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A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients*
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Abstract. We propose a data-driven stochastic method (DSM) to study stochastic partial differential equations
(SPDEs) in the multiquery setting. An essential ingredient of the proposed method is to construct
a data-driven stochastic basis under which the stochastic solutions to the SPDEs enjoy a compact
representation for a broad range of forcing functions and/or boundary conditions. Our method
consists of offline and online stages. A data-driven stochastic basis is computed in the offline stage
using the Karhunen—Loeve (KL) expansion. A two-level preconditioning optimization approach
and a randomized SVD algorithm are used to reduce the offline computational cost. In the online
stage, we solve a relatively small number of coupled deterministic PDEs by projecting the stochastic
solution into the data-driven stochastic basis constructed offline. Compared with a generalized
polynomial chaos method (gPC), the ratio of the computational complexities between DSM (online
stage) and gPC is of order O((m/N,)?). Here m and N, are the numbers of elements in the basis used
in DSM and gPC, respectively. Typically we expect m < N, when the effective dimension of the
stochastic solution is small. A timing model, which takes into account the offline computational cost
of DSM, is constructed to demonstrate the efficiency of DSM. Applications of DSM to stochastic
elliptic problems show considerable computational savings over traditional methods even with a
small number of queries. We also provide a method for an a posteriori error estimate and error
correction.
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1. Introduction. Uncertainty arises in many complex real-world problems of physical and
engineering interests. Many physical applications involving uncertainty quantification can be
described by stochastic partial differential equations (SPDEs). One of the essential challenges
in these applications is how to solve SPDEs efficiently when the dimension of stochastic input
variables is high. In applications, we often need to solve the same SPDE many times with
multiple forcing functions or boundary conditions. This is also known as the multiquery
problem. Many numerical methods have been proposed in the literature to solve SPDEs; see,
e.g., [38, 5,9, 10, 16, 23, 29, 40, 3, 41, 28, 37, 21, 36, 1, 35, 27, 11, 12, 30, 33]. Most of these
methods use a problem-independent basis. These methods are usually very expensive when
the dimension of the input stochastic variables is high. There have been some attempts to
use a problem-dependent basis to explore the hidden data sparsity structure of the solution;
see [31, 34]. However, almost all these methods focus on constructing a reduced spatial basis,
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which depends sensitively on the forcing or the boundary condition. The reduced basis needs
to be reconstructed if one changes the forcing function or the boundary condition.

In this paper, we propose a data-driven stochastic method (DSM) to study the multiquery
problem for solving SPDEs with a family of forcing functions or boundary conditions. Unlike
other reduced basis methods, we focus on constructing a data-driven stochastic basis that
can be reused for a family of forcing functions or boundary conditions. By exploiting the
effective low-dimensional structure of the stochastic solution, our method provides a compact
representation of the stochastic solution, which leads to considerable computational savings
over traditional methods during the online stage.

Multiquery problems arise in many physical and engineering applications. Here we con-
sider the case where the forcing functions or the boundary conditions are parameterized by
a family of deterministic input parameters and the stochastic coefficients that appear in the
SPDE are independent of these input parameters. A typical scenario is to study uncertainty
in a subsurface flow in which the permeability field is modeled by some stochastic process,
and we want to know its responses under different forces [39]. To illustrate the main idea of
our approach, we consider an SPDE of the form

(1a) L(z,w)u(r,w) = f(x,0), z€D, weQ,
(1b) u(z,w) =0, z€dD, weQ,

where D € R?% is a bounded spatial domain and L(x,w) is a stochastic differential operator.
Clearly, L(z,w) represents the random part of the problem, while f(x,#) is the deterministic
forcing function parameterized by 6. u(x,w) is the stochastic solution.

Our DSM uses the Karhunen-Loeve (KL) expansion [22, 25] of the SPDE solutions. The
KL expansion is well known for generating the optimal basis in the sense that its first m-term
truncation gives the smallest mean square error among all expansions using an orthonormal
basis. As a result, it gives the most compact representation of a stochastic solution. More
details about KL expansion will be elaborated in section 2.1. We note that the stochastic
basis generated by the KL expansion is problem dependent and is a functional of the input
stochastic variable. Moreover, the mapping between the input stochastic variable and the
stochastic basis is nonlinear. The KL expansion has found many applications in statistics,
image processing, and uncertainty quantification. In these applications, the eigenvalues of
the covariance function are often found to decay very quickly, which indicates that these
stochastic solutions have certain low-dimensional structures. How to extract a compact data-
driven stochastic basis from the KL expansion of the stochastic solution with a family of
forcing functions is the main focus of our paper.

We remark that a dynamically biorthogonal (DyBO) method has been proposed and
developed to solve time-dependent SPDEs; see [6, 7, 8]. By solving an equivalent system
that governs the evolution of the spatial and stochastic basis, the DyBO method essentially
tracks the KL expansion of the stochastic solution on the fly without the need of solving
the expensive eigenvalue problem associated with the covariance matrix. Applications of
the DyBO method to the one-dimensional (1D) Burgers equation, the two-dimensional (2D)
incompressible Navier—Stokes equations, and the 2D Boussinesq approximation with Brownian
forcings show that the DyBO method can solve nonlinear time-dependent SPDEs accurately
and efficiently.
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1.1. Constructing a data-driven stochastic basis offline. One of the main contribu-
tions of this paper is that we propose an effective strategy to construct a data-driven basis
{A;(w)}™, in the offline stage, where Ap(w) = 1 and m is the number of elements in the
basis. As a first step, we construct a compact representation of f(z,6) by assuming that
the forcing function f(z,6) can be approximated by a finite dimensional basis f;(z), i.e.,
flx,0) ~ Zfio ¢i(0) fi(x). Such an expansion can be obtained by applying the singular value
decomposition (SVD) or empirical interpolation method (EIM) [2] to f(z,0). With such a
parametrization of f, we begin our construction of the stochastic basis {A;(w)}%, based on
the KL expansion of the SPDE solution of (1) with fy(x) as a forcing function. We propose
an error analysis to evaluate the completeness of the data-driven basis {A4;(w)}". To ensure
that the stochastic basis {A;} is applicable to the entire range of forcing functions f(x,@),
we design a two-level algorithm to enrich the stochastic basis based on the trial functions
fe(z), k= 1,2,..., K. When this enriching process is done, the resulting data-driven basis
{A;(w)}™, provides a compact representation of the SPDE solutions that can be used to
solve this parameterized family of forcing functions. This enriching algorithm is illustrated in
Figure 1 in section 3. The detailed implementation of this enriching algorithm depends on the
specific numerical representation of the stochastic basis, which will be elaborated in detail in
section 3.

1.2. Computing the stochastic solution online. The online stage of the DSM is straight-
forward. For each f(z,0) of interest in (1), i.e., each query (or a choice of #) in an application,
we project the stochastic solution to the stochastic basis that we constructed in the offline

stage:
m

where Ag = 1 and ug(z) is the mean of the solution. We use the Galerkin projection to derive
a coupled deterministic system of PDEs for w;(z) and solve this system by any standard
numerical method. To obtain an estimate on the error of our method, we apply a Monte
Carlo method to solve the residual equation and obtain an a posteriori error estimate. In
general, only a relatively small number of Monte Carlo realizations is needed in this error
correction step since the variance of the residual is expected to be small. If the residual error
is larger than our prescribed threshold, then we can add the residual error correction to the
stochastic solution obtained by the DSM. This would give an improved approximation to the
stochastic solution. Once we obtain the numerical solution u(z,w), we can use it to compute
statistical quantities of interest, such as mean, variance, and joint probability distributions.

1.3. Comparison of computational complexities. We have performed a complexity anal-
ysis for our DSM and have compared it with other commonly used methods, such as the gener-
alized polynomial chaos method (gPC) and gSC (generalized stochastic collocation method).
Let m and N, be the numbers of elements in the basis used in DSM and gPC, respectively.
Let J be the stochastic collocation points used in gSC. Let ¢; denote the overhead time of gen-
erating the stiffness matrix and the Cholesky decomposition in the gPC solver, and let C’Ng
denote the computation time of one-time forward/back substitution, where C' is a constant
that depends on the physical grid number. Let t9 denote the overhead time of DSM in the
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offline stage and n denote the total query number. The computational cost of gPC and DSM
will be tgpc(n) = t1 + nCNg and tpgy(n) = ta + nCm?, respectively. The computational
cost of gSC is tysc(n) = nJty, where tg is the computing time of the deterministic solver on
one collocation point. A simple calculation shows that the DSM solver will be superior to the

¢gPC solver when we need to solve the original SPDE with more than n., = [%] +1
p
2

different forcing functions. Typically, we expect Ng > m*. The larger N, is, the smaller
n. becomes. Similarly, the DSM solver will be superior to the gSC solver when we need to
solve the original SPDE with more than n. = [Jto_%g] + 1 different forcing functions. The
comparison between DSM and the Monte Carlo method can be analyzed similarly.

To further reduce n., we would like to reduce the overhead time, t5, in DSM. If we
construct the KL expansion by first forming the covariance matrix and then solving the large-
scale eigenvalue problem, the overhead time ¢35 and memory consumption could be very large.
To alleviate this difficulty, we adopt the randomized SVD algorithm [20] to directly calculate
the KL expansion of the stochastic solution. This avoids the need to form the covariance
matrix and solve the expensive eigenvalue problem. This approach significantly reduces the
computational cost and memory consumption in the offline stage. As we will show in section 4,
the offline computational cost in constructing the KL expansion is negligibly small compared
with the overall offline computational cost.

To further reduce the overhead time in DSM, we propose a greedy-type algorithm combined
with a two-level preconditioning [13] to enrich our data-driven stochastic basis. First, we derive
an error equation for the stochastic solution obtained by the most recently enriched basis. We
solve the error equation for each trial function fi(x), k =1,2,..., K, only on the coarse grid,
and we identify the maximum error 7+ along with the corresponding trial function fi«. The
error equation for this trial function is solved again on the fine grid. The KL expansion of the
residual error is then used to enrich the stochastic basis. This process is repeated until the
maximum residual error is below the prescribed threshold e. The two cost-saving measures
described above play an important role in reducing the overhead time to. We find that n, is
typically quite small. See section 4 for more discussions.

The rest of the paper is organized as follows. In section 2, we give some preliminary
introductions about the KL expansion and gPC basis. In section 3, we provide the detailed
derivation of DSM. In addition, we will describe our error analysis of the stochastic basis
and propose an optimization approach to enrich the stochastic basis. The error correction
of the method will also be discussed. A computational time model is built in section 4 to
show the computational complexities of different methods. In section 5, we apply our method
to both the 1D and 2D elliptic PDEs with random elliptic coefficients to demonstrate its
computational efficiency. Finally, some concluding remarks are given in section 6.

2. Some preliminaries.

2.1. The Karhunen—Loéve expansion. In the theory of stochastic processes, the KL ex-
pansion [22, 25] is a representation of a stochastic process as an infinite linear combination of
orthogonal functions, analogous to a Fourier series representation of a function on a bounded
interval. The importance of the KL expansion is that it yields an optimal basis in the sense
that it minimizes the total mean square error.

Consider a probability space (92, F, P), whose event space is {2 and is equipped with o-
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algebra F' and probability measure P. Suppose u(x,w), defined on a compact spatial domain
D C R% is a second-order stochastic process, i.e., u(x,w) € L*(D x Q). Its KL expansion
reads as

u(z,w) =u(z) + Z VA& (w) i),
i=1

where u(x) = E [u(z,w)], {\, ¢i(x)}2, are the eigenpairs of the covariance kernel C(z,y),
ie.,

©) | cepoway = ro(a).
D
The covariance kernel C(z,y) is defined as
3) Cla,y) = E(u(z,w) — a(2))(uly,w) — u(y))] .
The random variables {§;(w)}52, are defined as
@ &) = 7= [ (u(e.w) — i(@)erla) do.

