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Abstract

The immersed boundary method has evolved into one of the most useful computational methods in studying fluid struc-
ture interaction. On the other hand, the immersed boundary method is also known to suffer from a severe timestep stability
restriction when using an explicit time discretization. In this paper, we propose several efficient semi-implicit schemes to
remove this stiffness from the immersed boundary method for the two-dimensional Stokes flow. First, we obtain a novel
unconditionally stable semi-implicit discretization for the immersed boundary problem. Using this unconditionally stable
discretization as a building block, we derive several efficient semi-implicit schemes for the immersed boundary problem by
applying the small scale decomposition to this unconditionally stable discretization. Our stability analysis and extensive
numerical experiments show that our semi-implicit schemes offer much better stability property than the explicit scheme.
Unlike other implicit or semi-implicit schemes proposed in the literature, our semi-implicit schemes can be solved explicitly
in the spectral space. Thus the computational cost of our semi-implicit schemes is comparable to that of an explicit scheme,
but with a much better stability property.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The immersed boundary method was originally introduced by Peskin in the 1970s to model the flow around
heart valves. Now it has evolved into a general useful method in studying the motion of one or more massless,
elastic surface immersed in an incompressible, viscous fluid, particularly in biofluid dynamics problems where
complex geometries and immersed elastic membranes are present. The method has been successfully applied to
a variety of problems including blood flow in the heart [25,16–18,26,19,20], vibrations of the cochlear basilar
membrane [2,8], platelet aggregation during clotting [7,34], aquatic locomotion [5,6,11,35,3], flow with sus-
pended particles [5,31], and inset flight [21,22], We refer to [27] for an extensive list of applications.
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The immersed boundary method employs a uniform Eulerian grid over the entire domain to describe the
velocity field of the fluid and a Lagrangian description for the immersed elastic structure. The force generated
by the elastic structure drives the fluid and the fluid moves the elastic structure. This interaction is expressed in
terms of the spreading and interpolation operations by use of smoothed Delta functions. We remark that
LeVeque and Li have introduced the Immersed Interface Method in [14] in which they avoid using the
smoothed Delta functions. Instead they use the jump conditions to modify their finite difference discretization
near the interface to obtain a more accurate discretization.

One of the main difficulties that the immersed boundary method encounters is that it suffers from a severe
timestep restriction in order to keep the stability [27,32,30]. This has been the major limitation of the immersed
boundary method. This restriction is typically much more severe than the one that would be imposed from
using an explicit discretization for the convection term in the Navier–Stokes equation. The instability is known
to arise from large boundary force and small viscosity [32]. Much effort has been made to remove this restric-
tion. Some implicit and semi-implicit methods have been proposed in the literature [33,23,15]. Despite of these
efforts, the timestep restriction has not been resolved satisfactorily. The computational cost of using an impli-
cit or semi-implicit scheme is still too high to be effective in a practical computation. To date, almost all prac-
tical computations using the immersed boundary method have been performed using an explicit discretization.

In this paper, we develop several efficient semi-implicit schemes to compute the motion of an elastic inter-
face immersed in a two-dimensional, incompressible Stokes flow. There are several important ingredients in
deriving our semi-implicit schemes. The first one is to use the arclength and tangent angle formulation to
describe the dynamics of the immersed interface [9]. We remark that Ceniceros and Roma have also used
the arclength and tangent angle formulation to alleviate the stiffness of the viscous vortex sheet with surface
tension in [4]. The second one is to obtain an unconditionally stable semi-implicit discretization of the
immersed boundary problem. Throughout this paper, we use the term ‘‘stability” to mean that the energy
norm of the solution can be bounded in terms of the energy norm of the initial data, which is a weaker result
than proving that the difference between two solutions in the energy norm can be bounded in terms of the
energy norm of their difference at time zero. The third ingredient is to perform small scale decomposition
to the unconditionally stable discretization to obtain our efficient semi-implicit schemes. An important feature
of our small scale decomposition is that the leading order term, which is to be discretized implicitly, can be
expressed as a convolution operator. This property enables us to solve for the implicit solution explicitly using
the Fourier transformation. Thus, the computational cost of our semi-implicit schemes is comparable to that
of an explicit method. This offers a significant computational saving in using the immersed boundary method.

The small scale decomposition was first developed by Hou et al. [9,10]. They applied this method to remove
the stiffness from interfacial flow with surface tension, which has proved to be very successful. Due to the cou-
pling between the elastic boundary with the fluid, it is more difficult to remove the stiffness induced by the
elastic force in the immersed boundary method. To remove the stiffness in the immersed boundary method,
we need to decouple the stiffness induced by the elastic force from the fluid flow in such a way that the resulting
semi-implicit discretization is still unconditionally stable. This is accomplished by using a semi-implicit discret-
ization which preserves certain important solution structures which exist at the continuous level. Without
obtaining this unconditionally stable semi-implicit discretization, a straightforward application of the small
scale decomposition to the immersed boundary method would not provide an efficient semi-implicit scheme
with the desirable stability property. Very recently, Newren et al. have obtained an unconditionally stable dis-
cretization for linear force in [24]. However, they did not perform small scale decomposition to their uncon-
ditionally stable discretization. As we will demonstrate in this paper, the unconditionally stable semi-implicit
discretization without using the small scale decomposition is still very expensive and the gain over the explicit
discretization is quite limited.

We develop several efficient semi-implicit schemes for both the steady Stokes flow and the unsteady Stokes
flow respectively. In both cases, our semi-implicit schemes work very well. In the steady Stokes flow, we also
develop a fourth order semi-implicit scheme by using the integral factor method. For the unsteady Stokes flow,
we develop a second order semi-implicit method by combining our small scale decomposition with a well
known second order temporal discretization [13,27]. To illustrate the stability properties of our semi-implicit
schemes, we apply our methods to several prototype problems and test our schemes for a range of elastic coef-
ficients and viscosity coefficients. Our numerical results confirm that the semi-implicit schemes remove the high
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order stability constraint induced by the elastic force. In the case of unsteady Stokes equation, we also confirm
the second order accuracy of our semi-implicit scheme.

This paper is organized as follows. First, we review the classical formulation of the immersed boundary
method in Section 2. Then, we introduce the arclength and tangent angle formulation in Section 3. In Section
4, we describe the spatial discretization of the immersed boundary method. In Sections 5 and 6, we develop the
numerical schemes for steady Stokes flow and unsteady Stokes flow respectively. The numerical results are
presented in Section 7. Our numerical studies will focus on the stability restriction and computational cost
of our methods. Some concluding remarks are given in Section 8.

2. Review of the immersed boundary method

For simplicity, we just consider a viscous incompressible fluid in a two-dimensional domain X, containing
an immersed massless elastic boundary in the form of a closed simple curve C. The configuration of the bound-
ary is given in a parametric form: Xða; tÞ; 0 6 a 6 Lb, Xð0; tÞ ¼ XðLb; tÞ, a tracks a material point of the bound-
ary. We consider only the Stokes equations in this paper and would neglect the convection term. Then the
governing equations are given as follows:

q
ou

ot
¼ �rp þ lMuþ fðx; tÞ; ð1Þ

r � u ¼ 0; ð2Þ
oX

ot
ða; tÞ ¼ uðXða; tÞ; tÞ; ð3Þ

where u is the fluid velocity, p is the pressure, q and l are constant fluid density and viscosity, fðx; tÞ is the force
density, which is not zero only on the boundary and which is infinite there. The force density can be expressed
as below

fðx; tÞ ¼
Z Lb

0

Fða; tÞdðx� Xða; tÞÞda; ð4Þ

d denotes the two-dimensional Dirac delta function and

Fða; tÞ ¼ o

oa
ðT sÞ; ð5Þ

T ¼ T
oX

oa

���� ����� �
: ð6Þ

The choice of function T in this paper is computed by Hook’s law

T ¼ Sb

oX

oa

���� ����� 1

� �
; ð7Þ

where Sb is the elastic coefficient of the boundary, and s is the unit tangent vector along the boundary, which is
defined as

s ¼ oX

os
oX

os

���� �����
: ð8Þ

This choice of force density has been used widely in the literature in both computational and theoretical stud-
ies [12,29,33].

We can rewrite (3) in the following way:

oX

ot
ða; tÞ ¼

Z
X

uðx; tÞdðx� Xða; tÞÞdx: ð9Þ

Next, we introduce the spreading and interpolation operations. The spreading and interpolation operators are
defined as follows:
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LðXÞðgðaÞÞðxÞ ¼
Z

C
gðaÞdðx� Xða; tÞÞda; ð10Þ

L�ðXÞðuðxÞÞðaÞ ¼
Z

X
uðxÞdðx� Xða; tÞÞdx: ð11Þ

It is easy to show that L and L� are adjoint operators:

< uðxÞ; LðXÞðgðaÞÞ>X ¼
Z

X
uðxÞ

Z
C

gðaÞdðx� Xða; tÞÞda

� �
dx

¼
Z

X

Z
C

uðxÞgðaÞdðx� Xða; tÞÞdadx ¼
Z

C

Z
X

uðxÞgðaÞdðx� Xða; tÞÞdx da

¼
Z

C
gðaÞ

Z
X

uðxÞdðx� Xða; tÞÞdx

� �
da ¼< L�ðXÞðuðxÞÞ; gðaÞ>C; ð12Þ

where the inner product are defined as follows:

hu; viX ¼
Z

X
uðxÞvðxÞdx; ð13Þ

hf ; giC ¼
Z

C
f ðaÞgðaÞda: ð14Þ

Eqs. (1) and (2) are the familiar Stokes equations of viscous incompressible fluid. Eqs. (3) and (4) represent the
interaction of the fluid and the elastic boundary. The elastic boundary applies the force to the fluid, the fluid
carries the immersed boundary, and the force density is determined by the configuration of the boundary.

3. The arclength-tangent angle formulation

In studying the evolution of a curve, it is useful to represent the curve by its tangent angle h and local arc-
length derivative sa. Previously, Hou et al. [9] exploited this formulation and combined it with a so-called
‘‘small scale decomposition” reformulation to remove the stiffness induced by surface tension.

Consider the evolution of a simply closed curve C with known normal and tangent velocity fields, U ; V .
Assume the curve is represented by Xða; tÞ; a 2 ½0;Lb�. We define the arclength derivative, sa, and the tangent
vector, h, as follows

saða; tÞ ¼ jXaða; tÞj; ð15Þ
ðxaða; tÞ; yaða; tÞÞ ¼ saða; tÞðcos hða; tÞ; sin hða; tÞÞ: ð16Þ

The closed curve C evolves according to

oX

ot
¼ uðX; tÞ ¼ Unþ V s; ð17Þ

where s and n are the unit tangent and normal vectors of the curve respectively. According to the Frenet for-
mula, we have os

os ¼ kn; on
os ¼ �ks, here s is the arclength variable. It is easy to see that sa and h satisfy the fol-

lowing evolution equations [9]:

ðsaÞt ¼V a � haU ; ð18Þ

ht ¼
U a

sa
þ V ha

sa
: ð19Þ

Given sa and h, the curve C can be reconstructed up to a translation by integrating (16). However, we also need
a point on the boundary to provide the constant of integration.

