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Abstract

Developing an effective turbulence model is important for engineering ap-
plications as well as for fundamental understanding of the flow physics. We
present a mathematical derivation of a closure relating the Reynolds stress to
the mean strain rate for incompressible flows. A systematic multiscale anal-
ysis expresses the Reynolds stress in terms of the solutions of local periodic
cell problems. We reveal an asymptotic structure of the Reynolds stress by
invoking the frame invariant property of the cell problems and an iterative
dynamic homogenization of large- and small-scale solutions. The recovery of
the Smagorinsky model for homogeneous turbulence validates our derivation.
Another example is the channel flow, where we derive a simplified turbulence
model using the asymptotic structure near the wall. Numerical simulations
at two Reynolds numbers (Re’s) using our model agrees well with both ex-
periments and Direct Numerical Simulations of turbulent channel flow.
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flow

1. Introduction1

Turbulence has been a central research area in fluid dynamics since the2

19th century. The Navier-Stokes equation, one of the seven millennium prize3
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problems established by the Clay Mathematics Institute, gives a good de-4

scription of turbulent flows, according to extensive theoretical and experi-5

mental works. However, it is still an open question whether the solution6

of the 3D incompressible Navier-Stokes equation with smooth initial data7

and with finite energy will remain smooth for all times. In addition, it is8

extremely difficult to solve the Navier-Stokes equation due to its non-local9

nonlinear nature.10

The enormous progress of computer technology has enabled direct nu-11

merical simulation (DNS) of the Navier-Stokes equation. But tremendous12

computing resource is still required to perform DNS of turbulent flows, espe-13

cially at a high Re and/or irregular geometry. Many turbulence models have14

been developed, aiming at capturing the most important statistical quantities15

of turbulent flows, such as profiles of mean velocity, r.m.s. velocity fluctu-16

ations, etc. . Among them, the eddy-viscosity models were the first. But17

they over-simplify the turbulent structures without considering the essential18

physical mechanisms. Another popular model is the Smagorinsky model [1]19

and its variants[2, for an example of channel flow], which have succeeded in20

many applications, e.g. homogeneous turbulence and channel flow.21

Large eddy simulation (LES) has calculated practical flows even in rel-22

atively complex geometries [3, 4, 5, 6]. However, it is still impossible to23

simulate the wall-bounded flows at high Re, since a huge number of grid24

points are needed to resolve the small structure near the wall [7, 8]. Re-25

cently, hybrid models, which combine LES with Reynolds Averaged Navier26

Stokes (RANS) equation, have been proposed to improve the modeling per-27

formance [9, 10]. Most popular RANS models yield good predictions of high28

Re turbulent flows. Hence, the RANS model is applied near the wall, and29

LES away from the wall. Spalart et al. [8] proposed the detached eddy sim-30

ulation (DES) by modifying the Spalart-Allmaras one-equation model. The31

RANS simulation in the near-wall region is switched to the LES in the outer32

region, where the model length scale is changed from the wall distance to a33

pseudo-Kolmogorov length scale. DES has been applied to predict separated34

flow around a rounded square corner [11]. All these models, however, are35

based on speculative formulations and/or fittings to experimental data. No36

systematic mathematical derivation of such a model has been possible yet.37

In this paper, we present a mathematical derivation based on a multi-38

scale analysis of Navier-Stokes equations developed by Hou-Yang-Ran [12, 13,39

hereafter referred to as HYR], aiming to systematically derive the Reynolds40

stress for 3D homogeneous incompressible Euler and Navier-Stokes equations.41
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A multiscale model can be obtained by separating variables into large- and42

small-scale components and considering the interactions between them. This43

gives rise to a system of coupled equations for large- and small-scales. An44

important feature of the multiscale formulation is that no closure assump-45

tion is required and no unknown parameters to be determined. Therefore,46

it provides a self-consistent multiscale system, which captures the dynamic47

interaction between the mean and small-scale velocities. This multiscale48

technique has been successfully applied to 3D incompressible Navier-Stokes49

equation with multiscale initial data [13]. It couples the large-scale solution50

to a subgrid cell problem. The computational cost is still quite high but an51

adaptive scheme has speeded up the computation.52

In the multiscale model, the Reynolds stress term is expressed as the av-53

erage of tensor product of the small-scale velocities, which are the solutions54

of a local periodic cell problem. By using the frame invariance property of55

the cell problem and an iterative homogenization of large- and small-scale56

solutions dynamically, we reveal a crucial structure of the Reynolds stress57

and obtain an explicit form of it. This seems to be the first linear constitu-58

tive relation between the Reynolds stress and the strain rate, established by59

combining a systematic mathematical derivation with physical arguments.60

For homogeneous turbulence, we recover the Smagorinsky model using61

least assumptions, while a simplified Smagorinsky model can be derived given62

the structure of turbulent channel flow. A numerical study validates the63

simplified model for channel flow, with good agreement of the mean velocity64

with both experimental and DNS results at Reτ = 180 and Reτ = 395. An65

extensive numerical study is reported in [14], which shows good qualitative66

agreement of the simplified model with DNS and experimental data.67

The paper is organized as follows: In section 2, we briefly review the68

multiscale analysis for the 3D Navier-Stokes equation. The systematic math-69

ematical derivation, based on the multiscale analysis is presented in section70

3. In section 4, the Smagorinsky model for homogeneous turbulence is re-71

covered via this mathematical derivation. A simplified Smagorinsky model72

is obtained for turbulent channel flow and the coefficients in the model are73

determined and justified. Numerical simulations are carried out to validate74

the simplified model. Final conclusions and remarks appear in section 5.75
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2. Multiscale analysis for the 3D Navier-Stokes equation76

