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GLOBAL WELL-POSEDNESS OF
THE VISCOUS BOUSSINESQ EQUATIONS

Thomas Y. Hou and Congming Li

(Communicated by Fang-Hua Lin)

Abstract. We prove the global well-posedness of the viscous incompressible Boussi-
nesq equations in two spatial dimensions for general initial data in Hm with m ≥ 3.
It is known that when both the velocity and the density equations have finite posi-
tive viscosity, the Boussinesq system does not develop finite time singularities. We

consider here the challenging case when viscosity enters only in the velocity equation,
but there is no viscosity in the density equation. Using sharp and delicate energy

estimates, we prove global existence and strong regularity of this viscous Boussinesq
system for general initial data in Hm with m ≥ 3.

1. Introduction. The question of global existence/finite time blowup of smooth
solutions for the three-dimensional incompressible Euler or Navier-Stokes equations
has been one of the most outstanding open problems in applied analysis. The answer
to this question will undoubtedly play a key role in understanding core problems
in hydrodynamics such as the onset of turbulence. This challenging problem has
attracted significant attention but it has eluded resolution. The main difficulty is to
understand the effect of vortex stretching, which is absent in the two-dimensional
incompressible Euler or Navier-Stokes equations. As part of the effort to understand
the vortex stretching effect for 3D flows, various simplified model equations have
been proposed in the literature. Amongst these models, the Boussinesq system is
one of the most commonly used because it shares a similar vortex stretching effect
as that in the 3D incompressible flow.

In this paper, we consider the global existence of the viscous Boussinesq equations

ut + u · ∇u = −∇p +
(

0
ρ

)
+ ν4u, (1.1)

∇ · u = 0, (1.2)
ρt + u · ∇ρ = 0, x ∈ R2, (1.3)

where u is the velocity, p is pressure, and ρ describes the variation of density from
a global average constant density which has been normalized to 1, ν is diffusion
coefficient for the momentum equation. We assume that u0 ∈ Hm(R2), ρ0 ∈
Hm−1(R2) for m ≥ 3. The Boussinesq equations have been used as a model in
many geophysical applications, see e.g. [15].

The Boussinesq equations (1.1)-(1.3) have received significant attention in the
mathematical fluid dynamics community because of its close connection to the
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3-D incompressible flow. Let u = (u1, u2), x = (x1, x2), and define W = ∇⊥ρ =
(∂x2ρ,−∂x1ρ). Recall that the vorticity is defined by ω = curl(u) = (∂x1u2−∂x2u1).
It is easy to derive the following evolution equations for ω and W :

ωt + u · ∇ω = ρx1 + ν4ω, (1.4)
Wt + u · ∇W = (∇u)W . (1.5)

We can see that the growth of vorticity depends on ρx1 , which is the second com-
ponent of W . On the other hand, one can show that W has the same degree of
regularity as ∇u. Thus equation (1.5) for W formally shares the same difficulty as
the 3D vorticity equation with the same vortex stretching term. If we follow the
energy estimates for 3D Euler equation [1, 13], we would find that energy estimates
for W in high order Sobolev norms require an a priori control on

∫ T

0
‖∇u‖L∞dt.

This is quite difficult to achieve because the velocity equation is coupled to the
density equation and the latter lacks any viscous dissipation. Prior analytical work
in this area does not give any definite result on whether or not a singularity would
develop in finite time. In a recent paper, Córdoba, Fefferman, and De La Llave [7]
obtain the following a priori bound on the velocity field:∫ T

0

‖u‖L∞dt < ∞. (1.6)

Based on this a priori estimate on the velocity field, they can exclude the possibility
of certain semi-uniform collapsing singularities, which they refer to as “squirt”
singularities [7].

A closely related system to (1.1)–(1.3) is the one where diffusion is also present
in the density equation, i.e.

ut + u · ∇u = −∇p +
(

0
ρ

)
+ ν4u , (1.7)

∇ · u = 0 , (1.8)
ρt + u · ∇ρ = µ4ρ, x ∈ R2 . (1.9)

The Cauchy problem for the system (1.7)-(1.9) has been studied both analytically
and numerically, see [3, 11, 17]. In the case of µ > 0, it is known that singularity
does not develop in finite time.

