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Abstract
We consider a family of three-dimensional models for the axi-symmetric 
incompressible Navier–Stokes equations. The models are derived by changing 
the strength of the convection terms in the axisymmetric Navier–Stokes 
equations written using a set of transformed variables. We prove the global 
regularity of the family of models in the case that the strength of convection 
is slightly stronger than that of the original Navier–Stokes equations, which 
demonstrates the potential stabilizing effect of convection.

Keywords: axisymmetric Navier–Stokes, 3D model, global regularity 
Mathematics Subject Classification numbers: 35Q35

1. Introduction and main result

The three-dimensional (3D) Navier–Stokes equations govern the motion of ideal incompress-
ible fluid in the absence of external forcing:

ut + u · ∇u = −∇p + ν∆u, ∇ · u = 0. (1.1)

Here u(x, t) : R3 × [0, T) → R3 is the 3D velocity vector of the fluid, and 
p(x, t) : R3 × [0, T) → R describes the scalar pressure. The Laplace term ν∆u, ν > 0 mod-
els the viscous forcing in the fluid. The divergence-free condition ∇ · u = 0 guarantees the 
incompressibility of the fluid motion.
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The Navier–Stokes equations  are among the most fundamental nonlinear partial differ-
ential equations (PDEs) in nature yet far from being fully understood. The fundamental ques-
tion regarding the global regularity of the equations with smooth initial data remains open 
in the 3D setting, and it is generally viewed as one of the most important open questions in 
mathematics [5]. In the case that there is no viscous forcing: ν = 0, the equation (1.1) are 
called the Euler equations. The global regularity problem for the 3D Euler equations is also an 
important open questions in mathematical fluids [4, 7, 10].

The Navier–Stokes equations have the following scaling-invariant property:

u(x, t) → 1
λ

u
( x
λ

,
t
λ2

)
, p(x, t) → 1

λ2 p
( x
λ

,
t
λ2

)
. (1.2)

Namely, if u(x, t) and p(x, t) are smooth solutions to (1.1), then

uλ(x, t) =
1
λ

u
( x
λ

,
t
λ2

)
, pλ(x, t) =

1
λ2 p

( x
λ

,
t
λ2

)

are also solutions to (1.1).
Smooth solutions to (1.1) enjoy the following energy identity:

1
2

∫
|u(x, t)|2dx + ν

∫ t

0

∫

R3
|∇u(x, s)|2dxds =

1
2

∫
|u(x, 0)|2dx, (1.3a)

which implies the following a priori estimates:

1
2

∫

R3
|u(x, t)|2dx,

∫ t

0

∫

R3
|∇u(x, s)|2dxds � C. (1.3b)

The above estimates seem to be the only known coercive a priori estimates for smooth 
solutions to the Navier–Stokes (1.1). The main difficulty for the global regularity problem of 
the 3D Navier–Stokes equations lies in the fact that these known a priori estimates (1.3b) are 
supercritical with respect to the invariant scaling of the equation (1.2):

∫

R3
|u(x, t)|2dx → λ

1
2

∫

R3
|u(x, t)|2dx, (1.4a)

∫ t

0

∫

R3
|∇u(x, s)|2dxds → λ

1
2

∫ t

0

∫

R3
|∇u(x, s)|2dxds. (1.4b)

Namely, if we zoom in the solutions according to the invariant scaling with λ � 1, the two 
a priori estimates (1.1) get worse. See [24, 25] for more discussion about this supercritical 
barrier. For the 3D Euler equations, due to the lack of regularization mechanism (there is no 
viscosity), to prove the global regularity of the solutions becomes even more challenging.

In this work, we consider a family of 3D models for the Navier–Stokes equations with axial 
symmetry, which is proposed in [11],

u1,t + uru1,r + uzu1,z = ν(∂2
r +

3
r
∂r + ∂2

z )u1 + 2u1φ1,z, (1.5a)

ω1,t + urω1,r + uzω1,z = ν(∂2
r +

3
r
∂r + ∂2

z )ω1 + (u2
1)z, (1.5b)

−(∂2
r +

3
r
∂r + ∂2

z )φ1 = ω1, (1.5c)
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with the Biot–Savart law given by

ur = −εrφ1,z, uz = 2εφ1 + εrφ1,r. (1.5d)
In (1.5d), the parameter ε characterizes the strength of convection. The case ε = 1 cor-

responds to the original axi-symmetric Navier–Stokes equations, and the case ε = 0 corre-
sponds to the 3D model investigated in [12–14]. This family of models was proposed in [11] 
to study the effect of convection on the depletion of nonlinearity or formation of finite-time 
singularities. We give a derivation of this model in section 2 for the sake of completeness.

