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SECOND-ORDER CONVERGENCE OF A PROJECTION SCHEME
FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

WITH BOUNDARIES*

THOMAS Y. HOU AND BRIAN T. R. WETTON

Abstract. A rigorous convergence result is given for a projection scheme for the Navier-Stokes
equations in the presence of boundaries. The numerical scheme is based on a finite-difference approx-
imation, and the pressure is chosen so that the computed velocity satisfies a discrete divergence-free
condition. This choice for the pressure and the particular way that the discrete divergence is cal-
culated near the boundary permit the error in the pressure to be controlled and the second-order
convergence in the velocity and the pressure to the exact solution to be shown. Some simplifications
in the calculation of the pressure in the case without boundaries are also discussed.
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1. Introduction. In this paper a numerical method for approximating the so-
lutions of the incompressible Navier-Stokes equations in primitive variables (velocity
and pressure) is considered. The main difficulty with these variables is how to update
the pressure. There is no time evolution equation for the pressure, and the bound-
ary conditions are not given a priori. Much work concerning this question has been
published. We refer the reader to the excellent review article by Gresho and Sani
[7] and the book by Peyret and Taylor [13]. One interpretation of the pressure is
that it acts to project the velocity field onto the space of divergence-free fields. This
interpretation leads to a projection method proposed by Chorin [3]. The first con-
vergence result for the projection method in the absence of boundaries was given by
Chorin [4]. His analysis also extends to the case in which boundaries are present,
but with lower-order convergence. Bell, Colella, and Glaz [2] generalized Chorin’s
idea to a fully second-order projection method (i.e., second order in space and time)
with upwinding differencing. This gives a computationally more robust algorithm.
The purpose of this paper is to analyze a second-order projection method, which is a
variant of the one used in [2], in the presence of boundaries.

The key is converting the divergence-free condition into a numerical equation for
the pressure. Theoretically speaking, one can derive an equation for the pressure, but
this equation is almost useless for computational purposes since we cannot evaluate
the pressure boundary conditions. However, at the discrete level one can also derive
an equation for the pressure by imposing the discrete divergence-free condition. The
difficulty in determining the pressure boundary condition can be avoided by using the
marker-and-cell (MAC) grid proposed by Harlow and Welsh [8]. Moreover, we can
show that the discrete pressure equation is actually a second-order approximation to
the analytic pressure equation, including the boundary values. The discrete divergence
free condition is also satisfied up to second-order accuracy. These facts allow us to
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610 THOMAS Y. HOU AND BRIAN T. R. WETTON

prove second-order convergence in both velocity and pressure.
The convergence analysis relies on discrete energy estimates. To prove nonlinear

stability and consistency, we use an asymptotic error expansion technique due to
Strang [15]. The computational velocity is compared to an asymptotic expansion
that satisfies the discrete equations for the velocity to a high degree of accuracy. The
asymptotic solution for the pressure is chosen so that the comparison velocity satisfies
the discrete divergence-free condition to high-order accuracy. This approach, which
is similar to that used by Chorin in [4], allows us to approximately cancel the error in
the pressure. Because of the staggered grid we use, the tangential velocity component
does not lie on the boundary and so an approximate velocity boundary condition
must be introduced. We show that the boundary condition we use, which is of the
reflection type, is stable and second-order accurate. Our convergence result includes
the case of nonhomogeneous velocity boundary conditions.

In the time discrete case the discrete equation for the pressure cannot be solved
directly: we use an iteration scheme similar to that used in [2] and [3] to find the
solution. In the case without boundaries, however, we can simplify the equation for
the pressure so that it can be solved directly.

It is interesting to note that in the case without boundaries a variant of the time-
split projection method that Chorin introduced can be shown to be equivalent to the
one we use here. In the time-split method the velocity is updated in one time step by
completely ignoring the pressure term and the divergence-free condition. Then the
intermediate velocity is projected onto a divergence-free field, which gives the value of
velocity at the next time step. Although this formulation is quite different from our
nonsplit velocity-pressure formulation, we show that these two methods are exactly
the same.

The organization of the paper is as follows: 2 contains a discussion of the method
in the case with boundaries, including a description of the grid used, the semidiscrete
equations, and their convergence, and the fully discrete equations and their imple-
mentation are described. Section 3 describes simplifications to the method for the
case in which there are no boundaries. Preliminary computations that verify the con-
vergence results are given in 4. The technical details involved in the construction of
the asymptotic solutions are included in the appendix.

2. Periodic channel (with boundary). To simplify the analysis and to test
numerical calculations we consider the two-dimensional periodic channel shown in
Fig. 1 as a model domain with boundary. The incompressible Navier-Stokes equations
are

(1) us -u- Vu + vAu- Vp,
(2) V.u=0,

where u (u, v) are the velocities, p is the pressure, and is the kinematic viscosity.
Boundary values for u and v are given on the upper and lower walls, and it is assumed
that both u and p are 1-periodic in the x-direction. The condition

() f=0
fixes the choice of the arbitrary constant in the pressure. Initial data u0 (u0, v0) are
given, and it is assumed that V. u0 0. By taking the divergence of (1) we obtain

(a) V. (-u. Vu +
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CONVERGENCE OF A PROJECTION SCHEME 611
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FIG. 1. Periodic channel.

Although the term V.Au vanishes in the continuous case, it is retained for comparison
with the discrete case, in which it has a nonzero contribution from the boundary. By
taking the normal (n) component of (1) on the boundary (assuming that the boundary
values of u are time independent) we obtain

OR(5) On
n. (-u. Vu + /Xu).