In the absence of viscous effects, i.e. ν = µ = 0, the two-dimensional Boussinesq
convection has also been studied numerically and analytically. In fact, the inviscid
2-D Boussinesq equation can be used as a model for the 3-D axi-symmetric Euler
equation with swirl away from the symmetric axis r = 0. There have been some
numerical studies which indicate the possibility of finite time singularity formation
of the 3D axi-symmetric Euler equation with swirl [10, 16]. However, other numer-
ical investigations on similar data for the 2-D inviscid Boussinesq equations appear
to indicate that there is no finite time singularity formation [8]. Thus the numeri-
cal studies are still inconclusive. Other analytical work on the inviscid Boussinesq
equation can be found in [4, 5].

In this paper, we consider the global existence of the viscous Boussinesq system
(1.1)-(1.3) in the absence of viscous effect for the density equation. In particular,
we prove the global existence and strong regularity of the viscous Boussinesq sys-
tem (1.1)-(1.3) in finite Sobolev space, Hm with m ≥ 3, without any smallness
restriction on the initial data. There are two key ingredients in our analysis. The
first one is to use a sharp Sobolev embedding estimate in two spatial dimensions
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which bounds the maximum norm of ∇u by the L2 norm of 4u with a logarithmic
correction, i.e.

‖∇u‖L∞ ≤ C0(‖4u‖L2 + ‖∇u‖L2 + 1) (log(‖4∇u‖L2 + ‖∇u‖L2 + e))
1
2 . (1.10)

It can be shown that the above estimate is sharp in the sense that the exponent
in the logarithmic correction term cannot be lower than 1/2. In fact, the square
root exponent in the logarithmic correction is crucial in obtaining our global well-
posedness. This inequality was first derived by Brezis and Wainger [2]. For the
sake of completeness, we also include a different proof of (1.10) in the appendix.

The second technique is a novel local-in-time analysis to reduce the seemingly
high order nonlinearity due to the coupling between the velocity and density equa-
tions. We use this technique to estimate the growth of vorticity and vortex stretch-
ing due to the density stratification. The main challenge in obtaining the global
well-posedness of the Boussinesq system (1.1)-(1.3) is due to the fact that there is
no viscous effect in the density equation. As a result, there is no control on the
smallest scales for the gradient of density. As we mentioned before, the growth of
‖∇ρ‖L2 is controlled by the time integral of the maximum norm of the velocity gra-
dient, i.e.

∫ T

0
‖∇u‖L∞dt. By taking advantage of the viscous effect in the velocity

equation and the a priori bound of density in the L2 norm, we can obtain an a pri-
ori estimate on the L2 norm of ∇u and the time integral of the second derivatives of
u,
∫ T

0
‖4u‖L2dt. These a priori estimates on the velocity field enable us to use the

above embedding estimate (1.10) to get a sharp bound on
∫ T

0
‖∇u‖L∞dt, which in

turn controls the growth of ‖∇ρ‖L2 . However, direct application of (1.10) globally
in time could lead to high order nonlinear terms. To overcome this difficulty, we
perform a local-in-time analysis which allows us to reduce the order of nonlinearity.
Moreover, we show that the local-in-time analysis can be boot-strapped to any finite
time. By combining these two techniques, we can prove the global well-posedness
of the viscous Boussinesq system (1.1)-(1.3).

We remark that after we submitted our work for publication, we learned that a
similar result for the 2D Boussinesq equation has been obtained by Chae [6]. We
should also mention the recent work of Lin, Liu, and Zhang [12] who establish the
local existence and global existence (with small initial data) of classical solutions
for an Oldroyd-system in which viscosity enters only in the fluid equation, but not
in the elasticity equation.

The rest of the paper is organized as follows. We state the main result in Section
2 and present its proof. The analysis is structured into several steps. We present an
independent proof of the key Sobolev embedding estimate (1.10) to the appendix.

