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We propose an iteratively adaptive Multi-scale Finite Element Method (MsFEM) for elliptic 
PDEs with rough coefficients. The choice of the local boundary conditions for the multi-
sale basis functions determines the accuracy of the MsFEM numerical solution, and one 
needs to incorporate the global information of the elliptic equation into the local boundary 
conditions of the multi-scale basis functions to recover the underlying fine-mesh solution 
of the equation. In our proposed iteratively adaptive method, we achieve this global-to-
local information transfer through the combination of coarse-mesh solving using adaptive 
multi-scale basis functions and fine-mesh smoothing operations. In each iteration step, 
we first update the multi-scale basis functions based on the approximate numerical 
solutions of the previous iteration steps, and obtain the coarse-mesh approximate solution 
using a Galerkin projection. Then we apply several steps of smoothing operations to 
the coarse-mesh approximate solution on the underlying fine mesh to get the updated 
approximate numerical solution. The proposed algorithm can be viewed as a nonlinear 
two-level multi-grid method with the restriction and prolongation operators adapted to the 
approximate numerical solutions of the previous iteration steps. Convergence analysis of 
the proposed algorithm is carried out under the framework of two-level multi-grid method, 
and the harmonic coordinates are employed to establish the approximation property of 
the adaptive multi-scale basis functions. We demonstrate the efficiency of our proposed 
multi-scale methods through several numerical examples including a multi-scale coefficient 
problem, a high-contrast interface problem, and a convection-dominated diffusion problem.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many problems of practical importance in science and engineering have multi-scale features. Porous media simulation 
and composite materials modeling are typical examples of such kind. The small-scale features of the problem can have 
significant impact on the large-scale properties of the solutions, and one needs a very fine discretization that resolves the 
small-scale variation of the problem to obtain faithful numerical results. For these problems, methods that allow people to 
effectively incorporate the small-scale features of the problem into the large-scale properties of the solutions are desired. In 
this work, we consider the following second order linear elliptic partial differential equation (PDE) with rough coefficient,
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Fig. 1. Discretization of the problem.

{
−div(a(x)∇u(x)) = f (x), x ∈ D,

u(x)|∂ D = 0,
(1.1)

and the proposed method will also be applied to a convection-dominated diffusion problem.
Here we assume that D is a convex polygon domain in R2, and the forcing term f (x) ∈ L2(D). We also assume that the 

equation is uniformly elliptic, i.e., there exist λmin > 0 and λmax > 0 such that

a(x) ∈ [λmin, λmax]. (1.2)

We do not assume any regularity of the coefficient a(x) ∈ L∞(�), which can be arbitrarily rough, thus equation (1.1) can 
be used to model diffusion process in strongly heterogeneous media. Classical finite element methods use piecewise linear 
(polynomial) functions to discretize the equation, and their convergence depends on the following approximation property 
and regularity result

‖u(x) − J u(x)‖H1
0(D) ≤ C H‖u(x)‖H2(D), ‖u(x)‖H2(D) ≤ C‖ f (x)‖L2(D), (1.3)

where J u(x) is the piecewise linear interpolation of u(x), and H is the underlying mesh size. We can see that O (H) accuracy 
in the H1

0(D) norm can be obtained if a discretization of size H is employed. However, classical finite element methods may 
fail if the coefficient a(x) is rough, because in this case the solution u(x) loses regularity and ‖u(x)‖H2(D) cannot be bounded 
by ‖ f (x)‖L2(D) in (1.3). It is actually shown in [9] that the polynomial finite element methods can perform arbitrarily badly 
in this setting. In practice, one needs a much finer mesh that resolves the small scale features of a(x) to achieve the desired 
O (H) accuracy.

1.1. The multi-scale finite element method

The Multi-scale Finite Element Methods (MsFEM) [47–49,28,19] were developed to solve these multi-scale PDEs. Instead 
of piecewise polynomials in the classical finite element methods, MsFEM employs basis functions that incorporate properties 
of the elliptic operator to discretize the equation (1.1),

φ1(x),φ2(x), . . . , φi(x), . . . , φn(x) ∈ H1
0(�). (1.4)

Consider a coarse-mesh discretization of the domain with mesh size H , and an underlying fine mesh of size h that 
refines the coarse mesh. This two-level discretization is illustrated in Fig. 1. Let

x1, x2, . . . , xi, . . . xn (1.5)

be the interior node points of the coarse mesh. The MsFEM basis functions φi(x) in (1.4) are associated with the interior 
coarse mesh node points xi in (1.5), and they satisfy

φi(x j) = δi j.

Let Di be an element of the coarse mesh, see Fig. 1, and let xi1 , xi2 , xi3 be its node points, where

i1, i1, i3 ∈ {1,2, . . .n}.
Then the multi-scale basis function φi j (x) on the element Di is constructed by solving local elliptic boundary value problem 
with appropriate local boundary conditions on ∂ Di ,

−div(a(x)∇φi j (x)) = 0, x ∈ Di, φi j (xik ) = δkj . (1.6)
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With the basis functions φi(x), i = 1, . . . , n, MsFEM finds the numerical solution

uM S
H (x) ∈ V H = span{φ1(x),φ2(x), . . . , φn(x)} ⊂ H1

0(�), (1.7)

using the Galerkin projection. Namely, one finds uM S
H (x) ∈ V H , such that

a(uM S
H (x), v(x)) = 〈 f (x), v(x)〉, for all v(x) ∈ V H , (1.8)

where a(u(x), v(x)) = ∫
�

∇u(x)ta(x)∇v(x)dx, 〈 f (x), v(x)〉 = ∫
�

f (x)v(x)dx.
The numerical solution defined above satisfies the following optimal property under the energy norm

‖u(x) − uM S
H (x)‖E = inf

v(x)∈V H

‖u(x) − v(x)‖E , ‖u(x)‖2
E = a(u(x), u(x)). (1.9)

In numerical implementation, the local elliptic problems (1.6) are solved using the underlying fine mesh, thus the re-
sulting multi-scale basis functions (1.4) are represented as piecewise linear functions on the fine mesh. We denote Vh as 
the space of piecewise linear basis functions on the underlying fine mesh of size h, and uh(x) as the Galerkin numerical 
solution to (1.1) using trial space Vh , uh(x) ∈ Vh ,

a(uh(x), v(x)) = 〈 f (x), v(x)〉, for all v(x) ∈ Vh(x).

Then based on the above optimal property (1.9), the optimal accuracy that one can expect from the MsFEM solution uM S
H (x)

(1.9) is limited by the underlying fine mesh solution uh ,

‖uM S
H (x) − u(x)‖E ≥ ‖uh(x) − u(x)‖E , (1.10)

because the trial space in (1.9), V H defined in (1.7), is a subspace of Vh ,

V H ⊂ Vh.

Thus to obtain faithful numerical results in the multi-scale numerical solution uM S
H (x) (1.8), we require that the underlying 

fine mesh resolve the small scale variation of the coefficient a(x) in (1.1), and ‖uh(x) − u(x)‖ be much smaller than our 
desired accuracy of the numerical computation,

‖u(x) − uh(x)‖ � 1. (1.11)

In this paper, we neglect this part of error, and do not distinguish between u(x) and uh(x).
Convergence analysis of MsFEM in the periodic homogenization setting, where a(x) = A( x

ε ) with ε = o(1), was given in 
[48,29,17]. To construct the multi-scale basis function φi j (x) on Di in (1.6), appropriate local boundary conditions on ∂ Di
are needed. We will review in section 2 that the local boundary conditions of the basis functions are crucial and determine 
the accuracy of the MsFEM numerical solution. With the optimal choice of local boundary conditions for the basis and some 
local bubble corrections, MsFEM can indeed recover the underlying fine-mesh solution. However, due to the nonlocal nature 
of the solution operator to elliptic equations, the local solution to (1.1) depends on the coefficient a(x) and f (x) on the 
whole domain D . And to exactly recover the underlying fine-mesh solution, one needs to incorporate the global information 
of the equation into the local boundary conditions of the basis functions in (1.6).

1.2. Main contributions of this work

In this paper we propose an iteratively adaptive method, Algorithm 1, to construct the multi-scale basis. The global 
information of the elliptic equation is transferred to the local boundary conditions of the multi-scale basis through iterative 
coarse-mesh solving and fine-mesh smoothing operations.

In the s-th step of the iteration, we first construct basis functions φs
i (x), i = 1, 2 . . . , n, based on the approximate nu-

merical solutions from the previous several iteration steps, namely, uk(x), k ≤ s − 1. We require that these multi-scale basis 
functions can exactly recover us−1(x) on the boundary of the coarse-mesh elements, � = ∪i∂ Di . Then we solve the equa-
tion (1.1) using the basis functions φs

i (x) and a Galerkin projection, and correct the numerical solution u(s)
H (x) by solving a 

series of local bubble problems. Finally, we apply several steps of smoothing operations on the fine mesh to the corrected 
numerical solution to get the updated approximate solution us(x). Throughout the iteration process, the approximation 
property of the basis functions φs

i (x) to the solution u(x) gets improved. Our numerical results suggest that the numerical 
solutions us(x) converge to the underlying fine-mesh solution exponentially fast. The coarse-mesh solving and the fine-mesh 
smoothing operations are the two key steps of the proposed algorithm.

Algorithm 2 is derived as a stabilized variant of Algorithm 1, and is essentially a two-level multi-grid method that 
employs multi-scale basis functions for the restriction and prolongation operations. By comparing Algorithm 1 with Algo-
rithm 2, we show that even without explicit restriction operation, Algorithm 1 can indeed be viewed as a nonlinear version 
of the two-level multi-grid method where the restriction and prolongation operators are adapted to the approximate solu-
tions of the previous iteration steps.
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Convergence analysis of the proposed algorithms is carried out under the framework of the two-level multi-grid method. 
And the harmonic coordinates [62] are employed to establish the approximation property of the adaptively constructed 
multi-scale basis functions to the solution space of equation (1.1).

