0)‖L∞ . (3.40)

Therefore, when ζ∗ is large enough, choosing δ :=
√
ζ(τ) µ(τ)

µ(τ0)
and combining (3.39)(3.40), we have

|I1(r̄, z̄, τ)| .
1

(1 + ζ(τ))
3
2

µ
1
2 (τ)

µ
1
2 (τ0)

(
‖ε(τ0)(1 + ζ(τ0))

3
2 ‖L∞(ζ≥ζ∗) + ‖ε∗(τ0)‖L∞

)
. (3.41)

Besides, we note that for large M0 > 0, by the bootstrap assumption it holds that

µ(τ)

µ(τ0)
= e−

1
2 (τ−τ0) =

(
e−(

√
τ/2+M0−

√
τ0/2+M0)

)√τ/2+M0+
√

τ0/2+M0

<
(
e−(

√
τ/2+M0−

√
τ0/2+M0)

)100
≤ C(K1)

ν100(τ)

ν100(τ0)
. (3.42)

In summary, by (3.38)(3.41), we have when ζ∗ is sufficiently large:

‖I1(r̄, z̄, τ)(1 + ζ(τ))
3
2 ‖L∞(ζ≥ζ∗) ≤ C(K1)

ν3(τ)

ν3(τ0)

(
‖ε(τ0)(1 + ζ(τ0))

3
2 ‖L∞(ζ≥ζ∗) + ‖ε∗(τ0)‖L∞

)
,

where C is some universal constant. This completes the estimate for I1.
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Next, according to (3.35), we can decompose the source term as

S = η∇ · S1 +
1

r̄ +R/µ
S2 + S3 − 2∇ · (ε∇η),

where (plugging in the definition of Ẽ)

S1 = −ε∇ΦW −W∇Φε − ε∇Φε −W∇ΘW − P∇ΨP ,

S2 = −η(ε∂r̄ΦW +W∂r̄Φε + ε∂r̄Φε)− η(1 − χ(ζν))(∂r̄W +W∂r̄ΦW )− ∂r̄ηε,

S3 = ηMod0ϕ0,ν + ηMod1ϕ1,ν − ηaντν∂ν(ϕ1,ν − ϕ0,ν) + η
(ντ
ν

− β
)
(ΛUν + 16ν2ϕ0,ν)

+ η
Rτ

µ
∂r̄W + ηa(R1 −R0) + ∆ηε+

1

2
((r̄, z̄) · ∇η)ε− Rτ

µ
∂r̄ηε+

ηχ(ζν)

r̄ +R/µ
(∂r̄W +W∂r̄ΦW ).

By the bootstrap assumption, the pointwise estimates in Proposition 1, the Poisson field estimates (A.3)(A.4)

(A.16)(A.17), and the L∞ control on the boundary ‖ε‖L∞(ζ∗≤ζ≤2ζ∗) . ‖ε‖H2( 1
2 ζ

∗≤ζ≤4ζ∗) . C(ζ∗) K6ν
2

| log ν| , we

obtain the pointwise estimates

‖S1(r̄, z̄, τ)(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗) ≤

C

ζ∗
‖ε(τ)(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗) + C(Ki)ν(τ)

3,

‖S2(r̄, z̄, τ)(1 + ζ)
3
2 ‖L∞ ≤ C

ζ∗
‖ε(τ)(1 + ζ)

3
2 ‖L∞(ζ≥ζ∗) + C(ζ∗)

K6ν
2

| log ν| + C(Ki)ν(τ)
3,

‖S3(r̄, z̄, τ)(1 + ζ)
3
2 ‖L∞ ≤ C|Mod0|

ζ∗
+ C(ζ∗)

K6ν
2

| log ν| +
C(Ki)ν(τ)

2

| log ν(τ)|2 .

(3.43)

Through integration by parts,

I2(r̄, z̄, τ) =

∫ τ

τ0

µ
1
4 (τ)

µ
1
4 (τ̃)

· µ
7
4 (τ)

µ
7
4 (τ̃)

dτ̃

∫

R2

Ĥ(S3 −∇η · S1) dp̃dq̃

+

∫ τ

τ0

µ
1
4 (τ)√

σ(τ, τ̃)µ
1
4 (τ̃)

· µ
7
4 (τ)

µ
7
4 (τ̃)

dτ̃

∫

R2

√
σ(τ, τ̃)Ĥ

p̃+R(τ̃)/µ(τ̃)
S2 −

√
σ(τ, τ̃)∇Ĥ · (ηS1 − 2∇ηε) dp̃dq̃

=:

∫ τ

τ0

µ
1
4 (τ)

µ
1
4 (τ̃)

I2,a(r̄, z̄, τ, τ̃) dτ̃ +

∫ τ

τ0

µ
1
4 (τ)√

σ(τ, τ̃)µ
1
4 (τ̃)

I2,b(r̄, z̄, τ, τ̃) dτ̃.