2. Main result and its proof. The main result of this paper is the following
global well-posedness theorem.

Theorem 2.1. Assume that u0 ∈ Hm(R2), ρ0 ∈ Hm−1(R2), m ≥ 3, with ‖u0‖Hm ,
‖ρ0‖Hm−1 ≤ M0. Then for any ν > 0, the solution of the viscous Boussinesq system
(1.1)-(1.3) has a unique global smooth solution. Moreover, we have for any T > 0
independent of initial data,

‖u‖Hm(t) ≤ C(ν, T, M0)(‖u0‖Hm + ‖ρ0‖Hm−1), (2.11)
‖ρ‖Hm−1(t) ≤ C(ν, T, M0)(‖u0‖Hm + ‖ρ0‖Hm−1), for 0 ≤ t ≤ T. (2.12)
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Proof.

The proof can be divided into six steps. We will use the same generic constant
C to denote various constants that depend on ν, T , and M0 only.

Step 1 H1 Estimate.

First, we will obtain H1 estimate. It is easy to see that

‖ρ(t)‖L2 ≤ ‖ρ0‖L2 , ‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞ . (2.13)

Then straight forward energy estimate on velocity equation (1.1) gives

1
2

d

dt

∫
R2
|u|2dx + ν

∫
R2
|∇u|2dx ≤ ‖ρ‖L2‖u‖L2 ,

which implies

‖u‖L2(t) ≤ C,

∫ t

0

‖∇u‖2
L2dt ≤ C, t ≤ T. (2.14)

It is well-known that u can be recovered from the vorticity w via the Biot-Savart
law:

u = K ∗ ω, K(x) =
1

2π|x|2
(−x2, x1).

In particular, ∇K is a singular integral operator of order 0, satisfying ‖∇u‖L2 =
‖ω‖L2 and ‖4u‖L2 = ‖∇ω‖L2 .

Recall that the vorticity equation is given by

ωt + u · ∇ω = ρx1 + ν4ω. (2.15)

Multiplying both sides of this equation by ω and integrating over R2, we get

1
2

d

dt

∫
R2
|ω|2dx +

∫
R2

(u · ∇ω)ωdx =
∫

R2
ρx1ωdx + ν

∫
R2

ω4ωdx. (2.16)

Note that using integration by parts, we have∫
R2

(u · ∇ω)ωdx =
1
2

∫
R2

(u · ∇)ω2dx = −1
2

∫
R2

(∇ · u)ω2dx = 0,

since ∇ · u = 0. Applying integration by parts to the last two terms of (2.16), we
obtain

1
2

d

dt

∫
|ω|2dx = −

∫
ρωx1dx− ν

∫
|∇ω|2dx

≤ ‖ρ‖L2‖ωx1‖L2 − ν

∫
|∇ω|2dx

≤ C‖ρ‖2
L2 +

ν

2
‖ωx1‖2

L2 − ν

∫
|∇ω|2dx

≤ C − ν

2

∫
|∇ω|2dx .

Therefore, we conclude that

‖ω(·, t)‖L2 ≤ C ,

∫ T

0

‖∇ω‖L2dx ≤ C, t ≤ T, (2.17)

which in turn implies

‖∇u‖L2 = ‖ω‖L2 ≤ C, t ≤ T, (2.18)
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∫ T

0

‖4u‖2
L2ds =

∫ T

0

‖∇ω‖2
L2ds ≤ C(T ). (2.19)

Step 2 H2-Estimate.

Next, we will obtain H2 estimate. Applying ∇ to vorticity equation (2.15) and
dot multiplying the resulting equation with ∇ω, we get
1
2

d

dt

∫
R2
|∇ω|2dx +

∫
R2
∇ω · ∇(u · ∇ω)dx =

∫
∇ω · ∇ρx1dx + ν

∫
∇ω · ∇∆ωdx.

