Website: http://aimSciences.org pp. 637–642

NONEXISTENCE OF LOCALLY SELF-SIMILAR BLOW-UP FOR THE 3D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

THOMAS Y. HOU

Applied and Comput. Math, Caltech, Pasadena, CA 91125

Ruo Li

LMAM&School of Mathematical Sciences, Peking University, Beijing, China, 100871

ABSTRACT. We study locally self-similar solutions of the three dimensional incompressible Navier-Stokes equations. The locally self-similar solutions we consider here are different from the global self-similar solutions. The self-similar scaling is only valid in an inner core region that shrinks to a point dynamically as the time, t, approaches a possible singularity time, T. The solution outside the inner core region is assumed to be regular, but it does not satisfy self-similar scaling. Under the assumption that the dynamically rescaled velocity profile converges to a limiting profile as $t \to T$ in L^p for some $p \in (3, \infty)$, we prove that such a locally self-similar blow-up is not possible. We also obtain a simple but useful non-blowup criterion for the 3D Euler equations.

1. **Introduction.** In this paper, we study locally self-similar solutions of the 3D Navier-Stokes equations

$$\begin{cases} u_t + (u \cdot \nabla)u = -\nabla p + \nu \Delta u, \\ \nabla \cdot u = 0, \\ u|_{t=0} = u_0(x), \end{cases}$$
 (1)

where u is velocity, p is pressure, and ν is viscosity. The locally self-similar solutions we consider are very different from the global self-similar solutions considered by Leray [15]. The self-similar scaling is only valid in an inner core region that shrinks to a point dynamically as the time, t, approaches a possible singularity time, T. Typically the inner core region can be taken as a ball of radius proportional to some fractional power of (T-t). The solution outside the inner core region is regular and does not satisfy self-similar scaling. A more refined notion of "asymptotically self-similar singularity" has been considered by Giga and Kohn in [10]. We remark that the nonexistence of global self-similar solutions has been proved by Necas, Ruzicka and Sverak [17] and by Tsai [21].

We prove our main result by using a dynamic rescaling technique. Assume that the solution of the 3D Navier-Stokes is smooth for 0 < t < T and may develop a possible locally self-similar singularity at x = 0 at time T. We introduce the

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary:\ 76D03,\ 76D05;\ Secondary:\ 76B03.$ Key words and phrases. Navier-Stokes equations, Euler equations, locally self-similar, blow-up.

following dynamic rescaling to the solution:

$$u(x,t) = \frac{U(y,t)}{\sqrt{T-t}}, \ p(x,t) = \frac{P(y,t)}{T-t}, \ y = \frac{x}{\sqrt{T-t}}, \ 0 \le t < T.$$
 (2)

This defines the rescaled velocity and pressure profiles, U and P. We assume that $U \in L^p$ for some $p \in (3, \infty)$. This is a reasonable assumption because a locally self-similar velocity field would typically satisfy the following scaling-invariant blow-up rate

$$|u(x,t)| \le \frac{C_*}{\sqrt{|x|^2 + (T-t)}}.$$
 (3)

It is easy to see that the growth rate (3) would give a corresponding upper bound on the rescaled velocity field $|U(y,t)| \leq C_*/\sqrt{|y|^2+1}$, which implies that $U \in L^p$ for $p \in (3, \infty]$ for all 0 < t < T.

In this paper, we prove that if the rescaled velocity profile U converges to a limiting profile as $t \to T$ in L^p for some $p \in (3, \infty)$, then such a locally self-similar blow-up is not possible. One of the main observations of this paper is that if the rescaled velocity profile U converges to a limiting profile in L^p for some $p \in (3, \infty)$ as $t \to T$, then we can prove that

$$\lim_{t \to T} ||U(t)||_{L^p} = 0. \tag{4}$$

The application of a classical result due to Leray [15] would imply that the solution is regular at t = T. In fact, we need something much weaker than (4). As long as one can show that $\lim_{n\to\infty} \|U(t_n)\|_{L^p} \to 0$ for a sequence of $t_n \to T$, this would be sufficient to show that u is regular at t = T.