Equation (4) together with boundary conditions (5) form a solvable Neumann problem
for the pressure that ensures that the velocity evolves in a divergence-free manner.
Note that no boundary conditions for the pressure need be given a priori. The pressure
is determined uniquely if the additional constraint (3) is applied. The pressure is
chosen exactly so that the right-hand side of (1) is projected orthogonally (in the
sense of L2 functions) onto the space of divergence-free fields that satisfy homogeneous
normal boundary conditions (see Chorin and Marsden [5]).

We propose a semidiscrete scheme below and demonstrate its second-order (in
space) convergence. A time-discrete version that is second order in both space and
time is then considered. Convergence is obtained in the 12 (energy) and maximum
norms. Important points in the analysis are that the calculated pressure satisfies (4)
and boundary conditions (5) to seco/ad-order accuracy and that the discrete divergence
condition on the velocities is satisfied. To handle the nonlinear error terms and
the coupling between the velocity and pressure errors, we introduce in the manner
of Strang [15] an asymptotic solution that satisfies the equations to a high order
of accuracy. Although the analysis is performed for the two-dimensional case for
Simplicity, the results extend to the three-dimensional case, and notes on how to
modify the proofs are given. A point of additional interest is that the algorithm gives
second-order convergence in the pressure. The simplifications to the algorithm for
domains without boundaries are given in 3.
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612 THOMAS Y. HOU AND BRIAN T. It. WETTON

Ui-I,N+L Ui,N/I
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\

A

i-l,1

Vi-l,0

\
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FIG. 2. Discrete grid: the pressure P is defined on square points, the horizontal velocity U at
triangles, and the vertical velocity V at circles.

2.1. Semidiscrete equations. We use the MAC staggered grid [8] in the ap-
proximation of the velocities and the pressure. That is, we consider approximations

Ui,j (t) (Ui,j (t), V,j (t)) and Pi,j (t)

to

h h (ih, jh, t), and p(ih, (j ) t),u((i + ) ,(j- ) ,t) v h

where h is the grid spacing given by h 1IN. This situation is shown pictorially in
Fig. 2. Just as in the analytic case, no boundary values for the pressure need to be
specified: the pressure is determined entirely by the divergence-free condition on the
velocity. We introduce the difference operators

fi+ ’J fi- ’J (centered),(8) Df, 2h

(9) Dx f,j f’ f-’J (backward),
h

f+’J f’J (forward).(10) nf,,j h

The operators D, D_, and D_ are defined similarly. The centered difference approx-
imation to the Laplacian is denoted by Ah, which can be written as follows:

(11) Ah D D_ / D D.
The discrete divergence of a vector field U (U, V) is defined as

(12)
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CONVERGENCE OF A PROJECTION SCHEME 613

and the discrete gradient of a scalar field P is given by

(13) GPi,j (DPi,j,DP,i ).

Note that although D. U is given in (12) by using one-sided notation, differences
are centered on the scalar pressure points and the differences in (]P are centered at
the vector velocity points. Also note that no boundary values for P are needed for
obtaining the discrete gradient at interior points.

Let (., .) be the 12 inner product defined on scalar fields (i.e., fields defined on the
pressure points):

N

(14) (P, Q)- h: P,Q,j.
i,j--1

The corresponding norm is denoted by [1. 112. Similar norms and inner products can
be defined for vector fields by using the same notation. We restrict our attention first
to the case of homogeneous boundary data u v 0. The computational boundary
values are given by

(15) V,0 V/,N 0,

(16) Ui,o -Ui,1,
(17) Ui,N+ --Ui,N.

Equation (15) is the exact boundary condition, and (16)-(17) are called reflection
boundary conditions. If (16)-(17) are interpreted as Taylor series about the boundary,
they are satisfied up to second order. In the book by Peyret and Taylor [13] and the
article by Gresho and Sani [7] concern is expressed over the use of these reflection
boundary conditions in the diffusion terms. Our analysis will show that this concern
is not justified. Because the reflection boundary conditions are second-order accurate
to the physical no-slip conditions, they will only introduce second-order errors into
the computation.

Following Anderson [1], we define the reduced divergence operator D*- as follows:
it equals D. at scalar points with 2 <_ j <_ N- 1 and at j 1 it is given by

(18)

and at j N it is given by

V/,1

*" DxUi, V,N_i/h.(19) D Ui,N N

Note that D*. involves only interior variables. Also note that for vector fields with
homogeneous boundary values (15), D*. U D.U. We make two more observations.
First, we define

(20) AP :-- D*. GP.

The following result is obtained by using summation-by-parts formulas:

(21) (U, (P) (D*. U, P)

for all scalar fields P and vector fields U. This implies that the space of gradient
fields and the space of divergence-free fields are orthogonal, just as in the continuous
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614 THOMAS Y. HOU AND BRIAN T. R. WETTON

case [5]. The following completeness result is obtained by using elementary linear
algebra: every discrete periodic vector field U can be decomposed into the sum of a
gradient field GP and a divergence-free field UI that satisfies (15). The field Uf is
determined uniquely, and P is determined up to a constant. These properties can be
seen explicitly from the equation that P must satisfy:

(22) APi,j D*. Ui,j.

The matrix A is symmetric and has a null space consisting of the constant vectors.
Since the right-hand side of (22) is orthogonal to constant vectors, (22) is solvable.

NThe choice of the arbitrary constant in P is fixed by requiring that ’]i,=1 P,J 0.
The orthogonal projection T’ onto the space of discrete vector fields U that satisfy
D* U 0 is defined by

(23) 7U Uf.

We are now in a position to describe the semidiscrete numerical method. Let Ili,j
((,u0..i + 51)h,Jh), vo(ih, (j + 5)h)). As initial data for the algorithm, take U0 70.