Based on the multiscale analysis in [12, 13], we can formulate a multiscale
system for the incompressible 3D Navier-Stokes equation as a homogenization
problem with ε being a reference wave length as follows:

∂tu
ε + (uε · ∇)uε +∇pε = ν∆uε, (1)

∇ · uε = 0, (2)

uε|t=0 = U(x) +W (x, z), (3)

where uε(x, t) and pε(x, t) are the velocity field and the pressure, respectively.77

The initial velocity field uε(x, 0) can be reparameterized in a two-scale struc-78

ture: the mean U(x) and the fluctuating W (x, z) components. In general,79

W (x, z) is periodic in z with zero mean, i.e.,80

〈W 〉 ≡
∫
W (x, z) dz = 0.

In Appendix A, the reparameterization of the initial velocity uε(x, 0) in81

two-scale structure for channel flow is illustrated. Here, the mean U(x) and82

the fluctuation W (x, z) depend on the reference scale ε. In the limit ε→ 0,83

W (x, z) tends to zero, and the mean U(x) recovers the full velocity field,84

containing all of the scales.85

In the analysis, the key idea is a nested multiscale expansion to char-
acterize the transport of the small scales or the high-frequency component
W (x, z). The first attempt to use homogenization theory to study the 3D
Euler equations with highly oscillating data was carried out by McLaugh-
lin et al. [15]. To construct a multiscale expansion for the Euler equations,
they made an important assumption that the oscillation is advected by the
mean flow. However, Hou et al. performed a detailed study by using the
vorticity-stream function formulation [12, 13], and found that the small-scale
information is in fact advected by the full velocity uε, which is consistent with
Taylor’s hypothesis [16]. To be specific, define a multiscale phase function
θε(t,x) as follows:

∂θε

∂t
+ (uε · ∇)θε = 0, (4)

θε|t=0 = x, (5)
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which, also called the inverse flow map, characterizes the evolution of the86

small-scale velocity field.87

First, we define the two operators for vector functions. For a vector88

function f(x1, x2, x3) = (f1, f2, f3), the gradient of f is defined as89

(∇xf)ij =
∂fj
∂xi

,

while the differential of f is defined as90

(Dxf)ij =
∂fi
∂xj

.

Based on a multiscale analysis in the Lagrangian coordinates, the fol-
lowing nested multiscale expansions for θε and the stream function ψε are
adopted:

θε = θ̄(t,x, τ) + εθ̃(t, θ̄, τ, z), (6)

ψε = ψ̄(t,x, τ) + εψ̃(t, θ̄, τ, z), (7)

where τ = t/ε, z = θ̄/ε. θ̄ and ψ̄ are averages of θ̄
ε

and ψε respectively; θ̃91

and ψ̃ are periodic functions in z with zero mean. Now direct computations92

give the expansion for velocity uε93

uε = ∇x × ψ̄ + (Dxθ̄
T∇z)× ψ̃ + ε∇x × ψ̃, (8)

which implies the multiscale expansion94

uε = ū(t,x, τ) + ũ(t, θ̄, τ, z), (9)

where

ū(t,x, τ) = ∇x × ψ̄,

ũ(t, θ̄, τ, z) = (Dxθ̄
T∇z)× ψ̃ + ε∇x × ψ̃.

The pressure pε is similarly expanded:

pε = p̄(t,x, τ) + p̃(t, θ̄, τ, z). (10)
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Substituting (9)-(10) into the Navier-Stokes system (1) and averaging
with respect to z, the equations for the mean velocity field ū(t,x, τ) are
obtained with initial and proper boundary conditions:

∂̄tū+ (ū · ∇x)ū+∇xp̄+∇x · 〈ũ⊗ ũ〉 = ν∇2
xū, (11)

∇x · ū = 0, (12)

ū|t=0 = U(x), (13)

where ∂̄t = ∂t+ ε−1∂τ . The additional term 〈ũ⊗ ũ〉 in (11) is the well-known95

Reynolds stress. How to model it is important in both fundamental under-96

standing and engineering applications. In many LES, the Reynolds stress97

is modeled by some closure assumptions. In contrast, by using the frame98

invariance property of the cell problem and an iterative homogenization of99

the large- and small-scale solutions dynamically, we reveal a crucial struc-100

ture of the Reynolds stress. Then the linear constitutive relation between101

the Reynolds stress and the strain rate can be established mathematically;102

see section 3.103

Next, substituting (6) into (4) and averaging over z give the equations
for θ̄(t,x, τ) with initial and proper boundary conditions:

∂̄tθ̄ + (ū · ∇x)θ̄ + ε∇x · 〈θ̃ ⊗ ũ〉 = 0, (14)

θ̄|t=0 = x. (15)

To simplify the model further, we consider only the leading order terms
of large-scale variables (ū, p̄, θ̄)

ū(t,x, τ) = u(t,x) + εu1(t,x, τ), (16)

p̄(t,x, τ) = p(t,x) + εp1(t,x, τ), (17)

θ̄(t,x, τ) = θ(t,x) + εθ1(t,x, τ), (18)

and small scale variables (ũ, p̃, θ̃)

ũ = w(t, θ̄, τ, z) +O(ε), (19)

p̃ = q(t, θ̄, τ, z) +O(ε), (20)

θ̃ = Θ(t, θ̄, τ, z) +O(ε). (21)

This gives simplified averaged equations, up to first order of ε,

∂tu+ (u · ∇x)u+∇xp+∇x · 〈w ⊗w〉 = ν∇2
xu, (22)

∇x · u = 0, (23)

u|t=0 = U(x), (24)
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and

∂tθ + (u · ∇x)θ = 0, (25)

θ|t=0 = x. (26)

Then we subtract the averaged equations from the Navier-Stokes equation
(1) and the equations for the inverse flow map θε (4). After some algebraic
operations, we obtain the equations for the small-scale variables, to the lead-
ing order approximation:

∂τw +DzwAw +AT∇zq −
ν

ε
∇z · (AAT∇zw) = 0, (27)

(AT∇z) ·w = 0, (28)

w|t=0 = W (x, z), (29)

where A is the gradient of phase function θ, i.e. A = Dxθ, and I is the104

identity matrix.105

Remark 1. An important feature of the above formulation, including the106

equations for both large-scale and high-frequency variables, is that we do107

not need any closure assumption; no unknown parameter needs to be deter-108

mined, in contrast to other models, e.g. , the Smagorinsky model. It provides109

a self-consistent system which captures the interaction between large-scale110

and small-scale fields. The computational cost for this coupled system of111

equations is still quite substantial although an adaptive scheme has been112

developed to speed up the computation, [see 13, for a numerical example of113

homogeneous turbulent flows].114

Remark 2. For convenience of theoretical analysis and numerical imple-
mentation, the cell problem (27) can be further simplified by a change of
variables from w to w̃ by letting w̃ = Aw. Left-multiplying equation (27)
by A gives

A∂τw +ADzwAw +AAT∇zq −
ν

ε
A∇z · (AAT∇zw) = 0.

Since A does not depend on τ or z,

A∂τw = ∂τAw = ∂τw̃.
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Further, we note:

ADzwAw = (Dzw̃)w̃ = (w̃ · ∇z)w̃,

A∇z · (AAT∇zw) = ∇z(AAT∇zAw) = ∇z · (AAT∇zw̃),

(AT∇z) ·w = ∇z · (Aw) = ∇z · w̃.

Thus, we obtain the following modified cell problem for w̃ :

∂τw̃ + (w̃ · ∇z)w̃ +AAT∇zq −
ν

ε
∇z · (AAT∇zw̃) = 0, (30)

∇z · w̃ = 0, (31)

w̃|t=0 = AW (x, z). (32)

We remark that ε is not small. It is related to the resolution of large-scale115

variables. Since we are mainly interested in large Re’s, we have ν � ε, i.e.116

ν/ε � 1. This is very different from the traditional homogenization theory117

in which one studies the limit of ε → 0 with ν being fixed. In this case, we118

would have ν � ε and w would vanish dynamically due to strong diffusion.119

3. Mathematical derivation of turbulent models120

Considering that the model (22)–(29) needs considerable computational121

CPU time and storage space, we would like to develop a simplified multiscale122

model. While the new model has a comparable computational complexity as123

the other LES models, it needs least closure assumptions.124

First of all, we state the Rivlin-Ericksen Theorem, which plays an essential125

role in the development of the turbulence models.126

Theorem 1 (Rivlin-Ericksen). A mapping T̂ : M3
+ → S3 is isotropic and127

material frame invariant if and only if it is of the form128

T̂ (F ) = T̄ (FF T )

where the mapping T̄ : S3
+ → S3 is of the form:129

T̄ (B) = β0(iB)I + β1(iB)B + β3(iB)B2

for every B ∈ S3
+, where β0, β1, β2 are real-valued functions of the three130

principal invariants iB of the matrix B.131
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Proof of the Rivlin-Ericksen Theorem can be found in [17].132

Note that the cell problem (30) for w̃ is frame invariant, i.e. the following133

conditions are met:134

1. translational invariance135

x = y +Z

where Z is a constant vector,136

2. Galilean invariance137

x = y + vt,

where v is a constant vector,138

3. rotational invariance139

x = My

where M is a rotation matrix with140

(MTM)i,j = δi,j.