A challenging open problem is to prove the nonexistence of a locally self-similar blow-up of the 3D Navier-Stokes equations by assuming only the boundedness of $\|U\|_{L^p}$ for some $p \in (3, \infty)$. The resolution of this open problem would rule out the possibility of a finite time blow-up solution that satisfies the scaling-invariant blow-up rate (3). To rule out such a locally self-similar blow-up is still very difficult at the technical level. We remark that recently Chen-Strain-Tsai-Yau [4] have made important progress along this direction for axisymmetric Navier-Stokes equations. They prove that if u is smooth for $0 \le t < T$ and satisfies $|u(x,t)| \le C_*/\sqrt{r^2 + (T-t)}$ with $r = \sqrt{x_1^2 + x_2^2}$, then u is regular at t = T. In their analysis, the fact that ru^θ (u^θ is the angular velocity component) satisfies a conservative convection diffusion equation plays an essential role.

We also derive a simple but useful non-blow-up criterion for the 3D incompressible Euler equations. Let ω be the vorticity. Define $\Omega_t = \{x \mid \omega(x,t) \neq 0\}$ and $\xi(x,t) = \omega(x,t)/|\omega(x,t)|$ for $x \in \Omega_t$. We prove that if u is smooth for $0 \leq t < T$ and satisfies the following growth estimate

$$\overline{\lim}_{t \to T} \left((T - t) \| \xi \cdot \nabla_x u \cdot \xi \|_{L^{\infty}(\Omega_t)} \right) < 1, \tag{5}$$

then the solution remains smooth at t = T. Note that in terms of the rescaled velocity, the non-blowup criterion (5) can be reformulated as

$$\overline{\lim}_{t \to T} \|\tilde{\xi} \cdot \nabla_y U \cdot \tilde{\xi}\|_{L^{\infty}(\tilde{\Omega}_{\star})} < 1, \tag{6}$$

where $\tilde{\xi} = \nabla_y \times U/|\nabla_y \times U|$ and $\tilde{\Omega}_t = \{y \mid \nabla_y \times U \neq 0\}$. The above non-blowup criterion also applies to the 3D Navier-Stokes equations for all viscosity $\nu \geq 0$.

We would like to emphasize that the behavior of the limiting velocity profile can be verified numerically if a locally self-similar blow-up is observed in a computation. In those numerical studies where locally self-similar blow-up solutions were reported (see, e.g., [13, 2, 18, 11, 19, 14]), there seems to be a well-defined rescaled velocity profile as the time approaches the alleged singularity time. In particular, Kerr [13, 14] and Pelz [18, 11] provided some detailed description of the rescaled velocity and vorticity profiles close to the alleged singularity time. We have recently re-examined the locally self-similar blow-up solution of the 3D Euler equations obtained by Kerr [13, 14] for two antiparallel vortex tubes [12]. We found that $\|\xi \cdot \nabla_x u \cdot \xi\|_{L^{\infty}}$ is actually bounded by $C \log \|\omega\|_{L^{\infty}}$ as $t \to T$. Thus, even if $\|\omega\|_{L^{\infty}} = O((T-t)^{-1})$, as alleged in [13], the non-blow-up condition (5) is easily satisfied. In fact, we show that the maximum vorticity does not grow faster than doubly exponential in time [12]. Note that $\|\nabla_x u\|_{L^{\infty}}$ in general has the same blow-up rate as $\|\omega\|_{L^{\infty}}$ for a locally self-similar blow-up. The fact that $\|\xi\cdot\nabla_x u\cdot\xi\|_{L^\infty}$ can be bounded by $C \log \|\omega\|_{L^{\infty}}$ shows that there is tremendous cancellation in the vortex stretching term due to the anisotropic scaling of the solution near the region of maximum vorticity [14, 12]. The local geometric regularity of the vorticity vector ξ also plays an essential role in the dynamic depletion of vortex stretching [6, 7, 8].

We remark that Dr. Chae, motivated by the result presented in this paper, has recently obtained more general nonexistence results for asymptotically self-similar singularities in the Euler and Navier-Stokes equations [3]. For more discussions regarding other aspects of the Navier-Stokes equations, we refer the reader to [5, 20, 16].

In the remaining part of the paper, we will present and prove our main results.

2. The main results and their proofs.

Theorem 2.1. Let $u_0 \in L^2(\mathbb{R}^3) \cap L^p(\mathbb{R}^3)$ for some $p \in (3, \infty)$. Assume that the solution u of the 3D incompressible Navier-Stokes equations is smooth for 0 < t < T and the rescaled velocity profile U(y,t) converges to \overline{U} in L^p as $t \to T$. Then the solution remains smooth at t = T.

Theorem 2.2. Assume that the solution u of the 3D incompressible Euler or Navier-Stokes equations is smooth for $0 \le t < T$ and satisfies the growth estimate (5); then the solution remains smooth at t = T.