Observe that kernels

√
σ(τ,τ̃)Ĥ

p̃+R(τ̃)/µ(τ̃) and
√
σ(τ, τ̃)∇Ĥ share similar properties with Ĥ: bounded total mass and

exponential decay, which are all we need in deriving the estimate for I1. Thus, by (3.42) and (3.43), with a
similar argument we can show that

‖I2,a(r̄, z̄, τ, τ̃)(1 + ζ(τ))
3
2 ‖L∞(ζ≥ζ∗)

≤ Ce4
√
βτ̃+M0−4

√
βτ+M0

(
‖S3(τ̃)(1 + ζ(τ̃))

3
2 ‖L∞ + ‖S1(τ̃)(1 + ζ(τ̃))

3
2 ‖L∞(ζ≥ζ∗)

)

≤ CK7

ζ∗
e−2

√
βτ+M0

√
βτ +M0

+
C(ζ∗,K1,K4,K5,K6)e

−2
√
βτ+M0

√
βτ +M0

+
C(ζ∗,Ki)e

−2
√
βτ+M0

βτ +M0
,

and

‖I2,b(r̄, z̄, τ, τ̃)(1 + ζ(τ))
3
2 ‖L∞(ζ≥ζ∗)

≤ Ce4
√
βτ̃+M0−4

√
βτ+M0

(
‖S2(τ̃)(1 + ζ(τ̃))

3
2 ‖L∞ + ‖(ηS1(τ̃)− 2∇ηε(τ̃))(1 + ζ(τ̃))

3
2 ‖L∞

)

≤ CK7

ζ∗
e−2

√
βτ+M0

√
βτ +M0

+
C(ζ∗,K1,K6)e

−2
√
βτ+M0

√
βτ +M0

+ C(Ki)ν
3.
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Finally, it remains to estimate the time integrals:

∫ τ

τ0

µ
1
4 (τ)

µ
1
4 (τ̃)

dτ̃ =

∫ τ

τ0

e−
1
8 (τ−τ̃) dτ̃ < 8,

and

∫ τ

τ0

µ
1
4 (τ)√

σ(τ, τ̃)µ
1
4 (τ̃)

dτ̃ =

∫ τ

τ0

e−
1
8 (τ−τ̃)

√
1− eτ̃−τ

dτ̃ =

∫ t

t0

(T − t)
1
8

(T − t̃)
5
8

1√
t− t̃

dt̃

≤
∫ t

t−1

(T − t)
1
8

(T − t̃)
5
8

1√
t− t̃

dt̃ ≤ 10 +O
(
(T − t)

1
8

)
.

This completes the proof of the Lemma.

4 Existence of Blowup Solutions

Now with the energy estimates and modulation equations, we are ready to prove the existence of blowup so-
lutions. It suffices to show that there exist certain initial data (ε0, ν0, a0, R0) and parameters ζ∗,K1, . . . ,K7,
such that the evolution (3.2) will be trapped in some bootstrap regime BS(Ki : 1 ≤ i ≤ 7) for all τ ∈ [0,+∞).
Roughly speaking, ζ∗ is chosen first which depends on some of the universal constants in the estimates, then
Ki (the order of dependence among which will be specified shortly), and finally ν0 (or equivalently, M0 in
the bootstrap statement), so that C(ζ∗,Ki)/| log ν| will have the smallness we want.

The following lemma will help us close the bootstrap for ε.

Lemma 8. Let f(τ) ≥ 0 be a differentiable function in τ . Let ν(τ) be the parameter in the Bootstrap regime
BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1). Suppose we have the following differential inequality

f ′(τ) ≤ −δf(τ) + Kνk(τ)

| log ν(τ)|2 ,

for some constants δ,K > 0 and k > 1. Then, there exists constant C(δ, k), M̄ > 0, such that for any
log(ν(0))2 =M0 > M̄ , we have

|f(τ)| ≤ Kνk(τ)

δ| log ν|2 +
KC(δ, k,K1,K2,K4,K5)ν

k

| log ν|3 + f(0)e−δτ , (4.1)

holds for any τ ∈ [0, τ∗].

Proof. The proof applies Gronwall’s inequality and integration by parts. First, we have by Gronwall’s
inequality,

f(τ) ≤ e−δτf(0) + e−δτ

∫ τ

0

Kνk(s)

| log ν(s)|2 e
δs ds. (4.2)

Through integration by parts, we have

∫ τ

0

Kνk(s)

| log ν(s)|2 e
δs ds =

eδτ

δ

Kνk(τ)

| log ν(τ)|2 −
Kνk(0)

| log ν(0)|2 −
K

δ

∫ τ

0

ν′(s)

ν(s)

(
kνk(s)

| log ν(s)|2 − 2νk(s)

(log ν(s))3

)
eδs ds. (4.3)

Then, by the estimate of | ν′

ν | in (3.18) and the bootstrap assumption for ν, we have

∣∣∣∣
K

δ

∫ τ

0

ν′(s)

ν(s)

(
kνk(s)

| log ν(s)|2 − 2νk(s)

(log ν(s))3

)
eδs ds

∣∣∣∣ ≤
KkC(K1,K2,K4,K5)

δ

∫ τ

0

eδs−k
√
βs+M0

(βs+M0)
3
2

ds (4.4)
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By change of variables (x :=
√
βs+M0) and integration by parts,

∫ τ

0

eδs−k
√
βs+M0

(βs+M0)
3
2

ds =

∫ √
βτ+M0

√
M0

2

βx2
e

δ
β x2−kx− δ

βM0 ; dx

=
e

δ
βx2−kx− δ

βM0

δx2(x− βk
2δ )

∣∣∣∣∣

√
βτ+M0

x=
√
M0

−
∫ √

βτ+M0

√
M0

(
1

δx2(x− βk
2δ )

)′

e
δ
β x2−kx− δ

βM0 dx

≤ Ceδτ−k
√
βτ+M0

δ(βτ +M0))
3
2

+
C

M0δ

∫ √
βτ+M0

√
M0

2

βx2
e

δ
β x2−kx− δ

βM0 ; dx

Therefore, when M0 is sufficiently large, we have
∫ τ

0

eδs−k
√
βs+M0

(βs+M0)
3
2

ds ≤ Ceδτ−k
√
βτ+M0

δ(βτ +M0))
3
2

. (4.5)

Finally, inserting (4.5), (4.4) and (4.3) back into (4.2), we obtain the result.