Define B = AAT, which is obviously symmetric. By the Rivlin-Ericksen141

theorem, we have the following relation in three-dimensional space:142

〈w̃ ⊗ w̃〉(B) = a0I + a1B + a2B2. (33)

At this point, we only know that all these coefficients are real-valued143

functions of the three principal invariants of B. Furthermore, B cannot be144

solved explicitly to obtain these invariants.145

However, to extract the structure of the Reynolds stress, we perform a146

local-in-time multiscale analysis, accounting for interaction between large147

and small scales through dynamic re-initialization of the phase function.148

The large-scale components, u and θ, can generate small scales dynamically149

through advection and nonlinear interaction. Thus enforcing that u contains150

only the large-scales, dynamic iterative reparameterization of the multiscale151

solution enables us to capture the interactions among all small scales. More152

specifically, we solve the average equations (25) for the inverse phase flow θ153

in a local time interval [t, t + ∆t] with θ(t,x) = x as the initial condition.154

By using the forward Euler method, we can approximate θ as follows:155

θ(t+ ∆t,x) = x−∆tu(t,x).

It follows that the rate of deformation can be computed as A = Dxθ =156

I −∆t∇u+O(∆t2), and its inverse A−1 = I + ∆t∇u+O(∆t2). The above157

scheme is accurate up to the second order of ∆t.158
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Therefore, B can be approximated as follows:159

B = AAT = I − 2∆tD +O(∆t2), (34)

where D is the strain rate tensor defined as160

D =
1

2

(
∇u+∇uT

)
.

Then we have the approximation of 〈w̃ ⊗ w̃〉

〈w̃ ⊗ w̃〉 = a0I + a1B + a2B2

= a0I + a1(I − 2∆tD +O(∆t2) + a2(I − 2∆tD +O(∆t2)2

= αI − β̃∆tD +O(∆t2),

where the coefficients α = a0 + a1 + a2 and β̃ = 2(a1 + 2a2). Note that both161

α and β̃ are functions of the invariants of B.162

Finally, the Reynolds stress tensor is

R = 〈w ⊗w〉
= 〈A−1w̃ ⊗A−1w̃〉
= 〈(I + ∆t∇u+O(∆t2))w̃ ⊗ (I + ∆t∇u+O(∆t2))w̃〉
= 〈w̃ ⊗ w̃〉+ ∆t∇u〈w̃ ⊗ w̃〉+ ∆t〈w̃ ⊗ w̃〉∇uT +O(∆t2)

= αI − β∆tD +O(∆t2). (35)

where tr(R) = α/3 = (a0 + a1 + a2)/3 is the SGS kinetic energy, and β =163

−2(a0 − a2). Both are also functions of the invariants of B.164

Remark 3. The expression for Reynolds stress (35) applies to various flows,165

as long as the cell problem (30) is frame invariant. This is true for both166

homogeneous and channel flows. However, the coefficient β depends on the167

flow properties, such as geometry. In Section 4, we will look into the specific168

expression of β.169

Remark 4. Since ∇·(αI) = ∇α, the first term αI in (35) can be integrated170

into the pressure term in (22) with a modified pressure p′ = p+ α.171

Lemma 1. The coefficient β in (35) is of order 1/∆t, i.e.172

β ∼ 1

∆t
.
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This lemma can be verified using the linear relation between R and D in173

(35) and its proof can be found in [14].174

Remark 5. Note that in the limite ∆t → 0, the Reynolds stress tensor175

should not reduce to a multiple of identity matrix, which means that R must176

have an O(1) effect on the LES model (22). By Lemma 1, β is of order 1/∆t,177

or178

β∆t ∼ 1.

Therefore, the term −β∆tD does not vanish when taking the limit ∆t→ 0.179

In eddy-viscosity models, the stress tensor is assumed to be a linear func-180

tional of the strain rate tensor via the turbulent eddy viscosity ντ181

R̃ij = Rij −
1

3
Rkkδij = −ντDij, (36)

which is a first-order approximation, as is that in (35). We remark that such182

linear relation between the stress and strain rate tensor is not meant to be183

valid pointwise, but should be understood in a statistical sense as ensemble184

average. To demonstrate this, the channel flow is taken as an example. The185

computational settings in [18] are adopted. The streamwise (x) and spanwise186

(z) computational periods are chosen to be 4π and 2π, and the half-width of187

the channel is 1, i.e. , the computational domain is [0, 4π]× [−1, 1]× [0, 2π].188

Figure 1 shows the spatial distributions of sign of R̃11D11 on the channel189

center y = 0. Figure 1(a) is the time average of the sign at each grid point,190

while figure 1(b) displays the snapshot of the sign on the central plane at191

t = 2. Hence, there does not exist a positive ντ such that (36) holds pointwise,192

