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Developing an effective turbulence model is important for engineering applications as well
as for fundamental understanding of the flow physics. We present a mathematical deriva-
tion of a closure relating the Reynolds stress to the mean strain rate for incompressible
flows. A systematic multiscale analysis expresses the Reynolds stress in terms of the solu-
tions of local periodic cell problems. We reveal an asymptotic structure of the Reynolds
stress by invoking the frame invariant property of the cell problems and an iterative
dynamic homogenization of large- and small-scale solutions. The recovery of the Smago-
rinsky model for homogeneous turbulence validates our derivation. Another example is
the channel flow, where we derive a simplified turbulence model using the asymptotic
structure near the wall. Numerical simulations at two Reynolds numbers (Re’s) using our
model agrees well with both experiments and Direct Numerical Simulations of turbulent
channel flow.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Turbulence has been a central research area in fluid dynamics since the 19th century. The Navier–Stokes equation, one of
the seven millennium prize problems established by the Clay Mathematics Institute, gives a good description of turbulent
flows, according to extensive theoretical and experimental works. However, it is still an open question whether the solution
of the 3D incompressible Navier–Stokes equation with smooth initial data and with finite energy will remain smooth for all
times. In addition, it is extremely difficult to solve the Navier–Stokes equation due to its non-local nonlinear nature.

The enormous progress of computer technology has enabled direct numerical simulation (DNS) of the Navier–Stokes
equation. But tremendous computing resource is still required to perform DNS of turbulent flows, especially at a high Re
and/or irregular geometry. Many turbulence models have been developed, aiming at capturing the most important statistical
quantities of turbulent flows, such as profiles of mean velocity, r.m.s. velocity fluctuations, etc.. Among them, the eddy-
viscosity models were the first. But they over-simplify the turbulent structures without considering the essential physical
mechanisms. Another popular model is the Smagorinsky model [1] and its variants [2, for an example of channel flow], which
have succeeded in many applications, e.g. homogeneous turbulence and channel flow.

Large eddy simulation (LES) has calculated practical flows even in relatively complex geometries [3–6]. However, it is still
impossible to simulate the wall-bounded flows at high Re, since a huge number of grid points are needed to resolve the small
structure near the wall [7,8]. Recently, hybrid models, which combine LES with Reynolds Averaged Navier Stokes (RANS)
equation, have been proposed to improve the modeling performance [9,10]. Most popular RANS models yield good predic-
tions of high Re turbulent flows. Hence, the RANS model is applied near the wall, and LES away from the wall. Spalart et al. [8]
. All rights reserved.
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proposed the detached eddy simulation (DES) by modifying the Spalart–Allmaras one-equation model. The RANS simulation
in the near-wall region is switched to the LES in the outer region, where the model length scale is changed from the wall
distance to a pseudo-Kolmogorov length scale. DES has been applied to predict separated flow around a rounded square cor-
ner [11]. All these models, however, are based on speculative formulations and/or fittings to experimental data. No system-
atic mathematical derivation of such a model has been possible yet.

In this paper, we present a mathematical derivation based on a multiscale analysis of Navier–Stokes equations developed
by Hou–Yang–Ran [12,13, hereafter referred to as HYR], aiming to systematically derive the Reynolds stress for 3D homoge-
neous incompressible Euler and Navier–Stokes equations. A multiscale model can be obtained by separating variables into
large- and small-scale components and considering the interactions between them. This gives rise to a system of coupled
equations for large- and small-scales. An important feature of the multiscale formulation is that no closure assumption is re-
quired and no unknown parameters to be determined. Therefore, it provides a self-consistent multiscale system, which cap-
tures the dynamic interaction between the mean and small-scale velocities. This multiscale technique has been successfully
applied to 3D incompressible Navier–Stokes equation with multiscale initial data [13]. It couples the large-scale solution to a
subgrid cell problem. The computational cost is still quite high but an adaptive scheme has speeded up the computation.

In the multiscale model, the Reynolds stress term is expressed as the average of tensor product of the small-scale veloc-
ities, which are the solutions of a local periodic cell problem. By using the frame invariance property of the cell problem and
an iterative homogenization of large- and small-scale solutions dynamically, we reveal a crucial structure of the Reynolds
stress and obtain an explicit form of it. This seems to be the first linear constitutive relation between the Reynolds stress
and the strain rate, established by combining a systematic mathematical derivation with physical arguments.

For homogeneous turbulence, we recover the Smagorinsky model using least assumptions, while a simplified Smagorin-
sky model can be derived given the structure of turbulent channel flow. A numerical study validates the simplified model for
channel flow, with good agreement of the mean velocity with both experimental and DNS results at Res ¼ 180 and
Res ¼ 395. An extensive numerical study is reported in [14], which shows good qualitative agreement of the simplified mod-
el with DNS and experimental data.

