
J Sci Comput (2016) 69:556–580
DOI 10.1007/s10915-016-0215-8

An Accelerated Method for Nonlinear Elliptic PDE

Hayden Schaeffer1 · Thomas Y. Hou2

Received: 29 September 2015 / Revised: 5 April 2016 / Accepted: 27 April 2016 /
Published online: 12 May 2016
© Springer Science+Business Media New York 2016

Abstract We propose two numerical methods for accelerating the convergence of the
standard fixed point method associated with a nonlinear and/or degenerate elliptic partial
differential equation. The first method is linearly stable, while the second is provably con-
vergent in the viscosity solution sense. In practice, the methods converge at a nearly linear
complexity in terms of the number of iterations required for convergence. The methods are
easy to implement and do not require the construction or approximation of the Jacobian.
Numerical examples are shown for Bellman’s equation, Isaacs’ equation, Pucci’s equations,
the Monge–Ampère equation, a variant of the infinity Laplacian, and a system of nonlinear
equations.

Keywords Nonlinear elliptic PDE · Degenerate elliptic PDE · Accelerated convergence ·
Elliptic systems · Finite difference methods · Viscosity solutions · Fixed point methods

Mathematics Subject Classification 65B05 · 65N06 · 65M22 · 49L25 · 35J60 · 35B51 ·
35J70

1 Introduction

Nonlinear and degenerate elliptic partial differential equations arise in many fields of mathe-
matics, engineering, and science. In astrophysics, differential geometry, fluid dynamics, and
imaging science nonlinear models typically provide better mathematical models to a wider
range of phenomena; however, they can be challenging to analyze and simulate. In particular,
even when it is possible to construct a convergent numerical approximation, it can be com-
putational expensive to solve in practice. Therefore, many of the recent works in numerical

B Hayden Schaeffer
schaeffer@cmu.edu

1 Carnegie Mellon University, Pittsburgh, PA, USA

2 California Institute of Technology, Pasadena, CA 91125, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-016-0215-8&domain=pdf

J Sci Comput (2016) 69:556–580 557

methods for nonlinear PDE focus on the construction of convergent and/or efficient schemes
[1–22].

In this work, we are concerned with second order elliptic operators, which can be written
in the form of H(u) = H(x, u, Du, D2u). They can be nonlinear and/or degenerate ellip-
tic operators, but for simplicity we will refer to this general class as elliptic. The analytic
framework for the well-posedness of such equations tend to rely on the theory of viscosity
solutions. A function H is (degenerate) elliptic if H(x, r, p, X) ≤ H(x, s, p, Y) whenever
r ≤ s and Y − X is positive semi-definite. Numerical schemes for elliptic problems converge
to the correct viscosity solution provided they satisfy a discrete comparison principle (typi-
cally in the form of monotonicity) along with a uniform bound and consistency [23]. In some
recent works [24,25], finite difference stencils are constructed using the theory of viscosity
solutions in order to guarantee convergences to the correct solution. The discretization results
in a system of nonlinear algebraic equations that may only be Lipschitz continuous; therefore,
convergent implicit methods may be difficult and many times not possible to construct.

When applicable, Newton-basedmethods are preferred, since in the ideal case, themethod
can converge superlinearly. They have been successfully applied to nonlinear elliptic prob-
lems, for example in the works of [6,14,15,26]. However, the use of Newton-based methods
require problem specific adaptation and are not directly applicable. In [26], the convergence
of Newton’s method for the Monge–Ampère equation is shown in the continuous setting,
but not in the discrete sense. For non-monotone discretizations of second order nonlinear
elliptic PDE, Newton’s method can become unstable [15]. In [14], the use of monotone sten-
cils results in a non-differentiable discrete scheme, and thus a degenerate Jacobian, which
requires some regularization to ensure the convergence of Newton’s method. Preconditioning
was also used to avoid ill-conditioning of the problem for singular examples. As explained
in [8], the convergence of Newton’s method for nonlinear elliptic PDE found in [22] requires
a good initial guess; however, the construction of an initial guess is not clear. In [27], it
was stated that for numerical solutions to non-smooth examples, time marching methods are
preferred over Newton’s method.

Unlike Newton-based methods, for a general nonlinear equation, the standard discrete
fixed point iteration will converge to the correct solution given very mild conditions. The
standard discrete fixed point iteration is equivalent to embedding the elliptic equation into a
parabolic equation:

∂t u(x, t) = −H(u(x, t))

u(x, 0) = u0

where (formally) u(x, t) → u∗(x) as t → ∞ and u∗ is the unique steady state solution, that
is H(u∗) = 0. Since the goal is to find the steady state of the time dependent solution u(x, t)
and not temporal accuracy, the forward Euler method is preferred. Typically, the time it takes
to reach steady state follows an algebraic decay rate: ||u(x, t) − u∗(x)|| = O(t−p), where
p is a constant that depends on the problem. To reach time t with a fixed time step τ > 0
requires n iterations satisfying t = τn. For second order equations, stability requires that the
time step τ = O(h2), where h > 0 is the grid size. Therefore, to reach an error of ε requires
n = O(h−2 ε−p) iterations, which becomes increasingly worse as the grid is refined.

The standard fixed point iteration is also closely related to the gradient descent method
used throughout the field of optimization. The gradient descent method is used to minimize
a convex functional F(u) by descending in the negative direction of its first variation, i.e. the
gradient flow

∂t u(x, t) = −∇u F(u(x, t)).

123

558 J Sci Comput (2016) 69:556–580

The method is easy to implement and is convergent; however, it suffers from a slow con-
vergence rate. In terms of the functional, the gradient descent method decreases the energy
as:

F(u(−, t)) − F(u∗) = O(t−1).

To accelerate convergence towards the minimizer, several new methods have been proposed,
which are related to the work of [28]. By extrapolating forward using previous iterations, the
accelerated gradient descent method in [28] has the optimal convergence rate of

F(u(−, t)) − F(u∗) = O(t−2)

for any convex minimization problem whose first variation is Lipschitz.
Inspired by the technique in [28,29], we construct an extrapolationmethod that is shown in

practice to dramatically accelerate fixed point methods for elliptic PDEs. Unlike the work in
optimization, we assume that H is a nonlinear elliptic operator but do not assume a variational
structure to the PDE, i.e. H may not be the first variation of a functional. Also, unlike the
Newton and quasi-Newton methods, we construct a nonlinear algebraic solver which does
not require the construction or approximation of the Jacobian (or higher order derivatives).

In this work, we propose two extrapolation methods. We show that the first method is lin-
early stable and, if convergent, would converge quadratically fast to the steady state solution.
The second method is provably convergent and in practice has a convergence rate similarly
to the first. In the numerical experiments, we see both methods converge to the steady state
faster than the standard fixed point methods with a lower complexity in terms of the grid size.

The outline of thiswork is as follows. In Sect. 2,we review some previouswork in viscosity
solutions and numerical convergence. We present our two methods and algorithms in Sect. 3.
We analyze our numerical methods in Sects. 4, 5. In Sect. 6, numerical results are provided for
one and two dimensional examples, detailing the experimental convergence rates, complexity
and applicability to various elliptic equations. Concluding remarks are given in Sect. 7.