[see 14, for more discussion].193

Furthermore, ντ is assumed to be positive, which treats the ‘dissipation’194

of kinetic energy at sub-grid scales similar to viscous (molecular) dissipa-195

tion. As a matter of fact, the Reynolds stress term reflects neither diffusion196

nor dissipation locally in space, but reflects equivalent, ensemble averaged197

effects of turbulent fluctuations. Figure 2 indicates that each element of R̃198

and its counterpart of D do not always have the same signs in time. The199

eddy-viscosity model (36) could be improved by allowing ντ to change sign.200

Germano et al. [19] allowed subgrid-scale eddy viscosity ντ to change sign201

dynamically based on a two-level grid and demonstrated that it indeed gives202

improved results by incorporating the backscattering effect. Since the two-203

level dynamic Smagorinsky model also introduces other errors such as inter-204

polation error and its implementation is more involved, we will restrict our205
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Figure 1: Spatial distributions of sign of R̃11D11 on the central layer of the
channel y = 0. Left: time average over time interval [0.2, 2]; Right: a
snapshot at t = 2.

discussions here to the Smagorinsky model by enforcing ντ to be positive. In206

Section 4, we will look for a simplified model with dissipative effect.207

Remark 6. In (35), we establish a linear constitutive relation between the208

Reynolds stress R̃ and the mean strain rate D, up to second order accuracy in209

time step ∆t. The first term αI is not crucial since this can be incorporated210

as a modified pressure. Hereafter, we write R̃ as R for simplicity. The211

remaining question is how to determine the coefficient β, for which we need to212

know the detailed structure of the symmetric tensor B. Constitutive relation213

necessarily involves material property like viscosity.214

Note that there exists a relation between B and D given in (34), so we can215

find the relation of the eigenvalues of B and D as follows. In three dimensions,216

assume λi and λ̃i (i = 1, 2, 3) are the eigenvalues of D and B, respectively,217

while ψi (i = 1, 2, 3) are the corresponding eigenfunctions. Then, up to the218
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Figure 2: Time series of sign of R̃D elements at location (3.81, 0, 1.90) over
time interval [0.2, 2]. Black bars denote −1 and white bars denote +1. (a)
R̃11D11; (b) R̃22D22; (c) R̃33D33; (d) R̃12D12; (e) R̃23D23; (f) R̃31D31.

second order of ∆t,219

Bψi = (I −∆tD)ψi = λ̃iψi, i = 1, 2, 3,

which gives220

Dψi =
1− λ̃i

∆t
ψi = λiψi, i = 1, 2, 3,

or221

λ̃i = 1−∆tλi, i = 1, 2, 3. (37)

Further, the three invariants Ii, (i = 1, 2, 3) of a matrix M can be ex-222

pressed by the three eigenvalues λi, (i = 1, 2, 3) as follows223

I1 = tr(M) =
∑
i=1,2,3

λi,

I2 =
1

2

(
(tr(M))2 − tr(MM)

)
= λ1λ2 + λ2λ3 + λ3λ1,

I3 = det(M) =
∏

i=1,2,3

λi.
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Given the relations (37), we can express the invariants of B by those of D.224

Now, the coefficient β can be formulated approximately as a function of225

the three principal invariants of D. For various flows, we can specify the226

characteristic structure of the strain rate tensor D to obtain an explicit form227

of β. To validate our mathematical derivation of turbulent models, we first228

take homogeneous turbulent flow as an example for its simple geometry and229

physics. Later on, we will address the more realistic channel flow, chosen230

because of its relevance to a large variety of engineering applications and its231

ability to provide direct insight into fundamental turbulence phenomena. We232

will investigate these two examples further in section 4.233

4. Examples: Incompressible homogeneous turbulence and turbu-234

lent channel flow235

4.1. Homogeneous incompressible turbulence236

For homogeneous turbulence, the statistics are spatially homogeneous and237

isotropic. Hence, all entries in the averaged strain tensor must be of the same238

order. Then, the full averaged D has to be considered:239

D =

 ux
1
2
(uy + vx)

1
2
(uz + wx)

1
2
(uy + vx) vy

1
2
(vz + wy)

1
2
(uz + wx)

1
2
(vz + wy) wz

 . (38)

The first principal invariant of D is zero due to incompressibility, i.e. ,240

I1 = tr(D) = ∇x · u = 0.

The other two invariants can be calculated as follows:241

I2 =
1

2

(
(tr(D))2 − tr(DD)

)
= −1

2
‖D‖2

F , I3 = det(D). (39)

where ‖·‖F is the Frobenius norm, i.e. , ‖D‖F =
√∑

i

∑
j |Dij|

2. It was242

reported in [20] that the determinant of D, i.e. , I3, vanishes in the statistical243

sense. However, for each snapshot of homogeneous turbulence, the determi-244

nant of D is not expected to vanish in general. Therefore, mathematically,245

the choice of β cannot be determined explicitly. From dimensional analysis,246

we find that β has the dimension of (−2I2)1/2 = ‖D‖F or I
1/3
3 = (det(D))1/3.247

To find out the proper form of β, we assume that β is a linear function of248

‖D‖F or (det(D))1/3, i.e. ,249
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Table 1: Quantitative order of the velocity derivatives.