The paper is organized as follows: in Section 2, we briefly review the multiscale analysis for the 3D Navier–Stokes equa-
tion. The systematic mathematical derivation, based on the multiscale analysis is presented in Section 3. In section 4, the
Smagorinsky model for homogeneous turbulence is recovered via this mathematical derivation. A simplified Smagorinsky
model is obtained for turbulent channel flow and the coefficients in the model are determined and justified. Numerical sim-
ulations are carried out to validate the simplified model. Final conclusions and remarks appear in Section 5.

2. Multiscale analysis for the 3D Navier–Stokes equation

Based on the multiscale analysis in [12,13], we can formulate a multiscale system for the incompressible 3D Navier–
Stokes equation as a homogenization problem with � being a reference wave length as follows:
@tu� þ ðu� � rÞu� þrp� ¼ mDu�; ð1Þ
r � u� ¼ 0; ð2Þ
u�jt¼0 ¼ UðxÞ þWðx; zÞ; ð3Þ
where u�ðx; tÞ and p�ðx; tÞ are the velocity field and the pressure, respectively. The initial velocity field u�ðx; 0Þ can be repa-
rameterized in a two-scale structure: the mean UðxÞ and the fluctuating Wðx; zÞ components. In general, Wðx; zÞ is periodic
in z with zero mean, i.e.,
hWi �
Z

W x; zð Þdz ¼ 0:
In Appendix A, the reparameterization of the initial velocity u�ðx;0Þ in two-scale structure for channel flow is illustrated.
Here, the mean UðxÞ and the fluctuation Wðx; zÞ depend on the reference scale �, which is related to the numerical resolution
of the large scale solution. In the limit �! 0;Wðx; zÞ tends to zero, and the mean UðxÞ recovers the full velocity field, con-
taining all of the scales.

In the analysis, the key idea is a nested multiscale expansion to characterize the transport of the small scales or the high-
frequency component Wðx; zÞ. The first attempt to use homogenization theory to study the 3D Euler equations with highly
oscillating data was carried out by McLaughlin et al. [15]. To construct a multiscale expansion for the Euler equations, they
made an important assumption that the oscillation is advected by the mean flow. However, Hou et al. performed a detailed
study by using the vorticity-stream function formulation [12,13], and found that the small-scale information is in fact ad-
vected by the full velocity u�, which is consistent with Taylor’s hypothesis [16]. To be specific, define a multiscale phase func-
tion h�ðt; xÞ as follows:
@h�

@t
þ ðu� � rÞh� ¼ 0; ð4Þ

h�jt¼0 ¼ x; ð5Þ
which, also called the inverse flow map, characterizes the evolution of the small-scale velocity field.
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First, we define the two operators for vector functions. For a vector function f ðx1; x2; x3Þ ¼ ðf1; f2; f3Þ, the gradient of f is
defined as
ðrxf Þij ¼
@fj

@xi
;

while the differential of f is defined as
ðDxf Þij ¼
@fi

@xj
:

Based on a multiscale analysis in the Lagrangian coordinates, the following nested multiscale expansions for h� and the
stream function w� are adopted:
h� ¼ �hðt; x; sÞ þ �~hðt; �h; s; zÞ; ð6Þ
w� ¼ �wðt; x; sÞ þ �~wðt; �h; s; zÞ; ð7Þ
where s ¼ t=�; z ¼ �h=�. �h and �w are averages of �h� and w� respectively; ~h and ~w are periodic functions in z with zero mean.
Now direct computations give the expansion for velocity u�
u� ¼ rx � �wþ ðDx
�hTrzÞ � ~wþ �rx � ~w; ð8Þ
which implies the multiscale expansion
u� ¼ �uðt; x; sÞ þ ~uðt; �h; s; zÞ; ð9Þ
where
�uðt; x; sÞ ¼ rx � �w;

~uðt; �h; s; zÞ ¼ ðDx
�hTrzÞ � ~wþ �rx � ~w:
The pressure p� is similarly expanded:
p� ¼ �pðt; x; sÞ þ ~pðt; �h; s; zÞ: ð10Þ
Substituting (9) and (10) into the Navier–Stokes system (1) and averaging with respect to z, the equations for the mean
velocity field �uðt; x; sÞ are obtained with initial and proper boundary conditions:
�@t �uþ ð�u � rxÞ�uþrx�pþrx � h~u� ~ui ¼ mr2
x
�u; ð11Þ

rx � �u ¼ 0; ð12Þ
�ujt¼0 ¼ UðxÞ; ð13Þ
where �@t ¼ @t þ ��1@s.
The additional term h~u� ~ui in (11) is the well-known Reynolds stress. How to model it is important in both fundamental

understanding and engineering applications. In many LES, the Reynolds stress is modeled by some closure assumptions. In
contrast, by using the frame invariance property of the cell problem and an iterative homogenization of the large- and small-
scale solutions dynamically, we reveal a crucial structure of the Reynolds stress. Then the linear constitutive relation be-
tween the Reynolds stress and the strain rate can be established mathematically; see Section 3.

