
Annals of PDE            (2022) 8:24 
https://doi.org/10.1007/s40818-022-00140-7

MANUSCRIPT

Asymptotically self-similar blowup of the Hou-Luomodel
for the 3D Euler equations

Jiajie Chen1,2 · Thomas Y. Hou1 · De Huang1,3

Received: 12 June 2021 / Accepted: 27 October 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Inspired by the numerical evidence of a potential 3D Euler singularity [54, 55], we
prove finite time singularity from smooth initial data for the HL model introduced by
Hou-Luo in [54, 55] for the 3D Euler equations with boundary. Our finite time blowup
solution for the HL model and the singular solution considered in [54, 55] share some
essential features, including similar blowup exponents, symmetry properties of the
solution, and the sign of the solution. We use a dynamical rescaling formulation and
the strategy proposed in our recent work in [11] to establish the nonlinear stability of
an approximate self-similar profile. The nonlinear stability enables us to prove that
the solution of the HL model with smooth initial data and finite energy will develop
a focusing asymptotically self-similar singularity in finite time. Moreover the self-
similar profile is unique within a small energy ball and the Cγ norm of the density θ

with γ ≈ 1/3 is uniformly bounded up to the singularity time.

1 Introduction

The three-dimensional (3D) incompressible Euler equations are one of the most fun-
damental equations in fluid dynamics. Despite their wide range of applications, the
global well-posedness of the 3D incompressible Euler equations is one of the most
outstanding open questions in the theory of nonlinear partial differential equations.
The interested readers may consult the excellent surveys [14, 32, 40, 46, 57] and the
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references therein. The difficulty associated with the global regularity of the 3D Euler
equations can be described by the vorticity equation:

ωt + u · ∇ω = ω · ∇u, (1.1)

where ω = ∇ × u is the vorticity vector of the fluid, and u is related to ω via the
Biot-Savart law. Formally,∇u has the same scaling asω, which implies that the vortex
stretching term ω · ∇u formally scales like ω2. However, ∇u is related to ω through
the Riesz transform. Various previous studies indicate that the nonlocal nature of the
vortex stretching term and the local geometric regularity of the vorticity vector may
lead to dynamic depletion of the nonlinear vortex stretching (see e.g. [15, 22, 41]),
which may prevent singularity formation in finite time.

In [54, 55], Luo and Hou investigated the 3D axisymmetric Euler equations with a
solid boundary and presented some convincing numerical evidence that the 3D Euler
equations develop a potential finite time singularity. They considered a class of smooth
initial data with finite energy that satisfy certain symmetry properties. The potential
singularity occurs at a stagnation point of the flow along the boundary. The presence of
the boundary and the hyperbolic flow structure near the singularity play an important
role in the singularity formation. To understand the mechanism for this potential 3D
Euler singularity, Hou and Luo [54] proposed the following one-dimensional model
along the boundary at r = 1:

ωt + uωx = θx ,

θt + uθx = 0, ux = Hω.
(1.2)

Here u = uz , ω = ωφ , and θ = (uφ)2, with uφ and ωφ being the angular velocity
and angular vorticity, respectively. Numerical study presented in [54] shows that the
HL model develops a finite time singularity from smooth initial data with blowup
scaling properties surprisingly similar to those observed for the 3D Euler equations.
By exploiting the symmetry properties of the solution and somemonotonicity property
of the velocity kernel, Choi et al have been able to prove that the HL model develops
a finite time singularity in [12] using a Lyapunov functional argument. Part of our
analysis to be presented is inspired by the sign property of a quadratic interaction
term between u and ω obtained in [12]. However, there seems to be some essential
difficulties in extending the method in [12] to the 3D Euler equations.

There has been a number of subsequent developments inspired by the singularity
scenario reported in[54, 55], see e.g. [12, 13, 47, 48] and the excellent survey article
[46]. Although various simplified models have been proposed to study the singular-
ity scenario reported in[54, 55], currently there is no rigorous proof of the Luo-Hou
blowup scenario with smooth data. Recently, Elgindi [24] (see also [25]) proved an
important result that the 3D axisymmetric Euler equations without swirl can develop a
finite time singularity for C1,α initial velocity. In a setting similar to the Luo-Hou sce-
nario, singularity formation of the 2DBoussinesq and the 3DaxisymmetricEuler equa-
tions withC1,α velocity and boundary has been established by the first two authors [7].

One of our goals is to establish the finite time self-similar blowup of (1.2) of the
form
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ω∗(x, t) = 1

(1 − t)|cω,∞|ω∞
(

x

(1 − t)λ

)
,

θ∗(x, t) = 1

(1 − t)2−λ|cω,∞|θ∞
(

x

(1 − t)λ

)
, (1.3)

where λ = cl,∞|cω,∞|−1 is the blowup exponent and cl,∞, cω,∞ are the scaling
exponents. The main result of this paper is stated by the informal theorem below,
which shows the existence of the self-similar profile with sharp estimate of the blowup
exponent λ. A more precise and stronger statement will be given by Theorem 2 in
Section 2.

Theorem 1 There is a family of initial data (θ0, ω0) with θ0,x , ω0 ∈ C∞
c , such

that the solution of the HL model (1.2) will develop a focusing asymptotically self-
similar singularity in finite time. The self-similar blowup profile (θ∞, ω∞) is unique
within a small energy ball and its associated scaling exponents cl,∞, cω,∞ satisfy
|λ − 2.99870| ≤ 6 · 10−5 with λ = cl,∞|cω,∞|−1. Moreover, the Cγ norm of θ is
uniformly bounded up to the blowup time T , and the Cβ norm of θ blows up at T for
any β ∈ (γ, 1] with γ = λ−2

λ
.

The blowup exponent λ ≈ 2.99870 in the HL model is surprisingly close to the
blowup exponent λ ≈ 2.9215 of the 3D Euler equations considered by Luo-Hou [54,
55]. In order to construct the self-similar profile (ω∞, θ∞, cl,∞, cω,∞) in (1.3), we
first construct an approximate self-similar profile (ω̄, θ̄ , c̄l , c̄ω) and will prove that
(ω̄, θ̄ , c̄l , c̄ω) is close to the exact self-similar profile in some suitable energy norm.
See more details in Theorem 2 in Section 2. An important property that characterizes
the stable nature of the blowup in the HLmodel is that c̄l x+ ū ≥ 0.49x, c̄l = 3, ū < 0
for any x ≥ 0, here ū, c̄l are the velocity and the scaling exponent of the approximate
self-similar profile. We use this property to extract the main damping effect from the
linearized operator in the near field using some carefully designed singular weights.

As we will show later, c̄l x + ū is the velocity field for the linearized equation in
the dynamic rescaling formulation. The inequality c̄l x + ū ≥ 0.49x, x ≥ 0 implies
that the perturbation is transported from the near field to the far field and then damped
by the damping term c̄ωω in the ω equation and by 2c̄ωθx in the θx equation. This is
the main physical mechanism that generates the dynamic stability of the self-similar
blowup in the HL model. We believe that this also captures the dynamic stability
of the blowup scenario considered by Luo-Hou along the boundary [54, 55], whose
numerical evidence has been reported in [53].

There are four important components of our analysis for the HL model. The first
one is to construct the approximate steady state with sufficiently small residual error
by decomposing it into a semi-analytic part that captures the far field behavior of the
solution and a numerically computed part that has compact support. The approximate
steady state gives an approximate self-similar profile discussed above. See more dis-
cussion in Section 4. The second one is that we extract the damping effect from the
local terms in the linearized equations by using carefully designed singular weights.
The third one is that the contributions from the advection terms are relatively weak
compared with those coming from the vortex stretching terms. As a result, we can treat
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those terms coming from advection as perturbation to those from vortex stretching.
The last one is to apply some sharp functional inequalities to control the nonlocal
terms and take into account cancellation among various nonlocal terms. This enables
us to show that the contributions from the nonlocal terms are relatively small com-
pared with those from the local terms and can be controlled by the damping terms. We
refer to Section 2 for more detailed discussion of the main ingredients in our stability
analysis.