Proof. of Theorem 2.1 We first introduce the following rescaling in time:

$$\tau = \frac{1}{2} \log \frac{T}{T - t},\tag{7}$$

for $0 \le t < T$. Note that by this time rescaling, we have transformed the original Navier-Stokes equations from [0,T) in t to $[0,\infty)$ in the new time variable τ . It is easy to derive the equivalent evolution equations for the rescaled velocity:

$$U_{\tau} + U + (y \cdot \nabla)U + 2(U \cdot \nabla)U = -2\nabla P + 2\nu \Delta U, \tag{8}$$

with initial condition $U|_{\tau=0} = \sqrt{T}u_0(y\sqrt{T})$, where U satisfies $\nabla \cdot U = 0$ for all times. The problem on the possible finite time blow-up of the Navier-Stokes equations is now converted to the problem on the large time behavior of the rescaled equations (8). Since u is the unique smooth solution for the original Navier-Stokes equations for 0 < t < T, U is the unique smooth solution for the rescaled equation (8) for $0 < \tau < \infty$.

Let $\phi(y) = (\phi_1, \phi_2, \phi_3)$ be a smooth, compactly supported, divergence free vector field in \mathbb{R}^3 , and let $\psi(\tau)$ be a smooth, compactly supported test function in (0,1)

satisfying $\int_0^1 \psi(\tau) d\tau = 1$. Multiplying (8) by $\psi(\tau - n)\phi(y)$ and integrating over $\mathbb{R}^3 \times [n, n+1]$ for some n > 0, we obtain after integration by parts

$$\int_{n}^{n+1} \int_{\mathbb{R}^{3}} \left(-\psi_{\tau} \phi \cdot U + \psi \phi \cdot U - \psi \nabla \cdot (\phi \otimes y) \cdot U - 2\psi \nabla \phi \cdot (U \otimes U) \right) dy d\tau
= 2\nu \int_{n}^{n+1} \int_{\mathbb{R}^{3}} \psi \Delta \phi \cdot U dy d\tau,$$
(9)

where ψ is evaluated at $\tau - n$.

By the assumption of the theorem, we have

$$\lim_{\tau \to \infty} \|U(\tau) - \overline{U}\|_{L^p} = 0, \tag{10}$$

for some p > 3. Thus $||U(\tau)||_{L^p}$ is bounded for τ sufficiently large, and $||\overline{U}||_{L^p}$ is also bounded. Let $U(\tau) = \overline{U} + R(\tau)$. By (10), we have $\lim_{\tau \to \infty} ||R(\tau)||_{L^p} = 0$. Substituting $U(\tau) = \overline{U} + R(\tau)$ into (9), we will show that all the terms involving R will go to zero as $n \to \infty$. It is sufficient to prove this for the nonlinear term:

$$\int_{n}^{n+1} \int_{\mathbb{R}^{3}} \psi \nabla \phi \cdot (R \otimes R) dy d\tau.$$

Let q = p/(p-2) > 1. Then we have 2/p + 1/q = 1. Using the Hölder inequality, we obtain

$$|\int_{n}^{n+1} \int_{\mathbb{R}^{3}} \psi \nabla \phi \cdot (R \otimes R) dy d\tau| \leq C \sup_{n \leq \tau \leq n+1} \int_{\mathbb{R}^{3}} |\nabla \phi| |R|^{2} dy$$

$$\leq C \|\nabla \phi\|_{L^{q}} \sup_{n \leq \tau \leq n+1} \|R(\tau)\|_{L^{p}}^{2} \to 0, \text{ as } n \to \infty.$$

Other terms can be proved similarly. Therefore, by letting $n \to \infty$, we get

$$-\left(\int_{0}^{1} \psi_{\tau}(\tau)d\tau\right) \int_{\mathbb{R}^{3}} \phi(y)\overline{U}(y)dy$$

$$+\left(\int_{0}^{1} \psi(\tau)d\tau\right) \left(\int_{\mathbb{R}^{3}} \left(\phi \cdot \overline{U} - \nabla \cdot (\phi \otimes y) \cdot \overline{U} - 2\nabla\phi \cdot (\overline{U} \otimes \overline{U})\right)dy\right)$$

$$= 2\left(\int_{0}^{1} \psi(\tau)d\tau\right) \left(\int_{\mathbb{R}^{3}} \Delta\phi \cdot \overline{U}dy\right). \tag{11}$$