Using the sa � h formulation, we can reformulate the immersed boundary problem as follows:

q
ou

ot
¼ �rp þ lMuþ LðXÞðFðsa; hÞÞ; ð20Þ

r � u ¼ 0; ð21Þ
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U ¼ L�ðXÞðuðxÞÞ � n; ð22Þ
V ¼ L�ðXÞðuðxÞÞ � s; ð23Þ
ðsaÞt ¼ V a � haU ; ð24Þ

ht ¼
U a

sa
þ V ha

sa
; ð25Þ

where

Fðsa; hÞ ¼
o

oa
ðT sÞ ¼ Sbðsa;asþ ðsa � 1ÞhanÞ: ð26Þ

4. Spatial discretization

We use the spectral method to discretize both the Stokes equations and the immersed boundary equations
in space since we work on periodic domains. We first discuss the discretization of the Stokes equations in a
regular N � N Cartesian grid with a uniform meshsize h. Let xj ¼ jh and yj ¼ jh. The discrete Fourier trans-
form and inverse Fourier transform are defined as follows:

F h;xð/Þðk; yÞ ¼
1

N

XN�1

j¼0

/ðxj; yÞe�ikxj ¼ b/ðk; yÞ; �N=2þ 1 6 k 6 N=2; ð27Þ

F h;yð/Þðx; kÞ ¼
1

N

XN�1

j¼0

/ðx; yjÞe�ikyj ¼ b/ðx; kÞ; �N=2þ 1 6 k 6 N=2; ð28Þ

F�1
h;xðb/Þðxj; yÞ ¼

XN=2

k¼�N=2þ1

b/ðk; yÞeikxj ¼ /ðxj; yÞ; 0 6 j 6 N � 1; ð29Þ

F�1
h;yðb/Þðx; yjÞ ¼

XN=2

k¼�N=2þ1

b/ðx; kÞeikyj ¼ /ðx; yjÞ; 0 6 j 6 N � 1: ð30Þ

Now we introduce the discrete differential operator using the discrete Fourier transform defined above. For a
function /ðx; yÞ defined in the fluid domain X, we approximate its spatial derivatives as follows:

ðDh;x/Þðx; yÞ ¼ F�1
h;xðikðF h;x/Þðk; yÞÞ; ð31Þ

ðDh;y/Þðx; yÞ ¼ F�1
h;yðikðF h;y/Þðx; kÞÞ: ð32Þ

Denote rh ¼ ðDh;x;Dh;yÞ. The differential operators are discretized in terms of Dh:

rp ! rhp; ð33Þ
r � u! rh � u; ð34Þ
r2u! rh � rhu � r2

hu: ð35Þ

Next, we describe the discretization of the immersed boundary. We employ a Lagrangian grid with grid
space Da. The number of grid points along the boundary is Nb. For a function wðaÞ defined on the interface
C, we define the discrete Fourier transform and its inverse as follows:

FDaðwÞðkÞ ¼
1

N b

XNb�1

j¼0

/ðajÞe�ikaj ¼ bwðkÞ; aj ¼ jDa; ð36Þ

F�1
Da ðbwÞðajÞ ¼

XNb
2

k¼�Nb
2 þ1

bwðkÞeikaj ¼ wðajÞ: ð37Þ
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When the interface is a closed curve, we can approximate the derivative operator along the interface by the
spectral derivative:

ðDDawÞðaÞ ¼ F�1
Da ðikðFDa/ÞðkÞÞ: ð38Þ

When the solution is not periodic, we can also use a finite difference method to discretize the derivative, we
refer to [27] for more details.

Now we discuss the discretization of the spreading and interpolation operators. These two operators both
involve the use of a discrete delta function. The discrete delta function we use is introduced by Peskin in [27]:

dhðx; yÞ ¼
1

h2
/

x
h

� �
/

y
h

� �
; ð39Þ

and

/ðrÞ ¼

1
8

3� 2jrj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p� �
; jrj 6 1;

1
8

5� 2jrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� �
; 1 6 jrj 6 2;

0; jrj > 2:

8>>><>>>: ð40Þ

Using the above discrete delta function, we can discretize the spreading and interpolation operator as follows

LhðXÞðgðaÞÞðxÞ ¼
X
a2GC

gðaÞdhðx� Xða; tÞÞDa; ð41Þ

L�hðXÞðuðxÞÞðaÞ ¼
X
x2GX

uðxÞdhðx� Xða; tÞÞh2: ð42Þ

The summation above is over grid points in C in (41) and over grid points in X in (42). Operator Lh and L�h are
still adjoint using the following discrete inner product:

hf ; giCh
¼
X
a2GC

f ðaÞgðaÞDa; ð43Þ

hu; viXh
¼
X
x2GX

uðxÞvðxÞh2: ð44Þ

Using the inner product defined above, we have:

< uðxÞ; LðXÞðgðaÞÞ>Xh ¼
X
x2GX

uðxÞLðXÞðgðaÞÞh2 ¼
X
x2GX

uðxÞh2
X
a2GC

gðaÞdhðx� Xða; tÞÞDa

¼
X
x2GC

gðaÞDa
X
a2GX

uðxÞdhðx� Xða; tÞÞh2 ¼< L�hðXÞðuðxÞÞ; gðaÞ>Ch : ð45Þ

As we will see later, this discrete self-adjoint property is crucial in obtaining our unconditional stable semi-dis-
crete scheme for the immersed boundary problem.

5. Steady Stokes flow

5.1. Formulation

For simplicity, we study the steady Stokes flow first. The governing equations for the steady Stokes flow are
given as follows:

0 ¼ �rp þ lMuþ LðXÞðFðsa; hÞÞ; ð46Þ
r � u ¼ 0; ð47Þ
U ¼ uðXða; tÞ; tÞ � n; ð48Þ
V ¼ uðXða; tÞ; tÞ � s; ð49Þ
ðsaÞt ¼ V a � haU ; ð50Þ

ht ¼
U a

sa
þ V ha

sa
: ð51Þ
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In this simple case, we can use a boundary integral method for the two dimension Stokes flow (page 60 of [28])
to solve Eqs. (46) and (47) to get the velocity on the boundary:

uðXða; tÞÞ ¼ 1

4pl

Z
C
�ðln rÞF 1ða0; tÞ þ

r2
1

r2
F 1ða0; tÞ þ

r1r2

r2
F 2ða0; tÞ

� �
da0; ð52Þ

vðXða; tÞÞ ¼ 1

4pl

Z
C
�ðln rÞF 2ða0; tÞ þ

r2
2

r2
F 2ða0; tÞ þ

r1r2

r2
F 1ða0; tÞ

� �
da0; ð53Þ

where r ¼ jrj and

r ¼ ðr1; r2Þ ¼ Xða; tÞ � Xða0; tÞ; F ¼ ðF 1; F 2Þ; u ¼ ðu; vÞ: ð54Þ

5.2. Small scale decomposition

As we can see from (52) and (53), the velocity field can be expressed as a singular integral with a kernel
lnðrÞ. However, the singular velocity integral is nonlinear and non-local. It is difficult to solve for the implicit
solution if we treat the velocity integral fully implicitly. The main idea of the small scale decomposition tech-
nique introduced in [9] is to decompose the singular velocity integral into the sum of a linear singular operator
which is a convolution operator independent of time t and the configuration of the curve, and a remainder
operator which is regular. Since the remaining operator, which is nonlinear and non-local, is regular, the sim-
plified convolution integral operator captures accurately the high frequency spectral property of the original
velocity integral. Thus, if we treat only the leading order convolution operator implicitly, but keep the regular
remainder operator explicitly, we can effectively remove the stiffness of the original velocity field which comes
mainly from the high frequency modes of the solution. In this subsection, we will show how to perform such
small scale decomposition for the immersed boundary method applied to the Stokes flow.

Observe that in the integral representation of the velocity field, (52) and (53), the only singular part of the
kernel is lnðrÞ. The other part of the kernel is smooth. Thus to the leading order contribution of the velocity
field can be expressed as follows:

uðXða; tÞÞ � 1

4pl

Z
C
�ðln rÞFða0; tÞda0; ð55Þ

V ¼ uðXða; tÞ; tÞ � sðaÞ ð56Þ

� 1

4pl

Z
C
�ðln rÞFða0; tÞ � sðaÞda0

¼ Sb

4pl

Z
C
�ðln rÞðsa;a0sða0Þ þ ðsa � 1Þha0nða0ÞÞ � sðaÞda0: ð57Þ

Next, we perform a Taylor expansion for r, sða0Þ � sðaÞ and nða0Þ � sðaÞ as a function of a0 around a. By keeping
only the leading order term, we have

r � saðaÞja� a0j; ð58Þ
sða0Þ � sðaÞ � 1; ð59Þ
nða0Þ � sðaÞ � 0: ð60Þ

Substituting the above Taylor expansions to (55), we get

V � Sb

4pl

Z
lnðsaðaÞja� a0jÞsa;a0 da0: ð61Þ

Integrating by part, we obtain

V � Sb

4pl

Z
sa0

a0 � a
da0 ¼ � Sb

4l
H½sa�; ð62Þ
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where H is the Hilbert transform

H½f �ðaÞ ¼ 1

p

Z þ1

�1

f ða0Þ
a� a0

da0: ð63Þ

Using the same method, we can get the leading order contributions of U and U a as follows:

U � Sb

4pl

Z
� ln ja� a0jðsa0 � 1Þha0da0 ð64Þ

U a �
Sb

4pl

Z ðsa0 � 1Þha0

a0 � a
da0 ¼ � Sb

4l
H½ðsa � 1Þha�: ð65Þ

Note that if f is a smooth function, then the commutator ½H; f �u � HðfuÞ � fHðuÞ is a smoothing operator
for u. Thus we can factor a smooth function from the Hilbert transform without changing its leading order
spectral property. Suppose that sa is smooth, then we obtain to the leading order that

U a � �
Sb

4l
ðsa � 1ÞH½ha�: ð66Þ

Applying the same analysis to the Eqs. (50) and (51) gives

ðsaÞt ¼ �
Sb

4l
H½DDasa� þ DDaV � DDahU þ Sb

4l
H½DDasa�

� �
; ð67Þ

ht ¼ �
Sb

4l
1� 1

sa

� �
H½DDah� þ

DDaU
sa
þ VDDah

sa
þ Sb

4l
1� 1

sa

� �
H½DDah�

� �
: ð68Þ

Note that the leading order operator is linear. This suggests a natural semi-implicit discretization of the im-
mersed boundary problem.

Since we are dealing with a closed immersed boundary, it is natural to work in the Fourier space. Further-
more, the Hilbert operator has a very simple kernel under the Fourier transformation. Notice that h is not a
periodic function of a. Its value increases 2p every time a increases Lb. Nevertheless, if we let

hða; tÞ ¼ 2p
Lb

aþ /ða; tÞ; a 2 ½0; Lb�; ð69Þ

then / is periodic. It is more convenient to work with / than h. Substituting (69) into (68) and taking the Fou-
rier transform on both sides of (67) and (68), we obtain

ŝa;t ¼�
Sb

4l
jk ĵsa þ FðDDaV � DDahUÞ þ Sb

4l
jk ĵsa

	 

; ð70Þ

/̂t ¼�
Sb

4l
cjkj/̂þ F

DDaU
sa
þ VDDah

sa

� �
þ Sb

4l
cjkj/̂

	 

; ð71Þ

where c ¼ maxað1� 1
sa
Þ. We have also used the fact that bHk ¼ �isgnðkÞ with sgnðkÞ being the signature func-

tion. The first term on the right hand side captures the leading order high frequency contribution of the terms
from the right hand side. An important property of this leading order term is that it is linear in ŝa and ĥ and
has constant coefficient in space. This provides a straightforward application of the implicit time
discretization.