We believe that the analysis of the 2DBoussinesq equations and 3DEuler equations
with smooth initial data and boundary would benefit from the four important compo-
nents mentioned above. The stability analysis of the HLmodel is established based on
some weighted L2 space. For the 2D Boussinesq equations and 3D Euler equations,
a wider class of functional spaces, e.g. weighted L p or weighted Cα spaces, can be
explored to derive larger damping effect from the linearized equations and to further
establish stability analysis.

There is an interesting implication of our blowup results for the self-similar
solution (ω∗, θ∗) defined in (1.3). In Section 6.1, we show that the profile sat-
isfies limx→∞ θ∞(x)|x |−γ = C for some C > 0 (see (1.3)). Thus, we have
limt→1 θ∗(x, t) → C |x |γ for any x 
= 0. Since 0 < γ < 1, the self-similar solu-
tion forms a cusp singularity at x = 0 as t → 1. Moreover, from Theorem 1, for a
class of initial data θ0, the Cγ norm of the singular solution θ is uniformly bounded
up to the blowup time. Note that from Theorem 1, we have |γ − 0.33304| < 2 · 10−5,
thus γ ≈ 1

3 and limt→1 θ∗(x, t) = C |x |γ ≈ C |x |1/3. Similarly, we can generalize the
method of analysis to prove limt→1 ω∗(x, t) = C2|x |(γ−1)/2 ≈ C2|x |−1/3. Interest-
ingly, the limiting behavior is closely related to a family of explicit solutions of (1.2)
discovered by Hoang and Radosz in [39]

ω(x, t) = k|x |−1/3sgn(x), θ(x, t) = c1k
2|x |1/3 + c2k

3t, (1.4)

where c1, c2 > 0 are suitable constants and k > 0 is arbitrary. We remark that from
Theorem 1, the C1/3 norm of θ from a class of smooth initial data that we consider
blows up at the singularity time since 1

3 > γ , while the non-smooth θ in (1.4) remains
in C1/3 for all time.

The cusp formation and the Hölder regularity on θ are related to theC1/2 conjecture
by Silvestre and Vicol in [68] and the cusp formation on the Cordoba-Cordoba-
Fontelos (CCF) model [11, 17, 45, 52], which is the θ−equation in (1.2) coupled
with u = Hθ . The cusp formation of a closely related model was established in [38],
and the C1/2 conjecture was studied in [26, 28] for a class of C1,α initial data with
small α. Using the same method for the HL model, we have obtained an approximate
self-similar profile for the CCF model with residual O(10−8) and γ = 0.5414465,
which is accurate up to six digits. This blowup exponent γ is qualitatively similar
to that obtained in [56] for the generalized Constantin-Lax-Majda model (gCLM)
(see[64]) with a = −1. In a follow-up work, we will generalize our method of analy-
sis to study the cusp formation of the CCF model, and rigorously prove that θ ∈ Cγ

up to the singularity time with γ > 1/2. Moreover, the Cβ norm of θ will blow up at
the singularity time for any β > γ .
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There has been a lot of effort in studying potential singularity of the 3D Euler
equations using various simplified models. In [13, 37, 39, 49], the authors proposed
several simplified models to study the Hou-Luo blowup scenario [54, 55] and estab-
lished finite time blowup of these models. In these works, the velocity is determined
by a simplified Biot-Savart law in a form similar to the key lemma in the seminal work
of Kiselev-Sverak [48]. In [42], Hou and Liu established the self-similar singularity
of the CKY model [13] using the property that the CKY model can be reformulated
as a local ODE system. The HL model does not enjoy a similar local property, and
our method to prove self-similar singularity is completely different from that in [42].
In [27, 29] , Elgindi and Jeong proved finite time singularity formation for the 2D
Boussinesq and 3D axisymmetric Euler equations in a domain with a corner using
C̊0,α data.

Several other 1D models, including the Constantin-Lax-Majda (CLM) model [16],
theDeGregorio (DG)model [20, 21], and the gCLMmodel [64], have been introduced
to study the effect of advection and vortex stretching in the 3D Euler. Singularity
formation from smooth initial data has been established for the CLM model in [16],
for the DGmodel in [11], and for the gCLMmodel with various parameters in [2, 5, 6,
11, 26, 28]. In the viscous case, singularity formation of the gCLM model with some
parameters has been established in [6, 66].

The rest of the paper is organized as follows. In Section 2, we outline some main
ingredients in our stability analysis by using the dynamic rescaling formulation. Sec-
tion 3 is devoted to linear stability analysis. In Section 4, we discuss some technical
difficulty in obtaining an approximate steady state with a residual error of order 10−10.
In Section 5, we perform nonlinear stability analysis and establish the finite time
blowup result. In Section 6, we estimate the Hölder regularity of the singular solution.
In Section 7, we give a formal derivation to demonstrate that both the HL model and
the 2D Boussinesq equations with C1,α initial data for velocity and θ and with bound-
ary have the same leading system for small α. We make some concluding remarks in
Section 8. Some technical estimates and derivations are deferred to the Appendix.

2 Outline of themain ingredients in the stability analysis

In this section, we will outline the main ingredients in our stability analysis by using
the dynamic rescaling formulation for the HL model. The most essential part of our
analysis lies in the linear stability. We need to use a number of techniques to extract
the damping effect from the linearized operator around the approximate steady state of
the dynamic rescaling equations and obtain sharp estimates of various nonlocal terms.
Since the damping coefficient we obtain is relatively small (about 0.03), we need to
construct an approximate steady state with a very small residual error of order 10−10.
This is extremely challenging since the solution is supported on thewhole real linewith
a slowly decaying tail in the far field.We use analytic estimates and numerical analysis
with rigorous error control to verify that the residual error is small in the energy norm.
See detailed discussions in Section 4 and Section 10 of the Supplementary Material
[10].
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Passing from linear stability to nonlinear stability is relatively easier since the
perturbation is quite small due to the small residual error. Yet we need to verify various
inequalities involving the approximate steady state using the interval arithmetic [33,
63, 65] and numerical analysis with computer assistance. The most essential part of
the linear stability analysis can be established based on the grid point values of the
approximate steady state constructed on a relatively coarse grid,which does not involve
the lengthy rigorous verification. See more discussion in Section 3.13. The reader who
is not interested in the rigorous verification can skip the lengthy verification process
presented in the Supplementary Material [10].

2.1 Dynamic rescaling formulation

An essential tool in our analysis is the dynamic rescaling formulation. Let ωphy(x, t),
θphy(x, t) be the solutions of the physical equations (1.2), then it is easy to show that

ω(x, τ ) = Cω(τ)ωphy(Cl(τ )x, t(τ )), θ(x, τ ) = Cθ (τ )θphy(Cl(τ )x, t(τ ))

are the solutions to the dynamic rescaling equations

ωτ + (cl x + u)ωx = cωω + θx , θτ + (cl x + u)θx = cθ θ, ux = Hω, (2.1)

where t(τ ) = ∫ τ

0 Cω(s)ds and

Cω(τ) = exp

(∫ τ

0
cω(s)ds

)
, Cl(τ ) = exp

(∫ τ

0
−cl(s)ds

)
,

Cθ (τ ) = exp
( ∫ τ

0
cθ (s)ds

)
.

In order for the dynamic rescaling formulation to be equivalent to the original HL
model, we must enforce a relationship among the three scaling parameters, cl , cω and
cθ , i.e. cθ = cl + 2cω.

