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 CONVERGENCE OF A FINITE DIFFERENCE SCHEME FOR THE

 NAVIER-STOKES EQUATIONS USING VORTICITY BOUNDARY

 CONDITIONS*

 THOMAS Y. HOUtt AND BRIAN T. R. WETTONt?

 Abstract. A rigorous convergence result is presented for a finite difference scheme for the
 Navier-Stokes equations which uses vorticity boundary conditions. The approximating scheme is

 based on the vorticity-stream function formulation of the Navier-Stokes equations. The no-slip
 boundary condition is satisfied approximately by using a boundary condition of vorticity creation
 type. Convergence with second-order accuracy in vorticity and velocity is established for general
 domains in two space dimensions. Generalization to three space dimensions is also considered.

 Key words. vorticity boundary conditions, energy estimates

 AMS(MOS) subject classifications. primary 65M25; secondary 76D05

 1. Introduction. The purpose of this paper is to analyze certain finite differ-

 ence approximations for the incompressible Navier-Stokes equations in their vorticity

 formulation in domains with boundaries. We are especially interested in understand-

 ing stability and convergence properties of vorticity boundary conditions for these

 finite difference methods. The main result of this paper is a convergence proof of a

 finite difference method using a boundary condition of vorticity creation type. This

 result applies to general domains in two space dimensions as well as certain domains

 in three dimensions.

 There are several ways of handling vorticity boundary conditions. Chorin [5] pro-
 posed a Lagrangean vortex blob scheme in which vorticity is created on the boundary

 in one step of the algorithm to approximately satisfy boundary conditions on the ve-

 locity. This step is followed by a random walk diffusion step and a convection step

 during which the boundary conditions on the velocity are violated. The vorticity

 creation boundary conditions correct this error. Several distinct types of vorticity
 boundary conditions which can be implemented in Eulerian difference schemes have
 also been proposed. Quartapelle and Valz-Gris [21], [17] use integral constraints to
 get enough information to determine the vorticity at the boundary. These integral
 constraints must be satisfied by the vorticity in order that the boundary conditions

 on the velocity be satisfied. Using a similar approach, Anderson [1] and Cottet [8] get
 boundary conditions for the vorticity in terms of an integral relationship. The last
 method is called the vorticity-stream function method discussed in the review article

 [16]. In this method, the vorticity on the boundary is determined by the values of
 the stream function at the interior points with coefficients determined by matching of
 Taylor series expansions. The above methods have been implemented numerically by

 the cited authors and all reflect the nonlocal nature of vorticity boundary conditions.

 Chorin's creation scheme is perhaps the most interesting because of its ability to
 model high Reynold's number flows. A convergence analysis of a space-continuous

 model of Chorin's viscosity-splitting method is given in [7], [4]. Analysis using a

 * Received by the editors July 16, 1990; accepted for publication (in revised form) June 23, 1991.
 This research was supported in part by Air Force Office of Scientific Research grant AFOSR-90-0090.

 t Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012.
 t The research of this author was supported in part by National Science Foundation grant DMS-

 9003202 and by a Sloan foundation fellowship.
 ? Present address, Department of Mathematics, University of British Columbia, Vancouver,

 British Columbia, Canada V6T 1Y4.

 615

This content downloaded from 131.215.220.165 on Wed, 13 Jul 2016 01:56:32 UTC
All use subject to http://about.jstor.org/terms



 616 THOMAS Y. HOU AND BRIAN T. R. WETTON

 slightly different formulation is also given by [8]. However, a full analysis of this
 method is difficult because of its Lagrangean nature and the use of the random walk to
 simulate diffusion. The vorticity-stream function formulation seems the most tractable
 to analysis, and it is this type of scheme that is considered in this paper. Recently,
 Anderson [1], [2] has demonstrated that the different types of vorticity boundary
 conditions described in the preceding paragraph are related, at least in some restricted
 situations. Because of these relationships, the authors feel that understanding the
 stability and sources of error for one of the methods should shed some light on the
 others.

 The main part of this paper is devoted to proving stability and convergence of a
 finite difference approximation for the Navier-Stokes equations which uses a vorticity
 boundary condition. This vorticity boundary condition can be interpreted as a finite
 difference version of the vorticity creation boundary condition. The analysis is based
 on discrete energy estimates. It is worth emphasizing that the energy estimates are
 performed on the velocity rather than vorticity since energy (L2) estimates on the
 vorticity are difficult to obtain due to the nonlocal nature of the vorticity boundary
 conditions. This velocity error approach was first proposed by Naughton [15]. One of
 the main difficulties in the discrete energy estimates is the control of the boundary
 terms resulting from summation by parts. Typically these terms are large in magni-
 tude and may not have a definite sign. There are three sources where the boundary
 terms can enter the analysis. The first one is from the linear diffusion term. In this
 case, the boundary terms can be handled in a way similar to Meth's [13]. However,
 Meth's energy estimate is not enough to imply convergence even for the Stokes equa-
 tions, since the boundary condition is not accurate enough. The second source is from
 the linearized convection terms. This source gives rise to boundary terms which are
 very subtle to estimate. The smallness of the linearized velocity near the boundary is
 used in order to bound the boundary terms resulting from the repeated use of sum-
 mation by parts. The last source is from the nonlinear convection terms, which are
 more difficult to handle.

 We overcome the difficulties arising from the boundary conditions and the nonlin-
 ear stability by generalizing an argument of Strang [18] to our initial-boundary value
 problem. The idea is to construct a smooth function which satisfies the difference
 equations and the boundary conditions up to high-order accuracy. Then, when we
 compare the approximate solution with this smooth function, the error between the
 two can be made arbitrarily small. Consequently, the nonlinear terms can be esti-
 mated by the smallness of the error. This approach was used by Michelson [14] to
 analyze methods for hyperbolic initial-boundary value problems. The existence of
 such a function is nontrivial and requires certain regularity and compatibility con-
 ditions. Combining this argument with discrete energy estimates, we establish the
 convergence of the method. As a happy side effect, a sharper convergence rate is ob-
 tained in the maximum norm. The convergence proof is extended to general domains
 in two dimensions by using conformal mappings.

 The order of accuracy of the finite difference method is an interesting question.
 The vorticity boundary condition is only of first-order accuracy, and the scheme is
 second-order accurate in the interior when using centered differencing. Thus, energy
 estimates would imply, at best, second-order accuracy in the velocity in a discrete 12
 norm. However, numerical experiments indicate that the vorticity actually converges
 in the maximum norm (in the interior) with second-order accuracy [13]. This seems
 hard to believe at first, since we may expect that the first-order accurate boundary
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 CONVERGENCE OF A FINITE DIFFERENCE VELOCITY SCHEME 617

 condition would pollute the second-order accuracy in the interior. In the case of
 linear hyperbolic equations, it was shown by Gustafsson [10], using a quite involved

 argument, that lower-order boundary conditions do not affect the overall accuracy. In

 our situation, this property is explained using Strang's argument: the boundary term

 enters the error expansion only at second-order, and so the method indeed converges

 in the maximum norm with second-order accuracy.

