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We study numerically the simplest model of two incompressible, immiscible fluids shearing past
one another. The fluids are two-dimensional, inviscid, irrotational, density matched, and separated
by a sharp interface under a surface tension. The nonlinear growth and evolution of this interface is
governed by only the competing effects of the Kelvin–Helmholtz instability and the dispersion due
to surface tension. We have developed new and highly accurate numerical methods designed to treat
the difficulties associated with the presence of surface tension. This allows us to accurately simulate
the evolution of the interface over much longer times than has been done previously. A surprisingly
rich variety of behavior is found. For small Weber numbers, where there are no unstable
length-scales, the flow is dispersively dominated and oscillatory behavior is observed. For
intermediate Weber numbers, where there are only a few unstable length-scales, the interface forms
elongating and interpenetrating fingers of fluid. At larger Weber numbers, where there are many
unstable scales, the interface rolls-up into a ‘‘Kelvin-Helmholtz’’ spiral with its late evolution
terminated by the collision of the interface with itself, forming at that instant bubbles of fluid at the
core of the spiral. Using locally refined grids, this singular event~a ‘‘topological’’ or ‘‘pinching’’
singularity! is studied carefully. Our computations suggest at least a partial conformance to a local
self-similar scaling. For fixed initial data, the pinching singularity times decrease as the surface
tension is reduced, apparently towards the singularity time associated with the zero surface tension
problem, as studied by Moore and others. Simulations from more complicated, multi-modal initial
data show the evolution as a combination of these fingers, spirals, and pinches. ©1997 American
Institute of Physics.@S1070-6631~97!02407-0#
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I. INTRODUCTION

The Kelvin–Helmholtz~K–H! instability is a fundamen-
tal instability of incompressible fluid flow at high Reynold
number, arising generally from the shearing of one flu
mass past another. If the two fluids are immiscible, then t
are naturally separated by an sharp interface across w
there is a surface tension. The surface tension arises from
imbalance of the two fluids’ intermolecular cohesive forc
and exists even if the two fluids are density and viscos
matched. Dynamically, surface tension acts as a disper
regularization of the K–H instability.

In this paper, we consider the simplest case. The
shearing fluids are two-dimensional, inviscid, irrotation
density matched, and separated by a sharp interface.
interface can then be described as avortex sheet. That is, a
surface across which there is a discontinuity in tangen
velocity.1 The nonlinear growth and evolution of this inte
face is governed by only the competing effects of the K
instability and the dispersion due to surface tension. Us
new numerical methods, developed partly in Hou, Lowe
grub, and Shelley~HLS94!,2 we have been able to compu
accurately the nonlinear evolution of this system over mu
larger times than previously possible. We find a surprisin
rich variety of behavior within this relatively simple frame
work. Using fixed initial data close to equilibrium, the ens
ing evolution is studied as the Weber numberWe is varied.
Phys. Fluids 9 (7), July 1997 1070-6631/97/9(7)/1933/22/
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In effect,Wemeasures the strength of the K–H instabili
relative to the dispersive stabilization associated with surf
tension. For smallWe, where there are no initially unstabl
length scales~dispersively dominated!, the interface simply
oscillates in time, over tens of periods, with no appar
development of the new structure. For intermediateWe,
where there are now a few initially unstable length-scal
the interface forms elongating fingers that interpenetrate e
fluid into the other. This is illustrated in the right box of Fig
4. At We ten times larger, where there are many more i
tially unstable length-scales~K–H dominated!, the interface
rolls up into a ‘‘Kelvin-Helmholtz spiral.’’ However, further
roll-up is terminated by the collision of the interface wi
itself, forming trapped bubbles of fluid at the core of th
spiral. The development of this event is shown in Fig. 1
Simulations from more general initial data show the evo
tion as a combination of these fingers, spirals, and pinch

The collision of material surfaces, such as the se
intersection of an interface, constitutes a singularity in
evolution, implying at least the divergence of velocity grad
ents~an argument for this is given in Appendix C!. Here, the
collision is linked intimately to the creation of intense loca
ized jets produced by the surface tension. Our numerica
sults suggest that both the true vortex sheet strength~the
jump in tangential velocity across the sheet!, and the interfa-
cial curvature diverge at the collision time, with the interfa
1933$10.00 © 1997 American Institute of Physics
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apparently forming corners. Physically, this collision m
signal an imminent change in the topology of the flow and
this event is referred to as atopologicalor pinchingsingu-
larity. Of course, such events are commonly observed, wi
standard example being the pinching and fissioning of th
dimensional liquid jets. However, taking an axially symm
ric, inviscid jet as a prototype, the pinching occurs throu
the nonlinear development of the classical Rayle
instability,3 itself driven strongly by the azimuthal compo
nent of the surface tension contribution. This componen
completely absent in a two-dimensional flow, making t
appearance of such pinching singularities more surprisin

Because of its technological and scientific importan
understanding the motion of interfaces that bound masse
fluid undergoing fission has become an area of intense
search activity. A small sampling of recent studies includ
work in Stokes flows,4,5 lubrication models of thin-film and
Hele–Shaw flows,6–9 Hele–Shaw flows,10,8,11 and shallow
water approximations and experiments of axially symme
jets.12–14 Of particular relevance here, Keller and Miksis15

have given an asymptotic analysis of the immediate af
math of a topological transition occurring when a taper
infinite layer of inviscid, incompressible fluid~surrounded by
air! breaks into two semi-infinite, finite-angled fluid wedge
Supposing that the layer breaks at timet50, Keller and Mik-
sis use a similarity analysis to find the resulting flow veloc
and gap width fort.0. They find that the flow velocity is
initially infinite and decays in time like (tr/t)21/3 wherer is
the density of the fluid. The gap width grows lik
(tAt/r)2/3. Their work does not apply directly to our ob
served pinching singularity since in our case fluid is on b
sides of the self-intersecting interface. This introduces a
ther, nontrivial nonlocality to the problem. Moreover, rath
than exiting a topological transition, our system is approa
ing one. Nevertheless, our equations can be recast in
similar variables using these temporal exponents and as
be described in Sec. IV, our numerical results suggest at l
partial agreement with the temporal exponents of Keller a
Miksis.

The behavior of vortex sheets in the absence of surf
tension is much different. In this case,We5` and the un-
regularized K–H instability produces infinitely many u
stable scales. It is now well known that the interface dev
ops isolated singularities that are not associated with
large-scale structure of the sheet such as roll-up. In
asymptotic analysis valid for initial data close to equilibrium
Moore16 gave the first analytical evidence for this singula
ity. Moore’s analysis suggests that at the timet5tM , the
interface profile, while still being nearly flat, acquires is
lated square-root singularities in its curvature. Moreover,
true vortex sheet strength remains finite att5tM , but does
develop a cusp that is associated with a rapid compressio
circulation in the neighborhood of the singularity. Th
We5` singularity is hereafter referred to as theMoore sin-
gularity.

Caflisch and Orellana17 later reinterpreted Moore’s
analysis and presented a class of ‘‘exact’’ solutions to
full nonlinear equations. The Caflisch and Orellana solutio
of which Moore’s is one case, develop singularities at fin
1934 Phys. Fluids, Vol. 9, No. 7, July 1997
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times. Numerical computations performed by Meiron, Bak
and Orszag,18 Krasny,19 and particularly Shelley,20 suggest
that the generic singularity structure is given by the analy
of Moore. In the absence of surface tension, Moore’s ana
sis was extended to the Boussinesq problem by Pugh21 and to
the full Rayleigh–Taylor problem by Baker, Caflisch, an
Siegel22 ~also see Ref. 23!.

We do not observe the Moore singularity in the presen
of surface tension, though at largeWe its shadow is seen by
the rapid production of dispersive waves. While a topolo
cal singularity is observed at late times, it is of a fundame
tally different type than the Moore singularity. Rather th
occurring through the rapidcompressionof circulation as in
the Moore singularity, the topological singularity is asso
ated with the rapidproductionof new, localized circulation.

Siegel24 has recently extended Moore’s analysis to t
nonzero surface tension case~i.e.,We,`). Using a special
initial condition, Siegel constructs travelling wave solutio
to a reduced system of equations. Siegel’s analysis pred
the formation of finite time singularities whenever there is
least one linearly unstable Fourier mode. The predic
structure of the singularity, however, is quite different fro
that observed in our numerical simulations. This is furth
discussed in the Conclusion.

Because an analysis of the full vortex sheet equation
the presence of surface tension is so difficult, most of
previous studies of surface tension effects have been num
cal. Still, it has been problematic to pose stable numer
methods, even in the semi-discrete case where time is
discretized. Many numerical methods treat the small sca
incorrectly, either through the introduction of aliasing erro
or by artificial smoothing. This can lead to numerical ins
bilities that are related to the K–H instability.25–27Examples
of this are seen in the computations of Zalosh28 and Pullin.29

In independent works, Baker and Nachbin25 and Beale, Hou,
and Lowengrub26,27 identified the source of numerical insta
bility in these surface tension computations and gave al
native, stable numerical methods.

Additional difficulties occur when fully discrete method
are considered. Surface tension introduces high-order sp
terms through the interface curvature appearing in
Laplace–Young boundary condition. These terms app
nonlocally in the equations of motion due to the incompre
ibility constraint, and are nonlinear functionals of the she
position due to their origin in the curvature. These ter
create dispersion in the dynamics and are dominant at s
length-scales. For explicit time-stepping methods, this int
duces high-order time-step stability constraints that dep
on the spatial resolution. We refer to such constraints
‘‘stiffness.’’ These constraints can be made more severe
the differential clustering of grid points along the interfac
For example, if the ‘‘Lagrangian’’ formulation and explic
time stepping were used~as in Refs. 29,30,25,26! to calcu-
late the interface evolution shown in Fig. 11, then the sta
ity bound on the time step, for a fixed spatial resolutio
would decrease by a factor of 106 over the course of the
simulation.

Rangel and Sirignano30 attempt to circumvent these dif
ficulties by using a redistribution algorithm that repara
Hou, Lowengrub, and Shelley
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etrizes the interface uniformly in arclength after each ti
step. This keeps points from clustering, but as a resul
repeated interpolations, it has also a strong smoothing e
on the sheet. This yields results that disagree on sev
points with other work. For example, Rangel and Sirigna
are able to compute the roll-up of a vortex sheetwithout
surface tension, with an accompanying divergence of the
vortex sheet strength. This is in direct contradiction to
results of Moore,16 and its associated, very accurate nume
cal studies.18–20

The numerical results presented in this paper rely
numerical methods, designed for handling surface tens
that were developed in part in HLS94. In HLS94, we p
sented a different formulation for computing the motion
fluid interfaces with surface tension in two-dimensional,
rotational and incompressible fluids. This formulation has
the nice properties for time integration methods that are
sociated with having a linear highest-order term. The res
ing numerical methods do not have the severe stability c
straints usually associated with surface tension. O
approach was based on a boundary integral formulatio31

and was applied in HLS94 to Euler and Hele–Shaw flow
Our approach applies more generally, though, even to p
lems beyond the fluid mechanical context. In the study of
topological singularity presented in this paper, we additio
ally incorporate local grid refinement and use a 4th-or
time-stepping method to achieve increased spatial and
poral accuracy.

The organization of the paper is as follows. In Section
a boundary integral formulation is given for the motion
fluid interfaces under surface tension in two-dimensional
ler flows. In Section III, the numerical methods are brie
outlined. Many further details of implementation are fou
in HLS94. Extensions to the work in HLS94 — a high-order
time-integration method and an implementation of local g
refinement — are found in Appendices A and B. The resu
of numerical simulations are presented in Section IV. C
cluding remarks are given in Section V.

