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Inthis paper, we presentanew formulation for computing the motion of a curvature-
driven 3-D filament. This new numerical method has none of the high order time
step stability constraints that are usually associated with curvature regularization.
This result generalizes the previous work of Ha@l. (1994) for 2-D fluid interfaces
with surface tension. Applications to 2-D vortex sheets, 3-D motion by curvature,
the Kirchhoff rod model, and nearly anti-parallel vortex filaments will be presented
to demonstrate the robustness of the methagli99s Academic Press

1. INTRODUCTION

In this paper, we present a new formulation for computing the motion of a curvatt
driven 3-D filament. This new numerical method has none of the high order time <
stability constraints that are usually associated with curvature regularization. This re
generalizes the previous work of Hetial. [7] for 2-D fluid interfaces with surface tension.
Applications to 2-D vortex sheets, 3-D motion by curvature, the Kirchhoff rod model a
anti-parallel vortex filaments will be presented to demonstrate the robustness of the me

Accurate numerical computation of the evolution of a free interface is at the heart of a e
number of scientific and engineering problems. Examples include the evolution of a pl
boundary in solidification, the breakup of drops in sprays, multi-fluid interfaces, and
motion of cells in the blood. In many applications, local curvature (or surface tension) ha
important effect on the dynamics of interfaces. On the other hand, curvature also introd
new difficulties at the numerical level since curvature contains high order spatial derivat
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in the equations of motion for the interface. If an explicit method is used, these te
induce strong stability constraints on the time step. These stability constraints are gene
time dependent and become more severe by the differential clustering of points alon
interface. We refer to this time stability constraint as stiffness. This stiffness is especi
difficult to remove for fluid interfaces with surface tension. Surface tension introdu
stiffness to the evolution equation in a nonlinear and nonlocal manner. A straightforw
implicit discretization leads to a nonlinear and nonlocal system which is difficult to inv
in general.

Houetal. [7] proposed to remove the stiffness of surface tension for 2-D fluid interface:s
using the small scale decomposition technique and reformulating the problem in the tar
angle and arclength metric variables. This is the so-called. frame (see, e.g., [5]). This
reformulation greatly improves the stability constraint. It allows us to perform well-resolv
calculations for large times. Many interfacial problems that were previously not amen:
are now solvable using this method.

However, thisd — L frame cannot be generalized directly to 3-D filaments since tl
tangent angle is not well defined. In this paper, we propose to use curwafisréhe new
dynamical variable when computing 2-D and 3-D free interfaces with curvature regular
tion. We found that for 3-D filaments, the natural curvature and torsion variables are
suitable for computational purpose; see also [10]. The reason is that the torsion var
may be singular whenever curvature is zero. This is purely an artificial parameteriza
singularity. To overcome this difficulty, we propose to use generalized curvatures anc
rate of rotation as the dynamical variables, «,, . These variables can be related to thi
natural curvature and torsiorr variables but also have a physical interpretation in terms
the curvature and twist of a thin nonisotropic rod. As in 2-D, the total arclehgth, is also
used as another dynamical variable. Together we obtain a new set of evolution equatiol
the filament. We show that by using this reformulation, we can easily remove the stiffr
associated with curvature regularization.

To demonstrate the robustness of the method, we apply our method to a number
teresting applications. Our numerical study for vortex sheets with surface tension indic
that our new formulation shares the same stability property a8 the. formulation in-
troduced in [7]. Our numerical experiments also demonstrate convincingly that this i
works equally well for 3-D filaments calculations, such as the motion by curvature,
Kirchhoff rod model, and anti-parallel vortex filaments. The Kirchhoff rod model has |
ceived increasing interest in recent years because it can be used as a model to stu
dynamics of proteins and supercoiled DNA [17]. Our numerical calculations reveal sc
interesting equilibrium states for the Kirchhoff rod model. With our new formulation, v
can now afford to perform well-resolved and long-time computations for problems in cc
putational geometry and computational biology. The dynamics of vortex filaments has |
studied analytically and numerically over the past 30 years (see [13] for references). I
important applications involving secondary three-dimensional instability in mixing lay:
and boundary layers in high Reynolds number flows. Here we apply our method to s
the interaction of anti-parallel vortex filament pair using a simplified model proposed
Klein et al. [13]. Our results compare well with those obtained in [13]. Our approach ¢
also be applied to the case when the nonlocal term becomes important. Generalizati
this idea to 3-D free surfaces has also been carried out. This will be reported elsewhe

The organization of the rest of the paper is as follows. In Section 2, we derive-the
formulation for two-dimensional interfaces, with an application to vortex sheets with surf
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tension. Section 3 is devoted to 3-D filaments usingdhe «, — w — L formulation. As
an example of illustration, we consider the motion of a 3-D curve by its local curvature.
then apply this idea to a couple more interesting applications, the Kirchhoff rod model
anti-parallel vortex filaments in Sections 4 and 5. We discuss some practical implement:
issues in Section 6. Finally, in Section 7, we present some numerical results which inc
vortex sheets with surface tension, motion of a 3-D curve by curvature, the Kirchhoff
model, and anti-parallel vortex filaments.

2. THE k — L FORMULATION FOR 2-D INTERFACES

In this section, we derive the — L method for 2-D interfaces. We first motivate the
formulation for the simple model problem of motion by curvature. Then we derive t
formulation for fluid interfaces and indicate how the- L formulation can be used to
remove the stiffness of surface tension for fluid interface problems.

2.1. Motion by Curvature

We motivate thec — L approach by considering the motion by curvature in 2-D. Let
curvel be given by

X(a, t) = (X(a, 1), y(a, 1)), €[00, 27], 1)
wherea parameterizes the curve. ThErevolves by
Xi =Un, U =«, (2)

wheren = (—Vs, Xs) is the right-handed normal ard= XsYss— XssYs = (X Yoo — Xao Yo ) /S2
is the signed curvature. Hesds arclength, and the anda derivatives can be exchanged
through the relatiord/ds = (1/s,)(d/dc), wheres, = \/x2 + y2. We assumeX is 2m-
periodic in«. If we discretize Eg. (2) using an explicit method, this will give a time-ste
stability constraint in the form of\t < Ch(t)2, whereh(t) is the minimum grid spacing
at timet. An implicit integration method, like the backward Euler or Crank—Nicholsc
scheme, would give a more stable discretization. But since curvature is a nonlinear fun
of the interface position, this would give rise to a nonlinear system for the implicit soluti
at the next time step.

Thex — L approach, on the other hand, makes the application of an implicit mett
much easier. It consists of two steps:

(A) Formulate the evolution using theands, as the new dynamical variables.

(B) Introduce a change of frame in the parameterizatian 6 thats, is independent
of @ and depends only on time. Thus, the equatiorsfdyecomes an ODE fdr, the length
of the curvel'. This reformulation of interface motion is motivated by the- L frame in
[5] (also see [7]).

We notice that the shape of the curve is determined solely by its normal veldcity
A tangential motion only results in a change in frame for the parameterization of the cu
Therefore, we can add a tangential motion to the dynamics without changing the interfe
shape, i.e.,

Xi=Un+Ts,
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wheres= (Xs, Ys) is the unit tangent vectaf, is the added tangential velocity which will be
determined later. To derive the evolution equationg fands,, we use the Frenet equations,
0sS=«n anddsn = —«s. The evolution equations fa, andk are given by

S =T, — Uks, 3)
1/U Tkg

m=_<1>+ Koy, @
S \S /g, S

Given s, and«, the position(x(«, t), y(«, t)) can be reconstructed (see Section 5). Fc
motion by curvature, we hawe = «. The evolution in terms of ands, is

St = To — k75, (5)
1 /() | T

m:_(£)+ Ka |3, ®)
S \S/, S

For an explicit integration method, the stability constraint from the diffusion term is of t
form

At < C - (5,h)?, (7)

wheres, = min,s,, andh is the initial grid spacing im. Therefore, the stability constraint
is determined by the minimum grid spacing (iles, ~ As), which is time dependent and,
for motion by curvature, is always decreasing.