The equation for the velocities is

(24) I :P(-N(U)+ vAhU),

where N(U) represents the nonlinear convection terms whose discretization will be
explained later. Equation (24) is a vector equation for the interior velocities. Since U
starts out divergence free and (24) ensures that it evolves in a divergence-free manner,
we have D. U 0 for all t. Equation (24) is equivalent to the pair of equations

(25)
(26)

l -N(U) + vAhU GP,

AP n*. (-N(U)+ vAhU).

Like (22), equation (26) is uniquely solvable with the side condition

N

(27) Z Pi,- O.
i,j=l

By formally adding in the missing stencil at the boundary, (26) is equivalent to the
following equation:

(28) AhP D. (-N(U)+ vAhU),

along with boundary conditions

(29) Dv Pi (-N(U) + vAhU)2
i,0

and

(30) Dv__P,2v+I (-N(U)+ vAhU),N.
The superscript 2 denotes the second component of the vector. Although the bound-
ary values of -N(U) + AhU are never actually computed (our grid does not have
the necessary points), (28) is a second-order approximation of (4) and (29)-(30) are
second-order approximations to (5) since the pressure differences are centered at the
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CONVERGENCE OF A PROJECTION SCHEME 615

boundary. Thus the proposed algorithm is at least formally second order. This re-
sult fits into the general framework espoused by Gresho and Sani [7f--that if the
discrete divergence-free condition is applied in the right way, the computed pressure
will approximately satisfy the Poisson equation (4) with boundary conditions (5).

It remains to describe the discretization for N(U). The first component is given
by

(31) Ui,j DoxUi,j / V,: DU,j,

where V,* is the average of the four V velocities around the point where Ui,y is defined,
i.e.

(32) V/,*j 1/4(V/,j -- V/+I,j -- V/,j-1 -- V/+I,j-1).

The second component of N(U) is constructed in a similar way. At this point we
have completely specified the semidiscrete algorithm. The formal accuracy of the
method can be summarized as follows: the initial conditions have been perturbed by
O(h2), the divergence-free condition is satisfied to second order, and the equations
and boundary conditions for the velocity and the pressure are second-order accurate.
The question of stability and the techniques needed to show convergence are discussed
in the next section.

2.2. Convergence of the semidiscrete solution. In this subsection the proof
of the convergence of the semidiscrete algorithm described above is given. As in the
convergence analysis in [10], an important element is the construction of approximate
solutions that satisfy the discrete equations to a high order of accuracy.

LEMMA 2.1 (Consistency). Assume that the solution of the Navier-Stokes equa-
tions is sufficiently smooth. There exist error expansions f and , periodic in x, that
are O(h2) perturbations of u and p (the exact solutions):

3

(aa) a(, , t; ) u(x, , t) + :u() (x, , t),
r--1

3

(34) (x, y, t; h) p(x, y, t) q- E h2rp(r) (x, y, t),
r=l

where the functions u(r) and p(r) are smooth and their derivatives can be bounded in
terms of u and its derivatives. These functions satisfy the discrete equations to a high
order of accuracy in the following sense:

(35)
(36)
(37)
(38)
(39)

(40)

(41)

fi(0) Uo,iy + O(hS),
fit -N(fi) G/3 + Ahfi + O(hS),
Ahi5 D. (-g(fi) + VAhfi) + O(hS),
D_i,1 (-N(fi)+ VAhfi)/2,0 + O(hS),

DY_i,g+l (--N(fl) + lAh 2U)i,N + O(hS),

t (x,-)=-fi (x,+)+ O(hS),

fi (x,l + )=- (x,i-)+ O(hS),
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616 THOMAS Y. HOU AND BRIAN T. R. WETTON

(ae) 0) 0,
N

h
i,j=l

where the terms O(h8) are smooth.
The terms in (36)-(41) that are outside the domain are given by the Taylor series

of these expressions at the boundary to sufficiently high accuracy. A more detailed
discussion and the proof of the consistency lemma, which is quite technical, is left to
the appendix.

The major convergence result is given below.
THEOREM 2.2 (Convergence). Under the same assumptions as those given in

Lemma 2.1, the solutions of the discrete equations (25) and (26) with initial conditions
U0 converge in the discrete maximum norm, I1" IIo, to the exact solutions of the
Navier-Stokes equations with second-order accuracy:

(44) Ilu- UIIo < Ch2

and

(45) lip- PII < Ch2

for all t with 0 <_ t <_ T, where C depends only on T and the exact solution u and its
derivatives.

Some properties of the equations will be derived before the proof of the theorem
is given. The following error terms are defined:

(46)

LEMMA 2.3. The pressure error obeys the following equation:

(48) AE D*. (N(fi)- N(U)+ Ahe)+ O(hS).

Proof. Use (38) and (39) to remove the boundary stencils on both sides of (37),
and obtain

(49) A/ D*. (N(fi) + Ahfi) + O(hS).

Subtracting (49) from (26) gives the desired result (48). U
LEMMA 2.4. liD*. ellu < O(h8).
Proof. Taking the reduced discrete divergence of (36) using (49), we obtain

(50) D*. fit O(h8).

Since D*. U0 0 by construction, D*. fi(0) O(h8) from (35). The above equation
can be integrated to give D* fi O(h8). Since the discrete equations are chosen so
that D*. U 0, the result follows.

LEMMA 2.5 (Discrete Poincar6 Inequality). The pressure error E satisfies

(51) IIEII2 II EII2 + O(hS).
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CONVERGENCE OF A PROJECTION SCHEME 617

Proof. To prove this lemma we note that (27) and (43) imply that h2 i,=1 Ei,j
O(h8). Then Lemma 2.5 becomes a standard exercise. [:]

LEMMA 2.6 (Pressure Stability). Given T > O, suppose that Ilel12 <_ h2 for
0 <_ t <_ T. Then there is an increasing function B(T) that depends only on the exact
solution u such that .for all 0 <_ t <_ T

(52) lIE]j2<_ B (hS+ ]1_!2).
Proof. Taking the inner product of the pressure error equation in Lemma 2.4 with

E and summing by parts using (21), we obtain

(53)

We use Lemma 2.5 on the right-hand side and obtain

(54) I[GEII22 [[GEll2{]]N() N(U)l[2 + vllAhe]]2 + O(h8)} + O(ht6).

xf IiGEll2 > h8, then we can divide the equation by ][GEI]2 and obtain

(55) IIEll2 lIN() Y(W)Jl2 + lJhJl2 + O(hS).