II. THE EQUATIONS OF MOTION

Consider two inviscid, incompressible, and irrotation
fluids separated by the parametrized planar interfaceG given
by X(a)5(x(a),y(a)), as shown schematically in Fig. 1
The lower fluid is denoted 1, and the upper fluid is deno
2. n̂ and ŝ are respectively the unit normal and tangent v
tors toG, while k is its curvature. For simplicity, the densit

FIG. 1. A schematic of the fluid interface problem.
Phys. Fluids, Vol. 9, No. 7, July 1997
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is assumed to be constant on each side ofG. Here, the ve-
locity on either side ofG is evolved by the incompressibl
Euler equations,

uj t1~uj•¹!uj52
1

r j
¹~pj1r jgy!, ¹•uj50, ~1!

where the subscriptj denotes the upper or lower fluid. Ther
are the boundary conditions,

~ i ! @u#G•n̂50, the kinematic boundary condition, ~2!

~ i i ! @p#G5tk, the Laplace –Young boundary condition,
~3!

~ i i i ! uj~x,y!→~6V`,0! as y→6`,

the far - field boundary condition. ~4!

Here,@•#G denotes the jump taken from above to belowG.
The tangential component of fluid velocity is typically di
continuous atG. Such an interface is called avortex sheet
~see Ref. 1!. The velocity at a pointX away from the inter-
face has the integral representation

u~X!5
1

2pE g~a8!
~X2X~a8!!'

uX2X~a8!u2
da8, ~5!

whereX'5(2y,x). g is called the~unnormalized! vortex
sheet strength. It gives the velocity difference acrossG by

g̃5
g~a!

sa
5@u#uG• ŝ, ~6!

where sa5Axa
21ya

2 is the arclength metric. The velocit
jump g̃ is called the true vortex sheet strength. This rep
sentation is well known; see Ref. 31. We will consider flow
that are 1-periodic in thex-direction. The average value
ḡ , of g over a period ina satisfies2 ḡ /25V` .

While there is a discontinuity in the tangential comp
nent of the velocity atG, the normal component,U(a), is
continuous and is given by Eq.~5! as

U~a!5W~a!•n̂ ~7!

where

W~a!5
1

2p
P.V.E g~a8!

~X~a!2X~a8!!'

uX~a!2X~a8!u2
da8, ~8!

andP.V. denotes the principal value integral. This integral
called the Birkhoff–Rott integral.

Using the representation~5! of the velocity, Euler’s
equation at the interface, and the Laplace–Young condit
the equations of motion for the interface are

Xt5Un̂1Tŝ, ~9!

g t2]a~~T2W• ŝ!g/sa!

522Ar~saWt• ŝ1
1
8 ]a~g/sa!22~T2W• ŝ!Wa• ŝ/sa!

2Fr21ya1We21ka . ~10!

Here, the equations have been nondimensionalized on a
riodicity lengthl ~so that the nondimensional period leng
is 1) and the velocity scaleḡ , and
1935Hou, Lowengrub, and Shelley
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Ar5
Dr

2 r̄
is the Atwood ratio , ~11!

Fr5
r̄ ḡ 2l2

g~Dr!l3 is the Froude number, ~12!

and

We5
r̄ l2ḡ 2

tl
is the Weber number, ~13!

whereDr5r12r2 , and r̄ 5(r11r2)/2. The Froude num-
ber measures the relative importance of inertial forces~the
K–H instability! to gravitational forces~the Rayleigh–
Taylor instability!, while the Weber number measures t
relative importance of inertial forces to surface tension for
~dispersion!. T is an~as yet! arbitrary tangential velocity tha
specifies the motion of the parametrization ofG. The so-
calledLagrangian formulationcorresponds to choosing th
tangential velocity of a point on the interface to be the ari
metic average of the tangential components of the fluid
locity on either side. That is, choosingT5W• ŝ, in which
case Eq.~10! simplifies considerably.

Equation~10! is a Fredholm integral of the second kin
for g t due to the presence ofg t in Wt . This equation has a
unique solution, and is contractive.31 The mean ofg is pre-
served by Eq.~10! and must be chosen initially to b
22V` , to guarantee that the far-field condition~iii ! is satis-
fied. Further, whileg is evolved as an independent variab
it cannot be interpreted independently of the parametrizat
From Eq. ~6!, it is the ratio g̃5g/sa that has a physica
interpretation, andsa is determined by the choice ofT.

In this work, we study the simpler case when the tw
fluids are density matched, that isAr505Fr21. The prob-
lem is then completely characterized by the Weber num
and the Lagrangian formulation of the equations of mot
becomes simply

Xt~a,t !5W~a,t !, ~14!

g t~a,t !5We21ka . ~15!

The Lagrangian formulation is characterized by an eleg
compactness of statement. However, as we demonstra
Section III, it is not a good formulation for simulation due
a differential clustering of computational points that leads
severe time-step constraints in the presence of surface
sion.

A. The energy

There are several invariants of the motion — the me
andy-moment ofg, the means ofx andy, and the energy
Of these invariants only the energy, through the interfac
energy, contains an explicit contribution from the presen
of surface tension. Further, of these invariants, the energ
the best indicator of accuracy. It is not conserved explic
by our numerical methods, and is a nontrivial constant of
motion.

Neither the total interfacial energy, nor the kinetic e
ergy over a period, is finite. However, both have finite pa
1936 Phys. Fluids, Vol. 9, No. 7, July 1997
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that together form a single invariant. The conserved~pertur-
bation! energyE(t) is the sum of the perturbation kinetic an
the perturbation interfacial energies given by

E~ t !5EL~ t !1EK~ t !, ~16!

where

EL~ t !5We21~L21!

is the perturbation interfacial energy, ~17!

EK~ t !5
1

2E0
1

c~a8,t !g~a8,t !da8

is the perturbation kinetic energy. ~18!

HereL is the length ofG over a single period, andc is the
stream function

c~a,t !52
1

2pE0
1

g~a8,t !logusin p~z~a,t !

2z~a8,t !!uda8, ~19!

wherez(a,t)5x(a,t)1 iy(a,t). The formula forc can be
rewritten, by explicitly subtracting off the logarithmic singu
larity and integrating by parts, to yield an expression that c
be computed numerically with spectral accuracy. S
Pullin29 and Baker and Nachbin25 for details.

B. The linear behavior

Consider first the linearized motion about the flat eq
librium, with x(a,t)5a1ej(a,t), y(a,t)5eh(a,t), and
g(a,t)511ev(a,t), with e ! 1. For definiteness, the La
grangian frameT5W• ŝ is taken. The linearized system re
duces to a single equation for the vertical amplitudeh,

h tt52
1

4
haa1

We21

2
H @haaa#. ~20!

H is the Hilbert transform,32 and is diagonalizable by the
Fourier transform asĤ@ f #52 i sgn(2pk) f̂ . The growth
rate for perturbations about the flat equilibrium is given b

sk
25~2p!2S 14 k222p

We21

2
uku3D . ~21!

The dispersion relation gives instability for wavenumbe
0,uku,We/4p, and dispersion for wavenumber
uku.We/4p. The wavenumber of maximum growth i
uku5We/6p. The surface tension dispersively controls t
Kelvin–Helmholtz instability at large wavenumbers.

A more general linear analysis has been given by Be
Hou and Lowengrub.33 By linearizing around the time-
dependent vortex sheetG5(x(a,t),y(a,t)) with strength
g(a,t), Bealeet al. find thedominantbehavior forh, now
thenormal component of the perturbation, to be

h tt52
g2

4sa
4 haa1

We21

2sa
3 H @haaa#. ~22!
Hou, Lowengrub, and Shelley
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The perturbation ing has been eliminated, to leading orde
by using two time derivatives onh. The same competition o
effects is observed in this more general variable coeffic
setting.

III. THE SMALL-SCALE DECOMPOSITION AND
NUMERICAL METHODS

The primary impediment to performing long time com
putations of vortex sheets with surface tension is the se
time-dependent stability restriction — stiffness — impos
by the surface tension through theka term appearing in Eq
~15!. This is seen easily by a ‘‘frozen coefficient’’ analysis
Eq. ~22!. This reveals that the least restrictive tim
dependent stability constraint on a stableexplicit time inte-
gration method is

Dt,CWe1/2•~ s̄ah!3/2, where s̄a5min
a

sa , ~23!

where h51/N is the grid spacing, withN the number of
points describingG. Since arclength spacing,Ds, satisfies
Ds'sah, Eq. ~23! implies that the stability constraint is i
fact determined by theminimumspacing inarclength be-
tween adjacent points on the grid. This can be strongly t
dependent. For example, our experience is that motion in
Lagrangian frame@Eqs.~14! and ~15!# leads to ‘‘point clus-
tering’’ and hence to very stiff systems, even for flows
which the interface is smooth and theWe is large. For sev-
eral ‘‘typical’’ simulations ~differing Weber numbers! dis-
cussed in the next section, Fig. 2 shows the evolution
s̄a associated with the Lagrangian formulation, on a ba
ten logarithmic scale. This figure was not generated by co
puting in the Lagrangian frame, but rather by using the me
ods described below, and evolving a mapping to
Lagrangian frame. Over the times shown,s̄a decreases in
value by a factor of 104 or more. Consequently, the time-ste
constraint~23! decreases by at least a factor of 106, even for
a fixed spatial grid sizeh. The steep drop at slightly less tha
t50.5 is the result of the compression associated with
shadow of the Moore singularity, which occurs attM'0.37

FIG. 2. The evolution of log10( s̄a) for several Weber numbers.
Phys. Fluids, Vol. 9, No. 7, July 1997
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for this initial data.19 Such strongly time-dependent time-ste
constraints have severely limited previous numerical inve
gations.

The primary challenge to computing the long time ev
lution of interfacial flows with surface tension lies in th
construction of time integration methods with good stabil
properties. It is difficult to straightforwardly construct effi
cient implicit time integration methods as the source of
stiffness — theka in the g-equation — involves both a
nonlinear combination of high derivatives of the interfa
position and contributes nonlocally to the motion through
g in the Birkhoff–Rott integral. Our approach, first given
HLS94, involves reformulating the equations of motion a
cording to the following three steps:„A… u2sa formulation;
„B… small scale analysis;„C… special choices of referenc
frames~tangential velocities!.

(A) u2sa formulation

Rather than usingx,y as the dynamical variables, repos
the evolution in variables that are more naturally related
curvature. Motivated by the identityus5k, whereu the tan-
gent angle to the curveG, the evolution is formulated with
u and sa as the independent dynamical variables~see
Whitham34 for an early application!. The equations of mo-
tion are then given by

sat5Ta2uaU, ~24!

u t5
1

sa
Ua1

T

sa
ua , ~25!

g t5We21]a~ua /sa!1]a~~T2W• ŝ!g/sa!. ~26!

Given sa and u, the position (x(a,t),y(a,t)) is recon-
structed up to a translation by direct integration of

~xa ,ya!5sa~ cos~u~a,t !!, sin~u~a,t !!!, ~27!

which defines the tangent angle. The integration constan
supplied by evolving the position at one pointX0(t).

(B) Small-scale analysis

Reformulate the equations by explicitly separating t
dominant terms at small spatial scales. The behavior of
equations at small scales is important because stability c
straints~i.e., stiffness! arise from the influence of high-orde
terms at small spatial scales. In HLS94 we show that at
small scales the Birkhoff–Rott operator simplifies eno
mously. A useful notation,f;g, is introduced to mean tha
the difference betweenf andg is smoother thanf andg. In
HLS94 we show that

U~a,t !;
1

2sa
H@g#~a,t !. ~28!