Moreover, these random variables {{;(w)} are of zero mean and are uncorrelated; i.e., E[§;] =
0, E[&¢&;] = 0ij. Generally, the eigenvalues \;’s are sorted in descending order. Their decay
rates depend on the regularity of the covariance kernel C'(x,y). It has been proven that an
algebraic decay rate, i.e., \y = O(k™7), is achieved asymptotically if the covariance kernel
is of finite Sobolev regularity or an exponential decay, i.e., A, = O(e~ %) for some v > 0,
if the covariance kernel is piecewise analytic [36]. In general, the decay rate depends on the
correlation length of the stochastic solution. Small correlation length results in slow decay of
the eigenvalues. In any case, an m-term truncated KL expansion converges in L?(D x ) to
the original stochastic process u(x,w) as m tends to infinity. If we denote by €, the truncation
error, we have

2 [e.9]
= Z Ai =0, m— oo,
L2(DxQ) t=m+l

> VAGW)i()

i=m+1

(5) lleml[Z2(pxa) =

where we have used the biorthogonality of the KL expansion.
In practical computations, we truncate the KL expansion into its first m terms and obtain
the following truncated KL expansion:

(6) u(z,w) ~ u(z) + Z VAiki(w)di(z).

The truncation error analysis in (5) reveals the most important property of KL expansion.
More specifically, given any integer m and orthonormal basis {t;(z)}!",, we may approximate
the stochastic process u(x,w) by

m

(7) o, 0) = @) + 3 Gl (@),

i=1
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where (;(w), i = 1,...,m, are the expansion coefficients. Among all m-term approximations
using an orthonormal basis, the KL expansion given by (6) is the one that minimizes the
total mean square error. In this sense, we say that the KL expansion gives the optimal (or
the most compact) basis to represent the stochastic solution in the energy norm. Due to the
biorthogonality of the KL expansion, we will call the stochastic part of the KL expansion the
data-driven basis in the rest part of this paper.

Remark 2.1. Tt is important to note that if the correlation length of the solution is small,
then the number of expansion terms m may be large due to the strong correlation of the
stochastic solution. In this case, the DSM based on the KL expansion is not an optimal choice,
although it still has some advantages over the Monte Carlo method or a stochastic spectral
method. To develop a more effective DSM for stochastic solutions with small correlation
length, we need to develop a multiscale version of the DSM. This will be investigated in a
subsequent paper.

2.2. The generalized polynomial chaos (gPC) basis. In many physical and engineering
problems, randomness generally comes from various independent sources, so randomness in
SPDE (1) is often given in terms of independent random variables. We assume that the
randomness in the differential operator L£(z,w) is given in terms of r independent random
variables, i.e., £(w) = (§1(w), & (w),. .., & (w)). Without loss of generality, we can further
assume that such independent random variables have the same distribution function p(x).
We get L(z,w) = L(z,& (w), ..., & (w)). By the Doob—Dynkin lemma [32], the solution of (1)
can still be represented by these random variables, i.e., u(z,w) = u(z, & (W), . .., & (w)).

Let {H;(&)}32, denote the 1D p(§)-orthogonal polynomials, i.e.,

/Q H, (€)H; (€)p(€)dé = 635,

For some commonly used distributions, such as the Gaussian distribution and the uniform
distribution, such orthogonal polynomial sets are Hermite polynomials and Legendre poly-
nomials, respectively. For general distributions, such polynomial sets can be obtained by
numerical methods [37]. Furthermore, by a tensor product representation, we can use the 1D
polynomial H;(€) to construct a sufficient orthonormal basis Hy (€) of L?(Q) as follows:

(®) Ho(¢) = [[Hai (&), o€y,
=1

where a is a multi-index and J° is a multi-index set of countable cardinality,

X ={a=(u,a,...,a,) |a; > 0,a; € N}.

The zero multi-index corresponding to Hg(&) = 1 is used to represent the mean of the solution.
Clearly, the cardinality of Jo° is infinite. For the purpose of numerical computations, we prefer
a finite set of polynomials. There are many choices of truncations. One possible choice is the
set of polynomials whose total orders are at most p, i.e.,

T
(9) P = {a|a:(a1,a2,...,ar),ozi >0,0; €N, |a :Zaiﬁp}.
i=1
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The cardinality of 3% in (9) or the number of polynomial basis functions, denoted by N, = |37,

is equal to (p TTT;)!. Another good choice is the sparse truncation method proposed in Luo’s
thesis [26]. We may simply write such a truncated set as J when no ambiguity arises. The

orthonormal basis Hq (€) is the standard gPC basis; see [16, 40, 21] for more details.

2.3. Stochastic elliptic equations with low-dimensional structure. To illustrate our
ideas, we consider the DSM for the elliptic equation with a homogeneous Dirichlet boundary
condition, i.e.,

0 0
(10) ~ow, <apq(x,w)a—%u(x,w)> = f(x), reDCcRY weq,
(11) u(z,w) =0, x€JD, weQ,
where p, ¢ = 1,...,d and Einstein summation is assumed. Equation (10) arises in many

physical and engineering fields. For example, this equation can be used to model the flow
and transport in natural porous media such as water aquifer and oil reservoirs [24, 14, 13, 39],
where the permeability field (apq(x, w)) is a stochastic process whose exact values are infeasible
to obtain in practice due to the low resolution of seismic data.

The simplest approach to a numerical solution of (10) is the Monte Carlo method. To solve
(10) by the Monte Carlo method, we need to generate numerous samples of the permeability
field (apq(x,w)) with a prescribed distribution, solve (10) for each sample, and determine the
statistics of u(z,w) from this ensemble of solutions. Due to the slow convergence of the Monte
Carlo method, this approach requires a large number of samples.

Further improvements on convergence rate can be achieved by exploring certain structures
of the stochastic solutions. The stochastic spectral finite element method (SSFEM) [16] and
the gPC method [40, 41] explore certain smoothness of stochastic solutions with respect to
random variables and use a set of orthogonal polynomials to represent the solution. The
solution generally takes the form of u(z,w) = >, 5 ta(r)Ha(w), where J is some multi-
index set and Hg, (w) is a set of orthogonal polynomials. There has been considerable progress
in developing efficient numerical methods to solve (10) in the past two decades, such as the
stochastic collocation (SC) method [1]. However, the SSFEM, gPC, and SC methods suffer
from the curse of dimensionality. They use a stochastic basis that is problem independent.
Such a feature is attractive in the sense that it makes these methods very general. However,
the use of the problem-independent basis is also the reason that they do not give a compact
representation of the stochastic solution. Constructing a problem-dependent or data-driven
stochastic basis is essential in exploiting the data-sparsity structure of the stochastic solution
to design more efficient numerical algorithms. The sparsity that we explore here is not the
usual entrywise sparsity, i.e., only a few of nonzero entries or coefficients, but the data-sparsity,
i.e., a few data are required to provide an accurate description of the stochastic solutions. For
more discussions on data-sparsity, we refer the reader to [18, 19].

Let us first consider the 1D stochastic elliptic equation with a homogeneous Dirichlet
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boundary condition as follows:

(12) - % <a(az,w)({%u(x,w)> = f(z), z€(0,1), weQ,
(13) u(0,w) =0, wu(l,w)=0,

where the random field a(z,w) satisfies the ellipticity, 0 < a1 < a(z,w) < ags < oo, almost
surely. After some simple calculations, we obtain its analytic solution,

(14 wtr) == [ [P s o) [ 8

82, a(s,w)’

where C'(w) is determined by the boundary condition, given by

Jo a(fsz 77 f(s1)dsy

Clw) =
fO a s,w)

In addition, we denote b(x,w) = —— y and assume b(x,w) has an exact M-term KL expansion

a(z,w

(15) bz, w) = Z bi(z) Bi(w),

where by(z) = b(z) and By(w) = 1. Substituting the KL expansion (15) into the solution (14),
we obtain

M . .
_;Bi(w)/o bi(Sz)dsz/o f(s1)dsy

M

(16) + 2 0% </01 bj(s2)ds2 /082 f(Sl)d81> /Ox bi(s)ds.
ig= ;

Apparently, the solution expression (16) reveals that solution of the 1D stochastic elliptic equa-

tion (12) lies in the space spanned by the stochastic basis { B;(w) }i=1,... m U{? (:8 s }m —0,... M-

If the covariance kernel of the random field b(z,w) = is smooth enough, the number

1
a(x,w
of effective terms in the KL expansion of b(z,w) will bé srr)lall, and the solution has a low-
dimensional structure independent of the forcing function f.

For the stochastic elliptic equation (10) in two dimensions, we cannot obtain an explicit
solution expression. Our numerical study seems to indicate that similar results still hold for
(10) with a certain class of coefficient a(z,w). The above analysis may shed light on exploring

the data-sparsity of the solutions of SPDEs and developing an effective numerical method.
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3. A data-driven stochastic method.

3.1. General framework of the data-driven stochastic method. The central task of our
DSM is to look for a data-driven stochastic basis under which the solution of an SPDE enjoys
a compact expansion. Clearly, such a stochastic basis should be constructed through learning
some information about the stochastic solution. To obtain useful information and grasp
physical insights of the system involving randomness, certain postprocessing of the stochastic
solution is necessary. Due to its error-minimizing property, the KL expansion is a natural
choice for postprocessing of the solution and constructing a problem-dependent stochastic
basis.

We first outline the general framework of our DSM, which consists of offline and online
stages. In the offline stage, we propose an effective strategy to construct a data-driven basis
{Ai(w)}™,, where Ag(w) = 1 and m is the number of elements in the basis. Our method is
a greedy-type algorithm combined with a two-level preconditioning [13] to reduce the offline
computational cost. Once the data-driven basis is constructed, we can use them in the stan-
dard Galerkin method to solve the SPDEs (1) in the online stage. Specifically, we expand
the stochastic solution in terms of this stochastic basis u(z,w) = Y /" ui(x)A;(w) and solve a
coupled system of PDEs for the deterministic coefficients, {u;(x)}!",. Since the online stage
is pretty straightforward, we state only the offline computation algorithm as follows; see also
Figure 1 for an illustration of the main ideas.

DSM offline computation.

e Step 0 (preparation):

— Set the error threshold ¢p; partition spatial domain D into a fine grid Dj, and a
coarse grid Dpy.

— Approximate f(z,0) by a finite dimensional basis {fk(:n)}szo, ie, f(x,0) =~
S ko ek (0) fi(®)-

e Step 1 (initial learning step on the fine grid Dy,):

— Solve (1) with fo(z) as a forcing function to obtain u(z,w; fo).

— Calculate the truncated KL expansion of u(z,w; fo) and use the first my terms of
the stochastic modes to obtain the current data-driven basis {4;(w)};,, where
A(] (w) =1.

e Step 2 (preconditioning on the coarse grid Dp):

— For each trial function fy(x), solve (1) on the coarse grid Dy using the current
stochastic basis {A4;(w)};", and the stochastic Galerkin method to obtain DSM
solution upgas(x,w; fi).

— For each trial function fi(z), solve a residual error equation on the coarse grid
Dy to obtain the approximate residual error 7, = 7(z,w; fx).