There exist some multi-scale methods in the literature that adaptively update the boundary conditions of the multi-scale 
basis. In [25,57], the adaptive multi-scale basis functions in each iteration step are constructed using the local oversampling 
technique, and the local boundary conditions on the oversampling domain are constructed based on approximate solutions 
of the previous steps. There exist no smoothing operations in these methods, and they cannot obtain fine mesh accuracy 
as the present work. In [41], an adaptive correction function is introduced in each iteration step, and the resulting method 
is similar to Algorithm 2 in this work. No convergence analysis has been provided for the previous adaptive multi-scale 
methods [41,25,57]. After suitable modifications, these methods may be analyzed under the same two-level multi-grid 
method framework presented in the current paper.

To demonstrate the applicability of our proposed methods for a variety of applications with multi-scale features, we 
consider three classes of PDE problems, including elliptic problems with rough coefficients [41,42,47,48], elliptic interface 
problems with high-contrast discontinuous coefficients [18,19,52,57], and convection-dominated diffusion equations [20,31,
33,34,69]. In all the three types of problems that we consider, we observe significant improvement of the proposed methods 
over classical methods.

1.3. Review of multi-scale methods

Considerable amount of effort has been devoted to analyzing and numerically solving the multi-scale PDE (1.1), and we 
list a few previous works related to the present paper below.

The classical homogenization theories, including the periodic homogenization where a(x) = A( x
ε ) [11,50,65,3,2], and the 

H, G, �-convergence theories [59,22,21,71,70,58,36], consider the convergence (in an appropriate sense) of a sequence of 
operators parameterized by ε as ε → 0.

Numerical methods for the multi-scale elliptic PDE (1.1) can be divided into two categories. Methods in the first category 
can be viewed as fast solvers of the equation on the underlying fine mesh and alternatives of the multi-grid methods [32,13,
38,39]. Multi-grid methods are known as the fastest solvers for elliptic boundary value problems with linear computational 
complexity. However, due to the lack of regularity of the solutions, classical multi-grid methods in general would fail for 
the multi-scale elliptic PDE (1.1) [23,30,26]. Methods in the first category include the algebraic multi-grid methods (AMG) 
[1,15,14,67,72,51], the hierarchical matrix methods [40,10], AMG based on energy minimization [54,76,78,77,74], stabilized 
hierarchical basis methods [73,75], wavelet based methods [16,12,4,24], and the multi-scale domain decomposition methods 
for problems with high contrast coefficient [37,35].

Methods in the second category, including the MsFEM, are model reduction methods. They employ special basis functions 
adapted to the elliptic operator instead of piecewise polynomials to discretize the equation to reduce the total degrees of 
freedom. These methods generally employ a two-level discretization as shown in Fig. 1, and are only able to achieve coarse-
mesh accuracy. Methods in the second category also include the generalized finite element methods [56,8,5], oversampling 
methods [7,6,45], localization methods [63,53,43,66,44,46], harmonic coordinates transformation [62], the polyharmonic 
splines [64,60], and a recent method that depends on the multi-resolution decomposition of the solution space [61].

The proposed Algorithm 1 in this paper is able to achieve fine-mesh accuracy by iteratively incorporating the global 
information of the equation into the local boundary conditions of the basis functions. Thus it falls into the first category 
of multi-scale methods. Namely, it can be viewed as a fast fine-mesh solver and an alternative of the classical multi-grid 
methods. On the other hand, the proposed Algorithm 1 employs special basis to discretize the equations on the coarse 
mesh, and from this perspective it is similar to the model reduction method in the second category. In multi-scale methods 
of the second category, building basis with robust approximation property is in general expensive. The proposed method 
bypasses this difficulty by adaptively improving the approximation property of the multi-scale basis in the iteration.

The rest of the paper is organized as follows. In section 2, we briefly review multi-scale basis functions and the impor-
tance of their local boundary conditions. In section 3, we detail the proposed method to solve the multi-scale PDE (1.1)
and derive a variant of this method. In section 4, we provide convergence analysis of the proposed algorithms under the 
two-level multi-grid method framework. In section 5, we present some numerical results employing the proposed method. 
Concluding remarks are made in section 6.

2. Motivation: multi-scale basis and the importance of their local boundary conditions

Given a coarse-mesh discretization of the domain D = ∪i Di as shown in Fig. 1, we consider the following decomposition 
of the solution to (1.1), u(x) = u1(x) + u2(x),{

−div(a(x)∇u1(x)) = 0, x ∈ Di;
u1(x)|∂ Di = u(x)|∂ Di ;{
−div(a(x)∇u2(x)) = f (x), x ∈ Di;
u2(x)|∂ D = 0.

(2.1)

i
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The u1(x) part of the solution is a(x)-harmonic on each coarse element and only depends on the trace of the solution on 
the edges of coarse elements,

� = ∪i∂ Di . (2.2)

We call u1(x) the a(x)-harmonic part of the solution. u2(x) depends on the forcing term f (x) on each coarse element, and 
it can be constructed by solving the local elliptic problems with homogeneous boundary conditions (2.1). In this paper, we 
refer to the local problems (2.1) as local bubble problems. We call u2(x) the bubble part of the solution. u1(x) and u2(x) are 
a(x)-orthogonal,

a(u1(x), u2(x)) = 0.

Besides, the local bubble part of the solution u2(x) is small on each coarse element,

‖u2(x)|Di ‖H1
0(Di)

≤ C H‖ f (x)‖L2(Di)
, ‖u2(x)|Di ‖L2(Di)

≤ C H2‖ f (x)‖L2(Di)
, (2.3)

which can be obtained using a scaling argument. Summing (2.3) up over each coarse element, we obtain

‖u2(x)‖H1
0(D) ≤ C H‖ f (x)‖L2(D), ‖u2(x)‖L2(D) ≤ C H2‖ f (x)‖L2(D). (2.4)

Motivated by the above orthogonal decomposition of the solution, a special type of basis functions, the multi-scale basis 
functions were introduced in [45], which generalize the basis functions employed in MsFEM. They are a(x)-harmonic within 
each coarse element, but are not necessarily nodal basis.

Definition ([45]). (Multi-scale basis) Consider basis functions φ1(x), φ2(x), . . . , φn(x) ∈ H1
0(D), if they are a(x)-harmonic on 

each coarse element D j of the discretization (but not across the boundary), namely,

−div(a(x)∇φi(x)) = 0, x ∈ D j,

then they are called multi-scale basis functions.

Due to the smallness of u2(x) (2.4), one can get the following optimal property of multi-scale basis.

Proposition ([45]). Consider a set of basis functions ψi(x) ∈ H1
0(D), i = 1, 2 . . . , m, and a set of multi-scale basis φi(x), i =

1, 2, . . . , n. Denote the Galerkin solutions using these basis functions as uψ
H(x) and uM S

H (x) respectively, and let the union of coarse 
element boundaries be � = ∪i∂ Di . If

span{ψ1(x)|�,ψ2(x)|�, . . . ,ψm(x)|�} = span{φ1(x)|�,φ2(x)|�, . . . , φn(x)|�}, (2.5)

then

‖u(x) − uM S
H (x)‖2

E ≤ ‖u(x) − uψ
H (x)‖2

E + C H2‖ f (x)‖2
L2(D)

. (2.6)

The proposition says that for the same boundary conditions on �, (2.5), the multi-scale basis functions perform at least 
as well as other basis, if only O (H) accuracy in the energy norm is desired.

Moreover, the multi-scale basis functions φi(x), i = 1, 2 . . . , n, are a(x)-orthogonal to the local bubble part of the solution 
u2(x), then according to the Galerkin projection formulation (1.8) and the optimal property (1.9), we have the following 
characterization of the numerical solution uM S

H (x),

‖u1(x) − uM S
H (x)‖E = inf

v(x)∈V H

‖u1(x) − v(x)‖E .

Recall that we can construct the local bubble part of the solution u2(x) by solving a series of local bubble problems 
(2.1) on each coarse element, independently from the Galerkin projection (1.8). We can then add u2(x) to uM S

H (x) to get the 
corrected multi-scale solution uH (x),

uH (x) = uM S
H (x) + u2(x).

We have the following approximation property for the corrected multi-scale solution,

‖u(x) − uH (x)‖E = ‖u1(x) − uM S
H (x)‖E = inf

v(x)∈V H

‖u1(x) − v(x)‖E . (2.7)

The right hand side of (2.7) only depends on u(x)|� and the local boundary conditions of the multi-scale basis (2.5). If 
the multi-scale basis can exactly recover the solution on the boundaries of the coarse elements, �, the corrected multi-scale 
solution uH (x) can exactly recover the fine-mesh solution.
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For a specific solution u(x) to (1.1), one can choose local boundary conditions in (1.6) to make (2.7) vanish. However, 
these choices will depend on u(x)|� , which is unknown in advance. For elliptic equations (1.1), the local solution depends 
on the elliptic coefficient and the forcing term on the whole domain. Thus to exactly recover the underlying fine-mesh 
solution, one needs to incorporate the global information of the elliptic equation into the local boundary conditions of 
the multi-scale basis functions. In this paper, we propose an iteratively adaptive approach that achieves this global-to-local 
information transfer through the combination of coarse-mesh solving and fine-mesh smoothing operations.