That is, at small spatial scales, the normal~physical! velocity
is essentially the Hilbert transform with a variable coef
cient. Now, Eq.~28! allows a rewriting of the equations o
motion in a way that separates the dominant terms at sm
scales~these terms determine the stability constraints!:
1937Hou, Lowengrub, and Shelley
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1

sa
S 1sa

H@g# D
a

1P, ~29!

g t5We21S ua

sa
D

a

1Q. ~30!

Here,P andQ represent ‘‘lower-order’’ terms at small spa
tial scales. This is thesmall-scale decomposition~SSD!. As-
suming thatsa is given, the dominant small-scale terms a
linear inu andg, but also nonlocal and variable coefficien
At this point, it is possible to apply standard implicit tim
integration techniques where the leading-order ‘‘linea
terms are discretized implicitly. However, we have not y
taken any advantage in choosing the tangential velocityT.
There are choices ofT that are especially convenient in co
structing efficient time integration methods and in mainta
ing the accuracy of the simulations.

(C) Special choices for T

Choose the tangential velocityT to preserve dynamically
a specific parametrization, up to a time-dependent scaling
particular, require that

sa~a,t !5R~a!L~ t !, withE
0

1

R~a!da51, ~31!

whereR(a) is a given smooth and positive function. Th
lengthL(t) evolves by the ODE2

Lt52E
0

1

ua8Uda8. ~32!

If the constraint~31! is satisfied att50, then it is also satis-
fied dynamically in time by choosingT as

T~a,t !5T~0,t !1E
0

a

ua8Uda8

2E
0

a

R~a8!da8•E
0

1

ua8Uda8, ~33!

where the integration constantT(0,t) is typically set to zero.
We use different choices forR, and so forT. That which

is computationally most convenient isR[1, yielding what is
referred to as the uniform parametrization frame since a
form discretization in a is then uniform in s, i.e.
s(a,t)5aL(t). In this case, the leading-order terms
small-scale decomposition, Eqs.~29! and ~30!, are constant
coefficients in space, and implicit treatments in time of the
terms are directly inverted by the Fourier transform~see Ref.
2!.

Since the uniform parametrization frame keeps com
tational points equally spaced in arclength everywhere al
the curve, this frame can be deficient in capturing structu
such as the blow-up in curvature that apparently occurs
the topological singularity. From Eq.~31!, if R,1 in such a
region, then there is a greater relative concentration of g
points there. Accordingly, a nontrivial mappingR is used to
cluster computational points in regions of the curve wh
local refinement is needed, yielding thevariable parametri-
zation frame. The regions where local refinement is nece
1938 Phys. Fluids, Vol. 9, No. 7, July 1997
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sary are identified beforehand by examination of simulatio
using the uniform parametrization. Our specific choice ofR
is given in Appendix A; an additional class of referen
frames is also given in Appendix 2 of HLS94.

Although the possibility of using nontrivialR was dis-
cussed in HLS94, only the trivial choiceR[1 was imple-
mented. For a nontrivialR, the leading-order terms in th
PDEs foru andg are still linear, but are variable coefficien
in space. After an implicit treatment of these terms in E
~29! and ~30!, the resulting time-discrete equations may
solved as follows

„i… The ODE ~32! for L can be solved by an explici
method, and so its value is available at the new time-ste

„ii … An implicit treatment of the leading-order terms
the PDEs~29! and ~30! leads to a linear integro-differentia
equation foru at the next time-step, having the form

R~a!u~a!2CS 1

R~a!
HFua

R G
a
D

a

5A~a!,

whereC, R(a), andA(a) are known, in part by virtue of
„i…. The linear operator onu is symmetric and positive defi
nite, and the equation is solved efficiently foru through it-
eration using a preconditioned conjugate gradient meth
Using pseudo-spectral collocation to evaluate the linear
erator, this iteration costs onlyO(NlnN) per step, and typi-
cally converges in a few steps. An implicit discretization
the full equations of motion would typically involve th
much more expensive evaluation of the Birkhoff–Rott in
gral @O(N2) using direct summation# within an iteration
scheme. Details on the implementation are found in App
dix B.

The extra difficulty in solving for the updated solutio
by iteration motivates us to use the variable parametriza
frame only when it is crucial to obtain extra accuracy local
such as is the case at late times in the regions where~topo-
logical! singularities occur.

The use of the uniform or variable parametrizati
frames alone, without theu2sa reformulation and an im-
plicit treatment of the equations of motion, does in fact p
vent sa from becoming small assa now scales with the
overall length of G. This removes the strong time
dependency in time-step restriction~23!. However, the
3/2-order constraint relating the time-step to the spatial g
size still remains. By using theu2sa reformulation and the
implicit treatment of the leading-order terms, this highe
order constraint is removed as well, typically leaving only
first-order Courant–Friedrichs–Lewy~CFL! type constraint
from advection terms, appearing in both theu andg equa-
tions, that are hidden inP andQ.

In the uniform parametrization frame, we use either t
2nd-order accurate Crank–Nicholson time discretizat
given in HLS94 or the 4th-order accurate implicit, multi-ste
method due to Ascher, Ruuth, and Wetton.35 The 4th-order
method is discussed in Appendix B. In the variable para
etrization frame, only the 4th-order time integration meth
is used. It is found in practice that a first-order CFL time st
constraint~as described above! must be satisfied.
Hou, Lowengrub, and Shelley
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Spectrally accurate spatial discretizations are used
both the uniform and variable parametrization frames. A
differentiation, partial integration, or Hilbert transform
found at the mesh points by using the discrete Fourier tra
form. A spectrally-accurate, alternate-point discretization36,20

is used to compute the velocity of the interface from Eq.~8!.
As noted in HLS94, time-stepping methods for vortex she
suffer from aliasing instabilities since they are not natura
damping at the highest modes. The instability is control
by using Fourier filtering to damp the highest modes; t
determines the overall accuracy of the method, and give
formal accuracy ofO(h16). An infinite-order filter could
have been used, but we did not do so.

Again, these methods are discussed further in the
pendices and especially in HLS94. Hou and Cenicero37

have recently proved convergence of a SSD based form
tion for vortex sheet evolution. In their work, the system
discretized in space, and continuous in time. Their anal
includes the effects of Fourier filtering, and indeed shows
sufficiency in achieving a good stability bound.

IV. NUMERICAL RESULTS

In the bulk of this section, we study the effect of varyin
the Weber number upon the evolution of the sheet from
single, fixed, near equilibrium initial condition. In particula
we consider the initial data,

x~a,0!5a10.01 sin 2pa, y~a,0!520.01 sin 2pa,

g~a,0!51.0, ~34!

used by Krasny19 to study numerically the Moore singularit
(We5`). He found that a curvature singularity forms
a51/2 (x51/2) attM'0.37. The singularity time and struc
ture were in approximate agreement with Krasny’s extens
of Moore’s analysis to this initial data. ForWe,`, this is
not a pure eigenfunction~as it is forWe5`), but is rather a
combination of eigenfunctions, both stable and unstable,
the linearized evolution. The true vortex sheet strength,g̃ , is
not initially constant, but instead has a single maximum
the period ata51/2. Finally, initial data~34! is for the La-
grangian formulation, and is recast into the uniform para
etrization to set initial data for our numerical method.

At the end of this section more general initial data
considered. This includes multi-modal initial data, and d
with random amplitudes and phases. Moreover, of the si
lations presented in this section, only theWe5200 case uses
the fourth-order accurate time-stepping scheme and the
able parametrization frame. All otherWe simulations utilize
the second-order Crank–Nicholson time-stepping sche
given in HLS94 and the uniform parametrization frame.

A. Small We

The small amplitude, small Weber number behavior
quite predictable by linear theory, even over long times.
seen from Eq.~21!, there are no unstable linear modes f
We,4p'12.56. ForWe510 and 12.5, the upper boxes
Fig. 3 show the computed interface positions over 3 peri
every 5 time units, fromt50 up to t5100. Time increases
moving down the figure. ForWe510, all allowed wavenum-
Phys. Fluids, Vol. 9, No. 7, July 1997
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bers are neutrally stable and dispersive, and the period
oscillation for thek51 mode isv'3.95. To the final time
shown~25 periods!, the motion is very well described by th
linear behavior. Indeed, oscillatory behavior seems do
nant, even very close to the stability threshold, as
We512.5 results indicate. The impression of standing wa
behavior was reinforced by examination of the maximu
amplitude and interfacial energy for these two cases, wh
we do not show here.

We had hoped to see some repartition of energy from
k51 mode to smaller scales over large times. However,
We510.0 only a very slow increase is observed, if any,
the width of the active spatial spectrum. Initially, 8–9 mod
are required to resolve the data to Fourier amplitudes of
der 10212. By t51000 ~250 periods! this had increased by
only 2 modes.

These calculations useN564 points and time-step
Dt51023. Increasing the spatial resolution gives no chan
in the results. The total energyE is conserved over this time
in both cases, to a relative error of 1028. ForWe510, the
time-stepping errors were checked directly by halving
time-step and again running tot51000. The error in total
energy decreased by a factor of four, consistent with
Crank–Nicholson integration being of second-order ac
racy. The pointwise error inu was estimated by assumin
that time-stepping error is dominant, and of second-ord
Then the maximum, relative time-stepping error is appro
mated by

EDt5
4

3
max
a j

uuDt~a j ,t !2uDt/2~a j ,t !u/uuDt~a j ,t !u.

This error increases slowly but steadily in time; att50.1 the
error is approximately 131024 while at t51000 the error is
approximately 231023. The pointwise error ing and the
error in L are about of the same magnitude. These res
suggest that the energy is much less sensitive than the p

FIG. 3. The long-time evolution from initial data~34!, with We510 ~left!
and 12.5~right!. Three spatial periods are shown every 5 time units.
1939Hou, Lowengrub, and Shelley
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wise datau to errors in the time integration. Given that th
motion here is very nearly linear, these errors should
mostly dispersive in nature.

B. Intermediate We

The evolution is much more interesting for intermedia
We where the interface is initially unstable to only a fe
modes. Figure 4 shows the temporal behavior for two We
numbers,We516.67 andWe520, from t50 to 80 over 3
spatial periods. In both cases, only thek51 mode is linearly
unstable; the k52 mode becomes unstable only f
We.25. The evolution of the interfaces is striking. The i
terface now deforms into elongated fingers that penet
each fluid into the other. Lengthening, the interface acqu
the shape of a blunted needle or finger, with a small poc
of fluid at its end. While the linear analysis is a rough guid
we have not sought to pinpoint the Weber number at wh
this transition from oscillation to growth occurs; this value
undoubtedly a function of the initial data.

For these two values of Weber number, the maxim
amplitude and interfacial energyEL follow one another
closely. The growth ofEL appears to become linear in tim
and lies generally below the prediction of linear theo
which predicts exponential growth. As the total energy
conserved, the perturbation kinetic energy of the fluid sho
a corresponding decrease. Nothing is seen here that indic
an eventual halt to the lengthening. If the perturbation kine
energy were a strictly positive quantity, then the interfac
energy ~and so the length! could be bounded from above
However, the perturbation kinetic energy is not signed a
so no such conclusion can be made.

As the fingers lengthen, they also thin. This feature d
not follow from mass conservation arguments, as the mas
each fluid is infinite. Given the behavior at larger Web
numbers, it seems possible that the sides of the fingers m
also collide at some finite time, and so abbreviate th

FIG. 4. Growing fingers of interpenetrating fluid forWe516.67 and 20.
Again, three spatial periods are shown at each time.
1940 Phys. Fluids, Vol. 9, No. 7, July 1997
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smooth evolution. This does not appear to be the case
least for this initial data over these times, as Fig. 5 ma
clear. For t580 the left box shows a close-up of the t
region and its pocket of fluid. The neck below the tip
becoming thinner in time. The right box of the figure show
the minimum width of the neck as a function of time. So f
as can be discerned, it seems that the neck is thinning e
nentially, and that the neck is a stable feature of the flo
perhaps the neck is convectively stabilized by the stretch
of the interfaces.