This family of viscous models enjoy the following scaling-invariance:

u1(r, z, t) → 1
λ2 u1

( r
λ

,
z
λ

,
t
λ2

)
ω1(r, z, t) → 1

λ3 ω1

( r
λ

,
z
λ

,
t
λ2

)
, (1.6)

which is the same as the original Navier–Stokes (1.2) after change of variables.
This family of models also share several regularity results with the original Euler and 

Navier–Stokes equations, including an energy identity and two well-known non-blowup crite-
ria [11]. The numerical results in [11] suggest that the inviscid models with weak convection 
can develop self-similar singularity and such singularity scenario does not seem to persist as 
the strength of the convection terms increases, specifically for the original axisymmetric Euler.

For the family of viscous models with ε ∈ [1, 2), we can obtain a maximum principle for a 
modified circulation quantity Γε = u1r2/ε, i.e.

‖Γε‖L∞ � ‖Γε
0‖L∞ . (1.7)

Under the invariant scaling of the viscous equation (1.6):

‖Γε‖L∞ → λ
2
ε−2‖Γε‖L∞ . (1.8)

Note that the exponent of λ is negative for ε > 1, contrary to (1.4), which means the a priori 
estimate (1.7) is subcritical.

The models (1.5) can also be written in a velocity-pressure form as

vt + εv · ∇v = −∇p + ν∆v + (2ε− 2)
vθvreθ

r
, (1.9a)

∇ · v = 0 (1.9b)

where the velocity v(x, t) is a rescaling of the velocity in model (1.5d):

v =
ur

ε
er +

uz

ε
ez +

uθ

ε
1
2

eθ, uθ = ru1. (1.9c)

Next we state our main result.

Theorem 1.1. Consider the viscous models (1.9) with ε ∈ ( 20
19 , 2) and axi-symmetric initial 

data

v(·, 0) ∈ H4(R3).

Then the solution v(x, t) is globally regular in time.

Remark 1.2. We only need H1/2 regularity of the initial data to establish the local well-
posedness for the original 3D Navier–Stokes equations, see [6]. In this paper, we choose H4 
initial data for simplicity, so that we can use the Prodi–Serrin criterion, which is proved in 
[11] with H4 initial data.

T Y Hou et alNonlinearity 31 (2018) 1940
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This result further demonstrates the potential stabilizing effect of the convection terms, 
which has been demonstrated in the numerical results in [11] that the self-similar singularity 
of the inviscid models with weak convection does not persist as the strength of the convection 
terms increases.

To prove the main result theorem 1.1, we can use Lp estimate for ω1 and Lq estimate for u1. 
To control the nonlinear vortex stretching term in the equation of ω1 using the viscous term, 
we only need to use the subcritical a priori estimate (1.7) and the Hardy inequality, under the 
condition that q = 2p − p

2ε
′ for some ε′ < ε. However, for the nonlinear term in the equa-

tion of u1, the subcritical a priori estimate (1.7) seems insufficient, because it can only control 
the angular component of the velocity. We use a combination of the supercritical energy esti-
mate (1.3) and the subcritical estimate of Γε (1.7) in the nonlinear term in the equation of u1. 
To bound the nonlinear term using the viscous term, we need the condition ε > 20

19 in (3.26).
In our proof of the main result in section 1.1, we only conduct L2 estimate for ω1, and 

using any Lp estimate for ω1 with p ∈ (1,+∞) will lead to the same result under the condition 
ε > 20

19.
The rest of this paper is organized as follows. In section 2, we derive the family of the 

models that we investigate in this work and list some regularity results for these models. We 
also give a brief review of recent regularity results for the Navier–Stokes equations with axial 
symmetry. In section 3, we prove our main result theorem 1.1.

2. Derivation of the models and review of the literature

Recently the Euler and Navier–Stokes equations with axial symmetry have attracted a lot of 
interests. The global regularity problem in this setting remains open although a lot of progress 
has been made. Let er, eθ  and ez be the standard orthonormal vectors defining the cylindrical 
coordinates,

er = (
x1

r
,

x2

r
, 0)T , eθ = (

x2

r
,−x1

r
, 0)T , ez = (0, 0, 1)T ,

where r =
√

x2
1 + x2

2  and z  =  x3. Then the 3D velocity field u(x, t) is called axi-symmetric if 

it can be written as

u(x, t) = ur(r, z, t)er + uθ(r, z, t)eθ + uz(r, z, t)ez,

where ur, uθ and uz do not depend on the θ coordinate.
We denote the axi-symmetric vorticity field ω as,

