
DISCRETE AND CONTINUOUS Website: http://aimSciences.org
DYNAMICAL SYSTEMS
Volume 18, Number 4, August 2007 pp. 637–642

NONEXISTENCE OF LOCALLY SELF-SIMILAR BLOW-UP FOR
THE 3D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Thomas Y. Hou

Applied and Comput. Math, Caltech,

Pasadena, CA 91125

Ruo Li

LMAM&School of Mathematical Sciences, Peking University,
Beijing, China, 100871

Abstract. We study locally self-similar solutions of the three dimensional

incompressible Navier-Stokes equations. The locally self-similar solutions we
consider here are different from the global self-similar solutions. The self-similar

scaling is only valid in an inner core region that shrinks to a point dynamically
as the time, t, approaches a possible singularity time, T . The solution outside

the inner core region is assumed to be regular, but it does not satisfy self-

similar scaling. Under the assumption that the dynamically rescaled velocity
profile converges to a limiting profile as t → T in Lp for some p ∈ (3,∞), we

prove that such a locally self-similar blow-up is not possible. We also obtain a

simple but useful non-blowup criterion for the 3D Euler equations.

1. Introduction. In this paper, we study locally self-similar solutions of the 3D
Navier-Stokes equations  ut + (u · ∇)u = −∇p+ ν∆u,

∇ · u = 0,
u|t=0 = u0(x),

(1)

where u is velocity, p is pressure, and ν is viscosity. The locally self-similar solutions
we consider are very different from the global self-similar solutions considered by
Leray [15]. The self-similar scaling is only valid in an inner core region that shrinks
to a point dynamically as the time, t, approaches a possible singularity time, T .
Typically the inner core region can be taken as a ball of radius proportional to some
fractional power of (T − t). The solution outside the inner core region is regular and
does not satisfy self-similar scaling. A more refined notion of “asymptotically self-
similar singularity” has been considered by Giga and Kohn in [10]. We remark that
the nonexistence of global self-similar solutions has been proved by Necas, Ruzicka
and Sverak [17] and by Tsai [21].

We prove our main result by using a dynamic rescaling technique. Assume that
the solution of the 3D Navier-Stokes is smooth for 0 < t < T and may develop
a possible locally self-similar singularity at x = 0 at time T . We introduce the
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following dynamic rescaling to the solution:

u(x, t) =
U(y, t)√
T − t

, p(x, t) =
P (y, t)
T − t

, y =
x√
T − t

, 0 ≤ t < T. (2)

This defines the rescaled velocity and pressure profiles, U and P . We assume that
U ∈ Lp for some p ∈ (3,∞). This is a reasonable assumption because a locally self-
similar velocity field would typically satisfy the following scaling-invariant blow-up
rate

|u(x, t)| ≤ C∗√
|x|2 + (T − t)

. (3)

It is easy to see that the growth rate (3) would give a corresponding upper bound
on the rescaled velocity field |U(y, t)| ≤ C∗/

√
|y|2 + 1, which implies that U ∈ Lp

for p ∈ (3,∞] for all 0 ≤ t ≤ T .
In this paper, we prove that if the rescaled velocity profile U converges to a

limiting profile as t→ T in Lp for some p ∈ (3,∞), then such a locally self-similar
blow-up is not possible. One of the main observations of this paper is that if the
rescaled velocity profile U converges to a limiting profile in Lp for some p ∈ (3,∞)
as t→ T , then we can prove that

lim
t→T

‖U(t)‖Lp = 0. (4)

The application of a classical result due to Leray [15] would imply that the solution
is regular at t = T . In fact, we need something much weaker than (4). As long as
one can show that limn→∞ ‖U(tn)‖Lp → 0 for a sequence of tn → T , this would be
sufficient to show that u is regular at t = T .

A challenging open problem is to prove the nonexistence of a locally self-similar
blow-up of the 3D Navier-Stokes equations by assuming only the boundedness of
‖U‖Lp for some p ∈ (3,∞). The resolution of this open problem would rule out the
possibility of a finite time blow-up solution that satisfies the scaling-invariant blow-
up rate (3). To rule out such a locally self-similar blow-up is still very difficult at the
technical level. We remark that recently Chen-Strain-Tsai-Yau [4] have made impor-
tant progress along this direction for axisymmetric Navier-Stokes equations. They
prove that if u is smooth for 0 ≤ t < T and satisfies |u(x, t)| ≤ C∗/

√
r2 + (T − t)

with r =
√
x2

1 + x2
2, then u is regular at t = T . In their analysis, the fact that ruθ

(uθ is the angular velocity component) satisfies a conservative convection diffusion
equation plays an essential role.