ForWe520, Fig. 6 shows the true vortex sheet streng
g̃ (a,t), over one period, at the same times as shown in F
4. This figure shows that the finger lengthening is associa
with the fluxing of fluid into the finger, and with the forma
tion of a concentrated peak of positive circulation at the
of the finger. The right peak’s location is indicated by t
cross on the interface close-up of Fig. 5. To the left and ri
of this peak, and so on the lower and upper sides of the n
g̃ is positive and negative, respectively. This indicates
influx of fluid from below, into the finger lengthening up
wards. At the tip of every finger, there is a concentration
positiveg̃ . Taken alone, these ‘‘vortices’’ might be expecte
to induce a rotation in the angle of inclination of the array
fingers, by the mutual induction of the upper and lower lin

FIG. 5. A close-up of the finger tip~left box!. The3 denotes the point of
maximum sheet strength. The right box shows the neck width of the fin
as a function of time.

FIG. 6. g̃ (a,t) at the same times as shown in Fig. 4.
Hou, Lowengrub, and Shelley
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of vortices upon each other. However, no such rotation
seen, and the fingers seem to lengthen more or less alo
fixed angle from thex-axis.

Finally, Fig. 7 shows att510 the interfacial position for
several intermediate values ofWe. For the largest,
We550, there are 4 modes initially unstable in the perio
As the K–H instability becomes more important with i
creasingWenumber, the fingers become more curved by
greater relative concentration of vorticity at the origin.
values ofWe slightly larger than this, a sharp departure
found from the formation and smooth elongation of finge

As an examination of the accuracy of these simulatio
the We550 simulation is chosen. This simulation us
N51024 andDt51023, up to t57.0, at which pointN was
doubled, andDt halved. This was to resolve the evident a
proach of two disparate portions of the sheet. The en
calculation, for 0<t<10, was repeated with a halved tim
step. Assuming that time-stepping errors are dominant, t
for the first simulation the maximum relative error inu at
t510 is estimated to beEDt'131024.

C. Large We and pinching

Figure 8 shows two simulations:We558.8 and 62.5
~both have initially 4 unstable modes!. It is between these
two values ofWe that is seen the transition from the form
tion of continuously elongating fingers, to an interveni

FIG. 7. The interfacial position for several values of intermediateWe, at
t510.

FIG. 8. The results of two simulations withWe558.8 ~left box! and 62.5
~right box!.
Phys. Fluids, Vol. 9, No. 7, July 1997
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event that is apparently the collision of the fluid interface
This collision is observed in the evolution from this initia
data for every larger value ofWe. Figure 9 superposes th
respective interface positions att54.7. Though not apparen
from the scale of the figure, the colliding portions of inte
face forWe562.5 are still separated from one another by
finite distance, though this distance is diminishing rapid
The upper two boxes of Fig. 10 shows theg̃ at several times,
for both values ofWe. The lowest box of the figure super
posesg̃ at t54.7 for both values ofWe. The crucial differ-
ence is the appearance forWe562.5 of pairs of positive and
negative spikes. These new peaks in sheet strength are
ated on the colliding portions of the interface, coming
pairs, positively signed on one side, negatively on the oth
This ‘‘jet’’ fluxes fluid through the narrowing neck, inflating
the forming bubble.

We will not focus on the collapse process near the
values ofWe; they are too close to the bifurcation in evolu
tion from elongating fingers. Instead, we turn our attention
the flow forWe5200, where the collapse occurs earlier, a
the evolution is more representative of that for yet larg
values ofWe.

FIG. 9. The superposition of the two profiles att54.7.

FIG. 10. g̃ (a,t) at several times~top two boxes!. The lowest box super-
poses the vortex sheet strengths att54.7.
1941Hou, Lowengrub, and Shelley
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1. The evolution for We 5200

For We5200, there are 16 modes initially unstable
the period, withk511 the most unstable wavenumber. F
We5` the flow forms a curvature~Moore! singularity at
tM'0.37.19 We study first the evolution for 0<t<1.4 using
the uniform parametrization frame. In addition, we use
implicit fourth-order time integration scheme of Asche
Ruuth, and Wetton35 coupled to the SSD, as described in t
Appendix. The pinching singularity time is estimated to
tp'1.427, and the behavior for 1.4<t,tp will be consid-
ered separately using both the uniform and variable par
etrization frames. A time sequence of interface positions
shown in Fig. 11. This simulation usesN52048 points, and
a time-step ofDt51.25•1024 on the interval 0<t<0.36,
andDt55•1025 thereafter.

While at early times the interface steepens and beha
very similarly to the zero surface tension case, it pas
smoothly through the Moore singularity time. Att50.45, the
interface becomes vertical at its center, and subseque
rolls over and produces two fingers (t'0.50). These grow in
length in the sheet-wise direction@box ~b!#. The tips of the
fingers broaden and roll with the sheet. This is clearly see
t50.80 @box ~c!#, as are evident capillary waves, seen
oscillations along the sheet. These waves are approxima
on the scale of the most unstable wavelength given by
linear analysis. Byt51.20 @box ~d!#, the sheet produces an
other turn in the spiral, and the fingers become broader
larger. Additional capillary waves are produced and trave
the interface outwards from the center region. This disp
sive effect of the surface tension is seen more clearly in p
of the curvature and vortex sheet strength. Note that the
of the interface~on the inner turn! closest to the fingers ha
become quite flat and bends very slightly towards the fing
At later times, this part bends even more towards the fing
the tips of the fingers narrow, and both pieces of the interf
approach each other. Att51.40 @box ~e!#, the interface ap-
pears to self-intersect, but a close-up of the region at

FIG. 11. The long-time evolution from a nearly flat sheet forWe5200. The
bottom right box shows a close-up of the thinning neck att51.4.
1942 Phys. Fluids, Vol. 9, No. 7, July 1997
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time @box ~f!# indicates there is still a finite distance betwe
the upper finger and the inner roll. The same is true for
lower finger by symmetry, although that symmetry is n
explicitly imposed in the simulation.

At this time, the gap between the two approaching p
tions of interface is but 5 grid lengths wide, and the calc
lation is stopped here. As shown in Baker and Shelley38 ac-
curacy is rapidly lost in trapezoidal quadratures of t
Birkhoff–Rott integral as the distance between the interfa
falls below a few mesh spaces. By this time, the length of
interface has increased by a factor of 2.6 .

Figure 12 shows the vortex sheet strengthg̃ , vsa. It is
worth recalling here a few properties of the Moore singul
ity for We5`. As the singularity time is approached, th
maximum in g̃ sharpens to form a finite cusp ata51/2. In
the same approach, the curvaturek diverges positively at
a51/22, and negatively ata51/21. And so ask diverges,
ka diverges negatively ata51/2. In the presence of a sma
surface tension@using Eq.~10!#, this behavior will causeg̃ t

to be negative at the peak, thereby reducing and eventu
fissioning the maximum ing̃ ~see also Ref. 33!.

This effect, explained heuristically above, likely explai
the appearance of the two dominant, positive peaks see
g̃ at t50.6. Small waves have also formed at the outer ed
of these peaks, and are presumably dispersive waves
duced by the surface tension saturation of the Moore sin
larity. At t50.80 @box ~c!#, the peaks have saturated an
more waves have been produced. These disperse out
along the interface. The strengthg̃ has also formed down
ward peaks at the edge of the wave packet. The satura
and dispersion continues throught51.20 @box ~d!#. How-
ever, when the interface begins to self-approach, the vo
sheet strength refocuses, forming a jet. This jet is see
t51.40 @box ~e!# in the pairs of positive and negative pea
of vortex sheet strength that have formed in each pinch
region. These peaks have been isolated for the top pinc
region in box ~f!. The top of the pinching region~inner turn

FIG. 12. g̃ (a,t) at the same times as the previous figure. The bottom ri
figure highlights the location of the strength extrema in the region of
thinning neck att51.4.
Hou, Lowengrub, and Shelley
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of the spiral! comes with a negative signed vortex she
strength and the bottom comes with a positive sign. T
implies fluid is streaming through the gap towards the cen
and into the downwardly pointing finger. For this initial da
~single-signed sheet strength!, such a sign change in the vo
tex sheet strength can occuronly in the presence of surfac
tension.

Saturation and refocusing are also observed in the
vature. Its evolution is plotted in Fig. 13. The first grap
shows the inverse maximum of the absolute curvature a
function of time. There is an initial region of rapid growth
the curvature~decay in the plot! due to the Moore singular
ity. But, the curvature growth saturates and its spatial pe
break up into dispersive waves@boxes~d! and ~e!# moving
outwards from the center. Byt51.40, the maximum of the
curvature nearly reaches that attained during the initial
riod of growth, and the new refocusing and growth occurs
the points of nascent pinching. These points are associ
with pairs of like-signed peaks in the curvature.

Figure 14 shows the decomposition of the total ene
into the perturbation kinetic energy~upper box!, and the in-
terfacial energy~lower box!. The beginning of roll-up is
plainly seen by the transfer of energy into the interfac
energy. This occurs soon after the Moore singularity tim
Nothing is seen in this figure that indicates the oncom
collision of interfaces, except perhaps a slight increase
slope for the interfacial energy.

There are two events which cause losses of accurac
the time integration. The first is the shadow of the Moo
singularity. At times less thantM50.37, there are nearly
14 digits of accuracy in the energy. At times slightly beyo
tM , the number of accurate digits in the energy drops to
where it remains until the sheet approaches self-intersec
In this second loss, neart51.4, a number of accurate digit
in the energy drops to 10. As is typical, estimates of
point-wise relative error~discussed below! are larger than
those of the energy. Comparison with simulations with low

FIG. 13. The curvature. The upper left box shows the evolution of
inverse curvature. The remaining boxes show the curvature of the inte
at the same times as the previous figure.
Phys. Fluids, Vol. 9, No. 7, July 1997
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spatial resolution suggest that temporal errors are domin
and the error of this simulation was again checked by ha
ing the time-step. The estimated relative error inu is found
to be approximately 131027 at t51.2, and 4.531027 at
t51.4. We found that use of the fourth-order tim
integration improved our accuracy by 3 to 4 digits over t
second-order Crank–Nicholson method for the same tim
step~see HLS94!.

2. Near the singularity time

Maintaining numerical resolution is critical as the sing
larity time is approached. There are several possible sou
of error. First, the thickness of the collapsing neck decrea
to zero with infinite slope~close to a 2/3 power in time!, and
as this distance decreases,g̃ and the curvaturek both di-
verge. Time-steps must be taken small enough to res
these trends. Spatial resolution must also be sufficiently h
in the regions of close approach to resolve both the spati
diverging g̃ andk, and to evaluate accurately the contrib
tion of the collapsing neck region to the Birkhoff–Rott int
gral.

Due to their relative efficiency, the uniform parametriz
tion simulations are pushed as closely as is practical towa
the collapse time. This is accomplished by using succes
doublings of the spatial pointsN, and halvings ofDt. The
doubling is done by Fourier interpolation, at times when t
thickness of the collapsing neck is still approximately 10 g
lengths wide, for which the trapezoidal sum is still ve
accurate.38 ForN52048 this time ist51.34. Examination of
the spatial Fourier spectrum at this time shows also that
active part of the spectrum is well away from the Nyqu
frequencyk5N/2. The table below tabulates resolutions a
intervals for the various runs. By increasing the spatial re
lution, 11 digits of accuracy in the energy can be maintain
until t51.39 for N52048, t51.41 for N54096, and
t51.42 forN52048.