Now we are ready to prove the main proposition, which will conclude the proof of Theorem 1.

Proposition 5. There exist a choice of parameters (ζ∗,M0, {Ki}7i=1) and initial data for w, such that the
solution w of (1.4) will be trapped in the bootstrap regime BS(0,+∞, ζ∗,M0, {Ki}7i=1).

Proof. The proof proceeds as follows. First by specifying the dependence on the parameters (ζ∗, {Ki}νi=1,M0),
we exploit the energy estimates to show that the remainder ε will always be trapped in the bootstrap regime,
given sufficiently small initial data. Then, as for the modulation parameters, the main part is to apply a
topological argument to show the existence of an initial a(0) such that the parameter a(τ) will remain
trapped in the bootstrap regime for all time. The rest part (ν and Rτ/µ) follows directly from the |Modi|
estimates and time integration.
Trapping ε: Suppose w is a solution trapped in some bootstrap regime BS(τ0, τ∗, ζ∗,M0, {Ki}7i=1). Since
the parameter M0 is chosen at last to make C(ζ∗,Ki)/| log ν| arbitrarily small, it suffices to keep track
of only the leading order terms in the energy estimates. In the following, when we say “M0” is large
enough, it means M0 is chosen large depending on ζ∗ and all Ki’s. First of all, choose ζ∗ ≫ C and
K7 ≫ ζ∗C(ζ∗,K1,K4,K5,K6) for the constants C(ζ∗,K1,K4,K5,K6) in (3.33). Then, for small enough

initial ε(0) (e.g., ‖ε(0)(1 + ζ
3
2 )‖L∞(ζ≥ζ∗) + ‖ε(0)‖L∞(ζ≥ 1

2 ζ
∗) . ν3(0) suffices) that is even in z-variable and

satisfies the orthogonality conditions (3.3) and large enough M0, by (3.33), we have

‖ε(τ)(1 + ζ)
3
2 ‖L∞(ζ≥ζ∗) ≤

2CK7

ζ∗
e−2

√
βτ+M0

√
βτ +M0

≤ K7e
−2

√
βτ+M0

2
√
βτ +M0

, ∀ τ ∈ [0, τ∗]. (4.6)

As for the middle range H2-estimate, by (4.1), |Mod0| estimate (3.9) and Lemma 6 (taking ζ1 = 1
4ζ

∗ and
ζ2 = 2ζ∗), we have

‖ε‖H2( 1
4 ζ

∗≤ζ≤2ζ∗) ≤ C(ζ∗)‖ε‖H2
∗(

1
4 ζ

∗,2ζ∗) ≤
C(ζ∗)(K4 +

√
K4K5)ν

2

| log ν| ≤ K6ν
2

2| log ν| ∀ τ ∈ [0, τ∗], (4.7)

once we take K2
6 ≫ C(ζ∗)(K2

4 +K4K5) and ε(0) to be small enough. For the H1 estimate, define

‖ε‖2H1
ν
:= K2

(
1

2

∫
εχν

√
̺νM

ζ
ν (εχν

√
̺ν)−

d0
2

∫
ε
√
̺νM

ζ
ν (ϕ0,ν

√
̺νχν)

)
+

1

2

∫
Uν |∇M

ζ
ν (ε

∗)|2,

where K ≫ 1 is to be determined. Then, by Lemma 4, Lemma 5 ,(4.6), and the equivalence of norms, we
have

d

dτ
‖ε‖2H1

ν
≤ − (δ0K

2 − C)

ν2
(
‖ε‖2in + ‖∇ε‖2in

)
+
CK2ν2

| log ν|2 +
C(K1)K

2
7

(ζ∗)2
ν2

| log ν|2

≤ − (δ0K
2 − C)

C(ζ∗)
‖ε‖2H1

ν
+
CK2ν2

| log ν|2 +
C(K1)K

2
7

(ζ∗)2
ν2

| log ν|2 .
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Thus, we can choose K2 = C(K1)K
2
7/K

2
4 ≫ 1, and by (4.1) we obtain

1

ν2

(
K2‖ε‖2in + ‖∇ε∗‖2L2(Uν)

)
≤ C‖ε‖2H1

ν
≤ C(ζ∗)ν2

δ0| log ν|2
+
C(ζ∗)K2

4ν
2

δ0| log ν|2
∀ τ ∈ [0, τ∗],

when M0 is sufficiently large and ε(0) is sufficiently small. Thus, choosing K2
5 ≫ C(ζ∗)K2

4

δ0
and K2

4 ≫ C(ζ∗)
δ0

above, we obtain

‖ε‖2in ≤ K2
4ν

4

2| log ν|2 , ‖∇ε∗‖2L2(Uν)
≤ K2

5ν
4

2| log ν|2 , ∀ τ ∈ [0, τ∗]. (4.8)

Collecting (4.6), (4.7) and (4.8), we see that all the bootstrap constants are improved by a factor of 1
2 . As

a summary, it is helpful to recap the dependence of the parameters:

K7 ≫ C(ζ∗,K1,K4,K5,K6) =⇒ K5 ≫ C(ζ∗)K6 =⇒ K6 ≫ C(ζ∗)
√
K4K5 =⇒ K5 ≫ C(ζ∗)√

δ0
K4

=⇒ K4 ≫ C(ζ∗)√
δ0

=⇒ ζ∗ ≫ C.