Next, substituting (6) into (4) and averaging over z give the equations for �hðt; x; sÞ with initial and proper boundary
conditions:
�@t
�hþ ð�u � rxÞ�hþ �rx � h~h� ~ui ¼ 0; ð14Þ

�hjt¼0 ¼ x: ð15Þ
To simplify the model further, we consider only the leading order terms of large-scale variables ð�u; �p; �hÞ
�uðt; x; sÞ ¼ uðt; xÞ þ �u1ðt; x; sÞ; ð16Þ

�pðt; x; sÞ ¼ pðt; xÞ þ �p1ðt; x; sÞ; ð17Þ

�hðt; x; sÞ ¼ hðt; xÞ þ �h1ðt; x; sÞ ð18Þ
and small scale variables ð~u; ~p; ~hÞ
~u ¼ wðt; �h; s; zÞ þ Oð�Þ; ð19Þ
~p ¼ qðt; �h; s; zÞ þ Oð�Þ; ð20Þ
~h ¼ Hðt; �h; s; zÞ þ Oð�Þ: ð21Þ
This gives simplified averaged equations, up to first order of �,
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@tuþ ðu � rxÞuþrxpþrx � hw�wi ¼ mr2
xu; ð22Þ

rx � u ¼ 0; ð23Þ
ujt¼0 ¼ UðxÞ ð24Þ
and
@thþ ðu � rxÞh ¼ 0; ð25Þ
hjt¼0 ¼ x: ð26Þ
Then we subtract the averaged equations from the Navier–Stokes equation (1) and the equations for the inverse flow map
h� (4). After some algebraic operations, we obtain the equations for the small-scale variables, to the leading order
approximation:
@swþ DzwAwþATrzq� m
�
rz � ðAATrzwÞ ¼ 0; ð27Þ

ðATrzÞ �w ¼ 0; ð28Þ
wjt¼0 ¼Wðx; zÞ; ð29Þ
where A is the gradient of phase function h, i.e. A ¼ Dxh, and I is the identity matrix.

Remark 1. An important feature of the above formulation, including the equations for both large-scale and high-frequency
variables, is that we do not need any closure assumption; no unknown parameter needs to be determined, in contrast to
other models, e.g., the Smagorinsky model. It provides a self-consistent system which captures the interaction between
large-scale and small-scale fields. The computational cost for this coupled system of equations is still quite substantial
although an adaptive scheme has been developed to speed up the computation, [see [13], for a numerical example of
homogeneous turbulent flows].
Remark 2. For convenience of theoretical analysis and numerical implementation, the cell problem (27) can be further sim-
plified by a change of variables from w to ~w by letting ~w ¼ Aw. Left-multiplying Eq. (27) by A gives
A@swþADzwAwþAATrzq� m
�
Arz � ðAATrzwÞ ¼ 0:
Since A does not depend on s or z,
A@sw ¼ @sAw ¼ @s ~w:
Further, we note:
ADzwAw ¼ ðDz ~wÞ ~w ¼ ð ~w � rzÞ ~w;

Arz � ðAATrzwÞ ¼ rzðAATrzAwÞ ¼ rz � ðAATrz ~wÞ;
ðATrzÞ �w ¼ rz � ðAwÞ ¼ rz � ~w:
Thus, we obtain the following modified cell problem for ~w :
@s ~wþ ð ~w � rzÞ ~wþAATrzq� m
�
rz � ðAATrz ~wÞ ¼ 0; ð30Þ

rz � ~w ¼ 0; ð31Þ
~wjt¼0 ¼ AWðx; zÞ: ð32Þ
We remark that � is not small. It is related to the resolution of large-scale variables. Since we are mainly interested in
large Re’s, we have m� �, i.e. m=�� 1. This is very different from the traditional homogenization theory in which one studies
the limit of �! 0 with m being fixed. In this case, we would have m� � and w would vanish dynamically due to strong
diffusion.
3. Mathematical derivation of turbulent models

Considering that the model (22)–(29) needs considerable computational CPU time and storage space, we would like to
develop a simplified multiscale model. While the new model has a comparable computational complexity as the other
LES models, it needs least closure assumptions.

First of all, we state the Rivlin–Ericksen Theorem, which plays an essential role in the development of the turbulence
models.
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Theorem 1 (Rivlin–Ericksen). A mapping bT : M3
þ ! S3 is isotropic and material frame invariant if and only if it is of the form
bT ðFÞ ¼ TðFFTÞ;
where the mapping T : S3
þ ! S3 is of the form:
TðBÞ ¼ b0ðiBÞI þ b1ðiBÞBþ b3ðiBÞB2
for every B 2 S3
þ, where b0; b1; b2 are real-valued functions of the three principal invariants iB of the matrix B.