The variable parametrization runs are all begun
t51.413 ~this choice of time is again made by the sam

e
ce

FIG. 14. The decomposition of the total energy into the perturbation kin
energy~upper box!, and the interfacial energy~lower box!.
1943Hou, Lowengrub, and Shelley
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rule— the neck width is at least 10 grid lengths! from the
N58192 uniform parametrization data. Again the initial da
is generated by Fourier interpolation. The mapping wh
generates the parametrization of the curve is describe
Appendix A. It clusters points locally about the collapse
gions; the parameters of this remapping are chosen so
the local resolution is 8 times greater than for the unifo
parametrization with the same value ofN. The mapping is
completely fixed during the calculation by the choice of ta
gential velocityT in Eq. ~33!. Again, the Table I shows the
values ofN andDt. A resolution study near the singularit
time will be presented later in this section.

The top graph of Fig. 15 shows the minimum width
the neck in the upper pinching region. The medium das
curve is the width measured from theN58192 uniform pa-
rametrization simulation, while the solid is that from th
variable parametrization simulation~also forN58192). This
minimum width is computed by minimizing the distanc
function between the opposing sections of the interface, c
structed using the Fourier interpolant of the curve positi
The trend of the least distance towards zero is clear. Whi
is not clear here, it will be seen later that the variable para

FIG. 15. The upper box shows the minimum width of the neck in the up
pinching region. The lower box shows the exponent in an algebraic fit to
minimum width. The vertical dashed line in both boxes marks the fit to
singularity time. The horizontal dashed line is at 2/3.

TABLE I. The two tables show, with associated time intervals, the spa
and temporal resolutions of both the uniform and variable parametriza
simulations.

Uniform parametrization Variable parametrization
N Dt N Dt

2048 1.2531024 0<t<0.36 2048 531026 1.413<t<1.427
531025 0.36<t<1.4 4096 2.531026 1.413<t<1.427

4096 2.531025 1.34<t<1.427 8192 1.2531026 1.413<t<1.427
8192 1.2531025 1.39<t<1.427
1944 Phys. Fluids, Vol. 9, No. 7, July 1997
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etrization simulations do give better results near the sin
larity time.

An algebraic fit of the form

Least Distance5d~ t !5A~ tp2t !cd, ~35!

is made to the neck width. This is done as a sliding fit
successive triples of data@(t i ,d(t i)),i51,2,3# to determine
the three unknownsA, tp , andcd . The fits tocd are shown
in the lower graph of the figure. While the fits are not com
pletely flat, particularly very near the singularity time, the
are generally close to 2/3~shown as the horizontal dashe
curve!. Recall thatcd52/3 is the temporal exponent ob
tained through similarity considerations. The fit to the c
lapse timetp was given consistently astp51.42736.0002.
This is shown as the vertical dashed line in both graphs
the figure.

While the collapse of the neck width must be~and is!
accompanied by the divergence of velocity gradients in
fluid, as demonstrated in Appendix C, it is also accompan
by loss of smoothness in geometric quantities of the sh
notably its curvature. The left graph of Fig. 16 shows
close-up of the top pinching region of the rolled-up shee
timest51.4135~dashed! and 1.427~solid!, both very near to
the collapse time. The right graph magnifies this close-up
another factor of 10 to show that the neck at the later ti
has not yet collapsed. It appears that the sheet is forming
opposing corners on either side of the neck. This is in agr
ment with the upper graph in Fig. 17, which shows the ta
gent angleu, as a function of normalized arclength~this
would bea in the uniform parametrization frame!. Arrows
indicate two of the four locations along theu curve where
the curvature,k5us , is diverging. These sections are show
as close-ups in the lower graph of the figure, again at tim
t51.4135 ~dashed! and t51.427 ~solid!. It appears from
these~most especially in the left graph! that u is sharpening
to a jump discontinuity with the collapse, indicating the fo
mation of a corner in the sheet profile. It does not app
from these figures that the two angles are equal. The cu
ture itself is shown in the top graph of Fig. 18, at both
these times.

r
e
e

FIG. 16. The left box shows a close-up of the top pinching region of
rolled-up sheet at timest51.4135~dashed! and 1.427~solid!, both very near
the collapse time. The right box magnifies this close-up by another facto
10.

l
n

Hou, Lowengrub, and Shelley
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The lower graph of the figure showsg̃ at these times. Its
apparent divergence fulfills the requirement that at least
locity gradients diverge as a collapse is approached.

If the collapse is governed by similarity, as might b
indicated by the fits tocd for the neck width, then the pre
dicted similarity exponents areck522/3 for curvature, and
cg521/3 for the vortex sheet strength. This scenario is n
complicated by the fact that there are two values ofg̃ , and of
k, to be considered, one on either side of the collaps
neck. The upper box of Fig. 19 shows the growth of the
two extremal vortex sheet strengths, again for theN58192

FIG. 17. The upper box showsu as a function of normalized arclength. Th
lower boxes show close-ups of the regions indicated by arrows in the u
box, att51.4135~dashed! and 1.427~solid!.

FIG. 18. The top box shows the curvature at the same times as in
previous figure. The lower box shows true vortex sheet strength.
Phys. Fluids, Vol. 9, No. 7, July 1997
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uniform ~dashed! and variable~solid! parametrizations. The
branching near the singularity time in these mostly overl
ping fits is caused by a loss of accuracy in the uniform
rametrization simulation.

The lesser of the two curves is the negative extremum
g̃ on the upper side of the neck, and the other curve
positive extremum on the lower side. They both appear to
diverging. The lower box of the figure shows the fit tocg for
these two extrema. The lower curve is again that for
negative extremum. The dashed curves are atcg521/3 and
21/4. The fit forcg for the positive extremum is fairly flat
lying somewhere between these two values. On the o
hand, the assumption of a uniform value forcg of the nega-
tive extremum is plainly inappropriate, though the two va
ues ofcg might be converging to each other as the critic
time is approached. At any rate, an argument for prec
similarity scaling is not much strengthened by these fits.

We did attempt to refine the fit by using a higher-ord
Ansatz~adding another algebraic term! but found that attain-
ing convergence of Newton’s method was difficult. No bet
agreement with similarity was found by using the value
g̃ at the point of least separation distance, rather than
maximum value ofg̃ .

Similar fits for the extremal curvatures are shown in F
20. The respective signs of the curvatures match those
g̃ , and again, the lower curve in the upper graph is that
the negative curvature on the upper side of the neck. N
the appropriateness of the algebraic fit is suspect in ei
case, though the two fits seem to be approaching each o
in value~but not to22/3! as the critical time is approached
Here, the two horizontal dashed lines areck522/3, the
putative similarity exponent, andck521/2. Again, the

er

he

FIG. 19. The upper shows the time evolution of the two extremal true vo
sheet strengths. The lower box shows the fit tocg for these two extrema.
The horizontal dashed lines are at21/4 and21/3. The vertical dashed line
is a fit to the singularity time.
1945Hou, Lowengrub, and Shelley
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branching near the singularity time is due to loss of accur
in the uniform parametrization simulation.

While the divergence ofk does not apparently conform
to similarity, there is some evidence for a local scaling b
havior consistent with forming a corner singularity. Suppo
thatk behaves locally in the neck region as

k~s,t !;
1

e1~ t !
KS s2sp~ t !

e2~ t !
D , ~36!

wheree1,2→0 as t→tp , andsp locates an extremum ofk.
Then,e1(t) } e2(t) corresponds tou forming a jump discon-
tinuity at (t,s)5(tp ,sp(tp)). We sete1 to 1/uk(sp ,t)u, and
estimate e2 by uk(sp ,t)/kss(sp ,t)u1/2. Figure 21 shows
e1(t) versusc•e2(t) calculated on both sides of the nec
~dots are the upper side, crosses the lower side!, wherec is a
constant of proportionality determined from the first da
point in the upper right corner. It is especially for the upp
side of the neck thate1 ande2 appear to be linearly related

We have also tried to find local scaling behavior in t
divergence ofg̃ by using a scaling Ansatz as in Eq.~36!. The
similarity exponents forg̃ suggest then thate2 } e1

2. While
we did find collapsing scalese1,2 accompanying theg̃ diver-
gence, it was not found thate1 and e2 were related in this
way.

Such well-resolved, variable parametrization calcu
tions have also been performed for theWe5100 case but are
not presented here. The results are basically consistent
those for 200: only a partial conformance with similari
behavior, but the apparent formation of a corner singula
in the sheet profile. The apparent limiting exponents, suc
suggested by Fig. 20, were yet further from the similar
exponents.

FIG. 20. The upper shows the time evolution of the two extremal cur
tures. The lower box shows the fit tock for these two extrema. The hori
zontal dashed lines are at21/2 and22/3. The vertical dashed line is a fit t
the singularity time.
1946 Phys. Fluids, Vol. 9, No. 7, July 1997
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While our results do not suggest strict conformance w
similarity behavior, we must emphasize the usual cave
when dealing with the numerical analysis of numerical da
It is quite possible that similarity does govern the oncom
singularity, but that we have not yet been able to reach, w
sufficient accuracy, the regime governed by similarity. F
ther, perhaps our results would show better agreement
similarity by using other data fitting tools that stably accou
for corrections from higher-order behavior.

3. An analysis of numerical errors near t 5t p

For the case ofWe5200, we give a discussion of th
accuracy of our numerical simulations near the singula
time, focusing on quantities especially relevant to the sin
larity development. As an initial measure of the error, w
note that while the energy is generally very well conserv
the uniform mesh calculations lose accuracy rapidly as
singularity time is approached. Since extra filtering is
quired to control the stronger aliasing instabilities associa
with the variable mesh, this results generally in less accur
in the variable mesh simulations, relative to the uniform p
rametrization simulations, at times away from the singular
time. For example, at timet51.415, there are 8 accurat
digits in the energy for the variable mesh calculations~com-
pared to 11 for the uniform mesh withN58192). However,
in the variable mesh simulations, there is almost no degra
tion in the number of accurate digits in the energy near
singularity time.

A stronger test is to look for consistency with conve
gence in some pointwise quantity. First, considerd(t), the
collapsing least distance of the neck region, with t
N58192 variable parametrization simulation serving as
‘‘exact’’ solution. Figure 22 shows the number of significa
digits of agreement ind(t) of the reference simulation with

-FIG. 21. e1(t) versusc•e2(t) calculated on both sides of the neck~upper
side as dots, lower side as crosses!, wherec is a constant of proportionality
determined from the first data point~in the upper right corner!.
Hou, Lowengrub, and Shelley
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th
the other simulations, as estimated by2 log10udr(t)
2d(t)u/udr(t)u wheredr is the reference solution. Consis
tency with convergence is evident. The two solid curves
for theN52048 and 4096 variable parametrization simu
tions. The latter lies above the former, and is thus pres
ably more accurate. As before, the dashed curves are fo
N54096 ~short dash! and 8192~long dash! uniform param-
etrization simulations, with the more resolved calculati
showing more agreement with the reference solution,
again losing accuracy as the singularity time is approach
This study does not measure the accuracy in the refere
simulation, and theN58192 variable parametrization simu
lation presumably has yet higher accuracy.

The upper box of Fig. 23 shows att51.427 a blow-up of
a curvature spike~see Fig. 18! in the thinning neck region, a
computed by both theN58192 uniform and variable resolu
tion simulations. The crosses mark the computational m
points. The differences in resolution of the spike are obvio
Within this region the variable mesh has about 8 times m

FIG. 22. The number of significant digits of agreement ind(t) with the
highest resolution simulations.