The dynamic rescaling formulation was introduced in [50, 59] to study the self-
similar blowup of the nonlinear Schrödinger equations. This formulation is closely
related the modulation technique, which has been developed by Merle, Raphael, Mar-
tel, Zaag and others, see e.g. [44, 58, 60–62]. The dynamic rescaling formulation
and modulation technique have been very effective in analyzing singularity forma-
tion for many nonlinear PDEs including the nonlinear Schrödinger equation [44, 60],
the nonlinear wave equation [62], the nonlinear heat equation [61], the generalized
KdV equation [58], theDeGregoriomodel and the generalized Constantin-Lax-Majda
model [5, 6, 11], and singularity formation in 3D Euler equations [7, 24].

To simplify our presentation, we still use t to denote the rescaled time in (2.1).
Taking the x derivative on the θ equation in (2.1) yields

ωt + (cl x + u)ωx = cωω + θx ,

(θx )t + (cl x + u)θxx = (cθ − cl − ux )θx = (2cω − ux )θx , ux = Hω,
(2.2)
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where cθ = cl + 2cω. We still have two degrees of freedom in choosing cl , cω to
uniquely determine the dynamic rescaled solution. We impose the following normal-
ization conditions on cω, cl

cl = 2
θxx (0)

ωx (0)
, cω = 1

2
cl + ux (0). (2.3)

These two normalization conditions play the role of forcing

θxx (t, 0) = θxx (0, 0), ωx (t, 0) = ωx (0, 0) (2.4)

for all time. Our study shows that enforcing θxx (t, 0) to be independent of time is
essential for stability by eliminating a dynamically unstable mode in the dynamic
rescaling formulation.

2.2 Main result

Throughout this paper, we will consider solution of (2.1) with oddω, θx and θ(t, 0) =
0. Under this setting, it is not difficult to show that the odd symmetries of θx , ω, u and
the condition θ(t, 0) = 0 are preserved by the equations.

Due to the symmetry, we restrict the inner product and L2 norm to R+

〈 f , g〉 �
∫ ∞

0
f gdx, || f ||22 =

∫ ∞

0
f 2dx . (2.5)

Let ψ, ϕ be the singular weights defined in (3.8), and λi be the parameter given in
(C.3). We use the following energy in our energy estimates

E2( f , g) � || f ψ1/2||22 + λ1||gψ1/2||22 + λ2
π

2
(Hg(0))2 + λ3〈 f , x−1〉2

+ λ4(||Dx f ψ
1/2||22 + λ1||Dxgϕ

1/2||22),
(2.6)

where Hg(0) = − 1
π

∫
R
gx−1dx is related to cω in (2.3). Our main result is the

following.

Theorem 2 Let (θ̄ , ω̄, c̄l , c̄ω) be the approximate self-similar profile constructed in
Section 4, and E∗ = 2.5 · 10−5. For odd initial data θ0,x , ω0 of (2.1) with θ0(0) =
0 and a small perturbation to (θ̄x , ω̄), E(θ0,x − θ̄x , ω0 − ω̄) ≤ E∗, we have (a)
E(θx − θ̄x , ω − ω̄) ≤ E∗ for all time.

(b) The solution (θ, ω, cl , cω) converges to a steady state of (2.1) (θ∞, ω∞, cl,∞,

cω,∞)

||(θx (t) − θ∞,x )ψ
1/2||2 + ||(ω(t) − ω∞)ϕ1/2||2 + ||cl(t) − cl,∞||2

+||cω(t) − cω,∞||2 ≤ Ce−κ2t

exponentially fast, for some κ2 > 0,C > 0. Moreover, (θ∞, ω∞, cl,∞, cω,∞) enjoys
the regularity E(θx,∞ − θ̄x , ω∞ − ω̄) ≤ E∗, and is the unique steady state in the class
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E(θx − θ̄x , ω − ω̄) ≤ E∗ with normalization conditions (2.3)and θ(0) = 0, and odd
assumption on θx , ω.

(c) Let γ = cθ,∞
cl,∞ = cl,∞+2cω,∞

cl,∞ . We have | cω,∞
cl,∞ − 2.99870| ≤ 6 · 10−5. Moreover,

the solution enjoys the Hölder estimates θ∞ ∈ Cγ and supt≥0 ||θ ||Cγ � 1.
(d) For the physical equations (1.2) with the above initial data, the solution blows

up in finite time T with the following blowup estimates for any γ < β ≤ 1

||θphy(t)||Cβ � (T − t)−δ, δ = 2(β − γ )

1 − γ
> 0.

If in addition θ0,x |x |1−γ ∈ L∞, the Cγ norm is uniformly bounded up to the blowup
time: supt∈[0,T ) ||θphy(t)||Cγ � 1.

The assumption θ0,x |x |1−γ ∈ L∞ in (d) is to ensure the decay |θ0,x | ≤ C |x |γ−1,
which is consistent with θ0 ∈ Cγ . In fact, if θ0 ∈ Cγ , we get |θ0(x)| � 1 + |x |γ .
Then, formally, θ0,x has a decay rate |x |γ−1.

2.3 Main ingredients in our stability analysis

The key step to prove Theorem 2 is the stability analysis. We will outline several
important ingredients to establish it in this subsection

2.3.1 The stability of the linearized operator

The most essential part of our analysis is the linear stability of the linearized operator
around the approximate steady state (θ̄ , ω̄, c̄l , c̄ω). To simplify our notation, we still
use ω, u, θ, cl , and cω to denote the perturbation. The linearized system for the
perturbation is given below by neglecting the nonlinear and error terms:

∂tθx + (c̄l x + ū)θxx = (2c̄ω − ūx )θx + (2cω − ux )θ̄x − uθ̄xx ,

ωt + (c̄l x + ū)ωx = c̄ωω + θx + cωω̄ − uω̄x , cω = ux (t, 0), cl = 0.
(2.7)

The condition cω = ux (t, 0), cl = 0 is a consequence of the normalization conditions
(2.4). There are two groups of terms in the above system, one representing the local
terms and the other representing the nonlocal terms. Among the nonlocal terms, we
can further group them into three subgroups, one from the vortex stretching term, one
from the advection term, and the remaining from the rescaling factor cω.

As in our previous works [7, 11], we design some singular weights to extract the
damping effect from the local terms. As we mentioned before, we will use c̄l x + ū ≥
0.49x to extract an O(1) damping effect. Since the damping coefficient that we can
extract from the local terms is relatively small and the linearized operator is not a
normal operator, we typically expect to have a transient growth for a standard energy
norm of the solution to (2.7). This will present considerable difficulty for us to obtain
nonlinear stability since the approximate steady state also introduces a residual error.
To overcome this difficulty, we need to design a weighted energy norm carefully so
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that the energy of the solution to the linearized equations decreases monotonically in
time. We remark that weighted energy estimates with singular weights have also been
used in [5, 6, 24, 43] for nonlinear stability analysis.