2 Preliminary Remarks and Notation

Before introducing our work, we give a brief overview of the related theory and our notation.
Let

H [u]:=H(x, u, Du, D2u)

be a degenerate elliptic operator. We say that u is a supersolution if H [u] ≥ 0 and u is
a subsolution if H [u] ≤ 0. We call u the (viscosity) solution if it is both a super- and
subsolution. For the rest of this work we implicitly assume that for a given H we have
the existence of a unique (viscosity) solution u∗. To construct the numerical solutions, we
discretize the operator and solve the resulting equation, Hh(u) = 0, for a fixed grid size
h > 0. We call uh the unique solution for the discrete problem (the subscript may be dropped
at times for simplicity).

If Hh is a monotone, stable and consistent approximation and H satisfies a comparison
principle, then by Theorem 2.1 of [23] we have that as h → 0, uh converges locally uniformly
to the unique continuous viscosity solution of H [u] = 0. This provides sufficient conditions
for a numerical scheme to converge in the viscosity sense. Several recent works focus on
the construction of particular numerical schemes which obey these conditions, as well as the
analysis of their convergence rates in terms of h. For example, in [25], monotone stencils

123

J Sci Comput (2016) 69:556–580 559

for fully nonlinear elliptic equations of the form H(D2u) = 0 are constructed which have
algebraic rates of convergence. In [24], degenerate elliptic finite difference stencils were
introduced, which are shown to be convergent approximations to general degenerate elliptic
problems. The degenerate elliptic finite difference scheme satisfies a discrete comparison
principle which is used to show that the forward Euler method applied to degenerate elliptic
schemes converges to the unique solution.

For a general monotone approximation to a nonlinear elliptic operator, the Euler map is
guaranteed to converge for any bounded initial guess and is simple to implement directly.
However, the number of iterations necessary to converge to a solution of Hh(u) = 0 grows
with the grid size, thereby making it computationally inefficient for fine grids. Motivated
by [28], our approach is to accelerate the computation of the discrete nonlinear algebraic
equation using the viscosity solution theory from above. In particular, we use the notion of
discrete viscosity solutions to construct a numerical method which approaches the solution
from above (or below) in an accelerated manner.

3 Acceleration Methods

In this section, we present two algorithms for finding the unique solution to Hh(u) = 0. The
first is a two-step algorithm which uses prior iterates to move solutions further toward steady
state. The second method is a super/subsolution-preserving version of the first method. In
order to maintain consistent contraction toward the stationary solution, a decision is made
whether to use the given extrapolated iterate or to update using a forward Euler step.

3.1 Method 1: Direct Extrapolation

The first algorithm uses successive iterates in order to continue the solution toward the steady
state. The first step is to linearly extrapolate forward “in time” using the previous two iterates.
Given un and un−1 and a parameter γn , the extrapolation is calculated by:

un,E = un + γn(u
n − un−1).

For the rest of this work, we will assume that we have a sequence of parameters γn ∈ [0, 1)
which will determine speed of the extrapolation. In practice, we have found that the choice
of γn = n

n+n0
for some n0 ≥ 10 is sufficient. The second step applies a forward Euler step

to the extrapolated values. The method is summarized in Algorithm 1.
Algorithm 1

Given: u0, u1:=u0 − τH(u0), and parameters {γn}
while ||un − un−1||∞ > tol do

un,E = un + γn(un − un−1)

un+1 = un,E − τH(un,E)

end while

Remark 3.1 The extrapolation resembles the sequence generated by secant-like methods
(1d):

usecant = un − H(un)
un − un−1

H(un) − H(un−1)

in which the function evaluations are replaced by a sequence of scalars. As mentioned before,
H may not be regular enough for Newton and secant-basedmethods to be directly applicable.

123

560 J Sci Comput (2016) 69:556–580

However, comparing the methods provides some insight into the behavior of our algorithm.
In particular, we see that the extrapolation is more efficient since it does not require additional
function evaluations.

3.2 Method 2: Super/Subsolution Preserving

When the iterates are far from the steady state solution and the difference between them are
relatively small, in particular ||un − un−1||∞ < γ −1

n ||un − u∗||∞, then the extrapolation
step accelerates the iterations closer to the steady state solution. On the other hand, when
solution are close to steady state, the extrapolation may move past u∗, causing the method
to oscillate around the steady state. To control for this, the second algorithm requires that
the extrapolation preserves the sign of the function H and the sign of the difference between
iterations.

The idea is to construct a decreasing (increasing) sequenceof supersolutions (subsolutions)
which converge to the steady state solution. When the iterates are ordered properly, then the
extrapolation is contractive, otherwise a forward Euler step is preferred.

The algorithm is summarized below.
Algorithm 2 (Supersolution Case)

Given: u0 and u1:=u0 − τH(u0), u1 ≤ u0, H(u0) ≥ 0 and parameters {γn}
while ||un − un−1||∞ > tol do

un,E = un + γn(un − un−1)

if un ≤ un−1 and H(un,E) > 0 then
un+1 = un,E − τH(un,E)

else
un+1 = un − τH(un)

end if
end while

The same interpretation holds for the subsolution case. The initialization for Algorithm 2
requires that the iterations are properly ordered, which is satisfied by taken a forward Euler
step.

Algorithm 2 (Subsolution Case)

Given: u0 and u1:=u0 − τH(u0), H(u0) ≤ 0 and parameters {γn}
while ||un − un−1||∞ > tol do

un,E = un + γn(un − un−1)

if un ≥ un−1 and H(un,E) < 0 then
un+1 = un,E − τH(un,E)

else
un+1 = un − τH(un)

end if
end while

In both cases, Method 2 can have the same complexity and speed as Algorithm 1 and at
worst the speed of the forward Euler method with twice the number of function evaluations.
In Sect. 6, we show that on the examples we tested, the convergence rate for Method 2 was
faster than the forward Euler method with lower complexity.

Remark 3.2 In the supersolution formulation, since H(un) is positive and decreasing in n,
our extrapolation method and the secant-like methods move in the same direction. This is
also true of the subsolution version.

123

J Sci Comput (2016) 69:556–580 561

4 Analysis of Method 1

One way to view the iterates, {un}, generated by Method 1 is as an approximation to the
following redundant system of parabolic equations:{

ut = ut
ut = −H(u)

(4.1)

Using this PDE interpretation we show that if the method is convergent, then un ≈ u(tn)
where tn = O(n2). Although the convergence of Method 1 is not guaranteed for general
second order equation, we can show that for a certain class it is linearly stable.

4.1 Temporal Consistency

Given a sequence of parameters {γn}, define the sequence αn by:{
α1 = γ1

α j = (1 + α j−1)γ j , for j > 1
(4.2)

We will show that if the sequence {un} generated byMethod 1 is a convergent approximation
of Eq. (4.1), then un is consistent with u(τ (n + ∑n−1

j=1 α j)). Note that the standard forward
Euler method approximates the sequence u(τn).

Proposition 4.1 (Temporal Truncation Error for Method 1) Let {un} be the sequence gener-
ated by the Method 1 and let ||utt ||L∞ ≤ C < ∞ . Then the scheme is consistent with {u(tn)}
where tn :=τ(n + ∑n−1

j=1 α j).

Proof First, we wish to show that the linear extrapolation step is consistent with ut = ut .
Whenwritten in finite difference form, if tn,E :=tn+γn(tn−tn−1), we can see that consistency
holds:

un,E − un

tn,E − tn
− un − un−1

tn − tn−1
= un,E − un

γn(tn − tn−1)
− un − un−1

tn − tn−1
= 0 (4.3)

where the second equality is exactly the extrapolation step.
More precisely, for any u which is twice continuously differentiable with respect to t , we

have the following two Taylor expansions:

un−1 = un − unt �tn + utt (ηn,1) �t2n

un,E = un + unt γn�tn + utt (ηn,2) γ 2
n �t2n

where ηn,1 ∈ (tn−1, tn), ηn,2 ∈ (tn, tn,E) and �tn :=tn − tn−1. The local temporal truncation
error incurred in the extrapolation step is given by:

T n
e = un,E − un − γn(u

n − un−1)

= γnu
n
t �tn − γnu

n
t �tn + utt (ηn,2) γ 2

n �t2n − utt (ηn,1) γn�t2n

= utt (ηn,2) γ 2
n �t2n − utt (ηn,1) γn�t2n .

Note that using the sequence αn , the time step can be simplified as:

�tn = tn − tn−1 = τ

⎛
⎝

⎛
⎝n +

n−1∑
j=1

α j

⎞
⎠ −

⎛
⎝n − 1 +

n−2∑
j=1

α j

⎞
⎠

⎞
⎠ = τ(1 + αn−1).

123

562 J Sci Comput (2016) 69:556–580

and the extrapolated time stamp can be written as tn,E = τ(n + ∑n
j=1 α j). Furthermore, we

can also simplify the truncation error of the extrapolation step to:

T n
e = utt (ηn,2) γ 2

n τ 2(1 + αn−1)
2 − utt (ηn,1) γnτ

2(1 + αn−1)
2

= utt (ηn,2) τ 2α2
n − utt (ηn,1) τ 2αn(1 + αn−1).

Next, the update step in finite difference form is given by:

un+1 − un,E

τ
+ H(un,E) = 0.

We assume that H(un,E) is given exactly, since we are only concerned with temporal con-
sistency. Next, expanding around the extrapolation iterate yields:

un+1 = un,E + un,E
t τ + utt (ηn)

τ 2

2

where ηn ∈ (tn−1,E , tn) and tn+1 − tn,E = τ . The local temporal truncation error for the
updated step is given by:

T n+1
FE = utt (ηn)

τ 2

2

Altogether, the truncation error isO(τ 2) depending on the second derivative; thus, for any
C2 function (in time) as τ → 0, the local truncation error goes to zero.
�

The overall temporal accuracy of the method is on the same order as the forward Euler
method. For steady state problems, the time-step τ is fixed since utt is assumed to have
sufficient decay.

The time stamps tn depend on the sequences γn and αn . With mild assumptions on the
growth of γn , the following proposition provides lower bounds for the growth rate of αn , and
in turn tn .

Proposition 4.2 Let γn be a non-negative sequence with 1−γn ≤ 1
n+1 and let αn be defined

by the sequence generated as follows:{
α1 = γ1

α j = (1 + α j−1)γ j , for j > 1

and tn to be the time stamps of Method 1, then αn ≥ n
2 and tn ≥ τ n2−n

4 .

Thus if the method is convergent, it should converge quadratically faster than forward
Euler. For general nonlinear H(u), the arguments in [30] can be used to guarantee a con-
vergence proof; however, it would require τ = O(h4). This severe time step restriction is a
result of the quadratic rate of growth of tn . The theory provided in [30] is more general and
does not account for the ellipticity properties of H(u).

4.2 Linear Stability Analysis

Consider the linearization of H which is uniformly elliptic, in particular let H(u) = Au,
where A is positive definite. With this form, Method 1 becomes a linear explicit two-step
method:

un+1 = un + γn(u
n − un−1) − τH(un + γn(u

n − un−1))

= (1 + γn)(1 − τ A)un − γn(1 − τ A)un−1

123

J Sci Comput (2016) 69:556–580 563

Next, the equation for un is transformed to a systemof decoupled vectorswn
k in the eigenbasis:

wn+1
k = (1 + γn)(1 − λkτ)wn

k − γn(1 − λkτ)wn−1
k

where λk > 0 are the corresponding eigenvalues of A. For each vector wn
k , the updates can

be written as a two-step linear system with

[
wn
k

wn+1
k

]
= Bn

k

[
wn−1
k
wn
k

]
=

⎛
⎝ n∏

j=1

B j
k

⎞
⎠ [

w0
k

w1
k

]

where

Bn
k :=

[
0 1

−γn(1 − λkτ) (1 + γn)(1 − λkτ)

]

If λkτ < 1 hold for every k, then∥∥∥∥∥∥
n∏
j=1

B j
k

∥∥∥∥∥∥ → 0 as n → ∞.

Therefore, for any bounded u0 and u1, the solution un → 0 as n → ∞. Although this does
not guarantee the convergence of the method for degenerate H , we see that this analysis gives
local convergence for nonlinear H with uniformly elliptic linearization near u∗.

5 Analysis of Method 2

Method 2 can be written in the form of Method 1 by defining extrapolation parameters {γ̄n}:

γ̄n =
{

γn, if un ≤ un−1 and H(un,E) > 0

0, otherwise.

(for the supersolution case) and the sequence ᾱn by{
ᾱ1 = γ̄1

ᾱ j = (1 + ᾱ j−1)γ̄ j , for j > 1
(5.1)

Proposition 5.1 (Temporal Truncation for Method 2) Let {un} be the sequence generated
by Method 2 and let ||utt ||L∞ ≤ C < ∞. Then the scheme is consistent with {u(tn)} where
tn :=τ(n + ∑n−1

j=1 ᾱ j).

The proof of the proposition above follows from the proof of Proposition 4.1, by ignoring
the extrapolation step when γ̄n = 0. If the scheme is convergent we see that the rate at which
it converges can be at worst the rate of forward Euler and at best quadratically faster than
forward Euler. We will show in Sect. 6 that in practice the algorithm has a convergence rate
comparable to (or even better than) Method 1.

The update condition inMethod 2 is based on the idea of approaching the discrete solution
from above (or below) and relies on a discrete generalization of the comparison principle.

Definition 5.2 (Discrete comparison principle) Let Hh be an operator that has the compar-
ison principle for h > 0. If u satisfies Hh(u) ≥ 0 (Hh(u) ≤ 0), u is said to be a discrete
supersolution (subsolution) of Hh , i.e. u ≥ u∗

h (u ≤ u∗
h) where u

∗
h is the unique solution to

Hh(u∗
h) = 0.

123

564 J Sci Comput (2016) 69:556–580

In addition to the comparison principle, the convergence of Method 2 relies on a well-
behaved forward Euler map as well as the existence of a non-trivial time step. The definition
below will be taken as an assumption throughout this section.

Definition 5.3 (Forward Euler) Let Hh have a finite Lipschitz constant K and satisfy the
discrete comparison principle. The forward Euler map, TFEu:=u − τHh(u), is defined with
optimal time step τop > 0 if for any τop ≥ τ > 0 the following hold:

• TFE is monotone,
• For any u and v, there exists constant C, with 0 ≤ C < 1, such that ||TFEu − TFEv|| ≤

C ||u − v||.
The assumptions above are commonly used in the construction of monotone Runge–Kutta

methods and are related to strongly stable schemes [30–34]. Other related conditions exists,
for example positive type scheme are used in [35], to construct consistent finite difference
stencils for nonlinear second order equations. Also, the degenerate elliptic schemes in [24]
are monotone and thus satisfy the discrete comparison principle.