ω(x, t) = ∇× u(x, t) = ωr(r, z, t)er + ωθ(r, z, t)eθ + ωz(r, z, t)ez,

and then the Euler and Navier–Stokes equations with axial symmetry can be written using the 
cylindrical coordinates as

uθt + uruθr + uzuθz = ν(∆− 1
r2 )u

θ − uruθ

r
, (2.1a)

ωθ
t + urωθ

r + uzωθ
z = ν(∆− 1

r2 )ω
θ +

2
r

uθuθz +
urωθ

r
, (2.1b)

−[∆− 1
r2 ]φ

θ = ωθ, (2.1c)
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where the radial and angular velocity fields ur(r,z,t) and uz(r,z,t) are recovered from the stream 
function φθ based on the Biot–Savart law

ur = −∂zφ
θ, uz = r−1∂r(rφθ). (2.1d)

Note that the equations for angular velocity (2.1a), angular vorticity (2.1b), and the Biot–
Savart law (2.1c) and (2.1d) form a closed system. Equation (2.1) have a formal singularity on 
the axis r  =  0 due to the 1

r  terms. Using the fact that the angular component uθ(r, z), ωθ(r, z) 
and φθ(r, z) can all be viewed as odd functions of r [20], Hou and Li introduced the following 
transformed variables in [15],

u1 =
uθ

r
, ω1 =

ωθ

r
, φ1 =

φθ

r
, (2.2)

to remove the formal singularity in (2.1). This leads to the following reformulated axi-sym-
metric Navier–Stokes equations:

u1,t + uru1,r + uzu1,z = ν(∂2
r +

3
r
∂r + ∂2

z )u1 + 2u1φ1,z, (2.3a)

ω1,t + urω1,r + uzω1,z = ν(∂2
r +

3
r
∂r + ∂2

z )ω1 + (u2
1)z, (2.3b)

−[∂2
r +

3
r
∂r + ∂2

z ]φ1 = ω1, (2.3c)

with the Biot–Savart law given by

ur = −rφ1,z, uz = 2φ1 + rφ1,r. (2.3d)

In [11], a family of 3D models for axi-symmetric Euler and Navier–Stokes equations was 
proposed by changing the Biot–Savart law (2.3d):

ur = −εrφ1,z, uz = 2εφ1 + εrφ1,r, (2.4)

to study the potential stabilizing effect of the convection terms.

Denote vr = ur

ε , vz = uz

ε , vθ = ru1

ε
1
2

, and v = vrer + vzez + vθeθ, then we can get the follow-
ing equation for the rescaled velocity v(x, t):

vt + εv · ∇v = −∇p + ν∆v + (2ε− 2)
vθvreθ

r
, (2.5)

where the modified velocity field in (2.5) is still divergence-free

∇ · v =
1
ε
((urr)r + (uzr)z) = 0,

and p(x, t) can be determined from the divergence free condition.
It was proved in [11] that the models (1.5d) with ε ∈ [0, 2) share several regularity results 

with the original Euler and Navier–Stokes equations, including an energy identity, the conser-
vation of a modified circulation quantity, the BKM non-blowup criterion, and the Prodi–Serrin 
non-blowup criterion.

Multiplying (2.5) by v, and using the divergence-free condition, we have

T Y Hou et alNonlinearity 31 (2018) 1940
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d
dt

1
2
‖v‖2

L2(R3) = −ν‖∇v‖2
L2(R3) + (2ε− 2)

∫
(vθ)2vr

r
dx

= −ν

∫
|∇vr|2 + |∇vz|2 + |∇vθ|2 + (vr)2

r2 +
(vθ)2

r2 + (2ε− 2)
(vθ)2vr

r
dx.

 (2.6)
The equation for vθ is

vθt + εvrvθ
r + εvzvθz = ν(∆− 1

r2 )v
θ + (ε− 2)

vrvθ

r
. (2.7)

Multiplying (2.7) by vθ, we can get

1
2

d
dt
‖vθ‖2

L2 = −ν

∫
|∇vθ|2 + (vθ)2

r2 + (ε− 2)
(vθ)2vr

r
dx. (2.8)

Adding (2.6) and 2−ε
ε−2× (2.8), we get the following energy identity for ε ∈ (0, 2):

1
2

d
dt

∫
((vr)2 + (vz)2 +

ε

2 − ε
(vθ)2)rdrdz

= −ν

∫
|∇vr|2 + |∇vz|+ (vr)2

r2 +
ε

2 − ε
(|∇vθ|2 + (vθ)2

r2 )rdrdz.
 (2.9)

Note that the modified energy functional in (2.9),

Eε =

∫
((vr)2 + (vz)2 +

ε

2 − ε
(vθ)2)rdrdz (2.10)

is equivalent to that of the original Euler and Navier–Stokes equations, E1,

min(1,
ε

2 − ε
)E1 � Eε � max(1,

ε

2 − ε
)E1. (2.11)

Based on (2.9), we have the following a priori estimates of the solutions

‖uθ(r, z, t)‖L2(R3), ‖ur(r, z, t)‖L2(R3),∫ t

0
‖φ1,z(s)‖2

L2(R3)ds =
∫ t

0

1
ε2 ‖

ur(s)
r

‖2
L2(R3)ds � C.