In the reformulated system consisting of Egs. (5) and (6), an implicit discretizat
becomes much easier since the highest order terms are linear. The discretization ¢
simplified further ifs, does not depend an This can be easily accomplished by choosin
a special tangential velocity to forces, equal to its mean,

1 27 , ) 1
sot = 4~ Su’(‘xat)da = _L(t)7 (8)
27 Jo 2

wherel is the length of the curvE. It follows from Eq. (5) thafT satisfies

1 2
T, — k%s, = 7 ), (To — k%sy) dot/,
which implies
T( t)—T(Ot)+ L/a 2d/ al /27[ 2d/ (9)
a,t) = , 27 J, k“da @2 Jy k“do'.

HereT (0,1) is simply an arbitrary change of frame which can be taken to be 0. Now sir
S, just depends on time but not onx, the PDE fors, is reduced to an ODE fdr, andL
and«x evolve by

L'[ = —— KZdOl/ (10)

27\ 2
Kt = (—n> Koo + —nTKa + i3 (12)
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Notice that because the highest order term has no spatially varying prefactor, an imj
method can be easily applied to the PDEAolt is sufficient to treat the leading order terms
implicitly and discretize the lower order terms explicitly. Also, because the equatidn fo
is free of stiffness, we can use an explicit method such as the Adams—Bashforth me
Then at every time stefh, can be updated explicitly, and the implicit solutiorat the new
time step can be obtained explicitly by using the Fourier transform.

2.2. The Formulation for 2-D Fluid Interfaces

In the next two subsections, we will show how to generalize the idea presented in
previous subsection to fluid interface problems. The fluid interface problem is more diffi
than motion by curvature because it involves nonlocal singular integral operators. To de
an efficient implicit discretization, we also use the so-called “small scale decompositi
technique which separates the leading order contribution of a singular integral operator
the lower order contributions. Since stiffness enters only at small scales, itis enough to
the leading order operators implicitly. For fluid interfaces, these leading order intel
operators are the Hilbert transform and its variants. They can be diagonalized using
Fourier transform. Thus we obtain an efficient implicit discretization at the same cost a
explicit method.

We consider the motion of an interfa¢egiven by X = (x(«), y(«)), separating two
inviscid, incompressible, and irrotational fluids. The density is assumed to be constar
each side of . The velocity on either side df is evolved according to the incompressible
Euler equation

1
Ujt + (Uj - V)u; =—;V(pj + 0j9y), V.u;=0. (12)

Here j =1 for the fluid belowI” and j = 2 for the fluid abovep; is the pressureg; is the
density, andyy is the gravitational potential. The boundary conditions are

(i)[ulr-n=0, the kinematic boundary condition, (13)
(i) [p]r = «, the dynamic boundary condition, (14)
(ii) uj(X,y) = (£Vx, 0)as y— oo, the far field boundary condition ~ (15)

where [-] denotes the jump taken from above to below the interface. The velocity h:
tangential discontinuity dt. The velocity away front" has the integral representation (see

e.g., [2]),

(=(y = y(a), x = x(a")) o
o,
X — X(@)? + (y — y(a))?

1
U, y), v(x, y) = g/y(tx’)( (16)

wherey is called the (unnormalized) vortex sheet strength. The true vortex sheet stre|
(i.e., the tangential velocity jump) is given by

y=——=Iur-s (17)

While there is a discontinuity in the tangential component of the velocily, #te normal
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componenty («), is continuous and given by (16) as
U(e) =W -n, (18)

where

(—=(y(a) — y(@), x(a) — x(')) do’
o .
(X(e) = x(@))? + (y(or) — y('))?

1
W(a) = — P.V. / y (@) 19)
2
The P.V. in front of the integral denotes the principal value integral. This integral is cal
the Birkhoff—Rott integral. Using the representation (16) for the velocity, Euler's equat
at the interface, and the Laplace—Young condition, the equations of motion for the inter
are

Xe=Un+Ts (20)

1
" — aa((T -W-. S)V/%) = - 2Ap <Sont -S4+ éaoz(y/s)z)z + 9V
—(T =W . 95W, -s/sa) + Skg. (21)

Here A, = (p1 — p2)/(p1 + p2) is the Atwood ratio ands is a rescaled surface tension
parameter (see [2]). In the special casefgf=0, i.e., p1 = py, the evolution equation is
greatly simplified. It is reduced to a vortex sheet equation (see [16]).

2.3. The Equations of Motion Reposed

In the previous subsection, boundary integral formulation is given for the motion
a vortex sheet in two-dimensional, inviscid fluid. Numerical stiffness arises through
presence of high orderterms (i.e., high spatial derivatives) in the evolution. In this subsec
we reformulate the equations of motion using the small scale decomposition (SSD
inertial flows. The small scale decomposition, which identifies and separates the domi
terms at small spatial scales, was first presented in [7]. The key idea is to identify the lea
order contribution of certain singular operators at small spatial scales. Recall that the nc
velocityU is given by Egs. (18) and (19). Let the complex position of the interface be gi
by z(a, t) = X(a, t) +iy(a, t); thenU can be expressed as

+oo /
U(oz,t):—%lm{i P.V./ &da’}. (22)

27i oo Zla,t) — z(a’, 1)

Note that the kernel in the Birkhoff—Rott integral can be decomposed into two terms:

1 1 [ 1 1

= — } . (23)
Z(oe, t) — z(a/, 1) Zy(a — ') Z(a,t) — 2(a/, 1) Zy(ax — @)

The most significant contribution comes from the first term on the right-hand side, since
bracketed term is analytic and corresponds to a smoothing operator. Therefore, we o
the leading order behavior &f at small scales as

1
U (Ol, t) ~ KH[)/](OA t)s (24)
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whereH is the Hilbert transform defined as

“+o00 /
(H ) (@) = %/ @) g, (25)

/
o X —

Its Fourier transform is given by

(HT)(K) = —i(sgnk)) f (k). (26)

The notationf ~ g means that the difference betweérandg is smoother tharf andg.

In terms of the new dynamic variables, «, andy, the equations of motion for the inertial
vortex sheets are given by Egs. (3), (4), and (21). Observe that the dominant termin Eq_
for y; is Sk, at small scales. Now, substituting Eq. (24) into Eqg. (4) gives

1/1
Kt=g<sa (Z%H[y]))aw 27)
= SKa+Qv (28)

whereP and Q represent lower order terms at small spatial scales. This isntiadl scale
decomposition. I§, is given, the dominant small scale termis linear Bndy , but nonlocal
by virtue of the Hilbert transform. An implicit discretization can be obtained by discretizil
the leading order terms implicitly, but treating the lower order terms explicitly. However
s, isindependent af, the implicit solution can be obtained easily by fast Fourier transforr
just as in the case of motion by curvature. By choosing a particular tangential vepcity
can indeed be independentmf

2.4. Thex — L Formulation

As we mentioned above, the tangential veloditynay be introduced into the dynamics
without changing the shape of the interface. We can choose the particular expres3ion
so thats, does not depend amin its evolution. As in the case of motion by curvatusg,
is set to be equal to its mean, which is

1 2n

— Sy (e, ) da’ = iL(t) (29)
2w

S =

whereL is the length of the interface. It follows from Eq. (3) thasatisfies the equation

1 21 ,
Ty —Uks, = E/ (Ty —Uksy) da
0

ol

2

= T(a,t) =T(,1) + L/ Uk da' —
27 0
T(0,1) just gives an arbitrary change of frame and, for simplicity, can be taken to be
Thus, the expression far is determined entirely blz, x andU. Assume that Eq. (29) is
satisfied initially, then Eq. (30) foF ensures that the constraint (29) is satisfied for all tim¢
Now, the evolution of the interface is reformulated in termé& @nd« by

L z
L =—— U do’ 1
t o /O «ud (3 )
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27\ 2 2
k=) Use + LT + 62U (32)
L L
GivenU, Egs. (30), (31), and (32) give a complete formulation of the evolution problen
The small scale decomposition for the inertial vortex sheets iw thel formulation is
now given as

1 (2m\°
=3 (T) Hiad +p @)
n =S +Q, (34)

whereP andQ denote the lower order terms, which do not contribute to the stiffness,
will be treated explicitly. In Fourier space, these equations are

k /27r\? . .
it = +i5 (27) harto + P (@)
P(k) = +i Ske (k) + Q(K), (36)

whereP and Q are the Fourier transforms & and Q in Egs. (33) and (34), andis the
imaginary unit. Now the implicit integration scheme can be easily applied together v
an explicit discretization of Eqg. (31). Since the lower order terf@nd Q, are treated
explicitly, the implicit solution forc andy can be inverted explicitly. This gives an efficient
implicit discretization of the fluid interface problem at the same cost as an explicit mett
The numerical method in our computation will be discussed in Subsection 6.1.