 Many numerical calculations on flows of interest have been conducted using meth-

 ods with vorticity boundary conditions, especially those based on Chorin's algorithm

 [5], [6]. Recent numerical studies of Bell-Colella-Glaz for the projection method
 showed that high-order finite difference methods can capture fairly complicated flow
 features [3]. This leads us to believe that the finite difference algorithm we consider

 for analysis in this paper may also be useful for "real" computations, especially be-
 cause vorticity-based methods have the advantage of eliminating the pressure term

 in a natural way. In our future work, we will perform extensive numerical studies for
 this method by using various vorticity boundary conditions. Some practical issues,

 such as local mesh refinement, upwind differencing, and time discretization will also
 be considered.

 The rest of this paper is organized into two major sections and an appendix.

 Section 2 contains a discussion of the equations, the numerical algorithm, and the
 details of the convergence proof in two dimensions. In ?3, the convergence result in
 three dimensions is presented. The discussion of the approximate solutions that satisfy
 the discrete equations to high-order accuracy in the manner of Strang is deferred to
 the appendix.

 2. Two-dimensional scheme. In two space dimensions, the Navier-Stokes equa-

 tions can be written in terms of the vorticity w and stream function / as follows:

 (1) wt + Uwx +v = vAw,

 (2) A+=-WI

 (3) u= oy
 (4) v =-Vxx

 where v is the viscosity and u and v are the x- and y-components of the velocity,

 respectively. These equations are considered in the infinite channel shown in Fig. 1.

 On the boundaries y = 0 and y = 1 we assume a no-flow condition v = 0 and specify
 slip velocity u. These boundary conditions can be written in terms of the stream
 function as

 +(x, 0; t) = co, +O(x, 1; t) = cl,

 where c0 and cl are constants, and

 - (x, 0; t) = uo(x, t), ao (xI 1; t) = ul (x, t),

 where u0 and u1 are the specified slip velocities. At first it seems that we have too

 many boundary conditions for (2) and none for (1). However, if (2) is substituted
 into (1), the resulting equation for the stream function has appropriate boundary
 conditions. Finding boundary conditions for the vorticity is a matter of converting
 one of the boundary conditions for the stream function to a boundary condition for
 the vorticity.
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 V=C1 ; V/'6y=u1(x-t)

 I1(0,1) (i

 x

 I (0,0) (1,0) I

 FIG. 1. Two-dimensional channel.

 A semidiscrete finite difference approximation of (1)-(4) is given in the subsection
 below, followed by the convergence analysis. The final topic of this section deals with
 the extension of these results to more general domains and more general boundary
 conditions.

 2.1. The discrete equations. To present the analysis more easily, some sim-
 plifying assumptions are made on the domain and the boundary conditions. First, we
 consider flows in the finite domain Q, shown with dashed lines in Fig. 1, and assume

 the flow is periodic in the x- direction. We also assume that 0/ = 0 and t9hP/9y = 0 on
 the boundaries y = 0 and y = 1. More general boundary conditions will be considered
 later.

 An N x N grid (with spacing h = 1/N) is laid on the periodic channel Q, and we

 then consider continuous time approximations oi~,j(t) to 'i)(ih, jh; t). Approximations
 JDi,j,I fi,j , and biji are defined similarly. The difference operators that will be used in
 the paper are given below:

 Dxij= (fi+i,, - fj_,j)/2h (centered),
 I= (fij - f(1.0/h (backward),

 Dxfj= (f+, - fi,j)/h (forward).

 The operators Dy, Dy, and Dy are defined similarly. The centered difference approx-
 imation to the Laplacian is denoted by Ah which can be written as follows:

 Ah = Dx Dx ?DyDy

 conditions. ~ ~ ~ + - +

 In terms of these difference operators, we approximate the Navier-Stokes equations
 by:

 plifyig assuptionsare mde ntedminadtebunaycniiosjis,w
 consider flows in the finite domain Q, shown with dashed lines in Fig. 1, and assume~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= _i Wi' -,2,

 th( lw spridci dth jDx dietin We also vj asum VthatC= ndij8 Oo
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 CONVERGENCE OF A FINITE DIFFERENCE VELOCITY SCHEME 619

 (6) Ah Pi,J j -Wi,i,

 (7) i,j = Dv8i,j

 (8) i5j =-Dofi,jj

 The above approximation can be implemented as follows: given the discrete vorticity

 in the interior grid points, we compute the stream function in the interior grid points

 by (6) using the no-flow boundary condition b = 0. We then update the velocity
 field by (7)-(8). To update vorticity in the interior grid points, we use the vorticity

 equation (5), but this requires the values of the vorticity on the boundary. We use
 a vorticity-stream function type of boundary condition in which the vorticity on the

 boundary is related to the values of the stream function in the interior. To do this, we

 follow Orszag and Israeli [16] and Meth [13], and write oij, in terms of an expansion
 around the grid point (ih, 0):

 (9) 4'(ih, h) = ip(ih, 0) + h?4' (ih, 0) +2 i--y?y(ih, 0) + 0(h3).

 Since ?,(ih, 0) = 0-, 'p,(ih, 0) = 0, and ?Pb,(ih, 0) = A?L(ih, 0) = -w(ih, 0), we obtain

 2
 (10) wi,o =- ij + 0(h),

 which is used as a boundary condition for the discrete vorticity:

 (11) 2-

 The boundary condition (11) can be interpreted as a finite difference equivalent
 of Chorin's creation scheme. Following Meth [13], we proceed as follows: (i) calcu-
 late the slip velocity introduced by the interior grid points, which is approximately

 equal to (i'j, - ?P,o)/h = fbjl/h; (ii) create vorticity at the boundary of the amount
 -(2/h)+i,1/h to cancel the slip velocity. The factor 2/h is due to the fact that 4j,1/h
 approximates the velocity at the point (ih, h/2). Thus, using this finite difference
 version of Chorin's argument, we also obtain the boundary condition (11). Because
 of this fact, we refer to (11) as a vorticity boundary condition of creation type.

 To summarize, the boundary conditions for ?b and w are given by

 (12) Fi4, = ?i+Nj, C'i,j = Ji+N,j (periodicity),

 (13) ?i,o = 0, Pi,N = 0 (no-flow),

 and

 2-
 (14) Cvi,o = -h0i,

 2 -
 (15) Wi,N =-T2 0i,N-1-

 The main convergence result is given below. It is assumed that the exact solution

 of the Navier-Stokes equations is sufficiently smooth.
 THEOREM 2.1 (Convergence). The solutions of (5)-(8) with boundary conditions

 (12)-(13) and vorticity boundary conditions (14)-(15) converge uniformly to the exact
 solutions of the Navier-Stokes equations with second-order accuracy:

 11'tw - Z'j ? C(T)h2
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 620 THOMAS Y. HOU AND BRIAN T. R. WETTON

 and

 Ilu - ijjIo < C(T)h2, liv- llI0 < C(T)h2

 for all t with 0 < t < T. The 11 * Ilo norm is the discrete maximum norm over the
 interior grid points defined in (22) below. The vorticity at the boundary, calculated

 using (14)-(15), converges with first-order accuracy in maximum norm.