3. An iteratively adaptive MsFEM for multi-scale elliptic PDEs

We propose an iteratively adaptive multi-scale finite element method in this section, which iteratively updates the multi-
scale basis functions based on the approximate numerical solutions in previous iteration steps. We also derive a stabilized 
variant of the proposed method, and it is essentially a two-level multi-grid method that employs a set of multi-scale basis 
for the restriction and prolongation operations.

3.1. An iteratively adaptive MsFEM

In this algorithm, we iteratively update the multi-scale basis functions φs
i (x) and the approximate numerical solution 

us(x) simultaneously, where s is the iteration step.
Assume that at the s-th iteration step we have got a set of multi-scale basis functions and the corresponding trial space 

(these basis functions will be updated in each step, and initially at s = 0, we can choose them to be the multi-scale basis 
functions with linear local boundary conditions (1.6)),

V s
H = span{φs

i (x), i = 1, ...,n}, φs
i (x j) = δi j, (3.1)

where n is the total number of interior coarse-mesh node points. At the s-th step, we first solve the equation (1.1) on the 
coarse mesh using trial space V s

H (3.1) and the Galerkin projection (1.8) to get u(s)
H (x),

a(u(s)
H (x), v H (x)) = 〈 f (x), v H (x)〉, for all v H (x) ∈ V s

H . (3.2)

We call u(s)
H (x) the multi-scale numerical solution at step s.

Then we solve the local bubble problems (2.1) to get the local bubble part of the solution u2(x). In our numerical 
implementation, we use the underlying fine mesh to numerically solve the bubble problems (2.1), and get the numerical 
solution u2

h(x). Since we have assumed that the underlying fine mesh can resolve the small scale variation of the problem, 
and the error in fine mesh solution can be neglected, we remove the subscript h, and do not distinguish between u2(x)
and u2

h(x). We add the local bubble part u2(x) to u(s)
H (x) to get u(s)(x). Recall that we can compute u(s)

H (x) and u2(x)
independently because φs

i (x) are multi-scale basis functions, and they are a(x)-orthogonal to the local bubble part of the 
solution. We obtain

u(s)(x) = u(s)
H (x) + u2(x). (3.3)

We call u(s)(x) the corrected multi-scale numerical solution at step s.
These local bubble problems (2.1) need to be solved for only once in the iteration, and the obtained bubble part of the 

solution u2(x) will be used to correct u(s)
H (x) in each step of the iteration.

Recall that the multi-scale basis functions φs
i (x) and the local bubble part of the solution u2(x) are all constructed and 

stored using the piecewise linear basis functions on the underlying fine mesh. Then the approximate numerical solution 
u(s)(x) will also be stored as linear combination of the fine mesh piecewise linear basis. We denote the interior node points 
of the underlying fine mesh as

x1, x2, . . . xi, . . . xN ,

and denote the associated fine mesh piecewise linear basis functions as

ψ1(x),ψ2(x), . . .ψi(x), . . .ψN(x), ψi(x j) = δi j. (3.4)

Discretizing the equation (1.1) using the fine mesh basis, we get the underlying fine mesh linear system

A�u = �f , (3.5a)

where A is the stiffness matrix, and �f is the load vector,

A(i, j) = a(ψi(x),ψ j(x)), �f (i) = 〈 f (x),ψi(x)〉. (3.5b)

Next, we apply ν steps of iteration, e.g., weighted Jacobi iteration, to the underlying fine mesh linear system (3.5) using 
u(s)(x) as initial guess to get the updated us(x),
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us(x) = S(ν)u(s)(x). (3.6)

We call us(x) the approximate numerical solution at step s.
The purpose of this step is to eliminate the high frequency modes of the error in u(s)(x) (3.3). Here the high-frequency 

modes correspond to the eigenfunctions of the elliptic operator with large eigenvalues.
Then we employ the approximate numerical solutions of previous iteration steps, uk(x), k ≤ s, to construct the updated 

multi-scale basis functions for the next iteration step,

φs+1
i (x), i = 1, . . . ,n. φs+1

i (x j) = δi j . (3.7)

Here we require that the updated multi-scale basis functions (3.7) can exactly recover us(x)|� ,

us(x) −
∑

i

us(xi)φ
s+1
i (x) = 0, x ∈ �. (3.8)

With the updated multi-scale basis φs+1
i (x), we can move to the next iteration step.

There are several choices to construct the multi-scale basis (3.7), and we describe two of them below.

1. One possible choice of the local boundary conditions for the multi-scale basis based on sampled solutions was proposed 
in [27] and later employed in [25,57]. On the coarse element Di as shown in Fig. 1, we choose φs+1

i1
(x) = 0 on the edge 

xi2 xi3 . And on the edges xi1 xi j , j = 2, 3, we choose

φs+1
i1

(x) =
⎧⎨
⎩

us(x)−us(xi j
)

us(xi1 )−us(xi j
)
, us(xi1) �= us(xi j );

linear, us(xi1) = us(xi j ).
(3.9)

One can show that in the case that the values of u(x) on any two adjacent node points are not equal,

us(x) =
n∑

i=1

us(xi)φ
s+1
i (x), x ∈ �.

Namely, the basis functions can exactly recover the trace of the solution on �.
2. Another choice is employing the oversampling technique [47]. In the oversampling method, one solves two local bound-

ary value problems (1.6) on an oversampling domain Ki that encloses the coarse element Di , and uses the linear 
combination of these local sampled solutions to get the multi-sale basis on Di .
Now given two sampled solutions us(x) and us−1(x), we want to build local boundary conditions for the multi-scale 
basis functions on the element Di , which is shown in Fig. 1. Note that Di has three node points xi1 , xi2 and xi3 , and 
φi j (x), j = 1, 2, 3 are the multi-scale basis functions associated with the three node points. We build local boundary 
condition for φi j using the linear combination of us(x), us−1(x) and constant,

φ̄s+1
i j

(x) = cs+1
i, j,0 + cs+1

i, j,1us(x) + cs+1
i, j,2us−1(x), x ∈ ∂ Di, (3.10)

where the coefficients cs+1
i, j,k , k = 0, 1, 2 are determined by the condition that

φ̄s+1
i j

(xil ) = δ jl. (3.11)

In (3.10), the subscripts i and j indicate that we are constructing local boundary conditions for the j-th multi-scale basis 
function on element Di , φi j (x); the third subscript of cs+1

i, j,k indicates that cs+1
i, j,k is the coefficient before the constant basis 

function (k = 0), the approximate solution at the current step (k = 1), or the approximate solution at the previous step 
(k = 2). The superscript s + 1 indicates that we are constructing local boundary conditions for the multi-scale basis 
functions of the (s + 1)-th step.
The basis functions constructed in (3.10) are in general non-conforming and φ̄i(x) may have jump across the coarse-
mesh edges. This is because the local boundary conditions on a coarse mesh edge e determined from its two neighbor 
coarse elements may be different. We can use a simple averaging technique to obtain conforming basis. For edge e, we 
denote its two neighbor coarse elements as Di1 , Di2 . We modify the local boundary conditions of φ̄ j(x) on e, and get 
the averaged basis φ j(x),

φ j(x)|e = 1

2
(φ̄ j,Di1

(x)|e + φ̄ j,Di2
(x)|e), (3.12)

where φ̄ j,Di1
(x) = φ̄ j(x)|Di1

, φ̄ j,Di2
(x) = φ̄ j(x)|Di2

. The price we pay for this averaging process is that the resulting 
basis φ j(x) has enlarged support. This is shown in Fig. 2. The same averaging technique to make the basis functions 
conforming has been employed in [25,19,57].
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Fig. 2. Averaging on the coarse mesh edge.

Fig. 3. Flow chart of Algorithm 1.

Note that to determine the coefficients cs+1
i, j,k according to the condition (3.11), one needs to solve a 3 × 3 linear system. 

If the system is singular, we choose linear local boundary conditions for the multi-scale basis functions on element Di . 
If the linear system is not singular, one can show that the resulting multi-scale basis functions (3.12) can recover us(x)
on � = ∪∂ Di . Convergence analysis of Algorithm 1 with the choice of updated multi-scale basis (3.12) will be carried 
out in section 4.

Iterative implementation of the above coarse mesh solving (3.2) and fine mesh smoothing (3.6) operations leads to the 
proposed iteratively adaptive multi-scale finite element method, Algorithm 1.

A flow chart of Algorithm 1 is depicted in Fig. 3.

Algorithm 1 Iteratively adaptive multi-scale finite element algorithm.
1: for s = 1 to smax do
2: for i = 1 to n do
3: Construct the local boundary conditions for the multi-scale basis φs

i (x) based on the approximate solutions of the previous steps, uk(x), k ≤ s − 1. 
For example, employing formula (3.9) or (3.12).

4: Construct the multi-scale basis φs
i (x) by solving local boundary value problems (1.6).

5: end for
6: Employ V s

H (3.1) and the Galerkin projection to solve (1.1) and get u(s)
H (x).

7: Correct the coarse-mesh solution using the local bubble part u2(x),

u(s)(x) = u(s)
H (x) + u2(x).

8: Solve the fine mesh linear system A�u = �f using an iteration method (e.g. Jacobi iteration) for ν times with initial guess u(s)(x) to get us(x), us(x) =
S(ν)u(s)(x).