Proof of the Rivlin–Ericksen Theorem can be found in [17].
Note that the cell problem (30) for ~w is frame invariant, i.e. the following conditions are met:

1. translational invariance
x ¼ y þ Z;
where Z is a constant vector,
2. Galilean invariance
x ¼ y þ vt;
where v is a constant vector,
3. rotational invariance
x ¼ My;
where M is a rotation matrix with
ðMTMÞi;j ¼ di;j:
Define B ¼ AAT, which is obviously symmetric. By the Rivlin–Ericksen theorem, we have the following relation in three-
dimensional space:
h ~w� ~wiðBÞ ¼ a0I þ a1B þ a2B2: ð33Þ
At this point, we only know that all these coefficients are real-valued functions of the three principal invariants of B. Fur-
thermore, B cannot be solved explicitly to obtain these invariants.

However, to extract the structure of the Reynolds stress, we perform a local-in-time multiscale analysis, accounting for
interaction between large and small scales through dynamic re-initialization of the phase function. The large-scale compo-
nents, u and h, can generate small scales dynamically through advection and nonlinear interaction. Thus enforcing that u
contains only the largescales, dynamic iterative reparameterization of the multiscale solution enables us to capture the inter-
actions among all small scales. More specifically, we solve the average equations (25) for the inverse phase flow h in a local
time interval ½t; t þ Dt	 with hðt; xÞ ¼ x as the initial condition. By using the forward Euler method, we can approximate h as
follows:
hðt þ Dt; xÞ ¼ x� Dtuðt; xÞ:
It follows that the rate of deformation can be computed as A ¼ Dxh ¼ I � Dtruþ OðDt2Þ, and its inverse
A�1 ¼ I þ Dtruþ OðDt2Þ. The above scheme is accurate up to the second order of Dt.

Therefore, B can be approximated as follows:
B ¼ AAT ¼ I � 2DtDþ OðDt2Þ; ð34Þ
where D is the strain rate tensor defined as
D ¼ 1
2
ruþruT
� �

:

Then we have the approximation of h ~w� ~wi
h ~w� ~wi ¼ a0I þ a1B þ a2B2 ¼ a0I þ a1I � 2DtDþ OðDt2Þ þ a2I � 2DtDþ OðDt2Þ2 ¼ aI � ~bDtDþ OðDt2Þ;
where the coefficients a ¼ a0 þ a1 þ a2 and ~b ¼ 2ða1 þ 2a2Þ. Note that both a and ~b are functions of the invariants of B.
Finally, the Reynolds stress tensor is
R ¼ hw�wi ¼ hA�1 ~w�A�1 ~wi ¼ hðI þ Dtruþ OðDt2ÞÞ ~w� ðI þ Dtruþ OðDt2ÞÞ ~wi
¼ h ~w� ~wi þ Dtruh ~w� ~wi þ Dth ~w� ~wiruT þ OðDt2Þ ¼ aI � bDtDþ OðDt2Þ; ð35Þ
where trðRÞ ¼ a=3 ¼ ða0 þ a1 þ a2Þ=3 is the SGS kinetic energy, and b ¼ �2ða0 � a2Þ. Both are also functions of the invariants
of B.



388 T.Y. Hou et al. / Journal of Computational Physics 232 (2013) 383–396
Remark 3. The expression for Reynolds stress (35) applies to various flows, as long as the cell problem (30) is frame
invariant. This is true for both homogeneous and channel flows. However, the coefficient b depends on the flow properties,
such as geometry. In Section 4, we will look into the specific expression of b.
Remark 4. Since r � ðaIÞ ¼ ra, the first term aI in (35) can be integrated into the pressure term in (22) with a modified
pressure p0 ¼ pþ a.
Lemma 1. The coefficient b in (35) is of order 1=Dt, i.e.
Fig. 1.
t ¼ 2.
b 
 1
Dt
:

This lemma can be verified using the linear relation between R and D in (35) and its proof can be found in [14].
Remark 5. Note that in the limit Dt ! 0, the Reynolds stress tensor should not reduce to a multiple of identity matrix, which
means that R must have an Oð1Þ effect on the LES model (22). By Lemma 1, b is of order 1=Dt, or
bDt 
 1:
Therefore, the term �bDtD does not vanish when taking the limit Dt ! 0.
In eddy-viscosity models, the stress tensor is assumed to be a linear functional of the strain rate tensor via the turbulent

eddy viscosity ms
~Rij ¼ Rij �
1
3

Rkkdij ¼ �msDij; ð36Þ
which is a first-order approximation, as is that in (35). We remark that such linear relation between the stress and strain rate
tensor is not meant to be valid pointwise, but should be understood in a statistical sense as ensemble average. To demon-
strate this, the channel flow is taken as an example. The computational settings in [18] are adopted. The streamwise ðxÞ and
spanwise ðzÞ computational periods are chosen to be 4p and 2p, and the half-width of the channel is 1, i.e., the computa-
tional domain is ½0;4p	 � ½�1;1	 � ½0;2p	. Fig. 1 shows the spatial distributions of sign of ~R11D11 on the channel center
y ¼ 0. Fig. 1(a) is the time average of the sign at each grid point, while Fig. 1(b) displays the snapshot of the sign on the cen-
tral plane at t ¼ 2. Hence, there does not exist a positive ms such that (36) holds pointwise, [see [14], for more discussion].

