
                      

JOURNAL OF COMPUTATIONAL PHYSICS143,628–664 (1998)
ARTICLE NO. CP985977

Removing the Stiffness of Curvature
in Computing 3-D Filaments

Thomas Y. Hou,∗,1 Isaac Klapper,†,2 and Helen Si‡
∗Applied Mathematics, California Institute of Technology, Pasadena, California 91125;†Department

of Mathematical Sciences, Montana State University, Bozeman, Montana 59717; and‡Applied
Mathematics, California Institute of Technology, Pasadena, California 91125

E-mail:∗hou@ama.caltech.edu,†klapper@math.montana.edu, and‡si@ama.caltech.edu

Received September 23, 1997; revised March 10, 1998

In this paper, we present a new formulation for computing the motion of a curvature-
driven 3-D filament. This new numerical method has none of the high order time
step stability constraints that are usually associated with curvature regularization.
This result generalizes the previous work of Houet al. (1994) for 2-D fluid interfaces
with surface tension. Applications to 2-D vortex sheets, 3-D motion by curvature,
the Kirchhoff rod model, and nearly anti-parallel vortex filaments will be presented
to demonstrate the robustness of the method.c© 1998 Academic Press

1. INTRODUCTION

In this paper, we present a new formulation for computing the motion of a curvature-
driven 3-D filament. This new numerical method has none of the high order time step
stability constraints that are usually associated with curvature regularization. This result
generalizes the previous work of Houet al. [7] for 2-D fluid interfaces with surface tension.
Applications to 2-D vortex sheets, 3-D motion by curvature, the Kirchhoff rod model and
anti-parallel vortex filaments will be presented to demonstrate the robustness of the method.

Accurate numerical computation of the evolution of a free interface is at the heart of a large
number of scientific and engineering problems. Examples include the evolution of a phase
boundary in solidification, the breakup of drops in sprays, multi-fluid interfaces, and the
motion of cells in the blood. In many applications, local curvature (or surface tension) has an
important effect on the dynamics of interfaces. On the other hand, curvature also introduces
new difficulties at the numerical level since curvature contains high order spatial derivatives
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in the equations of motion for the interface. If an explicit method is used, these terms
induce strong stability constraints on the time step. These stability constraints are generally
time dependent and become more severe by the differential clustering of points along the
interface. We refer to this time stability constraint as stiffness. This stiffness is especially
difficult to remove for fluid interfaces with surface tension. Surface tension introduces
stiffness to the evolution equation in a nonlinear and nonlocal manner. A straightforward
implicit discretization leads to a nonlinear and nonlocal system which is difficult to invert
in general.

Houet al. [7] proposed to remove the stiffness of surface tension for 2-D fluid interfaces by
using the small scale decomposition technique and reformulating the problem in the tangent
angle and arclength metric variables. This is the so-calledθ − L frame (see, e.g., [5]). This
reformulation greatly improves the stability constraint. It allows us to perform well-resolved
calculations for large times. Many interfacial problems that were previously not amenable
are now solvable using this method.

However, thisθ − L frame cannot be generalized directly to 3-D filaments since the
tangent angle is not well defined. In this paper, we propose to use curvatureκ as the new
dynamical variable when computing 2-D and 3-D free interfaces with curvature regulariza-
tion. We found that for 3-D filaments, the natural curvature and torsion variables are not
suitable for computational purpose; see also [10]. The reason is that the torsion variable
may be singular whenever curvature is zero. This is purely an artificial parameterization
singularity. To overcome this difficulty, we propose to use generalized curvatures and the
rate of rotation as the dynamical variables,κ1, κ2, ω. These variables can be related to the
natural curvatureκ and torsionτ variables but also have a physical interpretation in terms of
the curvature and twist of a thin nonisotropic rod. As in 2-D, the total arclength,L(t), is also
used as another dynamical variable. Together we obtain a new set of evolution equations for
the filament. We show that by using this reformulation, we can easily remove the stiffness
associated with curvature regularization.

To demonstrate the robustness of the method, we apply our method to a number of in-
teresting applications. Our numerical study for vortex sheets with surface tension indicates
that our new formulation shares the same stability property as theθ − L formulation in-
troduced in [7]. Our numerical experiments also demonstrate convincingly that this idea
works equally well for 3-D filaments calculations, such as the motion by curvature, the
Kirchhoff rod model, and anti-parallel vortex filaments. The Kirchhoff rod model has re-
ceived increasing interest in recent years because it can be used as a model to study the
dynamics of proteins and supercoiled DNA [17]. Our numerical calculations reveal some
interesting equilibrium states for the Kirchhoff rod model. With our new formulation, we
can now afford to perform well-resolved and long-time computations for problems in com-
putational geometry and computational biology. The dynamics of vortex filaments has been
studied analytically and numerically over the past 30 years (see [13] for references). It has
important applications involving secondary three-dimensional instability in mixing layers
and boundary layers in high Reynolds number flows. Here we apply our method to study
the interaction of anti-parallel vortex filament pair using a simplified model proposed by
Klein et al. [13]. Our results compare well with those obtained in [13]. Our approach can
also be applied to the case when the nonlocal term becomes important. Generalization of
this idea to 3-D free surfaces has also been carried out. This will be reported elsewhere.

The organization of the rest of the paper is as follows. In Section 2, we derive theκ − L
formulation for two-dimensional interfaces, with an application to vortex sheets with surface
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tension. Section 3 is devoted to 3-D filaments using theκ1 − κ2 − ω − L formulation. As
an example of illustration, we consider the motion of a 3-D curve by its local curvature. We
then apply this idea to a couple more interesting applications, the Kirchhoff rod model and
anti-parallel vortex filaments in Sections 4 and 5. We discuss some practical implementation
issues in Section 6. Finally, in Section 7, we present some numerical results which include
vortex sheets with surface tension, motion of a 3-D curve by curvature, the Kirchhoff rod
model, and anti-parallel vortex filaments.

2. THE κ− L FORMULATION FOR 2-D INTERFACES

In this section, we derive theκ − L method for 2-D interfaces. We first motivate the
formulation for the simple model problem of motion by curvature. Then we derive the
formulation for fluid interfaces and indicate how theκ − L formulation can be used to
remove the stiffness of surface tension for fluid interface problems.

2.1. Motion by Curvature

We motivate theκ − L approach by considering the motion by curvature in 2-D. Let a
curve0 be given by

X(α, t) = (x(α, t), y(α, t)), α ∈ [0, 2π], (1)

whereα parameterizes the curve. ThenX evolves by

Xt = Un, U = κ, (2)

wheren = (−ys, xs) is the right-handed normal andκ = xsyss−xssys = (xα yαα −xαα yα)/s3
α

is the signed curvature. Heres is arclength, and thes andα derivatives can be exchanged
through the relation∂/∂s= (1/sα)(∂/∂α), wheresα = √

x2
α + y2

α. We assumeX is 2π-
periodic inα. If we discretize Eq. (2) using an explicit method, this will give a time-step
stability constraint in the form of1t ≤ Ch̄(t)2, whereh̄(t) is the minimum grid spacing
at time t . An implicit integration method, like the backward Euler or Crank–Nicholson
scheme, would give a more stable discretization. But since curvature is a nonlinear function
of the interface position, this would give rise to a nonlinear system for the implicit solution
at the next time step.

The κ − L approach, on the other hand, makes the application of an implicit method
much easier. It consists of two steps:

(A) Formulate the evolution using theκ andsα as the new dynamical variables.
(B) Introduce a change of frame in the parameterization of0 so thatsα is independent

of α and depends only on time. Thus, the equation forsα becomes an ODE forL, the length
of the curve0. This reformulation of interface motion is motivated by theθ − L frame in
[5] (also see [7]).

We notice that the shape of the curve is determined solely by its normal velocityU .
A tangential motion only results in a change in frame for the parameterization of the curve.
Therefore, we can add a tangential motion to the dynamics without changing the interface’s
shape, i.e.,

Xt = Un + Ts,
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wheres= (xs, ys) is the unit tangent vector,T is the added tangential velocity which will be
determined later. To derive the evolution equations forκ andsα, we use the Frènet equations,
∂ss= κn and∂sn = −κs. The evolution equations forsα andκ are given by

sαt = Tα − Uκsα (3)

κt = 1

sα

(
Uα

sα

)
α

+ Tκα

sα

+ Uκ2. (4)

Given sα andκ, the position(x(α, t), y(α, t)) can be reconstructed (see Section 5). For
motion by curvature, we haveU = κ. The evolution in terms ofκ andsα is

sαt = Tα − κ2sα (5)

κt = 1

sα

(
κα

sα

)
α

+ Tκα

sα

+ κ3. (6)

For an explicit integration method, the stability constraint from the diffusion term is of the
form

1t < C · (s̄αh)2, (7)

wheres̄α = minαsα, andh is the initial grid spacing inα. Therefore, the stability constraint
is determined by the minimum grid spacing (i.e.,hsα ≈ 1s), which is time dependent and,
for motion by curvature, is always decreasing.