9: Check the user-defined stopping criteria.
10: end for

Remark 1. There are similar multi-scale methods in the literature, for example [25,57], which iteratively update the lo-
cal boundary conditions of the multi-scale basis functions. In those works, the adaptive multi-scale basis functions are 
constructed using the oversampling technique. And the local boundary conditions of basis functions on the oversampling 
domain are constructed based on the approximate numerical solution of the previous iteration step, us(x), and the rule 
(3.9). These works are different from our proposed method in the following aspects. In [25,57], the multi-scale basis func-
tions cannot recover us−1(x) on the boundaries of coarse elements, �, because the local bubble part of us−1(x) on Ki is 
not taken into account in the boundary conditions of the basis functions on ∂ Di . Thus these methods [25,57] cannot obtain 
the underlying fine mesh solution even the iteration converges. Besides, there are no explicit smoothing operations in the 
previous methods [25,57], and the transfer of the global information of the equation to the local boundary conditions of the 
multi-scale basis is achieved through oversampling and coarse-mesh solving.
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We will prove in section 4 under certain assumptions that the approximate numerical solutions us(x) in Algorithm 1
converge to the underlying fine mesh solution exponentially fast, which means that the iteratively adaptive approach pro-
posed in Algorithm 1 can effectively incorporate the global information of the equation into the local boundary conditions 
of the multi-scale basis (2.5).

Before we end this subsection, we make the following comments on the proposed Algorithm 1.

1. In the construction of the updated multi-scale basis functions, for certain us(x), there may not exist nodal basis func-
tions φs+1

i (x), i = 1, . . . , n, which can recover the solution on � in (3.8).
An extreme case is that us(xi) = 0, i = 1, 2 . . . , n, but us(x) is not a zero function.

2. In each step of the iteration, one needs to construct the updated multi-scale basis functions by solving local boundary 
value problems on the fine mesh and assembling the updated stiffness matrix.

3. In constructing the local boundary conditions, one may encounter dividing by a small number in (3.9) or solving a 
nearly singular system in (3.11), thus suffer from some instability issue.

A stabilized variant of the proposed method, Algorithm 2, is derived in the next subsection, which introduces an adaptive 
correction term and keeps the multi-scale basis fixed throughout the iteration. Algorithm 2 is less expensive in each iteration 
step and avoids the potential instability issue in Algorithm 1.

3.2. A stabilized variant of the proposed algorithm

In Algorithm 1, the multi-scale basis functions φs
i (x) are constructed according to the approximate numerical solutions in 

the previous iteration steps, uk(x), k < s. Then we employ φs
i (x) and a Galerkin projection to get the approximate numerical 

solution u(s)(x) (3.3). We consider simplifying this step by using a set of multi-scale basis functions constructed before the 
iteration, which we denote as

φi(x), i = 1,2, . . . ,n, φi(x j) = δi j. (3.13)

And we denote the space spanned by this multi-scale basis as

V H = span{φ1(x),φ2(x), . . . φn(x)}. (3.14)

We have the following decomposition of us−1(x) and u(s)(x) using φi(x),

us−1(x) =
∑

i

us−1(xi)φi(x) + Rs−1(x), (3.15a)

u(s)(x) =
∑

i

u(s)(xi)φi(x) + R(s)(x), (3.15b)

where 
∑

i us−1(xi)φi(x) and 
∑

i u(s)(xi)φi(x) are simply the interpolation of us−1(x) and u(s)(x) on coarse mesh node points 
xi using multi-scale basis functions φi(x),

φi(x j) = δi j,

and thus Rs−1(x) and R(s)(x) are the corresponding interpolation residuals.
Since both us−1(x) and u(s)(x) approximate u(x), we assume that the interpolation residuals Rs−1(x) and Rs(x) are close, 

Rs−1(x) ≈ R(s)(x). Then u(s)(x) can be written as

u(s)(x) ≈
∑

i

u(s)(xi)φi(x) + us−1(x) −
∑

i

us−1(xi)φi(x) =
∑

i

ciφi(x) + us−1(x). (3.16)

Based on (3.16), we construct an approximation of u(s)(x) by solving the following optimization problem,

min
ci

‖u(x) −
∑

i

ciφi(x) − us−1(x)‖E .

The resulting es
H (x) = ∑n

i=1 ciφi(x) is the Galerkin finite element solution of equation

−div(a(x)∇e(x)) = f (x) + div(a(x)∇us−1(x)), e(x)|∂ D = 0, (3.17)

using the multi-scale basis functions φi(x), i = 1, . . . , n. And we get an approximation of u(s)(x),

u(s)(x) ≈ es
H (x) + us−1(x). (3.18)

To reduce the error in the bubble part of u(s)(x) (3.18), we construct the bubble part of the solution to (3.17) by solving 
a series of local bubble problems as in (2.1). We denote the bubble part of the solution to (3.17) as es,2(x). We use es,2(x)
to correct the approximate numerical solution in (3.18) and obtain
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Algorithm 2 Iteratively adaptive multi-scale finite element method.
1: Construct multi-scale basis functions φi(x), i = 1, . . . , n.

Let u0(x) = 0 be the initial guess of the solution.
2: for s = 1 to smax do
3: Solve equation (3.17) using multi-scale basis functions φi(x) to get es

H (x)
4: Solve the local bubble part of the solution to (3.17), es,2(x).
5: Obtain the approximate numerical solution

u(s)(x) = us−1(x) + es
H (x) + es,2(x).

6: Solve the fine mesh linear system A�u = �f using iteration method (e.g. Jacobi iteration) for ν times with initial guess u(s)(x) to get us(x). us(x) =
S(ν)u(s)(x).

7: Check the user-defined stopping criteria.
8: end for

u(s)(x) ≈ us−1(x) + es
H (x) + es,2(x). (3.19)

Replacing the construction of u(s)(x) in Algorithm 1 by the approximation (3.19), we get Algorithm 2. The interpolation 
residual Rs−1(x) is introduced to motivate Algorithm 2 in (3.16), and in numerical implementation, we only need to solve 
equation (3.17) to get the approximate u(s)(x) (3.19).

Because there is no need to construct updated multi-scale basis in each iteration step according to (3.9) or (3.10), the 
potential instability issue in the rules (3.9) and (3.11) is avoided, and this is the reason that we call Algorithm 2 a stabilized 
variant of Algorithm 1. Moreover, the simplification procedure (3.19) also brings in computational savings in each iteration 
step of the Algorithm, since we do not need to construct the updated multi-scaled basis and the updated stiffness matrix 
in each iteration step.

The choice of multi-scale basis φi(x) (3.13) determines the convergence of Algorithm 2, and we will come back to the 
issue about the choice of the multi-scale basis in the convergence analysis in section 4.

Remark 2. The method in [41] is similar to our proposed Algorithm 2 but is very different from Algorithm 1. The method in 
[41] uses an adaptive correction function to correct the coarse-mesh multi-scale solution, which is similar to the interpola-
tion residual that we introduced in (3.15). Algorithm 2 is different from the method in [41] in the following minor aspects. 
In [41], the finite element volume formulation is employed to construct the coarse-mesh linear system, and a set of dual 
coarse grids in addition to the primary coarse grids are required in the discretization. While in Algorithm 2, we use the 
Galerkin projection. In [41], the correction term is explicitly constructed in each step of the iteration by solving a series of 
local boundary value problems with boundary conditions obtained from solving local 1D problems. While in Algorithm 2, 
the interpolation residual (3.15) is only introduced to motivate the Algorithm, and there is no need to construct the residual 
explicitly in implementation. Thus the method in [41] has an additional step than Algorithm 2.

4. Convergence of the proposed algorithms

In this section, we carry out the convergence analysis of the proposed Algorithms 1 and 2. We first show that Algorithm 2
is a two-level multi-grid method that employs a set of multi-scale basis for the restriction and prolongation operations. Then 
by comparing with Algorithm 2, we show that Algorithm 1 is a nonlinear version of the two-level multi-grid method with 
the restriction and prolongation operators adapted to the approximate solutions of the previous iteration steps. To establish 
the convergence of proposed Algorithm 1, one needs certain approximation property of the adaptive multi-scale basis to the 
solution space of (1.1) with L2(D) forcing f (x), and this is achieved by employing the harmonic coordinates.

4.1. Reformulation of the two algorithms as two-level multi-grid methods

Recall that we denote the piecewise linear basis functions on the underlying fine mesh (3.4) as

ψk(x), k = 1,2 . . . , N, ψk(xl) = δkl, (4.1)

where xl are the node points of the fine mesh. Since the fine mesh is a refinement of the coarse mesh with node points xi , 
i = 1, . . .n, we define li as the index of coarse mesh node point xi on the fine mesh,

xi = xli .

The multi-scale basis functions φs
i (x) in Algorithm 1 (3.1) and φi(x) (3.13) in Algorithm 2 are all represented as linear 

combinations of ψk(x). We denote these linear combinations as

φs
i (x) =

N∑
k=1

Ds
kiψk(x), φi(x) =

N∑
k=1

Dkiψk(x),

then Ds and D are the matrix representations of the multi-scale basis functions using ψk(x) in (4.1).
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Consider fine mesh basis functions ψl(x) in (4.1) that satisfy

ψl(x)|� = 0, (4.2)

where � is defined as the union of the element boundaries in (2.2), � = ∪∂ Di .
We denote the part of fine mesh basis satisfying the above condition (4.2) as

φb
j (x), j = 1, . . . , Nb,

and refer to them as bubble basis functions.
The bubble basis functions are the fine mesh basis functions that we employ to solve the bubble part of solution in (2.1). 

We denote k j as the index of φb
j (x) in the fine mesh basis functions (4.1), namely,

φb
j (x) = ψk j (x), ψk j (x)|� = 0. (4.3)

Then we denote Db as the matrix representation of φb
j (x) using ψk(x), and have

Db(i, j) = δi,k j .