If Hh is consistent, then forward Euler iterations will converge to the correct solution
in the limit h → 0. The second property in Definition 5.3 requires that the forward Euler
is a strict contraction. In practice, it is not always possible to find a C uniformly for all
u and v. For example if H is differentiable with zero derivative at u∗, then the constant
Cn = ||I − τDH(un)|| goes to 1 as un → u∗. So the second requirement can be weakened
to having the product of the constantsCn going to zero as n → ∞. Without loss of generality,
we will assume that one can choose a uniform contractive constant C .

The following theorem shows that as long as the forward Euler map is well behaved, then
the Method 2 is convergent.

Theorem 5.4 (Convergence of Method 2) Let {unh} be the sequence generated by Method
2 for a fixed space step h > 0 and Hh is a convergent discretization of H with Lipschitz
constant K . Then with time step restriction τK < 1 the following hold

• If u0h is a supersolution (subsolution), then {unh} is a supersolution (subsolution) with
respect to each u∗

h .
• For fixed h, ||unh − u∗

h ||∞ → 0 monotonically in n.
• And unh → u∗ as n → ∞ and h → 0

Proof With the time step τK ≤ 1 the forward Euler update TFEu:=u−τH(u) is a monotone
scheme, i.e.

if w ≥ v then TFEw ≥ TFEv

In particular, by taking v = u∗
h (which is the fixed point) and a supersolution w0, then wn is

a supersolution for all n. Thus the forward Euler map preserves discrete supersolutions.
For any iteration, Method 2 has two possible updates. First, if no extrapolation is used,

then for τ satisfying τK ≤ 1, the forward Euler method is contractive in the maximum norm,
i.e.

||un+1 − u∗||∞ ≤ C ||un − u∗||∞ (5.2)

for some 0 ≤ C < 1.
In the second case, if the extrapolation step holds, then the iterates must satisfy the fol-

lowing two conditions: un ≤ un−1 and un,E is a discrete supersolution. Therefore, the
extrapolation step does not increase the distance to the solution:

0 ≤ un,E − u∗ = un + γn(u
n − un−1) − u∗ ≤ un − u∗

123

J Sci Comput (2016) 69:556–580 565

Thus the update is a discrete supersolution and contracts towards the steady state solution
with the following estimate:

||un+1 − u∗||∞ ≤ C ||un,E − u∗||∞ ≤ C ||un − u∗||∞
In both cases, the distance to the steady state solution is decreasing:

||un+1 − u∗||∞ ≤ C ||un − u∗||∞
The above arguments hold for subsolutions as well, by reversing some of the inequalities.

Lastly, the error between the iterates and the solution to the continuous problem is bounded
by:

||unh − u∗||∞ ≤ ||unh − u∗
h ||∞ + ||u∗

h − u∗||∞ (5.3)

Since Hh is a convergent scheme then u∗
h → u∗ as h → 0, so we have unh → u∗ as n → ∞

and h → 0.
�
Remark 5.5 The convergence rate is determined by the accuracy of the discretization of Hh .
In this work, we assume that we are given an accurate discretization and are concerned with
the iterative convergence at a fixed resolution h > 0.

Remark 5.6 If the scheme for Hh is of order hr , then only partial convergence of the iterative
scheme is needed, i.e.

||unh − u∗
h ||∞ ≤ Chr ,

to preserve the spatial convergence rate for the method.

6 Computational Examples

In this section, we apply both numerical methods as well as the forward Euler method to
various elliptic PDE. In each casewe take a uniformdiscretization of the square
 = (−1, 1)2

with the spatial step size defined as h:= 2
N , with N indicating the number of points in either

dimension. Also, in each example there is specified Dirichlet boundary conditions given by
the function g(x, y). The parameter γn is given by γn = n

n+C for some C > 1. In most cases,
we have used the exact solution so that we are able to compare the two numerical methods
directly.

6.1 Bellman’s Equation

Bellman’s equation is a fully nonlinear uniformly elliptic convex PDE defined as:

sup
a∈A

Lau = f

where La are parameterized linear operators. In general, any fully nonlinear uniformly elliptic
convex PDE can be written in this form. In our numerical experiments, we take the following
two examples:

max(uxx , (1 + x2)uxx) = x3 + x

u(−1) = u(1) = 0

123

566 J Sci Comput (2016) 69:556–580

whose exact solution is u(x) = 1
6 x

3 + 1
40 − 23

120 x + 1
20 x

4 min(x, 0) and

max(uxx , 3uxx) = sign(x)|x |1/3
u(−1) = u(1) = 0

whose exact solution is u(x) = 9
28

(−|x |4/3 max(−x,−3x) − 2x + 1
)
. These two examples

are chosen for their different regularities. The first has a C2 solution where as the second is

only C1, 13 . To discretize uxx , we take the standard second order stencil:

(ui)xx = ui+1 − 2ui − ui−1

h2

where ui is the approximation of u(xi). The resulting approximation to the Bellman operator
satisfies the comparison principle.

In Fig. 1, the error and solution plots of the first example are shown for the two proposed
methods and the forward Euler method. The solutions are computed on a 2048 size grid with

a time step parameter of τ = h2
8 . The initial data is taken to be u0(x) = 1 − x2, which is a

supersolution. Figure 1 (left) shows the error (on a log scale) versus the number of iterations
for all three methods. The oscillatory nature of Method 1 around the steady state can be seen
in the descending bumps. AlthoughMethod 1 reaches a smaller error as compared toMethod
2 at various intermediate times, Method 2 is able to reach steady state faster.

Similarly, in Fig. 2, the error and solution plots of the second example are shown for all
three methods. The solutions are computed on a 2048 size grid with a time step parameter

of τ = h2
3 . The initial data is taken to be u0(x) = x2 − 1, which is a subsolution. Figure 1

(left) shows the error (on a log scale) versus the number of iterations for all three methods.
The cusps that appear in the error curve for Method 2 correspond to the method switching
to a forward Euler step.

In Table 1, we study the iteration complexity of each method applied to the C2 example
of Bellman’s equation from Fig. 1. The spatial error is the same for all methods, since the
stencil Hh is the same, and has a numerical accuracy of about h2.01. The column titles are

1 2 3 4 5 6 7

x 10
4

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1

0.15

(a) (b)

Fig. 1 Error and solution plots of the Bellman equation on a 2048 size grid. All three methods have the same

initial conditions and time step parameter τ = h2
8 . The first plot (left) shows the error (on a log scale) versus

the number of iterations for the forward Euler method (red), Method 1 (black) and Method 2 (blue). a Error
plot, b solution (Color figure online)

123

J Sci Comput (2016) 69:556–580 567

2 4 6 8 10

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

1

−1 −0.5 0 0.5 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

Fig. 2 Error and solution plots of the Bellman equation on a 2048 size grid. All three methods have the same

initial conditions and time step parameter τ = h2
3 . The first plot (left) shows the error (on a log scale) versus

the number of iterations for the forward Euler method (red), Method 1 (black) and Method 2 (blue). a Error
plot, b solution (Color figure online)

Table 1 Convergence comparison between various methods

Grid size Error M1 (SS) M1 (LE) M2 FE

128 1.3 × 10−5 4757 1299 1957 144,744

256 3.3 × 10−6 18,766 3349 5668 789,657

512 8.1 × 10−7 50,228 6737 11,738 3,255,780

1024 2.0 × 10−7 106,220 25,021 23,456 –

2048 5.1 × 10−8 248,512 67,329 40,522 –

Rate 2.01 1.39 1.43 1.08 2.25

Using the C2 solution of the Bellman equation from Fig. 1, we compare the complexity in terms of grid size
and the number of iterations require to converge between the methods. The column titles are as follows: M1
(SS) is the number of iterations it takes for Method 1 to converge to steady state, M1 (LE) is the number of
iterations it takes for Method 1 to reach the desired error, M2 is the number of iterations it takes for Method
2 to converge to steady state, and FE is is the number of iterations it takes for forward Euler to converge to
steady state

as follows: M1 (SS) is the number of iterations it takes for Method 1 to converge to steady
state, M1 (LE) is the number of iterations it takes for Method 1 to reach the desired error,
M2 is the number of iterations it takes for Method 2 to converge to steady state, and FE is
is the number of iterations it takes for forward Euler to converge to steady state. Method 2
has a nearly linear complexity while Method 1 is superlinear and forward Euler is quadratic.
The quadratic complexity of forward Euler makes it difficult to calculate a numerical steady
state solution on refined grids, even with very close initializations.

In Table 2, we study the iteration complexity of each method applied to the C1, 13 example

of Bellman’s equation from Fig. 2, with τ = h2
3 . In this case, the stencil Hh has a numerical

accuracy of about h1.33 due to the regularity. Again, Method 2 has a nearly linear com-
plexity even for non-regular solutions, while Method 1 is superlinear and forward Euler is
quadratic.

123

568 J Sci Comput (2016) 69:556–580

Table 2 Convergence comparison between various methods

Grid size Error M1 (SS) M1 (LE) M2 FE

128 2.2 × 10−4 3061 827 1424 107,066

256 8.7 × 10−5 9992 1668 3771 527,278

512 3.5 × 10−5 27,703 3351 8514 2,031,064

1024 1.4 × 10−5 45,208 12,346 17,145 8,293,445

2048 5.5 × 10−6 132,040 24,729 38,638 –

Rate 1.33 1.31 1.27 1.17 2.08

Using the C1,1/3 solution of the Bellman equation from Fig. 2, we compare the complexity in terms of grid
size and the number of iterations require to converge between the methods. M1 (SS) is the number of iterations
it takes for Method 1 to converge to steady state, M1 (LE) is the number of iterations it takes for Method 1 to
reach the desired error, M2 is the number of iterations it takes for Method 2 to converge to steady state, and
FE is is the number of iterations it takes for forward Euler to converge to steady state

6.2 Isaacs’ Equation

Isaacs’ equations form a class of nonconvex fully nonlinear uniformly elliptic equations
defined as:

sup
a∈A

inf
b∈B La,bu = f

where La,b are parameterized linear operators. The equation can be derived from particular
two-player zero sum games [36], and represents a prototypical nonlinear nonconvex elliptic
equation. Any fully nonlinear uniformly elliptic nonconvex PDE which is Lipschitz in all
parameters can be written in this form [37]. For our example, we take the 3-term problem:

max(L3u,min(L1u, L2u)) = x2 + y2

where the three linear operators are defined as:

L1u = (1 + x2)uxx + (1 + y2)uyy

L2u = uxx + 3

2
uyy

L3u = uxx + uyy

with boundary data g(x, y) = max(x4 − y4, x2 + y3). For the discretization of the spatial
derivatives, we take the standard second order stencils:

(ui, j)xx = ui+1, j − 2ui, j − ui−1, j

h2

(ui, j)yy = ui, j+1 − 2ui, j − ui, j−1

h2

where ui, j is the approximation of u(xi , y j). The resulting approximation to Isaacs’ equation
satisfies comparison principle. For more on the theoretical behavior of Issacs’ equation, see
for example [37,38].

To calculate the error, we compute the solution using the standard forward Euler update
on a 512-by-512 size grid and linearly interpolate onto the 256-by-256 size grid. The initial
data, u0(x, y), is a solution of:

123

J Sci Comput (2016) 69:556–580 569

�u0(x, y) = x2 + y2

with the same boundary condition of the problem. This is a simple way to generate a subso-
lution for this case. The solution agrees with the refined grid calculations and we see that the
convergence rate between our method are nearly identical (see Fig. 3).

6.3 Infinity Laplacian Based Equations

The infinity Laplacian is a degenerate quasi-linear PDE defined as:

�∞u = 1

|∇u|2
n∑

i, j=1

uxi ux j uxi x j

This PDE is related to the first variation of L∞ functionals and has seen a surge of interest in
various forms [39–44]. In particular, solutions are related to zero-sum differential games and
can be interpreted as the expected payoff to a certain game (namely the tug-of-war games).

1000 2000 3000 4000 5000 6000 7000
−5

−4

−3

−2

−1

0

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) (b)

(c) (d)

Fig. 3 Error and solution plots of the Isaacs equation on a 256-by-256 size grid. All three methods have the

same initial conditions and time step parameter τ = h2
8 . The first plot (left) shows the error (on a log scale)

versus the number of iterations for the forward Euler method (red), Method 1 (black) and Method 2 (blue).
In this case, the error in Method 1 and Method 2 agrees. In plots (c) and (d) the level curves between the set
in which one operator determines the local solution is shown. a Error, b solution, c the level curves of the set
{L1u ≤ L2u}, d the level curves of the set {min(L1u, L2u) ≤ L3u} (Color figure online)

123

570 J Sci Comput (2016) 69:556–580

1000 2000 3000 4000 5000 6000 7000
−2

−1.5

−1

−0.5

0

0.5

(a) (b)

Fig. 4 Error and solution plots of the nonlinear differential game on a 128-by-128 size grid. All three methods

have the same initial conditions and time step parameter τ = h2
4 . The first plot (left) shows the error (on a

log scale) versus the number of iterations for the forward Euler method (red), Method 1 (black) and Method
2 (blue). a Error, b solution (Color figure online)

Using the zero-sum game, the operator �∞ has the following discrete form:

�∞u = 1

ε2

(
max

y∈∂B(x,ε)
uε(y) + min

y∈∂B(x,ε)
uε(y) − 2uε(x)

)

where ε = O(h). There are a few convergent numerical methods that have been proposed
that use this approach [1,3,4] to construct finite difference methods. It is worth noting that
there are also finite element approximations to the infinity Laplacian using the vanishing
moment method [6] and an adaptive method [11].

For our experiment we use a non-homogenous example found in [39]:

�∞u + |∇u| = f

which has the following dynamic program:

uε(x) − ρ max
y∈∂B(x,ε)

{
uε(y) − ε f (x)

} − (1 − ρ) min
y∈∂B(x,ε)

{
uε(y) + ε f (x)

} = 0

with constant ρ:= 2+ ε
4 . This provides the following numerical fixed point:

un+1
i, j = uni, j − τ

(Ch)2

(
uni, j − ρ max

y∈∂B(x,Ch)

{
un(y) − Ch f (x)

}
− (1 − ρ) min

y∈∂B(x,Ch)

{
un(y) + Ch f (x)

})
for some constant C > 0. By choosing the forcing term as f = 1 + √

x2 + y2 and the
boundary data as g = x2 + y2, we have the exact solution u = x2 + y2 to this problem. The
initial data is assigned as the maximum of the boundary data and is thus a supersolution. As
seen in Fig. 4, for this degenerate equation Method 1 and Method 2 reaches state at roughly
the same time; however, for intermediate times Method 2 may “stall”.

6.4 Pucci’s Equation

For the remaining examples, we consider fully nonlinear second order PDE which are func-
tions of the eigenvalues of the Hessian in two dimensions. In particular, with the eigenvalue
ordering λ1(D2u(x)) ≤ λ2(D2u(x)), Pucci’s maximal equation is defined as:

123

J Sci Comput (2016) 69:556–580 571

1000 2000 3000 4000 5000 6000 7000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a) (b)

Fig. 5 Error and solution plots of the Pucci maximal equation on a 256-by-256 size grid. All three methods

have the same initial conditions and time step parameter τ = h2
12 . The first plot (left) shows the error (on a

log scale) versus the number of iterations for the forward Euler method (red), Method 1 (black) and Method
2 (blue). Method 1 and Method 2 agree in this case as well. a Error, b solution (Color figure online)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b)(a)

Fig. 6 Solution and slice plots of the Pucci maximal equation on a 256-by-256 size grid using Method 2.
The stopping criteria is: ||un+1 − un ||∞ ≤ 10−7 and shows that the method will produce properly ordered
solution, even away from the true steady state. a Solution, b solution slices (Color figure online)

λ1 + αλ2 = 0,

with α > 1, which is equivalent to:

{
α(�u)2 + (1 − α)2det(D2u) = 0

�u ≤ 0

There are several ways of discretizing Pucci’s equation which depend also on which form is
taken above. For example, there are finite difference methods which use wide stencils [12]
or finite element approaches using least squares optimization [21,45]. For this example, we
use the wide stencils approach. In Fig. 5 and Table 3, we solve for the exact solution when
α = 2, i.e. u(x, y) = −(x2 + y2)−1, on a 256-by-256. The initial data is the maximum of
the boundary data. In Fig. 6, Method 2 is applied to the Pucci maximal equation with α = 2
and with boundary data

123

572 J Sci Comput (2016) 69:556–580

Table 3 Convergence
comparison between various
methods using the example from
Fig. 5

Grid size M1 M2 FE

32 413 348 3272

64 849 841 13,457

128 1977 2037 75,768

256 4950 5028 238,751

512 10,144 11,785 –

Rate 1.18 1.27 2.11

g(x, y) =
{
1, if |x | > 1

2 and |y| > 1
2

0, otherwise.

Using the partial convergence criteria, Fig. 6 (right) shows slices of the solution for α =
2, 2.75, . . . , 5 (see also Table 4). The solutions have the correct ordering (via maximum
principle), even though the solutions have not reached the true steady states.

6.5 Monge–Ampère Equation

The Monge–Ampère equation (in two dimensions) is defined as:

H(u) = det(D2u) = λ1λ2

and is elliptic over the space of convex functions. TheMonge–Ampère equation arises inmany
mathematical and physical models, for example in geometry, cosmology, and fluid dynamics,
and has received a growing amount of attention in recent years (see [2] and citations within).
Numerical methods for the Monge–Ampère equation can be based on finite differences [12–
16], finite elements using least squares and augmented Lagrangians [17–20,46] and finite
elements using the vanishing moment [5,7–10]. For more detail on these numerical methods
see [2].

For our first simulation, we use the monotone difference schemes found in [12,13]. We

use the exact solution: u(x, y) = e
r2
2 with the forcing term f = e

r2
2 (1 + r2), where

r2 = x2 + y2. The calculations are done on a 128-by-128 grid with τ = h2
75 , see Fig. 7.

The initial data is found by solving: −�u0 = 0 with the correct boundary data, thereby
providing a supersolution. In this example, Method 1 and 2 have identical convergence
rates.

For the remaining examples, we consider several singular solutions to theMonge–Ampère
equation. The first singular solution has the following exact solution and forcing term:

u(x, y) = 2
√
2

3
((x − 1)2 + (y − 1)2)

3
4 (6.1)

f (x, y) = 1√
(x − 1)2 + (y − 1)2

.

The solution in Eq. (6.1) is continuous up to the boundary, but blows-up at boundary point
(1, 1). In terms of the Monge–Ampère equation, we consider blow-up to refer to the deriv-
atives of the function as opposed to the function values themselves. In Table 5, we use a
multi-level approach to calculate the number of iteration needed to achieve convergence. For
a given resolution, the solution is initialized by interpolating the values from the steady state

123

J Sci Comput (2016) 69:556–580 573

0.5 1 1.5 2 2.5

x 10
4

−3

−2.5

−2

−1.5

−1

−0.5

0

(a) (b)

Fig. 7 Error and solution plots of the Monge–Ampère equation on a 128-by-128 size grid. All three methods

have the same initial conditions and time step parameter τ = h2
75 . The first plot (left) shows the error (on a

log scale) versus the number of iterations for the forward Euler method (red), Method 1 (black) and Method
2 (blue). a Error, b solution (Color figure online)

Table 4 Dependence of the number of iteration needed on the parameter α (see in Fig. 6)

α Fixed τ Varying τ

2.00 2989 1888

2.75 2729 2022

3.50 2522 2110

4.25 2353 2169

5.00 2211 2211

Complexity −0.33 0.17

Pucci’s equation is solved on a 256-by-256 grid and the time-step is either fixed (τ = h2/25) or varies with
alpha (τ = α−1h2/5). The iterations are terminatedwhen the stopping criteria holds: ||un+1−un ||∞ ≤ 10−7.
The iteration complexity as a function of α is shown

Table 5 Convergence
comparison between various
methods using the example from
Eq. (6.1)

Grid size Error M1 M2 FE

16 0.0250 564 601 2239

32 0.0160 585 651 2309

64 0.0110 976 1037 5759

128 0.0077 4626 4655 115,802

256 0.0066 6479 6541 219,158

Rate 0.48 1.0027 0.9726 1.8874

solution on a coarser resolution. The complexity is still linear (in terms of h) for our method;
however, the total number of iterations are lower. The solution and the error versus iterations
plots are shown in Fig. 8 and are calculated on a 128-by-128 grid with τ = h2

25 .

123

574 J Sci Comput (2016) 69:556–580

1000 2000 3000 4000 5000 6000 7000
−2.12

−2.1

−2.08

−2.06

−2.04

−2.02

−2

−1.98

−1.96

(a) (b)

Fig. 8 Error and solution plots of the Monge–Ampère equation (Eq. (6.1)) on a 128-by-128 size grid. All

three methods have the same initial conditions and time step parameter τ = h2
25 . The first plot (left) shows the

error (on a log scale) versus the number of iterations for the forward Euler method (red), Method 1 (black)
and Method 2 (blue). a Error, b solution (Color figure online)

5000 10000 15000
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

(a) (b)

Fig. 9 Error and solution plots of the Monge–Ampère equation (Eq. (6.2)) on a 128-by-128 size grid. All

three methods have the same initial conditions and time step parameter τ = h2
75 . The first plot (left) shows the

error (on a log scale) versus the number of iterations for the forward Euler method (red), Method 1 (black)
and Method 2 (blue). The solution has a singularity at the point (0, 0). a Error, b solution (Color figure online)

The second example has the following exact solution and forcing term:

u(x, y) =
√
x2 + y2 (6.2)

f (x, y) = δ(0,0)(x, y),

where δp is the Dirac delta function at the point p. Given the data in Eq. (6.2), the solution
has singular second derivatives at (0, 0). The Dirac delta function is discretized as 1

h2
at (0, 0)

and zero otherwise. The solution and the error versus iterations plots are shown in Fig. 9 and
are calculated on a 128-by-128 grid with the stricter step size τ = h4. In Table 6, we see that
using this time-step restriction results in a quadratic complexity in our method, but an even
worse rate for the classical method.

123

J Sci Comput (2016) 69:556–580 575

Table 6 Convergence comparison between variousmethods using the example fromEq. (6.2). In this example,
τ = h4, so we expect higher complexity as compared to other examples

Grid Size Error M1 M2 FE

16 0.22 159 159 1333

32 0.12 575 575 14101

64 0.0640 2571 2571 206,869

128 0.0320 14,503 14,503 –

256 0.0160 45,494 45,494 –

Rate 0.95 2.0978 2.0978 3.6389

1000 2000 3000 4000 5000 6000 7000 8000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

(a) (b)

Fig. 10 Error and solution plots of the Monge–Ampère equation (Eq. (6.3)) on a 128-by-128 size grid. All

three methods have the same initial conditions and time step parameter τ = h2
50 . The first plot (left) shows the

error (on a log scale) versus the number of iterations for the forward Euler method (red), Method 1 (black)
and Method 2 (blue). a Error, b solution (Color figure online)

Table 7 Convergence comparison between variousmethods using the example fromEq. (6.3). In this example,
τ = h2/50, so we expect higher complexity as compared to other examples

Grid size M1 M2 FE

16 566 566 14,607

32 1199 1199 66,842

64 2481 2481 315,450

128 6287 6287 1,140,020

256 12,298 9948 –

Rate 1.1273 1.0662 2.1142

Using the constant forcing term:

f (x, y) = 1

16
, (6.3)

and zero boundary data, we calculate the solution in Fig. 10 on a 128-by-128 grid with the

step size τ = h2
50 . Since the solution is zero on the boundary but the PDE is constant in the

123

576 J Sci Comput (2016) 69:556–580

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

(a) (b)

(c)

Fig. 11 Error versus iterations plots for Monge–Ampère equation (using the data from Eq. (6.4)) on 128-by-

128 size grid. All three methods have the same initial conditions and time step parameter τ = h4
2 . The first

plot (left) shows the error (on a log scale) versus the number of iterations for the forward Euler method (red),
Method 1 (black) and Method 2 (blue). The second plot (b) is the same as plot (a) but on a log–log scale. a
Error log plot, b error log–log plot, c Solution (Color figure online)

interior, the second derivatives must blow-up as they approach the boundary. In Table 7, we
calculate the convergence rate against a finer resolution solution.

The last example has the following exact solution and forcing term:

u(x, y) = max(|x | + |y|, 1)
f (x, y) = 0. (6.4)

The solution has singular second derivatives on a domain of codimension one which is also
not aligned exactly with the grid points. For this example, the error decreases monotonically,
since the solution can be obtained exactly with the stencil. With initial data u0(x, y) = 1 and
time-step τ = h4/2, the solution and error versus iterations are shown in Fig. 11. The error is
plotted one two different scales, showing significant acceleration over the standard method.

6.6 Systems of Fully Nonlinear Equations

For our final example we look at a system of fully nonlinear equations, namely the coupled
Pucci system:

123

J Sci Comput (2016) 69:556–580 577

1000 2000 3000 4000 5000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a)

(b) (c)

Fig. 12 Error and solution plots of a coupled system of Pucci maximal equations on a 128-by-128 size grid.

All three methods have the same initial conditions and time step parameter τ = h2
12 . The first plot (left) shows

the error (on a log scale) versus the number of iterations for the forward Euler method (red), Method 1 (black)
and Method 2 (blue). Method 1 and Method 2 agree in this case as well. The solutions (bottom left and right)
are similar in shaped but have different curvatures rates. a Error, b solution 1, c solution 2 (Color figure online)

α1λ1(D
2u) + λ2(D

2u) + F1(x, v) = 0

α2λ1(D
2v) + λ2(D

2v) + F2(x, u) = 0

We choose a quadratic coupling of zeroth order terms in the following way:

4

3
λ1(D

2u) + λ2(D
2u) + v2 = f1

2λ1(D
2v) + λ2(D

2v) + u2 = f2

In Fig. 12, by choosing (f1, f2)(x, y) = (−(x2 + y2)− 2
3 ,−(x2 + y2)−2) we have the exact

solution (u, v)(x, y) = (−(x2 + y2)− 1
3 ,−(x2 + y2)−1). The calculations are done on a

128-by-128 grid with the initial data taken to be the maximum of the solution. We see that
Methods 1 and 2 converge at the same rate. Systems of nonlinear elliptic equation can be
difficult to compute on finer grids due to the increase in complexity.

7 Conclusion

We presented two numerical methods for accelerating the convergence of iterative methods
for nonlinear and/or degenerate elliptic PDE. We have shown that the first method is linearly

123

578 J Sci Comput (2016) 69:556–580

stable and consistent to the solution of the PDE in which time is traversed at a quadratic
rate. In the numerical experiments, we see that our method’s complexity is the square root
of the complexity of the standard iterative method. With an additional function evaluation,
the second method is proven to be convergent in the viscosity sense. We have shown that
experimentally, the methods converge faster than the standard fixed point methods with a
nearly linear complexity.

Acknowledgments H. Schaeffer was supported by NSF 1303892 and University of California President’s
Postdoctoral Fellowship Program. T. Y. Hou was supported by NSF DMS 1318377, NSF DMS 0908546,
and DOE DE FG02 06ER25727. The authors would like to thank the editor and reviewers for their helpful
feedback.

Appendix

We provide a proof of Proposition 4.2 below. The arguments follows from a direct compu-
tation of the lower bound.

Proof We can expand αn in terms of the sequences {γ j }nj=1 as follows:

αn = (1 + αn−1)γn = (1 + (1 + αn−2)γn−1)γn

= (1 + (1 + (1 + αn−2)γn−2)γn−1)γn . . .

=
n∑
j=1

n∏
k= j

γk

Next, define ξk :=1 − γk , by the assumptions of Proposition 4.2, 1 − ξk ≥ 1 − 1
k+1 , so

n∏
k= j

(1 − ξk) ≥
n∏

k= j

(1 − 1

k + 1
) = j

n + 1
.

Therefore the sequence αn can be bound below by:

αn =
n∑
j=1

n∏
k= j

γk ≥
n∑
j=1

j

n + 1
= n

2
.

Also, the partial sums of αn are given by:

n−1∑
j=1

α j ≥
n−1∑
j=1

j

2
= n2 − n

4
.

References

1. Falcone, M., Finzi Vita, S., Giorgi, T., Smits, R.G.: A semi-Lagrangian scheme for the game p-Laplacian
via p-averaging. Appl. Numer. Math. 73, 63–80 (2013)

2. Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear
second order partial differential equations. SIAM Rev. 55, 205–267 (2013)

3. Oberman, A.: A convergent difference scheme for the infinity Laplacian: construction of absolutely
minimizing Lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2005)

4. Oberman, A.: Finite difference methods for the infinity Laplace and p-Laplace equations. J. Comput.
Appl. Math. 254, 65–80 (2013)

123

J Sci Comput (2016) 69:556–580 579

5. Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge–Ampère equation
based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009)

6. Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order
partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)

7. Feng, X., Neilan, M.: A modified characteristic finite element method for a fully nonlinear formulation
of the semigeostrophic flow equations. SIAM J. Numer. Anal. 47(4), 2952–2981 (2009)

8. Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge–Ampère equation. J.
Sci. Comput. 47(3), 303–327 (2011)

9. Feng,X.,Neilan,M.:Galerkinmethods for the fully nonlinearMonge–Ampére equation. arXiv:0712.1240
(2007)

10. Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge–Ampère
equation. Numer. Math. 115(3), 371–394 (2010)

11. Lakkis, O., Pryer, T.: An adaptive finite element method for the infinity Laplacian. arXiv:1311.3930
(2013)

12. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and
functions of the eigenvalues of the Hessian. Discrete Continuous Dyn. Syst. Ser. B 10(1), 221–238 (2008)

13. Benamou, J.-D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge–Ampère
equation. ESAIM Math. Model. Numer. Anal. 44(4), 737–758 (2010)

14. Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic
Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)

15. Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–
Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)

16. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge–Ampère partial differential
equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

17. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation
with Dirichlet boundary conditions: an augmented Lagrangian approach. Comptes Rendus Math. 336(9),
779–784 (2003)

18. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation
with Dirichlet boundary conditions: a least-squares approach. Comptes Rendus Math. 339(12), 887–892
(2004)

19. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet
problem for the elliptic Monge–Ampére equation in two dimensions. Electron. Trans. Numer. Anal. 22,
71–96 (2006)

20. Dean, E.J., Glowinski, R.: Numericalmethods for fully nonlinear elliptic equations of theMonge–Ampère
type. Comput. Methods Appl. Mech. Eng. 195(13), 1344–1386 (2006)

21. Dean, E.J., Glowinski, R.: On the numerical solution of a two-dimensional Pucci’s equation with Dirichlet
boundary conditions: a least-squares approach. Comptes Rendus Math. 341(6), 375–380 (2005)

22. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J.
Numer. Anal. 46(3), 1212–1249 (2008)

23. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order
equations. Asympotot. Anal. 4, 271–283 (1991)

24. Oberman, A.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–
Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006)

25. Caffarelli, L.A., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations
to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61, 1–17 (2008)

26. Loeper, G., Rapetti, F.: Numerical solution of the Monge–Ampè equation by a Newton’s algorithm.
Comptes Rendus Math. 340(4), 319–324 (2005)

27. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equa-
tion: classical solutions. IMA J. Numer. Anal. http://imajna.oxfordjournals.org/content/early/2014/05/
30/imanum.dru028 (2014)

28. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2). Sov.
Math. Dokl. 27(2), 372–376 (1983)

29. Beck, A., Taboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

30. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J.
Numer. Anal. 41(2), 605–623 (2003)

31. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.
SIAM Rev. 43(1), 89–112 (2001)

32. Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations.
J. Sci. Comput. 25(1), 105–128 (2005)

123

http://arxiv.org/abs/0712.1240
http://arxiv.org/abs/1311.3930
http://imajna.oxfordjournals.org/content/early/2014/05/30/imanum.dru028
http://imajna.oxfordjournals.org/content/early/2014/05/30/imanum.dru028

580 J Sci Comput (2016) 69:556–580

33. Ruuth, S.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Com-
put. 75(253), 183–207 (2006)

34. Bresten, C., Gottlieb, S., Grant, Z., Higgs, D., Ketcheson, D. I., Németh, A.: Strong stability preserving
multistep Runge–Kutta methods. arXiv:1307.8058 (2013)

35. Kuo, H.J., Trudinger, N.S.: Positive difference operators on generalmeshes. DukeMath. J. 83(2), 415–433
(1996)

36. Isaacs, R.: Differential Games. Wiley, New York (1965)
37. Cabré, X., Caffarelli, L.A.: InteriorC2,α regularity theory for a class of non convex fully nonlinear elliptic

equation. J. Math. Pures Appl. 82(5), 573–612 (2003)
38. Krylov, N.V.: On the rate of convergence of finite-difference approximations for elliptic Isaacs’ equation

in smooth domains. arXiv:1402.0252 (2014)
39. Barron, E., Evans, L.C., Jensen, R.: The infinity Laplacian. Aronsson’s equation and their generalizations.

Trans. Am. Math. Soc. 360(1), 77–101 (2008)
40. Evans, L.C., Yu, Y.: Various properties of solutions of the infinity-Laplacian equation. Commun. Partial

Differ. Equ. 30(9), 1401–1428 (2005)
41. Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc.

Var. Partial Differ. Equ. 13(2), 123–139 (2001)
42. Evans, L.C., Smart, C.K.: Everywhere differentiability of infinity harmonic functions. Calc. Var. Partial

Differ. Equ. 42(1–2), 289–299 (2011)
43. Aronsson, G.: On the partial differential equation u2x uxx + 2uxuyuxy + u2yuyy = 0. Ark. Mat. 7(5),

395–425 (1968)
44. Aronsson, G.: On certain singular solutions of the partial differential equation u2x uxx + 2uxuyuxy +

u2yuyy = 0. Manuscr. Math. 47, 133–151 (1984)
45. Caffarelli, L.A., Glowinski, R.: Numerical solution of the Dirichlet problem for a Pucci equation in

dimension two. Application to homogenization. J. Numer. Math. 16(3), 185–216 (2008)
46. Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the

Dirichlet problem for the elliptic Monge–Ampère equation in dimension two. ESAIM Control Optim.
Calc. Var. 19(03), 780–810 (2013)

123

http://arxiv.org/abs/1307.8058
http://arxiv.org/abs/1402.0252

	An Accelerated Method for Nonlinear Elliptic PDE
	Abstract
	1 Introduction
	2 Preliminary Remarks and Notation
	3 Acceleration Methods
	3.1 Method 1: Direct Extrapolation
	3.2 Method 2: Super/Subsolution Preserving

	4 Analysis of Method 1
	4.1 Temporal Consistency
	4.2 Linear Stability Analysis

	5 Analysis of Method 2
	6 Computational Examples
	6.1 Bellman's Equation
	6.2 Isaacs' Equation
	6.3 Infinity Laplacian Based Equations
	6.4 Pucci's Equation
	6.5 Monge--Ampère Equation
	6.6 Systems of Fully Nonlinear Equations

	7 Conclusion
	Acknowledgments
	Appendix
	References