— If maxj<i<xk ||7%|| < €0, goto step 4; else set k* = arg maxo<i<x ||7%|| and fi-(z),
and goto step 3.

e Step 3 (update on fine grid Dy):

— Solve the residual equation associated with fy-(x) to obtain the residual error
The = T (2, w3 fr)-

— Enrich the current stochastic basis {A;(w)};"}, by the KL expansion of 73+, and
use {A;(w)}"4 to denote the updated stochastic basis. Goto step 2.
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Solve SPDE for f,
Construct inital stochastic basis
{4}

Solve for residual 7

for fr, k=12, .. K

pLID) 98I180))

max residual 7j«

Terminated

Solve residual 74+

prp ourg

Enrich stochastic basis {4;}
via KLE of 74«

Figure 1. Greedy stochastic basis enriching algorithm on a coarse-fine grid hierarchy.

e Step 4 (termination):
— Save the data-driven stochastic basis, denoted by {A4;(w)}", and relevant statis-
tical quantities.
The detailed implementation of this greedy-type algorithm depends on the numerical repre-
sentation of the stochastic basis, which will be elaborated at length in the next three sections.
In this paper, we discuss three ways to represent the stochastic basis:
e Ensemble representation, i.e., a sampling method, such as the Monte Carlo method or
the quasi Monte Carlo method.
e Stochastic collocation representation, such as the sparse grid based stochastic colloca-
tion (SC) basis.
e Spectral representation, such as the gPC basis.
3.2. Data-driven stochastic basis via an ensemble representation. In this section, we

introduce our DSM via an ensemble representation, i.e., Monte Carlo samples. We consider
the following elliptic SPDE:

(17) -V - (a(z,w)Vu(z,w)) = f(x,0), x€ D, we,
(18) u(z,w) =0, xz€dD,

where the coefficient a(z,w) is assumed to be positive with upper and lower bounds almost
surely. The forcing function f(z,6) is approximated by a finite basis, { fx(z)}X,, i.e., f(z,0) =
ko ok (0) fir(@).

In the initial learning step of our DSM, we first use the Monte Carlo method to generate
N samples of the random coefficient {a(z,w)}, w € Qn = {w,}\_;, and solve (17)—(18) with
fo(z) as the right-hand side to obtain {u(w,w,; fo)}\_,, abbreviated u(x,w; fo). The mi-
term KL expansion of the Monte Carlo solution u(z,w; fy) gives the dominant components
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in the random space. We use the decaying property of eigenvalues to select parameter mq,
i.e., to select m; elements from the stochastic basis such that Ay, +1/A1 is smaller than some
predefined threshold, say, 10~. We denote the truncated KL expansion as

(19) u(@,w; fo) = u(; fo) +Z\FA )6i(; fo).

We call the stochastic basis {A4;(w)};, in (19) the data-driven stochastic basis in ensemble
representation, where Ap(w) = 1.

In general, the stochastic basis constructed by using fy may not be adequate to give
an accurate approximation of the SPDE for another right-hand side, f(x,0). We need to
supplement the stochastic basis by using multiple trial functions involving other fy.

In the preconditioning and update step of our DSM, we propose a greedy-type algorithm
and adopt a two-level preconditioning strategy to enrich the stochastic basis. First, we consider
the error analysis. Given a new right-hand side fi(x) = f(z,0) for some choice of #, we expand

the solution in terms of the stochastic basis, {A4;(w)};2,

(20) u(z,w; fi) = a(z; f1) +ZA Jui(w; f1) ZA Jui(w; f1)-

In the rest of this subsection, we also use u;(z) = u;(z; f1) for simplification. We use the
standard stochastic Galerkin method to obtain the coefficient u;(x). Specifically, we substitute
the expansion (20) into the SPDE (17), multiply both sides by A;(w), and take expectations.
This gives rise to a coupled PDE system for the expansion coefficient u;(x),

(21) -V (E[aAZAJ]VuZ) = fl(:E)E[Aj], €T € D, ] = 0, 1, Lo, ma,

(22) ui(z) =0, z€dD,

where Einstein summation is assumed. Solving the coupled deterministic PDE system (21)-
(22) by numerical methods, such as the finite element method (FEM) or the finite difference

method (FDM), we obtain the expansion coefficient {u;(x)}*} and thus the approximate
solution for u(x,w; f1) in (20). We know that the exact solution can be written as

(23) ula,w; f1) ZA Whui(a fr) + 7w f1),

where 7(x,w; f1) is the error. Simple calculations show that the error satisfies the following
equation:

(24) —V - (az,w)VT(z,w; f1)) +Zv Ai(w)Vu,(z)).

To check the completeness of the stochastic basis, we solve the residual (24) on a coarse grid for
each fi(z) (k=1,...,K) and obtain the error {7(z,w; fi)}X,. If maxi<p<r ||7(z,w; fr)]] <
€0, then this stochastic basis is considered complete. Here || - || can be the L?(D x Q) norm
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of the variance of the stochastic solution. If this is not the case, we identify the maximum
erTor T = maxj<p<g ||7(x,w; f)|| along with the corresponding trial function fi-(z). We
then solve the residual (24) for this trial function f«(z) again on a fine grid. We perform the
KL expansion for the residual solution 7(z,w; fi+), extract several dominant components in
the random space, and supplement them to the current stochastic basis. We use {A4;(w)}:"%
to denote the updated stochastic basis. This process is repeated until the maximum residual
is below the prescribed threshold ¢;. We save this data-driven stochastic basis, denoted by
{A;(w)}*, and relevant statistical quantities.

In the online stage, for each query f(x,6), with our data-driven stochastic basis { 4;(w)}I",
we use the standard stochastic Galerkin method to solve the SPDEs (17)—(18). The construc-
tion of the stochastic basis could be expensive. However, once the stochastic basis is con-
structed, it can be used repeatedly for different right-hand side functions f(x, ) in the online
stage. In the multiquery scenario, our DSM could offer considerable computational savings
over the Monte Carlo method when the number of queries is large. We will demonstrate this
through numerical examples in section 5.

Remark 3.1. In the offline stage, we need to save the realization of the stochastic basis
{Ai(w)}my, w € Qn = {w,}Y_;. This would enable us to solve for the residual equation
(24) and update the stochastic basis. In the online stage, the Galerkin projection reduces
the SPDEs (17)—(18) to a coupled system of PDEs (21)—(22) whose coeflicients involve only
ElaA;A;], which can be stored in the offline stage. We can save other quantities such as
E[A;A; Ay if we want to calculate the high-order moment of the stochastic solution.

3.3. Data-driven stochastic basis via a collocation representation. In the ensemble
representation version of the DSM, the Monte Carlo method may introduce a relatively large
sampling error, especially in computing expectations of high-order terms. For instance, the
term E[aA;A;] is calculated by

N
(25) ElaA;Aj] = % Z a(z, wp)Ai(wn)Aj(wy).
n=1

We need a large number of Monte Carlo samples to obtain an accurate result in (25). The
sampling error will be carried over to the online computation of the DSM and may lead to a
relatively large error. In this section, we consider expanding the data-driven stochastic basis
in a certain basis to alleviate this difficulty.

3.3.1. Stochastic collocation representation. In order to perform residual error correc-
tion and improve the accuracy, we would like to expand the stochastic basis A;(w) in a certain
stochastic basis, i.e.,

(26) Ai(w) = AaiHa(€(w)),

where {Hq (§(w))} is a gPC basis in the stochastic space and Aq; is the expansion coefficient.
Moreover, we expand the random coefficient a(z,w) in the same basis,

(27) a(z,w) = aa(r)Ha(£w)),
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where aq () is the expansion coefficient. Then the term FlaA;A;] can be calculated as follows:

(28) ElaA;Aj] = aa(2)AgiAy; E[Ha(§(w)) Hp(§(w)) Hy (§(w))],

where Einstein summation is assumed. In practical computations, the expansion coefficients
Aqiin (26), a(x) in (27), and E[Hq(§(w))Hg(€(w))Hy (&(w))] in (28) can be approximated
with high accuracy by quadrature rules. If the input random variables have a modest dimen-
sion and the stochastic solution is smooth, the sparse grid based quadrature rule works quite
effectively; see [1, 4, 42] for more details.

In the following, we choose the multi-index of the gPC basis as J¥ (see (9)) and discuss
the DSM in the (sparse grid based) stochastic collocation representation. The expansion
coefficient Aq; is given by

J
(29) Aai = ElA(w)Ha(§W)] = ) Ai(z))Ha(zj)w), a€ I,
j=1

where z; € R" and w; € R are the sparse grid points and the associated weights, respectively.
J is the number of sparse grid points. The terms aq(x) in (27) and E[Hq(w)Hg(w)Hy(w)]
in (28) can be calculated in the same way as follows:

J
(30) ae(z) = Fla(z,w)H Za (z,2;)Ha(zj)w;, o€ Jb,
j=1
and
J
(31) E[Hq(w)Hg(w ~> Hal(z))Hg(z)H,(z))w;, o,B,v€.
j=1

We use the N,-by-m matrix A to denote the expansion coefficient Aq;, which is essentially
the data-driven stochastic basis in the stochastic collocation representation.

Generally speaking, the data-driven stochastic basis in the collocation representation is the
same as that in the ensemble representation. All the methods used in the previous section, such
as the initial learning step and the preconditioning and update step, can be used directly here.
The only difference is that instead of solving (17)—(18) with Monte Carlo samples, we solve
the same equations with the sparse grid points. In addition, the sample average in calculating
expectation is replaced by the quadrature rules based on the sparse grid. This simple change
significantly improves the accuracy of the DSM and reduces the computational cost. The
performance of this method depends on the regularity of the stochastic solution. When the
solution of the SPDE is sufficiently smooth, the DSM in the collocation representation is very
efficient.

3.3.2. A randomized SVD approach. In the offline stage, we need to calculate the KL
expansion of the stochastic solutions. This requires us to solve for the eigenvalues and eigen-
vectors of the covariance kernel C'(x,y) and to project the stochastic solution onto the eigen-
vectors. The covariance kernel C(x,y) is a function whose dimensionality is twice that of the
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physical space of the solution u(x,w). Thus it is very expensive to compute the eigenvalues
and eigenvectors of the covariance kernel C'(x,y). Thanks to the recently developed random-
ized algorithms for large-scale linear algebra [20], we can use the randomized SVD algorithm
to directly calculate the KL expansion of the stochastic solution. This avoids the need to form
the covariance kernel and to solve the expensive eigenvalue problem. Below, we give a brief
introduction to this method. To simplify the notation, we assume the solution has zero mean.
First, we solve (17)—(18) with the random variable evaluated at the sparse grid points

(32) -V - (a(z,2;)Vu(z,z;)) = f(z,0), ze€D,j=1,...,J,
(33) u(z,z;) =0, z€dD.

Let X" be a spatial finite element approximation space of dimension Nj,. For each Zj, we use
an FEM to solve (32)—(33) and denote u”(z;) as the finite element solution associated with
zj. Collecting all the solutions of (32)—(33) with respect to all z;, j = 1,...,J, together, we
define a solution set that consists of all the solutions

S={ul(z;),j=1,....J}

The matrix form of the solution set is denoted by U = [Uy,...,U;] € R¥»*/; ie., each
column of U is the vector of nodal point values of a finite element solution associated to a
sparse grid point z;. The covariance matrix C € RNwXNn is given by

J
(34) C=)> UUlw,
=1

where the w;’s are the associated weights of the sparse grid. One can solve the eigenvalue
problem for C and obtain the KL expansion for U. However, this approach is expensive,
or even infeasible, for high-dimensional problems. To overcome this difficulty, we adopt an
equivalent approach to get the KL expansion for U directly without forming the covariance
matrix C. Let matrix U denote the weighted solution set, i.e., U = [VwiUy,...,Jw;U;| €
RNwxJ Tt should be noted that when wj is negative, the j column of U is a pure imaginary
vector. Actually, the eigendecomposition for C and the SVD decomposition for U are closely
related. We have made some minor modifications to the randomized SVD algorithm [20]. The
resulting algorithm is summarized in Algorithm 1, where k is equal to the target KL expansion
mode number m plus an oversampling number p (usually p = 5 or 10 is sufficient; see [20] for
more details).

We can easily see that U’s left-singular vectors and the square of U’s singular values
are the eigenvectors and eigenvalues of the covariance matrix C, respectively. The memory
consumption of C is proportional to O(N ,%), and the computational cost of obtaining the
first m eigenpairs of C by the direct SVD algorithm is proportional to O(N. }%m) On the
other hand, the randomized SVD algorithm works with the matrix U directly instead of the
covariance matrix C'. The memory consumption of the randomized SVD for U is proportional
to O(NpJ), and the computational cost of obtaining the first m left-singular vectors and
singular values is proportional to O(NyJ log(m) + m?(Ny, + J)). Therefore, our randomized
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Algorithm 1. The randomized SVD for the weighted snapshots set U ~ U VT
1: Draw a J x k Gaussian random matrix (2. If the weight w; corresponding to the jth
sparse grid point is negative, multiply the jth row of the matrix Q2 by the imaginary unit
i =+/—1. Let Q denote the modified random matrix.
Form the N, x k sample matrix Y = UQ.
Form an Nj, x k orthonormal matrix ) such that Y = QR.
Form the k x J matrix B = QTU.
Compute the SVD of the small matrix B: B=U Y V7.
Form the matrix U = QU.

SVD approach significantly reduces the memory consumption and computational cost in the
offline stage, especially when the dimension of the physical space is high, i.e., N > J.

Remark 3.2. When the stochastic solutions data U do not fit into the memory (RAM), we
can generate the sample matrix Y = US) in a sequential way; see Algorithm 2. Now the only
requirement is that matrices of size J x k and Ny, X k must be stored in RAM. This approach
significantly reduces the memory consumption.

Algorithm 2. A sequential way to generate sample matrix ¥ = US).

1: Let Q denote the J x k modified random matrix and Y denote the N}, X k zero matrix.
Let U;,j denote the jth column of U.

2: for j=1— J do

3: Y=Y+ [U;Jle,U;,ijg,...,U;,ijk]

4: end for

3.4. Data-driven stochastic basis via a spectral representation. In this section, we
discuss the data-driven stochastic basis via a spectral representation, such as the polyno-
mial chaos basis. We still consider the SPDEs (17)—(18) as an example. If the coefficient
a(x,w) is given in terms of r independent random variables, i.e., a(z,w) = a(z,&(w)) =
a(xz, & (w), ..., & (w)), the solution of (17) can be represented by these random variables, i.e.,
u(z,w) = u(z, & (w),...,&(w)). To simplify notation, we assume that the solution u(z,w)
has zero mean. By the Cameron-Martin theorem, we know that the solution to (17) admits
a generalized polynomial chaos expansion,

(35) u@,w) = Y va(r)Ha(lW) D va(r)Ha(£(w)),

acyx® acy

where J°° and J are the multi-index sets for the polynomial chaos basis defined in section 2.2
(see (9)). If we write the polynomial chaos basis and its expansion coefficient in a vector form

H() = (Hoy (§). Hoy(6). .. Hay, () .

V(@) = (Vau (@), vy (@), Ve, (@)

a;EY
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the gPC solution (35) can be compactly written in a vector form
(36) u(z,w) ~ V(z)H(E)T.

Using the fact that the stochastic basis H(&) in the gPC representation (36) is orthonormal,
we can derive the KL expansion of the solution without calculating its covariance function,
which is given in the appendix. Now, we are ready to present our data-driven stochastic
basis via the gPC representation. We assume that the cardinality |J| = N, of the gPC basis
{Ha(&(w)) }aey is large enough, so that the numerical solution obtained by the gPC method
can serve as the “exact” solution.

In the initial learning step of our DSM, we pick fo(z) as the right-hand side and use the
gPC method to solve (17). Assuming the solution is given by u(z,w; fo) = V(2)H(&)T, we
can calculate its mq-term truncated KL expansion as

(37) ZZUZ )AqiHa(€(w)) = U(z)ATHT,

i=1 a€J

where U(z) = [u1(z), u2(x), ..., um, (z)] and A = [A;, Ay, ..., A, ]| is an Np-by-m; matrix
satisfying ATA = I,,,. The matrix A is essentially the data-driven stochastic basis in the
gPC representation, which has the same form as in the stochastic collocation representation
but is obtained in a different way:.

In the preconditioning and update step of our DSM, we first complement the matrix A
into an N,-by-N, orthonormal matrix, i.e., A97C = [A, A]. The N,-by-(N, — m1) matrix
A is the orthogonal complement of matrix A. Here the IV,-by-NV,, orthonormal matrix A9IPC
spans the same solution space as the gPC basis.

We use the stochastic basis A = (Aqi), @ = 1,...,m1, to represent the solution of (17)
with another right-hand side function, fi(x) = f(x,#) for some choice of 6,

(38) uP M (z,w) =3 Y vil@) AaiHa(€(w)).

Substituting the expansion (38) into (17), multiplying both sides by ZBES AgiHg(§(w)),
j=1,...,mq, and taking the expectations, we obtain a coupled PDE system for the expansion
coefficient v;(x),

(39) —V - (T()Vvi(2)) = fi(e) EHp(E(W))]Agj, j=1,...,m,

where the tensor T{‘j(x) = ‘Zgﬂ(x)AaiAgj, ‘Zgﬂ(az) = Fla(z,w)Hq (§(w))Hg(£(w))] and the

DSM(

Einstein summation is assumed. By solving (39), we can obtain the DSM solution u x,w).

Similarly, we expand the solution using the gPC basis

(40) ZZU )AYHa (€(w))

i=1 a€yJ
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or, equivalently,

mi Np_ml
(41) u(@,w) = Y vi(@)AaiHal€W) + Y Y vjim (2)AgHa(€(w)).
i=1 a€J =1 «a€eJ

In (41) the first part represents the data-driven stochastic solution captured by the current
stochastic basis A, and the second part represents the residual error. We substitute the ex-
pansion (40) into (17), multiply both sides by A%?CHg, j=1,...,N,, and take expectations.
This gives rise to a coupled PDE system for the expansion coefficient v;(x) in (40),

(42) —V - (TA () Vui(2) = fi(0) EHp(EW))]Agj, j=1,....N,,

where the tensor I%gpc = igﬂ(:n)Agoch%?C and the Einstein summation is assumed. By
solving (42), we can get the expansion coefficient v;(x) in (40) and thus the error of the DSM
solution. Let

Np—m1

(43) T(,wifi) = Y Y Vi (1) AaHa(€(w))

j=1 «a€y

denote the error of the DSM. According to (41), the variance of the error 7(x,w; f1) is given by

Z;V:pl oy v2(z). We can apply the same greedy-type algorithm combined with the two-level
preconditioning approach to enrich the stochastic basis. We will omit the details here.

Remark 3.3. One advantage of representing the data-driven basis via a certain spectral
basis is that the spectral representation of the data-driven basis gives very accurate approxima-
tion to the statistical quantities of interest, such as E[A4;(w)A;(w)Ax(w)] or Ela(x,w)A;(w)A;(w)].
By using a spectral representation, we can use the modified Gram—Schmidt process to de-
compose the gPC solutions to obtain the data-driven basis. The memory consumption and
computational cost are relatively small.

Remark 3.4. The data-driven basis obtained by the stochastic collocation (SC) represen-
tation and the generalized polynomial chaos (gPC) representation has the same accuracy and
computational cost in the online stage if we fix the index of the orthonormal basis He (§).
However, the computational cost in the offline stage is quite different. The gPC method is
intrusive in the sense that we need to solve a coupled deterministic PDE system to obtain
the expansion coefficients. When the physical degree of freedom N}, and/or the number of
polynomial basis NN, is large, the computational cost is very expensive. The SC representation
is nonintrusive in the sense that we need to solve a set of uncoupled deterministic equations.
Each solution corresponds to a collocation point and has its own weight. From our compu-
tational experience, the DSM using the SC representation is computationally more attractive
than the DSM using the gPC representation.

3.5. An a posteriori error estimate and error correction in the online stage. In this
section, we will perform a posteriori error estimates to quantify the residual error between
the data-driven solution and the exact solution. Such error estimates provide us with an
adaptive strategy to improve the accuracy of our DSM. Thanks to the spectral structure of
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the data-driven basis (both in the SC representation and the gPC representation), we can
easily address this issue.

In many applications, we are interested in studying the statistical quantities of the random
solution u(x,w), such as the mean and the variance. Denote the statistical moments of u(x,w)
as Elg(u)], where g(z) = 2™, n = 1,2,.... To simplify the notation, we suppress the spatial
variables in the function u(z,w). Suppose the u(wg)’s (k = 1,..., N) are realizations of the
random solution computed by Monte Carlo simulations. The expectation of E[g(u)] can be
approximated by the Monte Carlo ensemble average

N
1
(44) In[g(u)] = > 9(ulwr))
k=1
Denote the error of the Monte Carlo estimator (44) as

(45) eg(N) = Elg(u)] — Inlg(u)].

The error €,(N) itself is a random variable. According to the central limit theorem [15], the
root mean square error of the Monte Carlo estimator (44) decays like

(46) Ele(N)] ~ 29wl

where o[g(u)] is the standard deviation (STD) of g(u). Thus, the ensemble average (44)
converges to E[g(u)] at the rate of \/—% with a proportional constant given by the variance of

g(u). This slow convergence rate is an inevitable result due to the central limit theorem. One
way to accelerate the convergence of the Monte Carlo ensemble average (44) is to reduce the
variance. Using the data-driven stochastic method, we can split E[g(u)] into two parts

(47) Elg(u)] = Elg(upsm)] + Elg(u) — g(upsn)],

where E[g(upgspr)] can be obtained by the DSM and we need only use Monte Carlo simulation
to estimate E[g(u) — g(upsar)]. As a result, we obtain

N
(48) Blgw)] ~ Blg(upsn)] + = S lo(u(wr) — g(upsar(er)]
k=1

The error of the estimation (48) is

M’z

(49) €9—apsu (V) = Elg(u) — g(upsar)] 9(upsar(wr))l;

k;:

According to the central limit theorem, the root mean square error of the estimation (49) is

(50) VB gy (V)] = L= Hosan)]
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where o(g(u) — g(upsar)) is the STD of g(u) — g(upsar)-

If the DSM solution upgas is a good approximation of the true solution u, then o(g(u) —
g(upsy)) < o(g(u)), and the ensemble average (48) will converge faster than the direct
ensemble average (44). Therefore, the DSM provides an effective variance reduction method
in the Monte Carlo simulation.

In practical computations, if the dimension of the SPDE solution space is high, we should
avoid resolving all the small scales of the stochastic solution by adding more and more elements
into the data-driven stochastic basis. We can put an upper limit on the total number of
elements in the stochastic basis and stop the update approach with a predefined maximum
mode number m,,,. The solution upgps(x,w) obtained by the DSM with m,,, modes may
not be very accurate, but it has already captured the large-scale structure of the stochastic
solution. If we subtract the data-driven solution from the exact solution, the error will be
another random variable with a smaller variance. Then we use Monte Carlo simulations to
correct the error in the data-driven solution. This error correction procedure further improves
the accuracy of the DSM.

The error correction procedure can also provide an a posteriori error estimate for the
DSM. We consider the a posteriori error estimate of the mean of the solution as an example.
The same idea can be applied to compute other moments. Let r(z,w) = u(z,w) —upsy(z,w)
denote the residual error function. According to (47)—(49), the mean of the random solution
can be written as

Eu] = Elupsm] + E[r]

1

N N
(51) EuDSM kZ x, W) —I-E —Nkz: azwk

In (51), Elupsn] is the mean of the data-driven solution. The term 4 Z]kvz1 r(x,wy) is the
Monte Carlo ensemble average of the residual error. Due to the central limit theorem, this
ensemble average approximates a normal distribution, i.e.,

(52) %ér(m,wk) ~ N <E[r], %)

In (52), the mean E[r] and STD o, of the residual error are unknown. We use the sample
mean and sample STD to approximate them. Let 7(x) denote the sample mean, i.e., 7(z) =
+ S 7(x,wy), and let 7#(x) denote the sample STD, i.e.,

L
(53) 7(z) = NZ z,wg) — T2 ().
k=1

Let ||-|| define a norm on some function space over the physical space D; for instance, ||-|| can
be the L?(D) norm. We define the norm of the sample mean and sample STD of the residual

error as 7, = ||F(z)|| and 7% = ||f}%)||, respectively.
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We now demonstrate the a posteriori error estimate and error correction algorithm in the
online stage. Without loss of generality, we calculate the mean of u(z,w). First, we solve
(10)—(11) with our DSM to obtain the solution upgns(x,w) and the norm of its expecta-
tion ||E[upsa]||. Then we generate a small number of samples {w}2_, and solve (10)—(11)
using the Monte Carlo method to obtain solutions {u(x,wy)}4_;. Substituting the same sam-
ples {wy} | into upsu(z,w), we can easily obtain the samples of residual error functions
(z)

-

{r(z,wr)}_, and calculate 74 = ||F(z)|| and 7% = ||

VN
The norm of the sample mean 74 = ||7(z)|| gives the magnitude of the residual. The
norm 7y = HL\/%)H measures the fluctuation of each realization of the residual error function

around its mean. We can use 7']2\, to construct a confidence interval with regard to a predefined

confidence level for the residual error. For instance, at each fixed spatial point x € D, a 95%-
level confidence interval is approximately given by [7(z) — 2\;@ ,T(x) + 2T—\/%)] We perform our

error estimate according to the following scenarios (€1 and ey are predefined thresholds).

e Case 1: The ratio 73, + 27% < €1||E[upsn]||, which means the data-driven solution is
accurate and the residual error is negligible.

e Case 2: Case 1 does not hold, but 7'12\, < 627']1\7, which means that the residual error
between the exact solution and the data-driven solution cannot be ignored. However,
the fluctuation of the residual error function is small. In this case, {r(z,ws)}_,
provides a very good error correction for the data-driven solution.

e Case 3: Neither case 1 nor case 2 holds, which means the sample number N is too
small. We double the sample number to repeat the Monte Carlo calculation.

In the a posteriori error estimate and error correction framework, the Monte Carlo simulation
is used as an error correction step to the data-driven solution. Alternatively, we can also
interpret the data-driven solution as a precomputation step to obtain a control variate for
Monte Carlo simulations. This hybrid method takes the advantages of both the DSM and the
Monte Carlo method, which improves the efficiency and accuracy of the proposed method.

Remark 3.5. If the dimension of the SPDE solution space is low or medium, it is sufficient
to use hundreds of Monte Carlo simulations to obtain a good error correction. However,
when the dimension of the stochastic solution is large, we need a large number of Monte
Carlo simulations. Even in this case, our method still offers some advantage over existing
methods, although the computational savings are not as significant as in the case when the
effective dimension of the stochastic solution is low or moderate. Moreover, we can adopt
various Monte Carlo acceleration techniques to speed up the error correction step, such as the
multilevel Monte Carlo method [17].

4. Computational complexity analysis. The computational time of the DSM consists of
both the offline and online parts. The offline computation can be very expensive if we use a
brute-force way to construct the data-driven basis. We will show that using the randomized
SVD solver and the preconditioning on a coarse grid can significantly reduce this offline
computational time. In addition, we construct a time model to demonstrate that the DSM
is superior to the traditional methods in a multiquery setting. We focus our discussion on
the DSM with the stochastic collocation representation since it is an optimal choice when the
stochastic solution is smooth. On the other hand, when the stochastic input dimension is
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Table 1
Computational time of forming the stiffness matriz in the gPC or DSM solver. Ny is the basis number.

Grid number | Ny, =10 | Ny, =20 | Ny = 40
Ny = 322 0.7531 2.6669 14.2577
N, =642 3.2968 12.8500 63.2856
N, = 1282 15.6921 59.0485 | 294.0339

Table 2
Computational time of the (AMD permuted) Cholesky decomposition. (Time: Sec.)

Grid number | N, =5 | N, =10 | N, =20 | N, = 40
N, = 322 0.0902 0.3190 1.2929 5.4715
N;, = 642 0.4552 1.5145 6.3516 27.0306
N, = 1282 2.0270 7.5956 31.8679 | 136.3302

high, the DSM with the ensemble representation would perform superiorly to other methods.

4.1. A computational time model in the multiquery setting. In this section, we con-
struct a computational time model for the 2D elliptic SPDEs in the multiquery setting. Let
Ny, and J denote the number of the physical fine grid points and sparse grid points, respec-
tively. We assume Nj, > J. The fine grid will be chosen as Nj, = 1282. All the simulations
and comparisons are conducted on a single computing node with 16 GB memory at Caltech
Center for Advanced Computing Research (CACR).

4.1.1. The computational time model of gPC solver. Let t; = ¢1(Nj, N,) denote the
“offline” computation time of the gPC solver. The offline cost ¢t; can be approximated by
t1 ~ t15(Nn, Np) + tichot(Nh, Np), where 15 is the time of generating the stiffness matrix and
t1chor is the time for the Cholesky decomposition. In Table 1, we list the computational cost
for generating the stiffness matrix. On the fine grid Nj, = 1282, t;, is approximately given by

~ 2
(54) ts A~ 0.1152N2.

We then consider the time for the Cholesky decomposition. Recall that if S is an n-by-
n positive definite dense matrix, the Cholesky decomposition costs about %n?’ flops. If S
is sparse, the cost is much less than %n?’, and the exact cost depends on the number of
nonzero elements, sparsity patterns, etc. In Table 2 we list the time of the (approximate
minimum degree (AMD) permuted) Cholesky decomposition. On the grid Nj, = 1282, t1c501
is approximated by

~ 2
(55) tchol ~ 0.0745Np.
Therefore, on the fine grid N, = 1282, the “offline” time gPC solver can be approximated by
~ 2
(56) t1 ~ 0.1897N,).

In the multiquery setting, the stiffness matrix S for the gPC solver is fixed, and the load
vector b is different for each query. We can precompute the Cholesky decomposition of S



A DATA-DRIVEN STOCHASTIC METHOD FOR SPDEs 473

Table 3
Computational time of forward/back substitution. (Time: Sec.)

Grid number | Ny =5 | Ny, =10 | Ny, =20 | Ny, = 40
Np = 322 0.0290 0.0655 0.2013 1.0329
N;, = 642 0.1358 0.3519 1.4529 7.7249
N;, = 1282 0.7088 2.2714 9.7002 51.7330

in advance, and the computational time is determined only by the forward and backward
substitutions in solving the linear equation system. Let ts, denote this time. In Table 3,
we list the computation time of ¢, for different grid points and basis elements. On the grid
N, =1282.t b is approximately given by

(57) tpp & 0.0223N7.
Let n denote the total number of queries. The computational time of gPC will be
(58) tgpc(n) = 0.1897N] + 0.0223N, n.

4.1.2. The computational time model of DSM solver. Let to = to(Ny, K, m1,dm,m)
denote the computational time of DSM in the offline stage, where K is the number of trial
functions, m; is the number of basis elements obtained in the initial learning step, dm is the
number of basis elements added each time in the updating on fine grid step, and m is the
total number of basis elements obtained in the offline stage, which depends on the prescribed
threshold e. Roughly speaking, we need one-time initial learning and n,, = [724] + 1 times
updating learning. From our experience, we find that m is much smaller than N, when the
effective dimension of the stochastic solution is small.

It is easy to show that to can be approximated by

(59) to & tsc + tpre + tkLE,

where tgc is the cost of using the stochastic collocation method to solve the SPDE in the
initial learning step (step 1) and the residual error equation in the updating on fine grid step
(step 3), tpre is the cost of the preconditioning on the coarse grid step (step 2), and tx g is
the cost of KL expansion in our offline stage. We need to do the KL expansion 1+ n,,;, times.
In addition, ¢p,. consists of several parts, i.e.,

(60) tpre & tpre—s + tpPre—chol + 75P7“e—fb7

where tpr._s is the time spent forming the stiffness matrix on a coarse grid, tp,_. is the
time spent doing the Cholesky decomposition, and tp,._ s is the time spent solving the linear
equation on the coarse grid. We neglect the time spent solving residual error equation, since
this is done on a coarse physical grid and low-level sparse grids. We will do a thorough study
of all the parts in (65) and (60). We choose fine grid Nj, = 1282 and coarse grid N¢;, = 322
in the following discussion.

In Table 4 we list the computational time of the randomized SVD on different mesh
grids. We also show the computational time spent solving the linear equation once using the
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Table 4
Computational time of the randomized SVD solver. (Time: Sec.)

Solver | N, =82 | N, =162 | N, =322 | N, =642 | N, = 1282
rSVD | 0.0009 0.0016 0.0037 0.0129 0.0504

Table 5
Computational time of the linear equation solver on one sparse grid. (Time: Sec.)

N,=8%| N, =162 | N, =322 | N, =64 | N, = 1282
0.0003 0.0013 0.0060 0.0340 0.2455

stochastic collocation method in Table 5 (the same result can be applied for the Monte Carlo
solver). Ome can see that the computational time to perform the KL expansion is even less
than that to solve the linear equation once. For instance, on the fine grid N;, = 1282, if we
choose sparse grid number J = 200, the time ratio of the KL expansion and the stochastic
collocation solver in the initial learning stage will be % = 0.102%. Therefore, tx g is
negligible.

On the other hand, it is easy to obtain
(61) tsc =~ 0.2455J (1 + nup).

Finally, on the coarse grid, we approximate tpre—s, tpre—chol; and tpre— sy, as follows:

(62) tpre—s ~ 0.0053m?,
(63) tPre—chol = 0.0035m2,
and

(64) tpre— b ~ 0.0029m 4,

where m is the basis number in the DSM. Putting everything together, we obtain the following
estimate for to:

to =~ tsc + tpre
Nup

= 0.2455J (1 + 1) + Y _(0.0053m? +0.0035m? + 0.0029Km}*)
=1

(65) < 0.2455J (1 + Mup) + 1 (0.0088m2 + 0.0029Km '),

where m; = m;_1 + dm is the number of basis elements in DSM in the ith updating step.
Recall (57); the computational time of DSM will be

(66) tpsa(n) = ta 4+ 0.0223m>n.

Let m and N, be the number of basis elements used in DSM and gPC, respectively. We
can see that on the same physical grid the ratio of computational complexities between DSM
(online stage) and gPC is of order O((m/N,)?).
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4.1.3. The computational time model of gSC solver. The “offline” cost of gSC is zero.
For each forcing function, one needs to solve the SPDE for every stochastic collocation point.

Let n denote the total number of queries. On a fine grid Nj, = 1282, the computational time
of gSC will be

(67) tgsc(n) = 0.2455Jn.

4.1.4. Comparison of computational complexities. First, we compare the computational
cost of DSM and gPC solvers. Simple calculations show that if we need to solve the original

SPDE with more than n, = [m] + 1 different forcing functions, the DSM solver will
: P

be superior to the gPC solver. Let us substitute all the previous results, i.e., (56) and (65),
into n.; we can obtain a rough estimate for n. as follows:

(68)

0.2455J (1 + nyp) + 0.0088nupm2 + 0.0029nume1'4 — 0.1897N5
Ne(Np, m, nyyp, J, K) < +1

0.0223(N2 — m2)

Similarly, we can get the result for the comparison between DSM and the gSC solver; i.e., the
DSM solver will be superior to the gSC solver when we need to solve the original SPDE with

more than n, = [m] + 1 different forcing functions, where n. can be bounded by

0.2455.7 (1 + 1) + 0.0088n,,m? 4 000297, K'm'
0.2455.] — 0.0223m?

(69) ne(m, Nyp, J, K) < [ ] +1.
When the SPDE solution is not smooth in the stochastic dimension, the DSM in the collocation
representation may not be efficient since one needs a large number of collocation points to
represent the solution. In this case, all the existing methods are expensive, and the DSM with
the ensemble representation will be the method of choice. We can compare the computational
complexity of the DSM Monte Carlo solver and the reference solver, i.e., the Monte Carlo
solver. Let Mg, and M,,. denote the sample number used in the DSM Monte Carlo solver and
the reference solver, respectively. The DSM Monte Carlo solver will be superior to the reference
solver when we need to solve the original SPDE with more than n, = |
different forcing functions, where n. is bounded by

to
0.2455M,,.—0.0223m?2 ] +1

(70)
0.2455 M gsm (1 4 1yp) + 0.0088n,,m? + 0.002970,,, K4

c ) Ty 7Msm7MmC7K S
ne(m, Ny, Mg ) 0.2455M e — 0.0223m?2

+ 1.

Inequalities (68), (69), and (70) give the upper bound of n. obtained from our computational
time model. The specific value of n. depends on many parameters and is problem dependent.
From our computational experience, we find that n. can be relatively small. We will further
demonstrate this through a model problem in the next subsection.

4.2. A 1D model problem. Choosing the gPC basis number N, stochastic collocation
points number J, and the data-driven stochastic basis number m to obtain an accurate solution
is problem dependent. In this subsection, we design a model problem to understand this issue.
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Table 6

Compare ¢gSC, gPC, and DSM-gSC. The data marked with an asterisk are obtained by extrapolation.
| p=2 I =1 | =3 |

r J Np m r J Np m r J Ny m

2 9 10 8(0.29%) | 2 37 15 8(0.28%) | 2 45 28 8(1.45%)

31 19 20 8(1.01%) | 3 93 35 8(1.39%) | 3 | 165 84 17(1.23%)

4| 33 35 | 11(1.10%) | 4 | 201 70 | 14(1.26%) | 4 | 441 210 29(1.49%)

5] 51 56 | 11(1.08%) | 5 | 401 | 126 | 20(1.47%) | 5 | 993 462 38(2.11%)

6| 73 84 | 11(1.41%) | 6 | 749 | 210 | 26(1.40%) | 6 | 2021 | 792(*) 44(4.23%)

71 99 | 120 | 11(1.49%) | 7 | 1317 | 330 | 29(1.63%) | 7 | 3837 | 1716(*) | 44(7.33%)

8 | 129 | 165 | 14(1.62%) | 8 | 2193 | 495 | 32(1.81%) | 8 | 6897 | 6435(*) | 44(12.82%)

Recall that our computational time model in section 4.1 is obtained from a 2D elliptic SPDE
with physical grid chosen as Nj, = 1282. Due to constraints in our computational resources,
we cannot perform a meaningful comparison of different methods for a very challenging 2D
stochastic problem with high-dimensional random coefficients whose stochastic solutions are
not very smooth. Instead, we construct a carefully designed 1D model problem which shares
some essential difficulties of the 2D problem.

We consider the following 1D elliptic SPDE:

(71) - % <a(m,w)a%u(x,w)> = f(x), z€D=(0,1), weQ,
(72) u(0,w) =0, wu(l,w)=0.

The random coefficient is defined by
(73) a(w,w) = eXn=a VOnEnDon(0) e, e N(0,1),

where

1\?
9n290<—> , n=12...,
n

bn(r) =sin(nmz), n=1,2,....

The parameter 3 is used to control the decay rate of the eigenvalues and 6y=0.4. Generally
speaking, slow decay in the eigenvalues results in a hard problem, which requires more basis
elements in the DSM and gPC methods or sparse grid points in the stochastic collocation
method to accurately resolve the stochastic solution. In our test, we will choose § =2, 5 =1,
and 8 = 0.5. They correspond to easy, moderate, and difficult cases, respectively.

We choose r ranging from 2 to 8 as a low-dimensional input test and from 15 to 20
as a high-dimensional input test. The function class of the right-hand side is chosen to be
§ = span{sin(inz), cos(irz)}12,. We use the standard piecewise linear finite element method
with mesh size h = 2—51)6 to solve this elliptic problem.

In Table 6 we compare the results of different methods. For each fixed g and r, we list
the minimal number of gPC basis elements (denoted by N,,) and stochastic collocation points

(denoted by J) so that the relative error of the STD of the solution is less than 1% for all
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Table 7
DSM-MC for high-dimensional input. f = 1.

r J Ny m

15 | 27701 | 3876 | 38(4.93%)

16 | 36129 | 4845 | 38(5.58%)

17 | 46377 | 5985 | 41(5.91%)

18 | 58693 | 7315 | 44(6.89%)
44( )
47( )

19 | 73341 | 8855 7.41%
20 | 90601 | 10626 7.83%

f(z) € §. We also list the basis number of the DSM and the corresponding maximum STD
error. For the case = 2, our DSM can capture the low-dimensional structure of the solution
very well. For the case § = 1, we need more basis elements or sparse grids to obtain accurate
results. Our DSM still gives a compact representation for the SPDE solutions. For the case
8 = %, one needs a high-order polynomial basis to approximate the rough solution which
makes the gPC method more and more expensive as the dimension of the input variable
increases. The data marked with an asterisk are obtained by extrapolation since it is already
out of memory using the gPC method. The gSC still works but requires many more collocation
points, becoming very expensive. For this difficult problem, our DSM can still give a good
approximation of the SPDE solution. Combined with the error correction approach proposed
in section 3.5, our DSM still offers a very effective alternative.

In Table 7 we show the results for the high-dimensional input test. The reference solution is
obtained by the Monte Carlo method with 10% samples. Both gSC and gPC become extremely
expensive in this case. Since DSM with the collocation representation also becomes quite
expensive, we choose the DSM with the ensemble representation. We use 10* Monte Carlo
samples to represent the DSM basis. Our DSM can still capture about 95% of the STD
information.

We conjecture that the results shown in Tables 6 and 7 may still be valid to some extent
for 2D SPDE problems. Thus, it would be interesting to investigate what the implications for
2D SPDEs would be if we used the results obtained in Tables 6 and 7 as a guide. For this
reason, we substitute these parameters into our computational time model to compare the
computational cost of different methods. In Figure 2, we show the total computational time
of 100 queries using different methods. As we can see, DSM offers significant computational
savings over other traditional methods. The savings of DSM over gPC are several orders of
magnitude. Even compared with gSC, our DSM method still offers considerable savings. In
Figure 3, we plot the critical query number n, for different scenarios. We can see that with
all the cost-saving measures in the offline stage, n. is relatively small. We notice that n. =1
when we compare with gPC and n, is less than 9 when compared with gSC even for the
moderate and difficult cases. All these results demonstrate that DSM is very effective in a
multiquery setting.

5. Numerical examples. In this section, we perform a number of numerical experiments
to test the performance and accuracy of the proposed DSM for elliptic SPDEs with random
coefficients. As we will demonstrate, the DSM could offer accurate numerical solutions to
SPDEs with significant computational saving in the online stage over traditional stochastic



478 M. CHENG, T. Y. HOU, M. YAN, AND Z. ZHANG

—S—gPC
- *-¢gSC
—C— DSM
10'
s
[0
2 B
[ _
£ ¥
10°F -+
T
- i
/+/
e O -.g------0
o - - 8 i} al
10 : 10° ‘
3 4 5 6 7 8 3 4 5 6 7 8
r r
(a) B=2 b) B=1
10°
10°
—S—MC
S | o 9PC -+ -gSC
10 | -+ —gSC 10°,
9 -0~ DSM
~0- DSM
107}
—~ 10}
PR 3
3 )
@ o -
g 107, 4T £ - +-- T
= o - -
_-* B - p
N - £
10 o . )
P o 107
10°%F Pis; M- - -3 a - fg- - - -0 - =]
M 10* .
2 3 4 5 6 7 8 15 16 17 18 19 20
r r
(c) =05 (d) B=1

Figure 2. Total computational time for 100 queries with different 3.

methods. The specific rate of savings will depend on how we represent the data-driven stochas-
tic basis. We will use three methods to represent the data-driven stochastic basis: (i) Monte
Carlo methods, (ii) generalized stochastic collocation methods (gSC), and (iii) generalized
polynomial chaos methods (gPC). We denote them as DSM-MC, DSM-gSC, and DSM-gPC,
respectively.

5.1. DSM for a 1D elliptic SPDE. We consider the following 1D elliptic SPDE with
random coefficient:

(74) - % <a(m,w)%u(m,w)> = f(x), z€D=(0,1), weQ,
(75) u(0,w) =0, wu(l,w)=0.

We will apply the DSM-MC, DSM-gSC, and DSM-gPC methods to solve this problem. When
modeling a whole aquifer or a whole oil reservoir, the correlation length scale for random field
a(x,w) is in general significantly smaller than the size of the computational region. However,
the correlation is typically large enough to fall outside the domain of stochastic homogenization
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Figure 3. Critical query number of the data driven stochastic method.

techniques. In addition, typical sedimentation processes lead to fairly irregular structures and
pore networks. A faithful model should assume only limited spatial regularity of a(z,w). A
covariance function that has been proposed is the following exponential two-point covariance
function:

lz—y|?

(76) Clz,y)=o’e =~ , z,ye(01].

The parameters o2 and A denote the variance and the correlation length, respectively. In this
paper, we choose p=1, 02 =1, and A = 0.1.

There are several ways to produce samples of a(z,w), including the circulant embedding
and the KL expansion. We use the KL expansion here. Let k(x,w) = log(a(z,w)). We expand
k(x,w) in terms of a countable set of uncorrelated, zero mean random variables {&,}5° ; such
that

(77) k‘(l‘,w) = Z \/agn(w)an(m)a
n=1
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where we assume Elk(z,w)] = 0 and {0,,¢,(z)}>2, are the eigenpairs of the covariance
function (76). An important point to note is that for Gaussian random field k(z,w) the random
variables {,}°° ;| are a set of independent standard Gaussian variables, i.e., &, € N(0,1). The
decay rate of the eigenvalues 6,, depends on the regularity of the covariance function (76) and
the correlation length A; see [36]. In our setting, i.e., p =1 and A = 0.1 in (76), the eigenpairs

of the covariance function (76) have analytic expressions
22

CA2w2 417
on(z) = Cp(sin(wpz) + Awy, cos(wpx)), n=1,2,...,

n=12,...,

n

where {w, } are the real solutions of the transcendental equation tan(w) = % and C,, are
normalization constants [16]. In practice we truncate the expansion (77) after a finite number

of terms K and define the coefficient as
(78) a(z,w)=ce n=1 Von. "(w)qb"(x), & € N(0,1).

We choose K = 8 in (78). The function class of the right-hand side is chosen to be § =
span{1,sin(irx), cos(irx)}12,. We use the standard piecewise linear finite element method
with mesh size h = ﬁ to solve this elliptic problem. For the gSC or gPC method, the Hermite
polynomials are used for the stochastic approximation. Since the coefficient a(z,w) has eight
independent random variables, we choose 7 = 8 and p = 3 in the orthonormal basis index (9).
This gives rise to the multi-index set J = 3%, which results in a total number of 165 terms in
the basis functions, i.e., N, = 165. For the Monte Carlo method, we use 4 x 10* realizations
in the offline stage to train the DSM basis.

Let upgps(x,w) denote the data-driven solution and u(x,w) the exact solution. To quantify

the error, we define the relative error of mean and STD in L?(D) as

||a(z) — wpsm(@)l|L2(p)
a(@)[[ 2 (p)

Emean =

and

[[STD(u) — STD(upsm)l|rz(p)
[[STD(u)|r2(p)

€STD =

Convergence of the offline stage. We first test the convergence of the two-level data-
driven basis updating procedure in the offline stage. The updating procedure of the data-
driven basis in the ensemble representation, gSC representation, and gPC representation give
similar results. We show only the results of the DSM in the gPC representation. Let &, =
|7 (2, w) || L2(px ) denote the L* norm of the maximum error, where 7(z,w) is defined in (43).

We list in Table 8 the decay of the maximum error. Initially, we solve (74) with f(z) =1
to obtain the data-driven basis A, which has six effective modes. It is clear that this stochastic
basis is insufficient. The maximum residual error is 38.05%. Then we begin the two-level data-
driven basis updating procedure. Every time, we add three modes to the data-driven basis
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Table 8
Error decay of the maximum residual error in the DSM-gPC method.

DSM mode | m =6 m=9 | m=12 | m=15 | m=18 | m =21
Er 38.06% | 17.28% | 4.983% | 2.014% | 1.402% | 0.798%

Table 9
Relative errors of statistical quantities computed by DSM and gPC.

Compare to u Compare to u
Methods P — P 9C 1 Time (sec.)
€mean | €sSTD €mean | €STD
| gPCN, =165 [ 0.1149% | 1.326% | NA | NA | 21762 |

DSM m =6 3.9066% | 11.912% | 3.8762% | 10.982% 0.0047

DSM m =21 | 0.1482% | 1.349% | 0.1178% | 0.1562% 0.0669

A. After six updates, our method converges (here the termination condition is &, < 0.8%),
and we obtain an optimal data-driven stochastic basis, which has 21 modes.

Error analysis of DSM. To understand the source of errors in the DSM method, we
decompose the error into two terms. The first source of error &; is the difference between the
exact solution wezqct and the gPC approximate solution uypc. The second source of error &
is the difference between the DSM solution upgas and the gPC solution ugzpc. More precisely,
we have

&= Uexact — UDSM = {uexact - ugPC} + {ugPC - UDSM}
=& + &s.

The error & is controlled by the multi-index set J. According to Cameron—Martin theorem
[5], £1 converges in the L?(D x ) sense as |J| — oo on the condition that the exact solution
Uezact has a finite second moment, while the error £ diminishes as m — N,. Thus, there is
no need to increase m any further once & < &;.

Next, we test the effectiveness of the data-driven stochastic basis. We solve the (74)
with the coefficient a(x,w) given by (78) and f(z) = sin(1.27z) + 4cos(3.6wz). Here the
“exact” solution is obtained by the Monte Carlo method with 10° realizations. The relative
errors of mean and STD are tabulated in Table 9. The first and second columns are the
comparisons between the gPC or DSM solution with the exact solution, while the third and
fourth columns are the comparisons between the gPC and DSM-gPC solutions. Indeed, as
the number of mode pairs in DSM increases, the L?(D) errors of mean and STD decrease,
indicating the convergence of upgys to ugpc. When m = 21, the error between the DSM
solution and the exact solution is comparable with the error between the gPC solution and
the exact solution.

Multiple query results in online stage. In the DSM-MC method, we use 40, 000 realizations
in the computation, and its offline training stage takes about 1,115 seconds. The DSM-gSC
method uses 2,193 sparse grid points in the computation, and its offline training takes 283
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seconds. The DSM-gPC method uses 165 Hermite polynomials in the polynomial chaos basis,
and its offline training takes 365 seconds. We use m = 21 modes in the DSM basis in the
DSM-MC, DSM-gSC, and DSM-gPC methods in the online stage to solve (74). We randomly
generate 100 force functions, i.e., f(z) € {¢; sin(2wk;z + ¢;) + d; cos(2ml;x + ;) 1120 | where ¢;,
d;, ki, l;, ¢;, and ; are random numbers. In Figure 4 we show the mean and STD comparison
of DSM in the Monte Carlo, gSC, and gPC representations in the online stage. One can see
that the stochastic basis generated by DSM-MC, DSM-gSC, and DSM-gPC is very effective in
the sense it can be used to solve (74) with a large class of right-hand side force functions. We
note that DSM-gSC and DSM-gPC are more accurate than DSM-MC. Taking into account
the training time in the offline stage and the accuracy in the online stage, DSM-gSC gives the
best performance. To further illustrate the necessity of using multiple trial functions to update
the stochastic basis, we plot the numerical results obtained by nine modes in the DSM basis
and the 21 modes in the DSM basis in Figure 5. We plot only the result of DSM-gSC, since the
results of DSM-MC and DSM-gPC are similar. We can see that the computation using only
nine modes gives significantly larger errors than those produced by the computation using 21
modes, indicating that the stochastic basis with nine modes is not sufficient to represent the
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Table 10
The a posteriori error estimate of the first-order moment. m = 21.
| Mee | 1EWlle> | Efosadllez | Tare | mhn. | Ev | E» |

50 5.699e-2 5.694e-2 2.292e-4 | 2.271e-4 | 0.124% | 0.406%

200 | 5.699e-2 5.694e-2 3.967e-4 | 3.156e-4 | 0.124% | 0.281%

800 | 5.699e-2 5.694e-2 4.301e-5 | 6.312e-5 | 0.124% | 0.145%
Table 11

The a posteriori error estimate of the second-order moment. m = 21.

[ Mee [ NIEWAIL2 | [|E[ubsadllez | mhs,. B, | B1 | B |
50 6.869e-3 6.810e-3 5.531e-5 | 7.046e-5 | 0.875% | 0.123%
200 6.869e-3 6.810e-3 4.143e-5 | 3.705e-5 | 0.875% | 0.518%
800 6.869e-3 6.810e-3 1.721e-5 | 1.832e-5 | 0.875% | 0.722%

class of forcing functions that we consider here.

The a posteriori error estimate and error correction in the online stage. We use the
same notation as in section 3.5. To calculate the second-order moment, we denote r%(z,w) =
u? (2, w) — u% gy (2, w) and use 7(z) and 72(z) to denote the corresponding sample mean and

sample STD. Let 77%/[% = ||7%(z)|| and 77]2\47-0 = ||32]\(/[i)|| denote their L?(D) norm, where M,

is the number of Monte Carlo samples. We solve (74) only once with coefficient a(z,w) given
by (78) and f(x) = sin(1.27wx) 4 4cos(3.6mx) as an example. Here the “exact” solution is
obtained by the Monte Carlo method with 10° realizations. In Tables 10-13, E; stands for
the relative error between the data-driven solution and the exact solution without using the
Monte Carlo error correction, while Fy stands for the same relative error with the Monte
Carlo error correction.

Tables 10 and 11 show the a posteriori error estimate of the first- and second-order mo-
ments, respectively. Since the data-driven basis with 21 modes is approximately a complete
basis, several hundreds of Monte Carlo simulations indicate the convergence of the data-driven
solution, i.e., 73, 4273, < ||Elupsm]llz2 and ny,; 4203, < ||E[ufgy]|r2. In this case,
the error correction is not necessary. In practical computations, the exact solution is unknown.
This example shows that when the data-driven stochastic basis spans the SPDE solution space,
this a posteriori error estimate is very effective.

Tables 12 and 13 show the error correction of the first- and second-order moments, re-
spectively. We choose the first 10 modes in the data-driven basis to produce an insufficient
basis. The first several hundred Monte Carlo simulations indicate that the L?(D) norm of the
residual error cannot be neglected. One can see that every time we increase the realization
number M,.. by a factor of 4, the norms of the sample STD T]%/Im and 7712\47@ decrease by a factor
of 2. When the ratios TJ%/[TC / szm and 7712\/[m / 7711\/[m gradually become less than some predefined
threshold, we obtain a good error correction for the data-driven solution. In this example, the
relative error of the second-order moment will be 4.675% if we use the insufficient data-driven
basis to solve the SPDE. However, when we use several hundred Monte Carlo simulations to
provide an error correction, this error becomes less than 1%.
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Table 12
The error correction of the first-order moment. m = 10.
| Mee | 1EWllee | [|Eupsmlllze | 7h. | 7. | Ex | Ea |
50 5.699e-2 5.623e-2 2.567e-3 | 1.017e-3 | 1.816 % | 3.701 %
200 5.699e-2 5.623e-2 1.101e-3 | 4.264e-4 | 1.816 % | 0.736 %
800 5.699¢-2 5.623e-2 9.596e-4 | 2.077e-4 | 1.816 % | 0.235 %
3200 5.699¢e-2 5.623e-2 9.617e-4 | 1.075e-4 | 1.816 % | 0.165 %
12800 5.699e-2 5.623e-2 1.015e-3 | 5.381e-5 | 1.816 % | 0.144 %
Table 13
The error correction of the second-order moment. m = 10.
| Myc | ||E[“2]||L2 | ||E[U2DSM]||L2 | 7711v1m 7712%C | £y | Es |
50 6.869e-3 6.551e-3 5.765e-4 | 2.137e-4 | 4.675% | 4.483%
200 6.869e-3 6.551e-3 2.901e-4 | 1.009e-4 | 4.675% | 0.793%
800 6.869e-3 6.551e-3 2.988e-4 | 4.155e-5 | 4.675% | 0.446%
3200 6.869e-3 6.551e-3 3.288e-4 | 3.166e-5 | 4.675% | 0.185%
12800 6.869e-3 6.551e-3 3.216e-4 | 1.586e-5 | 4.675% | 0.059%

5.2. DSM for 2D elliptic SPDE. In this section, we apply our data-driven method to
solve the following 2D stochastic elliptic problem with a random coefficient:

(79) -V (a(w,y,w)Vu(x,y,w)) = f(x,y), (m,y) €D, weq,
(80) u(z,y,w) =0, (x,y) € 0D, w €,

where D = [0, 1] x [0,1]. The random coefficient is defined as
(81) ala,y,w) = eXZm AESED, g e N(0, 1),

where the &;’s are independent random variables, \; = 1/i?, and ;(x,y) = sin(27iz) cos(2m(5—
i)y), i = 1,...,4. In the offline stage, the function class of the right-hand side in the precon-
ditioning DSM method is chosen to be § = {sin(27k;z + ¢;) cos(2ml;y + ;) 2221, where k; and
l; are random wavenumbers and ¢; and ¢; are random phases. We use this random training
strategy to reduce the computational cost. The FEM is used for the spatial discretization.
We first partition the domain D into squares with mesh size h = 1—§8 and then further par-
tition them into triangular meshes. Taking into account the slow convergence of DSM-MC,
we only discuss and compare DSM-gSC and DSM-gPC here. Hermite polynomials are used
to approximate the stochastic solution. Since the coefficient a(x,y,w) has four independent
random variables, we choose = 4 and p = 3 in the orthonormal basis index (9), which results
in a total number of 35 terms in the basis functions, i.e., IV, = 35.

Multiple query results in the online stage. The DSM-gSC method uses 201 sparse grid
points in the computation, and its offline training takes 362 seconds. The DSM-gPC method
uses 35 Hermite polynomials in the polynomial chaos basis, and its offline training takes
1,261 seconds. Finally, both the DSM-gSC and DSM-gPC methods produce m = 13 modes.
In the online stage we use them to solve (79). We randomly generate 100 force functions

of the form f(z,y) € {sin(k;mz + l;7y) cos(m;mx + n;my)} 129, where k;, l;, m;, and n; are
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Figure 6. Comparison of DSM in the gSC and gPC representations. DSM basis m = 13.
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Figure 7. Comparison of the mean and STD in the 2D SPDE with Gaussian random variables.

random numbers. In Figure 6, we show the mean and STD comparison of DSM in gSC and
gPC representations in the online stage. One can see that both the DSM-gSC basis and the
DSM-gPC basis are very effective in the sense they can be used to solve (79) with a large
class of right-hand side force functions. Here the “exact” solution is obtained by the stochastic
collocation method with 1,305 sparse grid points. In Figure 7 we show one of the query results,
where f(x,y) = sin(1.3mz + 3.47y) cos(4.3mz — 3.1mwy). The mean and STD of the solution
obtained by the stochastic collocation method and DSM-gSC as well as their errors are given.
In this example, the relative error of mean and STD are 0.01% and 0.65%, respectively. The
DSM-gPC has similar results (not shown here).

Compare the DSM, gPC, and gSC. Let n denote the total query number. The computa-
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Figure 8. The computation time comparison. All times are in seconds.

tional cost of gSC will be t45¢(n) = 51.80n. For the gPC method with N, = 35, we generate
the stiffness matrix S and factorize it, which takes 226.57 seconds. In the online stage, one
step of forward and backward substitutions takes 35.32 seconds. The computational cost of
gPC will be t,pc(n) = 226.57 + 35.32n. In the online stage of DSM, the size of the stiffness
matrix S will be smaller than that of the gPC method. One step of forward and backward
substitutions takes 3.89 seconds. Recall that the offline training of DSM-gSC and DSM-gPC
takes 362 seconds and 1,261 seconds, respectively. The computational cost of DSM-gSC and
DSM-gPC will be tpsar—gsc(n) = 362 + 3.89n and tpsy—gpc(n) = 1261 + 3.89n. We plot
the total computational time in Figure 8. Simple calculation shows that if we need to solve
the original SPDE with more than five (or eight) different forcing functions, the DSM-gSC
will be superior to the gPC (or gSC) solver. Similar results can be obtained for the DSM-gPC
solver.

Compare offline stage of DSM-gSC and DSM-gPC. The online stage of DSM-gSC and
DSM-gPC have the same accuracy and computation time; however, the offline time is different.
Let Nj, denote the physical degree of freedom, N, denote the number of polynomials, and J
denote the number of stochastic collocation (sparse grid) points. In the DSM-gPC method
we solve a coupled deterministic PDE system with N;, N, unknowns to obtain the expansion
coefficients, while in the DSM-gSC method we solve J uncoupled deterministic equations
with N, unknowns. Each solution corresponds to a collocation point and has its own weight.
We use gSC and gPC to solve (79) with coefficient a(x,y,w) given by (81) and f(z,y) =
sin(1.37x + 3.47y) cos(4.3mx — 3.17y). We fix N}, = 1282 and choose the level of the sparse
grid from 2 to 5, i.e., J =9, 33, 81, and 201 in the gSC method, and choose N, = 5, 15, 25,
and 35 in the gPC method. The “exact” solution is obtained by the level nine quadrature rule,
which has 2,129 sparse grid points. Table 14 indicates when the solution is smooth the gSC
method is very effective. When we increase the number of polynomials N, the gPC method
and the DSM-gPC method become very expensive or even infeasible. The main cost comes
from solving the linear equation system due to the memory requirement in a direct method
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Table 14
Relative errors of statistical quantities computed by gSC and gPC.

| gSC method | gPC method |
J €mean esTD time (sec.) | Np Emean esTD time (sec.)
9 0.1636% 5.268% 3.529 5 0.6921% 15.05% 9.934
33 0.0230% 1.338% 9.628 15 | 0.0385% 1.841% 58.67
81 | 0.0047% | 0.2582% 21.84 25 | 0.0051% | 0.3292% 183.8
201 | 0.0003% | 0.0259% 51.80 35 | 0.0020% | 0.1902% 417.3

and the computational time in an iterative method. However, the DSM-gSC method is still
very effective due to its nonintrusive nature.

To further demonstrate the effectiveness of DSM-gSC, we consider (79) with another
random coefficient given by

8
(82) a(z,y,w) =8.01 + Z &i(w) sin(mizx) cos(m(9 — 1)y),
i=1

where the &’s are independent uniform random variables on [0,1]. In the offline stage,
the function class of the right-hand side in the preconditioning DSM is chosen to be § =
{sin(27k;x + ¢;) cos(2ml;y + ¢;) 2221, where k; and [; are random wavenumbers, while ¢; and
; are random phases. As before, we use this random training strategy to reduce the com-
putational cost. The FEM is used for the spatial discretization with A = ﬁ. Legendre
polynomials are used for the stochastic space approximation. Since the coefficient a(z,y,w)
has eight independent random variables, we choose r = 8 and p = 3 in the orthonormal basis
index (9), which results in a total number of 165 basis functions, i.e., N, = 165. In this case,
the gPC method is too expensive to compute within the limit of our computational resources.

We use the level four sparse grid in the stochastic collocation method to train the data-
driven stochastic basis, which has 609 points. We have used higher-level sparse grid points
for the convergence study and found out the relative errors of mean and STD between the
solutions obtained by 609 sparse grids and higher-level sparse grids are smaller than 0.1%.
The offline training time of the DSM-gSC method takes 674 seconds. The DSM-gSC method
gives m = 10 modes. In the online stage we use them to solve (79). We randomly generate
100 force functions of the form f(x,y) € {sin(k;wz + liwy) cos(m;mz + n;7wy) 1LY, where k;,
l;, m;, and n; are random numbers. In Figure 9 we show the mean and STD comparison
of DSM in gSC representation in the online stage. Here the reference solution is obtained
by the stochastic collocation method with 2177 sparse grids. One can see that the DSM-
gSC basis is very effective in the sense they can be used to solve (79) with a large class of
right-hand side force functions. In Figure 10 we show one of the query results with f(x,y) =
sin(5.3mx + 2.3mwy) cos(6.4mx — 4.1wy). The mean and STD of the solution obtained by the
stochastic collocation method and DSM-gSC as well as their errors are given. In this example,
the relative error of the mean and STD are 0.019% and 0.64%, respectively.

5.3. An advantage of the DSM-MC method. When the input dimension of the random
variables is high or if the stochastic solution is not sufficiently smooth, the DSM-gSC method
will be very expensive or even infeasible. Although the Monte Carlo method has a slow
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Figure 10. Comparison of the mean and STD in the 2D SPDE with uniform random variables.

convergence rate, its computational error does not depend on the dimension of the problem or
the regularity of the stochastic solution. Therefore, the DSM-MC method will be the method
of choice. In some engineering applications, the dimension of the input random space could
be very large, but the effective dimension of the output random space may be small due to
the fast decay of the eigenvalues of the covariance kernel. To demonstrate the effectiveness of
DSM-MC in this scenario, we consider the 1D elliptic SPDE (74) with a random coefficient
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given below:

M
(83) a(z,w) = Z m=PEn (sin(2rma + 1) + 1),

m=1

where the &,,’s and 7,,’s are independent uniform random variables on [0,1]. We choose
M =15 and 3 = 0 in the coefficient (83). We run 4 x 10* realizations of Monte Carlo samples
in the offline stage to train the DSM basis. The offline training takes 641 seconds and gives
16 modes in the DSM basis. In the online stage, we randomly generate 100 force functions,
ie., f(z) € {¢;sin(kimx + ¢;) + d; cos(lymx + ;) 229 ) where ¢;, ki, ¢4, d;, 1;, and ¢; are random
numbers. For each query we run 10° realizations of Monte Carlo samples to obtain the exact
solution, which takes 790 seconds. We use the DSM-MC solver to obtain the DSM solution,
which takes 0.01 second. As we can see, the computational savings are huge. In Figure 11 we
plot the mean and STD comparison of the DSM solution and the exact solution in the online
stage. This example demonstrates that the DSM-MC basis could be very effective when the
input stochastic dimension is high but the effective dimension of the output stochastic solution

is small.

6. Concluding remarks. In this paper, we proposed and developed a data-driven stochas-
tic method (DSM) to study the multiquery problem of SPDEs. Our method consists of an
offline stage and an online stage. In the offline stage, a data-driven stochastic basis {A;(w)}I"
is computed using the KL expansion and a two-level optimization approach based on multi-
ple trial functions. In the online stage, we expand the SPDE solution under the data-driven
stochastic basis and solve a set of coupled deterministic PDEs to obtain the coefficients. By
exploring the low-dimensional structure of the solution, our DSM offers considerable compu-
tational saving over some traditional methods. Depending on the numerical representations
of the data-driven stochastic basis {A;(w)}, three versions of DSM have been proposed, i.e.,
DSM-MC, DSM-gSC, and DSM-gPC. They have their own advantages and disadvantages.
The DSM-gSC and DSM-gPC methods depend on the multi-index of the orthonormal poly-
nomial basis. These methods are very accurate but could be expensive when the dimension
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of the input random variables is large. Under the same computational condition, the DSM-
gSC can handle a larger multi-index of the orthonormal polynomial basis than the DSM-gPC
method due to its nonintrusive nature. Since the stochastic basis of DSM-gSC and DSM-gPC
is expanded in certain basis, we also propose an a posteriori error estimate and error correction
based on the Monte Carlo method. This further improves the accuracy of the DSM method.
The DSM-MC method has an advantage over DSM-gSC and DSM-gPC in the sense that its
accuracy does not depend on the dimension of the input random variables or the regularity of
the stochastic solution. This advantage is particularly attractive when the dimension of the
input random variables is large but the effective dimension of the output stochastic solution
is small. Numerical examples have been presented for both 1D and 2D elliptic PDEs with
random coefficients to demonstrate the accuracy and efficiency of the proposed method.

We should point out that data-driven philosophy can be extended to the cases where the
right-hand side function involves randomness, i.e., f(x,w) and the time-dependent SPDEs. For
the time-dependent SPDESs, we have recently designed a dynamically biorthogonal stochastic
method to solve time-dependent SPDEs [6, 7]. An important feature of the dynamically
biorthogonal stochastic method is that it offers considerable computational savings even for
a single query since we compute the reduced sparse basis on the fly. When the dimension of
the SPDE solution space is large, the current version of the DSM method does not offer much
computational saving. We are currently developing a multiscale version of DSM to handle
this class of problems.

Appendix. KL expansion of the stochastic solution in gPC basis. In this appendix, we
will derive the KL expansion of the stochastic solution represented in the gPC basis. Since
the stochastic basis H(£) in the gPC representation (36) is orthonormal, we can calculate the
KL expansion of the solution without calculating its covariance function.

We assume the solution is given by u(z,w) = V(2)H(£)?. By some stable orthogonal-
ization procedures, such as the modified Gram—Schmidt process, V(z) has the decomposition
V(z) = Q(z)R, where Q(z) = (q1(x), ¢2(2), .. ., g, (x)) are orthonormal bases on L*(D) and
R is an N,-by-N,, upper triangular matrix. RR" is a positive definite symmetric matrix and
has the SVD RR” = WAyW?. Here Ay = diag(A1, Az, ..., Ay,) is a diagonal matrix, and
W is an orthonormal matrix. Then, the covariance function can be rewritten as

Covy(z,y) = Qz)WALTW' QT (y).

It is easy to see that the eigenfunctions of covariance function Cov,(z,y) are

(84) U(r) = Q(z)WAZ,

and the stochastic basis 4;(w) in the KL expansion can be expressed in terms of the polynomial
chaos basis,

(85) Ai(w) =Y AaiHa(§W)), i=1,...,N,,

acy

where the N,-by-N, matrix A = (Aq;) is given by

(86) A=R" WA{J%.
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From (84)-(86) we know that U(z) = (ui(x),u2(z),...,un,(z)) are orthogonal bases on
L?*(D), i.e.,

(87) /D U(e)"U(z)dz = Ay,

and A is an N)-by-N, orthonormal matrix. In the gPC representation, we need only use (84)
and (86) to compute the KL expansion of the stochastic solution. There is no need to form
the covariance function, which greatly reduces the computational cost.

In practical computations, we sort the sequence of U(z) and the columns of A so that the
eigenvalues in Ay are in a descending order. According to the eigenvalue decay property of
the diagonal matrix Ay, we can truncate the representation (84) and (86) into m terms and
obtain the truncated KL expansion

m

(88) u(a,w) = > Y ui(r)AaiHa(¢(w)) = Ux)ATHT,

i=1 a€J

where U(z) = [ui(z),...,un(x)] and A = [Ay,...,A;,,] is an Np-by-m matrix, satisfying
ATA =1,
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