2.3.2 Control of nonlocal terms

The most challenging part of the linear stability analysis is how to control several
nonlocal terms that are of O(1). It is essential to obtain sharp estimates of these non-
local terms by applying sharp weighted functional inequalities, e.g. Lemma A.8, and
taking into account the cancellation among different nonlocal terms and the structure
of the coupled system. We have also used the L2 isometry property and several other
properties of the Hilbert transform in an essential way. We remark that some of these
properties of the Hilbert transform have been used in the previous works, see, e.g. [2,
6, 11, 18, 28]. Based on our observation that the blowup is driven by vortex stretching
and the advection is relatively weak compared with vortex stretching, we will treat
the nonlocal terms that are generated by the advection terms, e.g. uθ̄xx in (2.7), as
perturbation to the linearized vortex stretching terms, e.g. ux θ̄x in (2.7). We will use
the following five strategies in our analysis.
(1) The decomposition of the velocity field. We first denote ũ � u − ux (0)x and
choose a constant c = 1/(2p−1)where p is related to the order of the singular weight
|x |−p being used. We further decompose ũ into a main term and a remainder term as
follows:

ũ = cxũx + (ũ − cxũx ) � ũM + ũ R, (2.8)

where ũM = cxũx and ũ R = (ũ − cxũx ). The contribution from the remainder term
ũ R is smaller than xũx due to an identity (see Appendix B.1)

||(ũ − 1

2p − 1
ũx x)x

−p||22 = 1

(2p − 1)2

∫
R+

ũ2x
x2p−2 dx . (2.9)

We can choose p = 3 in the near field, which enables us to gain a small factor of 1/5
in estimating the ũ R term in terms of the weighted norm of ũx .
(2) Exploiting the nonlocal cancellation between ũx and ω. For the main term
ũM = cxũx and the vortex stretching term −ux θ̄x , we use an orthogonality between
ũx and ω

〈ũx , ωx−3〉 = 〈Hω − Hω(0), ωx−3〉 = 0 (2.10)

(see LemmaA.4).Wewill use similar orthogonal properties to exploit the cancellation
between −ũx θ̄x in the θx equation and θx in the ω equation in (2.7) by performing the
weighted L2 estimates for θx and ω together. To illustrate this idea, we consider the
following model:
Model 1 for nonlocal interaction

∂tθx = −(ux − ux (0))θ̄x , ωt = θx . (2.11)
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The above system is derived by dropping other terms in (2.7). The profile θ̄x satisfies
θ̄x (0) = 0 and θ̄x > 0 for x > 0.

By performing L2(ρ1) estimate on θx and L2(ρ2) estimate on ω, we get

1

2

d

dt
(〈θx , θxρ1〉 + 〈ω,ωρ2〉) = −〈(ux − ux (0))θ̄xρ1, θx 〉 + 〈ωρ2, θx 〉 � I .(2.12)

From (2.10), we know that (ux − ux (0))x−2 and ωx−1 are orthogonal. Formally, I
is the sum of the projections of θx onto two directions that are orthogonal. To exploit
this orthogonality, we choose ρ1 = (μx θ̄x )−1ρ2 with any μ > 0. We can rewrite I as
follows

I = 〈−(ux − ux (0))x
−2, θx θ̄xρ1x

2〉 + 〈μωx−1, θx θ̄xρ1x
2〉 � 〈A + B, θx θ̄xρ1x

2〉,

where A = −(ux − ux (0))x−2 and B = μωx−1. Applying the Cauchy-Schwarz
inequality yields

I ≤ ||A + B||2||θx θ̄xρ1x2||2.

The equality can be achieved if θx θ̄xρ1x2 = c(A + B) for some c. Expanding
||A + B||2 and using Lemma A.4 with f = ω and g = u, we get

||A + B||22 = ||A||22 + ||B||22 + 2〈A, B〉 = ||A||22 + ||B||22, (2.13)

which is sharper than the trivial estimate ||A+ B||2 ≤ ||A||2 +||B||2. The ||A||22 term
can be further bounded by ||ωx−1||22 using the L2 isometry of the Hilbert transform in
Lemma A.2. The ||B||22 term can be bounded by the weighted L2 norm of ω directly.
(3) Additional damping effect from cω. Another nonlocal term in (2.7) is cω =
ux (t, 0) = H(ω)(t, 0). Physically, the role of cω is to rescale the amplitude of the
blowup profileω in the original physical variable so that the magnitude of the dynamic
rescaled profile remains O(1) for all time. Thus, we expect that the dynamic rescaling
parameter cω should also offer some stabilizing effect to the blowup profile and the
linearized system (2.7). Indeed, by deriving anODEfor cω,we can extract an additional
damping term, which will be used to control other nonlocal terms associated with cω.
To illustrate this idea, we consider the following model:
Model 2 for the cω term

∂tθx = cω f̄ , ∂tω = θx + cω ḡ, (2.14)

where f̄ , ḡ are odd and f̄ , ḡ > 0 for x > 0 with f̄ x−1, ḡx−1 ∈ L1. Note that the
profile satisfies that θ̄x − x θ̄xx , ω̄ − xω̄x are odd and positive for x > 0. This system
models the cω terms in (2.7) with coupling θx in ω equation by dropping other terms.
Recall

cω = − 1

π

∫
R

ω

x
dx = − 2

π
〈ω, x−1〉.
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Obviously, it can be bounded by some weighted L2 norm of ω using the
Cauchy-Schwarz inequality. Yet, the constant in this estimate is large. Denote A =
〈 f̄ , x−1〉, B = 〈ḡ, x−1〉. By definition, A, B > 0. We derive an ODE for cω using the
ω equation

∂t 〈ω, x−1〉 = cω〈ḡ, x−1〉 + 〈θx , x−1〉 = − 2

π
B〈ω, x−1〉 + 〈θx , x−1〉.

We see that the cω term in the ω equation in (2.14) has a damping effect, which is
not captured by the weighted L2 estimates. To handle the coupled term, we also derive
an ODE for 〈θx , x−1〉 using the θx equation

∂t 〈θx , x−1〉 = cω〈 f̄ , x−1〉 = − 2

π
A〈ω, x−1〉.

Multiplying both sides of these ODEs by 〈ω, x−1〉 or 〈θx , x−1〉, we yield

1

2

d

dt
〈ω, x−1〉2 = − 2

π
B〈ω, x−1〉2 + 〈θx , x−1〉〈ω, x−1〉,

1

2
∂t 〈θx , x−1〉2 = − 2

π
A〈θx , x−1〉〈ω, x−1〉.

(2.15)

The 〈θx , x−1〉〈ω, x−1〉 terms in the above ODEs have cancellation. This implies
that the cω term in the θx equation and θx term in the ω equation have cancellation,
which is not captured by the weighted L2 estimate. We will derive similar ODEs in
the analysis of (2.7) and obtain damping term similar to − 2

π
B〈ω, x−1〉2 in the above

ODEs, which enables us to control the cω terms in (2.7) effectively.

(4) Estimating the u term in (2.7). To estimate the u terms in (2.7) effectively, we
have two approaches. The first approach is to exploit the cancellation between u and
ω similar to that in Model 1. See Lemma A.4. The second approach is to decompose ũ
into the main term ũM = cxũx and an error term ũ R as (3.17). For ũM , we employ the
estimates on ux discussed previously. The error term ũ R enjoys better estimate (2.9)
and is treated as a perturbation.

(5) Obtaining sharp estimates for other interaction terms. To obtain sharper esti-
mates for a number of quadratic interaction terms,we introduce a number of parameters
in various intermediate steps and optimize these parameters later by solving a con-
strained optimization problem. In the ODE for cω and the weighted L2 estimates, we
need to control a number of quadratic interaction terms, e.g. 〈ω, x−1〉 · 〈θx , x−1〉. We
treat these interaction terms as the products of projection of θx and ω onto some low
dimensional subspaces and reduce them to some quadratic forms in a finite dimen-
sional space. This connection enables us to reduce the problem of obtaining sharp
estimates of these terms to computing the largest eigenvalue λmax of a matrix. We
then compute λmax as part of the constrained optimization problem to determine these
parameters and obtain a sharper upper bound in the energy estimate.
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3 Linear stability

In this section, we establish the linear stability of (3.6) in some weighted L2 spaces.

3.1 Linearized operators around approximate steady state

The approximate steady state of (2.2) (θ̄x , ω̄)we construct are oddwith scaling factors

c̄l = 3, |c̄ω + 1.00043212| < 10−8, c̄ω ≈ −1.

It has regularity ω̄, θ̄x ∈ C3 and decay rates ∂ ix ω̄ ∼ xα−i , ∂ ix θ̄x ∼ x2α−i , i = 0, 1, 2
with α slightly smaller than −1/3. One can find plots of (ω̄, θ̄x ) (with particular
rescaling) in Figure 2 in Section 5.5. See detailed discussion in Section 4. Note that we
do not require aC∞ approximate steady state in our analysis, since theC3 approximate
steady state is regular enough for us to perform weighted H1 estimates and establish
its nonlinear stability.