Furthermore, ms is assumed to be positive, which treats the ‘dissipation’ of kinetic energy at sub-grid scales similar to vis-
cous (molecular) dissipation. As a matter of fact, the Reynolds stress term reflects neither diffusion nor dissipation locally in
space, but reflects equivalent, ensemble averaged effects of turbulent fluctuations. Fig. 2 indicates that each element of eR and
its counterpart ofD do not always have the same signs in time. The eddy-viscosity model (36) could be improved by allowing
ms to change sign. Germano et al. [19] allowed subgrid-scale eddy viscosity ms to change sign dynamically based on a two-
level grid and demonstrated that it indeed gives improved results by incorporating the backscattering effect. Since the two-
level dynamic Smagorinsky model also introduces other errors such as interpolation error and its implementation is more
involved, we will restrict our discussions here to the Smagorinsky model by enforcing ms to be positive. In Section 4, we will
look for a simplified model with dissipative effect.
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Remark 6. In (35), we establish a linear constitutive relation between the Reynolds stress ~R and the mean strain rate D, up
to second order accuracy in time step Dt. The first term aI is not crucial since this can be incorporated as a modified
pressure. Hereafter, we write ~R as R for simplicity. The remaining question is how to determine the coefficient b, for which
we need to know the detailed structure of the symmetric tensor B. Constitutive relation necessarily involves material
property like viscosity.

Note that there exists a relation between B andD given in (34), so we can find the relation of the eigenvalues of B andD as
follows. In three dimensions, assume ki and ~ki ði ¼ 1;2;3Þ are the eigenvalues of D and B, respectively, while wi ði ¼ 1;2;3Þ
are the corresponding eigenfunctions. Then, up to the second order of Dt,
Bwi ¼ ðI � DtDÞwi ¼ ~kiwi; i ¼ 1;2;3;
which gives
Dwi ¼
1� ~ki

Dt
wi ¼ kiwi; i ¼ 1;2;3;
or
~ki ¼ 1� Dtki; i ¼ 1;2;3: ð37Þ
Further, the three invariants Ii; ði ¼ 1;2;3Þ of a matrix M can be expressed by the three eigenvalues ki; ði ¼ 1;2;3Þ as
follows
I1 ¼ trðMÞ ¼
X

i¼1;2;3

ki;

I2 ¼
1
2
ððtrðMÞÞ2 � trðMMÞÞ ¼ k1k2 þ k2k3 þ k3k1;

I3 ¼ detðMÞ ¼
Y

i¼1;2;3

ki:
Given the relations (37), we can express the invariants of B by those of D. Now, the coefficient b can be formulated approx-
imately as a function of the three principal invariants of D. For various flows, we can specify the characteristic structure of
the strain rate tensor D to obtain an explicit form of b. To validate our mathematical derivation of turbulent models, we first
take homogeneous turbulent flow as an example for its simple geometry and physics. Later on, we will address the more
realistic channel flow, chosen because of its relevance to a large variety of engineering applications and its ability to provide
direct insight into fundamental turbulence phenomena. We will investigate these two examples further in Section 4.



Table 1
Quantitative order of the velocity derivatives.

@u=@x @u=@y @u=@z @v=@x @v=@y @v=@z @w=@x @w=@y @w=@z


 10�2 
 102 
 10�2 
 10�4 
 10�1 
 10�4 
 10�2 
 102 
 10�1
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4. Examples: incompressible homogeneous turbulence and turbulent channel flow

4.1. Homogeneous incompressible turbulence

For homogeneous turbulence, the statistics are spatially homogeneous and isotropic. Hence, all entries in the averaged
strain tensor must be of the same order. Then, the full averaged D has to be considered:
D ¼
ux

1
2 ðuy þ vxÞ 1

2 ðuz þwxÞ
1
2 ðuy þ vxÞ vy

1
2 ðvz þwyÞ

1
2 ðuz þwxÞ 1

2 ðvz þwyÞ wz

2
64

3
75: ð38Þ
The first principal invariant of D is zero due to incompressibility, i.e.,
I1 ¼ trðDÞ ¼ rx � u ¼ 0:
The other two invariants can be calculated as follows:
I2 ¼
1
2
ðtrðDÞÞ2 � trðDDÞ
� �

¼ �1
2
Dk k2

F ; I3 ¼ detðDÞ: ð39Þ
where �k kF is the Frobenius norm, i.e., Dk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j Dij