(2.20)
Using integration by parts, we obtain∣∣∣∣∫ ∇ω · ∇ρx1dx

∣∣∣∣ = ∣∣∣∣∫ ∇2ω · ρx1dx

∣∣∣∣ ≤ C‖∇ρ‖2
L2 +

ν

4
‖4ω‖2

L2 . (2.21)

For the last term on the right hand side of (2.20), we use the following simple
formula: ∫

∇ω · ∇4ωdx = −
∫
|4ω|2dx. (2.22)

For the convection term, which is the second term on the left hand side of (2.20),
we have∫

∇ω · ∇(u · ∇ω)dx =
∫
∇ω · (u · ∇(∇ω))dx +

∫
∇ω · (∇u · ∇ω)dx

=
1
2

∫
u · ∇|∇ω|2dx +

∫
∇ω · (∇u · ∇ω)dx

=
∫
∇ω · (∇u · ∇ω)dx,

where we have used integration by parts and the divergence free condition of u in
the last step. Thus, we have∣∣∣∣∫ ∇ω · ∇(u · ∇ω)dx

∣∣∣∣ ≤ ‖∇u‖L2‖∇ω‖2
L4 = ‖ω‖L2‖∇ω‖2

L4 . (2.23)

Using the following Gagaliardo-Nirenberg (see [9] and [14]) inequality in 2-D:

‖v‖L4 ≤ C‖v‖
1
2
L2‖∇v‖

1
2
L2 , (2.24)

we obtain ∣∣∣∣∫ ∇ω · ∇(u · ∇ω)dx

∣∣∣∣ ≤ C‖ω‖L2‖∇ω‖L2‖4ω‖L2

≤ C‖∇ω‖L2‖4ω‖L2

≤ C‖∇ω‖2
L2 +

ν

4
‖4ω‖2

L2 , (2.25)

where we have used the fact ‖ω‖L2 ≤ C from our estimate (2.17) in Step 1.
Putting all the estimates (2.20)–(2.25) together, we obtain

1
2

d

dt
‖∇w‖2

L2 ≤ C‖∇w‖2
L2 + C‖∇ρ‖2

L2 −
ν

2
‖4w‖2

L2 . (2.26)

Next, we need to derive an estimate on ‖∇ρ‖L2 . Using an argument similar to
that used in obtaining (2.20), we get

1
2

d

dt

∫
R2
|∇ρ|2dx +

∫
∇ρ · ∇(u · ∇ρ)dx = 0.
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As before, we treat the convection term as follows,∫
∇ρ · ∇(u · ∇ρ)dx =

∫
∇ρ · (u · ∇(∇ρ))dx +

∫
∇ρ · (∇u · ∇ρ)dx

= −1
2

∫
(∇ · u)|∇ρ|2dx +

∫
∇ρ · (∇u · ∇ρ)dx

=
∫
∇ρ · (∇u · ∇ρ)dx.

Thus, we obtain∣∣∣∣∫ ∇ρ · ∇(u · ∇ρ)dx

∣∣∣∣ ≤ ∣∣∣∣∫ ∇ρ · (∇u · ∇ρ)dx

∣∣∣∣ ≤ ‖∇u‖L∞‖∇ρ‖2
L2 ,

which gives
1
2

d

dt
‖∇ρ‖2

L2 ≤ ‖∇u‖L∞‖∇ρ‖2
L2 . (2.27)

Step 3 A Key Embedding Estimate.

In order to control the growth of ‖∇ρ‖2
L2 , we need to use the following key

embedding estimate:

‖f‖L∞ ≤ C(‖∇f‖L2 + ‖f‖L2 + 1)
(
log (‖4f‖2

L2 + ‖f‖2
L2 + e)

) 1
2 . (2.28)

The proof of the above embedding estimate will be deferred to the appendix.
Applying (2.28) with f = ∇u, we immediately obtain

‖∇u‖L∞ ≤ C0(‖∇2u‖L2 + ‖∇u‖L2 + 1)(log (‖∇4u‖2
L2 + ‖∇u‖L2 + e))

1
2 . (2.29)

Step 4: Local-In-Time Estimate.

We now show how to use the key embedding estimate (2.29) to perform the local-
in-time analysis. This local-in-time analysis is a crucial step in our well-posedness
analysis.