Linearizing around the approximate steady state (θ̄x , ω̄), we obtain the equations
for the perturbation

∂tθx + (c̄l x + ū)θxx = (2c̄ω − ūx )θx + (2cω − ux )θ̄x − uθ̄xx + Fθ + N (θ),

ωt + (c̄l x + ū)ωx = c̄ωω + θx + cωω̄ − uω̄x + Fω + N (ω),
(3.1)

where the error terms Fθ , Fω and the nonlinear terms N (θ), N (ω) read

Fθ = (2c̄ω − ūx )θ̄x − (c̄l x + ū) · θ̄xx , Fω = θ̄x + c̄ωω̄ − (c̄l x + ū) · ω̄x ,

N (θ) = (2cω − ux )θx − uθxx , N (ω) = cωω − uωx .
(3.2)

We consider odd initial perturbation ω0, θ0,x with ω0,x (0) = 0, θ0,xx (0) = 0. Note
that the normalization conditions (2.3),(2.4) implies

cω = ux (0), cl = 0, θxx (t, 0) = θ0,xx (0) = 0, ωx (t, 0) = ω0x (0) = 0, (3.3)

for the perturbation. Since ω, θx are odd, these normalization conditions imply that
near x = 0, ω = O(x3), θx = O(x3) for sufficient smooth solution. This important
property enables us to use a more singular weight in our stability analysis to extract a
larger damping coefficient.

We rewrite the cω and u terms as follows

(2cω − ux )θ̄x − uθ̄xx = −(ux − ux (0))θ̄x − (u − ux (0)x)θ̄xx + cω(θ̄x − x θ̄xx ),

cωω̄ − uω̄x = −(u − ux (0)x)ω̄x + cω(ω̄ − xω̄x )
(3.4)

Denote � = (−�)1/2. From ∂xu = Hω and � = ∂x H , we have u(x) =
−�−1ω(x) = 1

π

∫
log |x − y|ω(y)dy. Using this notation, we get u − ux (0)x =
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−�−1ω − Hω(0)x . We introduce the following linearized operators

Lθ1( f , g) = −(c̄l x + ū) fx + (2c̄ω − ūx ) f − (Hg − Hg(0))θ̄x

− (−�−1g − Hg(0)x)θ̄xx ,

Lω1( f , g) = −(c̄l x + ū)gx + c̄ωg + f − (−�−1g − Hg(0)x)ω̄x ,

Lθ ( f , g) = Lθ1( f , g) + Hg(0)(θ̄x − x θ̄xx ),

Lω( f , g) = Lω1( f , g) + Hg(0)(ω̄ − xω̄x ).

(3.5)

Using these operators, we can rewrite (3.1) as follows

∂tθx = Lθ1(θx , ω) + cω(θ̄x − x θ̄xx ) + Fθ + N (θ),

∂tω = Lω1(θx , ω) + cω(ω̄ − xω̄x ) + Fω + N (ω).
(3.6)

Clearly, Lθ ,Lω are the linearized operators associated to (3.1). The motivation of
introducing Lθ1,Lω1 is that the estimates of these operators will be used importantly
in both the weighted L2 and weighted H1 estimates.

3.2 Singular weights

For some e1, e2, e3 > 0 determined by the profile (ω̄, θ̄ ), we introduce

ξ1 = e1x
−2/3 − (θ̄x + 1

5
x θ̄xx ), ξ2 = e2x

−2/3 − (θ̄x + 3

7
x θ̄xx ),

ξ3 = −e3
3
x−4/3 − ω̄x . (3.7)

Following the guideline of the construction of the singular weight in [11], we design
different parts of the singular weight that have different decays as follows

ψn = 1

θ̄x + 1
5 x θ̄xx + χξ1

(α1x
−4 + α2x

−3), ψ f = 1

θ̄x + 3
7 x θ̄xx + χξ2

α3x
−4/3,

ϕs = α4x
−4, ϕn = α5(α1x

−3 + α2x
−2), ϕ f = α6x

−2/3,

(3.8)

where the parameters are positive and chosen in (C.2), and the cutoff function χ

defined in Appendix B.2 is supported in |x | ≥ ρ2 for ρ2 > 108. The subscripts f , n, s
are short for far, near, singular. We use the following weights in the weighted Sobolev
estimate

ψ = ψn + ψ f , ϕ = ϕs + ϕn + ϕ f . (3.9)

We introduce χ, ξ1, ξ2 and add them in the definition of ψn, ψ f for the following
purposes. Firstly, recall from the beginning of Section 3.1 that θ̄x + cx θ̄xx with c = 1

5
or c = 3

7 has decay x2α which is close to x−2/3. In particular, for sufficient large x , it
can bewell approximated by ex−2/3 for some constant e. The parameters e1, e2 in (3.7)
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are determined in this way. Secondly, in the far field, where χ(x) = 1, the weights
ψn, ψ f reduce to c1x−7/3, c2x−2/3 for some c1, c2, respectively. These explicit powers
are much simpler than the weights in the near field and have forms similar to those
in ϕ. They will be useful for the analytic estimates (see Section 3.6) and simplify the
computer-assisted verification of the estimates in the far field. We introduce ξ3 similar
to ξ1, ξ2 and it will be used later.

Remark 3.1 Since χ is supported in |x | > 108 and the profile (ω̄, θ̄x ) decays for large
|x |, we gain a small factor in the estimates of the terms involving χ . Thus, the upper
bound in these estimates are very small. The reader can safely skip the technicalities
due to the χ terms.

3.2.1 The form of the singular weights

We add θ̄x , θ̄xx terms in the denominators inψn, ψ f to cancel the variable coefficients
in our energy estimates. InModel 1 in Section 2.3.2, we have chosenρ1 = (μx θ̄x )−1ρ2
so that we can combine the estimates of two interactions in (2.12). Here, we design
ψn, ϕn with a similar relation ψn = 1

f x
−1ϕn, f = θ̄x + 1

5 x θ̄xx + χξ1 for the same
purpose. Similar consideration applies to ψ f , ϕ f . See also estimates (3.18), (3.23).
This idea has been used in [7, 11] for stability analysis.

The profile satisfies θ̄x + 1
5 x θ̄xx , θ̄x + 3

7 x θ̄xx > 0 for x > 0. The weight ψ is of
order x−5 for x close to 0, while it is of order x−2/3 for large x . We choose ϕ of order
x−4 near 0 so that we can apply the sharp weighted estimates in Lemma A.8 to control
ux and u.

We will use the following notations repeatedly

ũ � u − ux (0)x, ũx = ux − ux (0). (3.10)

3.3 Weighted L2 estimates

Performing weighted L2 estimates on (3.6) with weights ψ, ϕ, we obtain

1

2

d

dt
〈θx , θxψ〉 = 〈Lθ1θx , θxψ〉 + cω〈θ̄x − x θ̄xx , θxψ〉 + 〈N (θ), θxψ〉 + 〈Fθ , θxψ〉

=
(

− 〈(c̄l x + ū)θxx , θxψ〉 + 〈(2c̄ω − ūx )θx , θxψ〉
)

+
(

− 〈(ux − ux (0))θ̄x + (u − ux (0)x)θ̄xx , θxψ〉 + cω〈θ̄x − x θ̄xx , θxψ〉
)

+ 〈N (θ), θxψ〉 + 〈Fθ , θxψ〉 � D1 + Q1 + N1 + F1,

1

2

d

dt
〈ω,ωϕ〉 = 〈Lω1ω,ωϕ〉 + cω〈ω̄x − xω̄xx , ωxϕ〉 + 〈N (ω), ωϕ〉 + 〈Fω, ωϕ〉

=
(

− 〈(c̄l x + ū)ωx , ωϕ〉 + 〈c̄ωω,ωϕ〉
)

+
(
〈θx , ωϕ〉 − 〈(u − ux (0)x)ω̄x , ωϕ〉

+ cω〈ω̄ − xω̄x , ωϕ〉
)

+ 〈N (ω), ωϕ〉 + 〈Fω, ωϕ〉 � D2 + Q2 + N2 + F2.