�� ��2q
. It was reported in [20] that the determinant of D, i.e., I3, vanishes

in the statistical sense. However, for each snapshot of homogeneous turbulence, the determinant of D is not expected to van-
ish in general. Therefore, mathematically, the choice of b cannot be determined explicitly. From dimensional analysis, we
find that b has the dimension of ð�2I2Þ1=2 ¼ Dk kF or I1=3

3 ¼ ðdetðDÞÞ1=3. To find out the proper form of b, we assume that b
is a linear function of Dk kF or ðdetðDÞÞ1=3, i.e.,
bðI1; I2; I3Þ ¼ C2
1 Dk kF ;
or
bðI1; I2; I3Þ ¼ C2ðdetðDÞÞ1=3
;

where C1 and C2 are universal constants due to homogeneity. Using the minimization technique described in Section 4.2, it is
found that when choosing the norm Dk kF for b;C1 is noticeably uniform, while C2 shows a distinctly inhomogeneous pattern.
Although we cannot justify the use of the Frobenius norm mathematically, this is definitely an indicator of preference for the
Frobenius norm over the determinant from this numerical study [see [14], for more details].

Note that Lemma 1 shows that b 
 1=Dt. Then based on dimensional analysis and numerical verification above, we as-
sume that b is a linear function of Dk kF , i.e.,
bðI1; I2; I3Þ ¼ ðCsDÞ2 Dk kF=Dt;
where Cs is a universal constant and D is a typical length for the large-scale solutions. Finally, we recover the Smagorinsky
model for homogeneous turbulence, up to second-order accuracy of time step,
R ¼ �ðCsDÞ2 Dk kFD:
4.2. Channel flow

The argument for homogeneous turbulence also applies to the channel flow. This leads to the following modified Smago-
rinsky model:
R ¼ �bDtD:
We can simplify the Smagorinsky model by taking advantage of the structure of the strain rate D for channel flow. Specif-
ically, by an asymptotic boundary layer analysis, we find:
@u
@y
;
@w
@y
� @u

@x
;
@u
@z
;
@v
@y

;
@w
@x

;
@w
@z
� @v

@x
;
@v
@z
:

This scaling analysis of the velocity derivatives near the wall is consistent with results obtained by DNS (see Table 1). Given
the orders of the velocity derivatives, we neglect the small quantities in the entries of D. Thus, D can be approximated as
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The eigenvalues of the above approximate D are k1 ¼ 0; k2;3 ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

y þw2
y

q
. Thus it follows that the three principal invari-

ants are I1 ¼ I3 ¼ 0; I2 ¼ �ðu2
y þw2

yÞ=4. Now, the coefficients a and b are functionals of I2 or u2
y þw2

y only. Based on the same
arguments used for the homogeneous turbulence, we propose:
b ¼ D2

Dt
f ðyÞðu2

y þw2
yÞ

1=2
;

where f ðyÞ is a function of y or yþ due to inhomogeneity in the normal direction. Using DNS data, Fig. 3 shows that f ðyþÞ has
the shape close to the van Driest damping function
f ðyþÞ ¼ C2
mðð1� expð�yþ=AÞÞÞ2;
where Cm is a universal constant and A ¼ 25 is the van Driest constant [2]. The distance from the wall is defined as follows
yþ ¼ usðd� jyjÞ
m

; ð41Þ
where d is the channel half-width, us is the friction velocity, and m is the viscosity.
Finally, based on the multiscale analysis, we propose a simplified model for the Reynolds stress
R ¼ �ðCmDð1� expð�yþ=AÞÞÞ2ðu2
y þw2

yÞ
1=2D: ð42Þ
Remark 7. In the simplified model (42), the Reynolds stress reduces to 0 as the wall is approached due to van Driest
damping function [2,21,22]. This ensures that the non-slip boundary condition on walls is preserved.
The constant Cm can be determined by locally minimizing the Reynolds stress error term
min
Cm

Rþ CmDð1� expð�yþ=AÞÞðu2
y þw2

yÞ
1=4

� �2
D

����
����

F

:

This gives us
Cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R : D
p

Dð1� expð�yþ=AÞÞðu2
y þw2

yÞ
1=4 Dk kF

; ð43Þ
where R : D ¼
P

i;jRijDij. We perform a priori computation to determine Cm in (43) using the multiscale formulation in the
following algorithm.
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Algorithm 1. Determining the constant Cm
i. Run a DNS of (1) to get the full velocity field u�ðxi; tnÞ at each time step,
ii. Perform a reparameterization procedure, based on the Fourier expansion and explained in detail in Appendix A for the

channel flow, to obtain uðxi; tnÞ and wðxi; tn; xi=�; tn=�Þ,
iii. The Reynolds stress is
Rðx; tÞ ¼ hw�wi � 1
3

trðhw�wiÞI : ð44Þ
4.3. Verification of the Algorithm 1 and determination of constant Cm

To validate the Algorithm 1, we run a test on a classical eddy viscosity model–the Smagorinsky model with van Driest
damping:
R ¼ �ðCsDð1� expð�yþ=AÞÞÞ2 Dk kFD: ð45Þ
For the channel flow, the layer near the wall introduces a large amount of dissipation. The extra dissipation prevents the for-
mation of the eddies [23], thus eliminating turbulence from the beginning. Therefore, the van Driest damping is introduced
to reduce the Smagorinsky constant to 0 when approaching the walls. For more discussions, see[21,6]. Usually, Cs is taken to
be the same as that in homogeneous turbulence, which is 0:18.