∂u/∂x ∂u/∂y ∂u/∂z ∂v/∂x ∂v/∂y ∂v/∂z ∂w/∂x ∂w/∂y ∂w/∂z
∼ 10−2 ∼ 102 ∼ 10−2 ∼ 10−4 ∼ 10−1 ∼ 10−4 ∼ 10−2 ∼ 102 ∼ 10−1

β(I1, I2, I3) = C2
1 ‖D‖F ,

or250

β(I1, I2, I3) = C2(det(D))1/3,

where C1 and C2 are universal constants due to homogeneity. Using the min-251

imization technique described in Section 4.2, it is found that when choosing252

the norm ‖D‖F for β, C1 is noticeably uniform, while C2 shows a distinctly253

inhomogeneous pattern. Although we cannot justify the use of the Frobe-254

nius norm mathematically, this is definitely an indicator of preference for the255

Frobenius norm over the determinant from this numerical study [see 14, for256

more details].257

Note that Lemma 1 shows that β ∼ 1/∆t. Then based on dimensional258

analysis and numerical verification above, we assume that β is a linear func-259

tion of ‖D‖F , i.e. ,260

β(I1, I2, I3) = (Cs∆)2 ‖D‖F /∆t,

where Cs is a universal constant and ∆ is a typical length for the large-261

scale solutions. Finally, we recover the Smagorinsky model for homogeneous262

turbulence, up to second-order accuracy of time step,263

R = −(Cs∆)2 ‖D‖F D.

4.2. Channel flow264

The argument for homogeneous turbulence also applies to the channel265

flow. This leads to the following modified Smagorinsky model:266

R = −β∆tD.

We can simplify the Smagorinsky model by taking advantage of the structure267

of the strain rate D for channel flow. Specifically, by an asymptotic boundary268

layer analysis, we find:269

∂u

∂y
,
∂w

∂y
� ∂u

∂x
,
∂u

∂z
,
∂v

∂y
,
∂w

∂x
,
∂w

∂z
� ∂v

∂x
,
∂v

∂z
.
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This scaling analysis of the velocity derivatives near the wall is consistent270

with results obtained by DNS (see Table 1). Given the orders of the velocity271

derivatives, we neglect the small quantities in the entries of D. Thus, D can272

be approximated as273

D ∼

 0 uy/2 0
uy/2 0 wy/2

0 wy/2 0

 . (40)

The eigenvalues of the above approximate D are λ1 = 0, λ2,3 = ±1
2

√
u2
y + w2

y.274

Thus it follows that the three principal invariants are I1 = I3 = 0, I2 =275

−(u2
y +w2

y)/4. Now, the coefficients α and β are functionals of I2 or u2
y +w2

y276

only. Based on the same arguments used for the homogeneous turbulence,277

we propose:278

β =
∆2

∆t
f(y)(u2

y + w2
y)

1/2,

where f(y) is a function of y or y+ due to inhomogeneity in the normal279

direction. Using DNS data, Figure 3 shows that f(y+) has the shape close280

to the van Driest damping function281

f(y+) = C2
m((1− exp(−y+/A)))2,

where Cm is a universal constant and A = 25 is the van Driest constant [2].282

The distance from the wall is defined as follows283

y+ =
uτ (δ − |y|)

ν
, (41)

where δ is the channel half-width, uτ is the friction velocity, and ν is the284

viscosity.285

Finally, based on the multiscale analysis, we propose a simplified model286

for the Reynolds stress287

R = −(Cm∆(1− exp(−y+/A)))2(u2
y + w2

y)
1/2D. (42)

Remark 7. In the simplified model (42), the Reynolds stress reduces to 0 as288

the wall is approached due to van Driest damping function [2, 21, 22]. This289

ensures that the non-slip boundary condition on walls is preserved.290

The constant Cm can be determined by locally minimizing the Reynolds291

stress error term292

min
Cm

∥∥∥R +
(
Cm∆(1− exp(−y+/A))(u2

y + w2
y)

1/4
)2D

∥∥∥
F
.
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Figure 3: Profile of f(y) from DNS vs. van Driest function

This gives us293

Cm =

√
−R : D

∆(1− exp(−y+/A))(u2
y + w2

y)
1/4 ‖D‖F

, (43)

where R : D =
∑

i,jRijDij. We perform a priori computation to determine294

Cm in (43) using the multiscale formulation in the following algorithm.295

Algorithm 1 (Determining the constant Cm).296

i. Run a DNS of (1) to get the full velocity field uε(xi, tn) at each time297

step,298

ii. Perform a reparameterization procedure, based on the Fourier expan-299

sion and explained in detail in Appendix A for the channel flow, to300

obtain u(xi, tn) and w(xi, tn,xi/ε, tn/ε),301

iii. The Reynolds stress is302

R(x, t) = 〈w ⊗w〉 − 1

3
tr(〈w ⊗w〉)I. (44)
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Figure 4: Temporal evolution of Cs with van Driest damping function for
channel flow. The flat solid line denotes the value of 0.1879, the time average
of Cs(t). The dashed line denotes 0.18.