(3.11)
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Our goal in the remaining part of this Section is to establish an estimate similar to

D1 + λ1D2 + Q1 + λ1Q2 ≤ −c(||θxψ1/2||22 + λ1||ωϕ1/2||22), (3.12)

for some λ1 > 0 with c > 0 as large as possible. This implies the linear stability
of (3.6) with Ni , Fi = 0 in the energy norm ||θxψ1/2||22 + λ1||ωϕ1/2||22. The actual
estimate is slightly more complicated and we will add c2ω, 〈θx , x−1〉2 to the energy.
We ignore the term cω and 〈θx , x−1〉2 for now to illustrate the main ideas. See (3.57).

The D1, D2 terms only involve the local terms about θx , ω and we treat them as
damping terms. The Qi term denotes the quadratic terms other than Di in the weighted
L2 estimates; The Ni and Fi terms represent the nonlinear terms and error terms in
(3.6).

For D1, D2, performing integration by parts on the transport term, we obtain

D1 = 〈Dθ , θ
2
xψ〉, D2 = 〈Dω, ω2ϕ〉, (3.13)

where Dθ , Dω are given by

Dθ = 1

2ψ
((c̄l x + ū)ψ)x + 2c̄ω − ūx , Dω = 1

2ϕ
((c̄l x + ū)ϕ)x + c̄ω.

We will verify that Dθ , Dω ≤ −c < 0 for some constant c > 0 in (D.4), Appendix D.
Theweightψ in (3.9) involves three parametersα1, α2, α3.We choose the approximate
values of αi with αi > 0 so that Dθ ≤ −cwith c as large as possible and varies slowly.
This enables us to obtain a large damping coefficient. After we choose α1, α2, α3, we
choose positive α4, α5 and α6 in the weight ϕ in (3.9) so that Dω ≤ −c1 with c1 as
large as possible and varies slowly. The final values are given in (C.2). See also Figure
1 for plots of the grid point values of Dθ , Dω.

Using the notations in (3.10), we can rewrite Q1 + λ1Q2 as follows

Q1 + λ1Q2 = −〈ũx θ̄x + ũθ̄xx , θxψ〉 + λ1〈ω, θxϕ〉 − λ1〈ũω̄x , ωϕ〉
+ cω〈(θ̄x − x θ̄xx ), θxψ〉 + λ1cω〈(ω̄ − xω̄x ), ωϕ〉. (3.14)

The terms in Q1 + λ1Q2 are the interactions among u, ω, θx and do not have a
favorable sign. Our goal is to prove that they are perturbation to the damping terms
D1, D2 and establish (3.12). This is challenging since the coefficients of the quadratic
terms in Q1 + λ1Q2 and in Di are comparable.

3.3.1 Decompositions on Qi

Recall different parts of the weights in (3.8). They provide a natural decomposition of
the global interaction among u, ω, θx into the near field and the far field interaction.
We have a straightforward partition of unity

ψnψ
−1 + ψ f ψ

−1 = 1, ϕnϕ
−1 + ϕ f ϕ

−1 + ϕsϕ
−1 = 1. (3.15)
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According to different singular orders and decay rates of the weights in (3.8),
ψ f ψ

−1, ϕ f ϕ
−1 are mainly supported in the far field, ψnϕ

−1 in the near field, ϕnϕ
−1

near |x | ≈ 1, and ϕsϕ
−1 near 0. Next, we decompose the interaction using these

weights. Using ψ = ψ f + ψn , we get

−〈ũx θ̄x , θxψ〉 = −〈ũx (θ̄x + χξ1), θxψn〉
−〈ũx (θ̄x + χξ2), θxψ f 〉 + 〈ũxχ(ξ1ψn + ξ2ψ f ), θx 〉.

We decompose the first two terms on the right hand side of (3.14) as follows

− 〈ũx θ̄x + ũθ̄xx , θxψ〉 + λ1〈ω, θxϕ〉
=

(
− 〈ũx (θ̄x + χξ2) + ũθ̄xx , θxψ f 〉 + λ1〈θx , ωϕ f 〉

)

+
(

− 〈ũx (θ̄x + χξ2) + ũθ̄xx , θxψn〉 + λ1〈θx , ωϕn〉
)

+ λ1〈θx , ωϕs〉
+ 〈ũxχ(ξ1ψn + ξ2ψ f ), θx 〉 � I f + In + Is + Ir1.

(3.16)

The subscripts f , n, s, r are short for far, near, singular, remainder. Denote Iuω =
−λ1〈ũω̄x , ωϕ〉 in (3.14). The main terms in (3.14) are I f , In and Is . From the above
discussion on (3.15), the interactions in In, I f , Is are mainly supported in different
regions. Since u depends on ω linearly, Iuω can be seen as the interaction between ω

and itself. This type of interaction is different from In, I f , Is . Since cω = ux (0) =
− 1

π

∫
R

ωdx , the terms cω〈(θ̄x − x θ̄xx ), θxψ〉, λ1cω〈(ω̄ − xω̄x ), ωϕ〉 in (3.14) are the
projections of ω, θx onto some rank-1 space. The estimate of the cω terms is smaller
than that of In, I f , Is, Iuω. The term Ir1 is very small compared to other terms and
will be estimated directly.

We will exploit the structure of the interactions in (3.14) using the above important
decompositions.

3.4 Outline of the estimates

In order to establish the weighted L2 estimates similar to (3.12), we first develop sharp
estimates on each term in the above decomposition. In these estimates, we introduce
several parameters, when we apply the Cauchy-Schwarz or Young’s inequality. These
parameters are important in our estimates. Since the coefficients in the damping term
D1, D2 (3.13) are relative small, we can treat the interaction term as perturbation to
the damping term using the energy estimates, only for certain range of parameters.
See more discussion in Remark 3.3. Thus, the upper bound in these estimates depend
on several parameters. Then, using these estimates, we reduce the estimate similar to
(3.12) to some inequality constraints on the parameters with explicit coefficients. See
(3.40) for an example. Finally, to obtain an overall sharp energy estimate, e.g. (3.12)
with c > 0 as large as possible, we determine these parameters guided by solving a
constrained optimization problem.

In our energy estimates, to obtain the sharp weighted estimates of xux , u with
singular weight x−2p by applying Lemma A.8, we can only use a few exponents
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p = 3, 2, 5
3 . Thus, we need to perform the energy estimates very carefully. The linear

combinations of different powers in LemmaA.8, e.g.αx−4+βx−2, plays a role similar
to that of interpolating different singular weights, e.g. x−4, x−2. It enables us to obtain
sharp weighted estimates with singular weight x−2q and intermediate exponent q. In
our weighted estimates of ux , u, we choose some weights with a few parameters, see
e.g. (3.33). Moreover, to generalize the cancellations and estimates in the Model 1 in
Section 2.3.2 to themore complicated linearized system (2.7), we also need to perform
the energy estimates carefully so that we can apply the cancellation in Lemma A.4.

3.5 Estimates of the interaction in the near field In

We use ideas in Model 1 in Section 2.3.2 to estimate the main term introduced below
and ideas in Section 2.3.2 to estimate u.

Firstly, we choose c = 1
5 in the decomposition 2.8 ũ = 1

5 xũx + ũ − 1
5 xũx , and

decompose ũx (θ̄x +χξ1)+ ũθ̄xx into themain termM and the remainderR as follows

ũx (θ̄x + χξ1) + ũθ̄xx = ũx (θ̄x + 1

5
θ̄xx x + χξ1) + (ũ − 1

5
ũx x)θ̄xx � M + R.