 To analyze the finite difference approximation for the Navier-Stokes equations,

 several difficulties need to be overcome. These include the nonlinear convection terms,
 large boundary terms resulting from summation by parts, low-order accuracy of the

 boundary condition, and the discretization of a general domain. In the following sub-

 sections, we will show how these difficulties can be eliminated. The main ingredients

 are careful energy estimates and a generalization of Strang's argument [18] to the

 initial-boundary value problem.

 2.2. Convergence analysis. An important element in the convergence analysis
 is the construction of approximate solutions ? that satisfy the discrete equations to

 a high-order of accuracy.

 LEMMA 2.2 (Consistency). There exists a smooth function / that is an order

 0(h2) perturbation of 0b:

 q-1

 (16) P(x, y, t; h) = (x, y, t) + E hP?,b(P) (x, y, t),
 p=2

 where the functions ?p(P) and their derivatives can be bounded in terms of / and its
 derivatives. It satisfies the no-flow and the periodicity boundary conditions exactly
 and equals the exact stream function initially. Further, it satisfies

 (17) Ci,o =- ,1 + O(hq-l),

 (18) =i,N =- +D+A,i+N- 0+ 0(h (

 (19) ~dt'ij = -DofixjDT6jixj + Do+injDy6j'ij + VAhC2i,j + O(hq) (19) ~dt 0 0 0
 to any desired degree of accuracy (q) provided the original solution ' is smooth enough.

 In the above equations, ci,j is defined to be -Ah/Oij.
 Notice that on the boundary, Lji,0 is given by

 1 A A1 A
 (20) LZi,o =-- [0i, 1 - 24j,o + 0i,,-i],

 which is not well defined since the grid point (ih, -h) is not in the domain. Therefore,

 wj,0 is defined to be the smooth continuation of -Ah?/ onto the boundary, i.e., the
 Taylor expansion of (20) to sufficiently high order (depends on q) at the boundary:

 (21) Wi,0 = -?y (ih, 0) - 12i, ,,(ih,0) +-* (finitely many terms).

 This is needed to maintain the high-order accuracy in the interior. Since the proof of

 the consistency lemma is quite technical, we defer it to the appendix.
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 CONVERGENCE OF A FINITE DIFFERENCE VELOCITY SCHEME 621

 We define the following error terms:

 eij= 4'i,j - Pi,:j,
 ei,3 = Si,-Sij

 and the following discrete norms on the grid:

 N-1 N-1

 Ilf 112 = h2 j Z(fi3j)2
 i=0 j=1

 (22) 1If IKo=max max lfi,j
 N N

 lIf il,2 = h2 E [(Dxfi,j)2 + (Dy f,j)2],
 i=1 j=1

 N-1N-1 2 N-1
 2,2 = h2 + E [(fi,1) + (fi,N-1)2]

 i=0 j=1 i=0

 Some useful relationships between these norms are derived below. Since h2(fj,3)2 <

 lif 112 , Ifi,j < h Ilf 112, and so

 (23) lif I!oo < ? lif 112-

 Also, for all f:

 (24) IIDof112 < Ilf 111,2.

 Discrete functions f with fi,o = 0 and fi,N = 0 for all i satisfy a discrete version of
 the Poincare inequality

 (25) IfI 112 < IfI 111,2

 and the estimate

 N-i

 (26) z [(fi,) + (fi,N-1)21 < II2 2
 i=O

 The discrete Poincare inequality (25) follows from fij = h 1<k<j Dy fi,k. The last

 formula (26) can be verified as follows: Since fi,o = 0 and fi,N = 0, fij = hDy fi_
 and fi,N-1 = -hDy fi,N. Therefore,

 N-1 N-1

 Z [(fi,) + (fi,N21)2] = h2 E [(D f. 1)2 + (D-fi N)2] < lIf I22
 i=O i=1

 The expression, O(hP), will denote any quantity that can be bounded for 0 < t <

 T by KhP for a constant K that depends only on 0 and its derivatives (up to some
 sufficiently high order) up to time T. In addition, c will denote an absolute constant,
 while K and B will denote 0(1) quantities.

 In what follows, it is assumed that the order of accuracy of the constructed
 approximate solutions in Lemma 2.1 is sufficiently large (q > 6).
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 622 THOMAS Y. HOU AND BRIAN T. R. WETTON

 LEMMA 2.3 (Stability). GivenT > 0, suppose that IIE(t) 111,2 < hq-2 forO < t < T
 and q > 6. Then there exists a positive number B that depends on T and the exact

 solution / only such that for all 0 < t < T,

 (27) dIIIE(t)111,2 < B(hq-3'2 + IIE(t)111,2)

 The function B(T) can be chosen to be nondecreasing in time.

 The proof of Lemma 2.3 is lengthy and is left to the end of this section. We are

 now in a position to prove the main convergence result, Theorem 2.1.

 Proof of Theorem 2.1. First it will be shown that Lemma 2.3 is equivalent to the
 following statement: Given T > 0 there is a C(T), such that for all t in the range

 O < t < T)

 (28) IIE(t)111,2 < C(T)hq-3/2

 for h sufficiently small. The proof that Lemma 2.3 implies (28) is an easier version of
 the bootstrap argument in [9]. For a given h, define T* by

 T* = inf{t: IlE111,2 > hq-2}.

 Since IIE(0)111,2 = 0, T* > 0. If T* > T, then the conditions of Lemma 2.3 are valid,
 and using Gronwall's inequality on (27), (28) is valid with C(T) = eB(T)T. A simple
 contradiction argument shows that if h < e -2B(T)T, then T* must be greater than

 T. Putting the definition of e into (28), we obtain II? - 111,2 < C(T)hq-3/2. This
 result shows that the numerical solution converges with a high order of accuracy to
 the constructed approximate solution p. In a manner similar to (23), the following
 can be shown:

 max DX i,jDX f,j < (T)q-5/2, max IDx Oi,j - Dx i,j I < C(T)hq-5/2

 X,3

 13

 Since -Ci,j = Ahi,j = (DxDx + D+ Dy )fij , we have

 (29) max -i,j AhPl < 2C(T)hq-7/2,
 X,3

 where the maximum is taken over the interior only. Since +(x, y, t; h) is a second-order
 perturbation of the exact stream function (see (16)),

 Ahfi,j = (Ap)j,j + 0(h2)

 =-ij + 0(h2) .

 This result inserted in (29) proves the second-order uniform convergence in the vor-
 ticity. The second-order convergence in the velocities and the first-order convergence
 in the boundary vorticity is obtained similarly. E

 To get the discrete energy estimates needed to prove stability, we need to use the
 following summation by parts formulas.

 LEMMA 2.4 (Summation by parts).

 N N

 (30) EfjD+gj =-E D_fj 9j + h(fN9N+1 - fogl),
 j=1 j=1
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 CONVERGENCE OF A FINITE DIFFERENCE VELOCITY SCHEME 623

 N N 1
 (31) j fjD-gj = - j D+fj * gj + j(fN+19N - figo),

 j=1 j=1

 N-1 N-1

 (32) j fjDogj = - E Dofj * gj + 2(-f091 + fN-l9N + fNgN-1- f90).
 j=1 j=1

 Proof of (30). To verify this formula, we proceed as follows:

 N 1 N
 ,fjD,gj = h fj (gj+ - gj)
 j=1 i=1

 N ~~~~N
 h (?fj 193 + fNgN+1 fogl- fjgj9

 N

 =-Z D-fv3 *gj + h(fNgN+l -fo9gl)
 j=1

 The formulas (31) and (32) are proved similarly. E

 In many of our applications, the functions f and g will have homogeneous bound-

 ary data (fo = fN = 0) or will be periodic (fi = fi+N). In these cases, the boundary
 terms in the above formulas will vanish.

 We now return to the proof of Lemma 2.3 (stability). It will be shown that the

 error e in ? is stable in the 11 * 111,2 norm. This is the same as proving stability of the
 method in the velocity. The proof begins by taking the difference between (5) and
 (19):

 (33) det
 dt

 (347)D'E.-'j
 (35) ~~~~~~~~+ Dv8Ei,j *DoxAhi

 (36) - Dvij * DOxei,j
 (37) + Dox ij Dv Deij
 (38) - Doxij *Doh.

 (39) + Dx+j* Dvei,
 (40) + VAhei,j

 (41) + O(hq).

 The terms (35), (36), (38), and (39) are linearized convection terms whose stability
 needs to be analyzed. The linear diffusion term (40) leads to a decay in the error.
 Terms (34) and (37) are nonlinear terms whose stability is easy to analyze by using

 the high accuracy of the approximate solutions ,. Finally, term (41) is the truncation
 error (although errors from the boundary terms will be introduced when the others
 terms are integrated by parts to show stability). The above equation is multiplied

 by h2Ei,j and summed over the interior. The resulting equation is evaluated term by
 term.
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 624 THOMAS Y. HOU AND BRIAN T. R. WETTON

 Evolution term.

 Term (33). Note that ei,j = -AhE,j in the interior. Therefore this term can be
 written as

 N-1 N-1

 hh2 E ij (D+D' + DyDy
 E E + + dt i=O j=l

 After an application of Lemma 2.4 (summation by parts) in x and y directions, re-
 spectively, this term becomes

 h2 Z [(D Ei,j) - (DxEi,j) + (DYEi,j)d (DYEi,j)
 i=l j=i

 (the terms are periodic in i and qt,0 = 0 and Ei,N = 0, so there are no boundary terms)
 or

 1d N N
 _ +h2Z [(Dx ,,)2 + (Dy ,'j)2],

 i=1i J=1

 which is simply 2 (d/dt) I I E11 2

 Nonlinear terms.

 Term (37). It is supposed as in Lemma 2.3 that IkE(t)l1,2 < hq-2 for 0 < t < T.
 This allows us to bound this nonlinear term essentially by brute force. Using (25),

 116112 < hq and then, using (23),

 (42) 1161100 < h-3.

 The term (37) under consideration is

 N-1 N-1

 h2 E EfijDxEjijDOYe,jj
 i=O j=1

 This term is divided into one interior part and two boundary parts which will be
 analyzed separately:

 N-1 N-2

 (43) h2 2 E EjijDxEjijDYeijj
 i=O j=2

 N-1

 (44) +h2 E ei,DxEji,-A(ei,2 -ei,o)
 i=O

 N-1

 (45) +h2 E -i,N-j Dx i,N-1 (ej,N-ei,N-2)v
 i=O

 Recall from the analysis of the evolution term that ei,j = -AhEi,j in the interior. The
 term (43) contains only values of e in the interior. Therefore, using the a priori bound
 (42), the term (43) can be bounded in absolute value by

 N-1 N-2

 hq-3 . h2 ZZI DxEi,j . ID* Ahei,j i,
 i=O j=2
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 CONVERGENCE OF A FINITE DIFFERENCE VELOCITY SCHEME 625

 which, using the Cauchy-Schwarz inequality, can be bounded by

 h-3 -YolllDAhEI12-

 Since DYAhei,j can be written as a sum of backward differences of e divided by h2,
 IIDO9AheI12 < cIIIeII,2/h2. Therefore, the above term and hence (43) is bounded by

 (46) chq-5jDoelj2* IIDXe112 < C11E112
 where (24) and the fact that q > 6 is used. Since (44) and (45) are handled similarly,
 we will only consider the first. The term ei,2 is in the interior and can be handled as
 above, so we will neglect it in what follows. In order to proceed, we need to relate
 ej,0 to the error e. This is done as follows: taking the difference between equations
 (17) and (14) we have

 (47) ~~~~~~~2
 (47) ei,o = -T2Ei,l + O(hq-l).

 Using this fact and (42), term (44) can be bounded by

 N-1

 hq-3*h2 E lDxEi,l - 2DYvi + O(hq-2)
 i=O

 where the fact that hD1 {i,1 = ci1 is used (ei,o = 0). Again, using the fact that q > 6
 and (24), the above expression is bounded by

 cllEl1,2 + O(h21-5)jjejj1,2.

 To summarize, term (37) can be bounded by

 CllEll1,2 + O(h21-5)11ej11,2.

 A similar estimate for term (34) can be obtained.

 Linearized convection terms.

 Term (35). Since the expression DoAhI'Oi,j is bounded (in terms of the derivatives
 of s), (35) can be bounded by

 (48) KlIell2 * Doejj2 < Kjlejj12,

 where (25) and (24) have been used. A similar estimate for (38) can be obtained.
 Term (39). This is the most troublesome of the terms. It is written out below:

 N-1 N-1

 (49) h2 E i, D ij DO ej.
 i=O j=1

 After summation by parts using the formula (32) this becomes

 N-1 N-1

 (50) -h 2 E EDo (,6DOx)ij * eij
 i=O j=1

 hN-1 h N-1

 (51) -2 E: Zei,iDxIi,ei,o + N - fi,N-1Do$0i,N-lei
 i=o i=O
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 626 THOMAS Y. HOU AND BRIAN T. R. WETTON

 The other boundary terms drop out because e has homogeneous boundary values.
 Term (51) will be analyzed first, and we will return to (50) later. When (47) is used,
 the first sum in (51) becomes

 (52) ~~~~h N-i (2E,
 (52) 2 j,jDx'0i'1 i e1,1D-),1 + O(hq ))

 To proceed, we need the following fact:

 (53) Doxbij = 0(h).

 To prove this, the thing to notice is that DoXi,l = vi,1 + 0(h2), where v is the
 exact velocity (see the appendix for the details on the approximate solutions). Since

 v(ih, 0) = 0 and v is smooth, v(ih, h) is 0(h). Using (53) and the Cauchy-Schwarz
 inequality, (52) can be bounded by

 N-1 N-1 - 1/2

 0(1) E (E,i1)2 + 0(hq+1)N112 E (,1)2
 i=O [ Ei=O

 Using (26) on both factors above, this can be bounded by

 KIIEII2 + q+1/2)

 The other term in (51) is handled similarly. Now let us return to (50) and consider

 only the trickiest part:

 N-1 N-1

 h2 E DE o(,EDx+)i jj D+ DYEi,j.
 i=0 j=1

 Using the following formula

 DI' (fg) ,j = DI' fij 9gij + 1DI' ij * fij1

 this becomes

 N-1 N-1

 (54) h2 E E (Dyij)D'xVj+1 + (DFDyxfij)Ejj-j DyDy cij . ~~ L 01, 04',+ 0 0 13131 + -,
 i=0 j=1

 After an application of the formula

 Do8ei,j * D+ Dy ci,j = 2 D+ (Dy Ei,j )2,

 the first summand (the second will be examined below) in (54) becomes

 h2 N-1 N-1
 (55) Dxfij+,D+(Dy E,,j)

 i=o j=1

 Using Lemma 3, (55) becomes

 h2 N N-1 h N-1
 (56) 2 ZDxijj(Di'E,l1)2. (62 E E DDxij (Dy fi,j) E

 it=O j=l i=O
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 The other boundary term is zero since VPi,N = 0, and so DgPi,N = 0. Both of the
 terms in (56) can be bounded by KIIEII12,2, although the second term requires (53).

 We now return to the second factor of (54), which can be written as

 N-1 N-1

 h2 E EDy (D8D-`+i,j * i'j - 1) Dy fi,j
 j=2 i=O

 N-1

 + h2 EN D-2DoPiNA l _*_N 0 0 ~h
 i=O

 when Lemma 2.4 (summation by parts) is used (the j = 1 term is zero). Using the

 fact that *Ei,N-2 = -DY i,N- Dy Ei,N-1, both of the sums in the above expression
 can be bounded by KIIEII,2.

 Summarizing the results of this case, (39) can be bounded by

 K 12 0hI112 + )E11,2.
 Term (36) is handled in a similar way (easier because there are no boundary terms).

 Diffusion term.

 Term (40). One part of (40) is given below:

 N-1 N-1

 vh2 E Ej , * Dx eij.
 i=O j=1

 Using the periodicity in the x-direction, this is easily summed by parts twice to give

 N-1 N-1

 (57) vh2 Dx Dx Ejj ei,j.
 i=O j=1

 The other part of this term is

 N-1 N-1

 vh2 E Ej * D+Dy eij.
 i=O j=1

 Using the fact that qj,0 = 0 and Ei,N = 0, this can be summed by parts once to get:

 N-1 N

 (58) -vh2 Dy i,j * Dy ei,j.

 i=o j=1

 After a second summation by parts (the boundary terms are not zero in this case)
 this becomes:

 N-1 N-1

 (59) vh2 DE Dy Ejj * eij
 i=O j=i

 N-1

 (60) +vh E Dy Ei,l ei,o
 i=o

 N-1

 (61) -vh E DYEi,Nei,N
 i=O
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 628 THOMAS Y. HOU AND BRIAN T. R. WETTON

 The last two terms above will be handled similarly, so only (60) will be considered:

 N-1

 vh E Dy ijej,o
 i=o

 Using (47) and qj,0 = 0, it can be written as

 N-1 2 2 N-1 N-1
 (62) -v E Ei, ( Ei, + O(hq-l)) =_ E (,i )2 - O(hq-1) E EiS -

 i=O h2 h2 i=O ~~~~~~~~~i=o

 The first term in the right-hand side of the equation above and the equivalent term

 from (61) can be combined with (57) and (59) to give _11E112,2. The second term on
 the right-hand side of (62) can be bounded in absolute value by

 -N-1 2-1/2

 (63) 0(hq-1 )N112 ,: (6,E )2 < 0(hq-3/2) IE11e1,12i
 Li=o

 where (26) is used.

 Final term and summary.

 Term (41). This term can be bounded in absolute value by O(hq)llIE 112, which is
 bounded by 0(hq)IIE111,2 (use (25)).

 When the results from all of the terms above are combined (the lowest order

 coefficient for IIE111,2 is hq-3/2), we have the following:

 dt 1I,2 ?- vIIEI2,2 + KIIEI1,2 + 0(h IIIE111,2

 < 2BIlE111,2(hq-3/2 + 11111,2)

 or

 dtII E111,2 < B(hq-3/2 + IE111I,2).

 It is clear that B(T) can be chosen to be nondecreasing, so the proof of Lemma 2.3
 (stability) is complete. 0

 Dependence on the Reynold's number. In the above proof of Lemma 2.3

 (stability), the constant B(T) does not depend explicitly on v, and so the same is
 true for the factor C(T) in the statement of Theorem 2.1 (convergence). It seems
 then that the convergence properties of the scheme are independent of the Reynold's
 number. However, this statement is misleading because of the following argument:
 the constant C(T) does depend on the the exact solution, which can be expected to
 develop large gradients near the boundary as the Reynold's number increases.

 2.3. Other domains and boundary values. So far, the authors have re-

 stricted their attention to boundary conditions of the form b = 0 and &i /On = 0. The
 general boundary conditions considered in the section below are b and &f/6n given
 but not necessarily zero. This would allow the specification of general velocities on
 the boundary. A method of implementing these boundary conditions is given below.
 In order to prove convergence as before, the specified velocity at the boundary must
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 2~~~~~~~~

 (a) (b)

 FIG. 2. General domains (a) irregular periodic channel; (b) Annulus.

 be tangential to the boundary (this translates to b = constant on the boundary). In
 practice, complicated matching boundary conditions are often specified on an arti-

 ficial surface when the domain under consideration is unbounded (see, for instance,
 [1]). The convergence of such schemes is not addressed here.

 The authors also show how to perform calculations in any domain that can be

 conformally mapped into the original channel domain shown in Fig. 1. Two such

 domains, an irregular periodic channel, and an annulus are shown in Fig. 2. It will be
 shown that the convergence proofs of ?2.2 apply to the algorithm proposed for these
 domains.

 2.3.1. Nonhomogeneous boundary data. Consider flow in the periodic chan-
 nel, where

 b(x,O;t) = f(x) and (x,O;t) = g(x),

 and where f and g are given functions which could also depend on time. Similar
 conditions could be applied on the line y = 1. The computational boundary conditions

 for b are the exact conditions, fi,o = fi, so that the error e = - b is zero at the
 boundary as before. Taking a Taylor series for Oij, based at the point (ih, 0), and
 proceeding as in (9)-(10), we obtain a computational boundary condition of

 (64) - i,o = D+D_fi + h2 jj - ?gi - 2fi,

 in which the exact solution satisfies to first order. To prove convergence of the method
 using these boundary conditions, we proceed by showing consistency and stability as
 before. An approximate solution b can be constructed that satisfies this condition to
 high order as in Lemma 2.2 (consistency). To get the proof of Lemma 2.3 (stability),
 (53) must be satisfied. This means that the normal velocity at the boundary must
 be zero, which means f = constant. This restriction can be interpreted as follows:
 boundary conditions (14)-(15) and their generalizations to nonhomogeneous boundary
 data are appropriate only on a slip surface, where the vorticity created is only diffused,
 not convected, away from the boundary. Provided that the restriction f = constant
 is satisfied, Lemma 2.3 (stability) can be proved for the nonhomogeneous boundary
 conditions (64). Theorem 2.1 (convergence) follows from the stability lemma as in
 ?2.2. Actually, by taking into account the diffusion terms that reduce the error,
 we can also prove convergence for nonhomogeneous flow boundary conditions (f not
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 necessarily constant). In this case, the constant C in the statement of Theorem 2.1

 will have an explicit dependence on the viscosity v.

 2.3.2. Other domains. Suppose that a (x, y), f3(x, y) is a mapping of a domain

 Q. onto the periodic channel Q of Fig. 1 that is conformal, i.e.,

 (65) cax = By3 I ay =-,3x, Aa = A,3 = 0.

 For instance, if R = e2t, then the conformal mapping from the annulus Q3 of Fig. 2
 to the periodic channel is

 0 1
 a(x,y) =- + 1

 f(x, y) = logr

 where (r, 0) are the polar coordinates of (x, y). The above transformation comes by
 suitably scaling and rotating the analytic transformation log z. Let J denote the

 Jacobian of the general conformal transformation, which is always positive and given

 by

 (aaa a2 + a(2 =2 +2
 (ax,6ay) Y 3Z+'Z

 by using (65). We restrict our attention to domains for which the conformal trans-
 formation onto the periodic channel has a Jacobian that is not singular (J bounded
 and bounded away from zero). Under this restriction, we cannot directly consider
 unbounded domains. However, for computational purposes, the restriction to finite
 domains is not a serious one.

 A simple calculation using (65) shows that A = JA, where

 - 62 62

 6 a2 + p32

 Suppose that we want to solve the Navier-Stokes equations in the new domain Q,
 with boundary conditions b = 0 and ao/ln = 0 (more general conditions are handled
 as above). When these equations are transformed into the (a, f3) plane using the chain
 rule and (65), they become

 (66) Wt = J(-Uw,> - VWf + A<W),
 (67) JAi =-W

 (68) U = Oo,
 (69) =-+,>

 with boundary conditions

 (70) b=0, bf=0

 on the lines 3 = 0 and ,3 = 1 (conformal maps preserve Neumann boundary con-
 ditions). The equations (66)-(69) are defined in the periodic channel Q and can be
 discretized like (5)-(8) on a regular grid in a and ,B:

 (71) dt-j =Jjj( -ui , DOi,j- .ij*D3Ci,j+ hCij I

This content downloaded from 131.215.220.165 on Wed, 13 Jul 2016 01:56:32 UTC
All use subject to http://about.jstor.org/terms



 CONVERGENCE OF A FINITE DIFFERENCE VELOCITY SCHEME 631

 (72) Ji,JZhfij, =-wi,j,

 (73) ij= Dgb,jj
 (74) Vi,j =-Da ij

 where Ah = DID" + D3 D'3. The computational boundary conditions are

 (75) i,o= 0,

 (76) O 2Ji,o i

 where (76) is derived like (14) and is also first-order accurate. Boundary conditions

 at ,B = 1 are derived similarly. The following convergence result can be obtained,

 provided the exact solution of the Navier-Stokes equations is sufficiently smooth.

 THEOREM 2.5. The solutions of (71)-(74) with boundary conditions (75) and
 vorticity boundary conditions (76) converge uniformly to the exact solutions of the
 Navier-Stokes equations with second-order accuracy:

 II w-' loo < c(T)h2.

 Second-order convergence in the velocities can also be shown.
 Proof. An approximate solution can be constructed that satisfies the discrete

 boundary conditions and interior equations to a high order of accuracy as in Lemma 2.2

 (consistency). Equations (71)-(74), along with the specified boundary conditions,
 have the same structure as (5)-(8) and (14)-(15) but with smooth positive weights

 Jjj. It is the preservation of this structure under conformal mappings that allows
 Lemma 2.3 (stability) to be proved for these equations almost exactly as before. The-
 orem 2.5 follows from the stability lemma as before. 0

 3. Three-dimensional results. The vector form of the Navier-Stokes equa-

 tions in three dimensions written in vorticity, stream function formulation are

 (77) wt =-U * VW + * Vu + VAw,

 (78) AO -WI
 (79) u=VxO,

 where w, b, and u are now vector valued. The three terms on the right-hand side of
 (77) are called the convective, stretching, and dissipative terms, respectively. Compo-
 nents of the vectors will be written with superscripts. A solution is considered in the

 domain shown in Fig. 3, which is a generalization of the periodic channel considered
 in the two-dimensional case in which the flow is assumed to be periodic in the x- and

 z-directions. Boundary conditions of b = 0 and ao/ly = 0 are imposed on the upper
 and lower walls, which guarantees no-flow (v = 0) and no-slip (u, w = 0) boundary
 conditions on these surfaces. More general boundary conditions can be handled as in

 ?2.3.

 3.1. Discretization. Our three-dimensional scheme is a straightforward gener-

 alization of (5)-(8) in the two-dimensional case. Discrete variables +tPj k are defined
 at mesh points (ih, jh, kh) and the discrete vorticity is related to the discrete stream
 function through the relation

 (80) Wi,j,k = -Ahi,j,k.
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 (0,1,0)

 -( 1,1,~~~~~~(1)

 IY

 x
 z

 (0,0,0)

 (1.0,)

 (0,0, 1)

 FIG. 3. Three-dimensional channel.

 The velocities fiij,k are the centered difference approximations of V x 4, i.e.,

 (81) U,j,k = Dy44j,k- k etc.

 The discrete equations can now be written as

 (82) iw,j,k - -ii Dol& w~ ? ./hW,, dt 0 i,j ,j,k D U,j,k + ijj,k,
 where D' is equivalent to Df, etc., and summation on 3 is assumed.

 The question of boundary conditions remains. Periodic conditions in the x- and

 z-directions are assumed. On the surface y = 0, the following conditions are defined:

 (83) 4',0,k = 0

 (84) ,O,k =-2 -

 These boundary conditions are the discrete versions of 4 = 0 and O49/Oy = 0 (in
 vorticity form), respectively. Equation (84) is derived exactly like (10) in the two-
 dimensional case. Because of the addition of the vortex stretching term in the three-
 dimensional equations, values for the discrete velocities on the boundaries are needed.
 The following boundary conditions are also used:

 (85) Ui,o,k = 0.

 Boundary conditions similar to (83)-(85) are defined on the surface y = 1.