(4.9)

Trapping modulation parameters: First of all, simply choosing K3 ≫ C(K4,K5) in (3.9), we have

∣∣∣∣
Rτ

µ

∣∣∣∣ ≤
C(K4,K5)ν

| log ν| ≤ K3ν

2| log ν| .

Denote ã := a − 8ν2, and the bootstrap assumption on a is equivalent to |ã| ≤ K2ν
2

| log ν| . Then, inserting the

decomposition into the Mod1-equation gives
∣∣∣∣
ντ
ν

− β

2 log ν
+

ãτ
16ν2

∣∣∣∣ ≤
C(K2,K4,K5)

| log ν|2 .

It follows that
d

dτ
(log2 ν) = β − ãτ log ν

8ν2
+O

(
C(K2,K4,K5)

| log ν|

)
.

Integrating in [0, τ ], we have

(log ν(τ))2 = (log ν(0))2 + βτ −
∫ τ

0

ãτ (s) log ν(s)

8ν2(s)
ds+O

(∫ τ

0

C(K2,K4,K5)

| log ν| ds

)
. (4.10)

Note, through integration by parts, that

∫ τ

0

ãτ (s) log ν(s)

8ν2(s)
ds =

ã(τ) log ν(τ)

8ν2(τ)
− ã(0) log ν(0)

8ν2(0)
−
∫ τ

0

ã(s)

(
log ν(s)

8ν2(s)

)′
ds

= O(K2 + C(K2,K4,K5)
√
βτ ).

where we use (3.18) and ∫ τ

0

1

| log ν(s)| ds .
√
βτ +M0 −

√
M0 .

√
βτ ,

when M0 is large enough. Therefore, once we choose K1 ≫ C(K2,K4,K5), by (4.10) and the estimate above
we obtain

2

K1
e−

√
βτ+M0 ≤ e−

√
βτ+M0+O(C(K2,K4,K5)(1+

√
βτ)) ≤ K1

2
e−

√
βτ+M0 .

Finally, we control a(τ). By the |Mod0|-estimate in (3.9) and the decomposition a = 8ν2 + ã, we have

|ãτ − 2βã| ≤ C(K4,K5)ν
2

| log ν| . (4.11)
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We choose K2 ≫ C(K4,K5), and claim that there exits an initial ã(0) ∈ [− K2ν
2(0)

| log ν(0)| ,
K2ν

2(0)
| log ν(0)| ], such that a

will be trapped for all time. Before proving this claim, we summarize the dependence of these parameters:

K1 ≫ C(K2,K4,K5) =⇒ K2 ≫ C(K4,K5), K3 ≫ C(K4,K5). (4.12)

Combining (4.9) and (4.12), it is clear that there exist parameters ζ∗ and {Ki}7i=1 that satisfy all these
constraints. Now we prove the claim. First of all, we fix the parameters (ζ∗, {Ki}7i=1) and other initial
conditions according to the aforementioned discussion. Then, suppose, for contradiction, that for any a0 :=

ã(0) ∈ [− K2ν
2(0)

| log ν(0)| ,
K2ν

2(0)
| log ν(0)| ], the corresponding solution wã will exit the bootstrap regime in finite time. We

denote the supremum of time that wa0 stays in the bootstrap regime by τa0 . Note that when τ = τa0 , since

all other bootstrap constants are improved by 1
2 , we have |ã(τa0 )| =

K2ν
2(τa0)

| log ν(τa0)|
. Denote I := [−K2,K2], then

we obtain a map ψ : I → {−K2,K2}, defined as

ψ :
a0| log ν(0)|

ν2(0)
7→ ã(τa0)| log ν(τa0)|

ν2(τa0)
.

First of all, this map is continuous due to the standard continuous dependence of the solutions on the initial

data. Second, if |ã(τ)| = K2ν
2(τ)

| log ν(τ)| for any time τ , by (4.11), we have

ãτ (τ) = 2βã(τ) +O
(
C(K4,K5)ν

2(τ)

| log ν(τ)|

)
.

Thus, ã(τ) is nonzero and have the same sign as ã(τ) (since we choose K2 ≫ C(K4,K5)). Then, for

any τ ′ > τ (and |τ ′ − τ | suitably small), we will have |ã(τ ′)| > K2ν
2(τ ′)

| log ν(τ ′)| , existing the bootstrap regime.

As a consequence, ψ is the identity map when restricting on ∂I = {−K2,K2}. However, now since I =
ψ−1({K2}) ∩ ψ−1({−K2}) which is the union of two disjoint nonempty (as ψ(±K2) = ±K2) open sets, this
gives a contradiction as I is topologically connected (this is in fact a special case of the Brouwer fixed point
theorem).

Theorem 1 is directly implied by Proposition 5, except for the part ‖ũ(t)‖E → 0 as t→ T . This is because
the inner region (which is controlled by an H1 norm) and outer region (which is controlled by an L∞ norm)
for the perturbation ε in the bootstrap assumptions is divided at the parabolic scale (ζ ∼ 1), while the
definition of ‖ · ‖E makes such division in the soliton scale (ζ ∼ ν). However, the former can easily imply the
latter. To see this, note that by Lemma 6 (and the proof therein) and Lemma 8, we have ‖ε‖H2(ν≤ζ≤ζ∗) =
O(| log ν|−1). Thus, by the Sobolev embedding H2 →֒ L∞ in 2D, we have ‖ε‖L∞(ν≤ζ≤ζ∗) = O(| log ν|−1).