In the reformulated system consisting of Eqs. (5) and (6), an implicit discretization
becomes much easier since the highest order terms are linear. The discretization can be
simplified further ifsα does not depend onα. This can be easily accomplished by choosing
a special tangential velocityT to forcesα equal to its mean,

sα = 1

2π

∫ 2π

0
sα′(α′, t) dα′ = 1

2π
L(t), (8)

whereL is the length of the curve0. It follows from Eq. (5) thatT satisfies

Tα − κ2sα = 1

2π

∫ 2π

0

(
Tα′ − κ2sα′

)
dα′,

which implies

T(α, t) = T(0, t) + L

2π

∫ α

0
κ2 dα′ − αL

(2π)2

∫ 2π

0
κ2 dα′. (9)

HereT(0, t) is simply an arbitrary change of frame which can be taken to be 0. Now since
sα just depends on timet , but not onα, the PDE forsα is reduced to an ODE forL, andL
andκ evolve by

Lt = − L

2π

∫ 2π

0
κ2 dα′ (10)

κt =
(

2π

L

)2

καα + 2π

L
Tκα + κ3. (11)
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Notice that because the highest order term has no spatially varying prefactor, an implicit
method can be easily applied to the PDE forκ. It is sufficient to treat the leading order terms
implicitly and discretize the lower order terms explicitly. Also, because the equation forL
is free of stiffness, we can use an explicit method such as the Adams–Bashforth method.
Then at every time step,L can be updated explicitly, and the implicit solutionκ at the new
time step can be obtained explicitly by using the Fourier transform.

2.2. The Formulation for 2-D Fluid Interfaces

In the next two subsections, we will show how to generalize the idea presented in the
previous subsection to fluid interface problems. The fluid interface problem is more difficult
than motion by curvature because it involves nonlocal singular integral operators. To derive
an efficient implicit discretization, we also use the so-called “small scale decomposition”
technique which separates the leading order contribution of a singular integral operator from
the lower order contributions. Since stiffness enters only at small scales, it is enough to treat
the leading order operators implicitly. For fluid interfaces, these leading order intergal
operators are the Hilbert transform and its variants. They can be diagonalized using the
Fourier transform. Thus we obtain an efficient implicit discretization at the same cost as an
explicit method.

We consider the motion of an interface0 given byX = (x(α), y(α)), separating two
inviscid, incompressible, and irrotational fluids. The density is assumed to be constant on
each side of0. The velocity on either side of0 is evolved according to the incompressible
Euler equation

u j t + (u j · ∇)u j = − 1

ρ
∇(pj + ρ j gy), ∇ · u j = 0. (12)

Here j = 1 for the fluid below0 and j = 2 for the fluid above,pj is the pressure,ρ j is the
density, andgy is the gravitational potential. The boundary conditions are

(i ) [u]0 · n = 0, the kinematic boundary condition, (13)

(ii) [ p]0 = τκ, the dynamic boundary condition, (14)

(iii) u j (x, y) → (±V∞, 0) as y→ ±∞, the far field boundary condition, (15)

where [·] denotes the jump taken from above to below the interface. The velocity has a
tangential discontinuity at0. The velocity away from0 has the integral representation (see,
e.g., [2]),

(u(x, y), v(x, y)) = 1

2π

∫
γ (α′)

(−(y − y(α′)), x − x(α′))
(x − x(α′))2 + (y − y(α′))2

dα′, (16)

whereγ is called the (unnormalized) vortex sheet strength. The true vortex sheet strength
(i.e., the tangential velocity jump) is given by

γ̃ = γ (α)

sα

= [u]0 · s. (17)

While there is a discontinuity in the tangential component of the velocity at0, the normal
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component,U (α), is continuous and given by (16) as

U (α) = W · n, (18)

where

W(α) = 1

2π
P.V.

∫
γ (α′)

(−(y(α) − y(α′)), x(α) − x(α′))
(x(α) − x(α′))2 + (y(α) − y(α′))2

dα′. (19)

The P.V. in front of the integral denotes the principal value integral. This integral is called
the Birkhoff–Rott integral. Using the representation (16) for the velocity, Euler’s equation
at the interface, and the Laplace–Young condition, the equations of motion for the interface
are

Xt = Un + Ts (20)

γt − ∂α((T − W · s)γ /sα) = − 2Aρ

(
sαWt · s+ 1

8
∂α(γ /sα)2 + gyα

− (T − W · s)Wα · s/sα

)
+ Sκα. (21)

Here Aρ = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood ratio andS is a rescaled surface tension
parameter (see [2]). In the special case ofAρ = 0, i.e.,ρ1 = ρ2, the evolution equation is
greatly simplified. It is reduced to a vortex sheet equation (see [16]).

2.3. The Equations of Motion Reposed

In the previous subsection, boundary integral formulation is given for the motion of
a vortex sheet in two-dimensional, inviscid fluid. Numerical stiffness arises through the
presence of high order terms (i.e., high spatial derivatives) in the evolution. In this subsection,
we reformulate the equations of motion using the small scale decomposition (SSD) for
inertial flows. The small scale decomposition, which identifies and separates the dominant
terms at small spatial scales, was first presented in [7]. The key idea is to identify the leading
order contribution of certain singular operators at small spatial scales. Recall that the normal
velocityU is given by Eqs. (18) and (19). Let the complex position of the interface be given
by z(α, t) = x(α, t) + iy(α, t); thenU can be expressed as

U (α, t) = − 1

sα

Im

{
zα

2πi
P.V.

∫ +∞

−∞

γ (α′, t)

z(α, t) − z(α′, t)
dα′

}
. (22)

Note that the kernel in the Birkhoff–Rott integral can be decomposed into two terms:

1

z(α, t) − z(α′, t)
= 1

zα(α − α′)
+

[
1

z(α, t) − z(α′, t)
− 1

zα(α − α′)

]
. (23)

The most significant contribution comes from the first term on the right-hand side, since the
bracketed term is analytic and corresponds to a smoothing operator. Therefore, we obtain
the leading order behavior ofU at small scales as

U (α, t) ∼ 1

2sα
H[γ ](α, t), (24)
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whereH is the Hilbert transform defined as

(H f )(α) = 1

π

∫ +∞

−∞

f (α′)
α − α′ dα′. (25)

Its Fourier transform is given by

(Ĥ f )(k) = −i (sgn(k)) f̂ (k). (26)

The notationf ∼ g means that the difference betweenf andg is smoother thanf andg.
In terms of the new dynamic variables,sα, κ, andγ , the equations of motion for the inertial
vortex sheets are given by Eqs. (3), (4), and (21). Observe that the dominant term in Eq. (21)
for γt is Sκα at small scales. Now, substituting Eq. (24) into Eq. (4) gives

κt = 1

sα

(
1

sα

(
1

2sα
H[γ ]

)
α

)
α

+ P (27)

γt = Sκα + Q, (28)

whereP andQ represent lower order terms at small spatial scales. This is thesmall scale
decomposition. Ifsα is given, the dominant small scale term is linear inκ andγ , but nonlocal
by virtue of the Hilbert transform. An implicit discretization can be obtained by discretizing
the leading order terms implicitly, but treating the lower order terms explicitly. However, if
sα is independent ofα, the implicit solution can be obtained easily by fast Fourier transform,
just as in the case of motion by curvature. By choosing a particular tangential velocity,sα

can indeed be independent ofα.