 3.2. Convergence analysis. Just as in the two-dimensional case, approximate

 solutions 4 are introduced which satisfy the equations (82) and boundary conditions
 (84) to a high order of accuracy as in Lemma 2.2 (consistency). These solutions are
 constructed in an analogous way to the two-dimensional ones (see the appendix). The
 discrete norms in ?2.2 are generalized to the three-dimensional setting:

 IlfI12 = h3 )2
 a=1 i,j,k
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 lif 11L2 = h3 E Z(D3 fiaj,k)2.
 a,13=1 i,j,k

 The error terms Etj,k and e9j,k are defined as in the two-dimensional case and the
 velocity error is written as

 (86) E,i,k = k- (Dobt,k ,- Doij,k), etc.
 In the discussion of boundary values in the appendix it is shown that

 (87) EiaO,k = (hq).

 The following formulas are equivalent to (26) and (23), respectively, from the two-

 dimensional analysis:

 (88) h (e,1,k)2 ? 1III1,
 i,k

 (89) Ilf lo < h-3/2 llf 112.

 The following convergence result can be obtained, provided the exact solution of the

 Navier-Stokes equations is sufficiently smooth.

 THEOREM 3.1. The solutions of (80)-(82) with boundary conditions (83) and

 (85) and vorticity boundary conditions (84) converge uniformly to the exact solutions
 of the Navier-Stokes equations with second-order accuracy:

 IIw -&IKlo ? C(T)h2.

 Second-order convergence in the velocities and first-order convergence in the boundary
 vorticity can also be shown.

 Proof. To prove Lemma 2.3 (stability) in the three-dimensional case, we proceed

 as before. The approximate solutions b satisfy the discrete equations (82) up to

 0(hq) as in Lemma 2.2 (consistency). Subtract this result from (82) and write out
 the difference as in (33)-(41). Multiply the result by h3ft and sum over the interior
 and a. The terms coming from the vorticity convection and dissipation are estimated
 as in the two-dimensional case. There are new terms coming from the vortex stretching

 which must be examined. The nonlinear terms are bounded by brute force as before.

 Representative linear terms are given below:

 N-1

 (90) h3 ZE e i, j Dkej ZE j,kj,k 0 i,j, k
 i,k j=1

 and

 N-1

 (91) h3 E E 4,i,k)i, j DOWEi,jk.
 i,k j=1

 By noting that e2 = k-he j k in the interior, the first term (90) can be bounded i,j,k 2msq

 by KIIeI11212 after summation by parts. The second term (91) requires a little more
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 634 THOMAS Y. HOU AND BRIAN T. R. WETTON

 work. After summation by parts in the y direction, this term becomes

 N-1

 -h 3 E E DoY(6;Jxki x)t
 i,k j=1

 --E 1kWiJ,1kElOk +-E 6N1 2N kklN,k- 2 2~1

 i,k i,k

 The first expression above can be bounded by KII EII12 since the error terms E are just
 divided differences of the error terms e in the interior. The other expressions above

 can be bounded by 0(hq+1/2)IIEI 1,2 using (87) and (88). Therefore, the analysis that
 led to Lemma 2.3 (stability) can be duplicated for the three-dimensional case. The

 convergence result, Theorem 3.1, follows from the stability lemma as in the two-
 dimensional case. O

 4. Summary. The authors have presented a rigorous convergence analysis for
 a finite difference approximation of the Navier-Stokes equations in two and three
 dimensions. The difference method considered is of the vorticity-stream function
 type and uses vorticity boundary conditions of creation type. The main ingredients
 in the proof are the use of approximate solutions that satisfy the discrete equations
 and boundary conditions to high-order accuracy and careful discrete energy estimates.
 Both of these techniques are most naturally used on a fixed, simple grid (hence our

 use of conformal mappings for general two-dimensional domains). An application
 of these techniques to a Lagrangean method such as Chorin's algorithm still seems

 difficult at this stage. However, we are hopeful that our analysis can be generalized to
 certain deterministic vortex methods, including vortex-in-cell methods. The general
 philosophy that comes from our analysis is that the linear stability of a proposed
 numerical scheme for the initial-boundary value problem is the crucial question: the
 nonlinear stability is free once the approximate solutions are constructed and the
 accuracy is determined by the accuracy of the interior scheme.

 Appendix. Proof of the consistency lemma. In this appendix, the approx-
 imate solutions +(x, y, t; h) that satisfy Lemma 2.2 (consistency) will be constructed.
 In order to do this, we proceed in a manner similar to Strang [18] and consider an
 expansion

 q-1

 (92) +(x, y, t; h) = EhP(P) (x, y, t).
 p=o

 The desired properties of b can be obtained by choosing the correct functions +P
 (they will depend only on the exact solution s). The procedure for determining +(P)
 will be outlined below.

 Boundary conditions. Since the condition 0i,o = 0 must be satisfied exactly,
 it is assumed that OW (x, 0) = 0 for all x and p. Similarly, (P) (x, 1) = 0. Also, all
 functions +(P) are assumed to be periodic in x. The normal boundary conditions for
 the functions +(P) must be chosen so that the condition in equation (17) is satisfied,
 keeping in mind that WL,O is given by (21) (this is needed to maintain the interior
 accuracy). It will be assumed that the functions +P are as smooth as necessary (this
 will be verified in a later section). First, consider the Taylor expansion of Wc2(x, 0) in
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 (21):

 N 2h 2 a+(,OOh2nf+2)
 (93) cZ (XI 0) = -DI' DY '(X, 0) - y 2h2 O2 2N22 h-. (2n ? 2)! 09y2nl+2 (XI 0) + O(h2+)

 n=0

 where N is such that 2N > q. A Taylor expansion for -j-iPh(x,,h) (using the fact that
 ?O(x, 0) = 0) is given by

 2 ~~2N+2 2~ '4
 (94) -2(- 0) = ! 2h n-2n (xI 0) + 0(h2N+l).

 - T2-O(XI n=1 n ,7-

 Subtracting the terms (93) and (94) above, we find that the even powers of h drop
 out and the following remains:

 (95) E 2h a V) (X 0) + 0(h 2Nf+1)
 $E (2n + 1)! ay2n+l (x )?O(2+)

 In order to satisfy (17), the above expression must be O(h-l), i.e.,

 N h2n-' 02n+l1'
 (96) (2 )! y2f+l (x) = (hq-1).

 The sum (92) is substituted into the above equation and the coefficients of powers of
 h are examined:

 h: +@ (x, 0),

 1: e (x,O),

 h: (x,0) + 63 (x,O),

 h: (r,) ) 1 3 p (X2))1 3 , ($'?)+)
 6 Oy ~ 5! ay5

 If the first q coefficients of powers of h given above were zero, then the condition (96)
 would be satisfied, and so the relationship given in (17) would be valid. To ensure
 that the coefficients above are zero, we impose the following for all x:

 (97) (x,O)=,

 (98) (XI o)=o,
 a (x.O)=0- , 3 (0 O

 0)) ____ j0)
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 1 32p(r-2) 1 O5op(r-4)
 (99) - (x,0)=-6 a (O)- 1 --- (X,0)-....

 Similar conditions can be obtained for the upper boundary. The formulas above give

 boundary conditions for the normal derivative of ?p(r) in terms of the derivatives of

 +O(P) on the boundary for p < r.