Using (2.27) and (2.29), we have

‖∇ρ(t)‖2
L2 ≤ ‖∇ρ0‖2

L2e2
∫ t
0 ‖∇u‖L∞ (s)ds

≤ Ce2C0
∫ t
0 (‖4u‖L2+‖∇u‖L2)(log(‖∇4u‖2

L2+‖∇u‖2
L2+e))

1
2 ds

≤ CeC0
∫ t
0 (2(‖4u‖2

L2+‖∇u‖2
L2 )+(log (‖∇4u‖2

L2+‖∇u‖2
L2+e)))ds

≤ CeC0
∫ t
0 log (‖∇4u‖2

L2+‖∇u‖2
L2+e)ds ,

where we have used ‖∇u‖2
L2 ≤ C and

∫ t

0
‖4u‖2

L2ds ≤ C from (2.18) and (2.19) in
Step 1.

In order to complete our global energy estimates, we need to use a novel local-
in-time analysis to control the seemingly high order nonlinear term resulting from
the logarithmic correction in the above estimate. 1

1After we have completed our manuscript, we also found a more direct and simpler analysis
which overcomes the difficulty mentioned above. But we feel that this local-in-time analysis is of

interest in itself and decide to present the original proof here.
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Define D ≡ CeC0
∫ t−ε

0
log (‖∇4u‖2

L2 + e)ds. The parameter ε > 0 will be deter-
mined later. Then we can bound

‖∇ρ(t)‖2
L2 ≤ DeC0

∫ t
t−ε

log (‖∇4u‖2
L2+‖∇u‖2

L2+e)ds

= DeC0ε( 1
ε

∫ t
t−ε

log (‖∇4u‖2
L2+‖∇u‖2

L2+e)ds)

≤ DeC0ε log ( 1
ε

∫ t
t−ε

(‖∇4u‖2
L2+‖∇u‖2

L2+e)ds)

≤ D

(
1
ε

∫ t

t−ε

(‖∇4u‖2
L2 + ‖∇u‖2

L2 + e)ds

)εC0

where we have used Jensen’s inequality

1
ε

∫ t

t−ε

log u(s)ds ≤ log (
1
ε

∫ t

t−ε

u(s)ds),

since log (u) is a concave function.
Furthermore, we observe that ( 1

ε )ε ≤ C for all ε > 0. We get

‖∇ρ‖2
L2(t) ≤ CD

(∫ t

0

‖∇4u‖2
L2ds + ‖∇u‖2

L2 + e

)C0ε

.

Recall that C0 is a constant in the embedding estimate (2.29), which is independent
of M0, ν and T . Choose ε such that C0ε = 1

2 , we get

‖∇ρ‖2
L2(t) ≤ CD

(∫ t

0

‖∇4u‖2
L2ds + ‖∇u‖2

L2 + e

) 1
2

. (2.30)

Using a similar argument, we can show that for t ≤ T

D ≤ C

(
1

t− ε

∫ t−ε

0

(
‖∇4u‖2

L2 + ‖∇u‖2
L2 + e

)
ds

)C0(t−ε)

≤ C

(∫ t−ε

0

(
‖∇4u‖2

L2 + ‖∇u‖2
L2 + e

)
ds

)C0(t−ε)

. (2.31)

Substituting (2.30) into (2.26) and integrating in time from 0 to t, we have
1
2
‖∇ω(t)‖2

L2 −
1
2
‖∇ω0‖2

L2

≤ C

∫ t

0

‖∇ω‖2
L2ds + D

∫ t

0

(∫ s

0

‖∇4u‖2
L2ds + C

) 1
2

ds− ν

2

∫ t

0

‖4ω‖2
L2ds

≤ C

∫ t

0

‖∇ω‖2
L2ds + DCT

(∫ t

0

‖4ω‖2
L2ds + C

) 1
2

− ν

2

∫ t

0

‖4ω‖2
L2ds

≤ C

∫ t

0

‖∇ω‖2
L2ds + CD2 +

ν

4

(∫ t

0

‖4ω‖2
L2ds

)
− ν

2

∫ t

0

‖4ω‖2
L2ds ,

where we have used the estimate ‖∇u‖2
L2 ≤ C from (2.18) and ‖∇4u‖L2 ≤

C‖4ω‖L2 . Therefore, we obtain

1
2
‖∇ω(t)‖2

L2 −
1
2
‖∇ω0‖2

L2 ≤ CD2 + C

∫ t

0

‖∇ω‖2
L2ds− ν

4

∫ t

0

‖4ω‖2
L2ds . (2.32)

Note that ε = 1
2C0

is a fixed constant independent of u0, ρ0, ν and time T .
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Step 5: Global Estimate.