Notice that (55) is true if [[GE[[2 hs, and so it is always valid. We now linearize
the term N(fi) N(U) about the solution ft. Since all the terms are handled in the
same way, we consider only the term

(ei,j)Doui5 + ui,i Doei,i + ei,i Doei,j.

The first two terms on the right-hand side are bounded by K[lel]2 and Kllll2/h,
respectively, where K depends only on b and so on u. To bound the final term on
the right we use the embedding

1
(57) Ilfl lgfll2,
which is true for all discrete functions f (for a proof see [10]). This fact and the
sumption that lll2 h2 gives IlDll 1. Combining the above results into the
worst term, we obtain

Bllll2

The second term on the right-hand side of (55) is actually the largest in magnitude.
We use the brute-force bound

(59) IIhll2 8h-211ell2
on the second term. This, together with the bound on the first term (58), is used in

(55). After an application of Lemma 2.5 we obtain (52), the desired result. [:]

LEMMA 2.7 (Velocity Stability). Under the same assumptions as in Lemma 2.6
the function B can be chosen so that for all 0 <_ t <_ T

(60)
d h6d--i[le[[ <_ B(h16 - [le[[2 -D
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618 THOMAS Y. HOU AND BRIAN T. R. WETTON

Proof. The evolution equation for the velocity error is

(61) -(N(fi) N(U)) GE + uAhe + O(hS).
After taking the inner product of (61) with e, we obtain

ld
(62)

2 dt 11 1122 -(’ N(fi) N(U))

(63) -(e, GE)
(64) +z(e, Ahe)
(65) +(e,O(hS)).
The terms on the right-hand side above are denoted as convective (62), pressure (63),
diffusive (64), and consistency error terms (65). The consistency terms (65) are easily
bounded by the second factor in (60), although other factors that can be described
as consistency errors will arise in the other terms. These other terms are handled
separately below.

Pressure terms. After summation by parts, term (63) becomes

(66) (D* .e, E).

Lemma 2.4 can be combined with Lemma 2.6 to show that term (63) is bounded by

(67) O(h6)llel12 + O(h16).
This technique is similar to that used by Chorin in [4]. The discrete solution is being
compared to an expansion that is chosen to reduce the influence of the pressure error
term.

Diffusive terms. These terms could be handled easily except for the boundary
conditions (16) and (17). It will be shown below that these boundary conditions are
stable with respect to the diffusive terms. The boundary conditions (16)-(17) and
(40)-(41) for the asymptotic solution can be summarized as

2el,1(68) Dei,1 h + O(hT)’
2ei,y(69) DKei,g+l
h + O(hT)’

where here and in what follows e represents the first component of the velocity error,
not the vector error. The term in (64) that cannot be handled in a standard way is

(70)
N

(e,DD_e) h ei,jD+D-ei,y
i,j-1

After summation by parts this becomes

(71) h2 i D[ei,j)2 + ei,lD_ei, ei,NDY_ei,N+

which after use of (68) and (69) can be written

(72) -h2 (D_eis)2 + 2
\ h

i--1
h ] + (ei’l "- ei’N)" O(h6)
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CONVERGENCE OF A PROJECTION SCHEME 619

The fact that the first three terms in (72) have definite sign means that the above
expression is less than or equal to O(h6)llel12. This can be absorbed into the second
term on the right-hand side of (60). This analysis also gives the following result: the
operator Ah on vector fields with boundary conditions (15)-(17) is negative definite.
To see this, first note that the operator is symmetric and then use the analysis above
(and standard techniques on the other terms) to show that

(v, < 0,

with equality only when U 0. This fact is needed to show that the equation for the
pressure in the fully discrete setting is solvable.

Convective terms. Again, the way that (62) is shown to be stable would be
standard except for the way the boundary conditions (15) and (16) enter the linearized
term:

N

(74) (e, b*De) h2 Z ei,ji*,j Dei,j,
i,j--1

where, as above, e represents only the first component of the velocity error. To prove
that this term is stable we need the following:

O(h).Vi,1 Vi,N

This is true for the exact solution v. Since the asymptotic solution 3 is an O(h2)
perturbation of v, the result follows. We return now to the expression (74) and
rewrite it as

(76)
h2 N- )*,i D(ei,e,_l).

i,j--1

After summation by parts and the use of (68) and (69) this becomes

2
i=

i,1 Vi,N(78) -[- ---ei,l(--ei,1 -[- O(hS)) ---f--ei,N(--ei,g + O(hS))

Using (75) and the fact that is smooth so DY_b is O(1), we can bound (77) by
O(1)l[e[[ + O(hS)[[e[12. Combining the results from this term and the others, we
obtain (60), completing the proof of Lemma 2.7. [:]

We are now in a position to prove Theorem 2.2.

Proof. For a given h define T* by

(79) T*= inf{t I[e(t)ll2 > h2}.
From (35), [[e(0)[[2 O(hS), and so T* > 0 for h sufficiently small. We assume that
T* > T, and then Lemma 2.7 can be applied. We rewrite the quadratic differential
inequality (60) as

(8o) dllll2 _< B [2 + h6 + [jell2

D
ow

nl
oa

de
d 

07
/1

2/
16

 to
 1

31
.2

15
.2

20
.1

63
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



620 THOMAS Y. HOU AND BRIAN T. R. WETTON

It will be shown that

(81) Ile(t)ll2 (3est 2)h6

for t < T. In what follows we will assume that Ile(0)ll2 h6. If Ile(t)ll h6 for all
t < T, then (81)is trivially satisfied. For t where Ile(t)ll > h6, (80)implies

(82) d-llell2 B(h1 + h6 + Ilell2) B(2h6 + [lell2).

The above inequality can be integrated from to, where Ile(to)ll h6, to give

(83) Ile(t)ll2 _< (3eB(t-t)/2- 2)h6,

which implies (81). In summary of the proof so far, if T* > T, then (81) holds
true up to time T. A contradiction argument, such as that used in [6], shows that
if h < 2eBT/4, then T* must be greater than T. It is here that the fact that B(T)
is an increasing function is used. If we use the embedding to the max norm on the
expression (81), we have Ilell -O(h5), or

(84) IIV all O(h5).

Since fi is just an O(h2) perturbation of the exact velocities u, the result (44) of
the theorem follows. Since IIEll2 _< B(llll2/h2 + hs) for t < T, IIEll2- O(h3)
and a similar discussion to that above gives (45). This completes the proof of the
theorem.

Dependence on the Reynolds number. In the above proof of Lemmas 2.6 and 2.7
(stability) the function B did not depend explicitly on the viscosity u, and so the
same is true of the constant C in the statement of the Convergence Theorem 2.2.
However, C does depend on the exact solution, which can be expected to develop
large gradients near the boundary when the viscosity is small. Thus C will have an
implicit dependence on the Reynolds number.

2.3. Nonhomogeneous boundary data. The case of specified but nonhomo-
geneous boundary data can be handled in this formulation. Let us consider first the
specification of nonzero tangential velocity, i.e., suppose that ub’(x) and ub’(x) are
the specified boundary velocities on the bottom and top walls of the channel. Then
the boundary conditions

(85) v,0 ,0z Vi,l

(86) Ui,N+I 2U’1 Ui,N

can be used. After simple modifications to the Consistency Lemma 2.1 we can demon-
strate second-order convergence of this method also.

The case of nonzero normal velocity at the boundary is a little trickier, and there
are restrictions on h in the convergence proof. Suppose that the boundary velocities
vb’(x) and vb’(x) are given on the bottom and top walls of the channel. The following
compatibility condition on these boundary velocities is forced by the incompressibility
condition:

(87) j01 (vb’O(x) vb’l(x))dx O.
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CONVERGENCE OF A PROJECTION SCHEME 621

If the initial velocity U(0) satisfies D-U(0) 0, then the equations that will guarantee
that this continues to be satisfied are just (25)-(26) and the algorithm does not need
to be modified. However, (75) can no longer be used, and we need to use the diffusive
terms to bound the error coming from the linearized convection terms at the boundary.
Stability (and hence convergence) can be obtained if

2//
(88) h _< ,
where M is a bound on the velocities at the boundary. In this case the value of C
in Theorem 2.2 will depend explicitly on the viscosity. It is not clear whether this
is a limitation of the proof or whether instability will actually be observed if (88) is
violated. The authors plan to investigate this question computationally.

The question of how to ensure that D. U(0) 0 remains to be discussed. By
using the methods developed by Anderson [1], we can project the exact initial data
onto this discrete space as long as

N

(89) o,
i=1

where the values of V in the sum above are given as boundary values. If we take
V,0 vCb’ and V,N v5’1, condition (89) will not necessarily be satisfied. Therefore,
we compute # by using the formula

N-- b,0(90) # := h tvi
i--1

and set

b,0(91) V,o vi 2’
b,1(92) Yi,N V

2’

which satisfies (89). Since (90) is a midpoint rule approximation of (87), # O(h2),
and so we have made only a second-order perturbation to the exact boundary con-
ditions. To summarize, we modify the boundary values so that they satisfy (89),
and we then project the initial data onto the space that satisfies D. U(0) 0. The
Consistency Lemma 2.1 and the rest of the convergence proof can be modified to
show convergence provided (88) is satisfied. This approach can also be extended to
time-varying boundary values.

2.4. Fully discrete equations and computational issues. In this section
a fully discrete implementation of the scheme described above is given and some
computational issues are discussed. The method handles the diffusion terms by using
a Crank-Nicholson approximation and the convective and pressure terms in a leapfrog
manner. The pressure is again completely determined by the condition that the
discrete velocity be divergence free, but the equation for the pressure is not solved
directly: instead, we describe an iterative procedure for solving the pressure. The
fully discrete method is based on the same spatial grid as in the semidiscrete case,
with the addition of time discretization at regular intervals of size k in time. The
superscript on discrete variables will denote the time step. Assume that U and
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622 THOMAS Y. HOU AND BRIAN T. R. WETTON

U are given approximations to the velocity at time zero and time k that satisfy
D. U D. U 0. The discretization for the momentum equations is

(93)
Un+ Un-1

2k
lvAh(Un+l + Un-1-N(U’) -Gp, + )"

In what follows we consider homogeneous boundary conditions for simplicity, although
modifications for the general case can be made as described above. If we solve formally
for Un+l, we obtain

(94) Un+l (I- kvAh)-l(-2kNn 2kGPn + (I + kAh)Un-1),
where I is the identity matrix on vector fields. Simply by applying D*. to (94) and
setting the resulting expression to zero (to ensure that the velocity at the next step
is divergence free) we obtain the equation for the pressure:

(95) 2kD*-(I- kAh)-lGpn D*. (-2kNn + (I + kl]Ah)Vn-1).
Using the symmetry of the vector operator Ah and the fact that it is negative definite
(see the note after (72)), we can show that this equation has a unique solution for P’
with the side condition (27). The following theorem can be proved (see [18]).