FIG. 23. A blow-up of a curvature spike in the thinning neck region,
computed by both theN58192 uniform and nonuniform resolution simula
tions, at t51.427. The crosses mark the computational mesh points.
lower graph shows the number of significant digits of agreement in
maximum curvature with the highest resolution simulations.
Phys. Fluids, Vol. 9, No. 7, July 1997
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points than the uniform mesh, and does not suffer from
oscillations of the uniform parametrization calculation. T
analyze the accuracy in the curvature quantitatively, the c
vergence of the maximum curvaturekmax is examined as a
function of the spatial resolution, just as was done above
the least distanced(t). Again, theN58192 variable param-
etrization computation serves as the reference simulat
The lower box of Fig. 23 shows the number of significa
digits of agreement inkmax of the reference simulation with
the other simulations. The curve marked with crosses is
variable parametrization calculation withN54096, the solid
curve is the variable parametrization calculation w
N52048 and the dashed curve is the uniform parametr
tion calculation withN58192. Consistency with conver
gence is again evident and the results are quite simila
those obtained for the least distanced(t) in Figure 22.

4. Relations to the Moore singularity

In previous studies on the effects of regularization on
Moore singularity — usingd-smoothing,39 contour-dynam-
ics,40 or by adding viscosity41,42— it was generally observed
that a spiral structure would emerge in the flow. As the re
larization parameter was taken to zero, this spiral would
quire more and more structure, and its time of emerge
would decrease towards the Moore singularity time. It
known that these regularized flows exist and are smooth
all time.43–45With small surface tension, the emergence o
spiral is again observed, but now the smooth evolution of
flow is abbreviated by the appearance of the pinching sin
larity.

An upper bound on the time at which the spiral emerg
in the surface tension case is the time at which the pinch
singularity occurs. Figure 24 shows the pinching singular
time as a function ofWe21, with the Moore singularity time
included. It does appear that the Moore singularity time
the limit of the pinching times and thus the time of eme
gence of the spiral also decreases to the Moore singula
time. The largest Weber number used for this initial data
We5800. Figure 25 shows sheet profiles over several d

e
e

FIG. 24. The pinching singularity time as a function of decreasingWe21,
with the Moore singularity time included atWe2150.
1947Hou, Lowengrub, and Shelley
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blings of We, at times close to their pinching singularit
times. AsWe is increased, the pinching occurs earlier, a
the spiral becomes smaller, but it does not turn a great
further, or acquire much more structure. The dispersive
fect of surface tension is seen in the packet of small am
tude waves spreading out from the spiral region. As d
cussed earlier, this packet is associated with the shado
the Moore singularity.

Figure 26 showsg̃ at these times, likewise revealing
complicated structure. In the center region are the peak
positive and negative sheet strength associated with the
in the neck regions. This is separated from a smooth reg
outside of the spiral, by the travelling wave packet. T
wave packet might be termed a dispersive ‘‘internal laye

FIG. 25. The sheet profiles, over several doublings ofWe, at times close to
their pinching singularity times.

FIG. 26. g̃ at the same times as the previous figure.
1948 Phys. Fluids, Vol. 9, No. 7, July 1997
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AsWe is increased, this packet becomes both narrower
of higher frequency — its wavelength decreases linea
~very approximately! with We21. It is not clear whether its
amplitude also generally increases. Att50.59, approxi-
mately the pinching time forWe5800, Fig. 27 shows the
interface positions for the various Weber numbers, and F
28 showsg̃ .

A simple spatial and temporal rescaling seems to c
lapse some of the sheet behavior immediately after
Moore singularity time. In particular, we have attempted
describe the length and time scales of the ‘‘tongue’’ of flu
that initially emerges in the center~see the top box of Fig.
30!. Consider the rescaled time,

FIG. 27. The interface positions for the various Weber numbers,
t50.59, approximately the pinching time forWe5800.

FIG. 28. g̃ for the various Weber numbers, att50.59.
Hou, Lowengrub, and Shelley
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We

We0
~ t2tM !,

whereWe05100 is used as a reference value, andtM is the
Moore singularity time. Using this rescaled time, the top b
of Fig. 29 shows the rescaled width,

wWe~ t8!5
We

We0

1

k̄ ~ t8!
,

where k̄ is the maximum absolute curvature of the she
This extremum occurs at the tip of the tongue, and sowWe is
a measure of the tongue width. The bottom box of Fig.
shows the rescaled curve length,

l We~ t8!5
We

We0
~L~ t8!2L0!,

whereL0 is the length of the vortex sheet, with no surfa
tension, at the Moore singularity time. The quantityl We is
then a measure of the length of the tongue. These two len
scales seem well-described by this rescaling, at least
times soon after the Moore singularity. The top box of F
30 shows the sheet position, for the three largest Weber n
bers, near the rescaled timet850.3. The lower box shows
the superposition of the three center tongues after the sp
rescaling byWe/We0 as suggested above (We5200 solid,
We5400 dash–dotted,We5800 dashed!. The three tongues
lie nearly on top of each other.

As is clear from Fig. 29, these rescalings do not app
to describe behavior up to the pinching time. However,
results do suggest that some aspects of the flow migh
described by the emergence of simple, self-similar structu
— here the tongues — soon after the Moore singularity tim
A self-similar structure has been conjectured to describe
spirals that emerge in thed-smoothing regularization of the
Kelvin–Helmholtz problem.39

FIG. 29. Rescaled lengths and widths of the interface ‘‘tongue,’’ for sev
values ofWe, soon after the Moore singularity time.
Phys. Fluids, Vol. 9, No. 7, July 1997
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D. Simulations from more general data

Finally, we have performed simulations of yet mo
complicated initial data for a single sheet. The upper box
Fig. 31 shows two periods of the evolution, withWe5200,
from a nearly flat sheet. The initial data lies in thek51 and
3 modes, with randomly chosen phases. Ask53 is the more
unstable mode, the dominant structures appear at that s
but with considerable asymmetry introduced by the subh
monic part of the perturbation. Again, the evolution is app
ently terminated by the appearance of a pinching singula
in the rightmost spiral. The lower boxes shows evoluti

l

FIG. 30. Sheet position for the three largest Weber numbers, at times
t850.30. The bottom box superposes the three center tongues after s
rescaling by We (We5200 solid, We5400 dash–dotted,We5800
dashed!.

FIG. 31. The development of the Kelvin–Helmholtz instability, wi
We5200, over two periods from nonsymmetric initial data.~a! The initial
data is in thek51 and 3 modes, each with a randomly chosen phase.~b! and
„c… The initial data is in the first 30 modes, with randomly chosen init
amplitudes and phases.
1949Hou, Lowengrub, and Shelley
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from an even more complicated initial condition, again f
We5200. Here the first 30 modes have randomly cho
amplitudes and phases. The amplitude as a function ofk is
cut off exponentially, so that thek530 amplitude lies below
the order of the round-off (10214). Now, one sees an eve
greater variety of structures — both growing fingers a
rolled up regions. It appears that the whole structure is so
what stabilizedagainstpinching by the fingers, which stretc
the interface. Nonetheless, the evolution is again termina
by a pinching singularity, this time along the side of a dow
wardly propagating finger. The pinching occurs between
finger and the leftmost downward finger in the periodic e
tension of the interface. This is most clearly seen in Fig.
which shows a close-up of the interface profile. The so
and dash-dotted curves show the interface and its peri
extension, respectively.

V. DISCUSSION AND CONCLUSION

The precise mechanisms that might link the Moore s
gularity to the pinching singularity are unclear. However, t
pinching does seem to follow from the concatenation of s
eral physical processes. The first is the Kelvin–Helmho
instability, which concentrates circulation at points along
vortex sheet. As this concentration intensifies, the disper
from surface tension becomes important, and both ‘‘spli
the peak ing̃ and creates oscillations~see Fig. 26!. Simulta-
neously, due to the bulk concentration of circulation, t
sheet begins to roll up into a spiral. The spiral structure
lows the oscillations along disparate sections of the shee
strongly interact and couple, ultimately creating opposit
signed circulation on either side of a now thinning neck. T
interaction and ensuing neck formation we do not underst
well.

With the formation of the jet, the neck collapses rapid
This motivates us to examine the dynamics of isolated
between two interfaces. To make the situation as simple

FIG. 32. A blow-up of the pinching singularity in~c! of the previous figure.
1950 Phys. Fluids, Vol. 9, No. 7, July 1997
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possible, consider first two vortex sheets~1 and 2! under
surface tension, with initial conditions satisfying

x15x2 ,y152y2 , and g152g2 .

This up/down symmetry is preserved by the subsequent e
lution. The upper box of Fig. 33 shows the simulations of t
collapse of such a jet, with the data chosen so that ther
only one linearly unstable mode in the period. Clearly, t
pinching singularity occurs directly in this setting, witho
the additional feature of the roll-up into a spiral. Figure
shows evolution from the same initial data~dashed!, but with
We5`. The final time shown~solid! is that very near the
formation of a Moore singularity, appearing simultaneou
on the upper and lower sheets. The solid dots mark the lo
tion on the sheets of the emerging singularity. It seems e
dent that the beginnings of the collapse are seen in the
namics of a jet without surface tension. Perhaps

FIG. 33. ~a! The formation of a pinching singularity in a symmetric je
between two interfaces with surface tension.~b! The same as~a! but the
upper interface has zero initial circulation and is flat.

FIG. 34. The formation of the Moore singularity in a symmetric jet betwe
two interfaces without surface tension. The solid dots mark the locatio
diverging curvature.
Hou, Lowengrub, and Shelley
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‘‘secondary’’ Kelvin–Helmholtz instability is intimately re
lated to the formation of the pinching singularity. In th
direction, Pugh and Shelley46 have been studying asymptot
models of such jets with surface tension.

The lower box of Fig. 33 shows a much different sim
lation. The lower interface has the same initial data as in
previous simulation, but the upper interface now begins w
zero vortex sheet strength, and is flat. Therefore, at e
times the upper interface behaves as a curve material to
flow. The lower interface is unstable to the K–H instabilit
and its amplitude grows. This growth perturbs the upper
terface, and appreciable circulation is produced. The two
terfaces couple together, and pinch.

There has been some recent work by Siegel24 that ex-
tends Moore’s analysis of the Kelvin–Helmholtz instabili
and includes the effect of surface tension. While his wo
predicts the formation of corner singularities in the sh
profiles, it differs from our results in several important way
First, the corner singularities found in Siegel’s analysis
isolated and are not associated with the formation of a to
logical singularity. That is, there isno pinching. Second, his
analysis predicts the formation of such a corner singula
for any value ofWe for which there is an unstable wave
length. We find instead that for moderateWe with a few
unstable modes, the formation of interpenetrating fingers
apparently elongate continuously without interruption by a
singularity. Pinching singularities appear only at yet larg
values of the Weber number. Finally, Siegel’s work app
ently predicts the algebraic exponents, associated with
singularity, to beck521/3 andcg522/3. While we did
not find very conclusive values for these exponents, our
do seem well away from these values. However, as Sie
remarks, Moore’s approximation often gives incorrect valu
for temporal exponents, while giving correct results on
spatial form of the singularity.47 On the qualitative side, the
solutions he finds do bear some resemblance to the grow
fingers at early times.

As Siegel also remarks, the approximations inheren
his analysis may lose their validity as the singularity time
approached, and so may not capture the interactions ne
sary to observe pinching. One such interaction that is crit
to pinching is the nonlocal coupling, though the Birkhof
Rott integral, between separated parts of the sheet. Sie
system is local in space. Another consideration is that S
gel’s conclusions are based on specific initial data that c
respond to special ‘‘travelling wave’’ solutions of his a
proximate equations. We have not investigated this partic
set of initial data.