On the other hand, using an iterative homogenization of large and small scale solutions dynamically and locally minimiz-
ing the Reynolds stress error, Cs can be determined from DNS data.

Fig. 4 plots the evolution of Cs. Note that Cs oscillates slightly around the value of 0:18, showing that Algorithm 1 deter-
mines Cs accurately. Fig. 5 indicates that the constant Cm, appeared in the simplified Smagorinsky model (42), is around
0:2074 – the value used in the following numerical simulation.

4.4. Numerical results of channel flow

The two most prominent structural features of the near-wall turbulence are illustrated in Fig. 6:

1. Streaks of low momentum fluid region of u0 ¼ uðx; y; zÞ � UðyÞ < 0, which have been lifted into the buffer region by the
vortices. Here, UðyÞ is mean velocity averaged in x and z directions:
UðyÞ ¼
Z

x;z
uðx; y; zÞdxdz:
2. Elongated streamwise vortices, identified by the region of negative k2 proposed by Jeong and Hussain [24].

Currently, it is well accepted that near wall streamwise vortices by Biot–Savart induction lift the low speed fluid to form
the streaks. On the other hand, the streamwise vortices are generated from the many normal-mode-stable streaks via a new
scenario, identified by the streak transient growth (STG) mechanism [for details, see [23]]. The phase averages of the vortices,
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their characteristics and their dynamical role have been discussed by [25]. Fig. 6 is quite consistent with these details of
near-wall structures. These and additional features of the flow are discussed in [14].

Fig. 7 shows the profile of the mean velocity normalized by the friction velocity us for Res ¼ 180. In the viscous sublayer
yþ < 10, we observe excellent agreement with the linear relation uþ ¼ yþ. In the log-region (yþ > 30; y=d < 0:3), the well
known logarithmic law of von Kármán [29]
uþ ¼ 1
j

ln yþ þ B
holds; where j ¼ 0:41 is the von Kármán constant and B is the additive constant. In the simplified Smagorinsky model, B is
5.5, the approximate value reported in the literature [26,18,30]. In the log-region, the profiles of mean streamwise velocity of
both the simplified model and DNS by Kim et al. [18] are lower than experimental results by Eckelmann [26].

The mean velocity uþ for Res ¼ 395 is shown in Fig. 8 and compared to the DNS results obtained by Moser et al. [27] and
the experimental results by Hussain and Reynolds [28] for Res ¼ 642 . In the viscous sublayer, the results of the simplified
model obey the linear relation accurately. The profile conforms to the log law with the constant B ¼ 5:5, while both DNS by
[27] and our simplified model give slightly larger values of uþ than the experiments by Hussain and Reynolds [28].

We have also performed detailed comparison of our simplified turbulent model with those obtained by DNS [18,27] and
experiments [28,26,31–34] for flow quantities such as the mean velocity profiles, r.m.s. velocity and vorticity fluctuations,
turbulent kinetic energy budget, etc. in turbulent channel flow. Our results are in good qualitative agreement with DNS
and experiments. These results are reported in [14].

5. Summary and discussion

We presented a new mathematical derivation of a closure relating the Reynolds stress to the mean strain rate for incom-
pressible turbulent flows. This derivation is based on a multiscale analysis of the Navier–Stokes equation. By using a system-
atic multiscale analysis and an iterative homogenization of the large and small scale solutions dynamically, we identified a
crucial structure of the Reynolds stress. As a consequence, we have established a linear constitutive relationship between the
Reynolds stress and the strain rate for incompressible turbulent flows to the leading order. Further consideration of specific
flows produced an explicit formula for the Reynolds stress in two examples: homogeneous turbulence and channel flow. The
Smagorinsky model for homogeneous turbulence has been recovered using this mathematical derivation. In addition, we
have developed a simplified Smagorinsky model for channel flow.

A numerical study has been performed to validate the simplified model for channel flow. For profiles of the mean velocity,
the results obtained by the simplified model are in good agreement with both experimental and DNS results at Res ¼ 180 and
Res ¼ 395. More numerical study of the simplified model is reported in [14], which shows good qualitative agreement with
DNS and experiments.