2.4. Theκ − L Formulation

As we mentioned above, the tangential velocityT may be introduced into the dynamics
without changing the shape of the interface. We can choose the particular expression forT
so thatsα does not depend onα in its evolution. As in the case of motion by curvature,sα

is set to be equal to its mean, which is

sα = 1

2π

∫ 2π

0
sα′(α′, t) dα′ = 1

2π
L(t), (29)

whereL is the length of the interface. It follows from Eq. (3) thatT satisfies the equation

Tα − Uκsα = 1

2π

∫ 2π

0
(Tα′ − Uκsα′) dα′

⇒ T(α, t) = T(0, t) + L

2π

∫ α

0
Uκ dα′ − αL

(2π)2

∫ 2π

0
Uκ dα′. (30)

T(0, t) just gives an arbitrary change of frame and, for simplicity, can be taken to be 0.
Thus, the expression forT is determined entirely byL , κ andU . Assume that Eq. (29) is
satisfied initially, then Eq. (30) forT ensures that the constraint (29) is satisfied for all time.
Now, the evolution of the interface is reformulated in terms ofL andκ by

Lt = − L

2π

∫ 2π

0
κU dα′ (31)
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κt =
(

2π

L

)2

Uαα + 2π

L
Tκα + κ2U. (32)

GivenU , Eqs. (30), (31), and (32) give a complete formulation of the evolution problem.
The small scale decomposition for the inertial vortex sheets in theκ − L formulation is

now given as

κt = 1

2

(
2π

L

)3

H[γαα] + P (33)

γt = Sκα + Q, (34)

whereP andQ denote the lower order terms, which do not contribute to the stiffness, and
will be treated explicitly. In Fourier space, these equations are

κ̂t (k) = +i
k

2

(
2π

L

)2

|k|γ̂ (k) + P̂(k) (35)

γ̂t (k) = +i Skκ̂(k) + Q̂(k), (36)

whereP̂ and Q̂ are the Fourier transforms ofP andQ in Eqs. (33) and (34), andi is the
imaginary unit. Now the implicit integration scheme can be easily applied together with
an explicit discretization of Eq. (31). Since the lower order terms,P and Q, are treated
explicitly, the implicit solution forκ andγ can be inverted explicitly. This gives an efficient
implicit discretization of the fluid interface problem at the same cost as an explicit method.
The numerical method in our computation will be discussed in Subsection 6.1.

3. THE κ1 − κ2 − ω − L FORMULATION FOR 3-D FILAMENTS

In this section, we generalize theκ − L method to 3-D filaments. The formulation is
more subtle for 3-D filaments since there are two normal vectors (e.g., the normal and the
bi-normal vectors). It turns out that the choice of orthonormal basis has a significant impact
on the computational method. In particular, the conventional Frènet frame for 3-D filaments
is not suitable for computational purpose. It can give rise to an artificial parametrization
singularity when curvature vanishes. To overcome this difficulty, we use a more general
orthonormal basis which corresponds to theκ1 −κ2 −ω− L formulation for 3-D filaments.

Let us consider a space curveX(s, t): [0, L] → R3 where s is arc length andL is
the total length of the curve. Alternatively we may parameterizeX by a material coor-
dinateα, i.e.,X(α, t): [0, 2π ] → R3. The unit tangent vector along the curveX is given by
T(s, t) = (d/ds)X(s, t). A local description of the curve is provided by an appropriate set
of coordinate axes. One such set is the Frènet triad consisting of the unit vectorsT, N, and
B, the tangent, normal, and binormal vectors respectively. This orthonormal triad satisfies
the well-known Frènet equationsTs = κN, Ns = −κT + τB, Bs = −τN. κ is the curvature
andτ is the torsion. We can now write the evolution equation for the curve in the Frènet
frame,

Xt (α, t) = Ū N + V̄B + W̄T, (37)

whereŪ , V̄, andW̄ are the normal, binormal, and tangential velocity components, respec-
tively, each of which can depend on bothα andt . In the 2-D case, we usesα andκ as the
new dynamical variables. Naturally, we would like to usesα, κ, andτ as the new dynamical
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variables for 3-D filaments. Using the Frènet equations, we can derive the evolution of the
curve0 in terms ofsα, κ, andτ as

sαt = W̄α − Ūκsα (38)

κt = 1

sα

(
Ūα

sα

)
α

− 2τV̄α + τα V̄ − W̄κα

sα

− Ū (κ2 − τ 2) (39)

τt = 1

sα

(( V̄α

sα

)
α

κsα

)
α

+ 1

sα

(
2Ūατ + Ūτα − V̄τ 2sα

κsα

)
α

+ κ V̄α + W̄τα

sα

+ 2κŪτ. (40)

Consider the natural generalization of motion of a closed curve by curvature, namely,
Ū = κ, V̄ = 0 in Eq. (37).W̄ can be added to the motion of equations without altering the
shape of the curve. Thus Eqs. (38), (39), and (40) become

sαt = W̄α − κ2sα (41)

κt = 1

sα

(
κα

sα

)
α

+ W̄κα

sα

− κ(κ2 − τ 2) (42)

τt = 1

sα

(
τα

sα

)
α

+ 2

(
κατ

κsα

)
α

+ W̄τα

sα

+ 2κ2τ. (43)

Now, if sα is given, the highest order terms in the equations forκ andτ are linear inκ andτ ,
respectively. Thus, an implicit integration method can be applied. Similar to the 2-D case,
we can choose a special expression forW̄ to enforcesα to be independent ofα. Then the
highest order terms in Eqs. (42) and (43) do not have spatially varying prefactors. So the
implicit discretization ofκ andτ can be updated explicitly. The stability constraint has the
form

max
α

(
2|κα|
κsα

,
| W̄|
sα

)
1t < h. (44)

Note that the stability constraint depends on curvature. Ifκ becomes very small, we will
get very strong stability constraints in the numerical computation. In fact, in the Frènet
triad,N, B, andτ are only defined when the curvature does not vanish. In generalN varies
discontinuously through points whereκ = 0 even for smooth curves. This would lead to
the blowup ofτ sinceτ depends onNs. This discontinuity inN through points whereκ
vanishes is artificial and is due to a poor choice of coordinate frame. For this reason, the
Frénet frame is not a good choice for computational purposes.

Instead we propose to use a more general orthogonal basisT, N1, N2 = T × N1 in our
numerical calculation of 3-D filaments. The Frènet system is replaced by

d

ds
T = κ1N1 − κ2N2

d

ds
N1 = −κ1T + ωN2 (45)

d

ds
N2 = κ2T − ωN1,

whereκ1 = κN · N1 andκ2 = −κN · N2.
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There are natural relations betweenκ1, κ2, ω andκ, τ :

κ =
√

κ2
1 + κ2

2 (46)

τ = ω + κ2κ1s − κ1κ2s

κ
. (47)

If we make the special choice ofω = τ , then the new orthonormal basis is reduced to the
Frènet triad. In this case, we haveκ1 = κ, κ2 = 0.

The unit tangent vectorT(s) = (d/ds)X(s) is determined once the curveX(s) is known.
Then we choose vectorsN1(0),N2(0)such that(T(0),N1(0),N2(0))are a set of orthonormal
vectors. By choosing a smooth function for the rate of rotation,ω, and using the relations
κ1 = dT

ds · N1, κ2 = − dT
ds · N2, we integrate the last two equations in (45) along the arc length,

s, to determineN1(s) and N2(s). Notice that the first equation in (45) is automatically
satisfied since we have used it to constructκ1 and κ2. Also, the orthogonality of these
three vectorsT(s), N1(s), andN2(s) can be shown by using Eqs. (45). Thus we obtain
a smooth orthonormal basis set(T(s), N1(s), N2(s)). Clearly, this orthonormal basis is
smooth as long as the curvature is smooth, even though the curvature may vanish at some
points.

Now we rewrite the evolution equation for the curve in our newly chosen orthonormal
basis(T, N1, N2):

Xt (α, t) = UN1 + VN2 + WT.

Since we have relationships betweenN, B andN1, N2, namely

κN = κ1N1 − κ2N2

κB = κ2N1 + κ1N2,
(48)

it is straightforward to determine the relationships betweenU, V, W andŪ , V̄, W̄.
The fact thatX has continuous second order derivatives in space and time implies that

the cross derivatives ofα and t commute. To carry out the computations associated with
this relationship it is convenient to write the time derivatives of the basisT, N1, N2 as

Tt = 3F × T, N1t = 3F × N1, N2t = 3F × N2, (49)

where3F (α, t) = λ1N1 + λ2N2 + λ3T is the rotation vector whose componentsλ1, λ2, λ3

are related toU, V, W and henceκ1, κ2, ω,

λ1 = −Vα

sα

− Uω + Wκ2

λ2 = Uα

sα

− Vω + Wκ1,

(50)

andλ3 will be determined later. It can be shown (also see [8]) that the equations of motion
for sα, κ1, κ2, ω in terms ofU, V, W take the form

sαt = Wα + (Vκ2 − Uκ1)sα (51)
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κ1t = 1

sα

(
Uα

sα

)
α

− 2ωVα + ωαV − Wκ1α

sα

− Uω2

+ κ1(Uκ1 − Vκ2) + ωκ2W − λ3κ2 (52)

κ2t = − 1

sα

(
Vα

sα

)
α

− 2ωUα + ωαU − Wκ2α

sα

+ Vω2

+ κ2(Uκ1 − Vκ2) − ωκ1W − λ3κ1 (53)

ωt = κ1Vα + κ2Uα − ωWα

sα

+ 2ω(Uκ1 − Vκ2) + λ3α

sα

. (54)

As a final remark, note that we now have four functionss, κ1, κ2, andω to describe a curve
in R3. ω measures the twist rate of theN1–N2 plane aroundT, and may (e.g., the Kirchhoff
rod model) or may not (e.g., motion by curvature) have physical significance.