3. THE k; — k2 — w — L FORMULATION FOR 3-D FILAMENTS

In this section, we generalize the— L method to 3-D filaments. The formulation is
more subtle for 3-D filaments since there are two normal vectors (e.g., the normal anc
bi-normal vectors). It turns out that the choice of orthonormal basis has a significant im|
on the computational method. In particular, the conventional Frenet frame for 3-D filam
is not suitable for computational purpose. It can give rise to an artificial parametrizal
singularity when curvature vanishes. To overcome this difficulty, we use a more gen
orthonormal basis which corresponds tothe- x, — w — L formulation for 3-D filaments.

Let us consider a space cur¥s, t): [0, L] — R® wheres is arc length and_ is
the total length of the curve. Alternatively we may parameteKzby a material coor-
dinateqa, i.e.,X(a, t): [0, 27] — R3. The unit tangent vector along the cuiXés given by
T(s,t) =(d/ds)X(s, t). A local description of the curve is provided by an appropriate s
of coordinate axes. One such set is the Frénet triad consisting of the unit vEckbrand
B, the tangent, normal, and binormal vectors respectively. This orthonormal triad sati:
the well-known Frénet equatiog =«N, Ng= —«T + B, Bs= —tN. « is the curvature
andr is the torsion. We can now write the evolution equation for the curve in the Fre
frame,

Xi(a,t) = UN+ VB + WT, (37)

whereU, V, andW are the normal, binormal, and tangential velocity components, resp
tively, each of which can depend on betlandt. In the 2-D case, we usg andx as the
new dynamical variables. Naturally, we would like to 8sex, andr as the new dynamical
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variables for 3-D filaments. Using the Frenet equations, we can derive the evolution of
curvel in terms ofs,, x, andt as

Su = W, —Uks, (38)
1 /U, 2tVy + 1,V — Wy —
Kt = — (> — ! i K —U(Kz — Tz) (39)
S\ S /g Sy
1 (%)a 1 <2U_O,T+U_ra—\7rzsa>
=22 + =
s\ ks ) s KSy o
\701 VT/ o s
AL L NP Wy (40)

_ Consider the natural generalization of motion of a closed curve by curvature, narr
U=«, V=0inEqg. (37).W can be added to the motion of equations without altering tt
shape of the curve. Thus Egs. (38), (39), and (40) become

St = Wo — %5, (41)
1 /«, Wi,

Kp = — (K—> e K (k? — 72 (42)
S\ /g Sy
1 o o W o

= — (T—> +2 <£> Ty 02 (43)
S\ /g, KSy / g S

Now, if s, is given, the highest order terms in the equationg fandzr are linear inc andr,
respectively. Thus, an implicit integration method can be applied. Similar to the 2-D c:
we can choose a special expression\n‘_bto enforces, to be independent af. Then the
highest order terms in Egs. (42) and (43) do not have spatially varying prefactors. Sc
implicit discretization ofc andzr can be updated explicitly. The stability constraint has th
form

2licy| |W
max(ﬂ, %) At <h. (44)

K Sy

Note that the stability constraint depends on curvature.bd&comes very small, we will
get very strong stability constraints in the numerical computation. In fact, in the Fre
triad, N, B, andt are only defined when the curvature does not vanish. In geNeraties
discontinuously through points wheke=0 even for smooth curves. This would lead tc
the blowup ofr sincet depends oMs. This discontinuity inN through points where
vanishes is artificial and is due to a poor choice of coordinate frame. For this reason
Frénet frame is not a good choice for computational purposes.

Instead we propose to use a more general orthogonal Babig, No =T x Ny in our
numerical calculation of 3-D filaments. The Frenet system is replaced by

d
—T = KlN]_ — K2N2
ds

d

d_SNl = —K]_T + a)Nz (45)

d
—Nz = IC2T — a)Nl,
ds

wherexk; =«N - Ny andiky; = —«N - No.
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There are natural relations betwean«x,, » andx, t:

K =\/Kk?+ K2 (46)

r—w K2K1s — KlKZS. (47)

K
If we make the special choice af= t, then the new orthonormal basis is reduced to tt
Frénet triad. In this case, we hawe=«, k, =0.

The unit tangent vectdr(s) = (d/ds)X(s) is determined once the curXgs) is known.
Thenwe choose vectaks (0), N2 (0) such thatT(0), N1 (0), N»(0)) are aset of orthonormal
vectors. By choosing a smooth function for the rate of rotatigrand using the relations
K1= g—TS Ny, k2 = —% - N2, we integrate the last two equations in (45) along the arc leng
s, to determineN;(s) and N, (s). Notice that the first equation in (45) is automatically
satisfied since we have used it to constructand «,. Also, the orthogonality of these
three vectorsT (s), N1(s), andN,(s) can be shown by using Egs. (45). Thus we obtai
a smooth orthonormal basis s@i(s), N1(s), N2(s)). Clearly, this orthonormal basis is
smooth as long as the curvature is smooth, even though the curvature may vanish at
points.

Now we rewrite the evolution equation for the curve in our newly chosen orthonorr
basis(T, N1, N»):

Xi(or, t) = UNy + VN, + WT.
Since we have relationships betwe¢nB andN;, N,, namely

kN = K]_Nl - IC2N2 (48)
kB = kN1 + k1No,

it is straightforward to determine the relationships betwdel, W andU, V, W.

The fact thatX has continuous second order derivatives in space and time implies
the cross derivatives of andt commute. To carry out the computations associated wi
this relationship it is convenient to write the time derivatives of the bRské;, N, as

Ti=ArxT, N1t = Ar x Ny, N2t = Ar x Na, (49)

whereAE (o, t) = 11Ny + A,N2 + A3T is the rotation vector whose componehisi,, Az
are related tdJ, V, W and hencey, «», o,

V,
Mm=———Uw+ Wk
o (50)
)\,22 J—VU)—FWK]_,
Sy

andaz will be determined later. It can be shown (also see [8]) that the equations of mo
for sy, 1, k2, w in terms ofU, V, W take the form

St = Wy + (V2 — Uk))sy (51)
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1 (Ua) 20V, + 0w,V — Wk, 2
Kit=—|(— ) — —Uw
S\ S/, Sv
+k1(Uk1 — Vo) + wxoW — Az (52)
1/V, 20U, U — W,
Kot = —— (—) _Za T F2r 4 Ve?
S \S /o Sw
+x2(Uk1 — Vo) — wkiW — Asiy (53)
V, U, — oW, A
o = +"'; OWe L 2wUky — Vi) + é". (54)

As a final remark, note that we now have four functieng;, k>, andw to describe a curve
in R3. w measures the twist rate of thi—N, plane around’, and may (e.g., the Kirchhoff
rod model) or may not (e.g., motion by curvature) have physical significance.
As in the 2-D case, we can choose a tangential veldbityp forces, to be everywhere
equal to its mean,
1 [ 1