THEOREM 2.8 (Convergence). Suppose that k is related to h by the fixed ratio
k )h, where sup lul/2. Then the approximate solutions U and P described
above converge to the exact values with second-order accuracy in space and time.

To prove convergence we have to be a little careful in the choice of initial data:
we can take U 7u(0) as before, but the analysis requires that U match the
asymptotic solution fi to a high degree of accuracy. Theoretically, this could be done
by computing Taylor series of the asymptotic solution at the initial time, but in
practice the computation is not necessary. In the computations described in 4.1 we
use a single forward Euler step to approximate U1, and this is sufficient to observe
second-order convergence.

Unfortunately, we cannot compute the solution to (95) directly in a computation-
ally efficient way. Equation (93) and D*. U+1 0 can be considered as a coupled,
definite system to be solved for Un+l and P" simultaneously. To avoid solving this
coupled system we replace (95) by an iterative scheme. We use a second superscript
to denote the iteration level. We take p,-1 as the initial guess for the value of P",
i.e., p,,0 p-l. Then we compute

(96)
(97)

Un+l’j+l (I- kAh)-l(-2kNn 2k(]Pn’j + (I + /]Ah)Un-1),
2kD* (]pn,j+l D*. (-2kNn + (I + kAh)Un-1 + kAhUn’J+l).

The above iteration has a fixed point of (93), (95), as desired. The algorithm described
above is similar to that described by Bell, Colella, and Glaz in [2]. These authors
use a different approximation to the nonlinear terms N that is based only on the
Velocities at time step n- 1 (so it is not a two-level method) and that has desirable
properties for computing flows at high Reynolds numbers. It can be shown, as Bell,
Colella, and Glaz claim for their scheme [2], that the above iteration, when considered
as a map for the discrete pressure, is a contraction. If this iteration were carried to
sufficient accuracy, then the convergence result of Theorem 2.8 would also apply.
However, there is a certain difficulty since the contraction parameter for the pressure
map tends to 1 as h 0, as in the following formula:

(98) h +’
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CONVERGENCE OF A PROJECTION SCHEME 623

where/ is described in Theorem 2.8. In the computational example described below,
this difficulty does not manifest itself: we observe convergence of the scheme by using
a fixed, small number of iterations. The authors plan to examine the convergence
properties of this iteration scheme in future work.

2.5. A note on higher dimensions and other extensions. The staggered
grid and the numerical scheme described above in two dimensions are easily general-
ized to three or higher dimensions. The only part of the convergence analysis that is
specific to two dimensions is the embedding (57). In n dimensions this becomes

(99) Ilfll < h-’/211fl12.
By increasing the number of terms in the expansions (33) and (34) and so increasing
the accuracy of the asymptotic solutions, the proof of Theorems 2.2 and 2.8 can be
extended to any dimension by using similar simple geometries.

For practical computations, several additional questions must be addressed: the
use of inflow and outflow boundary conditions, the performance of the method in
domains with corners, and the use of curvilinear grids for more general geometries.
The analysis presented in this paper has essentially two assumptions, that the un-
derlying flow is smooth and that the computational method used is linearly stable.
The convergence of a method that uses inflow and outflow boundary conditions basi-
cally reduces to checking the linear stability of the method by using those boundary
conditions. This was considered by Naughton in [12] for several kinds of boundary
conditions. The smoothness.assumption in the analysis means that our results cannot
be applied directly to flows in domains with corners where singularities in the flow
can be expected to develop. A projection method can be formulated for such a case
(i.e., flow over a step), and it may be possible to observe convergence away from the
corner due to smoothing properties of the method. The final extension of interest
is to curvilinear grids. The projection scheme based on the MAC grid considered in
this paper, which is amenable to analysis, is unfortunately not obviously extensible
to curvilinear coordinates. The development and analysis of a projection method
for general geometries using other approaches is one of the authors’ current research
areas.

3. Periodic flow (without boundary). We now consider the incompressible
Navier-Stokes equations in a periodic box 12 [0, 1] [0, 1]. Using the discrete
grid discussed in 2.1, we can formulate a semidiscrete numerical method in the case
without boundaries:

Il -N(U) + AhU GP,
AhP D. (-N(U)+ AhU).

Since the velocity starts out divergence free and the evolution of the velocity is such
that it remains divergence free and the discrete operators D. and Ah commute in this
case without boundaries, the equation for the pressure reduces to

AhP -D. N(U).

This equation is uniquely solvable with the side condition (27).
We now turn to a fully discrete algorithm for the periodic case. The method is

similar to the one described in the case with boundaries. It is also in the format of
Crank-Nicholson in the diffusive terms and leapfrog in the convective and pressure
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624 THOMAS Y. HOU AND BRIAN T. R. WETTON

terms. Again, the pressure is chosen to ensure that the velocity satisfies a discrete
divergence-free condition.

The pressure at time step n is computed by using the formula

(103) AhPn -D. N(Un).

Now the velocity at the next time step can be calculated by using the following implicit
scheme:

(10a) + V2k
-g(un)- (P +

The statement made earlier that this scheme ensures the discrete divergence-free con-
dition at step n+1 remains to be proved. Assume that U- is divergence free. Taking
the divergence of (104) and using (103) and the fact that D. and Ah commute, we
obtain

(105) (I- kAh)D. U+1 0.

Since the matrix I- kAh is invertible, we have D. Un+l 0, as desired. The
following theorem can be proved (see [18]).

THEOREM 3.1 (Convergence). Suppose that k is related to h by the fixed ratio
k Ah, where ) sup lul/2. Then the approximate solutions U and P described
above converge to the exact values with second-order accuracy.