 (2.12)

We define the modified total circulation Γε as

Γε = u1r2/ε, (2.13a)

and then Γε satisfies the following equation

Γε
t + urΓε

r + uzΓε
z = ν

(
∆− 2

r
(

2
ε
− 1)∂r +

1
r2

2
ε
(

2
ε
− 2)

)
Γε. (2.13b)

Then for the inviscid model with ν = 0, or the viscous model with ν > 0, ε � 1, we have the 
following maximum principle

‖Γε(r, z, t)‖L∞ � ‖Γε(r, z, 0)‖L∞ = ‖Γε
0‖L∞ . (2.13c)

Both the inviscid models and the viscous models enjoy the following BKM type criterion 
for smooth initial data with decay at infinity. If

T Y Hou et alNonlinearity 31 (2018) 1940
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∫ T

0
‖∇ × v(x, t)‖BMOdt < +∞, (2.14a)

then

v(x, t) ∈ L∞(H4(R3), [0, T]). (2.14b)

The viscous models also enjoy the Prodi–Serrin type of regularity criterion for smooth 
initial data with decay at infinity. If

v(x, t) ∈ Lq(L p(R3), (0, T)),
3
p
+

2
q
= 1, p ∈ (3,+∞], q ∈ [2,+∞), (2.15a)

then

v(x, t) ∈ L∞(H4(R3), [0, T]). (2.15b)

In [11], numerical evidence is presented to show that the inviscid models with weak con-
vection could develop stable self-similar singularity on the symmetric axis. The singularity 
scenario in [11] is different from that at the boundary described in [16, 21] in the sense that 
the center of the singularity region is not stationary but traveling along the symmetric axis. As 
the strength of the convection terms increases, the self-similar singularity scenario becomes 
less stable. Such finite-time singularity scenario does not seem to persist for the models with 
strong convection (ε � ε0 for some ε0 > 0), specifically the original axi-symmetric Euler 
equations. These results demonstrate the potential stabilizing effect of the convection terms. 
In this work, we prove the global regularity of the viscous models when the strength of con-
vection slightly stronger than the original Navier–Stokes, i.e. ε ∈ ( 20

19 , 2). The result proved in 
this work further demonstrates the potential stabilizing effect of convection in axi-symmetric 
Navier–Stokes equations.

The modified total circulation Γε (2.13) is subcritical with respect to the scaling (1.6) for 
all ε > 1. However, the estimate (2.13) can only control the angular component of the velocity, 
and using the technique presented in this work we can only prove the regularity of the models 
for ε ∈ ( 20

19 , 2), not (1, 2).
Some important progress has been made regarding the regularity of the axi-symmetric 

Navier–Stokes equations  recently; see [1, 2, 17, 23], and we mention a few related works 
below. In [15], Hou and Li proposed a 1D model by restricting the equation (2.3) to the sym-
metric axis. Using a cancellation property in the equation  for u1,z, they proved the global 
regularity of the 1D model with or without viscosity. In [3], the cancellation property used in 
[15] was further exploited, and several critical regularity criteria concerning only the angular 
velocity are proved. In particular, the authors of [3] showed that if rduθ ∈ Lq(L p(R3), (0, T)) 
with

d ∈ [0, 1), ( p, q) ∈ {( 3
1 − d

,∞]× [
2

1 − d
,∞]},

3
p
+

2
q
� 1 − d,

then the solutions can be smoothly extended beyond T.
In [19], the global regularity was obtained if |Γ| � C| ln r|−2, and this result was later 

improved to |Γ| � C| ln r|− 3
2  in [26]. The cancellation property in the equation of u1,z is crucial 

for the results in [3, 19, 26]. However, for the family of models (1.5d) that we study in this 
paper, this cancellation is destroyed due to the change of strength in the convection terms in 
(1.5d).

T Y Hou et alNonlinearity 31 (2018) 1940
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3. Proof of the main result

In this section we prove the main result theorem 1.1. We need the following Hardy inequality 
in 1D, see [8].