Very similar pinching singularities have been observ
in other situations where the Kelvin–Helmholtz instability
operative. In HLS94, we observed the beginnings of a pin
ing singularity in plume vortices formed by the Rayleigh
Taylor instability in the Boussinesq approximation~see Fig.
18 there!. In a very recent study of the application of SS
methods to water waves and fully density-stratified flows~as
in this study, incompressible, inviscid, irrotational, and 2-!,
Hou and Ceniceros37 have also observed such singularitie
and measured length collapse exponents very close to
As has been the case for the basic description of Mo
Phys. Fluids, Vol. 9, No. 7, July 1997
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singularity in stratified flow without surface tension,22 it
seems likely to us that the prototype pinching singularity
found in the simplest case of no stratification at all.

An intriguing question is whether ‘‘bubble’’ formation
as apparently predicted by these calculations, is observ
in an experimental setting. In Ref. 48, Thorpe presents
experimental study of the development of the K–H instab
ity in a sharply stratified shear flow between two nearly i
miscible fluids. Of course, in such an experimental situat
there are many additional effects, such as viscosity, th
dimensionality, and partial miscibility, that we have n
glected in our model. However, Thorpe does remark that
interface between the two fluids ‘‘became very irregul
sometimes being broken and drops of one fluid being p
duced in the other, . . . .’’ The effects of additional physi
are currently being considered in other works, see Refs.
54, for example. While these additional effects could c
tainly play an important role in determining the overall stru
ture of the flow, there is no doubt that topological transition
singularities are a fundamental feature of the motion of r
fluids. We hope to have suggested one of the simplest
tings in which such phenomena occur.

ACKNOWLEDGMENTS

We thank Russ Caflisch, Ray Goldstein, Joe Keller, D
Meiron, and Mary Pugh for important conversations. T.Y.
acknowledges support from National Science Founda
~NSF! Grant No. DMS-9407030, Office of Naval Resear
Grant No. N00014-94-1-0310, and Department of Ene
Grant No. DE-FG03-89ER25073. J.S.L. acknowledges
support from NSF Grant No. DMS-9404310, the Slo
Foundation, the McKnight Foundation, and the Minnes
Supercomputer Institute. M.J.S. acknowledges support f
Department of Energy Grant No. DE-FG02-88ER25053, N
tional Science Foundation Grants No. DMS-9396403~PYI!
and No. DMS-9404554, and the Exxon Educational Foun
tion.

APPENDIX A: CONSTRUCTING THE NONUNIFORM
MESH MAPPING

As described in our previous paper,2 the construction of
the nonuniform mesh requires a scaling functionR. Suppose
thata is the uniform parametrization variable. We introdu
a new parametrizationb such that a5a(b) and that
R(b)5ab is small in regions where the interface is mo
singular. This has the effect of clustering grid points sinc

sb~b,t !5L~ t !R~b!, withE
0

1

R~b8!db851, ~A1!

whereL(t)5*0
1sb8db8 is the total arclength of the interfac

at time t.
Suppose first that the interface is most singular nea

single region centered arounda5ac . Then, one natura
choice forR is to setR(b) to be a step function which take
a small value nearb5bc , wherea(bc)5ac . The relation-
ship betweena andb is given by
1951Hou, Lowengrub, and Shelley
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a~b!5E
0

b

R~b8!db8, ~A2!

which maps the unit interval@0,1# onto itself. SinceR is
chosen to be positive, the mapping is strictly monoto
Therefore the inverse always exists. In general, before
constructR, we do not know howbc relates toac . How-
ever, whenR is a step function, there is an explicit relatio
ship between the two. For example, chooseR to be the fol-
lowing step function satisfying R(b)5Rmin for b
P @bc2d,bc1d#, andR(b)5Rmax otherwise. GivenRmin

and d, Rmax is uniquely determined by satisfyin
*0
1R(b)db51. This gives Rmax5(122dRmin)/(122d).
Moreover, using~A2! and the relationshipa(bc)5ac , we
obtain the explicit formula relatingbc to ac :

bc5d1~ac2dRmin!/Rmax. ~A3!

However, choosingR to be a step function does not provid
a smooth enough parametrization for our numerical simu
tions. Therefore, we actually obtainR by smoothing the
above step function by convolving it with the heat kern
This amounts to diffusing the step function for the short tim
tD . Since this diffusion does not change the mean of a fu
tion and only slightly changes the position of its local e
trema, the above formula forbc remains valid.

We can easily generalize this idea for the case in wh
local mesh refinement is required for more than one reg
For example, consider a refinement in regions cente
around ac,1 and ac,2 . Define R(b)5Rmin for b
P @bc,12d,bc,11d# and b P @bc,22d,bc,21d#, and
R(b)5Rmax otherwise. Then, the explicit formulae forbc,1

andbc,2 are

bc,15d1~ac,12dRmin!/Rmax,

bc,253d1~ac,223dRmin!/Rmax.

In our simulations, we usedd50.05, Rmin50.06, and
tD50.005. After the diffusion process, the minimum val
of R is about 0.1 in a small neighborhood of thebc . This
gives approximately 8 more points near the local singu
region. To find theac , we ran the uniform parametrizatio
calculation and determined where the local maxima of
curvature, or the minima of the pinching distance, occ
Finally, onceR is constructed as above, the grid mappi
a j5a(b j ), whereb j5 jh is found using a spectral approx
mation of the integral in~A2!. Spectral interpolation is also
used to obtain the values of the interface quantities on
new grid$a j% j51

N .

APPENDIX B: TIME-INTEGRATION METHODS

The time-integration scheme we used in this paper,
the We5200 simulation, is a fourth-order multi-ste
implicit/explicit scheme studied in Ref. 35 by Ascher, Ruu
and Wetton. Consider a time-dependent PDE in which
spatial derivatives have been discretized by either central
ferences or by spectral or pseudo-spectral methods.
gives rise to a large system of ODEs in time which typica
has the form
1952 Phys. Fluids, Vol. 9, No. 7, July 1997
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du

dt
5 f ~u!1ng~u!, ~B1!

whereg is a linear operator containing high-order derivativ
and f (u) is a nonlinear function which we do not want t
integrate implicitly in time. To avoid using excessively sma
time steps, we would like to treat theng(u) term implicitly
while treating the nonlinear termf (u) explicitly. Typically,
f (u) involves only first-order derivatives from convectiv
terms, so the stiffness induced from the nonlinear term is
as severe as that from the linear operatorg(u).

A straightforward implicit/explicit time integration
scheme is to use the second-order Adams–Bashforth sch
for the explicit term and the Crank–Nicholson scheme
the implicit term. This gives

un112un

Dt
5
3

2
f ~un!2

1

2
f ~un21!1

n

2
@g~un11!1g~un!#,

~B2!

whereDt is the time step size andun is the numerical ap-
proximation tou(nDt). In general, one can construct a fam
ily of high-order implicit/explicit schemes based Taylor e
pansions. However, they do not all share the same stab
properties.

The fourth-order implicit/explicit scheme considered
Ascher, Ruuth, and Wetton seems to be quite stable.
scheme is given as follows:

1

Dt S 2512un1124un13un212
4

3
un221

1

4
un23D ~B3!

54 f ~un!26 f ~un21!14 f ~un22!2 f ~un23!

1ng~un11!. ~B4!

For example, iff (u)5aux , g(u)5uxx , and a spectral dis-
cretization is used in space, then a von-Neumann stab
analysis shows that the scheme is stable forDt<0.52h/a.35

We now apply this fourth-order implicit/explicit schem
to our problem,

u t5
1

2sa
S 1sa

H~g! D
a

1P, ~B5!

g t52SS ua

sa
D

a

1Q, ~B6!

whereP andQ are the nonlinear terms. We obtain the fo
lowing system:

1

Dt S 2512un1124un13un212
4

3
un221

1

4
un23D

5
1

2sa
n11 S 1

sa
n11H~gn11! D

a

14Pn26Pn21

14Pn222Pn23

and
Hou, Lowengrub, and Shelley
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Dt S 2512gn1124gn13gn212
4

3
gn221

1

4
gn23D

5SS ua
n11

sa
n11 D

a

14Qn26Qn2114Qn222Qn23.

By substitutinggn11 into the equation forun11, we can
eliminategn11 and obtain a single equation forun11, which
takes the form

sa
n11un112

S

2 S 1225D
2

Dt2S 1

sa
n11HFua

n11

sa
n11G

a
D

a

5N~a!,

~B7!

whereN is a known quantity depending on the solutions
the previous time steps. The spatial derivative is discreti
by a spectral method. In the case of uniform parametriza
formulation,sa is independent ofa. In this case, the opera
tor in the left hand side of~B7! is a linear constant coefficien
operator which is diagonalized by the Fourier transfor
Therefore, in the uniform case, we solve forun11 explicitly
using the Fast Fourier transform~FFT!. However, when the
variable parametrization frame is used,sa

n11 depends ona
and so the equation is no longer diagonalized by the Fou
transform. Consequently, in the variable case, we use a
erative method to solve forun11. Note that the linear opera
tor in the left hand side of~B7! is symmetric, positive defi-
nite. Thus, we use the preconditioned conjugate grad
method to solve forun11. The preconditioning operatorM is
given by

M ~un11!5smaxu
n112

S

2smin
2 S 1225D

2

Dt2~H@ua
n11#a!a ,

~B8!

wheresmin5 minasa
n11 andsmax5 maxasa

n11 . Thus,M is a
constant coefficient and is diagonalized by the Fourier tra
form:

M ~u!ˆ ~k!5S smax1
S

2smin
2 S 1225D

2

Dt2uku3D û~k!. ~B9!

So, invertingM only requiresN log(N) operations using the
FFT. We also use the solutions from the previous four ti
steps to extrapolate a fourth-order initial guess forun11.
Typically it takes a few iterations to converge with an iter
tive error of 1310211 until very close to the singularity time

APPENDIX C: THE CONSEQUENCES OF INTERFACE
COLLISION

We show that the collision~or self-intersection! of ma-
terial surfaces, such as vortex sheets, corresponds to a
fluid dynamic singularity. In particular, ifV(t) is any mate-
rial volume ~or area! strictly betweenthe colliding material
surfaces, then

E
0

t

i“u~•,t8!iL`~V~ t8!!dt8→`, as t→tc , ~C1!

wheretc is the time that the collision occurs. Thus, the stra
rates diverge in a pointwise sense and must do so at lea
rapidly as 1/(tc2t). As will be shown in section IV, the
Phys. Fluids, Vol. 9, No. 7, July 1997
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singularity we observe is accompanied by the blow-up of
fluid velocity itself which assures~C1! is satisfied. The proof
of Eq. ~C1! is straightforward and we sketch it briefly her
Let j be a smooth scalar field onV(0) taking the value 1 on
one of the colliding surfaces and 0 on the other. Letj be
advected by the fluid velocityu. Then, it can be shown tha

i“j~•,t !iL2~V~ t !!<i“j~•,0!iL2~V~0!!

3expF E
0

t

i“u~•,t8!iL`~V~ t8!!dt8G .
~C2!

Using the mean value theorem for integrals and incompre
ibility, one obtains

u“j~x0 ,t !u<i“j~•,0!iL`~V~0!!

3expF E
0

t

i“u~•,t8!iL`~V~ t8!!dt8G , ~C3!

for somex0 P V(t). Since this is true for any material do
mainV(t) and sinceu“ju→` at the collision point,V can
be taken sufficiently localized about the collision point
that u“j(x0 ,t)u becomes arbitrarily large ast→tc , the col-
lision time.