S = 5— Sy, t)do’ =

~ 27 s 2. - (55)

wherel is the length of the curvE. Specifically

2

1
W, — (Uky — Vk2)s, = P (W — (Uk1 — Vk2))s, do’
T Jo

al

L o
:W(a,t) = EA (UK]_—VKZ)da— w

21
/ Uk — Vi) do'. (56)
0

Now sinces, depends only ot and nota, the PDE fors, reduces to an ODE fok.
Equations fol. andk, 2, w then reduce to

L 2
Li = —— / (Uky — Vi) do’ (57)
2 0
27\ ? 21
K1t = (TT[) Uy — T(Za)Va + wpV — Wkiy) — Uo®
+k1(Uk1 — Vi) + wxoW — Azkeo (58)
21\ ? 21
Kooy = — <T”) Vo = - (20U + 0, — Wicz,) + Vo?
+x2(Uk1 — Vo) — w1 W — Azky (59)
2 2
w = T”(Klvo, + koUy — oW,) + 20Uk — Vi) + Tnkga. (60)

We now show that for motion by curvature this reformulation leads to efficient impli
discretization. To obtain the velocity in this new basis, we project the original equat
Xt =«N into the new orthonormal basis. Using the relations betwéemdN,, N,, we
haveU = «; andV = —«k,. Simply substitutdJ, V into Egs. (57)—(60) and take; to be 0
(see Subsection 6.3); we then derive the formulation in terms, @b, » andL as

L 2

L= (k? +3) do’ (61)

_EO
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27\ ? T
K1 = <—> Kiga + T(ZwKza + wek2 + Wiie)

L
+ K1 (K12 + K22 — wz) + wio W (62)
Kot = <2|j1>21<2aa - 2%(260'410: — wak1 + Wiay)
+ K2 (K12 + k5 — w2) — wkg W (63)
o = Tn(KZKla — K1K2a).- (64)

Asinthe 2-D casd, andw can be updated using an explicit integration method. The high
order terms in Eqgs. (58) and (59) do not have spatially varying prefactors. We can inver
implicit discretization for the diffusion terms in the andk, equations efficiently.

4. APPLICATION TO THE KIRCHHOFF ROD MODEL

We now apply our method to the physically interesting problem of the Kirchhoff rc
The study of elastic rods is the subject of continued scientific and mathematical inte
Applications of the dynamics of rods and filaments include the dynamics of proteins
supercoiled DNA [17], writhing instability in fibers and cables [19], three-dimensior
scroll waves [18], magnetic flux tubes, and the formation of sunspots [14], etc. Un
some simplifying assumptions, the motion of an elastic rod filament can be well descr
by a one-dimensional system of equations. One such set of equations, the Kirchhof
equations [9], can be constructed as follows [6]. The rod is represented by its center
X(s, 1):[0, L] = R3and twist (defined below) (s, t): [0, L] — R. Heresis arc length and
L is the length of the rod. For simplicity we assume that the cross section of the filame
always circular with constant radius in space. Define a reference ribbon by a pair of cu
(X, X + eNjp) whereN4(s, t): [0, L] — R®is a unit vector field such théd; - T=0 (T is
the unit tangent vector along the cur¥¢ ande is the width of the ribbon. The twisb
(with respect to the reference ribbox, (X + €N1)) is defined to be the rotation rate Nf
aroundT moving alongX; i.e., w(s, t) = (N1(s,t) x (d/ds)Ny(s, 1)) - T. The Frenet triad
is a particular choice of ribbon which corresponds to chooblpg- N. Recall thatN has
the same direction asl/ds)T (s, t). More typicallyN; might point in the direction of one
of the principle axes of the cross section of the rod. The equations of motion can be \
ten as

@ d d

—X=—F—pn—X 65

a2” = as Mgt te (6%)

d . .

OTSM =F xT+0|xT + W1+ n20|x + W) +H (66)
M =TI%B + T, (67)

whereg contains the other external forces such as gravity, contact forcel” etnd »;
measure respectively the relative energetic importance of twist and flexure and the rel
time scales of viscosity and inertia. The rod shearing taifpsandW, are set to be 0 and
" to be 1.
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We rewrite the velocity oK in terms of the ribbon basis as
Xi(or, t) = UNy + VN, + WT,

whereN, =T x N;. To compute the main forde, we decompose itinto the local orthonor-
mal ribbon basis:

F = FiN1 + FoONo 4+ FT.

The normal and bi-normal componentgofan be determined immediately from Egs. (66
and(67),thatidr; = —k1sandF, = k2. The determination of the tangentialfolee=F - T

is more subtle. We will derive it later. Using Egs. (45), (49), (65), (66), and (67) we obt:
the evolution equations faf, «,, w, ands, as

St = Wy — (Uit — Vi)s, (68)
1 (Ua> 20Vy + w,V — Wk, 5
kip=—|—] — —-Uw
S\ S /g Sw
+k1(Uk1 — Vo) + wxoW — Aok (69)
1
U =—— (Icla) — 22 | Friy — Wig + Vg — mU + g1 (70)
S\ S /o Sy
1/V, 2wU, U — W
Kot = —— (—) _Ha T F2 4 Ve?
S\ S/, Sw
+ 12Uy — Vo) — wkitW — Aoky (71)
1 (koq WK1y
Vt=§(§>a_ le — Fro+ Wi — Uiz —mV + @ (72)
Mo  KiVa + kU W,
wp=—+ —"— 4+ 20Uk — Vikr) — 00— 73
(=g s 1 2 S, (73)
Wy A3
At = — — 12—, (74)
3t y zsa

whereg; =g-Nj andg, =g - Na.
Equation (74) is derived from Eqgs. (66) and (67). To see this, we observe that Egs.
and (67) give

wo = OlxSy + 1201x, (75)

whered |, refers tod at a fixed filament positioX (see [11]) (Here a dot denotégat). If
we holdX steady and allow twisting, we haw = A3(a, t)T x N;. Over an element of
the filament fronX () to X(a + A«),

%AG = As3(a + Aa, t) — As(a, t),

wheref = fs(“) wds= f“ s.w daisthe angle of rotation of the reference ribboX ét, t).
Thus wherX is fixed,f|x = A3, andé|x = 3. Substituting these relations to Eq. (75) give:
Eq. (74).
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Now we are going to determine the tensien=F - T. From % =5, T, we get

X aX
— =T - (ST +sTy)
Ja  Oo

=SSt =2, (76)

provided that the rod has prescribed extensionrratet), i.e.,s,: =r («, t)s,, which is true
by our choice oW from Eq. (56). Differentiating this equation with respect to timeae
get

axX X ax 8X+rs ©ors
da da  da  da S

=S (241 —|T¢?). (77)

From Eq. (49), we gefT¢| = \/A$ + A3. Furthermore, we have

X ..
d X _ T, iX
da Ba aa
T dF dX+
=% ds "at 79
= SST . (Fss+ gs)' (78)

ThusF+ satisfies

dZ
i (k2 + k3) Fr = 2F1sky — 2Foskz + Fuicis — Fakos — o (Fika + Faky)
1241 — (A 4 A5) + k101 — k202 — Grs. (79)

with Fy = —k1s, Fo = k25 andg, = g - T. The right-hand side of the equation fiéf depends
only on known qualities and hence the tension is determined with the appropriate peri
boundary conditions for closed filaments.