Lemma 3.1. If λ > 1, σ �= 1, f (r) is a nonnegative measurable function, and

F(r) =
∫ r

0
f (t)dt, for σ > 1, F(r) =

∫ ∞

r
f (t)dt, for σ < 1,

then
∫ ∞

0
r−σFλdr � (

λ

|σ − 1|
)λ

∫ ∞

0
r−σ(rf )λdr. (3.1)

We also need the following elliptic estimates [9, 18, 22, 26]

Lemma 3.2. For axi-symmetric smooth functions φ1(r, z) and ω1(r, z) in R3, which satisfy 
the elliptic equation

−∆φ1 −
2
r
∂rφ1 = ω1,

we have the following estimates

‖∇2φ1‖L2 � C‖ω1‖L2 , ‖∇2φ1,z‖L2 � C‖∇ω1‖L2 . (3.2)

Lemma 3.3. For smooth solution of the model (1.5d) u1, r1  >  0, and ε′ ∈ (1, ε), we have
∫

|u1(r, z)|ε
′
f (r, z)2rdrdz � C1(r1)

∫
|∂rf |2rdrdz + Cr−

2ε′
ε

1

∫

r�r1

f 2rdrdz,

 (3.3a)

with

C1(r1) = C‖Γε
0‖ε

′

L∞r2− 2ε′
ε

1

(
ε

ε− ε′

)2

, lim
r1→0+

C1(r1) = 0. (3.3b)

Proof. Let ψ(r) be a radial cutoff function such that

ψ(r) ∈ C∞(R), ψ(r) =
{

1, r � 1
0, r � 2

, 0 � ψ(r) � 1, |ψr(r)| � 2. (3.4)

Denote ψr1(r) as ψ( r
r1
), then we have

∫
|u1|ε

′
f (r)2rdrdz =

∫
|u1|ε

′
( f (r)ψr1(r) + f (r)(1 − ψr1(r)))

2 rdrdz

� 2
∫

r�2r1

|u1|ε
′
f (r)2|ψr1(r)|2rdrdz + 2

∫

r�r1

|u1|ε
′
f (r)2(1 − ψr1(r))

2rdrdz.

 (3.5)

Using the maximum principle (2.13), we have

T Y Hou et alNonlinearity 31 (2018) 1940
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|u1(r, z, t)| � ‖Γε‖L∞r−
2
ε � ‖Γε

0‖L∞r−
2
ε . (3.6)

Putting (3.6) in the first term on the RHS of (3.5), and using the Hardy inequality (3.1), 
we get
∫

r�2r1

|u1|ε
′
f (r)2|ψr1(r)|2rdrdz

�
∫

r�2r1

‖Γε
0‖ε

′

L∞r−
2ε′
ε | f (r)ψr1(r)|2rdrdz

� C‖Γε
0‖ε

′

L∞

(
ε

ε− ε′

)2 ∫

r�2r1

r2− 2ε′
ε |∂r( f (r)ψr1(r))|2rdrdz

� C‖Γε
0‖ε

′

L∞

(
ε

ε− ε′

)2 [∫

r�2r1

r2− 2ε′
ε |∂rf |2rdrdz +

∫

r�r1

r2− 2ε′
ε | f |2|∂rψr1 |2rdrdz

]

� C‖Γε
0‖ε

′

L∞

(
ε

ε− ε′

)2

r2− 2ε′
ε

1 ‖∂rf‖2
L2 + C‖Γε

0‖ε
′

L∞

(
ε

ε− ε′

)2

r−
2ε′
ε

1

∫

r�r1

f 2rdrdz.

 
(3.7)

For the second term in (3.5), using the estimate (3.6), we have
∫

r�r1

|u1|ε
′
f 2(r)(1 − ψr1(r))

2rdrdz � C‖Γε
0‖ε

′

L∞r−
2ε′
ε

1

∫

r�r1

f 2rdrdz. (3.8)

Adding up estimates (3.7) and (3.8), we prove (3.1). □ 

Next we give the proof for the theorem 1.1. Without loss of generality, we assume that 
ν = 1 in our proof.

Proof. We denote ε′ = 20
19 < ε and consider the following two quantities:

∫
|ω1|2rdrdz,

∫
|u1|qrdrdz, q = 4 − ε′.

Multiplying the equation of ω1 (2.3b) by ω1, we get

d
dt

1
2

∫
ω2

1rdrdz +
1
2

∫
(ur(ω2

1)r + uz(ω2
1)z)rdrdz

=

∫
2u1u1,zω1rdrdz +

∫
(∆ω1 +

2
r
ω1,r)ω1rdrdz.

 
(3.9)

Using integration by part, we can show that the convection terms vanish due to the incom-
pressibility condition (urr)r + (uzr)z = 0:

∫
(ur(ω2

1)r + uz(ω2
1)z)rdrdz = −

∫
ω2

1((u
rr)r + (uzr)z)drdz = 0.