Since our small scale decomposition is exact near the equilibrium, we can use this result to get the stability
constraint of the explicit scheme by using a frozen coefficient analysis. The stability constraint is given by

Dt < C
l
Sb

h
c
: ð72Þ

As we can see, the time step needs to be very small if Sb is large and l is small. For example, if Sb ¼ 100, and
l ¼ 10�2, then the stability would require that Dt 6 C10�4h.
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5.3. Semi-implicit schemes

Based on the small scale decomposition presented in the previous subsection, we propose two types of semi-
implicit schemes in this section. The first implicit time discretization uses the backward Euler method to dis-
cretize the leading order term while keeping the lower order term explicit. This gives rise to the following semi-
implicit scheme:

ŝnþ1
a � ŝn

a

Dt
¼ � Sb

4l
jk ĵsnþ1

a þ FðDDaV n � DDah
nUnÞ þ Sb

4l
jk ĵsn

a

	 

; ð73Þ

/̂nþ1 � /̂n

Dt
¼ � Sb

4l
cjkj/̂nþ1 þ F

DDaUn

snþ1
a

þ V nDDah
n

snþ1
a

� �
þ Sb

4l
cjkj/̂n

	 

: ð74Þ

We call the above discretization the semi-implicit method. Near equilibrium, the stability constraint of this
numerical method is Dt < CðSb; lÞ, independent of the meshsize h. Since the small scale decomposition only
captures the leading order contribution from the high frequency components, this method cannot eliminate
the effect of Sb and l completely. The coefficients Sb and l can still affect the time stability through the low
frequency components of the solution, which comes from the second term of the right hand side. In order
to obtain a semi-implicit discretization with better stability property, we can incorporate the low frequency
contribution from the second term in our implicit discretization. This scheme can be found in the Appendix
A. We call it the semi-implicit scheme of second kind.

The accuracy of the semi-implicit schemes presented above is just first order. In order to get a high
order time discretization, we can use the integral factor method. The integral factor method factors out
the leading order linear term prior to time discretization. They usually provide stable and high order
time integration methods for stiff problems. To use the integral factor method, we rewrite (70) and (71)
as

o

ot
ðegt ŝaÞ ¼ exp

Sb

4l
jkjt

� �
Pðŝa; /̂Þ; ð75Þ

o

ot
ðent/̂Þ ¼ exp

Sb

4l
cjkjt

� �
Qð̂sa; /̂Þ; ð76Þ

where

g ¼ Sb

4l
jkj; n ¼ Sb

4l
cjkj; ð77Þ

P ðŝa; /̂Þ ¼ F ðV a � haUÞ þ Sb

4l
jk ĵsa; ð78Þ

Qðŝa; /̂Þ ¼ F
U a

sa
þ V ha

sa

� �
þ Sb

4l
cjkj/̂: ð79Þ

Now it is straightforward to discretize this system to high order. In particular, we can apply the classical
fourth order Runge–Kutta method to discretize the above system to obtain a fourth order semi-implicit
scheme.

We remark that although the fourth order semi-implicit scheme based on the integral factor approach is
much more accurate than the first order semi-implicit discretization, the stability of the fourth order method
is weaker than the first semi-implicit scheme based on the backward Euler discretization. The fact that the
higher order discretization gives a weaker stability property is a phenomenon which has been observed for
almost all time integration methods. It is not a restriction of our semi-implicit schemes for the immersed
boundary problem.

The semi-implicit schemes we describe above only update the h and sa variables. We also need to recon-
struct the boundary at tnþ1 from hnþ1 and snþ1

a . For this purpose, we need to update a reference point of
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the boundary. This will be done by using an explicit time integration method. The simplest one is the forward
Euler method:

xnþ1ð0Þ ¼ xnð0Þ þ DtðV n cosðhnð0ÞÞ � Un sinðhnð0ÞÞÞ; ð80Þ
ynþ1ð0Þ ¼ ynð0Þ þ DtðV n sinðhnð0ÞÞ þ U n cosðhnð0ÞÞÞ; ð81Þ

where U and V are evaluated at the reference point. A higher order integration method can be also used. In the
explicit update of the reference point, we can use the values of U and V obtained using the semi-implicit dis-
cretization from the previous time steps to extrapolate the values of U and V in the intermediate time steps in
our explicit update of the reference point. Once we have updated the reference point, we can obtain the con-
figuration of the boundary ðx; yÞ from ðsa; hÞ by integrating (16)

xnþ1ðaÞ ¼ xnþ1ð0Þ þ
Z a

0

snþ1
a ða0Þ cosðhnþ1ða0ÞÞda0; ð82Þ

ynþ1ðaÞ ¼ ynþ1ð0Þ þ
Z a

0

snþ1
a ða0Þ sinðhnþ1ða0ÞÞda0: ð83Þ

We can use more than one reference point, then average them to get the last configuration. This can improve
the stability constraint significantly. Actually, in our computation, we use two reference points X ð0Þ;X ðN b=2Þ,
then take the average to determine the position of the interface at next time step. Since we update only two
reference points, the extra cost in updating the reference point is small compared with the overall computa-
tional cost.

6. Unsteady Stokes flow

6.1. Formulation

In this section, we will extend the semi-implicit discretization developed for the steady Stokes flow to the
unsteady Stokes flow. The governing equations of the immersed boundary method for the unsteady Stokes
flow are as follows:

q
ou

ot
¼ �rp þ lMuþ LðXÞ Fðsa; hÞð Þ; ð84Þ

r � u ¼ 0 ð85Þ
U ¼ uðXða; tÞ; tÞ � n; ð86Þ
V ¼ uðXða; tÞ; tÞ � s; ð87Þ
sat ¼ V a � haU ; ð88Þ

ht ¼
U a

sa
þ V ha

sa
: ð89Þ

It is much more difficult to solve the fluid velocity u analytically from (84) and (85). As for the steady Stokes
flow, we will first derive an unconditionally stable time discretization which will be given in next section and
then apply the small scale decomposition to the unconditionally stable time discretization to obtain our effi-
cient semi-implicit schemes.

6.2. An unconditionally stable semi-implicit discretization

In this section, we will describe our unconditionally stable semi-implicit discretization of the immersed
boundary method for the incompressible unsteady Stokes equations and prove its unconditional stability in
the sense of total energy is non-increasing.

The unconditionally stable semi-implicit discretization is consisted of two steps. In the first step, we update
sa; u from tn to tnþ1, then we get hnþ1 in the second step.

Step 1: Update of unþ1 and snþ1
a .
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q
unþ1 � un

Dt
¼ �rhpnþ1 þ lr2

hunþ1 þ Lh;nðFðsnþ1
a ; hn; sn; nnÞÞ; ð90Þ

r2
hpnþ1 ¼ rh � Lh;nðFðsnþ1

a ; hn; sn; nnÞÞ; ð91Þ
V nþ1 ¼ L�h;nðunþ1Þ � sn; ð92Þ
U nþ1 ¼ L�h;nðunþ1Þ � nn; ð93Þ
snþ1
a � sn

a

Dt
¼ DDaV nþ1 � DDah

nU nþ1; ð94Þ

where sn ¼ ðcosðhnÞ; sinðhnÞÞ, nn ¼ ð� sinðhnÞ; cosðhnÞÞ, Lh;n ¼ LhðXnÞ; L�h;n ¼ L�hðX
nÞ, rh and DDa are discrete

derivative operators for the Eulerian grid and the Lagrangian grid respectively, and

Fðsnþ1
a ; hn; sn; nnÞ ¼ SbðDDasnþ1

a sn þ ðsnþ1
a � 1ÞDDah

nnnÞ: ð95Þ
Step 2: Update of hnþ1. After we have obtained unþ1, pnþ1 and snþ1

a , we update h at tnþ1 using the following
semi-implicit scheme:

q
�unþ1 � un

Dt
¼ �rh�pnþ1 þ lr2

h�u
nþ1 þ Lh;nðFðsnþ1

a ; hnþ1; sn; nnÞÞ; ð96Þ

r2
h�p

nþ1 ¼ rh � Lh;nðFðsnþ1
a ; hnþ1; sn; nnÞÞ; ð97Þ

V nþ1 ¼ L�h;nð�unþ1Þ � sn; ð98Þ
U nþ1 ¼ L�h;nð�unþ1Þ � nn; ð99Þ
hnþ1 � hn

Dt
¼ 1

snþ1
a

ðDDaUnþ1 þ DDah
nV nþ1Þ: ð100Þ

where

Fðsnþ1
a ; hnþ1; sn; nnÞ ¼ SbðDDasnþ1

a sn þ ðsnþ1
a � 1ÞDDah

nþ1nnÞ: ð101Þ
It is important to note that the above discretization is not fully implicit. In fact, both the spreading and inter-
polation operators are evaluated at the interface Xn from the previous time step. Moreover, when solve the snþ1

a

and unþ1, in (90)–(94), we use hn instead of hnþ1 to evaluate the force density. This makes our semi-implicit
discretization linear with respect to the implicit solution variables, unþ1, hnþ1, and snþ1

a . The above semi-implicit
discretization essentially decouples the stiffness induced by the elastic force from the fluid equations. This en-
ables us to remove the stiffness of the immersed boundary method effectively by applying the small scale
decomposition and arclength/tangent angle formulation as was done in [9].

In the following, we will prove that this semi-implicit discretization is unconditionally stable in the energy
norm.

By using a discrete summation by parts, we can show that

hf ;DDagiCh
¼ �hDDaf ; giCh

; hu;rhgiXh
¼ �hrh � u; giXh

: ð102Þ

First, we define the total energy of the physical system. The total energy includes the kinetic energy K and the
potential energy P, which are defined below:

K ¼ 1

2
qhu; uiXh

¼ q
2

XN

i;j¼1

uij � uijh
2; ð103Þ

P ¼ 1

2
Sbhsa � 1; sa � 1iCh

¼ Sb

2

XNb

j¼1

ðsa;j � 1Þ2Da: ð104Þ

The total energy is then defined as

E ¼ K þ P : ð105Þ
Below we will prove the unconditional stability of our semi-implicit discretization. To simplify the presen-

tation, we still denote the discrete spectral derivative DDag of a function g as ga.
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Taking the discrete inner product defined by (44) of (90) with unþ1 þ un and using (102), we obtain

2ðKnþ1 � KnÞ ¼ qhunþ1 þ un; unþ1 � uniXh
¼ qh�unþ1 þ un; unþ1 � uniXh

þ 2qhunþ1; unþ1 � uniXh

¼ �qhunþ1 � un; unþ1 � uniXh
þ 2Dtðhunþ1;�rhp þ lr2

hunþ1 þ Lh;nðFðsnþ1
a ; hn; sn; nnÞÞiXh

Þ
¼ �qhunþ1 � un; unþ1 � uniXh

� 2Dthunþ1;rhpiXh
þ 2Dthunþ1; lr2

hunþ1iXh

þ 2Dthunþ1; Lh;nðFðsnþ1
a ; hn; sn; nnÞÞiXh

¼ �qhunþ1 � un; unþ1 � uniXh
� 2Dthrh � unþ1; piXh

� 2lDthrhunþ1;rhunþ1iXh

þ 2DthL�h;nðunþ1Þ;Fðsnþ1
a ; hn; sn; nnÞiCh

: ð106Þ

The second term on the right hand side of (106) is zero because the discrete velocity field is divergence free, i.e.
rh � unþ1 ¼ 0. The fourth term can be rewritten as

hL�h;nðunþ1Þ;Fðsnþ1
a ; hn; sn; nnÞiCh

¼ hV nþ1sn þ U nþ1nn; Sbðsnþ1
a;a sn þ ðsnþ1

a � 1Þhn
annÞiCh

¼ SbðhV nþ1; snþ1
a;a iCh

þ hUnþ1; ðsnþ1
a � 1Þhn

aiCh
Þ: ð107Þ

Combining (106) and (107), we can get

2ðKnþ1 � KnÞ ¼ �qhunþ1 � un; unþ1 � uniXh
� 2lDthrhunþ1;rhunþ1iXh

þ 2SbDtðhV nþ1; snþ1
a;a iCh

þ hUnþ1; ðsnþ1
a � 1Þhn

aiCh
Þ: ð108Þ

Similarly, by taking the discrete inner product defined by (43) of (93) with snþ1
a þ sn

a � 2 and using (102), we
get

2ðP nþ1 � P nÞ ¼ Sbhsnþ1
a þ sn

a � 2; snþ1
a � sn

aiCh

¼ Sbh�snþ1
a þ sn

a; s
nþ1
a � sn

aiCh
þ 2Sbhsnþ1

a � 1; snþ1
a � sn

aiCh

¼ �Sbhsnþ1
a � sn

a; s
nþ1
a � sn

aiCh
þ 2SbDthsnþ1

a � 1; V nþ1
a � hn

aUnþ1iCh

¼ �Sbhsnþ1
a � sn

a; s
nþ1
a � sn

aiCh
þ 2SbDtð�hsnþ1

a;a ; V
nþ1iCh

� hsnþ1
a � 1; hn

aU nþ1iCh
Þ: ð109Þ

Adding (108) to (109), we have

Enþ1 � En ¼ � 1

2
qhunþ1 � un; unþ1 � uniXh

� lDthrhunþ1;rhunþ1iXh
� 1

2
Sbhsnþ1

a � sn
a; s

nþ1
a � sn

aiCh

6 0: ð110Þ

This proves that our semi-implicit discretization is unconditionally stable in the sense that the total energy is
non-increasing.