As in the 2-D case, we can choose a tangential velocityW to forcesα to be everywhere
equal to its mean,

sα = 1

2π

∫ 2π

0
sα′(α′, t) dα′ = 1

2π
L(t), (55)

whereL is the length of the curve0. Specifically

Wα − (Uκ1 − Vκ2)sα = 1

2π

∫ 2π

0
(Wα′ − (Uκ1 − Vκ2))sα′ dα′

⇒ W(α, t) = L

2π

∫ α

0
(Uκ1 − Vκ2) dα − αL

(2π)2

∫ 2π

0
(Uκ1 − Vκ2) dα′. (56)

Now sincesα depends only ont and notα, the PDE forsα reduces to an ODE forL.
Equations forL andκ1, κ2, ω then reduce to

Lt = − L

2π

∫ 2π

0
(Uκ1 − Vκ2) dα′ (57)

κ1t =
(

2π

L

)2

Uαα − 2π

L
(2ωVα + ωαV − Wκ1α) − Uω3

+ κ1(Uκ1 − Vκ2) + ωκ2W − λ3κ2 (58)

κ2t = −
(

2π

L

)2

Vαα − 2π

L
(2ωUα + ωαU − Wκ2α) + Vω2

+ κ2(Uκ1 − Vκ2) − ωκ1W − λ3κ1 (59)

ωt = 2π

L
(κ1Vα + κ2Uα − ωWα) + 2ω(Uκ1 − Vκ2) + 2π

L
λ3α. (60)

We now show that for motion by curvature this reformulation leads to efficient implicit
discretization. To obtain the velocity in this new basis, we project the original equation
Xt = κN into the new orthonormal basis. Using the relations betweenN andN1, N2, we
haveU = κ1 andV = −κ2. Simply substituteU, V into Eqs. (57)–(60) and takeλ3 to be 0
(see Subsection 6.3); we then derive the formulation in terms ofκ1, κ2, ω andL as

Lt = − L

2π

∫ 2π

0

(
κ2

1 + κ2
2

)
dα′ (61)
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κ1t =
(

2π

L

)2

κ1αα + 2π

L
(2ωκ2α + ωακ2 + Wκ1α)

+ κ1
(
κ2

1 + κ2
2 − ω2

) + ωκ2W (62)

κ2t =
(

2π

L

)2

κ2αα − 2π

L
(2ωκ1α − ωακ1 + Wκ2α)

+ κ2
(
κ2

1 + κ2
2 − ω2

) − ωκ1W (63)

ωt = 2π

L
(κ2κ1α − κ1κ2α). (64)

As in the 2-D case,L andω can be updated using an explicit integration method. The highest
order terms in Eqs. (58) and (59) do not have spatially varying prefactors. We can invert the
implicit discretization for the diffusion terms in theκ1 andκ2 equations efficiently.

4. APPLICATION TO THE KIRCHHOFF ROD MODEL

We now apply our method to the physically interesting problem of the Kirchhoff rod.
The study of elastic rods is the subject of continued scientific and mathematical interest.
Applications of the dynamics of rods and filaments include the dynamics of proteins and
supercoiled DNA [17], writhing instability in fibers and cables [19], three-dimensional
scroll waves [18], magnetic flux tubes, and the formation of sunspots [14], etc. Under
some simplifying assumptions, the motion of an elastic rod filament can be well described
by a one-dimensional system of equations. One such set of equations, the Kirchhoff rod
equations [9], can be constructed as follows [6]. The rod is represented by its center line
X(s, t): [0, L] → R3 and twist (defined below)ω(s, t): [0, L] → R. Heres is arc length and
L is the length of the rod. For simplicity we assume that the cross section of the filament is
always circular with constant radius in space. Define a reference ribbon by a pair of curves
(X, X + εN1) whereN1(s, t): [0, L] → R3 is a unit vector field such thatN1 · T = 0 (T is
the unit tangent vector along the curveX) andε is the width of the ribbon. The twistω
(with respect to the reference ribbon (X, X + εN1)) is defined to be the rotation rate ofN1

aroundT moving alongX; i.e., ω(s, t) = (N1(s, t) × (d/ds)N1(s, t)) · T. The Frènet triad
is a particular choice of ribbon which corresponds to choosingN1 = N. Recall thatN has
the same direction as(d/ds)T(s, t). More typicallyN1 might point in the direction of one
of the principle axes of the cross section of the rod. The equations of motion can be writ-
ten as

d2

dt2
X = d

ds
F − η1

d

dt
X + g (65)

d

ds
M = F × T + θ̈ |xT + W1 + η2(θ̇ |x + W2) + H (66)

M = 0−1κB + ωT, (67)

whereg contains the other external forces such as gravity, contact force, etc.0 andηi

measure respectively the relative energetic importance of twist and flexure and the relative
time scales of viscosity and inertia. The rod shearing termsW1 andW2 are set to be 0 and
0 to be 1.
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We rewrite the velocity ofX in terms of the ribbon basis as

Xt (α, t) = UN1 + VN2 + WT,

whereN2 = T × N1. To compute the main forceF, we decompose it into the local orthonor-
mal ribbon basis:

F = F1N1 + F2N2 + FTT.

The normal and bi-normal components ofF can be determined immediately from Eqs. (66)
and(67), that is,F1 = −κ1s andF2 = κ2s.The determinationof thetangential forceFT = F · T
is more subtle. We will derive it later. Using Eqs. (45), (49), (65), (66), and (67) we obtain
the evolution equations forκ1, κ2, ω, andsα as

sαt = Wα − (Uκ1 − Vκ2)sα (68)

κ1t = 1

sα

(
Uα

sα

)
α

− 2ωVα + ωαV − Wκ1α

sα

− Uω2

+ κ1(Uκ1 − Vκ2) + ωκ2W − λ2κ2 (69)

Ut = − 1

sα

(
κ1α

sα

)
α

− ωκ2α

sα

+ FTκ1 − Wλ2 + Vλ3 − η1U + g1 (70)

κ2t = − 1

sα

(
Vα

sα

)
α

− 2ωUα + ωαU − Wκ2α

sα

+ Vω2

+ κ2(Uκ1 − Vκ2) − ωκ1W − λ2κ1 (71)

Vt = 1

sα

(
κ2α

sα

)
α

− ωκ1α

sα

− FTκ2 + Wλ1 − Uλ3 − η1V + g2 (72)

ωt = λ3α

sα

+ κ1Vα + κ2Uα

sα

+ 2ω(Uκ1 − Vκ2) − ω
Wα

sα

(73)

λ3t = ωα

sα

− η2
λ3

sα

, (74)

whereg1 = g · N1 andg2 = g · N2.
Equation (74) is derived from Eqs. (66) and (67). To see this, we observe that Eqs. (66)

and (67) give

ωα = θ̈ |Xsα + η2θ̇ |X, (75)

whereθ̇ |x refers toθ̇ at a fixed filament positionX (see [11]) (Here a dot denotes∂/∂t). If
we holdX steady and allow twisting, we haveN1t = λ3(α, t)T × N1. Over an element of
the filament fromX(α) to X(α + 1α),

d

dt
1θ = λ3(α + 1α, t) − λ3(α, t),

whereθ = ∫ s(α)
ω ds= ∫ α sαω dα is the angle of rotation of the reference ribbon atX(α, t).