For the viscous term on the RHS of (3.9), we have
∫

∆ω1ω1rdrdz = −
∫

|∇ω1|2rdrdz. (3.10)
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Next we treat the first order derivative term on the RHS of (3.9) as
∫

2
r
ω1,rω1rdrdz =

∫
(ω2

1)rdrdz = −
∫

ω1(0, z, t)2dz � 0.
 (3.11)

Using integration by part and Young’s inequality leads to
∣∣∣∣
∫

2u1u1,zω1rdrdz
∣∣∣∣ =

∣∣∣∣
∫

u2
1ω1,zrdrdz

∣∣∣∣

�
1
2

∫
u4

1rdrdz +
1
2

∫
|∇ω1|2rdrdz.

 (3.12)

For the first term on RHS of (3.12), using lemma 3.3 and q = 4 − ε′, we get

1
2

∫
u4

1rdrdz =
1
2

∫
|u1|ε

′
|u1|qrdrdz

� C(r1)

∫
|∇(|u1|

q
2 )|2rdrdz + C

∫
|u1|qrdrdz.

 (3.13)

Adding up estimates (3.10) and (3.13) in (3.9), we have

d
dt

∫
ω2

1rdrdz +
∫

|∇ω1|2rdrdz

� C(r1)

∫
|∇(|u1|

q
2 )|2rdrdz + C

∫
|u1|qrdrdz.

 (3.14)

Next we consider the equation of u1, (2.3a) and multiply both sides by |u1|q−2u1 to obtain

d
dt

1
q

∫
|u1|qrdrdz +

1
q

∫
(ur|u1|qr + uz|u1|qz )rdrdz

=

∫
2|u1|qφ1,zrdrdz +

∫
(∆u1 +

2
r

u1,r)|u1|q−2u1rdrdz.
 

(3.15)

Again the convection terms vanish due to incompressibility. For the diffusion term, using 
estimates similar to those for the ω1 equation, we arrive at

∫
(∆u1 +

2
r

u1,r)|u1|q−2u1rdrdz

= −4(q − 1)
q2

∫
|∇(|u1|

q
2 )|2rdrdz − q

2

∫
|u1(0, z)|qdz

� −4(q − 1)
q2

∫
|∇(|u1|

q
2 )|2rdrdz.

 

(3.16)

Next we decompose the nonlinear term on the RHS of (3.15) into two parts
∫

2|u1|qφ1,zrdrdz = 2
∫
(|u1|qφ1,zψ(r) + |u1|qφ1,z(1 − ψ(r)))rdrdz, (3.17)

where ψ(r) is the cut-off function defined in (3.4) that satisfies ψ(r) = 1 for r � 1.

For the second term on the RHS of (3.17), Young’s inequality implies,
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∫

r�1
|u1|qφ1,z(1 − ψ(r))rdrdz

�
∫

r�1
(|u1|2q + |φ1,z|2)rdrdz �

∫

r�1
(|ru1|2r−2|u1|2q−2 + |φ1,z|2)rdrdz

� ‖Γε
0‖

2q−2
L∞

∫

r�1
|ru1|2rdrdz +

1
ε2

∫

r�1
|u

r

r
|2rdrdz � C,

 

(3.18)

where we have used the a priori estimates (2.9) in the last step.
As for the first term on the RHS of (3.17), we denote

g(r, z) = φ1,z(r, z)ψ(r) (3.19)

and have
∣∣∣∣
∫

2|u1|qg(r, z)rdrdz
∣∣∣∣ � 2

∫
|u1|α|u1|β |g(r, z)|rdrdz, (3.20)

where the exponents α, β are

α =
16 − 8ε′

4 − ε′
, β =

(ε′)2

4 − ε′
, α+ β = q = 4 − ε′. (3.21)

Then applying Young’s inequality with

L1 =
4 − ε′

4 − 2ε′
, L2 =

4 − ε′

ε′
,

1
L1

+
1
L2

= 1,

we obtain
∫

2|u1|q|g|rdrdz �
1
2

∫
|u1|L1αrdrdz + C

∫
|u1|L2β |g|L2 rdrdz

=
1
2

∫
|u1|4rdrdz + C

∫
|u1|ε

′
|g(r, z)|

4−ε′
ε′ rdrdz.

 
(3.22)

The first term in (3.22) is treated as in the estimate (3.13). For the second term on the RHS 
of (3.22), using lemma 3.3 with r1  =  2 and the fact that g(r, z) = 0 for r � 2, we obtain

∫
|u1|ε

′
|g(r, z)|

4−ε′
ε′ rdrdz � C

∫
|∂r(|g(r, z)|

4−ε′
2ε′ )|2rdrdz

= C
∫

|gr(r, z)|2|g(r, z)|
4−3ε′

ε′ rdrdz � C‖g(r, z)‖
4−3ε′

ε′
L∞ ‖∇g(r, z)‖2

L2 .
 