1P. G. Saffman and G. R. Baker, ‘‘Vortex interactions,’’ Annu. Rev. Flu
Mech.11, 95 ~1979!.

2T. Hou, J. Lowengrub, and M. Shelley, ‘‘Removing the stiffness fro
interfacial flows with surface tension,’’ J. Comput. Phys.114, 312~1994!.

3Lord Rayleigh, ‘‘On the instability of jets,’’ Proc. London Math. Soc.10,
4 ~1879!.

4H. A. Stone and L. G. Leal, ‘‘Relaxation and breakup of an initial
extended drop in an otherwise quiescent fluid,’’ J. Fluid Mech.198, 399
~1989!; M. Tjahjadi, H. A. Stone, and J. M. Ottino, ‘‘Satellite and subsa
ellite formation in capillary breakup,’’ J. Fluid Mech.243, 297 ~1992!.

5S. Tanveer and G. L. Vasconcelos, ‘‘Bubble breakup in two-dimensio
Stokes flow,’’ Phys. Rev. Lett.73, 2845~1994!.

6A. L. Bertozzi, M. P. Brenner, T. F. Dupont, and L. P. Kadanoff, ‘‘Sin
gularities and similarities in interface flows,’’ inTrends and Perspectives
in Applied Mathematics, edited by L. Sirovich~Springer-Verlag Applied
Mathematics Series, New York, 1994!.

7P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. Shell
and S.-M. Zhou, ‘‘Droplet breakup in a model of the Hele-Shaw cel
Phys. Rev. E47, 4169 ~1993!; T. F. Dupont, R. E. Goldstein, L. P
Kadanoff, and S.-M. Zhou, ‘‘Finite-time singularity formation in Hele
Shaw systems,’’ibid. 47, 4182~1993!.

8R. Goldstein, A. Pesci, and M. Shelley, ‘‘Topology transitions and sing
larities in viscous flows,’’ Phys. Rev. Lett.70, 3043 ~1993!. Also, R.
Goldstein, A. Pesci, and M. Shelley, ‘‘Attracting manifold for a visco
topology transition,’’ Phys. Rev. Lett.75, 3665~1995!.

9R. Almgren, A. Bertozzi, and M. Brenner, ‘‘Stable and unstable singula
ties in the unforced Hele-Shaw cell,’’ Phys. Fluids A8, 1356~1996!.

10S. Cardoso and A. Wood, ‘‘The formation of drops through viscous ins
bility,’’ J. Fluid Mech. 289, 351 ~1995!.

11R. Almgren, ‘‘Singularity formation in Hele-Shaw bubbles,’’ Phys. Fluid
A 8, 344 ~1996!.

12J. Eggers, ‘‘Universal pinching of 3D axisymmetric free-surface flow
Phys. Rev. Lett.71, 3458 ~1993!; J. Eggers and T. F. Dupont, ‘‘Drop
formation in a one-dimensional approximation of the Navier–Stokes eq
tion,’’ J. Fluid Mech.262, 205 ~1994!.

13X. D. Shi, M. P. Brenner, and S. R. Nagel, ‘‘A cascade of structure i
drop falling from a faucet,’’ Science265, 219 ~1994!; M. P. Brenner, X.
D. Shi, and S. R. Nagel, ‘‘Iterated instabilities during droplet formation
Phys. Rev. Lett.73, 3391~1994!.

14S. Bechtel, C. D. Carlson, and M. G. Forest, ‘‘Recovery of the Rayle
capillary instability from slender 1-D inviscid and viscous models,’’ Phy
Fluids A 12, 2956~1995!.
1953Hou, Lowengrub, and Shelley

to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp



.

e

th

ex
h.

e

a

or
.
he

a
de

th

ar
n,

ea
l.

y-

ar

ltz

fo

s o

ou

t I

or

nd

ker,

ral
th.

lti-

-

tex

ex

93,

for

ides

,’’

’’

m-

n–
c.

o-
-

ng
ter-

om-
ys.

or

nd
th.
15J. B. Keller and M. Miksis, ‘‘Surface tension driven flows,’’ SIAM J
Appl. Math 43, 268 ~1983!.

16D. Moore, ‘‘The spontaneous appearance of a singularity in the shap
an evolving vortex sheet,’’ Proc. R. Soc. London Ser. A365, 1059~1979!.

17R. Caflisch and O. Orellana, ‘‘Singular solutions and ill-posedness of
evolution of vortex sheets,’’ SIAM J. Math. Anal.20, 293 ~1989!.

18D. I. Meiron, G. R. Baker, and S. A. Orszag, ‘‘Analytic structure of vort
sheet dynamics. Part 1. Kelvin–Helmholtz instability,’’ J. Fluid Mec
114, 283 ~1982!.

19R. Krasny, ‘‘A study of singularity formation in a vortex sheet by th
point vortex approximation,’’ J. Fluid Mech.167, 65 ~1986!.

20M. Shelley, ‘‘A study of singularity formation in vortex sheet motion by
spectrally accurate vortex method,’’ J. Fluid Mech.244, 493 ~1992!.

21D. A. Pugh, ‘‘Development of vortex sheets in Boussinesq flows— F
mation of singularities,’’ Ph.D. thesis, Imperial College, London, 1989

22G. Baker, R. Caflisch, and M. Siegel, ‘‘Singularity formation during t
Rayleigh–Taylor instability,’’ J. Fluid Mech.252, 51 ~1993!.

23D. D. Joseph, T. Y. J. Liao, and J.-C. Saut, ‘‘Kelvin–Helmholtz mech
nism for side branching in the displacement of light with heavy fluid un
gravity,’’ Eur. J. Mech. B Fluids11, 253 ~1992!.

24M. Siegel, ‘‘A study of singularity formation in the Kelvin–Helmholtz
instability with surface tension,’’ SIAM J. Appl. Math.55, 865 ~1995!.

25G. Baker and A. Nachbin, ‘‘Stable methods for vortex sheet motion in
presence of surface tension,’’ preprint.

26J. T. Beale, T. Y. Hou, and J. S. Lowengrub, ‘‘Convergence of bound
integral methods for water waves with and without surface tensio
SIAM J. Num. Anal.33, 1797~1996!.

27J. T. Beale, T. Y. Hou, and J. S. Lowengrub, ‘‘Growth rates for the lin
motion of fluid interfaces far from equilibrium,’’ Comments Pure App
Math.XLVI , 1269~1993!.

28R. Zalosh, ‘‘Discretized simulation of vortex sheet evolution with buo
ancy and surface tension effects,’’ AIAA J.14, 1517~1976!.

29D. I. Pullin, ‘‘Numerical studies of surface tension effects in nonline
Kelvin–Helmholtz and Rayleigh–Taylor instability,’’ J. Fluid Mech.119,
507 ~1982!.

30R. Rangel and W. Sirignano, ‘‘Nonlinear growth of the Kelvin–Helmho
instability: Effect of surface tension and density ratio,’’ Phys. Fluids31,
1845 ~1988!.

31G. Baker, D. Meiron, and S. Orszag, ‘‘Generalized vortex methods
free-surface flow problems,’’ J. Fluid Mech.123, 477 ~1982!.

32G. Carrier, M. Krook, and C. Pearson,Functions of a Complex Variable,
~McGraw-Hill, New York, 1966!.

33J. T. Beale, T. Y. Hou, and J. S. Lowengrub, ‘‘On the well-posednes
two fluid interfacial flows with surface tension,’’Singularities in Fluids,
Plasmas and Optics, edited by R. C. Caflisch and G. C. Papanicola
~Kluwer Academic, London, 1993!.

34G. B. Whitham, ‘‘A new approach to problems of shock dynamics, Par
Two-dimensional problems,’’ J. Fluid Mech.2, 145 ~1957!.

35U. M. Ascher, S. J. Ruuth, and B. Wetton, ‘‘Implicit–explicit methods f
time-dependent partial differential equations,’’ SIAM J. Num. Anal.32,
797 ~1995!.
1954 Phys. Fluids, Vol. 9, No. 7, July 1997

Downloaded¬14¬Mar¬2009¬to¬131.215.105.33.¬Redistribution¬subject¬
of

e

-

-
r

e

y
’’

r

r

f

:

36A. Sidi and M. Israeli, ‘‘Quadrature methods for periodic singular a
weakly singular Fredholm integral equations,’’ J. Sci. Comput.3, 201
~1988!. For a related, but different quadrature approach, see G. Ba
‘‘Generalized vortex methods for free-surface flows,’’ inWaves on Fluid
Interfaces, edited by R. E. Meyer~Academic Press, New York,~1983!.

37T. Hou and H. Ceniceros, ‘‘Convergence of a non-stiff boundary integ
method for interfacial flows with surface tension,’’ to appear in Ma
Comput.

38G. R. Baker and M. J. Shelley, ‘‘Boundary integral techniques for mu
connected domains,’’ J. Comput. Phys.64, 112 ~1986!.

39R. Krasny, ‘‘Desingularization of periodic vortex sheet roll-up,’’ J. Com
put. Phys.65, 292 ~1986!.

40G. R. Baker and M. J. Shelley, ‘‘On the connection between thin vor
layers and vortex sheets,’’ J. Fluid Mech.215, 161 ~1990!.

41G. Tryggvason, W. J. A. Dahm, and K. Sbeih, ‘‘Fine structure of vort
sheet rollup by viscous and inviscid simulation,’’ J. Fluid Eng.113, 31
~1991!.

42R. Krasny, ‘‘Viscous simulation of wake patterns,’’ inProceedings of the
NATO ARW on ‘‘Vortex Flows and Related Numerical Methods,’’ edited
by J. T. Beale, G.-H. Cottet, and S. Huberson, NATO ASI Ser. 395, 19
p. 145.

43R. Caflisch and J. Lowengrub, ‘‘The convergence of the vortex method
vortex sheets,’’ SIAM J. Num. Anal.26, 1060~1989!.

44J.-Y. Chemin, ‘‘Persistance de structures geometriques dans les flu
incompressibles bidimensionnels,’’ Ann. Ecole Normale Supe´rieure26, 1
~1993!.

45A. L. Bertozzi and P. Constantin, ‘‘Global regularity for vortex patches
Commun Math. Phys.152, 19 ~1993!.

46M. Pugh and M. Shelley, ‘‘Singularity formation in models of thin jets,
submitted to Commun. Pure Appl. Math.

47M. Siegel~private communication!.
48S. Thorpe, ‘‘Experiments on the instability of stratified shear flows: I
miscible flows,’’ J. Fluid Mech.39, 25 ~1969!.

49J. S. Lowengrub and L. Truskinovsky, ‘‘Quasi-incompressible Cah
Hilliard fluids and topological transitions,’’ submitted to Proc. R. So
London Ser. A.

50J. S. Lowengrub, M. J. Shelley, L. Truskinovsky, and J. Goodman, ‘‘T
pological transitions in fluid-fluid jets using Cahn–Hilliard hydrodynam
ics,’’ in preparation.

51Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, ‘‘Eulerian capturi
methods based on a level set formulation for incompressible fluid in
faces,’’ J. Comput. Phys.124, 449 ~1996!.

52M. Sussman, P. Smereka, and S. Osher, ‘‘A level set approach for c
puting solutions to incompressible two-phase flow,’’ J. Comput. Ph
114, 146 ~1994!.

53J. U. Brackbill, D. B. Kothe, and C. Zemach, ‘‘A continuum method f
modeling surface tension,’’ J. Comput. Phys.100, 335 ~1992!.

54M. E. Gurtin, D. Polignone, and J. Vinals, ‘‘Two-phase binary fluids a
immiscible fluids described by an order parameter,’’ to appear in Ma
Mod. Methods Appl. Sci.
Hou, Lowengrub, and Shelley

to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp


