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Blowup or no blowup? The interplay between theory and numerics
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Abstract

The question of whether the 3D incompressible Euler equations can develop a finite time singularity from smooth initial data has been an
outstanding open problem in fluid dynamics and mathematics. Recent studies indicate that the local geometric regularity of vortex lines can lead
to dynamic depletion of vortex stretching. Guided by the local non-blowup theory, we have performed large scale computations of the 3D Euler
equations on some of the most promising blowup candidates. Our results show that there is tremendous dynamic depletion of vortex stretching. The
local geometric regularity of vortex lines and the anisotropic solution structure play an important role in depleting the nonlinearity dynamically
and thus prevents a finite time blowup.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The question of whether the 3D incompressible Euler
equations can develop a finite time singularity from smooth
initial data is one of the most outstanding open problems
in fluid dynamics and mathematics. This open problem is
closely related to the Clay Millennium Open Problem on
the 3D Navier–Stokes equations. The understanding of this
problem could improve our understanding on the onset of
turbulence and the intermittency properties of turbulent flows.
A main difficulty in answering this question is the presence of
vortex stretching, which gives a formal quadratic nonlinearity
in vorticity. There have been many computational efforts in
searching for finite time singularities of the 3D Euler equations,
see e.g. [2–5,11–13,17,18,21–23]. For a more comprehensive
review of this subject, we refer the reader to the book by Majda
and Bertozzi [20] and the excellent review article by J. Gibbon
in this issue [10].

Computing Euler singularities numerically is an extremely
challenging task. First of all, it requires huge computational
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resources. Tremendous resolutions are required to capture the
nearly singular behavior of the Euler equations. Secondly, one
has to perform a careful convergence study. It is dangerous to
interpret the blowup of an under-resolved computation as an
evidence of finite time singularities for the 3D Euler equations.
Thirdly, if we believe that the numerical solution we compute
leads to a finite time blowup, we need to demonstrate the
validation of the asymptotic blowup rate, i.e. is the blowup
rate ‖ω‖L∞ ≈

C
(T −t)α asymptotically valid as t → T ?

One also needs to check if the blowup rate of the numerical
solution is consistent with the Beale–Kato–Majda non-blowup
criterion [1] and other non-blowup criteria [7–9]. The interplay
between theory and numerics is clearly essential in our search
for Euler singularities.

There has been some interesting development in the
theoretical understanding of the 3D incompressible Euler
equations. It has been shown that the local geometric regularity
of vortex lines can play an important role in depleting
nonlinear vortex stretching [6–9]. In particular, the recent
results obtained by Deng, Hou, and Yu [8,9] show that
geometric regularity of vortex lines, even in an extremely
localized region containing the maximum vorticity, can lead
to depletion of nonlinear vortex stretching, thus avoiding finite
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time singularity formation of the 3D Euler equations. To obtain
these results, Deng–Hou–Yu [8,9] explore the connection
between the stretching of local vortex lines and the growth
of vorticity. In particular, they show that if the vortex lines
near the region of maximum vorticity satisfy some local
geometric regularity conditions and the maximum velocity
field is integrable in time, then no finite time blowup is
possible. These localized non-blowup criteria provide stronger
constraints on the local geometry of a potential finite time
singularity. They can be used to re-examine some of the well-
known numerical evidences for finite time singularities of the
3D Euler equations.

2. A brief review

We begin with a brief review on the subject. Due to the
formal quadratic nonlinearity in vortex stretching, only short
time existence is known for the 3D Euler equations. One of
the most well-known results on the 3D Euler equations is due
to Beale–Kato–Majda [1] who show that the solution of the 3D
Euler equations blows up at T ∗ if and only if

∫ T ∗

0 ‖ω‖∞(t) dt =

∞, where ω is vorticity.
There have been some interesting recent theoretical

developments. In particular, Constantin–Fefferman–Majda [7]
show that local geometric regularity of the unit vorticity vector
can lead to depletion of the vortex stretching. Let ξ = ω/|ω|

be the unit vorticity vector and u be the velocity field. Roughly
speaking, Constantin–Fefferman–Majda show that if (1) ‖u‖∞

is bounded in a O(1) region containing the maximum vorticity.
(2)

∫ t
0 ‖∇ξ‖

2
∞dτ is uniformly bounded for t < T , then the

solution of the 3D Euler equations remains regular up to t = T .
There have been some numerical evidences which suggest a

finite time blowup of the 3D Euler equations. One of the most
well-known examples is the finite time collapse of two anti-
parallel vortex tubes by Kerr [17,18]. In Kerr’s computations,
he used a pseudo-spectral discretization in the x and y
directions, and a Chebyshev discretization in the z direction
with resolution of order 512 × 256 × 192. His computations
showed that the maximum vorticity blows up like O((T − t)−1)

with T = 18.9. In his subsequent paper [18], Kerr showed that
the maximum velocity blows up like O((T − t)−1/2) with T
being revised to T = 18.7. It is worth noting that there is still
a considerable gap between the predicted singularity time T =

18.7 and the final time t = 17 of Kerr’s computations which he
used as the primary evidence for the finite time singularity.

Kerr’s blowup scenario is consistent with the Beale–Kato–
Majda non-blowup criterion [1] and the Constantin–Fefferman–
Majda non-blowup criterion [7]. But it falls into the critical case
of the Deng–Hou–Yu local non-blowup criteria [8,9]. Below we
describe the local non-blowup criteria of Deng–Hou–Yu.

3. The local non-blowup criteria of Deng–Hou–Yu [8,9]

Motivated by the result of [7], Deng, Hou, and Yu [8] have
obtained a sharper non-blowup condition which uses only very
localized information of the vortex lines. Assume that at each
time t there exists some vortex line segment L t on which the
local maximum vorticity is comparable to the global maximum
vorticity. Further, we denote L(t) as the arclength of L t , n the
unit normal vector of L t , and κ the curvature of L t .

Theorem 1 (Deng–Hou–Yu [8], 2005). Assume that (1)

maxL t (|u · ξ | + |u · n|) ≤ CU (T − t)−A with A < 1,
and (2) CL(T − t)B

≤ L(t) ≤ C0/ maxL t (|κ|, |∇ · ξ |) for
0 ≤ t < T . Then the solution of the 3D Euler equations remains
regular up to t = T if A + B < 1.

In Kerr’s computations, the first condition of Theorem 1 is
satisfied with A = 1/2 if we use ‖u‖∞ ≤ C(T − t)−1/2 as
alleged in [18]. Kerr’s computations suggested that κ and ∇ · ξ

are bounded by O((T − t)−1/2) in the inner region of size
(T − t)1/2

× (T − t)1/2
× (T − t) [18]. Moreover, the length of

the vortex tube in the inner region is of order (T − t)1/2. If we
choose a vortex line segment of length (T −t)1/2 (i.e. B = 1/2),
then the second condition is satisfied. However, we violate the
condition A + B < 1. Thus Kerr’s computations fall into
the critical case of Theorem 1. In a subsequent paper [9],
Deng–Hou–Yu improved the non-blowup condition to include
the critical case, A + B = 1.

Theorem 2 (Deng–Hou–Yu [9], 2006). Under the same
assumptions as Theorem 1, in the case of A + B = 1, the
solution of the 3D Euler equations remains regular up to t = T
if the scaling constants CU , CL and C0 satisfy an algebraic
inequality, f (CU , CL , C0) > 0.

We remark that this algebraic inequality can be checked
numerically if we obtain a good estimate of these scaling
constants. For example, if C0 = 0.1, which seems reasonable
since the vortex lines are relatively straight in the inner region,
Theorem 2 would imply no blowup up to T if 2CU < 0.43CL .
Unfortunately, there was no estimate available for these scaling
constants in [17]. One of our original motivations to repeat
Kerr’s computations using higher resolutions was to obtain a
good estimate for these scaling constants.

4. The high resolution 3D Euler computations of Hou and
Li [14,15]

In [14,15], we repeat Kerr’s computations using two pseudo-
spectral methods. The first pseudo-spectral method uses the
standard 2/3 dealiasing rule to remove the aliasing error.
For the second pseudo-spectral method, we use a novel 36th
order Fourier smoothing to remove the aliasing error. For the
Fourier smoothing method, we use a Fourier smoother along the
x j direction as follows: ρ(2k j/N j ) ≡ exp(−36(2k j/N j )

36),
where k j is the wave number (|k j | ≤ N j/2). The time
integration is performed by using the classical fourth order
Runge–Kutta scheme. Adaptive time stepping is used to satisfy
the CFL stability condition with CFL number equal to π/4. In
order to perform a careful resolution study, we use a sequence
of resolutions: 768 × 512 × 1536, 1024 × 768 × 2048 and
1536 × 1024 × 3072 in our computations. We compute the
solution up to t = 19, beyond the alleged singularity time T =

18.7 by Kerr [18]. Our computations were performed using
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256 parallel processors with maximal memory consumption
120 Gb. The largest number of grid points is close to 5 billions.

As a first step, we demonstrate that the two pseudo-spectral
methods can be used to compute a singular solution arbitrarily
close to the singularity time. For this purpose, we perform a
careful convergence study of the two pseudo-spectral methods
in both physical and spectral spaces for the 1D inviscid Burgers
equation. The advantage of using the inviscid 1D Burgers
equation is that it shares some essential difficulties as the 3D
Euler equations, yet we have a semi-analytic formulation for
its solution. By using the Newton iterative method, we can
obtain an approximate solution to the exact solution up to 13
digits of accuracy. Moreover, we know exactly when a shock
singularity will form in time. This enables us to perform a
careful convergence study in both the physical space and the
spectral space very close to the singularity time.

We have performed a sequence of resolution study with
the largest resolution being N = 16, 384 [15]. Our extensive
numerical results demonstrate that the pseudo-spectral method
with the high order Fourier smoothing (the Fourier smoothing
method for short) gives a much more accurate approximation
than the pseudo-spectral method with the 2/3 dealiasing rule
(the 2/3 dealiasing method for short). One of the interesting
observations is that the unfiltered high frequency coefficients
in the Fourier smoothing method approximate accurately the
corresponding exact Fourier coefficients. Moreover, we observe
that the Fourier smoothing method captures about 12 ∼

15% more effective Fourier modes than the 2/3 dealiasing
method in each dimension, see Fig. 1. The gain is even higher
for the 3D Euler equations since the number of effective
modes in the Fourier smoothing method is higher in three
dimensions. Further, we find that the error produced by the
Fourier smoothing method is highly localized near the region
where the solution is most singular. In fact, the pointwise error
decays exponentially fast away from the location of the shock
singularities. On the other hand, the error produced by the
2/3 dealiasing method spreads out to the entire domain as we
approach the singularity time, see Fig. 2.

Next, we present our high resolution computations for the
two anti-parallel vortex tubes [14]. We used the same initial
condition whose analytic formula was given by Kerr (see
Section III of [17], and also [14] for corrections of some typos
in the description of the initial condition in [17]). However,
there is some difference between our discretization and
Kerr’s discretization. We used a pseudo-spectral discretization
in all three directions, while Kerr used a pseudo-spectral
discretization only in the x and y directions and used a
Chebyshev discretization in the z direction. Based on the results
of early tests, positive vorticity in the symmetry plane was
imposed in the initial condition of Kerr [17]. How this was
imposed as the vorticity field was mapped onto the Chebyshev
mesh was not documented by Kerr [17]. This has led to some
ambiguity in reproducing that initial condition which is being
resolved by Kerr’s group (private communication).

We first illustrate the dynamic evolution of the vortex tubes.
In Figs. 4 and 5, we plot the isosurface of the 3D vortex tubes at
t = 0 and t = 6 respectively. As we can see, the two initial
Fig. 1. Spectra comparison on different resolutions at a sequence of moments.
The additional modes that kept the Fourier smoothing method higher than the
2/3rd dealiasing method are in fact correct. The initial condition is u0(x) =

sin(x). The singularity time for this initial condition is T = 1.

Fig. 2. Pointwise errors of the two pseudo-spectral methods as functions of
time using different resolutions. The plot is in a log scale. The error of the 2/3rd
dealiasing method (the top curve) is highly oscillatory and spreads out over the
entire domain, while the error of the Fourier smoothing method (the bottom
curve) is highly localized near the location of the shock singularity.

vortex tubes are very smooth and relatively symmetric. Due
to the mutual attraction of the two anti-parallel vortex tubes,
the two vortex tubes approach each other and become flattened
dynamically. By time t = 6, there is already a significant
flattening near the center of the tubes. In Fig. 6, we plot the
local 3D vortex structure of the upper vortex tube at t = 17.
By this time, the 3D vortex tube has essentially turned into a
thin vortex sheet with rapidly decreasing thickness. The vortex
lines become relatively straight. The vortex sheet rolls up near
the left edge of the sheet.

We would like to make a few important observations. First of
all, the maximum vorticity at later stage of the computation is
actually located near the rolled-up region of the vortex sheet
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Fig. 3. The energy spectra vs wave numbers. The dashed lines and dash-dotted
lines are the energy spectra with the resolution 1024 × 768 × 2048 using the
2/3 dealiasing rule and the Fourier smoothing, respectively. The times for the
spectra lines are at t = 15, 16, 17, 18, 19 respectively.

Fig. 4. The 3D view of the vortex tube at t = 0.

and moves away from the bottom of the vortex sheet. Thus
the mechanism of strong compression between the two vortex
tubes becomes weaker dynamically at later time. Secondly, the
location of maximum strain and that of maximum vorticity
separate as time increases. Thirdly, the relatively “strong”
growth of the maximum velocity between t = 15 and t = 17
becomes saturated after t = 17 when the location of maximum
vorticity moves to the rolled-up region, see Fig. 7. All these
factors contribute to the dynamic depletion of vortex stretching.
The origin of this behavior need to be analyzed in the future
study.

We have performed a convergence study for the two
numerical methods using a sequence of resolutions. For the
Fourier smoothing method, we use the resolutions 768 × 512 ×

1536, 1024×768×2048, and 1536×1024×3072 respectively.
Except for the computation on the largest resolution 1536 ×

1024×3072, all computations are carried out from t = 0 to t =

19. The computation on the final resolution 1536×1024×3072
is started from t = 10 with the initial condition given by the
computation with the resolution 1024×768×2048. For the 2/3
dealiasing method, we use the resolutions 512 × 384 × 1024,
Fig. 5. The 3D view of the vortex tube at t = 6.

Fig. 6. The local 3D vortex structures and vortex lines around the maximum
vorticity at t = 17.

Fig. 7. Maximum velocity ‖u‖∞ in time using three different resolutions.

768 × 512 × 1536 and 1024 × 768 × 2048 respectively. The
computations using these three resolutions are all carried out
from t = 0 to t = 19. See [14,15] for more details.

In Fig. 3, we compare the Fourier spectra of the energy
obtained by using the 2/3 dealiasing method with those
obtained by the Fourier smoothing method. For a fixed
resolution 1024×768×2048, we can see that the Fourier spectra
obtained by the Fourier smoothing method retain more effective
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Fourier modes than those obtained by the 2/3 dealiasing
method. This can be seen by comparing the results with the
corresponding computations using a higher resolution 1536 ×

1024 × 3072 (the solid lines). Moreover, the Fourier smoothing
method does not give the spurious oscillations in the Fourier
spectra. In comparison, the Fourier spectra obtained by the 2/3
dealiasing method produce some spurious oscillations near the
2/3 cut-off point. We would like to emphasize that our Fourier
smoothing method conserves the total energy extremely well,
at least up to six digits of accuracy. More studies including the
convergence of the enstrophy spectra can be found in [14,15].

It is worth emphasizing that a significant portion of those
Fourier modes beyond the 2/3 cut-off position are still accurate
for the Fourier smoothing method. This portion of the Fourier
modes that go beyond the 2/3 cut-off point is about 12 ∼

15% of total number of modes in each dimension. For 3D
problems, the total number of effective modes in the Fourier
smoothing method is about 20% more than that in the 2/3
dealiasing method. For our largest resolution, we have about
4.8 billions unknowns. An increase of 20% effective Fourier
modes represents a very significant increase in the resolution
for a large scale computation.

5. Dynamics depletion of vortex stretching

In this section, we present some convincing numerical
evidences which show that there is a strong dynamic depletion
of vortex stretching due to local geometric regularity of the
vortex lines. We first present the result on the growth of the
maximum velocity in time, see Fig. 7. The growth rate of
the maximum velocity plays a critical role in the non-blowup
criteria of Deng–Hou–Yu [8,9]. As we can see from Fig. 7,
the maximum velocity remains bounded up to t = 19. This
is in contrast with the claim in [18] that the maximum velocity
blows up like O((T − t)−1/2) with T = 18.7. We note that
the velocity field is smoother than the vorticity field. Thus it
is easier to resolve the velocity field than the vorticity field.
We observe an excellent agreement between the maximum
velocity fields computed by the two largest resolutions. Since
the velocity field is bounded, the first condition of Theorem 1
is satisfied by taking A = 0. Furthermore, since both ∇ · ξ and
κ are bounded by O((T − t)−1/2) in the inner region of size
(T − t)1/2

× (T − t)1/2
× (T − t) [18], the second condition of

Theorem 1 is satisfied with B = 1/2 by taking a segment of the
vortex line with length (T − t)1/2 within this inner region. Thus
Theorem 1 can be applied to our computation, which implies
that the solution of the 3D Euler equations remains smooth at
least up to T = 19.

We also study the maximum vorticity as a function of time.
The maximum vorticity is found to increase rapidly from the
initial value of 0.669 to 23.46 at the final time t = 19, a factor
of 35 increase from its initial value. Our computations show
no sign of finite time blowup of the 3D Euler equations up to
T = 19, beyond the singularity time predicted by Kerr. The
maximum vorticity computed by resolution 1024 × 768 × 2048
agrees very well with that computed by resolution 1536 ×

1024 × 3072 up to t = 17.5. There is some mild disagreement
Fig. 8. Study of the vortex stretching term in time, resolution 1536 × 1024 ×

3072. The fact |ξ · ∇u · ω| ≤ c1|ω| log |ω| plus D
Dt |ω| = ξ · ∇u · ω implies |ω|

bounded by doubly exponential..

Fig. 9. The plot of log log ‖ω‖∞ vs time, resolution 1536 × 1024 × 3072.

toward the end of the computation. This indicates that a very
high space resolution is needed to capture the rapid growth of
maximum vorticity at the final stage of the computation.

In order to understand the nature of the dynamic growth in
vorticity, we examine the degree of nonlinearity in the vortex
stretching term. In Fig. 8, we plot the quantity, ‖ξ · ∇u · ω‖∞,
as a function of time. If the maximum vorticity indeed blew up
like O((T − t)−1), as alleged in [17], this quantity should have
been quadratic as a function of maximum vorticity. We find that
there is tremendous cancellation in this vortex stretching term.
It actually grows slower than C‖Eω‖∞ log(‖Eω‖∞), see Fig. 8. It
is easy to show that ‖ξ ·∇u ·ω‖∞ ≤ C‖Eω‖∞ log(‖Eω‖∞) would
imply at most doubly exponential growth in the maximum
vorticity. Indeed, as demonstrated by Fig. 9, the maximum
vorticity does not grow faster than doubly exponential in time.
We have also generated the similar plot by extracting the data
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Fig. 10. The energy spectra for velocity at t = 15, 16, 17, 18, 19 (from bottom
to top) in log–log scale. The dashed line corresponds to k−3.

from Kerr’s paper [17]. We find that log(log(‖ω‖∞)) basically
scales linearly with respect to t from 14 ≤ t ≤ 17.5 when
his computations are still reasonably resolved. This implies that
the maximum vorticity up to t = 17.5 in Kerr’s computations
does not grow faster than doubly exponential in time. This is
consistent with our conclusion.

We study the decay rate in the energy spectrum in Fig. 10
at t = 16, 17, 18, 19. A finite time blowup of enstrophy would
imply that the energy spectrum decays no faster than |k|

−3. Our
computations show that the energy spectrum approaches |k|

−3

for |k| ≤ 100 as time increases to t = 19. This is in qualitative
agreement with Kerr’s results. Note that there are only less than
100 modes available along the |kx | or |ky | direction in Kerr’s
computations, see Fig. 18 (a)–(b) of [17]. On the other hand, our
computations show that the high frequency Fourier spectrum
for 100 ≤ |k| ≤ 1300 decays much faster than |k|

−3, as one
can see from Fig. 10. This indicates that there is no blowup in
enstrophy.

It is interesting to ask how the vorticity vector aligns with the
eigenvectors of the deformation tensor. Recall that the vorticity
equations can be written as [20]

∂

∂t
ω + (u · ∇)ω = S · ω, S =

1
2
(∇u + ∇

T u). (1)

Let λ1 < λ2 < λ3 be the three eigenvalues of S. The
incompressibility condition implies that λ1 + λ2 + λ3 = 0. If
the vorticity vector aligns with the eigenvector corresponding to
λ3, which gives the maximum rate of stretching, then it is very
likely that the 3D Euler equations would blow up in a finite
time.

In Table 1, we document the alignment information of the
vorticity vector around the point of maximum vorticity with
resolution 1536 × 1024 × 3072. In this table, θi is the angle
between the i-th eigenvector of S and the vorticity vector. One
can see clearly that for 16 ≤ t ≤ 19 the vorticity vector at the
point of maximum vorticity is almost perfectly aligned with the
second eigenvector of S. Note that the second eigenvalue, λ2,
Table 1
The alignment of the vorticity vector and the eigenvectors of S around the point
of maximum vorticity with resolution 1536 × 1024 × 3072

Time |ω| λ1 θ1 λ2 θ2 λ3 θ3

16.012 5.628 −1.508 89.992 0.206 0.007 1.302 89.998
16.515 7.016 −1.864 89.995 0.232 0.010 1.631 89.990
17.013 8.910 −2.322 89.998 0.254 0.006 2.066 89.993
17.515 11.430 −2.630 89.969 0.224 0.085 2.415 89.920
18.011 14.890 −3.625 89.969 0.257 0.036 3.378 89.979
18.516 19.130 −4.501 89.966 0.246 0.036 4.274 89.984
19.014 23.590 −5.477 89.966 0.247 0.034 5.258 89.994

Here, θi is the angle between the i th eigenvector of S and the vorticity vector.

is positive and is about 20 times smaller in magnitude than the
largest and the smallest eigenvalues. Although the alignment
of the vorticity vector with the second eigenvector of the
deformation tensor does not rule out a finite time blowup, this
alignment is another indication that there is a strong dynamic
depletion of vortex stretching.

6. The Kida–Pelz high-symmetry data

Another well-known numerical evidence for finite time
Euler singularities is the Kida–Pelz high-symmetry initial data
[3,19]. Some people have argued that the singular solution of
the 3D Euler equations, if it exists, could be very unstable. A
highly symmetric initial condition may have a better chance
to produce a finite time singularity. It is also believed that
a computer code needs to build in this symmetry property
explicitly in order to capture the potentially unstable singular
solution. This consideration motivated Boratav and Pelz to
perform numerical simulations using a high-symmetry initial
condition for the Navier–Stokes equations in [3].

The initial condition that Boratav and Pelz used [3] has
the rotational symmetry and the permutation symmetry, which
was first introduced by Kida [19]. Their simulations suggested
a possible finite time blowup of the maximum vorticity in
the limit of infinite Reynolds numbers. However, as they
realized later, their simulations were under-resolved at later
times when the solution became nearly singular. The vortex
structure near the region of maximum vorticity motivated Pelz
to construct a vortex filament model to understand this singular
behavior. In [21], Pelz presented some numerical evidences
which suggest that his filament model develop a self-similar
blowup in a finite time. It is interesting to note that Pelz’s
self singular solution also falls into the critical case of the
Deng–Hou–Yu local non-blowup criteria (see Theorem 2). To
understand if the same initial condition that led to a finite time
blowup in Pelz’s filament model would lead to a finite time
blowup of the full 3D Euler equations, we decide to repeat
Pelz’s computations.