4.3. Verification of the Algorithm 1 and determination of constant Cm303

To validate the algorithm 1, we run a test on a classical eddy viscosity304

model–the Smagorinsky model with van Driest damping:305

R = −(Cs∆(1− exp(−y+/A)))2 ‖D‖F D. (45)

For the channel flow, the layer near the wall introduces a large amount of306

dissipation. The extra dissipation prevents the formation of the eddies [23],307

thus eliminating turbulence from the beginning. Therefore, the van Driest308

damping is introduced to reduce the Smagorinsky constant Cs to 0 when309

approaching the walls. For more discussions, see[21, 6]. Usually, Cs is taken310

to be the same as that in homogeneous turbulence, which is 0.18.311

On the other hand, using an iterative homogenization of large and small312

scale solutions dynamically and locally minimizing the Reynolds stress error,313

Cs can be determined from DNS data.314

Figure 4 plots the evolution of Cs. Note that Cs oscillates slightly around315

the value of 0.18, showing that algorithm 1 determines Cs accurately. Figure316

5 indicates that the constant Cm is around 0.2074 - the value used in the317

following numerical simulation.318

4.4. Numerical results of channel flow319

The two most prominent structural features of the near-wall turbulence320

are illustrated in figures 6:321
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Figure 5: Temporal evolution of Cm obtained by Algorithm 1 for channel
flow. The dashed line denotes 0.2073, a universal constant for the turbulent
channel flow.

1. Streaks of low momentum fluid region of u′ = u(x, y, z) − U(y) < 0,322

which have been lifted into the buffer region by the vortices. Here,323

U(y) is mean velocity averaged in x and z directions:324

U(y) =

∫
x,z

u(x, y, z)dxdz.

2. Elongated streamwise vortices, identified by the region of negative λ2325

proposed by Jeong and Hussain [24].326

Currently, it is well accepted that near wall streamwise vortices by Biot-327

Savart induction lift the low speed fluid to form the streaks. On the other328

hand, the streamwise vortices are generated from the many normal-mode-329

stable streaks via a new scenario, identified by the streak transient growth330

(STG) mechanism [for details, see 23]. The phase averages of the vortices,331

their characteristics and their dynamical role have been discussed by Jeong332

et al. [25]. Figure 6 is quite consistent with these details of near-wall struc-333

tures. These and additional features of the flow are discussed in [14].334

Figure 7 shows the profile of the mean velocity normalized by the friction335

velocity uτ for Reτ = 180. In the viscous sublayer y+ < 10, we observe336

excellent agreement with the linear relation u+ = y+. In the log-region337

(y+ > 30, y/δ < 0.3), the well known logarithmic law of von Kármán [29]338

u+ =
1

κ
ln y+ +B,
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Figure 6: Turbulent structure near the wall obtained using simplified
Smagorinsky model; Iso-surfaces of streamwise vortices (blue) by the λ2 def-
inition (λ2 = −λrms,max = −176.54) [24] and lifted low-speed streaks (red)
denote u′ < 0 in the region 0 < y+ < 60, Reτ = 180.
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Figure 7: Mean streamwise velocity u+ for Reτ = 180. 4, experiment by
Eckelmann [26]; �, DNS by Kim et al. [18]; solid line, simplified model;
dash-dot line, linear relation and log-law.
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Figure 8: Mean streamwise velocity u+ for Reτ = 395. �, DNS by Moser
et al. [27]; 4, experiment by Hussain and Reynolds [28]; solid line, simplified
model; dash-dot line, linear relation and log-law.
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holds; where κ = 0.41 is the von Kármán constant and B is the additive339

constant. In the simplified Smagorinsky model, B is 5.5, the approximate340

value reported in the literature [26, 18, 30]. In the log-region, the profiles341

of mean streamwise velocity of both the simplified model and DNS by Kim342

et al. [18] are lower than experimental results by Eckelmann [26].343

The mean velocity u+ for Reτ = 395 is shown in figure 8 and compared344

to the DNS results obtained by Moser et al. [27] and the experimental results345

by Hussain and Reynolds [28] for Reτ = 642 . In the viscous sublayer, the346

results of the simplified model obey the linear relation accurately. The profile347

conforms to the log law with the constant B = 5.5, while both DNS by Moser348

et al. [27] and our simplified model give slightly larger values of u+ than the349

experiments by Hussain and Reynolds [28].350

We have also performed detailed comparison of our simplified turbulent351

model with those obtained by DNS [18, 27] and experiments [28, 26, 31, 32,352

33, 34] for flow quantities such as the mean velocity profiles, r.m.s. velocity353

and vorticity fluctuations, turbulent kinetic energy budget, etc. in turbulent354

channel flow. Our results are in good qualitative agreement with DNS and355

experiments. These results are reported in [14].356

5. Summary and discussion357

We presented a new mathematical derivation of a closure relating the358

Reynolds stress to the mean strain rate for incompressible turbulent flows.359

This derivation is based on a multiscale analysis of the Navier-Stokes equa-360

tion. By using a systematic multiscale analysis and an iterative homogeniza-361

tion of the large and small scale solutions dynamically, we identified a crucial362

structure of the Reynolds stress. As a consequence, we have established a lin-363

ear constitutive relationship between the Reynolds stress and the strain rate364

for incompressible turbulent flows to the leading order. Further considera-365

tion of specific flows produced an explicit formula for the Reynolds stress in366