Thus whenX is fixed,θ̇ |X = λ3, andθ̈ |X = λ̇3. Substituting these relations to Eq. (75) gives
Eq. (74).
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Now we are going to determine the tensionFT = F · T. From ∂X
∂α

= sαT, we get

∂X
∂α

· ∂Ẋ
∂α

= sαT · (sαtT + sαTt )

= sαsαt = rs2
α, (76)

provided that the rod has prescribed extension rater (α, t), i.e.,sαt = r (α, t)sα, which is true
by our choice ofW from Eq. (56). Differentiating this equation with respect to timet , we
get

∂X
∂α

· ∂Ẍ
∂α

= −∂Ẋ
∂α

· ∂Ẋ
∂α

+ ṙ s2
α + 2rsαsαt

= s2
α

(
r 2 + ṙ − |Tt |2

)
. (77)

From Eq. (49), we get|Tt | =
√

λ2
1 + λ2

2. Furthermore, we have

∂X
∂α

· ∂Ẍ
∂α

= sαT · ∂

∂α
Ẍ

= sαT · ∂

∂α

(
dF
ds

− η
dX
dt

+ g
)

= s2
αT · (Fss + gs). (78)

ThusFT satisfies

d2

ds2
FT − (

κ2
1 + κ2

2

)
FT = 2F1sκ1 − 2F2sκ2 + F1κ1s − F2κ2s − ω(F1κ2 + F2κ1)

+ r 2 + ṙ − (
λ2

1 + λ2
2

) + κ1g1 − κ2g2 − gts, (79)

with F1 = −κ1s, F2 = κ2s andgt = g · T. The right-hand side of the equation forFT depends
only on known qualities and hence the tension is determined with the appropriate periodic
boundary conditions for closed filaments.

We now summarize the small scale decomposition in theκ1, κ2 andω formulae as

κ1t ∼
(

2π

L

)2

Uαα + P1

Ut ∼ −
(

2π

L

)2

κ1αα + Q1

κ2t ∼ −
(

2π

L

)2

Vαα + P2

Vt ∼
(

2π

L

)2

κ2αα + Q2,

with ωt ∼ 2π
L λ3α + P3 andλ3t ∼ 2π

L ωα + Q3, wherePi andQi , i = 1,2,3 are the lower
order terms. The highest order terms in the equations forκ1, κ2,U, V, ω, andλ3 now appear
linearly. After updatingL explicitly, it is a straightforward exercise to apply an implicit
integration method to these equations.
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5. APPLICATION TO NEARLY PARALLEL VORTEX FILAMENTS

Another interesting problem we consider is a nearly parallel pair of vortex filaments.
Vortex filaments with large strength and narrow cross section are prominent fluid mechanical
structures in mixed layers, boundary layers, and trailing wakes. It is interesting to study the
interaction of nearly parallel and anti-parallel vortex filaments in high Reynolds number
flows. An ensemble of vortex filaments interacts via the three-dimensional Biot–Savart
integrals for the induced velocities on the filament centerlines. The induced motion of each
filament consists of self- and foreign-induced velocity contributions. It has been shown
by Callegari and Ting [3] and Klein and Majda [12] that the geometrical evolution of the
filaments in the regime considered obeys the propagation law

∂X i

∂t
=

(
ln

(
1

δ

)
+ Ci

)
0i

4π
(κB)i + Q f

i + Qouter
i . (80)

The first term points in the direction of the local binormal vectorBi , and via the expression
ln( 1

δ
)+ Ci describes the influence of the vortex core structure on the filament motion. Here

δ ¿ 1 relates to the small effective core sizes andCi is a quadratically nonlinear functional
of the detailed core vorticity distribution of thei th filament (see [3] and [12]).Q f

i is the
filament motion due to nonlocal self-stretching [12] and the foreign-induced velocityQouter

i

has been analyzed in [13]. Kleinet al. derived simplified equations for a pair of interacting
vortex filaments in [13],

∂X i

∂t
= 0i (κB)i + 2t0 × 0 j

X i − X j

|X i − X j |2 , (81)

wheret0 = (0,0,1)andi, j = 1,2. These simplified equations retain the important physical
effects of linearized local self-induction and nonlinear potential vortex interaction among
filaments but neglect other nonlocal effects of self-stretching and mutual induction. Now
we apply our method to a nearly parallel vortex filament pair using the equations above.
Notice thatκB = κ2N1 + κ1N2. Using Eqs. (57)–(60), it is easy to derive the formulation in
terms ofκ1i , κ2i , ωi , andLi and the small scale decomposition in theκ1i , κ2i formulae is

κ1i t ∼ 0i

(
2π

Li

)2

κ2iαα + Pi

κ2i t ∼ −0i

(
2π

Li

)2

κ1i αα + Qi ,

wherePi and Qi are the lower order terms,i = 1,2. As before, the implicit solutions are
easily obtained by the fast Fourier transform.

6. SOME IMPLEMENTATION ISSUES

This section is devoted to addressing a few practical implementation issues. This includes
the question of what implicit discretization scheme we will use, the reconstruction of the
interface from the curvature variable, and the choice of orthogonal basis in the Kirchhoff
rod model.
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6.1. Time-Stepping Considerations

The time integration scheme we used in this paper is a fourth order multi-step implicit/
explicit scheme studied in [1] by Ascheret al. This is one of the better high order implicit/
explicit schemes to use in the sense that it has a large stability region. Consider a time-
dependent PDE in which the spatial derivatives have been discretized by either central
differences or by pseudo-spectral methods. This gives rise to a large system of ODEs in
time which typically has the form

du

dt
= f (u) + νg(u), (82)

whereg is a linear operator containing high order derivatives andf (u) is a nonlinear function
which we do not want to integrate implicitly in time. To avoid using excessively small time
steps, we would like to treat theνg(u) implicitly while treating the nonlinear termsf (u)

explicitly. Typically f (u) involves only first order derivatives from the convective terms, so
the stiffness induced from the nonlinear term is not as severe as that from the linear operator
g(u).

The fourth order implicit/explicit scheme considered by Ascheret al. is given as

1

1t

(
25

12
un+1 − 4un + 3un−1 − 4

3
un−2 + 1

4
un−3

)
= 4 f (un) − 6 f (un−1) + 4 f (un−2) − f (un−3) + νg(un+1). (83)

In this paper, we simply apply this fourth order implicit/explicit scheme to our problems.
For example, we use this scheme in the inertial vortex sheet problem

κt = 1

sα

(
1

sα

(
1

2sα
H[γ ]

)
α

)
α

+ P (84)

γt = Sκα + Q, (85)

where P and Q represent the lower order terms. We obtain the following time discrete
system:

1

1t

(
25

12
κn+1 − 4κn + 3κn−1 − 4

3
κn−2 + 1

4
κn−3

)
= 1

sα

(
1

sα

(
1

2sα
H[γ n+1]

)
α

)
α

+ 4Pn − 6Pn−1 + 4Pn−2 − Pn−3

and

1

1t

(
25

12
γ n+1 − 4γn + 3γn−1 − 4

3
γ n−2 + 1

4
γ n−3

)
= Sκn+1

α + 4Qn − 6Qn−1 + 4Qn−2 − Qn−3

Then with our special choice of the tangential velocity,T, sα is independent ofα, and we
can solve forκn+1 andγ n+1 explicitly using the fast Fourier transform.
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6.2. Reconstruction of the Interface from Curvature

In our paper, the construction of the initial equal arc length parameterization is the same
as in [7]. We will not repeat the details here. On the other hand, it is important to discuss
the reconstruction of the 2-D interface(x, y) from (L , κ), and the 3-D filament(x, y, z)
from (L , κ1, κ2, ω).

One natural way to reconstruct(x, y) from curvature is to integrate the Frènet equations
along the interface. This will generate the tangent vectorT. We can then integrate the tangent
vector along the interface to obtain the interface position. This involves two numerical
integrations for each time step, and we need to keep track of two initial conditions at
the beginning point of the interface. An alterative is to use the evolution equation for the
interface. Recall that0 evolves according toXt =Un + Ts. We can reconstruct(x, y)

through integration of these original equations. In the inertial vortex sheets problem, we
know that

U (α, t) ∼ 1

2sα
H[γ ](α, t),

so we get

Xt = 1

2sα
H[γ ]n + P, (86)

whereP includes the lower order terms. In the computation, we treat(1/2sα)H[γ ] implicitly
and all the other terms explicitly. However, due to the numerical error, the points on the curve
are no longer equally distributed (i.e.,sα is not exactlyL/(2π) everywhere). This makes
Eq. (86) incompatible with Eqs. (27) and (28). This difficulty is overcome by redistributing
(x, y). For example, we can make use of the formula

Xα = L

2π
T, (87)

whereT = Xα/|Xα|.
We denote the solution of Eq. (86) bȳX. Then integrate the equation

Xα = L

2π|X̄α| X̄α (88)

with respect toα to getX for the new time step. Of course, in the absence of numerical errors,
the coefficient in front of̄Xα should be 1. We have considered other ways of redistribution,
but we have found that this approach gave the best performance numerically. This method
of reconstruction using the original evolution equation forX also applies to 3-D surfaces.