(3.23)

Using the following interpolation inequality,

‖∇g(r, z)‖L2 � C‖g(r, z)‖
1
2
L2‖∇2g(r, z)‖

1
2
L2 , (3.24a)

‖g(r, z)‖L∞ � C‖g(r, z)‖
1
4
L2‖∇2g(r, z)‖

3
4
L2 , (3.24b)
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we have

‖∇g(r, z)‖
11ε′−4

6ε′

L2 ‖g(r, z)‖
4−3ε′

ε′
L∞ � C‖g(r, z)‖

ε′+4
6ε′

L2 ‖∇2g(r, z)‖
8−4ε′

3ε′

L2 . (3.24c)

Using (3.24) in (3.23), we have
∫

|u1|ε
′
|g(r, z)|

4−ε′
ε′ rdrdz � C‖g(r, z)‖

4−3ε′
ε′

L∞ ‖∇g(r, z)‖2
L2

= C
[
‖g(r, z)‖

4−3ε′
ε′

L∞ ‖∇g(r, z)‖
11ε′−4

6ε′

L2

]
‖∇g(r, z)‖

4+ε′
6ε′

L2

� C‖g(r, z)‖
4+ε′

6ε′

L2 ‖∇g(r, z)‖
4+ε′

6ε′

L2 ‖∇2g(r, z)‖
8−4ε′

3ε′

L2 .

 

(3.25)

In deriving the above estimate, we have used the interpolation inequality (3.24) such that 
the exponents for ‖g(r, z)‖L2  and ‖∇g(r, z)‖L2 are the same in the RHS of (3.25).

Since ε′ = 20
19, using Young’s inequality with

L1 =
12ε′

4 + ε′
, L2 =

6ε′

8 − 4ε′
,

1
L1

+
1
L2

= 1, (3.26)

in (3.25), we have
∫

|u1|ε
′
|g(r, z)|

4−ε′
ε′ rdrdz

� C(δ)

(
‖g(r, z)‖

4+ε′
6ε′

L2 ‖∇g(r, z)‖
4+ε′

6ε′

L2

)L1

+ δ

(
‖∇2g(r, z)‖

8−4ε′
3ε′

L2

)L2

= C(δ)‖g(r, z)‖2
L2‖∇g(r, z)‖2

L2 + δ‖∇2g(r, z)‖2
L2 .

 

(3.27)

Since g(r, z) = φ1,zψ(r) and ψ(r) is constant for r � 1, we have

‖g(r, z)‖2
L2 � C‖φ1,z‖2

L2 , (3.28a)

‖∇g(r, z)‖2
L2 � C‖∇φ1,z‖2

L2 + C‖1r�1φ1,z‖2
L2 , (3.28b)

‖∇2g(r, z)‖2
L2 � C‖∇2φ1,z‖2 + C‖1r�1∇φ1,z‖2

L2 + C‖1r�1φ1,z‖2
L2 . (3.28c)

By the a priori estimate (2.9), we have

‖1r�1φ1,z‖2
L2 = ‖1r�1

ur

r
‖2

L2 � ‖ur‖2
L2 � C. (3.29)

In view of (3.27), we get from (3.28) and (3.29)
∫

|u1|ε
′
|g(r, z)|

4−ε′
ε′ rdrdz � Cδ‖∇2φ1,z‖2

L2 + C‖∇φ1,z‖2
L2‖φ1,z‖2

L2

+ C‖∇φ1,z‖2
L2 + C‖φ1,z‖L2 + C.

 
(3.30)

Employing the elliptic estimate (3.2) in (3.30), we deduce
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∫
|u1|ε

′
|g(r, z)|

4−ε′
ε′ rdrdz � Cδ‖ω1,z‖2

L2 + C‖ω1‖2
L2‖φ1,z‖2

L2

+ C‖ω1‖2
L2 + C‖φ1,z‖L2 + C.