(3.17)

This term also appears in I f and we will use another decomposition in Section 3.6.
Recall In in (3.16). Using the above decomposition, we yield

In = −〈ũx (θ̄x + χξ1) + ũθ̄xx , θxψn〉 + λ1〈ω, θxϕn〉
=

(
− 〈M, θxψn〉 + λ1〈ω, θxϕn〉

)
+ 〈−R, θxψn〉 � IM + IR.

The estimates of IM are similar to that in Model 1 in Section 2.3.2. Recall the
formulas of ψn, ϕn in (3.8). Using Young’s inequality ab ≤ t2a2 + 1

4t2
b2 for t2 > 0,

we obtain

IM = −〈ũx , θx (α2x
−3 + α1x

−4)〉 + 〈ω, θxλ1α5(α2x
−2 + α1x

−3)

= 〈−ũx x
−2 + λ1α5ωx

−1, θx (α2x
−1 + α1x

−2)〉
≤ t2|| − ũx x

−2 + λ1α5ωx
−1||22 + 1

4t2
||θx (α2x

−1 + α1x
−2)||22.

(3.18)

Remark 3.2 We design the special form ψn in (3.8) so that the denominator in ψn and
the coefficient θ̄x + 1

5 θ̄xx x + χξ1 in M cancel each other. This allows us to obtain
a desirable term of the form J � −ũx x−2 + λ1α5ωx−1. The term t2||J ||22 in (3.18)
is a quadratic form in ω, where we can exploit the cancellation between ũx and ω to
obtain a sharp estimate. See Model 1 for the motivation.
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Using theweighted estimate in LemmaA.8 and LemmaA.4with f = ω and g = u,
we get

t2|| − ũx x
−2 + λ1α5ωx

−1||22 = t2
(
||ũx x−2||22 − 2λ1α5〈ũx , ωx−3〉 + (λ1α5)

2||ωx−1||22
)

= t2
(
||ωx−2||22 + (λ1α5)

2||ωx−1||22
)

= t2
〈
ω2, x−4 + (λ1α5)

2x−2
〉
.

(3.19)

The cancellation is exactly the same as (2.13) in Model 1. For IR, using Young’s
inequality ab ≤ t22a2 + 1

4t22
b2, (2.9) with p = 3 and the weighted estimate in Lemma

A.8, we obtain

IR = 〈(ũ − 1

5
ũx x)θ̄xx , θxψn〉 ≤ t22||(ũ − 1

5
ũx x)x

−3||22 + 1

4t22
||x3θ̄xxψnθx ||22

= t22
25

||ũx x−2||22 + 1

4t22
||x3θ̄xxψnθx ||22 = t22

25
||ωx−2||22 + 1

4t22
||x3θ̄xxψnθx ||22.

(3.20)

The remainder IR is much smaller than IM since we get a small factor 1
2p−1 = 1

5
from (2.9). Combining the above estimates, we establish the estimate for In = IM +
IR

In ≤
〈
ω2, t2x

−4 + t22
25

x−4 + t2(λ1α5)
2x−2

〉

+
〈
θ2x ,

1

4t2
(α2x

−1 + α1x
−2)2 + 1

4t22
(x3θ̄xxψn)

2
〉
. (3.21)

Remark 3.3 If we neglect other terms in (3.14) except In , a necessary condition for
(3.12) is

In + D1 + λ1D2 ≤ −c(||θxψ1/2||2 + λ1||ωϕ1/2||22) (3.22)

with c > 0, where D1, D2 are the damping terms in (3.13). We cannot determine
the ratio λ1 between two norms and ti in Young’s inequality without using the profile
(θ̄ , ω̄). For example, if we use equal weights λ1 = 1, t2 = t22 = 1

2 , we cannot apply
estimate (3.21) to establish (3.22) even with c = 0. Therefore, we introduce several
parameters, especially when we apply Young’s inequality. At this step, we do not fix
λ1, ti j such that the subproblem (3.22) holds with c > 0 as large as possible. In fact,
such parameters may not be ideal for (3.12) since the final energy estimate involves
other terms in (3.12),(3.14) to be estimated later on. Instead, we identify the ranges
λ1 ∈ [0.31, 0.33], t2 ∈ [5, 5.8], t22 ∈ [13, 14], such that a weaker version of (3.22)
with c = 0.01 holds with the estimate (3.21) on In . See Appendix D.1 for rigorous
verification. Similarly, we will obtain the ranges of other parameters ti introduced in
later estimates. We will determine the values of λ1, ti j in these ranges by combining
the estimates of I f , In and other terms in (3.14).

The estimates (3.18), (3.19) on the main term is crucial. If we estimate two inner
products separately without using the cancellation between ũx , ω in Lemma A.4 with
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f = ω and g = u, we would fail to establish (3.22) even with c = 0 since the damping
term Di is relatively small.

Remark 3.4 Several key ideas in the above estimates will be used repeatedly later.
Firstly, we will perform decompositions on ũ into the main term and the remainder
similar to (3.17). Secondly, we will use Lemmas A.4, A.5 to estimate the inner prod-
uct between ũ and ω similar to (3.19). Thirdly, we will use Lemma A.8 to estimate
weighted norms of ũx , ũ similar to (3.19).

3.6 Estimates of the interaction in the far field If

We use ideas and estimates similar to that of In to estimate I f . The main difference
is that to estimate the inner product between ũx and ω, instead of using Lemma A.4,
we will use Lemma A.5. See estimates (3.18) and (3.23).

Firstly, we choose c = 3
7 in (2.8) and decompose ũx (θ̄x + χξ2) + ũθ̄xx into the

main termM and the remainder R as follows

ũx (θ̄x + χξ2) + ũθ̄xx = ũx (θ̄x + 3

7
x θ̄xx + χξ2) + (ũ − 3

7
xũx )θ̄xx � M + R.

We choose c = 3
7 , which is different from that in (2.8), since we will apply (2.9) with

a different power p later. Recall I f in (3.16). The above formula implies

I f = −〈ũx (θ̄x + χξ2) + ũθ̄xx , θxψ f 〉 + λ1〈θx , ωϕ f 〉
=

(
− 〈M, θxψ f 〉 + λ1〈ω, θxϕ f 〉

)
+ 〈−R, θxψ f 〉 � IM + IR.

Recall the weights ψ f , ϕ f in (3.8). Using Young’s inequality a · b ≤ t1a2 + 1
4t1

b2

for some t1 > 0 to be determined, we obtain

IM = 〈−α3ũx x
−4/3 + λ1α6ωx

−2/3, θx 〉 = 〈−α3ũx x
−1 + λ1α6ωx

−1/3, θx x
−1/3〉

≤ t1|| − α3ũx x
−1 + λ1α6ωx

−1/3||22 + 1

4t1
||θx x−1/3||22 � IM,1 + IM,2.

(3.23)

We design the special form ψ f in (3.8) to obtain a desirable term of the form
−α3ũx x−1 +λ1α6ωx−1/3. See also Remark 3.2. We further estimate IM,1. Applying
Lemma A.8 and Lemma A.5, we derive

IM,1 = t1(||α3ũx x
−1||22 − 2α3λ1α6〈ũx , ωx−4/3〉 + (λ1α6)

2||ωx−1/3||22)
=t1(α

2
3 ||ωx−1||22 − 2α3λ1α6

2
√
3

(||ũx x−2/3||22 − ||ωx−2/3||22) + (λ1α6)
2||ωx−1/3||22)

=t1〈ω2, α2
3x

−2 + α3λ1α6√
3

x−4/3 + (λ1α6)
2x−2/3〉 − t1α3λ1α6√

3
||ũx x−2/3||22.