Remark 1. In our proof presented above, we have used two important properties of our semi-implicit
discretization. The first property is that the discrete spreading and interpolation operators are adjoint. The
second property is that the velocity field satisfies the discrete divergence free condition. It is clear from the
above proof that as long as these two properties are satisfied by our spatial discretization, the corresponding
semi-implicit discretization introduced in the previous subsection is unconditionally stable.

Remark 2. We remark that the proof above is similar in spirit to that of a semi-linear discretization obtained
by Newren et al. in [24]. There is some minor difference between the unconditionally stable semi-implicit dis-
cretization obtained by Newren et al and our unconditionally stable semi-implicit discretization. In the prob-
lem considered by Newren et al., the force is a linear function of the interface. On the other hand, in the
problem we consider, the force is a nonlinear function of the interface (the rest length of the boundary is
not zero). By using the sa � h formulation, the force is a linear function of sa. By treating h explicitly, we obtain
a semi-implicit discretization that is linear with respect to sa. Due to the decoupling between sa and h, we need
to solve two Nb � Nb linear systems instead of one 2Nb � 2Nb linear system in the semi-implicit discretization
obtained by Newren et al.
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Remark 3. For the steady Stokes flow, we can also prove the following semi-implicit discretization is uncon-
ditionally stable:

Step 1:

0 ¼ �rhpnþ1 þ lr2
hunþ1 þ Lh;nðFðsnþ1

a ; hn; sn; nnÞÞ; ð111Þ
r2

hpnþ1 ¼ rh � Lh;nðFðsnþ1
a ; hn; sn; nnÞÞÞ; ð112Þ

V nþ1 ¼ L�h;nðunþ1ðxÞÞ � sn; ð113Þ
U nþ1 ¼ L�h;nðunþ1ðxÞÞ � nn; ð114Þ
snþ1
a � sn

a

Dt
¼ DDaV nþ1 � DDah

nU nþ1; ð115Þ

hnþ1 � hn

Dt
¼ 1

snþ1
a

DDaUnþ1 þ DDah
nþ1V nþ1

� �
: ð116Þ

Step 2:

0 ¼ �rh�pnþ1 þ lr2
h�u

nþ1 þ Lh;nðFðsnþ1
a ; hnþ1; sn; nnÞÞ; ð117Þ

r2
h�p

nþ1 ¼ rh � Lh;nðFðsnþ1
a ; hnþ1; sn; nnÞÞ; ð118Þ

V nþ1 ¼ L�h;nð�unþ1Þ � sn; ð119Þ
U nþ1 ¼ L�h;nð�unþ1Þ � nn; ð120Þ
hnþ1 � hn

Dt
¼ 1

snþ1
a

ðDDaUnþ1 þ DDah
nV nþ1Þ: ð121Þ

In this case the total energy is just the potential energy

E ¼ Sb

2
hsa � 1; sa � 1iCh

¼ Sb

2

XNb

j¼1

ðsa;j � 1Þ2Da: ð122Þ

As in the case of the unsteady Stokes flow, as long as the velocity field satisfies the discrete divergence free
condition and the discrete spreading and interpolation operators are adjoint, we can prove that above
semi-implicit discretization is unconditionally stable in the sense of total energy is non-increasing.

6.3. Small scale decomposition

In order to apply the small scale decomposition to our unconditionally stable time discretization, we would
like to solve for the velocity field at time tnþ1 from the space-continuous version of (90) and (91) using an inte-
gral representation:

unþ1ðxÞ ¼ 1� lDt
q
r2

� ��1

un þ Dt
q
ð1�rðr2Þ�1r�ÞLnðFðsnþ1

a ; hn; sn; nnÞÞ
� �

¼ 1� lDt
q
r2

� ��1

un þ Dt
q

LnðFðsnþ1
a ; hn; sn; nnÞÞ

� �
� Dt

q
1� lDt

q
r2

� ��1

ðr2Þ�1ðrr

� LnðFðsnþ1
a ; hn; sn; nnÞÞÞ:

To solve for the velocity field at tnþ1, we need to use the following free space fundamental solutions in two
space dimensions which are defined as follows:

1� lDt
q
r2

� �
E1 ¼ dðx� x0Þ; ð123Þ

r2 1� lDt
q
r2

� �
E2 ¼ dðx� x0Þ: ð124Þ
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These two fundamental solutions can be expressed in terms of the modified Bessel function of the second kind
[1]:

E1 ¼
k2

2p
K0ðkjx� x0jÞ; ð125Þ

E2 ¼
1

2p
K0ðkjx� x0j þ lnðjx� x0jÞð Þ; ð126Þ

where k2 ¼ q
lDt and K0 is a modified Bessel function of the second kind. By integrating by part, we can further

express the velocity unþ1 as

unþ1ðxÞ ¼ 1

2p

Z
X

k2K0ðkjx� x0jÞunðx0Þdx0 þ 1

2p
Dt
q

Z
Cn

k2K0ðkjx� Xnða0ÞjÞFðsnþ1
a ; hn; sn; nnÞda0

� 1

2p
Dt
q

Z
X
rxrxðK0ðkjx� x0jÞ þ lnðjx� x0jÞÞ � LnðFðsnþ1

a ; hn; sn; nnÞÞdx0

¼ 1

2p

Z
X

k2K0ðkjx� x0jÞunðx0Þdx0 þ 1

2p
Dt
q

Z
Cn

k2K0ðkjx� Xnða0ÞjÞFðsnþ1
a ; hn; sn; nnÞda0

� 1

2p
Dt
q

Z
Cn

Gðx� Xnða0ÞÞ � Fðsnþ1
a ; hn; sn; nnÞda0; ð127Þ

where G is defined as follows:

GijðrÞ ¼
dij

jrj2
� 2rirj

jrj4
þ 1

2
k2ðK0ðkjrjÞ þ K2ðkjrjÞÞ

rirj

jrj2
� kK1ðkjrjÞ

dij

jrj �
rirj

jrj3

 !
ð128Þ

and K0;K1;K2 are all modified Bessel functions of the second kind [1].
In this subsection, we will perform a small scale decomposition to the velocity field based on the integral

representation (127). Recall that in our semi-implicit discretization, the velocity field at tnþ1 is evaluated on
the boundary Xn at tn. Thus we should perform our small scale decomposition for unþ1ðXnÞ. To this end,
we first write down the integral expression of unþ1ðXnÞ as follows:

unþ1ðXnðaÞÞ ¼ 1

2p

Z
X

k2K0ðkjXnðaÞ � x0jÞunðx0Þdx0 þ 1

2p
Dt
q

Z
Cn

k2K0ðkjXnðaÞ � Xnða0ÞjÞFðsnþ1
a ; hn; sn; nnÞda0

� 1

2p
Dt
q

Z
Cn

GðXnðaÞ � Xnða0ÞÞ � Fðsnþ1
a ; hn; sn; nnÞda0: ð129Þ

To perform the small scale decomposition to the above velocity integral, we would like to decompose the
singular velocity kernel as the sum of a linear singular operator of convolution type and a remainder
operator which is regular. Using the Taylor expansion for a0 around a, we get the following
decomposition:

V nþ1ðaÞ ¼ unþ1ðXnðaÞÞ � snðaÞ � SbDt
2pq

Z
Cn

k2K0ðksn
aja� a0jÞsnþ1

a;a0 da0

� SbDt
2pq

Z
Cn

1

2
k2ðK0ðksn

aja� a0jÞ þ K2ðksn
aja� a0jÞÞ � 1

sn
a

� �2ða� a0Þ2

 !
snþ1
a;a0 da0; ð130Þ

where sn
a j inside K0ðksn

aja� a0jÞ is evaluated at a. Notice that [1]

d2

da02
1

sn
aðaÞ

� �2
K0ðksn

aja� a0jÞ
 !

¼ 1

2
k2 K0ðksn

aja� a0jÞ þ K2ðksn
aja� a0jÞ

� �
: ð131Þ
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Integrating the right hand side of (130) by parts twice, we get

V nþ1ðaÞ � 1

2pq
SbDt

Z
Cn

k2K0ðksn
aja� a0jÞsnþ1

a;a0 da0 � SbDt

2pq sn
a

� �2

Z
Cn
ðK0ðksn

aja� a0jÞ � lnða� a0ÞÞsnþ1
a;a0a0a0da0:

ð132Þ
Similarly, we can obtain the leading order contribution of Unþ1 as follows:

U nþ1ðaÞ ¼ �unþ1ðXnðaÞÞ � nnðaÞ � SbDt

2pqðsn
aÞ

2

Z
Cn
ðK0ðksn

aja� a0jÞ � lnða� a0ÞÞððsnþ1
a � 1Þhnþ1

a0 Þa0a0da0: ð133Þ

Using this decomposition, we obtain the following scheme:

snþ1
a � sn

a

Dt
¼ T ðsnþ1

a Þ þ ðDDaV �;nþ1 � DDah
nU �;nþ1 � T ðsn

aÞÞ; ð134Þ

q
unþ1 � un

Dt
¼ �rhpnþ1 þ lr2

hunþ1 þ Lh;nðFðsnþ1
a ; hn; sn; nnÞÞ; ð135Þ

r2
hpnþ1 ¼ rh � Lh;nðFðsnþ1

a ; hn; sn; nnÞÞ; ð136Þ
V nþ1 ¼ L�h;nðunþ1Þ � sn; ð137Þ
U nþ1 ¼ L�h;nðunþ1Þ � nn; ð138Þ
hnþ1 � hn

Dt
¼ Sðhnþ1Þ

snþ1
a

þ 1

snþ1
a

ðDDaUnþ1 þ DDah
nV nþ1Þ � SðhnÞ

snþ1
a

� �
; ð139Þ

where

T ðsnþ1
a Þ ¼

1

2pq
SbDt

Z
Cn

k2K0ðksn
aja� a0jÞsnþ1

a;a0 da0
� �

a

� SbDt

2pq sn
a

� �2

Z
Cn

K0ðksn
aja� a0jÞ � lnða� a0Þ

� �
snþ1
a;a0a0a0da0

 !
a

;