 
(3.31)

Putting the estimates (3.13), (3.18), (3.31) in (3.15), we get

d
dt

∫
|u1|qrdrdz + C(1 − C1(r1))‖∇(|u1|

q
2 )‖2

L2 − Cδ‖∇ω1‖2
L2

� C‖φ1,z‖2
L2‖ω1‖2

L2 + C‖φ1,z‖2
L2 + C‖ω1‖2

L2 + C.
 (3.32)

At last, choosing r1, δ small enough, and adding up (3.14) with (3.32) give

d
dt

∫
(|ω1|2 + |u1|q)rdrdz + C

∫
(|∇ω1|2 + |∇(|u1|

q
2 )|2)rdrdz

� C(‖φ1,z‖2
L2 + 1)

∫
(|ω1|2 + |u1|q)rdrdz + C‖φ1,z‖2 + C,

 
(3.33)

which together with the a priori estimate (2.9) implies
∫
(ω2

1(T) + |u1(T)|q)rdrdz +
∫ T

0

∫
(|∇ω1|2 + |∇(|u1|

q
2 )|2)rdrdzds � C

 (3.34)

where the constant C may depend on the initial data and T.
To prove the global regularity of the solutions, we consider

‖v(x)‖L4 � C‖uθ‖L4 + C‖ur‖L4 + C‖uz‖L4 . (3.35)

For the ‖uθ‖L4 term in (3.35), using estimates (2.9), (2.13), and (3.34), we obtain
∫

u4
1r4rdrdz =

∫

r�1
|u1|q|u1|ε

′
r4rdrdz +

∫

r�1
(uθ)2 |Γε|2

r
4
ε−2

rdrdz

� ‖Γε
0‖ε

′

L∞

∫
|u1|qrdrdz + ‖Γε

0‖2
L∞

∫
(uθ)2rdrdz � C.

 (3.36)

Then we consider the equation for ωθ = rω1, which is

ωθ
t + urωθ

r + uzωθ
z =

ur

r
ωθ +

(uθ)2
z

r
+ (∆− 1

r2 )ω
θ. (3.37)

Multiplying both sides of (3.37) by ωθ and integrating, we get

1
2

d
dt

∫
(ωθ)2rdrdz +

1
2

∫
(ur(ωθ)2

r + uz(ω
θ)2

z )rdrdz

=

∫
ur

r
(ωθ)2rdrdz +

∫
(uθ)2

zω
θ

r
rdrdz −

∫
(|∇ωθ|2 + (ωθ)2

r2 )rdrdz.
 

(3.38)

The convection terms vanish due to the incompressibility condition, and for the first non-
linear term in (3.38), we have
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∫
ur

r
(ωθ)2rdrdz � ‖ur

r
‖L∞

∫
(ωθ)2rdrdz = ε‖φ1,z‖L∞‖ωθ‖2

L2

� C(‖φ1,z‖L2 + ‖∇2φ1,z‖L2)‖ωθ‖2
L2 � C(‖φ1,z‖L2 + ‖∇ω1‖L2)‖ωθ‖2

L2 ,
 

(3.39)

where we have used the Biot–Savart law (1.5d) εφ1,z(r, z) = ur

r , the Sobolev embedding, and 
the elliptic estimate (3.2) in the last step.

For the second nonlinear term in (3.38), we have
∣∣∣∣
∫

(uθ)2
zω

θ

r
rdrdz

∣∣∣∣ =
∣∣∣∣
∫

(uθ)2

r
ωθ

z rdrdz
∣∣∣∣

�
1
2

∫
(uθ)4

r2 rdrdz +
1
2
‖∇ωθ‖2

L2 .
 

(3.40)

The first integral term in (3.40) is estimated as
∫

(uθ)4

r2 rdrdz =
∫

r�1

(uθ)4

r2 rdrdz +
∫

r�1

(uθ)4

r2 rdrdz

�
∫
(uθ)4rdrdz +

∫

r�1
u4

1r2rdrdz

�
∫
(uθ)4rdrdz +

∫

r�1
|u1|4−ε′ |u1|ε

′
r2rdrdz

� C + C‖Γε
0‖ε

′

L∞ � C.

 (3.41)

Adding up the estimates (3.39)–(3.41) in (3.38), and using the Gronwell’s inequality, we 
get that

‖ωθ(t)‖L2 � C.

Then since

urer + uzez = ε∇× (−∆)−1(ωθeθ),

using Sobolev embedding, we have

‖urer + uzez‖L6 � ‖∇(urer + uzez)‖L2 � C‖ωθ‖L2 � C.

Then based on the a priori estimate (2.9), we have

‖urer + uzez‖L4 � ‖urer + uzez‖
3
4
L6‖urer + uzez‖

1
4
L2 � C.

This together with the estimate (3.36) and the Prodi–Serrin criterion (2.15) implies the 
global regularity of the solutions. □ 

Remark 3.4. We proved our main result theorem 1.1 using the L2 estimate for ω1 and the 
L4−ε′ estimate for u1. And we can also use the Lp estimate for ω1 and Lq estimate for u1 with 

q = 2p − pε′

2  for p  >  1 to get the same result.
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