Next, we show how to boot-strap the local-in-time analysis to any finite time T .
We argue as follows.

: 1. For t ≤ ε, we have D = 0, (2.32) implies that

1
2
‖∇ω(t)‖2

L2 −
1
2
‖∇ω0‖L2 ≤ C

∫ t

0

‖∇ω‖2
L2ds .

The Gronwall inequality gives (for any T > 0)

‖∇ω(t)‖2
L2 ≤ C(T, ν, M0), t ≤ ε . (2.33)

This in turn implies that∫ t

0

‖4w‖2
L2ds ≤ C(T, ν, M0), 0 ≤ t ≤ ε . (2.34)

: 2. For ε ≤ t ≤ 2ε, we have from (2.18), (2.31) and (2.34) that

D = CeC0
∫ t−ε
0 log (‖∇4u‖2

L2+‖∇u‖2
L2+e)ds

≤ C

(∫ ε

0

(
‖∇4u‖2

L2 + ‖∇u‖2
L2 + e

)
ds

)C0ε

≤ C

(∫ ε

0

(
‖4ω‖2

L2 + ‖∇u‖2
L2 + e

)
ds

)C0ε

≤ C(T, ν, M0) .

It follows from (2.32) that

1
2
‖∇ω(t)‖2

L2 −
1
2
‖∇ω0‖2

L2 ≤ CD2 + C

∫ t

0

‖∇ω‖2
L2ds , ε ≤ t ≤ 2ε .

The Gronwall inequality implies

‖∇ω(t)‖2
L2 ≤ C(T, ν, M0), 0 ≤ t ≤ 2ε. (2.35)

This in turn gives∫ t

0

‖4ω‖2
L2ds ≤ C(T, ν, M0), 0 ≤ t ≤ 2ε . (2.36)

Now estimate (2.36) would imply

D ≤ C(T, ν, M0) for 0 ≤ t ≤ 3ε.

Repeating the above local argument on (2.32) proves the boundedness of
‖∇ω‖2

L2 , and
∫ t

0
‖4ω‖2

L2ds for 0 ≤ t ≤ 3ε. This procedure can be repeated
indefinitely for any finite time. This proves the global estimate of the viscous
Boussinesq equation with the estimate

‖∇ω(t)‖L2 ≤ C(T, ν, M0), 0 ≤ t ≤ T , (2.37)

and ∫ t

0

‖4ω‖2
L2ds ≤ C(T, ν, M0), 0 ≤ t ≤ T . (2.38)

From (2.37) and (2.38), we obtain for any T > 0,

‖4u(t)‖2
L2 +

∫ t

0

‖∇4u‖2
L2ds ≤ C(T, ν, M0), 0 ≤ t ≤ T , (2.39)
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using the boundedness of the singular operator ∇K from L2 to L2. Finally,
it follows from (2.30) that

‖∇ρ(t)‖2
L2 ≤ CD

(∫ t

0

‖∇4u‖2
L2ds + ‖∇u‖2

L2 + e)ds

) 1
2

≤ C(T, ν, M0) . (2.40)

Step 6 Global Estimates in High Order Sobolev Norms.

First, we note that from (2.18), (2.39), and the Sobolev embedding, we have∫ T

0

‖∇u‖L∞(s)ds ≤ C

∫ T

0

(‖∇u‖L2 + ‖∇4u‖L2) ds

≤ C(T, ν, M0) . (2.41)

Next, we obtain a priori bound for ‖∇ρ‖L∞ . Let p be a positive odd integer,
and denote ∇j = ∂xj

. Multiplying the density equation by ∇j ((∇jρ)p), we obtain∫
∇j(∇jρ)pρt +

∫
(u · ∇ρ)(∇j(∇jρ)p)dx = 0 .