One difference in this case without boundaries is that we have a simple equation
for the pressure (103) and do not need to iterate to solve it. The authors believe that
a corresponding simplification can be made in the computations in [2].

There is a final point of interest to make in this section. We will show the
equivalence of the algorithm described above and one that can more properly be called
a "projection" method. Suppose we are given velocities Un- and some approximation
of the nonlinear terms N. The velocity field Iln+l is calculated with the help of an
intermediate velocity U* as follows:

1
Un_

U* Un-1
_Nn + yAh(U, + ),(106)

2k
( 07) O pc*.

The above method is a fractional-step method because we forget about the pressure
when we compute (106) and then correct the error we introduce by projecting back
onto the space of divergence-free fields. The claim is that Un+l computed by using
(103) and (104) above is the same as Iln+l. To see that this is true we write (103)-
(104) in the equivalent form

(108)
U"+I U"- 1 (un+ Un_)

2k
P(-Yn) + -l]th +

By taking the projection :P of (106) we obtain

(109)
lln+ U-I (1 U_I)2k

=P(-Nn) + p yAh(U* +

where the fact that D. Un-1 0 so :PUn- Un-1 has been used. Clearly the two
computed values would be the same as long as we can commute :P with Ah in the
above formula. This is easily verified by using the fact that D-, (, and Ah commute
in the periodic case.
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CONVERGENCE OF A PROJECTION SCHEME 625

TABLE 1
Errors in velocity u and pressure p at time 1 for the periodic channel when 1 iteration for the

pressure is used. The errors are normalized by the maximum of the exact values and by h2 as shown.
Times are in seconds on a SPARC workstation.

N= 1/h
8
16
32
64

Lc-error
u p Time’

2.0 h2 6.0 h2 1.0
2.1 h2 5.5 h2 8.2
2.2 h2 5.5 h2 70
2.1 h2 5.5 h2 586

4. Numerical results. Simple test cases for domains both with and without
boundaries are presented below. Second-order convergence is obtained in both cases.

4.1. Periodic channel. The method described in 2.4 for calculating flows in a
channel (with iteration for the pressure) is applied to the following example:

(110) u(x, y, t) 1/4 sin(27rx)sin(2ry)e-s2t,
(111) 1/4
with pressure

cos(47ry)(112) p(x, y, t) cos(47rx)
64

cos(4  )(113)
8O cos(2rY)16 ) e--16trgt"

These functions do not satisfy the Navier-Stokes equations exactly, and so we intro-
duce a forcing function f so that

(114) ut -u. Vu- Vp- Au+ f.

In this case the forcing function f is given by

(115) f(x, y, t) (-Tr sin(47rx) cos(27ry)e-6"’t/40,
(116) 7r os(47rx)sin(27ry)e-i6’t/40 + r,Tr2 cos(2rx)e-St).
This function f is divergence free and satisfies the boundary conditions of the veloc-
ity (the gradient part has been absorbed by the pressure). Making straightforward
modifications to the algorithm, we can handle the forcing function. The velocities at
time step 1 are calculated with a single forward Euler step, which also furnishes a
pressure that is used as the first value in the iterative scheme that is used in the first
full step calculation.

The Reynolds number is chosen as 50, corresponding to a viscosity of 0.01, and
the values are calculated to time 1 and are then compared to the exact values. The
results are given in Tables 1 (for 1 iteration) and 2 (for 3 iterations). The errors are
normalized by the maximum of the exact velocity or pressure at the final time. The
errors are also normalized by h-2 so that if the method converged with second-order
accuracy, the numbers should remain bounded. This is clearly observed. The fact
that the normalized errors are approximately constant shows that the computations
are in the asymptotic region of convergence.
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626 THOMAS Y. HOU AND BRIAN T. R. WETTON

TABLE 2
Errors in velocity u and pressure p at time 1 for the periodic channel when 3 iterations for

the pressure are used. The errors are normalized by the maximum of the exact values and by h2 as
shown. Times are in seconds on a SPARC workstation.

N-1/hl
8
16
32
64

-error
u p Time

2.1 h2 6.2 h2 1.7
2.1 h2 6.0 h2 14
2.1 h2 5.8 h2 119
2.1 h2 5.7 h2 988

TABLE 3
Errors in velocity u and pressure p at time 1 for the doubly periodic geometry, normalized by the

maximum of the exact values and by h2 as shown. Times are in seconds on a SPARC workstation.

8
16
32
64

Lo-error
u p Time

2.4 h2 3.7 h2 0.7
2.4 h2 3.1 h2 4.9
2.4 h2 2.8 h2 35
2.4 h2 2.7 h2 274

4.2. Periodic box. The method described in 3 was used to calculate the fol-
lowing exact flow in a periodic cell:

(117) u(x, y, t) 1/2 sin(2x)cos(2ry)e-s,
(118) v(x, y, t) -1/2 cos(2x)sin(2ry)e-82

with corresponding pressure

(cos(4rx) + sin(47ry))e-16r2t(119) p(x, y, t)

Since the velocities are bounded by 1/2, the relationship k h is used. The Reynolds
number is chosen as 50, corresponding to a viscosity of 0.01. The computations
were initialized with the exact values and the errors in the calculated velocities and
pressures at time 1 are given in Table 3. The errors are normalized by the maximum
of the exact values as before. Second-order convergence is clearly observed.