Combining with the far field L∞ control of ε, we obtain ‖ε(1 + ζ)
3
2 ‖L∞(ζ≥ν) = O(| log ν|−1). It follows that

‖q(1 + γ)
3
2 ‖L∞(γ≥1) = O(

√
ν/| log ν|) → 0 as t→ T (we recall q(ρ, ξ, t) = ν2ε(νρ, νξ, t)), so that we actually

have the weighted L∞ control of ũ (the notation in Theorem 1) from the soliton scale, i.e., γ ≥ 1. This
completes the proof of Theorem 1.

A Appendix: Estimates and inequalities

Estimates of the Poisson Fields

On R
3, we denote the cylindrical coordinate by (r, θ, z), and denote r̃ := r−R/µ where we assume 0 < µ ≪ 1

to be a small parameter tending to zero. Let u = u(r̃, z) be an axisymmetric function centered around the
ring with radius R/µ on the plane z = 0. Let Φu = 1

4π|x| ∗u be its 3D Poisson field. Then, we are to define a

2D Poisson field as an approximation to the 3D one in a sense that will soon become cleer. Define a function
on (r̃, z) ∈ R

2 by

ū(r̃, z) :=

{
u(r̃, z), r̃ ≥ −R/µ,
u(−2R/µ− r̃, z), r̃ < −R/µ.
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Let η(x) be a smooth cutoff function in 1D, such that

0 ≤ η(x) ≤ 1, η(x) ≡ 1 ∀ x ∈ [0,+∞), and η(x) ≡ 0 ∀ x ∈ (−∞,−1].

Now, define u∗(r̃, z) := η(r)ū(r̃, z), which is a smooth extension of u to R
2, and

Ψu := − 1

2π
log |(r̃, z)| ∗ u∗. (A.1)

One remark is that the choice of definition for the 2D Poisson field of u is not unique. In the following
analysis, we will see that what matters is that Ψu solves the Poisson equation on the half plane:

−(∂2r̃ + ∂2z )Ψ(r̃, z) = u(r̃, z), ∀ (r̃, z) ∈ [−R/µ,+∞)× R,

and ∇Φu has certain decay property. In general, it works if we extend u to a function on the whole R
2

with suitably small modification, and then consider its convolution with the 2D fundamental solution to the
Laplace equation. In our case, since u∗ and u differ little in Lp norms when viewed as R

2-functions (with
an extension by zero for u) estimates of Ψu follow from those of u. The following lemma illustrates that
the difference between ∇Ψu(r̃, z) and ∇Φu(r̃, z) can be controlled pointwisely when u(r̄, z) satisfies certain
decay property.

Lemma 9 (Difference of 2D and 3D Poisson fields). Assume u(r, z) to be a function with suitable decay in
R

2 and denote its 2D Poisson field by Ψu := − 1
2π log |(r, z)| ∗ u. We can also interpret u(r, z), (r, z) ∈ H :=

{(r, z) : r > 0}, to be an axisymmetric function in R
3, in which case we can define its 3D Poisson field by

Φu := 1
4π|x| ∗ u (x ∈ R

3). Denote by B(x,y)(l) ⊂ R
2 the ball centered at (x, y) with radius l > 0. Assume the

following decay property of u(r, z):

‖u(r, z)(1 + (r −R/µ)2 + z2)
3
4 ‖L∞(R2\B(R/µ,0))(ζ∗) ≤ L∞,

‖u(r, z)‖L2(B(R/µ,0)(ζ∗)) ≤ L2, ‖∇u(r, z)‖L2(B(R/µ,0)(ζ∗)) ≤ L′
2.

(A.2)

where ζ∗ > 0 is fixed, and L∞, L2, L
′
2 > 0 are some constants. Then, there exists µ∗ > 0 such that for any

0 < µ < µ∗, it holds that given any 6
7 < s < 1 we have the following estimates on the gradients of Poisson

fields:
(i) (Near field approximation)

|∇Ψu(r, z)−∇Φu(r, z)| ≤ C1(L∞ + L2 + L′
2)µ

κ, ∀ (r, z) ∈ B(R/µ,0)(µ
−s), (A.3)

(ii) (Far-field control)

|∇Φu(r, z)| ≤ C2(L∞ + L2)µ
κ, ∀ (r, z) ∈ H\B(R/µ,0)(µ

−s). (A.4)

Here κ > 0, and κ,C1, C2 are all universal constants depending only on s.

Proof. The strategy of the proof is to exploit the explicit expressions of the Poisson fields, especially its
decay behaviors in the far field. A key observation is that: away from the axis of symmetry the fundamental
solution of the 3D axisymmetric Poisson equation is asymptotically close to that of the 2D Poisson equation.
We also note that, by our construction, u∗ shares the same control (up to a universal constant) of u as in
(A.2).
Proof of (i). First of all, the Poisson fields are expressed as

∇Ψu(r, z) =

∫

R2

∇E2(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃, ∇Φu(r, z) =

∫

H

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃,

where

∇E2(r, z, r̃, z̃) = − 1

2π

(r − r̃, z − z̃)

(r − r̃)2 + (z − z̃)2
,

∇E3(r, z, r̃, z̃) = − r̃

2π

∫ π

0

(r − r̃ cos(θ), z − z̃)

(r2 − 2rr̃ cos(θ) + r̃2 + (z − z̃)2)
3
2

dθ.

(A.5)
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From (A.5), one can get the decay property of the Poisson fields:

|∇E2(r, z, r̃, z̃)| .
1

((r − r̃)2 + (z − z̃)2)
1
2

, |∇E3(r, z, r̃, z̃)| .
r̃

(r − r̃)2 + (z − z̃)2
,

when (r − r̃)2 + (z − z̃)2 ≫ 1. In the following estimates of integrals, we denote d :=
√
(r − r̃)2 + (z − z̃2)

and d̃ :=
√
(r̃ −R/µ)2 + z̃2 for brevity. We always bear in mind that µ → 0, which is much smaller than

any fixed constant. Now, we assume (r, z) ∈ B(R/µ,0)(µ
−s). By the expansion of elliptic integrals, one can

show that (for example, see [6] for a related discussion) for any (r̃, z̃) ∈ B(r,z)(2µ
−s),

∇E3(r, z, r̃, z̃) =

√
r̃

r
∇E2(r, z, r̃, z̃) +O

(√
r̃

r3
log(d)

)
=
(
1 +O(µ1−s)

)
∇E2(r, z, r̃, z̃) +O (µ log(d)) .

Thus, by Hardy’s inequality and Cauchy’s inequality,

∣∣∣∣∣

∫

B(r,z)(2µ−s)

∇E3(r, z, r̃, z̃)u(r̃, z̃)−∇E2(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣∣

.

∣∣∣∣∣

∫

B(r,z)(2µ−s)

(
1−

√
r̃

r

)
∇E2(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣∣+ µ

∫

B(r,z)(2µ−s)

| log(d)u(r̃, z̃)| dr̃dz̃

. µ1−s

∫

B(r,z)(2µ−s)

|u(r̃, z̃)|
d

dr̃dz̃ + µ‖ log(d)‖L2(B(r,z)(2µ−s)) · ‖u‖L2(B(r,z)(2µ−s))

. µ1−sL′
2 + µ1−s

∫

B(r,z)(2µ−s)\B(r,z)(ζ∗)

|u(r̃, z̃)|
d

dr̃dz̃ + µ1−s| log(µ)| · ‖u‖L2(B(r,z)(2µ−s))

. µ1−sL′
2 + µ1−s‖d−1‖L2(ζ∗≤d≤2µ−s) · ‖u‖L2(ζ∗≤d≤2µ−s) + µ1−s| log(µ)| · ‖u‖L2(B(r,z)(2µ−s))

. µ1−sL′
2 + µ1−s| log(µ)| (L2 + L∞) . (A.6)

It remains to estimate the tails of the integrals. Observe that d/2 ≤ d̃ ≤ 2d for any (r̃, z̃) ∈ H\B(r,z)(2µ
−s).

By the decay property of u, u∗ and the fundamental solutions, we have

∣∣∣∣∣

∫

H\B(r,z)(2µ−s)

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣∣ . L∞

∫

H\B(r,z)(2µ−s)

d+R/µ

d2+
3
2

dr̃dz̃ . L∞(µ
s
2 + µ

3
2 s−1).(A.7)

and
∣∣∣∣∣

∫

R2\B(r,z)(2µ−s)

∇E2(r, z, r̃, z̃)u∗(r̃, z̃) dr̃dz̃

∣∣∣∣∣ . L∞

∫

R2\B(r,z)(2µ−s)

1

d
5
2

dr̃dz̃ . L∞µ
s
2 . (A.8)

Combining (A.6) (A.7) (A.8) gives (i).

Proof of (ii). Denoting d0 :=
√
(r −R/µ) + z2 − 1

2µ
−s ≥ 1

2µ
−s, we decompose the domain of integration

into three parts:
D1 := B(r,z)(d0), D2 := B(R/µ,0)(µ

−s/2), D3 := H\(D1 ∪D2).

For the first part, by the decay rates of u and ∇E3, we have the estimate

∣∣∣∣
∫

D1

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣ ≤
∣∣∣∣∣

∫

B(r,z)(C)

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣∣+
∣∣∣∣∣

∫

D1\B(r,z)(C)

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣∣ ,
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where C > 0 is some fixed constant. Since |u(r̃, z̃)| . L∞d
− 3

2
0 on B(r,z)(C) and d0 ≥ µ−s/2, we have

∣∣∣∣∣

∫

B(r,z)(C)

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣∣ . L∞
d0 +R/µ

d
3
2

. L∞
(
µ

s
2 + µ

3
2 s−1

)
.

As for the second integral, by the decay of u, we obtain
∣∣∣∣∣

∫

D1\B(r,z)(C)

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣∣ .
∫

D1\B(r,z)(C)

r̃

d2
|u(r̃, z̃)| dr̃dz̃

. L∞

∫

D1\B(r,z)(C)

r̃

d̃
3
2

· 1

d2
dr̃dz̃

. L∞

∫ d0

C

∫ 2π

0

d0 +R/µ+ y cos(θ)

(d0 + y cos(θ) + µ−s)
3
2

· 1
y
dθdy.

Fixing another constant 0 < c < 1, when δ := − cos(θ) > 1− c, we have the estimates:

∫ d0

C

d0 − δy

(d0 − δy + µ−s)
3
2

· 1
y
dy =

∫ δd0

C

d0 − x

(d0 − x+ µ−s)
3
2

· 1
x
dx ≤

∫ d0

C

1

(d0 − x+ 1)
1
2 x

dx

.
log(d0)√

d0
. µ

s
2 | log(µ)|,

and by Hölder’s inequality,

∫ d0

C

R/µ

(d0 − δy + µ−s)
3
2

· 1
y
dy = Rµ

3
2 s−1

∫ δd0

C

d0 − x

(µs(d0 − x) + 1)
3
2

· 1
x
dx

≤ Rµ
3
2 s−1

(∫ +∞

C

1

x
3
2

dx

) 2
3

·
(∫ +∞

0

1

(µsx+ 1)
9
2

dx

) 1
3

. µ
7
6 s−1.