We also derive a simple but useful non-blow-up criterion for the 3D incompress-
ible Euler equations. Let ω be the vorticity. Define Ωt = {x | ω(x, t) 6= 0} and
ξ(x, t) = ω(x, t)/|ω(x, t)| for x ∈ Ωt. We prove that if u is smooth for 0 ≤ t < T
and satisfies the following growth estimate

limt→T

(
(T − t)‖ξ · ∇xu · ξ‖L∞(Ωt)

)
< 1, (5)

then the solution remains smooth at t = T . Note that in terms of the rescaled
velocity, the non-blowup criterion (5) can be reformulated as

limt→T ‖ξ̃ · ∇yU · ξ̃‖L∞(Ω̃t)
< 1, (6)

where ξ̃ = ∇y × U/|∇y × U | and Ω̃t = {y | ∇y × U 6= 0}. The above non-blowup
criterion also applies to the 3D Navier-Stokes equations for all viscosity ν ≥ 0.

We would like to emphasize that the behavior of the limiting velocity profile can
be verified numerically if a locally self-similar blow-up is observed in a computation.
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In those numerical studies where locally self-similar blow-up solutions were reported
(see, e.g., [13, 2, 18, 11, 19, 14]), there seems to be a well-defined rescaled velocity
profile as the time approaches the alleged singularity time. In particular, Kerr [13,
14] and Pelz [18, 11] provided some detailed description of the rescaled velocity and
vorticity profiles close to the alleged singularity time. We have recently re-examined
the locally self-similar blow-up solution of the 3D Euler equations obtained by Kerr
[13, 14] for two antiparallel vortex tubes [12]. We found that ‖ξ · ∇xu · ξ‖L∞ is
actually bounded by C log ‖ω‖L∞ as t→ T . Thus, even if ‖ω‖L∞ = O((T − t)−1),
as alleged in [13], the non-blow-up condition (5) is easily satisfied. In fact, we
show that the maximum vorticity does not grow faster than doubly exponential in
time [12]. Note that ‖∇xu‖L∞ in general has the same blow-up rate as ‖ω‖L∞ for
a locally self-similar blow-up. The fact that ‖ξ · ∇xu · ξ‖L∞ can be bounded by
C log ‖ω‖L∞ shows that there is tremendous cancellation in the vortex stretching
term due to the anisotropic scaling of the solution near the region of maximum
vorticity [14, 12]. The local geometric regularity of the vorticity vector ξ also plays
an essential role in the dynamic depletion of vortex stretching [6, 7, 8].

We remark that Dr. Chae, motivated by the result presented in this paper, has
recently obtained more general nonexistence results for asymptotically self-similar
singularities in the Euler and Navier-Stokes equations [3]. For more discussions
regarding other aspects of the Navier-Stokes equations, we refer the reader to [5,
20, 16].

In the remaining part of the paper, we will present and prove our main results.

2. The main results and their proofs.

Theorem 2.1. Let u0 ∈ L2(R3) ∩ Lp(R3) for some p ∈ (3,∞). Assume that the
solution u of the 3D incompressible Navier-Stokes equations is smooth for 0 < t < T
and the rescaled velocity profile U(y, t) converges to U in Lp as t → T . Then the
solution remains smooth at t = T .

Theorem 2.2. Assume that the solution u of the 3D incompressible Euler or
Navier-Stokes equations is smooth for 0 ≤ t < T and satisfies the growth estimate
(5); then the solution remains smooth at t = T .

Proof. of Theorem 2.1 We first introduce the following rescaling in time:

τ =
1
2

log
T

T − t
, (7)

for 0 ≤ t < T . Note that by this time rescaling, we have transformed the original
Navier-Stokes equations from [0, T ) in t to [0,∞) in the new time variable τ . It is
easy to derive the equivalent evolution equations for the rescaled velocity:

Uτ + U + (y · ∇)U + 2(U · ∇)U = −2∇P + 2ν∆U, (8)

with initial condition U |τ=0 =
√
Tu0(y

√
T ), where U satisfies ∇·U = 0 for all times.

The problem on the possible finite time blow-up of the Navier-Stokes equations is
now converted to the problem on the large time behavior of the rescaled equations
(8). Since u is the unique smooth solution for the original Navier-Stokes equations
for 0 < t < T , U is the unique smooth solution for the rescaled equation (8) for
0 < τ <∞.

Let φ(y) = (φ1, φ2, φ3) be a smooth, compactly supported, divergence free vector
field in R3, and let ψ(τ) be a smooth, compactly supported test function in (0, 1)
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satisfying
∫ 1

0
ψ(τ)dτ = 1. Multiplying (8) by ψ(τ − n)φ(y) and integrating over

R3 × [n, n+ 1] for some n > 0, we obtain after integration by parts∫ n+1

n

∫
R3

(−ψτφ · U + ψφ · U − ψ∇ · (φ⊗ y) · U − 2ψ∇φ · (U ⊗ U)) dydτ

= 2ν
∫ n+1

n

∫
R3
ψ∆φ · Udydτ, (9)

where ψ is evaluated at τ − n.
By the assumption of the theorem, we have

lim
τ→∞

‖U(τ)− U‖Lp = 0, (10)

for some p > 3. Thus ‖U(τ)‖Lp is bounded for τ sufficiently large, and ‖U‖Lp is
also bounded. Let U(τ) = U + R(τ). By (10), we have limτ→∞ ‖R(τ)‖Lp = 0.
Substituting U(τ) = U +R(τ) into (9), we will show that all the terms involving R
will go to zero as n→∞. It is sufficient to prove this for the nonlinear term:∫ n+1

n

∫
R3
ψ∇φ · (R⊗R)dydτ.

Let q = p/(p − 2) > 1. Then we have 2/p + 1/q = 1. Using the Hölder inequality,
we obtain

|
∫ n+1

n

∫
R3
ψ∇φ · (R⊗R)dydτ | ≤ C sup

n≤τ≤n+1

∫
R3
|∇φ||R|2dy

≤ C‖∇φ‖Lq sup
n≤τ≤n+1

‖R(τ)‖2Lp → 0, as n→∞.

Other terms can be proved similarly. Therefore, by letting n→∞, we get

−
(∫ 1

0

ψτ (τ)dτ
) ∫

R3
φ(y)U(y)dy

+
(∫ 1

0

ψ(τ)dτ
) (∫

R3

(
φ · U −∇ · (φ⊗ y) · U − 2∇φ · (U ⊗ U)

)
dy

)
= 2

(∫ 1

0

ψ(τ)dτ
) (∫

R3
∆φ · Udy

)
. (11)

Since ψ has compact support in [0, 1], we conclude that∫ 1

0

ψτ (τ)dτ = 0.

Moreover, we have
∫ 1

0
ψ(τ)dτ = 1 by assumption on ψ. Thus, we obtain∫

R3

(
φ · U −∇ · (φ⊗ y) · U − 2∇φ · (U ⊗ U)− 2ν∆φ · U

)
dy = 0. (12)

Thus, U is a weak solution of the steady state rescaled Navier-Stokes equations:

U + (y · ∇)U + 2(U · ∇)U = −2∇P + 2ν∆U, (13)

with ∇ · U = 0. Since U ∈ Lp for some p ∈ (3,∞), we can apply Theorem 1 of
[21] to conclude that U ≡ 0. As a result, we obtain the following a priori decay
estimate for ‖U(τ)‖Lp .

lim
τ→∞

‖U(τ)‖Lp = 0. (14)
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Using the rescaling relation (2), we can obtain the following estimate in terms of
the original velocity field:

lim
t→T

(T − t)1/2−3/2p‖u(t)‖Lp = 0. (15)

This would imply that u must be regular at t = T . If this were not the case, then
the classical result of Leray [15] (also see the excellent summary of Leray’s results
in [9]) would imply that

‖u(t)‖Lp ≥ C

(T − t)1/2−3/2p
, (16)

for some positive constant C that depends on p but is independent of T and t. This
contradicts estimate (15). In fact, we need something much weaker than (14) to
obtain a contradiction with Leray’s result. We just need a subsequence τn →∞ such
that limn→∞ ‖U(τn)‖Lp = 0. This already contradicts the blow-up rate estimate of
Leray. This observation may be useful for future study. This completes the proof
of Theorem 2.1.

Proof. of Theorem 2.2. We prove the result for the Navier-Stokes equations for
all ν ≥ 0. Let Ω̃τ = {y | ∇ × U 6= 0}. By the assumption of Theorem 2.2, we have

limτ→∞‖ξ̃ · ∇U · ξ̃‖L∞(Ω̃τ ) < 1. (17)

Thus, there exists τM > 0 large enough and ε > 0 small enough such that

‖ξ̃ · ∇U · ξ̃‖L∞(Ω̃τ ) ≤ 1− ε, (18)

for τ ≥ τM . Define W ≡ ∇× U . By taking the curl of (8), we obtain an equation
for the rescaled vorticity W as follows:

Wτ + 2W + (y · ∇)W + 2(U · ∇)W = 2∇U ·W + 2ν∆W . (19)

For y ∈ Ω̃τ , we derive by taking the inner product of W with (19) that

1
2
(|W |2)τ+2|W |2+(y·∇)|W |2+(U ·∇)|W |2 = 2(ξ̃·∇U ·ξ̃)|W |2+ν∆(|W |2)−2ν|∇W |2 ,

(20)
where we have used W ·∆W = ∆(|W |2/2)− |∇W |2, which can be verified directly.
It follows from (18) and (20) that

d

dτ
‖W‖L∞ ≤ −2ε‖W‖L∞ , (21)

for τ ≥ τM and for all ν ≥ 0. This implies that

‖W (τ)‖L∞ ≤ ‖W (τM )‖L∞e
−2ετ , τ ≥ τM . (22)

In terms of the original vorticity variable, we obtain

‖ω(t)‖L∞ ≤ ‖ω(tM )‖L∞(T − tM )
T ε(T − t)1−ε

, (23)

for tM ≤ t < T , where tM = T (1− e−2τM ) < T . Therefore, we have∫ T

0

‖ω(t)‖L∞dt =
∫ tM

0

‖ω(t)‖L∞dt+
∫ T

tM

‖ω(t)‖L∞dt <∞, (24)

since ω is smooth for 0 ≤ t ≤ TM . Now the theorem follows from the Beale-Kato-
Majda non-blowup criterion [1]. This completes the proof of Theorem 2.2.
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