This procedure of mathematical derivation of models has been successfully applied to turbulent flow with a relatively
simple geometry. It leads to improved understanding of the physical mechanisms in the flow. Moreover, the analysis is quite
general and can be applied to different geometries, and for other types of flows such as compressible and non-Newtonian
flows.
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Appendix A. Reparameterization of initial velocity in a two-scale structure

We show how to reformulate any velocity vðx; y; zÞ, which may contain infinitely many scales, in a two-scale structure.
Assume v is periodic in x and z. The no-slip boundary condition is applied in y direction. Since this procedure can be done
direction by direction, we can reparameterize in the periodic direction x and z as was done in [12,13]. Thus, we only need to
deal with the non-periodic direction y. The key idea is to use the Sine transform, which not only has the same computational
complexity as that of the Fourier transform, but also incorporates the boundary condition naturally.

Let vðx; y; zÞ be any function, which is periodic in ðx; zÞ and zero on the boundaries in y, i.e. vðx;0; zÞ ¼ vðx;1; zÞ ¼ 0. De-
note x ¼ ðx; y; zÞ and k ¼ ðkx; ky; kzÞ. By applying the Fourier transform in the x and z directions and the sine transform in the
y-direction, we can express vðx; y; zÞ as follows:
vðx; y; zÞ ¼
X

k¼ðkx ;ky ;kzÞ
v̂k sinðpkyyÞ expð2piðkxxþ kzzÞÞ:
Choose 0 < � ¼ 1=E < 1, where E is an integer, and let
KE ¼ k; kj

�� �� 6 E
2
; j ¼ ðx; y; zÞ

	 

; K0E ¼ Z3 nKE: ðA:1Þ
By splitting the summation into two parts in the spectral space, the velocity can be rewritten as
v ¼ v ðlÞðxÞ þ v ðsÞðx; x=�Þ; ðA:2Þ
where
z ¼ x=� ¼ ðx=�; y=�; z=�Þ:
The two terms in (A.2) are the large-scale velocity and the small-scale velocity, respectively,
v ðlÞðxÞ ¼
X
k2KE

v̂ðkÞ sinðpkyyÞ expð2piðkxxþ kzzÞÞ;

v ðsÞðx; yÞ ¼
X
k2K0E

v̂ðkÞ sinðpkyyÞ expð2piðkxxþ kzzÞÞ:
By rewriting each k in the following form
k ¼ EkðsÞ þ kðlÞ;
where
kðsÞ ¼ ðkðsÞx ; k
ðsÞ
y ; k

ðsÞ
z Þ; kðlÞ ¼ ðkðlÞx ; k

ðlÞ
y ; k

ðlÞ
z Þ;
we have
v ðsÞ ¼
X
k2K0E

v̂ðkÞ sin pkyy
� �

exp 2piðkxxþ kzzÞð Þ

¼
X

EkðsÞþkðlÞ2K0E

v̂ðEkðsÞ þ kðlÞÞ sin pðEkðsÞy þ kðlÞy Þy
� �

� exp 2piððEkðsÞx þ kðlÞx Þxþ ðEkðsÞz þ kðlÞz ÞzÞ
� �

¼
X

kðsÞ–0

X
kðlÞ2KE

v̂ðEkðsÞ þ kðlÞÞ sin pkðlÞy y
� �

exp 2piðkðlÞx xþ kðlÞz zÞ
� �0

@
1
A� cos pkðsÞy ðEyÞ

� �
exp 2piðkðsÞx Exþ kðsÞz EzÞ

� �

þ
X

kðsÞ–0

X
kðlÞ2KE

v̂ðEkðsÞ þ kðlÞÞ cos pkðlÞy y
� �

exp 2piðkðlÞx xþ kðlÞz zÞ
� �0

@
1
A� sin pkðsÞy ðEyÞ

� �
exp 2piðkðsÞx Exþ kðsÞz EzÞ

� �

¼
X

kðsÞ–0

v̂1ðkðsÞ; xÞ cos pkðsÞy ðy=�Þ
� �

þ v̂2ðkðsÞ; xÞ sin pkðsÞy ðy=�Þ
� �� �

� exp 2piðkðsÞx x=�þ kðsÞz z=�Þ
� �

¼ v ðsÞ x;
x
�

� �
;
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where v̂1ðkðsÞ; xÞ and v̂2ðkðsÞ; xÞ, which are defined in the physical space, are the results of the inverse transform of the large
scale,
v̂1ðkðsÞ; xÞ ¼
X

kðlÞ2KE

v̂ðEkðsÞ þ kðlÞÞ sin pkðlÞy y
� �

;

v̂2ðkðsÞ; xÞ ¼
X

kðlÞ2KE

v̂ðEkðsÞ þ kðlÞÞ cos pkðlÞy y
� �

:

Remark 8. Note that v ðsÞðx; zÞ is a periodic function in z with mean zero.
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