Integration by parts gives∫
(∇jρ)p(∇jρ)t +

∫
(∇ju · ∇ρ)(∇jρ)pdx +

∫
(u · ∇(∇jρ))(∇jρ)pdx = 0 .

Note that∫
(∇jρ)p((u·∇)∇jρ)dx =

1
p + 1

∫
u·∇(∇jρ)p+1dx = − 1

p + 1

∫
(∇·u)(∇jρ)p+1dx = 0 .

Therefore, we obtain
1

p + 1
d

dt

∫
(∇jρ)p+1dx ≤ ‖∇u‖L∞

∫
|∇ρ|p+1dx, j = 1, 2,

which implies
d

dt

∫
|∇ρ|p+1dx ≤ (p + 1)‖∇u‖L∞

∫
|∇ρ|p+1dx .

Thus, we get
‖∇ρ(t)‖p+1

Lp+1 ≤ ‖∇ρ0‖p+1
Lp+1e

(p+1)
∫ t
0 ‖∇u‖L∞ds

which gives

‖∇ρ(t)‖Lp+1 ≤ ‖∇ρ0‖Lp+1e
∫ t
0 ‖∇u‖L∞ (s)ds ≤ C(T, ν, M0) .

Therefore, we conclude

‖∇ρ(t)‖L∞ ≤ limp→∞‖∇ρ(t)|p+1 ≤ C(T, ν, M0) . (2.42)

Now, we are ready to perform Hm-estimate for ρ and u. We need to use the
following Calculus Inequality (see e.g. Lemma 3.4 on page 98 of [13])∑

0≤|α|≤m

‖Dα(uv)− uDαv‖L2 ≤ C (‖∇u‖L∞‖v‖Hm−1 + ‖v‖L∞‖u‖Hm) . (2.43)

Let 0 ≤ |α| ≤ m be a multi-index. Apply Dα to the density equation (1.3), multiply
Dαρ, and integrate over space. The result is

1
2

d

dt

∫
R2
|Dαρ|2dx +

∫
R2

DαρDα(u · ∇ρ)dx = 0 .
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Applying the Calculus Inequality (2.43) with v = ∇ρ for 0 ≤ |α| ≤ (m− 1), we get∣∣∣∣∫ DαρDα(u · ∇ρ)dx

∣∣∣∣ =
∣∣∣∣∫ Dαρ(u · ∇)Dαρdx +

∫
Dαρ (Dα(u · ∇ρ)− u · ∇Dαρ) dx

∣∣∣∣
≤

∣∣∣∣12
∫

u · ∇(Dαρ)2dx

∣∣∣∣+ ‖Dαρ‖L2‖Dα(u · ∇ρ)− u ·Dα∇ρ‖L2

≤ ‖Dαρ‖L2C (‖∇u‖L∞‖ρ‖Hm−1 + ‖u‖Hm−1‖∇ρ‖L∞) .

Summing over α for 0 ≤ |α| ≤ (m− 1), we obtain
1
2

d

dt
‖ρ‖2

Hm−1 ≤ C
(
‖∇u‖L∞‖ρ‖2

Hm−1 + ‖∇ρ‖L∞‖ρ‖Hm−1‖u‖Hm−1

)
,

which is equivalent to
d

dt
‖ρ‖2

Hm−1 ≤ C(‖∇u‖L∞ + 1)‖ρ‖2
Hm−1 + C‖u‖2

Hm−1 , (2.44)

where we have used ‖∇ρ‖L∞ ≤ C. Next we apply the same estimate to the velocity
equation (1.1). We have

d

dt
‖u‖2

Hm ≤ C‖∇u‖L∞‖u‖2
Hm +

ν

2
‖∇u‖2

Hm + C‖ρ‖2
Hm−1 − ν‖∇u‖2

Hm

= C‖∇u‖L∞‖u‖2
Hm + C‖ρ‖2

Hm−1 −
ν

2
‖∇u‖2

Hm . (2.45)