Since ψ has compact support in [0, 1], we conclude that

$$\int_0^1 \psi_\tau(\tau) d\tau = 0.$$

Moreover, we have $\int_0^1 \psi(\tau) d\tau = 1$ by assumption on ψ . Thus, we obtain

$$\int_{\mathbb{R}^3} \left(\phi \cdot \overline{U} - \nabla \cdot (\phi \otimes y) \cdot \overline{U} - 2\nabla \phi \cdot (\overline{U} \otimes \overline{U}) - 2\nu \Delta \phi \cdot \overline{U} \right) dy = 0. \tag{12}$$

Thus, \overline{U} is a weak solution of the steady state rescaled Navier-Stokes equations:

$$\overline{U} + (y \cdot \nabla)\overline{U} + 2(\overline{U} \cdot \nabla)\overline{U} = -2\nabla\overline{P} + 2\nu\Delta\overline{U}, \tag{13}$$

with $\nabla \cdot \overline{U} = 0$. Since $\overline{U} \in L^p$ for some $p \in (3, \infty)$, we can apply Theorem 1 of [21] to conclude that $\overline{U} \equiv 0$. As a result, we obtain the following a priori decay estimate for $\|U(\tau)\|_{L^p}$.

$$\lim_{\tau \to \infty} ||U(\tau)||_{L^p} = 0. \tag{14}$$

Using the rescaling relation (2), we can obtain the following estimate in terms of the original velocity field:

$$\lim_{t \to T} (T - t)^{1/2 - 3/2p} ||u(t)||_{L^p} = 0.$$
(15)

This would imply that u must be regular at t = T. If this were not the case, then the classical result of Leray [15] (also see the excellent summary of Leray's results in [9]) would imply that

$$||u(t)||_{L^p} \ge \frac{C}{(T-t)^{1/2-3/2p}},$$
 (16)

for some positive constant C that depends on p but is independent of T and t. This contradicts estimate (15). In fact, we need something much weaker than (14) to obtain a contradiction with Leray's result. We just need a subsequence $\tau_n \to \infty$ such that $\lim_{n\to\infty} \|U(\tau_n)\|_{L^p} = 0$. This already contradicts the blow-up rate estimate of Leray. This observation may be useful for future study. This completes the proof of Theorem 2.1.

Proof. of Theorem 2.2. We prove the result for the Navier-Stokes equations for all $\nu \geq 0$. Let $\tilde{\Omega}_{\tau} = \{y \mid \nabla \times U \neq 0\}$. By the assumption of Theorem 2.2, we have

$$\overline{\lim}_{\tau \to \infty} \|\tilde{\xi} \cdot \nabla U \cdot \tilde{\xi}\|_{L_{\infty}(\tilde{\Omega}_{\tau})} < 1. \tag{17}$$

Thus, there exists $\tau_M > 0$ large enough and $\epsilon > 0$ small enough such that

$$\|\tilde{\xi} \cdot \nabla U \cdot \tilde{\xi}\|_{L_{\infty}(\tilde{\Omega}_{\tau})} \le 1 - \epsilon, \tag{18}$$

for $\tau \geq \tau_M$. Define $W \equiv \nabla \times U$. By taking the curl of (8), we obtain an equation for the rescaled vorticity W as follows:

$$W_{\tau} + 2W + (y \cdot \nabla)W + 2(U \cdot \nabla)W = 2\nabla U \cdot W + 2\nu \Delta W. \tag{19}$$

For $y \in \tilde{\Omega}_{\tau}$, we derive by taking the inner product of W with (19) that

$$\frac{1}{2}(|W|^2)_{\tau} + 2|W|^2 + (y \cdot \nabla)|W|^2 + (U \cdot \nabla)|W|^2 = 2(\tilde{\xi} \cdot \nabla U \cdot \tilde{\xi})|W|^2 + \nu \Delta(|W|^2) - 2\nu|\nabla W|^2,$$
(20)

where we have used $W \cdot \Delta W = \Delta(|W|^2/2) - |\nabla W|^2$, which can be verified directly. It follows from (18) and (20) that

$$\frac{d}{d\tau} \|W\|_{L^{\infty}} \le -2\epsilon \|W\|_{L^{\infty}},\tag{21}$$

for $\tau \geq \tau_M$ and for all $\nu \geq 0$. This implies that

$$||W(\tau)||_{L^{\infty}} \le ||W(\tau_M)||_{L^{\infty}} e^{-2\epsilon \tau}, \quad \tau \ge \tau_M . \tag{22}$$