Sðhnþ1Þ ¼ SbDt

2pqðsn
aÞ

2

Z
Cn
ðK0ðksn

aja� a0jÞ � lnða� a0ÞÞððsnþ1
a � 1Þha0 Þa0a0da0

 !
a

and u�;nþ1 is the velocity at tnþ1 which is calculated explicitly

q
u�;nþ1 � un

Dt
¼ �rhp�;nþ1 þ lr2

hu�;nþ1 þ Lh;nðFðsn
a; h

n; sn; nnÞÞ; ð140Þ

r2
hp�;nþ1 ¼ rh � Lh;nðFðsn

a; h
n; sn; nnÞÞ; ð141Þ

V �;nþ1 ¼ L�h;nðu�;nþ1Þ � sn; ð142Þ
U �;nþ1 ¼ L�h;nðu�;nþ1Þ � nn: ð143Þ

The derivation of the above semi-implicit scheme is given in Appendix B.
However, the expressions of T and S are still too complicated and need to be further simplified. The leading

order linear operator, which contains K0ðksn
aðaÞja� a0jÞ, is not a convolution operator. Thus, it does not have

a simple kernel under the Fourier transform as the Hilbert operator in the case of the steady Stokes flow. To
further simplify the kernel, we approximate sn

aðaÞ by minasn
aðaÞ. With this approximation, the corresponding

leading order operator is a convolution operator and can be diagonalized under the Fourier transform.
Denote b ¼ kminasn

aðaÞ. In Appendix C, we will show that

F
1

p

Z þ1

�1
K0ðbja� a0jÞf ða0Þda0

� �
¼

bf ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

q : ð144Þ

Using (144) and replacing sn
aðaÞ by minasn

aðaÞ, we can simplify the leading order term T ðsnþ1
a Þ and Sðhnþ1Þ under

the Fourier transform:
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bT ðsnþ1
a Þ � �

SbDt

2qðmin
a

sn
aÞ

2

ðk min
a

sn
aÞ

2k2 þ k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk min

a
sn
aÞ

2 þ k2
q � jkj3

0B@
1CAŝnþ1

a ; ð145Þ

bSðhnþ1Þ � �
SbDt max

a
ðsnþ1

a � 1Þ

2qðmin
a

sn
aÞ

2
jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk min
a

sn
aÞ

2 þ k2
q

0B@
1CAĥnþ1: ð146Þ

When l	 1, we have k ¼ 1ffiffiffiffiffi
lDt
p 
 1. By Taylor expanding (145) and (146) with respect to k and keeping only

the first order term, we obtain the leading order term as follows:

bT ðsnþ1
a Þ � �

Sb

4l
jk ĵsnþ1

a ; ð147Þ

bSðhnþ1Þ � � Sb

4l
max

a
ðsnþ1

a � 1Þjkjĥnþ1; ð148Þ

which is the same as the steady Stoke flow. This is also consistent with one’s physical intuition. When the vis-
cosity is very large, the flow changes very slowly. The inertial term can be neglected.

When l
 1, then k ¼ 1ffiffiffiffiffi
lDt
p 	 1, the asymptotic expansion is

bT ðsnþ1
a Þ � �

Sb

ffiffiffiffiffi
Dt
p

2ðmin
a

sn
aÞ

ffiffiffiffiffiffi
ql
p k2ŝnþ1

a ; ð149Þ

bSðhnþ1Þ � �
SbDt max

a
ðsnþ1

a � 1Þ

2qðmin
a

sn
aÞ

2
k3ĥnþ1: ð150Þ

From the asymptotic expansion above, we can see that our small scale decomposition is also consistent with
the linearized stability analysis which Stockie and Wetton got in [30]. Using the leading order term above, we
can get the leading order term of the eigenvalue same with the result in [30].

We can also obtain the corresponding stability constraint for the explicit scheme near the equilibrium:

Dt < CðSb; lÞhb; ð151Þ
where 1 6 b 6 3=2. The value of b depends on l. If l
 1, then we have b � 3=2. On the other hand, if l	 1,
we have b � 1.

6.4. The numerical scheme

Based on the small scale decomposition we developed in the last subsection, we can now describe our semi-
implicit numerical scheme. Combining the time discretization (90)–(100) with the decomposition (130)–(133)
and using the approximation (145) and (146), we obtain the following semi-implicit numerical scheme:

Step 1: Update of unþ1 and snþ1
a .

snþ1
a � sn

a

Dt
¼ T ðsnþ1

a Þ þ ðDDaV �;nþ1 � DDah
nU �;nþ1 � T ðsn

aÞÞ; ð152Þ

q
unþ1 � un

Dt
¼ �rhpnþ1 þ lr2

hunþ1 þ Lh;nðFðsnþ1
a ; hn; sn; nnÞÞ; ð153Þ

r2
hpnþ1 ¼ rh � Lh;nðFðsnþ1

a ; hn; sn; nnÞÞ; ð154Þ

where

bT ðsnþ1
a Þ ¼ �

SbDt

2qðmin
a

sn
aÞ

2

k min
a

sn
a

� �2

k2 þ k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk min

a
sn
aÞ

2 þ k2
q � jkj3

0B@
1CAŝnþ1

a ð155Þ
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and u�;nþ1 is the intermediate velocity at tnþ1 which is calculated by solving the unsteady Stokes equations
implicitly while evaluating the elastic force explicitly:

q
u�;nþ1 � un

Dt
¼ �rhp�;nþ1 þ lr2

hu�;nþ1 þ Lh;nðFðsn
a; h

n; sn; nnÞÞ; ð156Þ

r2
hp�;nþ1 ¼ rh � Lh;nðFðsn

a; h
n; sn; nnÞÞ; ð157Þ

V �;nþ1 ¼ L�h;nðu�;nþ1Þ � sn; ð158Þ
U �;nþ1 ¼ L�h;nðu�;nþ1Þ � nn: ð159Þ

Step 2:Update of hnþ1. Once we have updated u, p, and sa at tnþ1, we update hnþ1 using the following semi-
implicit scheme:

hnþ1 � hn

Dt
¼ Sðhnþ1Þ

min
a

snþ1
a

þ 1

snþ1
a

ðDDaUnþ1 þ DDah
nV nþ1Þ � SðhnÞ

minasnþ1
a

� �
; ð160Þ

where

V nþ1 ¼ L�h;nðunþ1Þ � sn; ð161Þ
U nþ1 ¼ L�h;nðunþ1Þ � nn; ð162Þ

bSðhnþ1Þ ¼ �
SbDt max

a
ðsn

a � 1Þ

2qðmin
a

sn
aÞ

2
jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk min
a

sn
aÞ

2 þ k2
q

0B@
1CAĥnþ1: ð163Þ

This is our semi-implicit scheme for the unsteady Stokes flow. The spectral discretization in space has the
advantage of being high order accurate and the leading order operator has a simple kernel under the Fourier
transform. As it is, the time discretization is only first order. Based on the first order semi-implicit scheme that
we develop in this subsection, we will develop a second order semi-implicit scheme in the next subsection.

A near equilibrium stability analysis shows that the stability constraint of this semi-implicit scheme is of the
form Dt < CðSb; lÞ, which is independent of the wave number, but still dependent on Sb and l. This is due to
the fact that the Small Scale Decomposition does not capture the low frequency components of the solution
accurately. The low frequency components of the solution can affect the stability of the time discretization in
two ways. The first one is through the small scale decomposition, which only captures the leading order con-
tribution of the solution at high wave numbers. The second one comes from the second term of the right hand
side of the dynamic equations for sa and h. As in the case of the steady Stokes flow, we can include the leading
order contribution from the second term in our leading order term and treat them implicitly. This treatment
would significantly improve the stability property especially when the elastic coefficient is large or the viscosity
is small. This improved stability is at the expense of solving a linear system for the implicit solution at each
time step. We call this semi-implicit discretization as the semi-implicit method of the second kind. More dis-
cussions on the semi-implicit method of the second kind can be found in Appendix A.

Remark 4. The leading order term we derive above is calculated analytically using the space-continuous
formulation with an unsmoothed Dirac delta function. As Stockie and Wetton pointed out in [32], this
analysis over-predicts the stiffness of the Immersed Boundary method in a practical computation. If we use the
leading order approximation directly, the semi-implicit scheme with the leading order terms derived above
tends to over-dissipate the solution. To alleviate this effect in the practical implementation, we rescale the
leading order term by a coefficient which is calculated at the first time step in the following way:

CV ¼
maxaV 1;�

a

maxaT ðs0
aÞ
;

CU ¼
maxaU 1

maxaSU ðh0Þ
;

where SU ðh0Þ is the leading order term of U 1, which can be computed from Sðh0Þ via the Fourier transform.
The leading order term we use in a practical computation is actually CV T ðsnþ1

a Þ and CU Sðhnþ1Þ.
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6.5. A second order semi-implicit scheme

Based on the first order semi-implicit scheme we have developed in the previous subsection, we will derive
the corresponding second order semi-implicit scheme in this subsection.

First, we need to use a robust implicit second order temporal discretization. To simplify the presentation,
we will only describe the semi-discrete algorithm. The space discretization is done in the same way as before.
The second order temporal discretization we use consists of two steps. In the first step, we take a fractional
time step from tn to tnþ1

2. It is same with the first order semi-implicit discretization (90)–(100), except the time-
step is Dt

2
.

In the second step, we integrate the unsteady Stokes equations from tn to tnþ1 based on the midpoint and the
trapezoidal rules:

Step 1: Update of unþ1 and snþ1
a .

q
unþ1 � un

Dt
¼ �r�p þ lr2�uþ Lnþ1

2
F �sa; h

nþ1
2; snþ1

2; nnþ1
2

� �� �
; ð164Þ

r2�p ¼ r � Lnþ1
2

F �sa; h
nþ1

2; snþ1
2; nnþ1

2

� �� �
; ð165Þ

V ¼ L�nþ1
2
ð�uÞ � snþ1

2; ð166Þ

U ¼ L�nþ1
2
ð�uÞ � nnþ1

2; ð167Þ
snþ1
a � sn

a

Dt=2
¼ V a � hnþ1

2
a U ; ð168Þ

where snþ1
2 ¼ ðcosðhnþ1

2Þ; sinðhnþ1
2ÞÞ, nnþ1

2 ¼ ð� sinðhnþ1
2Þ; cosðhnþ1

2ÞÞ, Lnþ1
2
¼ LðXn þ 1

2
Þ; L�nþ1

2
¼ L�ðXn þ 1

2
Þ and

Fð�sa; h
nþ1

2; snþ1
2; nnþ1

2Þ ¼ SbðDDa�sas
nþ1

2 þ ð�sa � 1ÞDDah
nþ1

2nnþ1
2Þ: ð169Þ

Step 2: Update of hnþ1. After we have obtained unþ1 and snþ1
a , we update h at tnþ1 using the following semi-

implicit scheme:

q
eunþ1 � un

Dt
¼ �r~pnþ1 þ lr2 eunþ1 þ unþ1

2

� �
þ Lnþ1

2
ðFð�sa; �h; snþ1

2; nnþ1
2ÞÞ; ð170Þ

r2~pnþ1 ¼ r � Lnþ1
2
ðFð�sa; �h; snþ1

2; nnþ1
2ÞÞ; ð171Þ

eV ¼ L�nþ1
2

eunþ1 þ unþ1

2

� �
� snþ1

2; ð172Þ

eU ¼ L�nþ1
2

eunþ1 þ unþ1

2

� �
� nnþ1

2; ð173Þ

hnþ1 � hn

Dt
¼ 1

s
nþ1

2
a

ð eU a þ hnþ1
2

a
eV Þ; ð174Þ

where

Fð�sa; �h; snþ1
2; nnþ1

2Þ ¼ Sbð�sa;as
nþ1

2 þ ð�sa � 1Þ�hannþ1
2Þ ð175Þ

and

�u ¼ unþ1 þ un

2
; �sa ¼

snþ1
a þ sn

a

2
; �h ¼ hnþ1 þ hn

2
: ð176Þ

Here, Lnþ1
2

and L�nþ1
2

are the spreading and the interpolation operators evaluated at Xnþ1
2. Using the same meth-

od of analysis, we can prove that the above second order semi-implicit discretization is unconditionally stable
in the sense that the total energy is non-increasing.