5. Summary. In the literature there has been much discussion of exactly how
to handle the pressure and hence the incompressibility condition in the context of
finite-difference schemes. Again, we refer the reader to the excellent review article by
Gresho and Sani [7] for a summary of previous work. In the present article we have
demonstrated one scheme for which we prove rigorous convergence in the cases with
boundaries and without. An important element in the scheme is the.particular choice
of a staggered grid. Using this grid, we see that by choosing the pressure to make the
velocity satisfy a discrete divergence-free condition, we also compute an approximation
to the pressure that is second-order accurate. Both of these properties, accuracy in
the pressure and the discrete divergence-free condition, are needed to fully analyze
the sources of error and show convergence of the scheme. We hope that the analysis
and discussion of computational issues presented here will shed some light on the gray
areas associated with the handling of the pressure in similar schemes. Numerical work
to test the performance of the methods proposed here on more complicated flows is
currently in progress.
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CONVERGENCE OF A PROJECTION SCHEME 627

Appendix: consistency lemmas. An essential part of the convergence analysis
is the construction of the asymptotic solutions (33)-(34) that satisfy the discrete
equations to high-order accuracy. In this appendix we derive the form of the equations
that the functions u(r) and p(r) must satisfy and indicate why these equations will have
smooth solutions. The question of smoothness up to time t 0 and the additional
compatibility conditions required for this will be addressed briefly at the end of the
section. The results below constitute a proof of Lemma 2.1.

We proceed in the manner of Strang [15] and insert the expressions (33)-(34) into
the difference equations (25) and (28) as well as the boundary conditions (15)-(17)
and (29), (30). We then expand the finite differences in Taylor series and set the
coefficients of powers of h in the resulting expression to zero. What we end up with
are equations and boundary conditions for the functions u() and p(). Since the error
expansions of all differences involve only even powers of h, we need consider only even
powers in the resulting expansion. We obtain the exact Navier-Stokes equations as
the zeroth-order term (indicating that the scheme is consistent) and equations of the
following form for higher-order terms:

(120) u) -u(r). Vu- u. Vu(r) Vp(r) + vAu(r) + f(r),
(121) Ap() -V. (u(). Vu- u. Vu(r)) + g()

with boundary conditions

0,

(123) u() b(),
Op()
cn n. (-u() Vu u. Vu(r) + Au(r)) + c()

The first term on the left-hand side can be intergrated by parts to give the first term
on the right-hand side. Therefore, we need only check whether

(127) / g() fo C().

For the second-order terms we have

(128) g(2)__ 1-,1 (0ax4p d- vaP0a) d- ---(Oaa)x3 + 203()) + V. a(2)

(129) c(2) a2) 103
24 Oy3 p’

a-V"
(u()" Vu- u. Vu()) + g()

Jfoa n. (-u() Vu u. Vu() + Au()) + c().

(125)

at y 0 and y 1. In the above equations f(), g(r), b(), and c() involve derivatives
of u, p, u(q), and p(q) for q < r. We consider solving (120) and (121) inductively
for r with boundary conditions (122)-(124). These equations have convection terms
linearized about the exact solution u and are forced by lower-order terms.

The first question that we need to address is whether the Neumann boundary
conditions for p(r) are compatible with the Poisson data for p(r) in the interior. The
compatibility condition is
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628 THOMAS Y. HOU AND BRIAN T. R. WETTON

where a() -u. Vu + Au and a(2) is the second-order error in the expression
-N(fi) + Afa that involves the exact solution u only, i.e., the second-order error
in this expression that is not explicitly given in (120). The a’s are vector functions,
and the subscript denotes the component. In terms of the compatibility (127) we
can ignore all terms with x derivatives since they integrate to zero (all functions are
periodic in this direction). We use the relation between two functions that differ
only by terms with x derivatives. Applying this notation to (4), we have

(130)
02 0 a0)Oy2P

Using this result in (128) and (129), we obtain

(131) g(2) 1 03 a0)/ 0 a(2)
24 Oy3 2

(132) c(2) 1 02a(2O)+a2)
24 Oy2

By integrating the left-hand side of (127) by parts using the expressions above, we
see that the compatibility condition is indeed satisfied. The compatibility of the
higher-order terms can also be shown. The lengthy details are given in [18].

The next point is how to satisfy (43). By considering (27) as a midpoint-rule
approximation of (3) and expanding the error in powers of h (see [14]) we obtain
values for

(133) /n p() (x, y)

in terms of derivatives of lower-order terms in the error expansion. Since the Neumann
problem for p(r) is determined only up to a constant, we can satisfy this condition
and so satisfy (43). The third point to consider is the projection of the initial data
onto the space of discrete divergence-free fields. We write

3

(134) fi(0) u(0) + hu() (0).
r--1

As the above notation suggests, this error expansion furnishes initial data for (120).
To satisfy (35) we introduce an initial pressure with an error expansion and choose it
so that it satisfies (22) to high-order accuracy. By applying the Taylor series expansion
of the discrete gradient to this pressure, we obtain the terms in the initial expansion
(134). Now we need only to address the smoothness of the solutions of (120). We
rewrite (120)-(121) as follows:

(135) u) :P(-u(). Vu- u. Vu() / Au()) + f(),

where 7c denotes the projection onto continuous divergence-free fields and f(r) con-
tains additional terms from (121). It can be shown that this equation has smooth
solutions, and we refer the reader to the relevant literature [11], [16]. With this fact
the proof of Lemma 2.1 is complete.

A remark on the smoothness of solutions at time t O. It is well known that the
solutions of the Navier-Stokes equations are smooth up to time t 0 only under cer-
tain assumptions on the initial velocity: it must satisfy certain nonlocal compatibility
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conditions. A discussion of these conditions is given in the article by Temam [17]. In
addition, the smoothness of the terms of the asymptotic error expansion up to time
t 0 requires that the initial velocity satisfy additional compatibility conditions. As
Heywood and Rannacher remark in [9], it is impossible in general to verify that given
initial data satisfy these compatibility conditions. Using the smoothing properties
of the diffusive term, they prove the convergence of finite-element approximations to
solutions of the Navier-Stokes equations without assuming that any of the compati-
bility conditions are satisfied. We believe that this approach can be extended to the
analysis here.
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