 A note on the order of the boundary conditions. At this point it is ap-

 propriate to discuss the question of the accuracy of the vorticity boundary condition.

 Recalling (20), we know that the vorticity at the boundary is given formally by

 .11 A .
 Wo =-T, i, + i,-1)

 and that the expansion of the vorticity on the boundary must satisfy

 .12 -
 Wi0Q =-2 i,

 to high-order accuracy as in (17). Comparing the two equations above, we see that

 they are equivalent if fi1 = 4Oij, or

 (100) 0i,l - Oi,-l = 0
 2h =0

 If we interpret (100) as a Taylor series approximation at the boundary, we see that

 it is a second-order approximation of the no-slip condition, &iI0/Oy = 0. Since the
 no-slip condition is the physical boundary condition of the problem and it is satisfied
 to second-order accuracy, we can expect second-order convergence in terms of the
 stream function. This observation was first made by Naughton [15].

 A subtle point which can be answered at this point is whether the boundary
 conditions for the velocity in the three-dimensional case (85) (which are satisfied
 exactly by the exact velocity) will also be satisfied to high accuracy by the approximate

 solutions 4. A priori there is no way to guarantee that the expansion for the stream
 function at the boundary will not introduce errors in the expressions for the boundary
 velocities. However, since the velocities are given by (81) and all three components
 of the stream function expansion will satisfy (100), we see that the expansions in the
 boundary conditions for the velocity and the vorticity are compatible. This discussion
 leads us to the result (87) used in ?3.2.

 Interior equations. In this section, we construct relationships between the func-
 tions +(P) so that (19) is satisfied. As in the previous section, the sum (92) is inserted
 into the expression (19), the finite differences are expanded in Taylor series, and the
 coefficients of the powers of h are set equal to zero. The resulting expressions which
 must be satisfied for all x, y, and t are:

 ) 1 (0: V)(0) + ? 4(0)AV)(0) + (0),

 (102) h: Y (102) h at _4'(O)AV)(1) + V)(O)M,1
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 _0(1)AV)(0) + OM1AO(0) + V'AA00),

 h2 a^A(2) = _+(o)AV(2) _ V)(2)&p(O)

 1 (a5+p(0) a5ip(0)8 t4A() 4+0)
 12 VOx4Oat ?p a4t) ?! 6+ xay

 ( 103) hr : aA^ br) - _,(r)A0 A,(r) - +(r) X(r) + v )(r)y(r)

 +1 5i(0) + f5V (r) +10 )0 4A00

 at -

 where u(r) , V(r) vX(r) y(r)X and f (r) are linear combinations of derivatives of +(P)
 with p < r. If the relationships above are satisfied, then the desired result (19) will
 be obtained. The relationships above and the boundary conditions in the previous
 section can be thought of as equations for +(P), which can be solved inductively: once

 o(0) is known, then the boundary values and terms in the equation for M(1) are known,
 and so we can solve for M(1), and so on.

 Properties of the solutions. Since the solution b should agree exactly with

 the exact solution Vb at t = 0 for all h, we give the following initial data for the terms

 +(0)b(x,y,O) = (x,y),
 +(P) (x, y, 0) =0 for p > 0,

 where -AL is the initial vorticity distribution. The equation (101), boundary con-

 ditions (97), and initial conditions (above) for OM and b are the same, so -M = 0.
 We assume that 4 is as smooth as required. It is clear from (98) and (102) and the

 initial conditions above that 0(1) 0. It can be shown inductively that 4'(P) 0 for
 all odd p. Now consider the equations (103) and boundary conditions (99) for 1p(r)
 for r even. These equations are linear and simple energy estimates (like those for the
 heat equation) show that +p(r) and its derivatives are bounded by the coefficients and
 nonhomogeneous terms in the equations for 7(r) which can inductively be bounded
 by the exact solution 4 and its derivatives. The solutions are smooth for t > 0, but
 the problem of showing smoothness of the solution up to the initial time is a delicate
 one, even for the heat equation [12]. Certain compatibility conditions on the initial
 data must be imposed. In the case of the Navier-Stokes equations and the equations

 for {(r), we can derive nonlocal compatibility conditions on the initial data in order
 for the solution to be smooth at t = 0. This is discussed below. Assuming that these
 conditions are met, the constructed expansion + has the desired properties, and the
 proof of Lemma 2.2 (consistency) is complete. D

 A remark on the smoothness of solutions of Navier-Stokes equations
 at t = 0. Consider the Navier-Stokes equations written in vorticity-stream function
 formulation (1)-(4) with no-slip and no-flow boundary conditions in the periodic
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 channel Q with initial data +(x, y, 0) = TJ(x, y). There is a hierarchy of compatibility

 conditions that T must satisfy if the solution b is to be smooth at t = 0:

 (1) Clearly, 1(x, 0) = 0, XI(x, 1) = 0, XJ'(x, 0) = 0, and I'(x, 1) = 0 to have a
 continuous solution b.

 (2) Let g(l) (x, y) = Pt (x, y, 0). By differentiating the no-flow and no-slip bound-

 ary conditions, obtain g(l) = gyl) = 0 on the boundary. From (1), we have

 (104) g(i) = -TY&XJ! + X!AX&Y + vAAM :-

 It appears that g(l) is overdetermined (both Dirichlet and Neumann boundary con-
 ditions for g(l) are given), so y(l) must be in the class of functions C for which (104)
 can be solved. In this case, the class C consists of all functions -y such that

 (105) jYu = O

 for all harmonic functions u in Q [21]. Assuming that the solvability condition is met,

 9(1) can be determined in terms of T.

 (3) Let g(2) (X, y) = O tt(x, y, 0). By differentiating the no-flow and no-slip bound-
 ary conditions twice, obtain g(2) = 9(2) = 0 on the boundary. Differentiating (1) with
 time, we have

 9g (2) - _bytLAXx -Xy'Abxt + bxtzAXy + xzbyt + i'A'Abt

 - g) g gx - ?) +g()Ay + XAg(?) +?AAg(1)
 =O(2)

 In order to satisfy both boundary conditions, y (2) must also be in C. This imposes a
 further restriction on I.

 There is also a hierarchy of compatibility conditions for 'I that come from the

 smoothness requirements for the functions +(P). These conditions are straightforward
 generalizations of the ones considered above.

 In principle, we would expect that smooth solutions will exist up to t = 0 if these

 compatibility conditions are satisfied, but the proof of such a theorem is a delicate
 issue and not the purpose of this paper. See the paper by Temam [19] for a proof
 of the sufficiency of nonlocal compatibility conditions for smoothness in the case of
 the Navier-Stokes equations written in primitive variables, velocity, and pressure.

 Heywood and Rannacker [11] describe what behaviour the solutions have as t goes to
 zero when these compatibility conditions are not met and show convergence of finite
 element approximations in this case. Naughton [15] shows convergence of a vorticity-
 stream function method in a linear one-dimensional model problem with incompatible
 initial data. For a general discussion of existence theorems for the Navier-Stokes

 equations, see the books by Temam [20] and Kreiss and Lorentz [12].
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