two examples: homogeneous turbulence and channel flow. The Smagorinsky367

model for homogeneous turbulence has been recovered using this mathemat-368

ical derivation. In addition, we have developed a simplified Smagorinsky369

model for channel flow.370

A numerical study has been performed to validate the simplified model371

for channel flow. For profiles of the mean velocity, the results obtained by372

the simplified model are in good agreement with both experimental and DNS373

results at Reτ = 180 and Reτ = 395. More numerical study of the simplified374
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model is reported in [14], which shows good qualitative agreement with DNS375

and experiments.376

This procedure of mathematical derivation of models has been success-377

fully applied to turbulent flow with a relatively simple geometry. It leads to378

improved understanding of the physical mechanisms in the flow. Moreover,379

the analysis is quite general and can be applied to different geometries, and380

for other types of flows such as compressible and non-Newtonian flows.381
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Appendix A. Reparameterization of initial velocity in a two-scale388

structure389

We show how to reformulate any velocity v(x, y, z), which may contain390

infinitely many scales, in a two-scale structure. Assume v is periodic in x391

and z. The no-slip boundary condition is applied in y direction. Since this392

procedure can be done direction by direction, we can reparameterize in the393

periodic direction x and z as was done in [12, 13]. Thus, we only need to deal394

with the non-periodic direction y. The key idea is to use the Sine transform,395

which not only has the same computational complexity as that of the Fourier396

transform, but also incorporates the boundary condition naturally.397

Let v(x, y, z) be any function, which is periodic in (x, z) and zero on the
boundaries in y, i.e. v(x, 0, z) = v(x, 1, z) = 0. Denote x = (x, y, z) and
k = (kx, ky, kz). By applying the Fourier transform in the x and z directions
and the sine transform in the y-direction, we can express v(x, y, z) as follows:

v(x, y, z) =
∑

k=(kx,ky ,kz)

v̂k sin(πkyy) exp(2πi(kxx+ kzz)).

Choose 0 < ε = 1/E < 1, where E is an integer, and let398

ΛE =

{
k; |kj| ≤

E

2
, j = (x, y, z)

}
, Λ′E = Z3\ΛE. (A.1)

By splitting the summation into two parts in the spectral space, the velocity399

can be rewritten as400

v = v(l)(x) + v(s)(x,x/ε), (A.2)
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where
z = x/ε = (x/ε, y/ε, z/ε)

The two terms in (A.2) are the large-scale velocity and the small-scale velocity
respectively,

v(l)(x) =
∑
k∈ΛE

v̂(k) sin(πkyy) exp(2πi(kxx+ kzz)),

v(s)(x,y) =
∑
k∈Λ′

E

v̂(k) sin(πkyy) exp(2πi(kxx+ kzz)).

By rewriting each k in the following form

k = Ek(s) + k(l),

where
k(s) = (k(s)

x , k(s)
y , k(s)

z ), k(l) = (k(l)
x , k

(l)
y , k

(l)
z ),

we have

v(s) =
∑
k∈Λ′

E

v̂(k) sin (πkyy) exp (2πi(kxx+ kzz))

=
∑

Ek(s)+k(l)∈Λ′
E

v̂(Ek(s) + k(l)) sin
(
π(Ek(s)

y + k(l)
y )y

)
× exp

(
2πi((Ek(s)

x + k(l)
x )x+ (Ek(s)

z + k(l)
z )z)

)
=
∑

k(s) 6=0

 ∑
k(l)∈ΛE

v̂(Ek(s) + k(l)) sin
(
πk(l)

y y
)

exp
(
2πi(k(l)

x x+ k(l)
z z)

)
× cos

(
πk(s)

y (Ey)
)

exp
(
2πi(k(s)

x Ex+ k(s)
z Ez)

)
+
∑

k(s) 6=0

 ∑
k(l)∈ΛE

v̂(Ek(s) + k(l)) cos
(
πk(l)

y y
)

exp
(
2πi(k(l)

x x+ k(l)
z z)

)
× sin

(
πk(s)

y (Ey)
)

exp
(
2πi(k(s)

x Ex+ k(s)
z Ez)

)
=
∑

k(s) 6=0

(
v̂1(k(s),x) cos

(
πk(s)

y (y/ε)
)

+ v̂2(k(s),x) sin
(
πk(s)

y (y/ε)
))

× exp
(
2πi(k(s)

x x/ε+ k(s)
z z/ε)

)
= v(s)

(
x,
x

ε

)
,
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where v̂1(k(s),x) and v̂2(k(s),x), which are defined in the physical space, are
the results of the inverse transform of the large scale,

v̂1(k(s),x) =
∑

k(l)∈ΛE

v̂(Ek(s) + k(l)) sin
(
πk(l)

y y
)
,

v̂2(k(s),x) =
∑

k(l)∈ΛE

v̂(Ek(s) + k(l)) cos
(
πk(l)

y y
)
.

Remark 8. Note that v(s)(x, z) is a periodic function in z with mean zero.401
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