When δ := − cos(θ) ≤ 1− c, the estimate is more straight forward:

∫ d0

C

d0 − δy +R/µ

(d0 − δy + µ−s)
3
2

· 1
y
dy .

d0 +R/µ

(d0 + µ−s)
3
2

∫ d0

C

1

y
dy ≤ d0 +R/µ

(d0 + µ−s)
3
2

log(d0) . (µ
s
2 + µ

3
2 s−1)| log(µ)|.

In summary, we obtain
∣∣∣∣
∫

D1

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣ . L∞
(
(µ

s
2 + µ

3
2 s−1)| log(µ)|+ µ

7
6 s−1

)
. (A.9)

For the second domain,

∣∣∣∣
∫

D2

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣ .
∫

D2

R

µ
u(r̃, z̃)µ2s dr̃dz̃ . µ2s−1L2 + L∞µ

2s−1

∫ µ−s

1

1√
x
dx

. L2µ
2s−1 + L∞µ

3
2 s−1. (A.10)

Finally, for the third domain, observe that d̃ ≤ 3d in this domain. Thus, we have the estimate

∣∣∣∣
∫

D3

∇E3(r, z, r̃, z̃)u(r̃, z̃) dr̃dz̃

∣∣∣∣ . L∞

∫

D3

d̃+R/µ

d̃2+
3
2

dr̃dz̃ . L∞

∫ +∞

µ−s

x+R/µ

x
5
2

dx . L∞(µ
1
2 s + µ

3
2 s−1).

(A.11)
Finally, collecting (A.9)(A.10)(A.11), we obtain (ii).
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Now we derive some useful estimates for the 2D Poisson field. For convenience, in the following we will
switch between the Cartesian coordinate y = (ρ, ξ) and the polar coordinate (γ, θ) from time to time, where
ρ = γ sin θ, ξ = γ cos θ. The specific choice of coordinates will be clear from the context.

Lemma 10 (Pointwise estimates of the 2D Poisson field). The following pointwise estimates of 2D Poisson
fields hold:
(i) For u and its 2D Poisson field Ψu := − 1

2π log |y| ∗ u, we have for any α > 0,

‖Ψu‖2L∞(γ≤1) +

∥∥∥∥
Ψu

1 + log(γ)

∥∥∥∥
2

L∞(γ>1)

≤ Cα

∫

R2

u2(y)(1 + γ)2+α dy, (A.12)

with constant Cα > 0 depending on α. Moreover, if
∫
u = 0, we have the improved estimate

‖Ψu‖2L∞ ≤ Cα

∫

R2

u2(y)(1 + γ)2+α dy. (A.13)

(ii) If u = u(γ) is a radial function on R
2, we have for 0 ≤ α ≤ 1:

|γ∂γΨu(γ)|2 =

∣∣∣∣
∫ γ

0

ru(r) dr

∣∣∣∣
2

. (1 + 1{γ≥1} log(γ))
γ2

(1 + γ)2α

∫ γ

0

ru2(r)(1 + r)2α dr. (A.14)

On the other hand, if u is without radial component, then for any 0 < α < 2, we have (in the polar
coordinates)

∫ 2π

0

|Ψu(γ, θ)|2 + γ2|∇Ψu(γ, θ)|2 dθ . γ2(1 + γ)−2α(1 + 1{γ≤1}| log(γ)|)
∫

R2

u2(y)(1 + γ)2α dy. (A.15)

It is also convenient to write equivalently in the parabolic variables ( ζ = νγ ) in our setting:

|ζ∂ζΨu(ζ)|2 . (1 + 1{ζ≥ν} log(ζ/ν))
ζ2

(ν + ζ)2α

∫

R2

u2(ν + ζ)2α dx (radial) 0 ≤ α ≤ 1,

∫ 2π

0

|Ψu(ζ, θ)|2 + ζ2|∇Ψu(ζ, θ)|2 dθ . ζ2(ν + ζ)−2α(1 + 1{ζ≤ν}| log(ζ/ν)|)
∫

R2

u2(x)(ν + ζ)2α dx,

(without radial component) 0 < α < 2.

(A.16)

(iii) For any 1 ≤ p < 2, we have the following estimate based on the L∞-norm of u:

‖∇Ψu‖L∞ ≤ C(p) (‖u‖L∞ + ‖u‖Lp) . (A.17)

Proof. See Lemma 7.2 in [31] for a proof of (i) and (iii). As for (ii), (A.14) follows directly from the explicit
expression of ∂ζΨu when u is radial and Cauchy’s inequality. To prove (A.15), we expend both u and Ψu

into trigonalmetric series:

u(γ, θ) =
+∞∑

j=1

u+,j(γ) sin(jθ) +
+∞∑

j=1

u−,j(γ) cos(jθ),

Ψu(γ, θ) =

+∞∑

j=1

Ψ+,j
u (γ) sin(jθ) +

+∞∑

j=1

Ψ−,j
u (γ) cos(jθ).

By −∆Ψu = u, we have

−
(
∂2γ +

1

γ
∂γ − j2

γ2

)
Ψ±,j

u (γ) = u±,j(γ) j ≥ 1,
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which admits explicit solutions

Ψ±,j
u (γ) =

γj

2j

∫ +∞

γ

u±,j(y)y1−j dy +
γ−j

2j

∫ γ

0

u±,j(y)y1+j dy,

∂γΨ
±,j
u (γ) =

γj−1

2

∫ +∞

γ

u±,j(y)y1−j dy − γ−j−1

2

∫ γ

0

u±,j(y)y1+j dy.