In terms of the original vorticity variable, we obtain

$$\|\omega(t)\|_{L^{\infty}} \le \frac{\|\omega(t_M)\|_{L^{\infty}}(T - t_M)}{T^{\epsilon}(T - t)^{1 - \epsilon}},\tag{23}$$

for $t_M \leq t < T$, where $t_M = T(1 - e^{-2\tau_M}) < T$. Therefore, we have

$$\int_{0}^{T} \|\omega(t)\|_{L^{\infty}} dt = \int_{0}^{t_{M}} \|\omega(t)\|_{L^{\infty}} dt + \int_{t_{M}}^{T} \|\omega(t)\|_{L^{\infty}} dt < \infty, \tag{24}$$

since ω is smooth for $0 \le t \le T_M$. Now the theorem follows from the Beale-Kato-Majda non-blowup criterion [1]. This completes the proof of Theorem 2.2.

Acknowledgments. We would like to thank Profs. Congming Li and Dongho Chae for their useful comments and suggestions. The first author is supported by NSF under the NSF FRG grant DMS-0353838 and ITR Grant ACI-0204932. The second author was partially supported by the National Basic Research Program of China under the grant 2005CB321701.

REFERENCES

- [1] J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions of the 3-d Euler equations, Commun. Math. Phys., 96 (1984), 61–66.
- [2] O. N. Boratav and R. B. Pelz, Direct numerical simulation of transition to turbulence from a high-symmetry initial condition, Phys. Fluids, 6 (1994), 2757–2784.
- [3] D. Chae, Non-existence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations, Math Ann, in press (2007).
- [4] C. C. Chen, R. M. Strain, T. P. Tsai, and H. T. Yau, Lower bound on the blow-up rate of axisymmetric Navier-Stokes equations, arXiv-preprint, math.AP/0701796v1 (2007).
- [5] A. J. Chorin and J. E. Marsden, "A Mathematical Introduction to Fluid Mechanics," Springer-Verlag, New York, 1993.
- [6] P. Constantin, C. Fefferman, and A. Majda, Geometric constraints on potentially singular solutions for the 3-d Euler equation, Comm. PDE, 21 (1996), 559–571.
- [7] J. Deng, T. Y. Hou, and X. Yu, Geometric properties and the non-blow-up of the threedimensional Euler equation, Comm. PDEs, 30 (2005), 225-243.
- [8] _____, Improved geometric conditions for non-blow-up of the 3d Euler equation, Comm. PDEs, 31 (2006), 293–306.
- [9] L. Escauriaza, G. Seregin, and V. Sverak, L^{3,∞}-solutions of Navier-Stokes equations and backward uniqueness, Russ. Math. Surveys, 58 (2003), 211–250.
- [10] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, CPAM, 38 (1985), 297–319.
- [11] J. M. Greene and R. B. Pelz, Stability of postulated, self-similar, hydrodynamic blowup solutions, Phys. Rev. E, 62 (2000), 7982–7986.
- [12] T. Y. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-d incompressible Euler equations, J. Nonlinear Science, 16 (2006), 639–664.
- [13] R. M. Kerr, Evidence for a singularity of the three dimensional, incompressible Euler equations, Phys. Fluids, 5 (1993), 1725–1746.
- [14] _____, Velocity and scaling of collapsing Euler vortices, Phys. Fluids, 17 (2005), 075103– 114.
- [15] J. Leray, Sur le mouvement d'un liquide visqueus emplissant l'espace, Acta Math., 63 (1934), 193–248.
- [16] A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge University Press, Cambridge, UK, 2002.
- [17] J. Necas, M. Ruzicka, and V. Sverak, On Leray's self-similar solutions of the Navier-Stokes equations, Acta Math., 176 (1996), 283–294.
- [18] R. B. Pelz, Locally self-similar, finite-time collapse in a high-symmetry vortex filament model, Phys. Rev. E, 55 (1997), 1617–1626.
- [19] _____, Symmetry and hydrodynamic blow-up problem, J. Fluid Mech., 444 (2001), 299–320.
- [20] R. Temam, "Navier-Stokes Equations," American Mathematical Society, Providence, Rhode Island, 2001.
- [21] T. P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rational Mech. Anal., 143 (1998), 29–51.

Received for publication March 2007.

E-mail address: hou@acm.caltech.edu E-mail address: rli@math.pku.edu.cn