In the case of 3-D filaments, a space curve0 evolves according toXt = ŪN+ V̄B+ W̄T,
whereX = (x(α, t), y(α, t), z(α, t)). If we simply reconstruct(x, y, z) by integrating these
three equations, we will get a stability constraint of the form1t ≤ Ch2, sinceN involves a
second derivative ofX. So, we try to reconstructX using the first approach we mentioned
earlier. First, we integrate Eqs. (45) to get the tangential vectorT, then we integrate Eq. (87)
to getX. By doing this, we can still have a stability constraint of the form1t ≤ Ch.

6.3. Contact Force in the Kirchhoff Rod Model

In practice, a contact forceg is added to Eq. (65) to avoid self-crossing of the filament.
The contact force becomes important when the rod deforms in such a manner that points
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separated by large differences in arc length become close to one another in space. The
contact force can be modeled by the integral formula

g(s) = −
∫

M(s, σ )
U ′(|r (s) − r (σ )|)

|r (s) − r (σ )| [r (s) − r (σ )] dσ, (89)

whereU is a self-potential generating a central force between pairs of points along the
rod, andM is a mollifier leading to total energy and corresponding, for example, to a
nonzero radius of the rod. In our example, we take the potentialU to be proportional to
|r (s) − r (σ )|−9.

Another point we should stress is that in the case of motion by curvature, we simply
takeλ3 to be 0, which makes the formulation much easier. But this cannot be done in the
case of the Kirchhoff rod model. This is because in the case of motion by curvature, we are
only concerned with the shape of the curve0, which is determined by the tangential vector.
Therefore we can choose a particularN1 andN2 by takingλ3 to be 0. In the Kirchhoff rod
model, we do not just study a space curve. Instead, we study a rod with some thickness.
Here the twistω is important in the evolution of the rod and in fact depends onλ3.

7. NUMERICAL RESULTS

In this section, the results of numerical simulations are presented for several 2-D and 3-D
problems. All of these simulations use the appropriate small scale decomposition, together
with the associated numerical methods discussed in the previous sections. In subsections 7.1
and 7.2, we consider motion by curvature and motion byκ− 〈κ〉 in two dimensions. These
tests demonstrate that our method has only a linear stability constraint. Subsection 7.3
presents the motion of inertial vortex sheets which has been well studied by Houet al. in
[7]. We demonstrate that our numerical method shares a stability property similar to that of
the equal arc length/tangent angle formulation. We can compute very close to the time when
a pinching singularity is formed. A comparison of the stability constraint between these
two methods will be given. In Subsection 7.4, we compute the motion by curvature in three
dimensions. The result is consistent with our findings for 2-D interfaces. Again, our method
has only a linear stability constraint. Comparison with straightforward explicit method in
(x, y, z) coordinates shows that our method allows a time step 3200 times larger than that of
the corresponding explicit discretization forN = 512. Motions for the Kirchhoff rod model
and anti-parallel vortex filaments are presented in subsection 7.5 and 7.6, respectively. The
results match very well with the existing results [10, 13] and no stiffness was observed in
our computation.

7.1. Motion by Curvature in 2-D

In the next two subsections, we perform several numerical tests on motion by curvature
in 2-D to demonstrate the effectiveness of our method. These tests all demonstrate that our
reformulated implicit method has only a linear stability constraint, i.e.,1t is of the same
order of the spacial mesh size. This linear stability constraint is expected since we treat the
convection terms explicitly. From our stability analysis for the convection equation, we can
see a dependence of the CFL condition on the maximum curvature. This is also verified
numerically.

We consider a plane curve0 evolving according to

Xt = κn. (90)
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In our numerical calculations, we use the length of the curve and the curvature as our
dynamic variables. They evolve by Eqs. (10) and (11). The reconstruction of the position
of the curve is done by directly integrating the equationXt = κn + Ts, whereT is of the
form given in Eq. (9).

In our first example, we choose the initial curve asX = (α + 0.2 cos(4πα),0.5 sin(2πα)),

0≤ α ≤ 1. We graph the position of the curve at various times. In Fig. 1, we show the
continued evolution of the curve fromt = 0.0 to t = 0.08. There areN = 128 mesh points
in the unit interval with time step1t = 0.00025.

In fact,1t can be increased as time progresses. We list the maximum time steps that can
be used at various times in Fig. 2.

The reason1t is chosen to be so small initially is that the stability constraint is of the
form

max
α

|T̄ |1t < C · Lh, (91)

from Eqs. (10) and (11). HerēT = ∫ α

0 (κ2) dα′ − α
∫ 1

0 (κ2) dα′. Thus1t is still related to
the magnitude of curvature through̄T . We print out the curvature of this curve in Fig. 3.
The maximum curvature of this curve is around 130. Since the initially curvature is large
along some part of the curve, the time step has to be small to satisfy the stability constraint.
We see that this periodic curve moves faster where it has bigger curvature and it relaxes to a
straight line with increasing time. When we increase the number of points in the calculation,
we do see the time step decreases linearly.

We next consider the initial curveX = (α + 0.1 sin(2πα),0.5 cos(2πα)),0≤ α ≤ 1,
evolving according to Eq. (90). The maximum curvature of this initial curve is around
143. We graph the position of the curve at various times. In Fig. 4 we show the continued
evolution of the curve fromt = 0.0 tot = 0.08.N = 128 mesh points were used and the time

FIG. 1. Motion by curvature, initial sin curve:N = 128, 1t = 0.00025; curve portrayed every 0.005: (a) 0 to
0.02; (b) 0.02 to 0.04; (c) 0.04 to 0.06; (d) 0.06 to 0.08.
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FIG. 2. Maximum time steps at various times.

step1t = 0.00005. This periodic curve relaxes quickly to a straight line as time increases.
We list the maximum time steps that can be used at various times in Fig. 5.

We also consider the evolution of the initial closed curve

X = (1 + 0.4 sin(10πα))(cos(2πα),sin(2πα)), 0 ≤ α ≤ 1.

according to Eq. (90). WithN = 256 mesh points, and time step1t = 0.001, we show in
Fig. 6 the continued evolution of the curve fromt = 0.0 to t= 0.2. The plots show that this
star-shaped curve quickly relaxes to a circle.

7.2. Motion byκ − 〈κ〉 in 2-D

We consider the initial curveX = (−2 sin(2πα),cos(2πα))evolving according to

Xt = (κ − 〈κ〉)n. (92)

FIG. 3. Curvature of the initial sin curve.
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FIG. 4. Motion by curvature:N = 128, 1t = 0.00005; curve portrayed every 0.004: (a) 0 to 0.02; (b) 0.02 to
0.04; (c) 0.04 to 0.06; (d) 0.06 to 0.08.

Here〈κ〉 is the mean ofκ, i.e.,
∫ 1

0 κ dα. With N = 256 mesh points and1t = 0.005, we
show the continued evolution fromt = 0.0 to t= 2.0 in Fig. 7. We see that a circle is the
equilibrium state for this ellipse under the motion byκ− 〈κ〉.

We also compute the same initial curve evolving according to Eq. (90). We useN = 256
mesh points and1t = 0.0025 and show the evolution fromt = 0.0 to t= 1.0 in Fig. 8. Here
we see that the ellipse shrinks to a point under Eq. (90).

FIG. 5. Maximum time steps at various times.
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FIG. 6. Motion by curvature, star-shaped curve:N = 256, 1t = 0.001; curve portrayed every 0.01: (a) 0 to
0.05; (b) 0.05 to 0.1; (c) 0.1 to 0.15; (d) 0.2.

To test the dependence of1t on the magnitude of curvature and the spatial mesh size,h,
we perform a series of resolution studies for three examples. These examples give the same
shapes of curves, but with increasing curvature by a constant factor, 2. In the first example, the
initial curve is given byX1 = (−4 sin(2πα),2 cos(2πα)). It evolves according to Eqs. (90)

FIG. 7. N = 256, 1t = 0.005,t = 0.0,2.0(0.2).
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FIG. 8. N = 256, 1t = 0.0025,t = 0.0,1.0(0.1).

and (92). In the following table the largest possible time steps that give stable discretizations
are shown.

No. of points U = κ U = κ − 〈κ〉

128 0.02 0.025
256 0.01 0.0125
512 0.005 0.00625

Using Eq. (90), we only calculate untilt = 4.0, at which time the curve essentially becomes
a point.

In the second example, we scale the initial curve of the first example by a factor of 2, i.e.,
X2 = (−2 sin(2πα),cos(2πα)). We evolve it by the same equations, Eqs. (90) and (92).
The largest possible time steps that give stable discretizations are given below.