The first step in our second order method is identical to the first order method except that the time step is Dt
2

instead of Dt. Thus we can use the first order semi-implicit scheme introduced in last subsection to compute it
directly.
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In the second step, we can also apply the Small Scale Decomposition with some modifications. After apply-
ing the Small Scale Decomposition to the second step of the two-step method, the second step of the semi-
implicit scheme has the form

Step 1: Update unþ1 and snþ1
a .

snþ1
a � sn

a

Dt
¼ T

snþ1
a þ sn

a

2

� �
þ V �a � hnþ1

2
a U � � T s

nþ1
2

a

� �� �
; ð177Þ

q
unþ1 � un

Dt
¼ �r�p þ lr2�uþ Lnþ1

2
F �sa; h

nþ1
2; snþ1

2; nnþ1
2

� �� �
; ð178Þ

r2�p ¼ r � Lnþ1
2

F �sa; h
nþ1

2; snþ1
2; nnþ1

2

� �� �
; ð179Þ

The leading order terms, T is given by

bT ð�saÞ ¼ �
SbDt

4q min
a

s
nþ1

2
a

� �2

�k min
a

s
nþ1

2
a

� �2

k2 þ k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k min

a
s

nþ1
2

a

� �2

þ k2

r � jkj3

0BB@
1CCAb�sa; ð180Þ

where �k2 ¼ 2q
lDt, and u�;nþ1 is the intermediate velocity at tnþ1 which is obtained by solving the unsteady Stokes

equations implicitly but with the forcing evaluated explicitly:

q
u�;nþ1 � un

Dt
¼ �r�p� þ lr2�u� þ Lnþ1

2
F s

nþ1
2

a ; hnþ1
2; snþ1

2; nnþ1
2

� �� �
; ð181Þ

r2�p� ¼ r � Lnþ1
2

F s
nþ1

2
a ; hnþ1

2; snþ1
2; nnþ1

2

� �� �
; ð182Þ

V � ¼ L�nþ1
2

�u�ð Þ � snþ1
2; ð183Þ

U � ¼ L�nþ1
2

�u�ð Þ � nnþ1
2 ð184Þ

and

�u� ¼ u�;nþ1 þ un

2
: ð185Þ

Step 2:After the unþ1 and snþ1
a are calculated in step 1, we update h at tnþ1 using the following semi-implicit

scheme:

hnþ1 � hn

Dt
¼ S

hnþ1 þ hn

2

� �
þ 1

s
nþ1

2
a

U a þ �haV
� �

� S hnþ1
2

� �
; ð186Þ

where

V ¼ L�nþ1
2

unþ1 þ un

2

� �
� snþ1

2; ð187Þ

U ¼ L�nþ1
2

unþ1 þ un

2

� �
� nnþ1

2: ð188Þ

and the leading order term is

bSð�hÞ ¼ � SbDt max
a

s
nþ1

2
a � 1

� �
4q min

a
s

nþ1
2

a

� �3
jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�k min
a

s
nþ1

2
a

� �2

þ k2

r
0BB@

1CCAb�h: ð189Þ

This completely defines our second order semi-implicit scheme.

9156 T.Y. Hou, Z. Shi / Journal of Computational Physics 227 (2008) 9138–9169



Author's personal copy

7. Numerical results

In this section, we will perform a number of numerical experiments to test the stability of our semi-implicit
schemes for both the steady and unsteady Stokes equations. We also compare the performance of our semi-
implicit schemes with the explicit scheme and the fully implicit scheme. Our numerical results indicate convinc-
ingly that our semi-implicit schemes has a much better stability property that that of the explicit scheme.
Moreover, the computational cost of our semi-implicit schemes is comparable to that of an explicit scheme.
Thus our semi-implicit schemes offer significant computational saving over the explicit scheme, especially
when the number of grid points is large.

7.1. Model problem

The test problem we use is one typically seen in the literature, in which the immersed boundary is a closed
loop initially in the shape of an ellipse. We choose an ellipse initially aligned in the coordinate directions with
horizontal semi-axis a ¼ 0:32 and vertical semi-axis b ¼ 0:24. The boundary can be parameterized as follows:

xða; 0Þ ¼ 0:5þ 0:32 cos a;

yða; 0Þ ¼ 0:5þ 0:24 sin a:



ð190Þ

The fluid is initially at rest in a periodic domain X ¼ ½0; 1� � ½0; 1�. We use a periodic boundary condition for the
fluid flow. For the initial condition defined above, the rest state of the boundary is a circle with radius r ¼ 0:2.
For the unsteady Stokes flow, the immersed boundary with the above initial condition evolves as damped oscil-
lations around a circular equilibrium state. The area is conserved during the time evolution since the flow is
incompressible. For the steady Stokes flow, the boundary converges to the circular state without oscillations.

We use a uniform N � N grid to discretize the fluid domain, X. We choose N b ¼ 2N number of grid points
to discretize the immersed boundary so that there are approximately two immersed boundary points per mesh
width. We use the spectral method to discretize the spatial derivatives both in the fluid domain and along the
immersed boundary. The leading order singular integral is also discretized by the spectral method.

7.2. Steady Stokes flow

First, in order to reduce the number of parameters in our test problem, we write the equations in terms of
the following dimensionless variables to get the non-dimensional model [33],

t0 ¼ t
t0

; x0 ¼ x

L
; u0 ¼ ut0

L
; p0 ¼ pt0

l
; f 0 ¼ fLt0

l
;

where L is the size of computational domain, t0 is characteristic time.
Using these new variables, we have

0 ¼ �rp0 þ Mu0 þ f 0ðx0; t0Þ; ð191Þ
0 ¼ r � u0: ð192Þ

For the equations of the elastic boundary, the dimensionless variables are

X0 ¼ X

L
; s0a ¼

sa

L
; h0 ¼ h; a0 ¼ a

L
; T 0 ¼ T

Sb

; F0 ¼ FL
Sb

; s0 ¼ s; n0 ¼ n:

Then the equations describe the interaction of the boundary and the fluid become

U 0 ¼ u0ðX0ða0; t0Þ; t0Þ � n0; ð193Þ
V 0 ¼ u0ðX0ða0; tÞ0; t0Þ � s0; ð194Þ
s0a;t0 ¼ V 0a0 � h0a0U

0; ð195Þ

h0t0 ¼
1

s0a
ðU 0a0 þ V 0h0a0 Þ; ð196Þ
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where

f 0ðx0; t0Þ ¼ Sbt0

lL

Z Lb=L

0

F0ða0; tÞ0dðx0 � X0ða0; t0ÞÞda0; ð197Þ

u0ðX0ða0; t0Þ; t0Þ ¼
Z

X
u0ðx0; t0Þdðx0 � X0ða0; t0ÞÞdx0: ð198Þ

There are two non-dimensional parameters in this problem:

Sbt0

lL
;

Lb

L
:

If we let t0 ¼ lL
Sb

, then the only parameter in this dimensionless model is Lb=L which is fixed in our test problem.
So we can always fix Sb ¼ l ¼ 1 in our numerical study.

The stability analysis in the steady Stokes flow suggests us to use the total energy as a criterion to test the
stability of different numerical methods. For the steady Stokes equations, the total energy is equal to the
potential energy. In Fig. 1, we show that the energy for four different numerical methods: the explicit scheme,
the semi-implicit scheme of first kind, the 4th order semi-implicit scheme using the integral factor method and
the unconditionally stable semi-implicit scheme. In this figure and the subsequent figures, we use the the legend
‘‘semi-implicit” to denote the semi-implicit scheme of first kind, and the legend ‘‘integral factor” to denote the
semi-implicit scheme based on the integral factor method. We use two different time steps, 0.1 and 1, respec-
tively. When Dt ¼ 0:1, all the four methods are stable. They give almost identical results. When Dt ¼ 1, the
explicit scheme becomes unstable, but all the semi-implicit schemes are stable. In fact, all the semi-implicit
schemes remain stable with much larger time steps. In Fig. 2, we plot the energy of the system for semi-implicit
schemes of first kind and the semi-implicit scheme based on the integral factor method with Dt ¼ 10. Fig. 3
shows the configuration obtained by the two semi-implicit schemes at the final time with Dt ¼ 10. They both
remain as a circle, but lose some area compared with the original state.

Next, we compare the performance of our semi-implicit schemes with the explicit and fully implicit schemes.
The fully implicit scheme we use here was originally proposed by Tu and Peskin in [33]. In order to make a fair
comparison, we run the implicit schemes (semi-implicit and fully implicit) with a time step small enough to
make sure that the computational results have a reasonable accuracy. We take Dt ¼ 4 for the fully implicit
and the semi-implicit schemes. With this time step, the area loss is less than 5%. For the explicit scheme,
we take Dt ¼ 1=4; 1=8; 1=16; 1=32 which corresponds to N ¼ 64; 128; 256; 512 respectively. These time steps
are the largest possible to keep the stability of the explicit scheme. The time we compute is T ¼ 20. The result
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Fig. 1. Energy of the system for four different schemes. N ¼ 128, Sb ¼ 1, l ¼ 1. Left one: Dt ¼ 0:1; Right: Dt ¼ 1. Here the legend ‘‘stable
semi-implicit” stands for the unconditionally stable semi-implicit scheme, ‘‘semi-implicit” for the semi-implicit scheme of first kind, and
‘‘integral factor” for the semi-implicit scheme based on the integral factor method.
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is shown in Table 1. From this comparison, we can see that the performance of our semi-implicit schemes is
much better than the explicit, the fully implicit scheme, and the unconditionally stable semi-implicit scheme in
all cases. As we can see, the larger the number of the spatial grid points is, the more computational saving we
would get using our semi-implicit schemes. Even for a modest grid size, our semi-implicit schemes still give a
significant computational saving compared with the explicit or the fully implicit scheme. It is interesting to
note that although the computational cost of the unconditionally stable semi-implicit scheme (labeled as
s,s,i) is faster than the fully implicit method, the computational cost of the unconditionally stable semi-implicit
method is still more expensive than the explicit scheme. This makes the unconditionally stable semi-implicit
scheme not very practical.

7.3. Unsteady Stokes flow

We can also get the non-dimensional model for unsteady stokes flow. Similar as the steady stokes case, we
define the following dimensionless variables:

t0 ¼ t
t0

; x0 ¼ x

L
; u0 ¼ ut0

L
; p0 ¼ pt0

l
; f 0 ¼ fLt0

l
;

where L is the size of computational domain, t0 is characteristic time. Using these new variables, we have

ou0

ot0
¼ lt0

qL2
ð�rp0 þ Mu0 þ f 0ðx0; t0ÞÞ; ð199Þ

0 ¼ r � u0: ð200Þ

For the equations of the elastic boundary, the dimensionless variables are

X0 ¼ X

L
; s0a ¼

sa

L
; h0 ¼ h; a0 ¼ a

L
; T 0 ¼ T

Sb

; F0 ¼ FL
Sb

; s0 ¼ s; n0 ¼ n:

Then the equations describe the interaction of the boundary and the fluid become

U 0 ¼ u0ðX0ða0; t0Þ; t0Þ � n0; ð201Þ
V 0 ¼ u0ðX0ða0; t0Þ; t0Þ � s0; ð202Þ
s0a;t0 ¼ V 0a0 � h0a0U

0; ð203Þ

h0t0 ¼
1

s0a
ðU 0a0 þ V 0h0a0 Þ; ð204Þ
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Fig. 2. Energy for the semi-implicit scheme of first kind (labeled as ‘‘semi-implicit”) and the semi-implicit scheme based on the integral
factor method (labeled as ‘‘integral factor”). Dt ¼ 10, N ¼ 128, Sb ¼ 1, l ¼ 1.
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where

f 0ðx0; t0Þ ¼ Sbt0

lL

Z Lb=L

0

F0ða0; t0Þdðx0 � X0ða0; t0ÞÞda0; ð205Þ

u0ðX0ða0; t0Þ; t0Þ ¼
Z

X
u0ðx0; t0Þdðx0 � X0ða0; t0ÞÞdx0: ð206Þ

From the non-dimensional analysis, we can see that there are three non-dimensional parameters in this
problem:

Sbt0

lL
;

lt0

qL2
;

Lb

L
:

If we let t0 ¼ lL
Sb

, then the parameters left in this dimensionless model is lt0

qL2 ¼ l2

qLSb
and Lb

L . Lb and L are fixed in
our test problem only depends on the initial condition. So l2

qLSb
is the only parameter in our test model. For this

reason, we always fix the elastic coefficient Sb to 1, but vary l.
In our computations, we use the following parameter values:

q ¼ 1; Sb ¼ 1; l ¼ 0:1; 0:01; 0:005:

We vary the number of the spatial grid points along each dimension in the following fashion:

N ¼ 64; 128; 256; 512:

The criterion that we use to check whether one scheme is stable or not is that the total energy of the system is
non-increasing and the boundary configuration lies within the computational domain.
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Fig. 3. Dashed line: the initial boundary configuration; Solid line: the boundary configuration after 20 time steps with Dt ¼ 10, N ¼ 128,
Sb ¼ 1, l ¼ 1. Left: semi-implicit ; Right: integral factor method.