We now summarize the small scale decomposition inhe, andw formulae as

27
Kit ™~ <_> UO(O[ + I:)1

2
( ) Kiea + Q1
< ) aa+ P2

2r
Vt ~ <L) Kogo + QZ»
with w; ~ _)\30( + Psandig ~ —a)a + Qs3, whereP, andQ;,i =1, 2, 3 are the lower
order terms. The highest order terms in the equationgfof,, U, V, @, andi; now appear
linearly. After updatingL explicitly, it is a straightforward exercise to apply an implicit
integration method to these equations.
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5. APPLICATION TO NEARLY PARALLEL VORTEX FILAMENTS

Another interesting problem we consider is a nearly parallel pair of vortex filamer
Vortex filaments with large strength and narrow cross section are prominent fluid mecha
structures in mixed layers, boundary layers, and trailing wakes. It is interesting to study
interaction of nearly parallel and anti-parallel vortex filaments in high Reynolds numl
flows. An ensemble of vortex filaments interacts via the three-dimensional Biot—Sa
integrals for the induced velocities on the filament centerlines. The induced motion of
filament consists of self- and foreign-induced velocity contributions. It has been shc
by Callegari and Ting [3] and Klein and Majda [12] that the geometrical evolution of t|
filaments in the regime considered obeys the propagation law

X 1 I f
L (ln (8> n q) B+ Qf + Qe (80)
The first term points in the direction of the local binormal ve&arand via the expression
In(%) + C;i describes the influence of the vortex core structure on the filament motion. I
3 « 1relates to the small effective core sizes &nds a quadratically nonlinear functional
of the detailed core vorticity distribution of th¢h filament (see [3] and [12])Qif is the
filament motion due to nonlocal self-stretching [12] and the foreign-induced velQEH§*
has been analyzed in [13]. Kleat al. derived simplified equations for a pair of interacting
vortex filaments in [13],

X Xi — Xj

—L =Ti(kB) + 2ty x I'j
It i (kB)j + 2ty x ]|Xi—xj|2

(81)
wherety = (0,0, 1) andi, j =1, 2. These simplified equations retain the important physic
effects of linearized local self-induction and nonlinear potential vortex interaction amc
filaments but neglect other nonlocal effects of self-stretching and mutual induction. N
we apply our method to a nearly parallel vortex filament pair using the equations ab
Notice thatcB = koN1 + «1N2. Using Egs. (57)—(60), it is easy to derive the formulation i
terms ofky;, k2, wi, andL; and the small scale decomposition in #hg «y formulae is

27\ 2
kit ~ T L) Keiao +PR
I

27\ 2
kot ~ =T 1) “laa + Qi,
I

whereP, and Q; are the lower order termgs=1, 2. As before, the implicit solutions are
easily obtained by the fast Fourier transform.

6. SOME IMPLEMENTATION ISSUES

This section is devoted to addressing a few practical implementation issues. This incl
the question of what implicit discretization scheme we will use, the reconstruction of
interface from the curvature variable, and the choice of orthogonal basis in the Kirchl
rod model.
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6.1. Time-Stepping Considerations

The time integration scheme we used in this paper is a fourth order multi-step impl
explicit scheme studied in [1] by Aschet al. This is one of the better high order implicit/
explicit schemes to use in the sense that it has a large stability region. Consider a |
dependent PDE in which the spatial derivatives have been discretized by either ce
differences or by pseudo-spectral methods. This gives rise to a large system of ODI
time which typically has the form

du_ f(u + vg(u), (82)
dt
wheregis alinear operator containing high order derivatives &g is a nonlinear function
which we do not want to integrate implicitly in time. To avoid using excessively small tir
steps, we would like to treat they(u) implicitly while treating the nonlinear term§(u)
explicitly. Typically f (u) involves only first order derivatives from the convective terms, s
the stiffness induced from the nonlinear term is not as severe as that from the linear ope
g(u).
The fourth order implicit/explicit scheme considered by Asc#tal. is given as

1 25 n+1 n n—1 4 n-2 1 n-3
At<12u 4u” + 3u 3u +4u
=4f@U") —6f U +4fU"?) — f U3 4+ vgut). (83)

In this paper, we simply apply this fourth order implicit/explicit scheme to our problen
For example, we use this scheme in the inertial vortex sheet problem

-2 () ) oo

= S’Ca + Qv (85)

where P and Q represent the lower order terms. We obtain the following time discre
system:

1 25 n+1 n n-1 4 n-2 1 n-3
E(l_ZK — 4k’ + 3k —él( +ZK

1/1 1
S (_ (_H[yn+l]) > + 4Pn _ 6Pn—1 + 4Pn—2 _ Pn—3
S \S \25 o/

and

At\12 3 4
_ n+1 n__ n-1 n-2 _ ~n-3
=S, +4Q" -6Q" " +4Q Q

1/25 4 1
( J/n+1 _ 4)/“ 4 3yn—1 _ 7yn72 + yn3>

Then with our special choice of the tangential velocitys, is independent o, and we
can solve fox"+1 andy"** explicitly using the fast Fourier transform.
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6.2. Reconstruction of the Interface from Curvature

In our paper, the construction of the initial equal arc length parameterization is the s
as in [7]. We will not repeat the details here. On the other hand, it is important to disc
the reconstruction of the 2-D interface, y) from (L, «), and the 3-D filamentx, y, 2)
from (L, k1, k2, ®).

One natural way to reconstrugt, y) from curvature is to integrate the Frénet equation
along the interface. This will generate the tangent veEtdve can then integrate the tangen
vector along the interface to obtain the interface position. This involves two numer
integrations for each time step, and we need to keep track of two initial conditions
the beginning point of the interface. An alterative is to use the evolution equation for
interface. Recall thal' evolves according t&X; =Un + Ts. We can reconstrugk, y)
through integration of these original equations. In the inertial vortex sheets problem,
know that

1

So we get
X, = 1 H[yln+ P (86)
! 25, v ’

whereP includesthe lower order terms. In the computation, we (eéas, ) H[y ] implicitly
and all the other terms explicitly. However, due to the numerical error, the points on the ci
are no longer equally distributed (i.&,, is not exactlyL /(27) everywhere). This makes
Eq. (86) incompatible with Egs. (27) and (28). This difficulty is overcome by redistributi
(X, y). For example, we can make use of the formula

Xy = ET’ (87)

whereT = X, /| Xq!.

We denote the solution of Eq. (86) b@( Then integrate the equation

Xy = —— X
27| Xq |

with respect tax to getX for the new time step. Of course, in the absence of numerical errc
the coefficient in front ofa should be 1. We have considered other ways of redistributic
but we have found that this approach gave the best performance numerically. This me
of reconstruction using the original evolution equationXoalso applies to 3-D surfaces.

In the case of 3-D filaments, a space curvevolves according t¥; = UN+VB+WT,
whereX = (X(«, t), y(a, 1), Z(a, t)). If we simply reconstructx, y, z) by integrating these
three equations, we will get a stability constraint of the faxin< Ch?, sinceN involves a
second derivative aX. So, we try to reconstruct using the first approach we mentionec
earlier. First, we integrate Egs. (45) to get the tangential vagtitren we integrate Eq. (87)
to getX. By doing this, we can still have a stability constraint of the fatvin< Ch.

(88)

6.3. Contact Force in the Kirchhoff Rod Model

In practice, a contact foragis added to Eq. (65) to avoid self-crossing of the filamen
The contact force becomes important when the rod deforms in such a manner that p
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separated by large differences in arc length become close to one another in space
contact force can be modeled by the integral formula
U'(Ir(s) —r (o)D)

a(s) / M(s, o) S — o)) [r(s) —r(o)]do, (89)
whereU is a self-potential generating a central force between pairs of points along
rod, andM is a mollifier leading to total energy and corresponding, for example, tc
nonzero radius of the rod. In our example, we take the poteldtitd be proportional to
Ir(s) —r(o)|™®.