Adding (2.44) and (2.45) gives,
d

dt

(
‖u‖2

Hm + ‖ρ‖2
Hm−1

)
≤ C(‖∇u‖L∞ + 1)(‖u‖2

Hm + ‖ρ‖2
Hm−1)−

ν

2
‖∇u‖2

Hm .(2.46)

In particular, we have
d

dt

(
‖u‖2

Hm + ‖ρ‖2
Hm−1

)
≤ C (‖∇u‖L∞ + 1)

(
‖u‖2

Hm + ‖ρ‖2
Hm−1

)
. (2.47)

The Gronwall inequality implies

‖u(t)‖2
Hm + ‖ρ(t)‖2

Hm−1 ≤
(
‖u0‖2

Hm + ‖ρ0‖2
Hm−1

)
e
∫ t
0 C(‖∇u‖L∞+1)ds

≤ C(T, ν, M0) , (2.48)

for 0 ≤ t ≤ T , where we have used (2.41). Substituting (2.48) back to (2.46), we
get ∫ t

0

‖∇u‖2
Hmds ≤ C(T, ν, M0) , 0 ≤ t ≤ T. (2.49)

With the above global regularity estimates, we can easily prove the uniqueness of
solutions to the Boussinesq system and the continuous dependence on initial data
(see e.g. [13]). This completes the proof of the global well-posedness estimate for
the viscous Boussinesq system (1.1)-(1.3).

3. Appendix. In this appendix, we prove the key embedding estimate (2.29) in
Step 3.

‖f‖L∞ ≤ C0(‖∇f‖L2 + ‖f‖L2 + 1) (log(‖4f‖L2 + ‖f‖L2 + e))
1
2 . (3.50)

Proof

Denote by Bε = {x, |x| ≤ ε} the disk centered at the origin with radius ε. Let
w = ϕf , where ϕ is a smooth cut-off function with support in the unit disk B1 and
satisfying

ϕ(0) = 1, |∇ϕ| ≤ C, |∇2ϕ| ≤ C, suppϕ ⊂ B1.
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By translation, it is sufficient to prove (2.29) for the origin, x = 0. Using the
Cauchy formula, we have

|w(0)| =
∣∣∣∣ 1
2π

∫
(log |y| − log ε)4w(y)dy

∣∣∣∣
≤ 1

2π

∣∣∣∣∫
Bε

(log |y| − log ε)4w(y)dy

∣∣∣∣+ 1
2π

∣∣∣∣∣
∫

B1\Bε

(log |y| − log ε)4w(y)dy

∣∣∣∣∣
≤ 1

2π

(∫
Bε

| log (
y

ε
)|2dy

) 1
2

‖4w‖L2 +
1
2π

∫
B1\Bε

|∇w|
|y|

dy (3.51)

where we have used the Hölder inequality in the first estimate, and performed
integration by parts for the second term. There is no boundary contribution from
the integration by parts because the integrand vanishes at the boundary of (B1\Bε).

By rescaling the integration domain in the last term of (3.51) with z = y/ε and
using the properties on the cut-off function ϕ, we obtain

|f(0)| ≤ 1
2π

(∫
B1

ε2| ln z|2dz

) 1
2

‖4w‖L2 +
1
2π

(∫
B1\Bε

dy

|y|2

) 1
2

‖∇w‖L2

≤ Cε (‖4f‖L2 + ‖f‖L2) + C

(
log

1
ε

) 1
2

(‖∇f‖L2 + ‖f‖L2) ,

where we have used ‖∇f‖L2 ≤ C (‖f‖L2 + ‖4f‖L2).
Choose ε such that ε (‖4f‖L2 + ‖f‖L2 + 1) = 1, i.e. ε = 1

‖4f‖L2+‖f‖L2+1 . We
obtain

|f(0)| ≤ C (‖∇f‖L2 + ‖f‖L2 + 1) (log (‖4f‖L2 + ‖f‖L2))
1
2 .

The argument that we have presented for x = 0 obviously applies to any other
point. This completes the proof of (3.50).
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