Table 1
Execution time for each computation in seconds

N exp s,i,1 s,i,2 s,s,i f,i

64 1 0.4 2 7 9
128 5 0.7 3 30 39
256 30 1.3 7 139 206
512 344 4.2 19 611 1200

The legends are defined as follows: ‘‘exp” stands for the explicit scheme, ‘‘s,i,1” the semi-implicit method of first kind, ‘‘s,i,2” the semi-
implicit scheme of the second kind, ‘‘s,s,i” the unconditionally stable semi-implicit method, and ‘‘f,i” the fully implicit scheme. N is the
number of grid points along each dimension.

9160 T.Y. Hou, Z. Shi / Journal of Computational Physics 227 (2008) 9138–9169



Author's personal copy

Next, we perform some numerical experiments to test the stability of our semi-implicit schemes for the
unsteady Stokes flow. Fig. 4 shows that the energy obtained by the explicit scheme and the semi-implicit
scheme of the first kind. We take two different timesteps, 0.005 and 0.05. With Dt ¼ 0:005, the explicit and
semi-implicit schemes are all stable, and they give nearly identical results. With Dt ¼ 0:05, the explicit scheme
becomes unstable, but the semi-implicit schemes remain stable. Even if we increase the timestep to Dt ¼ 1, the
semi-implicit methods are still stable, as we can see from Fig. 5. For the semi-implicit scheme of the first kind,
we have used the small scale decomposition and further simplification of the singular integral kernel. There-
fore, the total energy in our semi-implicit scheme is not guaranteed to decrease monotonically in time. None-
theless, we observe that the total energy still decreases in time as is the case for the unconditionally stable semi-
implicit scheme. In Fig. 6, we also plot the boundary configuration at the final time step, which is an approx-
imate circle.

We remark that the semi-implicit scheme is not unconditionally stable, although its stability is much better
than the explicit scheme. This is due to the fact that we have used the small scale decomposition and further
approximation of the leading order singular integral operator to simplify the computation of the implicit solu-
tion. As we mentioned before, the small scale decomposition captures only the high frequency contribution to
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Fig. 4. Total energy of the unsteady Stokes system for different schemes with two different timesteps. N ¼ 128, Sb ¼ 1, l ¼ 0:01. Left:
Dt ¼ 0:005; Right: Dt ¼ 0:05. The legend ‘‘semi-implicit” stands for the solution obtained by the semi-implicit scheme of first kind, ‘‘stable
semi-implicit” the unconditionally stable semi-implicit method.
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Fig. 5. Total energy of the system for two semi-implicit schemes. Here ‘‘stable semi-implicit” stands for the unconditionally stable semi-
implicit scheme, and ‘‘semi-implicit” the semi-implicit scheme of first kind, Dt ¼ 1, N ¼ 128, Sb ¼ 1, l ¼ 0:01.

T.Y. Hou, Z. Shi / Journal of Computational Physics 227 (2008) 9138–9169 9161



Author's personal copy

the stiffness, but it does not remove the stiffness of the system induced by the low frequency components of the
solution. Thus there is still some mild timestep stability constraint for the semi-implicit scheme. The time step
has a mild dependence on the elastic coefficient Sb and the viscous coefficient l. On the other hand, our numer-
ical study shows that the time step for the semi-implicit scheme is independent on the meshsize.

We also compare the performance of our semi-implicit schemes with the explicit scheme. We do not com-
pare the performance of our semi-implicit schemes with the fully implicit scheme here because the fully implicit
scheme is quite expensive and is not competitive with the explicit scheme. In order to keep the area loss is no
more than 5%, we take Dt ¼ 1

4
for all of the semi-implicit schemes. For the explicit scheme, we take

Dt ¼ 1=64; 1=128; 1=256; 1=512 which correspond to the spatial mesh sizes N ¼ 64; 128; 256; 512 respectively,
when l ¼ 0:05. When l ¼ 0:01 and 0:005, the time step is set to be Dt ¼ 1=128; 1=256; 1=512; 1=1024 and
t ¼ 1=256; 1=512; 1=1024; 1=2048. These time steps are the largest ones we can take to keep the stability.
We compute the solution up to T ¼ 2. The results are documented in Table 2. We can clearly see that the
semi-implicit scheme of the first kind gives a significant improvement over the explicit scheme. The cost for
the semi-implicit scheme of the second kind is higher than that for the semi-implicit scheme of the first kind.
This is because we need to solve for a linear system at each time step for the semi-implicit scheme of the second
kind. The cost increases as the number of the spatial grid points increases. The semi-implicit scheme of the
second kind and the unconditionally stable semi-implicit scheme both need to solve a linear system at each
time step. Their complexity are same, both are OðN 2

bÞ. But for the unconditionally stable semi-implicit scheme,
the scaling constant in front of N 2

b is much larger than the semi-implicit scheme of the second kind. The reason
is that the cost of computing the coefficient matrix of the linear system for the unconditionally stable semi-
implicit scheme is much higher. As we can see from Table 2, the unconditionally stable semi-implicit scheme
(labeled as s,s,i) is still quite expensive compared with our semi-implicit schemes that use the Small Scale
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Fig. 6. Dashed line: the initial boundary configuration; Solid line: the boundary configuration after 20 time steps with Dt ¼ 1, N ¼ 128,
Sb ¼ 1, l ¼ 0:01. Left: the unconditionally stable semi-implicit scheme; Right: the semi-implicit scheme of the first kind.

Table 2
Execution times for each computation in seconds

N l ¼ 0:05 l ¼ 0:01 l ¼ 0:005

exp s,i,1 s,i,2 s,s,i exp s,i,1 s,i,2 s,s,i exp s,i,1 s,i,2 s,s,i

64 1.8 0.5 4 11 3.3 0.5 4 12 6.6 0.5 4 12
128 9 1 10 48 18 0.9 10 47 35 0.9 10 48
256 58 2.4 25 229 116 2.4 25 228 236 2.4 25 226
512 738 12 99 980 1461 12 98 982 2910 12 98 977

The legends are defined as follows: ‘‘exp” stands for the explicit scheme, ‘‘s,i,1” the semi-implicit scheme of the first kind, ‘‘s,i,2” the semi-
implicit scheme of the second kind, ‘‘s,s,i” the unconditionally stable semi-implicit scheme.
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Decomposition. For l ¼ 0:05, the unconditionally stable semi-implicit scheme is even more expensive com-
pared with the explicit scheme. Although the unconditionally stable semi-implicit scheme is slightly faster than
the explicit scheme for smaller l, the semi-implicit scheme (labeled as s,i,1) which uses SSD to further simply
the singular integral kernel gives a much more efficient algorithm. It gives a factor of 242 times speed-up over
the explicit scheme in the case of l ¼ 0:005 and N ¼ 512.

7.4. Second order semi-implicit scheme for the unsteady Stokes flow

In this subsection, we perform numerical experiments to test the convergence rate and the stability property
of our second order semi-implicit scheme. To check the convergence rate in time, we set N ¼ 256 and vary the
time step in powers of 2 from 1

16
to 1

128
. When l ¼ 0:005, the solution becomes more singular. In order to fully

resolve the spatial solution, we increase the spatial resolution to N ¼ 512. Following [23], we compute the time
discretization error at time t as follows:

eT ðu; DtÞ ¼ kuðT ; DtÞ � uðT ; Dt=2Þkl2 : ð207Þ
For a vector field uðxÞ ¼ ðu1ðxÞ; u2ðxÞÞ defined on the Cartesian grid with xi ¼ ih, yj ¼ jh, the discrete l2 norm
is defined as follows

kukl2 ¼
X

i;j

u2
1ðxi; yjÞ þ u2

2ðxi; yjÞ
� �

h2

 !1
2

: ð208Þ

Similarly, the discrete l2 norm for a vector field wðaÞ ¼ ðw1ðaÞ;w2ðaÞÞ defined on the interface C is defined
below:

kwkl2 ¼
X

i

w2
1ðaiÞ þ w2

2ðaiÞ
� �

Da

 !1
2

: ð209Þ

We compute the solution up to T ¼ 1 and evaluate the convergence rate based on the numerical solution at
T ¼ 1 with different temporal resolutions. The results are shown in Fig. 7 and Table 3. As we can see, the con-
vergence rate is approximately second order.

Next we check the stability of the second order semi-implicit scheme. Fig. 8 shows that the total energy for
the second order explicit and second order semi-implicit schemes with different timesteps 0.002 and 0.02. We
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Fig. 7. Plot of l2 errors in time at time T ¼ 1 for the second order semi-implicit scheme of the first kind. We choose Sb ¼ 1 and N ¼ 256 in
all computations except in the case of l ¼ 0:005 where N is increased to 512. The line at the bottom of each graph is a reference line which
corresponds to the second order convergence rate.
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choose the same second order explicit scheme that was used in [13]. With Dt ¼ 0:002, both the explicit and
semi-implicit schemes are stable and they give nearly identical results. With Dt ¼ 0:02, the explicit scheme
becomes unstable, but the semi-implicit scheme is still stable. The stability restriction of the semi-implicit
scheme is far less severe than the corresponding explicit scheme. Our numerical study also shows that the time
step for the semi-implicit scheme is independent on the meshsize while the explicit scheme requires finer time
step as the spatial mesh is refined.

Finally, we compare the performance of our second order semi-implicit scheme with that of the second
order explicit scheme. As before, in order to keep the accuracy with 5%, we take Dt ¼ 1

4
for our semi-implicit

schemes. For the explicit scheme, we take Dt ¼ 1=128; 1=256; 1=512; 1=1024 which correspond to the spatial
mesh sizes N ¼ 64; 128; 256; 512 respectively, when l ¼ 0:05. When l ¼ 0:01 and 0:005, the time step is set
to be Dt ¼ 1=128; 1=256; 1=1024; 1=2048. These time steps are the largest ones that we can take to keep the
stability of the explicit scheme. We compute the solution up to T ¼ 2. The result is shown in Table 4. Again,
we observe the same qualitative behavior as the first order schemes we reported earlier.

Table 3
Convergence rates for X and u fitted from the data shown in Fig. 7

l Convergence rate of X Convergence rate of u

0.05 2.11 2.70
0.01 2.13 2.10
0:005� 2.17 1.96

The case * is computed using a refined mesh 512� 512.
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Fig. 8. Total energy of the unsteady Stokes system for the second order semi-implicit scheme and the second order explicit scheme.
N ¼ 128, Sb ¼ 1, l ¼ 0:01. Left: Dt ¼ 0:002; Right: Dt ¼ 0:02.