By Cauchy’s inequality, we have

∣∣∣∣
∫ +∞

γ

u±,j(y)y1−j dy

∣∣∣∣ .
(∫ +∞

γ

y1−2j(1 + y)−2α dy

) 1
2
(∫ +∞

γ

(u±,j(y))2(1 + y)2αy dy

) 1
2

. γ1−j(1 + γ)−α(1 + 1{γ≤1}| log γ|)
1
2

(∫ +∞

γ

(u±,j(y))2(1 + y)2αy dy

) 1
2

,

and
∣∣∣∣
∫ γ

0

u±,j(y)y1+j dy

∣∣∣∣ .
(∫ γ

0

y1+2j(1 + y)−2α dy

) 1
2
(∫ γ

0

(u±,j(y))2(1 + y)2αy dy

) 1
2

. γ1+j(1 + γ)−α

(∫ γ

0

(u±,j(y))2(1 + y)2αy dy

) 1
2

,

where all constants of the inequalities above are independent of j. It follows that

|Ψ±,j
u (γ)|2 .

1

j2
γ2(1 + 1{γ≤1}| log γ|)

∫ +∞

0

(u±,j(y))2(1 + y)2αy dy,

|∂γΨ±,j
u (γ)|2 . (1 + 1{γ≤1}| log γ|)

∫ +∞

0

(u±,j(y))2(1 + y)2αy dy.

Finally, by Parseval’s identity, we obtain
∫ 2π

0

|Ψu(γ, θ)|2 + γ2|∇Ψu(γ, θ)|2 dθ .
∑

±

∑

j≥1

j2|Ψ±,j
u (γ)|2 +

∑

±

∑

j≥1

γ2|∂γΨ±,j
u (γ)|2

. γ2(1 + 1{γ≤1}| log γ|)
∫ +∞

0

∑

±

∑

j≥1

(u±,j(y))2(1 + y)2αy dy

. γ2(1 + 1{γ≤1}| log γ|)
∫

R2

|u(y)|2(1 + |y|)2α dy.

which is (A.15).

Inequalities

Here is one Hardy-Poincaré type inequality:

Lemma 11. Let b > 0 be a small parameter. Then, there exists a universal constant C > 0, such that for
any function ε on R

2, it holds that (|y| := γ, y ∈ R
2)

∫

R2

(
(1 + γ)2ε2 + b2γ2(1 + γ)4ε2

)
e−

bγ2

2 ≤ C

∫

R2

(
bε2 + |∇ε|2

)
(1 + γ)4e−

bγ2

2 . (A.18)

If we change of variable γ := ζ/
√
b, an equivalent form of this inequality is written as

∫

R2

(
(
√
b+ ζ)2ε2 + ζ2(

√
b+ ζ)4ε2

)
e−

ζ2

2 ≤ C

∫

R2

(
ε2 + |∇ε|2

)
(
√
b+ ζ)4e−

ζ2

2 . (A.19)
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Proof. It suffices to prove (A.18). Denote y = (y1, y2). Integrating by parts, we have for i = 1, 2,

2

∫
(yi + y3i )ε∂iεe

− bγ2

2 = −
∫
(1 + 3y2i )ε

2e−
bγ2

2 +

∫
b(y2i + 3y4i )ε

2e−
bγ2

2 .

By Cauchy’s inequality,

∣∣∣∣
∫
(yi + y3i )ε∂iεe

− bγ2

2

∣∣∣∣ ≤ C

∫
(1 + γ)4|∇ε|2e− bγ2

2 +
1

10

∫
(1 + 3y2i )ε

2e−
bγ2

2 ,

for some constant C > 0. Thus, we have

∫

R2

(1 + γ2)ε2e−
bγ2

2 ≤ C

∫

R2

(
bε2 + |∇ε|2

)
(1 + γ)4e−

bγ2

2

The other part is similar. Integrate by parts:

2

∫
b(yi + y5i )ε∂iεe

− bγ2

2 =

∫
b2(y2i + y6i )ε

2e−
bγ2

2 −
∫
b(1 + 5y4i )ε

2e−
bγ2

2 .

Then, apply the Cauchy’s inequality

∣∣∣∣
∫
b(yi + y5i )ε∂iεe

− bγ2

2

∣∣∣∣ ≤ C

∫
(1 + γ)4|∇ε|2e− bγ2

2 +
1

10

∫
b2(y2i + y6i )ε

2e−
bγ2

2 ,

and it follows that ∫
b2γ2(1 + γ)4ε2e−

bγ2

2 ≤ C

∫

R2

(
bε2 + |∇ε|2

)
(1 + γ)4e−

bγ2

2 .

The proof is thus complete.

We recall the Hardy-Littlewood-Sobolev (HLS) inequality in R
n: for 0 < s < n, 1 < p < q < ∞ with

1
q = 1

p − s
n , we have ∥∥∥∥

1

|x|n−s
∗ f
∥∥∥∥
Lq

≤ C‖f‖Lp,

where C = C(p). Now combining the 2D HLS (p > 2) and Hölder inequality, we obtain:

‖∇Ψu‖Lp .

∥∥∥∥
1

|x| ∗ u
∥∥∥∥
Lp

. ‖u‖
L

2p
2+p

. ‖u/
√
W‖L2‖W‖

1
2

L
p
2
, (A.20)

for any weight function W . A useful corollary in our setting is the following:

‖∇Ψε‖Lp . ‖ε‖
L

2p
2+p

. ‖εν/
√
Uν‖L2‖Uν/ν

2‖
1
2

L
p
2
. ν−

2p−2
p ‖εν/

√
Uν‖L2 . (A.21)
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