Pelz’s original filament model was designed for the entire
free space. To perform the numerical simulation of the 3D
Euler equations in the free space R3 is very expensive. As
a first step, we derive a corresponding periodic filament
model. The periodic filament model involves an infinite sum
over all the periodic images of the Biot–Savart kernel. This
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Fig. 11. The validity check of singularity fitting using the asymptotic
expression ‖u‖∞ =

C√
tcrit−t . The figure shows tcrit as a function of the

computational steps, with tcrit → 0.0257874. Adaptive time stepping is used
with the time step chosen to be proportional to the inverse of ‖u‖∞.

Fig. 12. The locations of the filaments at the end of our computation. The figure
gives a closeup view of the filaments around the origin.

makes the computation of the periodic filament kernel more
expensive than the one over the free space. To reduce the
computational cost, we apply the Ewald summation formula,
which significantly reduces the computational cost.

We solve the periodic filament model using an initial
condition which is qualitatively the same as the one used
by Pelz [21]. Our numerical computations show that the
periodic filament model indeed develops a finite time self-
similar singularity around t = 0.0257874, see Figs. 11 and 12.
However, when we use the same initial condition to solve the
full 3D Euler equations, we find that the solution of the 3D
Euler equations has a completely different behavior from that
of the filament model. We observe no finite time singularity
for the 3D Euler equations using the same initial condition.
We use a sequence of space resolutions with the two largest
resolutions being 10243 and 20483. More than 100Gb memory
is used in our computation on the 20483 computations. As we
can see from Figs. 13 and 14, the growth of maximum vorticity
Fig. 13. Maximum vorticity in time of the full Euler equations with two
resolutions: 10243 (dashed line) vs N = 20484 (solid line).

Fig. 14. Maximum velocity in time of the full Euler equations with resolution:
10243. The maximum velocity seems to saturate at a later time.

in time is very mild. The maximum velocity is bounded and
becomes saturated around t = 0.0325. The 3D isosurface of the
vortex tubes at t = 0.03 plotted in Fig. 15 also shows that the
vortex tubes remain quite regular. We remark that Grauer and
his coworkers have recently carried out the full Euler simulation
using a simplified Pelz’s high-symmetry initial condition which
consists of 12 straight parallel bars [13]. They find that the
vortex tubes become severely flattened as they approach each
other and the growth of maximum vorticity is only exponential
in time.

Finally, we remark that we have repeated Boratav’s
and Pelz’s Navier–Stokes computations [3] using the same
initial condition, building both the rotational and permutation
symmetries of the solution explicitly into our code. Our
resolution study shows that their computations are resolved
only up to t = 1.6 when the growth of the maximum vorticity
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Fig. 15. The 50% isosurface of | Eω| at t = 0.03. Full 3D Euler equations.

is only exponential in time. The nearly singular growth of
maximum vorticity around t = 2.06 seems due to under-
resolution.

7. Concluding remarks

Our analysis and computations reveal a subtle dynamic
depletion of vortex stretching. Sufficient numerical resolution is
essential in capturing this dynamic depletion. Our computations
for the two anti-parallel vortex tubes’ initial data and the high-
symmetry initial data show that the velocity is bounded and that
the vortex stretching term is bounded by C‖ω‖L∞ log(‖ω‖L∞).
It is natural to ask if is this dynamic depletion generic? and what
is the driving mechanism for this depletion of vortex stretching?
Some exciting progress has been made recently in analyzing the
dynamic depletion of vortex stretching and nonlinear stability
for 3D axisymmetric flows with swirl [16]. The local geometric
structure of the solution near the region of maximum vorticity
and the anisotropic scaling of the support of maximum vorticity
seem to play a key role in the dynamic depletion of vortex
stretching.
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