We denote V b
H as the space spanned by these bubble basis functions

V b
H = span{φb

1, φb
2, . . . , φb

Nb
}. (4.4)

When we solve equation (1.1) (in Algorithm 1) or (3.17) (in Algorithm 2) using the multi-scale basis (3.1) or (3.13), and add 
the corresponding local bubble parts back to the numerical solutions, we are essentially solving the equations using the 
multi-scale basis functions enriched with the bubble basis (4.3)

Ṽ s
H = V s

H ⊕ V b
H , Ṽ H = V H ⊕ V b

H . (4.5)

Here V s
H is the adaptive multi-scale trial space in Algorithm 1 defined in (3.1); V H is the multi-scale trial space in Algo-

rithm 2 defined in (3.14); V b
H is the bubble part of the solution space defined in (4.4). This procedure can be separated 

into two steps, i.e., the coarse-mesh solving using V H and local bubble correction using V b
H , because the bubble basis is 

a(x)-orthogonal to the multi-scale basis.
We denote D̃ and D̃s as

D̃ = [D, Db], D̃s = [Ds, Db],
which are the matrix representations of the enriched basis in (4.5).

Recall that we denote the underlying fine-mesh linear system for equation (1.1) as

A�u = �f , A(i, j) = a(ψi(x),ψ j(x)), �f (i) = 〈 f (x),ψi(x)〉. (4.6)

With the above notations, we derive the matrix representation of the iteration relation in Algorithm 1 and Algorithm 2. 
We consider Algorithm 2 first, which is a linear two-level multi-grid method.

Let �us be the fine-mesh discrete solution in the s-th step, namely,

us(x) =
N∑

i=1

�us(i)ψi(x).

In Algorithm 2, we employ the enriched trial space Ṽ H in (4.5) to solve (3.17) and get

es
H (x) + es,2(x).

We first compute the corresponding load vector 〈φi(x), f (x) + div(a(x)∇us(x))〉, which is

D̃T (�f − A�us). (4.7)

The corresponding stiffness matrix employing the trial space (4.5) is

D̃T AD̃, (4.8)

and we can get the coarse-mesh solution based on (4.8) and (4.7),

(D̃T AD̃)−1 D̃T (�f − Lh �us). (4.9)

Here we have used Lh as the fine mesh stiffness matrix defined in (4.6), Lh = A.
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Next we represent the coarse-mesh solution (4.9) using the fine mesh basis ψk(x), we get

�es + �es,2 = D̃(D̃T AD̃)−1 D̃T (�f − Lh �us). (4.10)

We denote L−1
H as the coarse-mesh solution operator,

L−1
H = D̃(D̃T AD̃)−1 D̃T , (4.11)

then we have �es + �es,2 = L−1
H (�f − Lh �us) in (4.10). We add it back to �us in (3.19), and get

�u(s) = �us + L−1
H (�f − Lh �us), (4.12)

where �u(s) is the vector representation of the corrected multi-scale solution (3.19) using the fine mesh basis. Finally, we 
apply ν steps of smoothing operations (3.6) to the approximate solution (4.12). Let SM be the iteration matrix in the 
smoothing operation, then we get the following iteration relation for Algorithm 2,

�us+1 = Sν
M(I − L−1

H Lh)�us + �M, (4.13)

where �M is a constant vector that does not depend on �us ,

�M = Sν
M L−1

H
�f + (I − Sν

M)L−1
h

�f .
We can see that Algorithm 2 is a two-level multi-grid method employing the multi-scale basis (3.13) and the bubble 

basis (4.3) for the restriction and prolongation operations, which are D̃T and D̃ in (4.11).
Next we consider the proposed Algorithm 1. The only difference between Algorithm 1 and 2 is that in Algorithm 1, the 

multi-scale basis in the coarse-mesh solution operator L−1
H is adapted to the approximate numerical solutions in previous 

iteration steps. To show this we consider replacing the multi-scale basis in the coarse-mesh correction (3.17) by φs
i (x), which 

are obtained according to (3.9) or (3.12).
Consider solving (3.17) using trial space Ṽ s

H (4.5) and a Galerkin projection to get es
H (x) + es,2(x). Then

a(u(x) − us−1(x) − es
H (x) − es,2

H (x), v(x)) = 0, for v(x) ∈ V s
H . (4.14)

Recall that in our construction of the adaptive multi-scale basis φs
i (x), we require that they can recover the approximate 

solution us−1(x) on � (3.8). Therefor we have us−1(x) ∈ Ṽ s
H , and

u(s)(x) = us−1(x) + es
H (x) + es,2

H (x) ∈ Ṽ s
H . (4.15)

The representation of u(s)(x) (4.15) and the orthogonality condition (4.14) together imply that u(s)(x) is just the Galerkin 
numerical solution to the original equation (1.1) employing the updated trial space Ṽ s

H , which is the same as the ap-
proximate numerical solution u(s)(x) that we obtain in Algorithm 1, (3.3). Namely, if we replace the coarse mesh solution 
operator L−1

H in Algorithm 2 using (Ls
H )−1, we get Algorithm 1. So we conclude that Algorithm 1 is a nonlinear version of 

the two-level multi-grid method with the restriction and prolongation operators adapted to approximate solutions of the 
previous iteration steps.

Note that there is no explicit restriction operation in the proposed Algorithm 1, namely, we do not need to compute 
the fine mesh residual and pass it to coarse mesh as in (4.7). The reason that we can skip the restriction operation in 
Algorithm 1 is that we have required that the multi-scale basis φs

i (x) can recover the approximate numerical solution of the 
previous iteration step, us−1(x), on �.

Similar to (4.13) in Algorithm 2, we get the following iteration relation for Algorithm 1,

�us = Sν
M(I − (Ls

H )−1Lh)�us−1 + �Ms. (4.16)

Multi-grid method is known as the fastest elliptic solver, but the classical multi-grid methods that use piecewise linear 
basis functions on the coarse mesh for the interpolation and prolongation operations may fail for problems (1.1) with rough 
coefficient due to the lack of regularity of the solution. There are many multi-scale methods in the literature that employ 
problem-dependent interpolation operations to recover the optimal efficiency of the multi-grid. Among these methods, the 
Algebraic Multi-grid Methods (AMG) have achieved some success. However, most of these AMG methods are based on 
heuristics, and there exist no convergence analysis. The AMG methods introduce the notion of “strength of connection” for 
the node points, and build the interpolation basis automatically based on the “strength matrix”. For our proposed methods, 
the interpolation basis functions are constructed based on sampled solutions of the elliptic equations, and there is a clear 
underlying geometric picture. In the next subsection, we carry out the convergence analysis for our proposed algorithms 
using the theory of Harmonic coordinates.
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4.2. Estimates of the error decay in the two proposed algorithms

The exact fine-mesh solution �u = A−1 �f is a fixed point of the iteration schemes (4.16) and (4.13). To unify the notation 
for the two algorithms, we will write L−1

H in (4.13) as (Ls
H )−1.

We have the following relation between the errors in two consecutive iteration steps,

�us+1 − �u = Sν
M(I − (Ls

H )−1Lh)(�us − �u). (4.17)

We will provide convergence analysis of the proposed algorithms under the framework of the two-level multi-grid 
method, see [39], in which the iteration relation (4.17) is decomposed as (with A = Lh)

A(�us+1 − �u) = (A Sν
M)[L−1

h − (Ls
H )−1][A(�us − �u)]. (4.18)

Then we have the following estimate on the decay of the l2 norm of the residual,

‖A(�us+1 − �u)‖ ≤ ‖A Sν
M‖‖L−1

h − (Ls
H )−1‖‖A(�us − �u)‖.

In this section, we use ‖ · ‖ to denote the discrete l2 norm and the induced operator norm. We need

‖A Sν
M‖‖L−1

h − (Ls
H )−1‖ < ρ < 1 (4.19)

for the robust convergence of the iteration scheme (4.18). Classical convergence analysis of the two-level multi-grid methods 
estimates the two parts in (4.19) separately.

For the first part, one needs the following smoothing property,

‖A Sν
M‖ = O (

1

ν
), ν → +∞, (4.20)

which requires that the smoothing operation can effectively damp the high frequency modes in the error.
For the second part in (4.19), classical convergence analysis requires the approximation property

‖L−1
h − (Ls

H )−1‖ ≤ C H2h−2. (4.21)

We have assumed that the underlying fine mesh is of size O (h) and has bounded aspect ratio, then in the computation 
of the load vector (4.6), we have

‖�f ‖ = O (h‖ f (x)‖L2(D)). (4.22)

And for the error in the solution u(x) − us(x), we have

‖u(x) − us(x)‖L2(D) = O (h‖�u − �us‖), (4.23)

where �u and �us are the vector representation of u(x) and us(x) using the fine mesh basis functions ψk(x) (4.1). With (4.22)
and (4.23), we can see that (4.21) requires O (H2) accuracy of the Galerkin solution (1.8),

‖u(x) − uM S
H (x)‖L2(D) ≤ C H2‖ f (x)‖L2(D). (4.24)

To obtain (4.21) from (4.24), we use (4.22), (4.23), and have

‖(L−1
h − (Ls

H )−1)�f ‖ = ‖�u − �uM S
H ‖ ≤ h−1‖u(x) − uM S

H (x)‖L2(D) ≤ Ch−1 H2‖ f (x)‖L2(D) ≤ Ch−2 H2‖�f ‖.
We have used (4.23) in the first estimate, (4.24) in the second estimate, and (4.22) in the last estimate.

For the multi-scale PDE (1.1) with rough coefficient a(x), the desired smoothing property (4.20) still holds for several 
types of smoothing operators, which only depends on the uniform ellipticity of the equation (1.1), see [39] in Chapter 6. 
However, due to the lack of regularity of the solution, the approximation property (4.21) fails if piecewise linear basis 
functions are used in the coarse-mesh solving.

To recover the robust convergence (4.19) as for smooth coefficient problems, one needs the approximation property of 
the multi-scale basis functions φs

i (x) and φi(x) to the solution space of the equation, (4.24).