No. of points U = κ U = κ − 〈κ〉

128 0.005 0.0075
256 0.0025 0.005
512 0.00125 0.0025

Using Eq. (90), we only calculate untilt = 1.0 before it is essentially a point.
In the third example, we scale the initial curve of the first example by a factor of 4, i.e.,

X3 = (−sin(2πα),0.5 cos(2πα)), and evolve it by the same equations. Again we list below
the largest possible time steps that give stable discretizations.

No. of points U = κ U = κ−〈κ〉

128 0.002 0.002
256 0.001 0.001
512 0.0005 0.0005

Using Eq. (90), it will essentially be a point aftert = 0.25.
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Basically the curvature ofX3 is two times the curvature ofX2 and four times the curva-
ture ofX1. From Eqs. (31) and (32), the stability constraint is of the form

max
α

|T̄ |1t < C Lh, (93)

under the motion byκ or κ− 〈κ〉. Here T̄ = ∫ α

0 (Uκ) dα′ − α
∫ 1

0 (Uκ) dα′. Since T̄ is
proportional toκ2, the time step constraint forX3 is approximately four times smaller than
that forX2. Similarly the time step constraint ofX2 is approximately four times smaller
than that forX1. This is exactly what we observed from the numerical calculations.

The above calculations all demonstrate that our numerical method is free of severe time
step constraint. The time step is proportional to the space grid size in all these calculations. In
fact, the particle grid spacing is decreasing in almost all the cases since the curve shrinks to
a point. Without using our implicit discretization, the method would have become unstable
very early on.

7.3. Inertial Vortex Sheets

Next, we apply our reformulated implicit scheme to the inertial vortex sheet problem with
surface tension. This problem has been well studied by Houet al. in [7] using theθ − L for-
mulation. Significant improvement on stability constraint was observed over conventional
explicit discretization, e.g., the fourth order Runge–Kutta method. It is natural for us to
compare the performance of these two reformulated methods. Our numerical experiments
indicate that these two formulations give the same stability constraint. This is also explained
analytically in this subsection. This is an important and encouraging comparison, because
our reformulation can be applied to 3-D problems.

In order to compare our methods with theθ − L frame presented by Houet al. in [7], we
examine the long-time evolution of inertial vortex sheets with surface tension. We use the
same initial condition as in [7],

x(α, 0) = α + 0.01 sin 2πα, y(α, 0) = −0.01 sin 2πα,

γ (α, 0) = 1.0,
(94)

and chooseS= 0.005 as in their calculation. In Fig. 9, a time sequence of interface positions
is given, starting from the initial condition. Also we plot the vortex sheet strengthγ and the
curvatureκ at various times in Figs. 10 and 11, respectively. The calculation usesN = 1024
and1t = 1.25×10−4. We also compare directly our numerical solutions with those obtained
by theθ − L frame presented in [7]. We find that theθ − L frame and theκ − L frame give
us essentially the same numerical result. Also we have checked the stability constraint using
these two formulations. We find that using the same number of points, the largest possible
time steps that give stable discretizations are of the same order for the two methods. This
can also be explained analytically. Using theθ − L frame (assume thatα ∈ [0, 2π]), the
equations of motion are given by

Lt = −
∫ 2π

0
θα′U dα′ (95)

θt =
(

2π

L

)
(Uα + θαT) (96)

γt = 2π

L
Sθαα + ∂α((T − W · ŝ)γ /sα), (97)
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FIG. 9. Inertial vortex sheets, sequence of interface positions:S= 0.005,N = 1024, 1t = 1.25× 10−4: (a)
t = 0; (b) t = 0.60; (c)t = 0.80;(d) t = 1.20;(e) t = 1.40;(f) close-up of top pinching region,t = 1.40.

FIG. 10. Inertial vortex sheets, sequence ofγ : S= 0.005,N = 1024, 1t = 1.25× 10−4: (a)t = 0; (b) t = 0.60;
(c) t = 0.80; (d)t = 1.00; (e)t = 1.20;(f)t = 1.40.
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FIG. 11. Inertial vortex sheets, sequence ofκ: S= 0.005,N = 1024, 1t = 1.25×10−4: (a)t = 0; (b) t = 0.60;
(c) t = 0.80;(d) t = 1.00;(e) t = 1.20;(f) t = 1.40.

whereT is given by

T(α, t) =
∫ α

0
θα′U dα′ − α

2π

∫ 2π

0
θα′U dα′. (98)

By using an implicit discretization like the one we discussed before, we will get a stability
constraint of the form

max
α

|T |1t < C · L

2π
h. (99)

Using theκ−L frame, the equations of motion are given by Eqs. (31), (32), and (21), so
the stability constraint is of the form

max
α

|T1|1t < C · L

2π
h, (100)

whereT1 is given by

T1(α, t) = L

2π

∫ α

0
κU dα′ − αL

(2π)2

∫ 2π

0
κU dα′. (101)

Using the relation betweenθ andκ, κ = θα/sα, for heresα = L/(2π), it is easy to see to
thatT = T1. This shows that theκ − L frame andθ − L frame have the same order stability
constraints.

We use thisκ − L frame because we can apply it to the computation of both 3-D curves
and surfaces. The comparison of the results by using theκ − L frame andθ − L frame
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shows that ourκ − L frame shares the same stability property as theθ − L frame, and yet
has the advantage of being applicable to 3-D filaments and surfaces.

7.4. Motion by Curvature in 3-D

We now turn our attention to 3-D filaments. First we test our method for the simple
motion by curvature in 3-D. We basically confirm the similar performance we observed
for the corresponding 2-D problem. We perform a careful comparison with an explicit
fourth order Runge–Kutta discretization. ForN = 512, the maximum allowable time step
for our method is 3200 times larger than that for the Runge–Kutta method. We also test
the reformulation using the Frènet frame. We found that the computation breaks down at a
relative early time due to the formation of a vanishing curvation point. This corresponds to a
blowup in the torsion variable. This is an artificial parametrization singularity. The filament
is very smooth at this time. Using the generalized curvatureκ1 andκ2, we can compute well
beyond this time without any difficulty.

Consider the 3-D curve

X = (sin(2α),cos(α),sin(α)+ 2 cos(2α)), α∈ (0,2π),

evolving according to motion by curvature,Xt = κN. Using ourκ1−κ2−ω−L formulation,
with N = 256 mesh points, and time step1t = 0.0005, we show in Fig. 12 the continued
evolution of the curve fromt = 0.0 tot = 1.4. We observe that this space curve relaxes to a
circle and eventually shrinks to a point.

We compare our method with a straightforward explicit discretization ofXt = κN in
(x, y, z) coordinates. This involves using a spectral method for the spatial derivatives and
fourth order Runge–Kutta method in time. We list below the maximum time step that can
be taken to get a stable solution using these two methods. Due to the particle clustering,
we can only compute up tot = 1.0 using the explicit method. Clearly we can see the huge
advantage of using our implicit discretization.

No. of points Explicit method κ1 − κ2 − ω − L method

128 0.000125 0.0750
256 0.00003125 0.0375
512 0.00000625 0.0200

The motion of a 3-D filament by curvature is somewhat different from that of the 2-D
counterpart. In the 2-D case, it is possible to interpret the geometrical significance of positive
or negative curvature. However, for 3-D curves, the curvature is defined by

κ =
√

Xss · Xss = |Xss|. (102)

The positive square root is taken in Eq. (102) and thus the curvature is always nonnegative,
κ ≥ 0. When it passes through points whereκ = 0, the normal vectorN varies discontinu-
ously. Moreover, at points whereκ = 0, the torsion is not well defined. Recall that the torsion
is defined by

τ = κ−2(Xs · Xss × Xsss). (103)

It is obvious that the torsion is only defined when the curvature does not vanish.
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FIG. 12. N = 256, 1t = 0.0005: (a)t = 0.0,0.6(0.1);(b) t = 0.7,1.0(0.1);(c) t = 1.4.

We tried the same example usingκ − τ − L formulation (41), (42), and (43). Numerical
difficulties developed aroundT = 1.015 when the curvature became close to zero at some
point on the curve. In fact, we were only able to calculate up toT = 1.015 using 256 points,
no matter how small a time step we took, due to the stability constraints we derived from
Eq. (44). On the other hand, we had no difficulty computing pastT = 1.015 when using the
κ1 − κ2 − ω − L formulation. In Fig. 13, we compare the plots of curvature atT = 1.015
using theκ − τ − L formulation andκ1 − κ2 − ω − L formulation by taking the time
step to bedt = 0.00125 anddt = 0.01, respectively. Here we have used the relationship
κ =

√
κ2

1 + κ2
2.