Table 4
Execution time for each computation in seconds.

N l ¼ 0:05 l ¼ 0:01 l ¼ 0:005

Explicit Semi-implicit Explicit Semi-implicit Explicit Semi-implicit

64 7 0.8 7 0.8 7 0.8
128 37 1.6 38 1.6 38 1.6
256 249 4.4 504 4.6 506 4.5
512 3088 24 6182 25 6200 25

Here ‘‘explicit” stands for the second order explicit scheme and ‘‘semi-implicit” the second order semi-implicit scheme.
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8. Concluding remarks

In this paper, we have developed several efficient semi-implicit immersed boundary methods for solving the
immersed boundary problem for the steady and unsteady Stokes equations. The immersed boundary method
has emerged as one of the most useful numerical methods in computing fluid structure interaction, and has
found numerous applications. But it also suffers from the severe time step stability limitation due to the stiff-
ness of the elastic force. Guided by our stability analysis, we have developed several efficient semi-implicit
schemes which remove the stiffness of the immersed boundary method. We have demonstrated both analyti-
cally and computationally that our semi-implicit schemes have much better stability property than the explicit
scheme. More importantly, unlike most existing implicit or semi-implicit schemes, our semi-implicit schemes
can be implemented very efficiently. In fact, our semi-implicit scheme of the first kind has a computational cost
that is essentially the same as that of an explicit scheme in each time step, but with a much better stability
property. The saving in the computational cost is quite substantial. We have demonstrated this improved sta-
bility for a range of parameters and numerical resolutions. Our computational results show that the larger the
spatial resolution is, the bigger the computational saving our semi-implicit schemes can offer. Thus the semi-
implicit schemes we develop in this paper provide an effective alternative discretization to the explicit method.

One of the essential steps in developing our semi-implicit schemes is to obtain an unconditionally stable
semi-implicit discretization of the immersed boundary problem. This provides us with a building block to con-
struct our efficient semi-implicit schemes. There are two important observations in constructing the uncondi-
tionally stable semi-implicit discretization. The first one is that we need to preserve certain important solution
structures at the discrete level. Specifically, we need to ensure that the discrete velocity field is divergence free,
and the discrete spreading and interpolation operators are adjoint. Another essential step is to decouple the
stiffness of the elastic force from the fluid flow in some appropriate way. This is difficult to achieve if we
use the Cartesian coordinate. But it becomes easier if we use the arclength and tangent angle formulation
to describe the dynamics of the immersed interface as was done in [9]. On the other hand, as we demonstrated
in this paper, the unconditionally stable semi-implicit scheme is still very expensive to implement, and the sav-
ing over the expicit scheme is rather limited.

Based on this unconditionally stable semi-implicit discretization, we have developed several efficient
schemes for both the steady and the unsteady Stokes flows. By applying the small scale decomposition to
the unconditionally stable semi-implicit time discretization and further simplifying the leading order singular
kernel, we obtain our semi-implicit scheme. The advantage of this semi-implicit scheme is that the leading
order term can be expressed as a convolution operator, which can be evaluated explicitly using the Fourier
transformation. This allows us to solve for the implicit solution explicitly in the spectral space, which offers
substantial computational saving over the explicit scheme.

It is a natural step to extend the the semi-implicit schemes developed for the unsteady Stokes equations to
the Navier–Stokes equations. The discretization of the Navier–Stokes equations shares many similar proper-
ties as the unsteady Stokes equations if we treat the convection term explicitly. We have performed a number
of numerical experiments to test the stability and the robustness of our semi-implicit immersed boundary
methods for the Navier–Stokes equations. The results are qualitatively similar to those for the unsteady Stokes
equations which we have presented in this paper. These results will be reported in a subsequent paper.
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Appendix A. The semi-implicit scheme of the second kind

In this appendix, we will derive the semi-implicit method of the second kind in more detail. As we men-
tioned before, the small scale decomposition only captures the leading order contribution from the high fre-
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quency components, which can not remove the stiffness induced by Sb and l completely. The coefficients Sb

and l can still affect the time stability through the low frequency components of the solution, which comes
from the lower order term of the right hand side. In order to obtain a semi-implicit discretization with better
stability property, we can incorporate the low frequency contribution from the second term in our implicit
discretization. For the steady Stokes flow, this gives rise to the following decomposition:

ŝnþ1
a � ŝn

a

Dt
¼ � Sb

4l
jk ĵsnþ1

a þ F hn
a

Z
ln ja� a0jðsnþ1

a � 1Þhn
a da0

� �
þ F V n

a � hn
aU n � hn

a

Z
ln ja� a0jðsn

a � 1Þhn
ada0

� �
þ Sb

4l
jk ĵsn

a

	 

; ð210Þ

/̂nþ1 � /̂n

Dt
¼ � Sb

4l
cjkj/̂nþ1 þ F

1

snþ1
a

V nhnþ1
a

� �
þ F

U n
a

snþ1
a

� �
þ Sb

4l
cjkj/̂n

	 

; ð211Þ

where c ¼ maxað1� 1
sa
Þ. By replacing the continuous derivative by the discrete derivative, and discretizing the

continuous integral by the trapezoidal rule, we obtain our second semi-implicit scheme. We call this semi-im-
plicit scheme the semi-implicit scheme of the second kind. Near equilibrium, we can show that the semi-im-
plicit scheme of the second kind is unconditionally stable. Moreover, the stability property is independent
of the meshsize, elastic coefficient Sb and viscosity coefficient l. Our numerical study also confirms this.
The trade-off is that we need to solve a linear system at each time step to obtain the implicit solution at tnþ1.

Similarly, in the case of unsteady Stokes flow, we can also include the second term of the right hand side in
the leading order term to derive a scheme with better stability property. In this case, the leading order term
becomes:

bT ðsnþ1
a Þ ¼ �

SbDt

2ðmin
a

sn
aÞ

2

k min
a

sn
a

� �2

k2 þ k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk min

a
sn
aÞ

2 þ k2
q � jkj3

0B@
1CAŝnþ1

a

� SbDt
2p

F
hn

a

ðsn
aÞ

2

Z
ðK0ðksn

aja� a0jÞ � lnða� a0ÞÞððsnþ1
a � 1Þhn

a0 Þa0a0 da0
 !

; ð212Þ

bSðhnþ1Þ ¼ �
SbDt max

a
ðsn

a � 1Þ

2ðmin
a

sn
aÞ

2
jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk min
a

sn
aÞ

2 þ k2
q

0B@
1CAĥnþ1 þ F

1

snþ1
a

V nþ1hnþ1
a

� �
; ð213Þ

where the derivative will be discretized by the spectral method and the integration will be discretized by the
trapezoidal rule. We call the above scheme the semi-implicit scheme of the second kind for the unsteady Stokes
flow. Near equilibrium stability analysis suggests that the semi-implicit scheme of the second kind is uncon-
ditionally stable.

Appendix B. Derivation of the semi-implicit scheme (140)–(143)

In this appendix, we will derive the semi-implicit scheme (140)–(143). We define the operator
Gðsa; un; hn;XnÞ : sa ! u by the following equations:

u� un

Dt
¼ �rhp þ lr2

huþ Lh;nðFðsa; h
n; sn; nnÞÞ; ð214Þ

r2
hp ¼ rh � Lh;nðFðsa; h

n; sn; nnÞÞ: ð215Þ

Given sa, we obtain u by solving above equations. From the definition of operator G, we have

unþ1 ¼ Gðsnþ1
a ; un; hn;XnÞ;

u�;nþ1 ¼ Gðsn
a; un; hn;XnÞ;

where u�;nþ1 is calculated from Eqs. (143)-(141).
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Then the equation of sa can be rewritten as

snþ1
a � sn

a

Dt
¼ DDaV nþ1 � DDah

nU nþ1

¼ DDaðL�h;nðunþ1Þ � snÞ � DDah
nðL�h;nðunþ1 � nnÞÞ

¼ DDaðL�h;nðGðsnþ1
a ; un; hn;XnÞÞ � snÞ � DDah

nðL�h;nðGðsnþ1
a ; un; hn;XnÞÞ � nnÞ

� Rðsnþ1
a ; un; hn;XnÞ: ð216Þ

Using the small scale decomposition, we get

Rðsnþ1
a ; un; hn;XnÞ � T ðsnþ1

a Þ: ð217Þ
By treating the leading order term implicitly, we obtain our semi-implicit method as follows:

snþ1
a � sn

a

Dt
¼ T ðsnþ1

a Þ þ ðRðsn
a; un; hn;XnÞ � T ðsn

aÞÞ

¼ T ðsnþ1
a Þ þ DDaðL�h;nðGðsn

a; un; hn;XnÞÞ � snÞ � DDah
nðL�h;nðGðsn

a; un; hn;XnÞÞ � nnÞ � T ðsn
aÞ

¼ T ðsnþ1
a Þ þ DDaðL�h;nðu�;nþ1Þ � snÞ � DDah

nðL�h;nðu�;nþ1Þ � nnÞ � T ðsn
aÞ

¼ T ðsnþ1
a Þ þ ðDDaV �;nþ1 � DDah

nU �;nþ1 � T ðsn
aÞÞ: ð218Þ

This is exactly our semi-implicit scheme (134).
In the steady Stokes case, we can define the operator Gðsa; un; hn;XnÞ : sa ! u similarly:

0 ¼ �rhp þ lr2
huþ Lh;nðFðsa; h

n; sn; nnÞÞ; ð219Þ
r2

hp ¼ rh � Lh;nðFðsa; h
n; sn; nnÞÞ: ð220Þ

In this case, we have

Gðsn
a; un; hn;XnÞ ¼ un:

Thus, the semi-implicit scheme becomes

snþ1
a � sn

a

Dt
¼ T ðsnþ1

a Þ þ ðDDaV n � DDah
nUn � T ðsn

aÞÞ: ð221Þ

Appendix C. The derivation of the Fourier transform of K0

In this appendix, we derive the the Fourier transform of K0, which is given in (144). By the definition of the
Fourier transform, we have

F
1

p

Z þ1

�1
K0ðbja� a0jÞf ða0Þda0

� �
¼ 1

p

Z þ1

�1

Z þ1

�1
K0ðbja� a0jÞf ða0Þda0

� �
e�ika da

¼ 1

p

Z þ1

�1

Z þ1

�1
K0ðbja� a0jÞf ða0Þe�ika da0 da

¼ 1

p

Z þ1

�1

Z þ1

�1
K0ðbja� a0jÞf ða0Þe�ikða�a0Þe�ika0 da0 dða� a0Þ

¼ 1

p

Z þ1

�1

Z þ1

�1
K0ðbja� a0jÞe�ikða�a0Þ dða� a0Þ

� �
f ða0Þe�ika0 da0

¼
Z þ1

�1

f ða0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

q e�ika0 da0 ¼
bf ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

q ; ð222Þ
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where F ðf ðaÞÞðkÞ ¼
Rþ1
�1 f ðaÞeikada is the Fourier transform. In the calculation above, we have used the

expression of the Bessel function ([1, p. 376])

K0ðxÞ ¼
Z þ1

0

cosðtxÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p dt ð223Þ

and the identity below:Z þ1

�1
K0ðbjxjÞe�ikx dx ¼

Z þ1

�1

Z þ1

0

cosðbtxÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p e�ikx dt dx

¼ 1

2

Z þ1

�1

Z þ1

�1

cosðbtxÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p e�ikx dt dx

¼ 1

2

Z þ1

�1

Z þ1

�1

eibtxffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p e�ikx dt dx

¼ 1

2

Z þ1

�1

Z þ1

�1

eiðbt�kÞxffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p dt dx

¼ p
Z þ1

�1

dðbt � kÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p dt ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ k2
q : ð224Þ

This proves (144).
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