1. In Algorithm 2, if we have constructed a set of multi-scale basis functions φi(x) that can achieve the desired approxi-
mation property (4.24) to the solution space of (1.1), then there exists ν∗ that depends on H/h, such that for ν > ν∗ , 
one can obtain the robust convergence (4.19) for Algorithm 2.
In the periodic homogenization setting, it was shown in [47] that the multi-scale basis functions (1.6) with linear local 
boundary conditions have good approximation property to the solution space of (1.1). We will see in the numerical 
results section that even for some rough coefficient problems without clear scale-separation, Algorithm 2 employing 
multi-scale basis functions φi(x) with linear local boundary conditions also performs significantly better than the clas-
sical two-level multi-grid method.
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2. In Algorithm 1, the multi-scale basis functions φs
i (x) are constructed based on the approximate solutions in previous 

iteration steps, which can be viewed as sampled solutions to (1.1). Success of multi-scale methods that employ sampled 
solutions to construct local multi-scale basis can be explained using the harmonic coordinates. We will prove the 
approximation property (4.24) for multi-scale basis constructed according to (3.12) under certain assumptions of the 
harmonic coordinates in the next subsection.
One key idea of Algorithm 1 is using approximate solutions of previous iteration steps as sampled solutions to construct 
the multi-scale basis, instead of generating sampled solutions by solving (1.1) with random forcing terms. The latter has 
the same computational complexity as the original problem.

3. Once we have generated multi-scale basis functions in Algorithm 1 that can achieve good approximation property to 
the solution space of the equation, (4.24), we can then switch to Algorithm 2 with this set of multi-scale basis, since 
Algorithm 2 is computationally more efficient for each iteration step.

Remark 3. The adaptive multi-scale method in [41] can be directly put into the two-level multi-grid method framework 
as (4.13). The multi-scale methods in [25,57] cannot obtain the fine mesh solution, thus these methods are not fine mesh 
solvers of the equation as two-level multi-grid method. However, the oversampling method employed there is similar to 
blockwise smoothing operations. With suitable modifications, these multi-scale methods may be analyzed as nonlinear 
two-level multi-grid methods as (4.16).

4.3. Approximation property of the multi-scale basis φs
i (x)

We employ the harmonic coordinates to establish the approximation property of multi-scale basis functions constructed 
from (3.12). The a(x)-harmonic coordinates

F (x) = (F1(x), F2(x)), (4.25)

are defined as the solutions to the following equations,{
−div(a(x)∇ Fi(x)) = 0;
Fi(x)|∂ D = xi .

(4.26)

A remarkable property proved in [62] is that under certain assumptions about F (x), the solution to (1.1), u(x), gains an 
order of regularity with respect to the harmonic coordinates,

‖u ◦ F −1(x)‖W 2,p(D) ≤ C(p)‖ f ◦ F −1(x)‖L p(D), p > 2. (4.27)

We consider two sampled solutions of the equation (1.1), v1(x) and v2(x),

−div(a(x)∇v1(x)) = g1(x), −div(a(x)∇v2(x)) = g2(x), v1,2(x)|∂ D = 0, (4.28)

where v1(x) and v2(x) are normalized based on

‖g1(x)‖L p(D) = 1, ‖g2(x)‖L p(D) = 1. (4.29)

We build multi-scale basis based on v1(x), v2(x) following the procedure outlined in (3.10) and (3.12), and show the 
approximation property (4.24) of the resulting multi-scale basis φi(x), i = 1, . . . , n.

These basis functions are approximately local linear combinations of v1(x) and v2(x), (3.10). Our basic idea is the fol-
lowing: we consider approximating the solution u(x) using the multi-scale basis φi(x) in the harmonic coordinates; on each 
D̃i = F (Di), ṽ1(x) = v1 ◦ F −1(x) and ṽ2(x) = v2 ◦ F −1(x) has W 2,p regularity, thus can be approximated by linear functions; 
the multi-scale basis functions in the harmonic coordinates, namely, φ̃i(x) = φi ◦ F −1(x), are approximately linear combina-
tions of ṽ1(x) and ṽ2(x), thus are approximately local linear functions; ũ(x) = u ◦ F −1(x) has W 2,p regularity and can be 
approximated by the constructed φ̃i(x). Then we pass the estimates in the harmonic coordinates to the physical space to get 
(4.24). To facilitate the error estimation procedure, we make the following two relatively strong assumptions on the stability 
of the harmonic coordinates (4.25) and the sampled solutions (4.28).

1. The solution in the harmonic coordinates, u ◦ F −1(x), satisfies a non-divergence form elliptic equation, and to obtain 
the regularity result (4.27), one needs the Cordes condition [55]. This requires estimates of ∇ F (x). And to pass the 
estimates in the harmonic coordinates to the physical space, one also needs estimates of ∇ F (x). Here for simplicity, we 
make a strong assumption that

∇ F (x), (∇ F (x))−1 ∈ L∞(D). (4.30)

For each coarse element Di with node points xi j , j = 1, 2, 3, we denote the triangle of x̃i j = F (xi j ) as �x̃i1 x̃i2 x̃i3 . To 
obtain the desired estimates in the harmonic coordinates, we assume that

�x̃i1 x̃i2 x̃i3 has bounded aspect ratio. (4.31)
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2. On each coarse element Di , the interpolation of u(x) using the basis φ̄i j (x) can be written as

c0
i + c1

i v1(x) + c2
i v2(x). (4.32)

To obtain the estimates in the harmonic coordinates, we need the stability of the interpolation and some estimates 
on c j

i . We denote the derivatives of the linear interpolation of u ◦ F −1(x), v1 ◦ F −1(x) and v2 ◦ F −1(x) on D̃i as ku
i , kv1

i
and kv2

i respectively.

Then the coefficients c j
i in (4.32) can be obtained as

(c1
i , c2

i )
T = [kv1

i ,kv2
i ]−1ku

i . (4.33)

For the stability of the interpolation, we assume that

Ci = ‖[kv1
i ,kv2

i ]−1‖ ≤ C . (4.34)

Recall that to find the coefficients in the local multi-scale basis (3.10), one needs to solve a 3 × 3 linear system based 
on condition (3.11), thus requires that the linear system is non-singular. The above assumption (4.34) can be viewed as 
quantitative version of that requirement.

Remark 4. For arbitrarily rough coefficient a(x), one can only get that F (x) is Hölder continuous and cannot get (4.30). 
However, under some integrability condition of ∇ F (x), the same estimate procedure in this subsection still carries through, 
but we can only get weaker approximation property than (4.24).

With the major assumptions made above (4.30), (4.31), (4.34), and some other technical assumptions (A.5), (A.13), (A.14)
made in the appendix, we can show that using the multi-scale basis (3.10) obtained from v1(x), v2(x), the Galerkin numer-
ical solution uM S

H (x) satisfies

‖u(x) − uM S
H (x)‖L2(D) ≤ C H2‖ f (x)‖L2(D). (4.35)

The proof of the above approximate property is technical and given in the appendix. If the approximate numerical 
solutions us(x) and us−1(x) after rotation and normalization (4.29) satisfy the same stability condition as v1(x), v2(x) in 
(4.34), then using the basis φs

i (x) constructed following the procedure outlined in (3.10) and (3.12) we can recover the 
desired approximation property (4.21) as for smooth coefficient problems. Following the decomposition (4.19) and using 
(4.21) and (4.20), we can conclude that in Algorithm 1, there exists ν∗ that depends on H/h, such that for ν > ν∗ , we can 
achieve the convergence (4.19),

‖A�us − �f ‖ ≤ ρs‖A�u0 − �f ‖, ρ < 1. (4.36)

If there exist a set of multi-scale basis φ1(x), . . . , φn(x), which has the desired approximation property (4.24) to the 
solution space of (1.1). Then employing this set of multi-scale basis in Algorithm 2, we can also get the robust convergence 
result for Algorithm 2 as in (4.36),

‖A�us − �f ‖ ≤ ρs‖A�u0 − �f ‖, ρ < 1.

Remark 5. Recall that Ci = ‖[kv1
i , kv2

i ]−1‖−1. Ci will be large if (1) kv1
i and kv2

i are close to being align to each other; or 
(2) kv j

i is small. To avoid the first case, we want v1(x) are v2(x) to be independent sampled solutions to (1.1). To avoid the 
second case, we want ‖∇v j(x)‖ to be large.

Remark 6. Each iteration step in Algorithm 2 has the same computational cost as the classical two-level multi-grid method. 
Algorithm 1 is more expensive than Algorithm 2 since one needs to construct the adaptive multi-scale basis functions and 
the corresponding stiffness matrix in each iteration step.

5. Numerical results

In this section, to demonstrate the efficiency of the proposed iteratively adaptive multi-scale finite element method, we 
apply it to several problems with multi-scale features, including a rough coefficient problem, a high-contrast interface prob-
lem, and a convection-dominated diffusion equation. In particular, we will show its advantage over the classical two-level 
multi-grid method as fine mesh solvers.

We employ a two-level discretization of the domain D = [0, 1] ×[0, 1] as shown in Fig. 1. The coarse mesh size is chosen 
to be H = 1 and the underlying fine mesh size is chosen to be h = 1 .
32 1024
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Fig. 4. Rough coefficient a(x, y) without scale-separation.

Fig. 5. ‖∇ F (x)‖ and ‖(∇ F (x))−1‖.

5.1. An elliptic PDE with rough coefficient

In this subsection, we consider an example of the multi-scale PDE (1.1) where the coefficient a(x, y) is rough and does 
not have clear scale-separation. a(x, y) and f (x, y) are given by

a(x, y) = |ã(x, y)| + 0.5, f (x, y) = 1.