Another point we should stress is that in the case of motion by curvature, we sin
takeis to be 0, which makes the formulation much easier. But this cannot be done in
case of the Kirchhoff rod model. This is because in the case of motion by curvature, we
only concerned with the shape of the cufevhich is determined by the tangential vector
Therefore we can choose a particularandN; by takingis to be 0. In the Kirchhoff rod
model, we do not just study a space curve. Instead, we study a rod with some thicki
Here the twist is important in the evolution of the rod and in fact dependa.fn

7. NUMERICAL RESULTS

In this section, the results of numerical simulations are presented for several 2-D anc
problems. All of these simulations use the appropriate small scale decomposition, tog:
with the associated numerical methods discussed in the previous sections. In subsectic
and 7.2, we consider motion by curvature and motior by(«) in two dimensions. These
tests demonstrate that our method has only a linear stability constraint. Subsectiot
presents the motion of inertial vortex sheets which has been well studied bgtHbun
[7]. We demonstrate that our numerical method shares a stability property similar to th:
the equal arc length/tangent angle formulation. We can compute very close to the time \
a pinching singularity is formed. A comparison of the stability constraint between th
two methods will be given. In Subsection 7.4, we compute the motion by curvature in tt
dimensions. The result is consistent with our findings for 2-D interfaces. Again, our met
has only a linear stability constraint. Comparison with straightforward explicit methoc
(X, Y, ) coordinates shows that our method allows a time step 3200 times larger than th
the corresponding explicit discretization fdr=512. Motions for the Kirchhoff rod model
and anti-parallel vortex filaments are presented in subsection 7.5 and 7.6, respectively
results match very well with the existing results [10, 13] and no stiffness was observe
our computation.

7.1. Motion by Curvature in 2-D

In the next two subsections, we perform several numerical tests on motion by curve
in 2-D to demonstrate the effectiveness of our method. These tests all demonstrate th
reformulated implicit method has only a linear stability constraint, i.js of the same
order of the spacial mesh size. This linear stability constraint is expected since we tree
convection terms explicitly. From our stability analysis for the convection equation, we
see a dependence of the CFL condition on the maximum curvature. This is also ver
numerically.

We consider a plane curdeevolving according to

X¢ = kn. (90)
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In our numerical calculations, we use the length of the curve and the curvature as
dynamic variables. They evolve by Egs. (10) and (11). The reconstruction of the posi
of the curve is done by directly integrating the equafiqr=«n + Ts, whereT is of the
form given in Eq. (9).

Inour firstexample, we choose the initial curve@s (a + 0.2 cos(4ra) 0.5 sin(2r@)),
O0<a < 1. We graph the position of the curve at various times. In Fig. 1, we show |
continued evolution of the curve from=0.0 tot =0.08. There ardN =128 mesh points
in the unit interval with time step\t = 0.00025.

In fact, At can be increased as time progresses. We list the maximum time steps tha
be used at various times in Fig. 2.

The reasomt is chosen to be so small initially is that the stability constraint is of tr
form

maxT|At < C - Lh, (91)

from Egs. (10) and (11). Herd = Jo (k¥ da’ — a fol(/cz) do’. ThusAt is still related to
the magnitude of curvature through We print out the curvature of this curve in Fig. 3.
The maximum curvature of this curve is around 130. Since the initially curvature is la
along some part of the curve, the time step has to be small to satisfy the stability consti
We see that this periodic curve moves faster where it has bigger curvature and it relaxe
straight line with increasing time. When we increase the number of points in the calculat
we do see the time step decreases linearly.

We next consider the initial curviX = (¢ +0.1sin(27«),0.5cos2ra))0<a <1,
evolving according to Eg. (90). The maximum curvature of this initial curve is arou
143. We graph the position of the curve at various times. In Fig. 4 we show the contin
evolution of the curve fromh= 0.0 tot = 0.08. N = 128 mesh points were used and the tim

05 05

[=]
[=4

0.5 0.5

SN

-0.5 -0.5
0 0.5 1 0 0.5 1

(=]
o

%

FIG. 1. Motion by curvature, initial sin curveN = 128, At =0.00025; curve portrayed every 0.005: (a) 0 to
0.02; (b) 0.02 to 0.04; (c) 0.04 to 0.06; (d) 0.06 to 0.08.
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dt

0.002

0.00125

0.0008

0.0004
0.00025

0 0.01 0.02 0.03 0.04 0.05 t

FIG. 2. Maximum time steps at various times.

stepAt =0.00005. This periodic curve relaxes quickly to a straight line as time increas
We list the maximum time steps that can be used at various times in Fig. 5.
We also consider the evolution of the initial closed curve

X =1+ 0.4sin(10ra))(cos(2ra)sin(2rw)), O<ac<l

according to Eq. (90). WithN = 256 mesh points, and time steg = 0.001, we show in
Fig. 6 the continued evolution of the curve frdre 0.0 to t=0.2. The plots show that this
star-shaped curve quickly relaxes to a circle.

7.2. Motion byx — (x) in 2-D
We consider the initial curvi = (—2 sin(2r«),cos(2 «))evolving according to

Xi = (k — (k))n. (92)

100

50

curvature
o

~-100

. . . L ) . L ) )
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
alpha

FIG. 3. Curvature of the initial sin curve.
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FIG. 4. Motion by curvatureN = 128, At = 0.00005; curve portrayed every 0.004: (a) 0 to 0.02; (b) 0.02 t

0.04; (c)

0.04 to 0.06; (d) 0.06 to 0.08.

Here (k) is the mean ok, i.e., fol/c da. With N =256 mesh points andt =0.005, we
show the continued evolution froim=0.0 to t=2.0 in Fig. 7. We see that a circle is the
equilibrium state for this ellipse under the motiondy (k).

We also compute the same initial curve evolving according to Eq. (90). WK us256
mesh points andit = 0.0025 and show the evolution frara= 0.0 to t= 1.0 in Fig. 8. Here
we see that the ellipse shrinks to a point under Eq. (90).

dt

0.00125

0.00075

0.0005

0.00035

0.00005

0 0.01 0.02

0.03

0.04 0.05 t

FIG.5. Maximum time steps at various times.
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a b
1 1
0 0
-1 -1
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
2 2
c d
1 1
0 0
-1 -1
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2

FIG. 6. Motion by curvature, star-shaped cuni =256, At =0.001; curve portrayed every 0.01: (a) O to
0.05; (b) 0.0510 0.1; (c) 0.1 to 0.15; (d) 0.2.

To test the dependence at on the magnitude of curvature and the spatial mesh kjze,
we perform a series of resolution studies for three examples. These examples give the
shapes of curves, butwith increasing curvature by a constantfactor, 2. In the firstexampl
initial curve is given byX1 = (—4 sin(2r«),2 cos(2ra)) It evolves according to Egs. (90)

FIG.7. N =256, At =0.005,t =0.0,2.0(0.2).
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=2 -15 -1 -05 0 05 1 1.5 2

FIG.8. N =256, At =0.0025,t =0.0,1.0(0.1).

and (92). In the following table the largest possible time steps that give stable discretiza
are shown.

No. of points U =« U=k — (k)
128 0.02 0.025
256 0.01 0.0125
512 0.005 0.00625

Using Eg. (90), we only calculate unti= 4.0, at which time the curve essentially become
a point.

In the second example, we scale the initial curve of the first example by a factor of 2,
X2 =(-2sin(2rw),cos(2ra)) We evolve it by the same equations, Eqgs. (90) and (9-
The largest possible time steps that give stable discretizations are given below.

No. of points U=« U=« — (k)

128 0.005 0.0075
256 0.0025 0.005
512 0.00125 0.0025

Using Eq. (90), we only calculate unti=1.0 before it is essentially a point.

In the third example, we scale the initial curve of the first example by a factor of 4, i
X3 =(—sin(2r«),0.5 cos(2ra)) and evolve it by the same equations. Again we list belo
the largest possible time steps that give stable discretizations.

No. of points U =« U=«— (k)

128 0.002 0.002
256 0.001 0.001
512 0.0005 0.0005

Using Eq. (90), it will essentially be a point aftes 0.25.
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Basically the curvature of3 is two times the curvature o€2 and four times the curva-
ture of X1. From Egs. (31) and (32), the stability constraint is of the form

maxT|At < CLh, (93)

under the motion by or k— (k). Here T = [(Ux)da’ — & [;(Uk)de’. SinceT is
proportional tac?, the time step constraint f&3 is approximately four times smaller than
that for X2. Similarly the time step constraint &2 is approximately four times smaller
than that forX1. This is exactly what we observed from the numerical calculations.

The above calculations all demonstrate that our numerical method is free of severe
step constraint. The time stepis proportional to the space grid size in all these calculatiol
fact, the particle grid spacing is decreasing in almost all the cases since the curve shrir
a point. Without using our implicit discretization, the method would have become unste
very early on.

7.3. Inertial Vortex Sheets

Next, we apply our reformulated implicit scheme to the inertial vortex sheet problem w
surface tension. This problem has been well studied bydtali in [7] using the&d — L for-
mulation. Significant improvement on stability constraint was observed over conventic
explicit discretization, e.g., the fourth order Runge—Kutta method. It is natural for us
compare the performance of these two reformulated methods. Our numerical experin
indicate that these two formulations give the same stability constraint. This is also expla
analytically in this subsection. This is an important and encouraging comparison, bec
our reformulation can be applied to 3-D problems.

In order to compare our methods with the- L frame presented by Haet al. in [7], we
examine the long-time evolution of inertial vortex sheets with surface tension. We use
same initial condition as in [7],

X(a, 0) = o + 0.01 sin Zr«x, y(a, 0) = —0.01 sin Zr«,

y(a,0) = 1.0, (94)

and choos&=0.005 as in their calculation. In Fig. 9, a time sequence of interface positic
is given, starting from the initial condition. Also we plot the vortex sheet strepgthd the
curvaturec at various times in Figs. 10 and 11, respectively. The calculationNise$024
andAt =1.25x 10~“. We also compare directly our numerical solutions with those obtain
by thed — L frame presented in [7]. We find that the- L frame and the — L frame give
us essentially the same numerical result. Also we have checked the stability constraint
these two formulations. We find that using the same number of points, the largest pos
time steps that give stable discretizations are of the same order for the two methods.
can also be explained analytically. Using the- L frame (assume that € [0, 2x]), the
equations of motion are given by

2
L= — / 0,U da’ (95)
0
2
et = <T> (Uot +9aT) (96)
2 .
1= L Sy + (T =W -9 /5,), (97)

L
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o.2ta o2tb
0 oo & T
-0.2 -0.2
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FIG. 9. Inertial vortex sheets, sequence of interface positi@s0.005,N =1024, A =1.25 x 107*: (a)
t=0; (b)t =0.60; (c)t =0.80; (d) t =1.20; (e) t = 1.40; (f) close-up of top pinching region = 1.40.

2| @ ol O
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ZW 2/f
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0 0.5 1 0 0.5 1
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FIG.10. Inertial vortex sheets, sequencgofS= 0.005,N = 1024, A = 1.25x 10~%: (a)t =0; (b)t = 0.60;
(c)t=0.80; (d)t =1.00; (e)t =1.20; (f)t =1.40.
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FIG.11. Inertial vortex sheets, sequenceoS=0.005,N = 1024, A =1.25x 10~*: (@)t = 0; (b)t =0.60;
(c)t=0.80;(d)t=1.00; (e)t =1.20; (f) t =1.40.

whereT is given by

o o 21
T(a,t) = / O,U da’ — 2—/ 6,U do’. (98)
0 T Jo

By using an implicit discretization like the one we discussed before, we will get a stabi
constraint of the form

L
maxT|At < C- —h. (99)
o 2

Using thexk—L frame, the equations of motion are given by Egs. (31), (32), and (21),
the stability constraint is of the form

L
max|Ti|At < C . —h, (100)
o 2
whereT; is given by
L [« al (7"
Ti(a, t) = — Uda' — — U da'. 101
(e, 1) ZJT/OK o (2n)2/0 «U da (101)

Using the relation betweeth andx, « =6, /s,, for heres, =L /(2r), it is easy to see to
thatT = T;. This shows that the — L frame and — L frame have the same order stability
constraints.

We use thisc — L frame because we can apply it to the computation of both 3-D cun
and surfaces. The comparison of the results by using thel frame and® — L frame
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shows that ouk — L frame shares the same stability property asithel frame, and yet
has the advantage of being applicable to 3-D filaments and surfaces.

7.4. Motion by Curvature in 3-D

We now turn our attention to 3-D filaments. First we test our method for the sim|
motion by curvature in 3-D. We basically confirm the similar performance we obsen
for the corresponding 2-D problem. We perform a careful comparison with an expl
fourth order Runge—Kutta discretization. Rdr=512, the maximum allowable time step
for our method is 3200 times larger than that for the Runge—Kutta method. We also
the reformulation using the Frénet frame. We found that the computation breaks dowr
relative early time due to the formation of a vanishing curvation point. This corresponds
blowup in the torsion variable. This is an artificial parametrization singularity. The filame
is very smooth at this time. Using the generalized curvatyendk,, we can compute well
beyond this time without any difficulty.

Consider the 3-D curve

X = (sin(2a),cos(w),sin(x) + 2 cos(2a)), ae (0,2m),

evolving according to motion by curvatudé, = « N. Using ourc; — k2 —w — L formulation,
with N =256 mesh points, and time steyi = 0.0005, we show in Fig. 12 the continued
evolution of the curve fronh= 0.0 tot = 1.4. We observe that this space curve relaxes to
circle and eventually shrinks to a point.

We compare our method with a straightforward explicit discretizatioXof «N in
(X, Yy, z) coordinates. This involves using a spectral method for the spatial derivatives
fourth order Runge—Kutta method in time. We list below the maximum time step that «
be taken to get a stable solution using these two methods. Due to the particle cluste
we can only compute up to= 1.0 using the explicit method. Clearly we can see the hug
advantage of using our implicit discretization.

No. of points Explicit method  «1 — k2 — @ — L method
128 0.000125 0.0750
256 0.00003125 0.0375
512 0.00000625 0.0200

The motion of a 3-D filament by curvature is somewhat different from that of the 2
counterpart. Inthe 2-D case, itis possible to interpret the geometrical significance of pos
or negative curvature. However, for 3-D curves, the curvature is defined by

Kk =1/ Xss* Xss = [Xsgl. (102)

The positive square root is taken in Eq. (102) and thus the curvature is always nonneg
x > 0. When it passes through points where 0, the normal vectoN varies discontinu-
ously. Moreover, at points wheke= 0, the torsion is not well defined. Recall that the torsio
is defined by

T =k 2(Xs - Xss X Xss9- (103)

It is obvious that the torsion is only defined when the curvature does not vanish.
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FIG.12. N =256, At =0.0005: (a)t =0.0,0.6(0.1);(b)t =0.7,1.0(0.1);(c) t = 1.4.

We tried the same example using- T — L formulation (41), (42), and (43). Numerical
difficulties developed around = 1.015 when the curvature became close to zero at sol
point on the curve. In fact, we were only able to calculate up t61.015 using 256 points,
no matter how small a time step we took, due to the stability constraints we derived fi
Eq. (44). On the other hand, we had no difficulty computing past1.015 when using the
k1 — k2 — w — L formulation. In Fig. 13, we compare the plots of curvatur@ at 1.015
using thex — t — L formulation and«; — k2 — w — L formulation by taking the time
step to bedt =0.00125 anddt =0.01, respectively. Here we have used the relationsh
K= \/Kf + K22.

We note the similarity in the two plots of the curvature. We also note the jump in
derivative of the curvature as the curvature approaches zero. This mearg thatot
continuous and that Eqgs. (42) and (43) break down.
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By using curvature and torsion By using k1,k2 and w

Curvature

(=3

2 4 (<] 2 <
N=256,dt=0.00125 at T=1.015 N=256,dt=0.01 at T=1.015

FIG. 13. Comparison of curvature using— r — L andx; — k, — w — L formulation.

We also plot the variableg; andx, at T =1.02 in Fig. 14. Note that these variables
remain smooth along the entire curve. Thus we see the advantage and, indeed, neces
using thex; — k, — w — L formulation instead of the — 7 — L formulation.

7.5. Motion of the Kirchhoff Rod Model

Next we test our numerical methods on the motion of the elastic rods. Two interes
equilibrium states are reached using two different initial perturbation of a circular init
filament. As before, no stiffness is observed using our reformulated implicit scheme:
sequence of snapshots of the dynamics approaching to equilibrium for two examples (r:
r =1) are shown in Figs. 15 and 16. In both examples, we choose as initial conditiol
circular conformation with total twistw =5. HereTw (X) = % $ w(X(s))ds. In the first
example, we choose the initial twist to be distributed uniformly with a small localiz
perturbation. In particular, we choosss, 0) = (5+ w1)/(5+ % § w1 ds), where

bs
0 X —7n| <7,
1 T
W1 = 4cosk(xZ= 2 <X=T7, (104)
1 3
pycr = T <X<F.
1 1
0.5 0.5
0
0
-0.5
T -05 g
-1
-1
-1.5
-15 5
_2 -25
[¢] 2 4 6 0 2 4 6

FIG. 14. «; andk, atT =1.02 withN =256 anddt=0.01.
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FIG. 15. Approach to equilibrium “clover” configuratiod. = 0,1.6,2.1,2.6,4,12.

Inthe second example, we use the same parameters and a similar initial condition as th
one, except that the initial twist includes an order one nonlocalized perturbation from |
formity. More precisely, we choose(s, 0) =27 L Tw x (14 0.8 % sin(2zs/L)). In both
of these examples, we use 256 grid points in our calculations and a timetstep00125.
For the first example, the solutions are plottedat 0,1.6,2.1,2.6,4, 12, respectively.
For the second example, the solutions are plottedl -at0,1.2,2.4,2.8,4,6,12, respec-
tively.

In these two examples, the rods start twisting arolird1.6 andT = 1.2, respectively.
Because of the contact force, the rods cannot self-cross, and thus they would keep tw
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COMPUTING 3-D FILAMENTS 659

until they approach the equilibrium configurations. We have also investigated using diffe
values for the parameters, 1, in Egs. (65) and (66). We find that there is little change i
the equilibrium states in both examples, but the rate at which the rods evolve to these ¢
is affected.

We should mention the construction of the initial condition for these two examples.
our methods, it is necessary to specify initial valuesi0f,, andw. The twist of the circle
w is already given, so we need to determinendx, from the curvature and the torsion
7. Sincex? + k3 = k2, we parameterizey, k» by x andg as

K1 = K CO
Lo (105)
K2 = Kk SINg.
Note that the torsiom is zero everywhere for an unit circle. Substituting the above equatic
into Eq. (47), we get

Ps = w.

Thus we are able to calculage The curvature of the unit circle is 1. Thus and«, are
completely determined by Eq. (105).

Finally, it is necessary to include some sort of contact f@® to prevent the elastic
rod from self-crossing. In a similar way to [10] we have set

(e -r@)
(r(s) —r(o)p

The purpose of the mollifig¥l is threefold. First, some distinction must be made betwe
nearest neighbor points along the curve and other points that are far away in arc lengt
are close in space. Clearly, for those points which are nearest neighbors along the cun
contact force is necessary and therefotés set to be zero. However, if two points which
are separated by a large distance in arc length become close to each other iVspacst,
be nonzero to activate the contact force. Therefttehelps prevent self-crossing while
ensuring that points along the curve are not forced apart.

Second, the magnitude of the contact force needs to be controlled to prevent overly
forces from destabilizing our solution. The contact force has the form of a stiff inve
power law(c r 1% so some care must be taken in choosing a constant of proportiona
This is the other role tha¥l plays when the contact force is in effect. We assume the rad
ofthe rod is approximately 3 times the grid spacing, hg,, and thusM needs to be chosen
so that the distance between any two points which are not close in arc length cann
smaller than Bs,. We do not have an explicit expression fdrhere. In our first example,
we simply takeM to be 0.005 if the distance is less tharh&2but greater thant&,, and
0.1 if the distance is less thah® . In our calculatiors, = L /27 is very close to 1. In our
second example, we talhd to be 0.004 if the distance is less tharh&4but greater than
8hs,, and 0.04 if the distance is less thamsg.

Third, by settingvl =0 whenr (s) andr (o) are distant we reduce the computational co:
in evaluating (106) from what would b®(n?) to O(n). This step is absolutely necessary
in order to prevent the evaluation gfs) from dominating the entire computation.

By way of comparison, Ref. [10] used a similar model to calculate the evolution
an elastic rod. The method there was to directly discretize Egs. (65)—(67) using se
order centered differences. Here we have the considerable advantage that no high

g = —/ M(r(s),r (o)) (106)
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FIG. 17. Curvature and twist of the second filament at0.79.

time step stability constraints are imposed. This advantage is crucial if accurate, long-
computations (such as DNA modelling) are to be attempted.

It is interesting that both of these examples start from unit circles with the same t
twist. The only difference is the distribution of the initial twist. But they approach total
different equilibrium states. The clover-like structures are also observed in Langevin d
mics simulations [15] and the plectonemic conformation is similar to DNA studies.

7.6. Motion of Anti-parallel Pair of Vortex Filaments

Finally, we are going to test our method on the motion of anti-parallel vortex filamer
We consider large amplitude antisymmetric helical initial perturbations of anti-parallel f
[4,13]:

X1 = (—=0.5+ 0.3 cosx, 0.3 sing, «) (207)
X5 = (0.5+ 0.3 cosw, 0.3 sine, «) a € (0,2n). (108)

The circulation strengthB, I'; in Eq. (81) are taken to be 1 andl, respectively. We
apply the fourth order implicit—explicit scheme in our numerical experiments and find t
the time step is indeed linearly dependent on the spacial mesh size as we expected. Ho
the fourth order scheme for this particular problem requires a small time step for stab
constraint. Instead, we use the second order implicit—explicit scheme in our computa
The second order implicit—explicit scheme (see subsection 6.1) simply uses the leap
scheme for the lower order term and the implicit Crank—Nicolson scheme for the leac
order term:

i n+1 _ n—1y _ N n+1 n—1
oAt u )—f(u)+2[g(u ) +gU™ ] (109)

Snapshots of the evolving filaments at times0, 0.73 and 0.79 are given in Figs. 18-2C
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FIG. 18. Snapshot of filaments for antisymmetric perturbation-a0.
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FIG. 19. Snapshot of filaments for antisymmetric perturbatioh-a0.73.
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where 1024 mesh points and time stefp= 0.00125 are used. The initial separation distanc
between the two filaments is constant, and as time evolves, the minimum separation dis
decreases until the pair collapses arotiad).79. In Fig. 17, we also show the curvature

and the twistw of the second filamerX; at timet =0.79. Using our method, we are also
able to include the other nonlocal effects that are neglected in the simplified equations

8. SUMMARY

A new formulation and new methods are presented for computing the motion of a cu
ture driven 3-D filament. These numerical methods have no high order time step stat
constraints. Our methods are applied to compute the motion of 2-D vortex sheets with
face tension, motion of 3-D filament by curvature, the Kirchhoff rod model and anti-para
vortex filaments. Our numerical results demonstrate convincingly that our method remt
the severe time step stability constraint associated with explicit discretizations for both
and 3-D curves. It shares a stability property and computational efficiency similar to th
of thed — L formulation derived by Hoet al. in [7] for 2-D interfaces. There are many in-
teresting physical and biological applications of motion of 3-D curvature-driven filamer
Our method provides an effective numerical technigue for studying these problems.
technique can also be extended to compute 3-D free surfaces. This will be the topic
future paper.
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