We note the similarity in the two plots of the curvature. We also note the jump in the
derivative of the curvature as the curvature approaches zero. This means thatκα is not
continuous and that Eqs. (42) and (43) break down.
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FIG. 13. Comparison of curvature usingκ − τ − L andκ1 − κ2 − ω − L formulation.

We also plot the variablesκ1 andκ2 at T = 1.02 in Fig. 14. Note that these variables
remain smooth along the entire curve. Thus we see the advantage and, indeed, necessity of
using theκ1 − κ2 − ω − L formulation instead of theκ − τ − L formulation.

7.5. Motion of the Kirchhoff Rod Model

Next we test our numerical methods on the motion of the elastic rods. Two interesting
equilibrium states are reached using two different initial perturbation of a circular initial
filament. As before, no stiffness is observed using our reformulated implicit schemes. A
sequence of snapshots of the dynamics approaching to equilibrium for two examples (radius
r = 1) are shown in Figs. 15 and 16. In both examples, we choose as initial conditions a
circular conformation with total twistTω = 5. HereTω(X) = 1

2π

∮
ω(X(s)) ds. In the first

example, we choose the initial twist to be distributed uniformly with a small localized
perturbation. In particular, we chooseω(s, 0) = (5 + ω1)/(5 + 1

2π

∮
ω1 ds), where

ω1 =


0 |x − π | ≤ π

2 ,

1
4 cosh2( x − π

2x − π )
π
2 < x ≤ π,

1
4 cosh2( π − x

3π − 2x )
π < x < 3π

2 .

(104)

FIG. 14. κ1 andκ2 at T = 1.02 with N = 256 anddt = 0.01.
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FIG. 15. Approach to equilibrium “clover” configuration.T = 0,1.6,2.1,2.6,4,12.

In the second example, we use the same parameters and a similar initial condition as the first
one, except that the initial twist includes an order one nonlocalized perturbation from uni-
formity. More precisely, we chooseω(s, 0) = 2π L−1Tω ∗ (1+ 0.8∗ sin(2πs/L)). In both
of these examples, we use 256 grid points in our calculations and a time stepdt = 0.00125.
For the first example, the solutions are plotted atT = 0,1.6,2.1,2.6,4,12, respectively.
For the second example, the solutions are plotted atT = 0,1.2,2.4,2.8,4,6,12, respec-
tively.

In these two examples, the rods start twisting aroundT = 1.6 andT = 1.2, respectively.
Because of the contact force, the rods cannot self-cross, and thus they would keep twisting
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FIG. 16. Approach to equilibrium “plectonemic” configuration.T = 0,1.2,2.4,2.8,4,6,12.



          

COMPUTING 3-D FILAMENTS 659

until they approach the equilibrium configurations. We have also investigated using different
values for the parametersη1, η2 in Eqs. (65) and (66). We find that there is little change in
the equilibrium states in both examples, but the rate at which the rods evolve to these states
is affected.

We should mention the construction of the initial condition for these two examples. In
our methods, it is necessary to specify initial values ofκ1, κ2, andω. The twist of the circle
ω is already given, so we need to determineκ1 andκ2 from the curvatureκ and the torsion
τ . Sinceκ2

1 + κ2
2 = κ2, we parameterizeκ1, κ2 by κ andφ as

κ1 = κ cosφ
(105)

κ2 = κ sinφ.

Note that the torsionτ is zero everywhere for an unit circle. Substituting the above equations
into Eq. (47), we get

φs = ω.

Thus we are able to calculateφ. The curvature of the unit circle is 1. Thusκ1 andκ2 are
completely determined by Eq. (105).

Finally, it is necessary to include some sort of contact forceg(s) to prevent the elastic
rod from self-crossing. In a similar way to [10] we have set

g(s) = −
∫

M(r (s), r (σ ))
r (s) − r (σ )

(|r (s) − r (σ )|)10
dσ. (106)

The purpose of the mollifierM is threefold. First, some distinction must be made between
nearest neighbor points along the curve and other points that are far away in arc length but
are close in space. Clearly, for those points which are nearest neighbors along the curve, no
contact force is necessary and thereforeM is set to be zero. However, if two points which
are separated by a large distance in arc length become close to each other in space,M must
be nonzero to activate the contact force. Therefore,M helps prevent self-crossing while
ensuring that points along the curve are not forced apart.

Second, the magnitude of the contact force needs to be controlled to prevent overly large
forces from destabilizing our solution. The contact force has the form of a stiff inverse
power law(∝ r −10) so some care must be taken in choosing a constant of proportionality.
This is the other role thatM plays when the contact force is in effect. We assume the radius
of the rod is approximately 3 times the grid spacing, i.e.,hsα, and thusM needs to be chosen
so that the distance between any two points which are not close in arc length cannot be
smaller than 6hsα. We do not have an explicit expression forM here. In our first example,
we simply takeM to be 0.005 if the distance is less than 12hsα but greater than 8hsα, and
0.1 if the distance is less than 8hsα. In our calculationsα = L/2π is very close to 1. In our
second example, we takeM to be 0.004 if the distance is less than 14hsα but greater than
8hsα, and 0.04 if the distance is less than 8hsα.

Third, by settingM = 0 whenr (s) andr (σ ) are distant we reduce the computational cost
in evaluating (106) from what would beO(n2) to O(n). This step is absolutely necessary
in order to prevent the evaluation ofg(s) from dominating the entire computation.

By way of comparison, Ref. [10] used a similar model to calculate the evolution of
an elastic rod. The method there was to directly discretize Eqs. (65)–(67) using second
order centered differences. Here we have the considerable advantage that no high order
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FIG. 17. Curvature and twist of the second filament att = 0.79.

time step stability constraints are imposed. This advantage is crucial if accurate, long-time
computations (such as DNA modelling) are to be attempted.

It is interesting that both of these examples start from unit circles with the same total
twist. The only difference is the distribution of the initial twist. But they approach totally
different equilibrium states. The clover-like structures are also observed in Langevin dyna-
mics simulations [15] and the plectonemic conformation is similar to DNA studies.

7.6. Motion of Anti-parallel Pair of Vortex Filaments

Finally, we are going to test our method on the motion of anti-parallel vortex filaments.
We consider large amplitude antisymmetric helical initial perturbations of anti-parallel pair
[4, 13]:

X1 = (−0.5+ 0.3 cosα, 0.3 sinα, α) (107)

X2 = (0.5+ 0.3 cosα, 0.3 sinα, α) α ∈ (0,2π). (108)

The circulation strengths01, 02 in Eq. (81) are taken to be 1 and−1, respectively. We
apply the fourth order implicit–explicit scheme in our numerical experiments and find that
the time step is indeed linearly dependent on the spacial mesh size as we expected. However,
the fourth order scheme for this particular problem requires a small time step for stability
constraint. Instead, we use the second order implicit–explicit scheme in our computation.
The second order implicit–explicit scheme (see subsection 6.1) simply uses the leap frog
scheme for the lower order term and the implicit Crank–Nicolson scheme for the leading
order term:

1

21t
(un+1 − un−1) = f (un) + ν

2
[g(un+1) + g(un−1)]. (109)

Snapshots of the evolving filaments at timest = 0,0.73 and 0.79 are given in Figs. 18–20
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FIG. 18. Snapshot of filaments for antisymmetric perturbation att = 0.
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FIG. 19. Snapshot of filaments for antisymmetric perturbation att = 0.73.
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FIG. 20. Snapshot of filaments for antisymmetric perturbation att = 0.79.
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where 1024 mesh points and time step1t = 0.00125 are used. The initial separation distance
between the two filaments is constant, and as time evolves, the minimum separation distance
decreases until the pair collapses aroundt = 0.79. In Fig. 17, we also show the curvatureκ

and the twistω of the second filamentX2 at timet = 0.79. Using our method, we are also
able to include the other nonlocal effects that are neglected in the simplified equations (81).

8. SUMMARY

A new formulation and new methods are presented for computing the motion of a curva-
ture driven 3-D filament. These numerical methods have no high order time step stability
constraints. Our methods are applied to compute the motion of 2-D vortex sheets with sur-
face tension, motion of 3-D filament by curvature, the Kirchhoff rod model and anti-parallel
vortex filaments. Our numerical results demonstrate convincingly that our method removes
the severe time step stability constraint associated with explicit discretizations for both 2-D
and 3-D curves. It shares a stability property and computational efficiency similar to those
of theθ − L formulation derived by Houet al. in [7] for 2-D interfaces. There are many in-
teresting physical and biological applications of motion of 3-D curvature-driven filaments.
Our method provides an effective numerical technique for studying these problems. This
technique can also be extended to compute 3-D free surfaces. This will be the topic of a
future paper.
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