The values of ã(x, y) on the node points of an intermediate mesh of size 1
128 are i.i.d. Gaussian random variables. And 

the values of a(x, y) on the fine mesh node points are obtained using piecewise linear interpolation based on its values 
on the intermediate mesh node points. A typical realization of the coefficient a(x, y) is shown in Fig. 4, and we will solve 
equation (1.1) with this realization of a(x, y).

We first numerically verify our stability assumption on the harmonic coordinates (4.30). We solve the harmonic coordi-
nates (4.26) on the underlying fine mesh and numerically compute ‖∇ F (x)‖ and ‖(∇ F (x))−1‖. They are plotted in Fig. 5. 
We can see that ‖∇ F (x)‖ and ‖(∇ F (x))−1‖ are both bounded, namely, the stability assumption (4.30) holds for this rough 
coefficient elliptic problem.

To start the iteration in Algorithm 1, we need two sampled solutions to generate the multi-scale basis φ1
i (x). We first 

solve the equation (1.1) using piecewise linear basis on the coarse mesh to get u−1(x). Then we apply 10 steps of Jacobi 



T.Y. Hou et al. / Journal of Computational Physics 336 (2017) 375–400 391
Fig. 6. Decay of the error ‖us − u∗‖ and the residual ‖Aus − f ‖.

iteration on the fine mesh using u−1(x) as initial guess to obtain u0(x). With u−1(x) and u0(x), we build multi-scale φ1
i (x)

following the construction (3.10) and (3.12).
In the iteration of both Algorithm 1 and Algorithm 2, we choose ν = 10 and the Gauss–Seidel iteration for the smoothing 

operations in step (3.6). There exist other smoothing methods that may perform better than the Gauss–Seidel iteration. 
However, for the purpose of comparing the proposed methods with the classical two-level multi-grid method, we will 
employ the simple Gauss–Seidel smoothing operation in implementation. We keep track of the l2 norms of the error ‖�us −�u‖
and the residual ‖A�us − �f ‖ in the iteration. We solve the multi-scale equation (1.1) using Algorithm 1, Algorithm 2, and 
the classical two-level multi-grid method under the same discretization. Note that the only difference between the three 
methods is the choice of the finite element basis functions in the coarse mesh solution operator (Ls

H )−1. In Algorithm 1, 
we employ the adaptive multi-scale basis functions φs

i (x) and the bubble basis functions φb
j (x); in Algorithm 2, we employ 

the multi-scale basis functions with linear local boundary conditions φi(x) and φb
j (x); in the classical two-level multi-grid 

method we employ the coarse-mesh piecewise linear basis functions. The decay of ‖�us − �u‖ and ‖A�us − �f ‖ for the three 
methods is shown in Fig. 6.

According to the comparisons made in Fig. 6, we can get the following conclusions.

1. The l2 norms of the error and the residual both decay exponentially fast for Algorithm 1 and Algorithm 2. This agrees 
with our convergence analysis under the two-level multi-grid method framework.

2. The error and residual in Algorithm 1 and Algorithm 2 decay faster than the classical two-level multi-grid method. This 
is because the multi-scale basis functions employed in Algorithms 1 and 2 have better approximation property to the 
solution space of (1.1) than the coarse mesh piecewise linear basis.

In practical applications, even though the approximate solution us(x) in Algorithms 1 and 2 converge to the underlying 
fine mesh solution uh(x) exponentially fast, we do not need to wait until

‖us(x) − uh(x)‖L2(D) = O (h2) (5.1)

to stop the iteration. This is because the fine mesh size h is not chosen according to the desired order of accuracy, but 
according to the small-scale variations of the coefficient.

Even if we terminate the iteration based on the condition (5.1), we cannot get O (h) accuracy in the numerical solution 
us(x). Due to the oscillation in the coefficient a(x), we have

‖u(x) − uh(x)‖L2(D) � h2.

If our desired order of accuracy is the coarse mesh size H , as in the multi-scale methods of the second category described 
in section 1.3, [7,53,45,64], then we can terminate the iteration much earlier.

For this specific problem, with the Gauss–Seidel iteration for the smoothing operation, we obtain H2

10 in L2(D) accuracy 
after 1 step of iteration in Algorithm 1 and 4 steps of iteration in Algorithm 2.

In the multi-scale methods, for example, [7,53,45,64], constructing multi-scale basis functions with robust approximation 
property could be very expensive. Our method, Algorithm 1, bypasses this difficulty by adaptively updating the multi-scale 
basis to improve the approximation property of the basis.
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Fig. 7. The high-contrast coefficient. log10 a(x).

Fig. 8. Decay of l2 error and the residual for the high-contrast interface problem.

5.2. A high-contrast interface problem

In this subsection, we consider an elliptic problem with a high-contrast interface. Note that the high-contrast inclusions 
violate the uniform ellipticity assumption (1.2). However, the proposed Algorithm 1 still works well and performs much 
better than the classical two-level multi-grid method.

The high-contrast coefficient a(x, y) that we consider in this example is illustrated in Fig. 7, and the right hand side 
function is chosen as f (x, y) = 1. As in the previous numerical example, we solve this high-contrast interface problem using 
Algorithm 1, Algorithm 2 and the classical two-level multi-grid method under the same discretization. We choose ν = 10
and the Gauss–Seidel iteration in the smoothing operation. The decay of the error and the residual in the iteration is plotted 
in Fig. 8.

For this high-contrast interface problem, no convergence is observed for the proposed Algorithm 2 employing multi-scale 
basis with linear local boundary conditions and the classical two-level multi-grid method. Due to the high contrast inclu-
sions, the derivatives of the solution has large jump across the boundaries of the inclusions. Multi-scale basis with linear 
local boundary conditions cannot accurately capture these jumps, thus has very poor approximation property to the solution 
space of (1.1). This explains the failure of Algorithm 2 and the classical two-level multi-grid method observed in Fig. 8.
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Fig. 9. Comparison of Algorithm 1 with Algorithm 2 using multi-scale basis functions generated from random sampled solutions of (1.1). The line labeled 
“Fixed Random” corresponds the first approach described above for Algorithm 2, and the line labeled “Random” corresponds to the second approach for 
Algorithm 2. The line labeled “Linear Basis” corresponds to the classical two-level multi-scale method.

For this high-contrast interface problem, the l2 norms of the error �us − �u and the residual A�us − �f in the iteration of 
Algorithm 1 both converge exponentially fast. The adaptive multi-scale basis functions in Algorithm 1 are constructed based 
on sampled solutions of the equation, which can capture this jump of derivatives, thus have much better approximation 
property to the solution space of (1.1).

Next we consider constructing multi-scale basis functions φi(x), i = 1, 2, . . . , n based on randomly generated sampled 
solutions of (1.1) following (3.10) and (3.12), and employing them in Algorithm 2 to solve the equation (1.1). For this 
purpose, we consider the following finite dimensional subspace of L p(D),

{1, sin(2πx), cos(2πx), . . . sin(10πx), cos(10πx)} ⊗ {1, sin(2π y), cos(2π y), . . . sin(10π y), cos(10π y)},
and generate random forcing functions f (x) from this finite-dimensional subspace of L p(D).

We remark that solving (1.1) with randomly generated forcing has the same computational complexity as the original 
problem, and we design this example only to compare the performance of Algorithm 1 and Algorithm 2. We consider two 
approaches for Algorithm 2. In the first approach, we generate a set of multi-scale basis functions before the iteration, 
and employ them in the coarse mesh solving step of Algorithm 2. In the second approach, we generate a new set of 
multi-scale basis functions for the coarse mesh solving operation in each iteration step of Algorithm 2. For this high-contrast 
interface problem, the convergence of the solutions is plotted in Fig. 9. We observe that the iterative error corresponding to 
Algorithm 2 using the second approach indeed decays faster than that using the first approach. This shows that updating 
the multi-scale basis functions during the iteration indeed helps to reduce the iteration error. However, the iterative error 
in Algorithm 1 decays much faster than the iterative errors of Algorithm 2 even if we update multi-scale basis functions 
based on randomly generated sampled solutions (the second approach).

5.3. A convection-dominated diffusion equation

The proposed iteratively adaptive multi-scale finite element method, Algorithm 1, can also be naturally applied to solve 
convection dominated diffusion problems. In this subsection, we consider equation{

−κ�u(x) + a · ∇u(x) = f , x ∈ �,

u(x) = g(x), x ∈ ∂�,

where κ = 10−6 is the diffusivity, a = (a1, a2)
T is the velocity field, f (x) is a given source term, and g is given Dirichlet 

boundary condition. We consider the following four test cases as in [34]

1. Convective field with a fixed angle. � = [0, 1] × [0, 1], a = (
√

2/2, 
√

2/2)T , f = 0.
2. Thermal boundary layer problem. � = [0, 1] × [0, 0.5], a = (2y, 0)T , f = 0.
3. Double ramp problem, � = [0, 0.5] × [0.5, 1] ∪ [0.5, 1.5] × [0, 1], a = (1, 0)T , and f = 1.
4. Smith–Hutton problem [72], � = [−1, 1] × [0, 1], a = (2y(1 − x2), −2x(1 − y2))T , and f = 0.

The problem setting and boundary conditions for the four cases are illustrated in Fig. 10.
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Fig. 10. Boundary conditions for the four convection-diffusion problems.

In the discretization of the problem, the coarse mesh size is H = 1
16 and fine mesh size is h = 1

128 . The streamline-
crosswind diffusion method (SD/CD) [69] with a set of uniform rectangular meshes is used to construct the multi-scale 
basis with boundary conditions given by (3.9). And in the coarse mesh solving, we employ the following discretization of 
the equation: find u(s)(x) ∈ V s

H , such that

ac(u(s)(x), v(x)) = ( f (x), v(x))c, ∀v(x) ∈ V s
H ,

where

ac(u(x), v(x)) = a(u(x), v(x)) +
∑

i

τi(a · ∇u,a · ∇v)Di +
∑

i

(κm − κ)(b · ∇u,b · ∇v)Di

and

( f , v)c = ( f , v) +
∑

i

τi( f ,b · ∇v)Di .

Here a(u, v) = κ(∇u, ∇v) + (a · ∇u, ∇v) is a bilinear form and ( f , v) is a linear form.
The stabilization parameter τi is defined as

τi = H2
Di

6κ max{1, Pei} + 6κ
,

with

Pei = |a|a H Di

3κ
.

The artificial crosswind diffusion coefficient κm is given as

κm =
{
κ, if κ ≥ H3/2

Di
,

H3/2
, if κ < H3/2

.
Di Di
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Table 1
Number of iteration steps to obtain convergence for the four tested cases.

ν Fixed angle Thermal Double ramp Smith–Hutton

1 5 11 10 7
2 4 7 8 6
3 4 6 8 5
4 3 5 6 5
5 3 5 5 5

And b = (−a2, a1) is the crosswind vector.
The initial and final MsFEM solutions for the 4 cases are plotted in Fig. 11.
The initial MsFEM solutions are obtained using multi-scale basis with linear local boundary conditions. We observe that 

the accuracies of the MsFEM numerical solutions are significantly improved in the end of the iteration: the overshooting 
problem within the boundary layer regions is completely eliminated.

The smoothing operation (3.6) is chosen as the incomplete LU factorization without fill-in, namely, the ILU(0) method 
[68]. We choose ν = 1, 2, . . . , 5, and the stopping criteria for the Algorithm is ‖us−1(x) − us(x)‖L2(�) ≤ 10−4. To obtain the 
convergence, the steps of iterations required for the four cases are summarized in Table 1. For ν ≥ 4, the iteration converges 
within 6 steps for all the 4 cases.

6. Concluding remarks

An iteratively adaptive multi-scale finite element is proposed, in which the multi-scale basis functions and the ap-
proximate solutions are updated simultaneously in each iteration step. The global information of the elliptic equation is 
transferred to the local boundary conditions of the multi-scale basis functions through coarse mesh solving using adaptive 
multi-scale basis and fine mesh smoothing operations.

A stabilized variant of the proposed algorithm is also derived, which is a two-level multi-grid method that employs a set 
of multi-scale basis functions for the restriction and prolongation operations. The proposed iteratively adaptive MsFEM can 
be viewed as a nonlinear version of the two-level multi-grid method.

Convergence analysis of the proposed algorithm is carried out in the two-level multi-grid method framework. And we 
employ the harmonic coordinates to establish the approximation property of the adaptively constructed multi-scale basis 
functions to the solution space of the equation.

Numerical results are presented for a rough coefficient problem, an elliptic interface problem and several convection 
dominated diffusion problems. Significant improvements over classical methods are observed for all these three types of 
PDE problems. In particular, the proposed Algorithm 1 has significant advantage over the classical two-level multi-grid 
method as a fine mesh solver of the multi-scale equation.
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Appendix A

Let φi(x), i = 1, 2, . . . , n be the multi-scale basis functions constructed using the sampled solutions v1(x), v2(x) obtained 
from (4.28) and following the procedure outlined in (3.10) and (3.12). Further, we denote uM S

H (x) as the Galerkin finite 
element solution of (1.1) using the resulting trial space

Vh = span{φ1(x),φ2(x), . . . , φn(x)}.
We will prove that

‖u(x) − uM S
H (x)‖L2(D) ≤ C H2‖ f (x)‖L2(D), (A.1)

under the two assumptions in subsection 4.3, and some additional technical assumptions (A.5), (A.13), (A.14).

Proof. We first consider the interpolation of the solution u(x) using the non-conforming basis φ̄i(x). On the boundary of 
the coarse element Di , the interpolation residual ei(x) = u(x) − ∑3

j=1 u(xi j )φ̄i j (x) is

ei(x) = u(x) − c0
i − c1

i v1(x) − c2
i v2(x), x ∈ ∂ Di .

Then employing the optimality property of multi-scale basis functions, (2.6), we have

‖ei(x)‖2 ≤ ‖u(x) − c0 − c1 v1(x) − c2 v2(x)‖2 + C H2‖ f (x)‖2
2 , (A.2)
E i i i E L (Di)
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Fig. 11. Initial and final MsFEM solutions for the convection-dominated diffusion problems.
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Fig. 12. Coarse-mesh element in Harmonic Coordinate.

where ‖ · ‖E is the energy norm (1.9). To bound the energy norm of Ei(x) = u(x) − c0
i − c1

i v1(x) − c2
i v2(x) in the above 

estimate, (A.2), we express this term in the harmonic coordinates, Ẽ i(x) = Ei ◦ F −1(x),

Ẽ i(x) = ũ(x) − c0
i − c1

i ṽ1(x) − c2
i ṽ2(x), x ∈ D̃i . (A.3)

We denote v̂ i,1(x), v̂ i,2(x) and ûi(x) as the linear interpolation of ṽ1(x), ṽ2(x) and ũ(x) on the three node points, x̃i1 , 
x̃i,2, x̃i,3. Then we can decompose (A.3) as

Ẽ i(x) = [ũ(x) − c0
i − c1

i v̂ i,1(x) − c2
i vi,2] + [c1

i (v̂ i,1(x) − ṽ1(x)) + c2
i (v̂ i,2(x) − ṽ2(x))]. (A.4)

The first term in (A.4) is simply ũ(x) − ûi(x), and to get an estimate of it on D̃i , we need to put D̃i in a regular domain. 
Let D̂i be the triangle which is the scaling of �x̃i1 x̃i2 x̃i3 by a factor of 2, and has the same center as �x̃i1 x̃i2 x̃i3 . Then we 
assume that D̃i ⊂ D̂i and each x ∈ D is covered by finite D̂i ,

D̃i ⊂ D̂i, max
x∈D

#{i : x ∈ D̂i} ≤ C . (A.5)

The element Di , its image D̃i , and the triangle D̂i are illustrated in Fig. 12.
Then using the regularity result (4.27) and the assumption that D̂i has bounded aspect ratio, we have

‖ũ(x) − c0
i − c1

i v̂ i,1(x) − c2
i vi,2(x)‖H1(D̃i)

≤ ‖ũ(x) − c0
i − c1

i v̂ i,1(x) − c2
i vi,2(x)‖H1(D̂i)

≤ C H‖ũ(x)‖H2(D̂i)
. (A.6)

Using the same assumptions as in (A.6), we can bound the second term in (A.4) by

‖c1
i (v̂ i,1(x) − ṽ1(x)) + c2

i (v̂ i,2(x) − ṽ2(x))‖H1(D̃i)
≤ |c1

i |H‖ṽ1(x)‖H2(D̂i)
+ |c2

i |H‖ṽ2(x)‖H2(D̂i)
. (A.7)

Putting estimates (A.6) and (A.7) together in the decomposition (A.4), we have

‖Ẽ i(x)‖2
H1(D̃i)

≤ C H2‖ũ(x)‖2
H2(D̂i)

+ C(c1
i )

2 H2‖ṽ1(x)‖2
H2(D̂i)

+ C(c2
i )

2 H2‖ṽ2(x)‖2
H2(D̂i)

. (A.8)

Adding up the estimate (A.8) over each coarse element, we have∑
i

‖Ei(x)‖2
H1(Di)

≤ C H2‖ũ(x)‖2
H2(D)

+ C max
i

(c1
i )

2 H2‖ṽ1(x)‖2
H2(D)

+ C max
i

(c2
i )

2 H2‖ṽ2(x)‖2
H2(D)

. (A.9)

Using the regularity result (4.27) and the normalization condition (4.29), we have

‖ũ(x)‖H2(D) ≤ C‖ f (x)‖L p(D); ‖ṽ1(x)‖H2(D),‖ṽ2(x)‖H2(D) ≤ C . (A.10)

For the coefficients c1
i and c2

i , according to (4.33), we have

c1
i , c2

i ≤ C‖ũ(x)‖C1(D) ≤ C‖ f (x)‖L p(D). (A.11)

Putting the estimates (A.10), (A.11) and (A.9) in (A.2), we have∑
i

‖ei(x)‖2
H1(Di)

≤ C H2‖ f (x)‖2
Lp(D). (A.12)

To obtain the approximation property of the conforming basis (3.12), we simply assume that the error will not be amplified 
due to the averaging,

‖u(x) −
∑

u(xi)φi(x)‖2
H1(D)

≤ C
∑

‖ei(x)‖2
H1(Di)

. (A.13)

i i
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Fig. 13. The constants in (A.14) and (A.15).

Then using the optimal property (1.9), (A.12) and (A.13), we have

‖uM S
H (x) − u(x)‖H1(D) ≤ C H‖ f (x)‖L p(D).

Finally, we assume that for all the f (x) that occur in the iteration of Algorithm 1, we have

‖ f (x)‖L p(D) ≤ C‖ f (x)‖L2(D), (A.14)

which requires that the f (x) is wide spread. With (A.14), we get

‖u(x) − uM S
H ‖H1(D) ≤ C H‖ f (x)‖L2(D).

Then using a Aubin–Nitsche duality argument, we get (A.1). The assumption (A.14) requires

‖u(x) − uM S
H (x)‖L p(D) ≤ C‖u(x) − uM S

H (x)‖L3(D) (A.15)

in the duality argument. We keep track of the constants C in (A.14) and (A.15) in the iteration of Algorithm 1 for the rough 
coefficient problem in subsection (5.1), and they are plotted in Fig. 13.
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