(3.24)
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Remark 3.5 The negative sign in−t12α3λ1α6〈ũx , ωx−4/3〉 in (3.24) is crucial. Firstly,
we can bound the positive term α3λ1α6t1√

3
||ωx−2/3||2 derived from the identity in Lemma

A.5 directly without an overestimate. Secondly, − t1α3λ1α6√
3

||ũx x−2/3||22 from the same

identity provides a good quantity that allows us to control the weighted norm of ũ, ũx
with a slowly decaying weight using Lemma A.8.

We introduce Du to denote the parameter in (3.24)

Du = t1α3λ1α6√
3

, (3.25)

We use Young’s inequality ab ≤ t12a2+ 1
4t12

b2 for some t12 > 0 and (2.9) with p = 5
3

to estimate IR directly

IR = −〈(ũ − 3

7
xũx ), θ̄xxψ f θx 〉 ≤ t12||(ũ − 3

7
ũx x)x

−5/3||22 + 1

4t12
||θxψ f θ̄xx x

5/3||22

= t12 · 9

49
||ũx x−2/3||22 + 1

4t12
||θxψ f θ̄xx x

5/3||22.
(3.26)

The remainder IR is smaller since we get a factor 1
2p−1 = 3

7 from (2.9).
Combining the above estimates, we obtain the estimate of I f = IM,1+ IM,2+ IR

I f ≤t1
〈
ω2, α2

3x
−2 + α3λ1α6√

3
x−4/3 + (λ1α6)

2x−2/3
〉

+
〈
θ2x ,

1

4t1
x−2/3 + 1

4t12
(ψ f θ̄xx x

5/3)2
〉
−

(
Du − 9

49
t12

)
||ũx x−2/3||22 .

(3.27)

Similar to the discussion in Remark 3.3, in order for I f + D1 + D2 ≤
−c(||θxψ1/2||2 + λ1||ωϕ1/2||22) with c = 0.01, we can choose t1 ∈ [1.2, 1.4], t12 ∈
[0.55, 0.65]. See Appendix D.1 for the verification.

3.7 Estimates of the interaction with themost singular weight Is

Recall Is in (3.16) and ψs = α4x−4 in (3.8). Using Young’s inequality ab ≤ t4a2 +
1
4t4

b2 for t4 > 0, we yield

Is = λ1〈ω, θxϕs〉 = λ1α4〈ω, θx x
−4〉 ≤ t4〈ω2, x−3〉 + (λ1α4)

2

4t4
〈θ2x , x−5〉. (3.28)

In order for Is + D1 + D2 ≤ −c(||θxψ1/2||2 + λ1||ωϕ1/2||22) with c = 0.01, we
can choose t4 ∈ [3, 5]. See Appendix D.1 for the verification. We do not combine
estimates of Is with the estimates for the interaction between ũ and θx in Section 3.5
since the weight x−4 is too singular. In fact, to apply estimate similar to that in (2.12)
in Model 1, the weight for θx near 0 is 2 order more singular than that of ω. In this
case, it is of order x−6 near 0 and more singular than ψ .
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3.8 Estimates of the interaction u andω

Firstly, we rewrite −λ1〈ũ, ω̄xωϕ〉 in (3.14) by decomposing ω̄x into the main term
ω̄x + χξ3 and the error term ξ3

Iuω � −λ1〈ũ, ω̄xωϕ〉 = −λ1〈ũ, (ω̄x + χξ3)ωϕ〉 + λ1〈ũ, χξ3ωϕ〉 � J + Ir2.

(3.29)

We will estimate Ir2 in Section 3.9 and show that it is very small. See also Remark
3.1.
Difficulty The main difficulty in establishing a sharp estimate for J is the slow decay
of the coefficient (ω̄x + χξ3)ϕ. A straightforward estimate similar to (3.26) yields
|J | ≤ λ1||ũx−p||2||ω̄xωρx p||2. In view of the weighted estimate in Lemma A.8, we
have effective estimates of (u − ux (0)x)x−p for exponent p = 3, 2 or 5

3 . In order to
further control ||ω̄xωϕx p||2 by the weighted L2 norm ||ωϕ1/2||2, we cannot choose
p = 3 or p = 2 due to the fast growth of x p for large |x |. On the other hand, if
we choose p = 5

3 , the resulting constant 36
49 in Lemma A.8 is much larger than the

constant 4
25 ,

4
9 corresponding to p = 3, p = 2.

To overcome this difficulty, we exploit the cancellations between u and ω in both
the near field and the far field, which is similar to that in the estimate of In, I f . We
decompose the coefficient (ω̄x +χξ3)ϕ in J into themain termsMi and the remainder
Kuω

(ω̄x + χξ3)ϕ = −1

3
e3α6x

−2 + τ1x
−4 +

(
(ω̄x + χξ3)ϕ + 1

3
e3α6x

−2 − τ1x
−4

)

� M1 + M2 + Kuω, (3.30)

where e3, α6 are defined in (3.7) and (3.8) and τ1 > 0 is some parameter.
Let usmotivate the above decomposition. From the definitions of ξ3, ϕ in (3.7)-(3.9)

and the discussion therein, we have ω̄x + χξ3 ≈ − 1
3e3x

−4/3, ϕ ≈ α6x−2/3 for some
e3, α6 > 0 and large |x |. Thus, (ω̄x + χξ3)ϕ can be approximated by − 1

3e3α6x−2 for
large |x |. Since ϕ ≈ α4x−4 and ω̄x ≈ ω̄x (0) > 0 near 0, (ω̄x +χξ3)ϕ is approximated
by τ1x−4 for some τ1 > 0 in the near field.

Using the above formula, we can decompose J as follows

J = −λ1〈ũ, (ω̄x + χξ3)ωϕ〉 = −λ1〈ũ,M1ω〉 − λ1〈ũ,M2ω〉
−λ1〈ũ,Kuωω〉 � IM1 + IM2 + IR.

To estimate themain terms, we use cancellations in LemmaA.4. Using ũ = u−ux (0)x
defined in (3.10), −ux (0)〈x, ωx−2〉 = π

2 u
2
x (0) and Lemma A.4 with f = ω and

g = u, we get

IM1 = λ1e3α6

3
〈ũ, ωx−2〉 = λ1e3α6

3

π

4
ux (0)

2 − λ1e3α6

3
〈�u

x
,
u

x
〉,
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where � = (−∂2x )
1/2. We denote by A(u) the right hand side of the above equation

A(u) � λ1e3α6

3

π

4
ux (0)

2 − λ1e3α6

3
〈�u

x
,
u

x
〉. (3.31)

Since e3α6λ1 > 0 and 〈� u
x , u

x 〉 ≥ 0, the second term in A(u) is a good term and
we will use it in the weighted H1 estimate.

Although IM2 is a quadratic form on ω, it does not have a good sign similar to the
identities in Lemma A.4. Yet, we can approximate ũ by ũx using (2.8) and then use
the cancellation between ũx and ω. Choosing c = 1

5 in 2.8 and using the cancellation
in Lemma A.4 with f = ω and g = u, we obtain

IM2 = −λ1τ1〈ũ, x−4ω〉 = −λ1τ1〈ũ − 1

5
ũx x, ωx

−4〉

−λ1τ1〈 ũx
5

, ωx−3〉 = −λ1τ1〈ũ − 1

5
ũx x, ωx

−4〉.

The form ũ− 1
5 ũx x allows us to gain a small factor 1

5 using (2.9) with p = 3. Using
Young’s inequality ab ≤ ca2 + 1

4c b
2, (2.9) with p = 3 and Lemma A.8, we obtain

IM2 ≤ λ1τ1

(
t34||(ũ − 1

5
ũx )x

−3||22 + 1

4t34
||ωx−1||22

)

= λ1τ1

( t34
25

||ũx x−2||22 + 1

4t34
||ωx−1||22

)

= λ1τ1(
t34
25

||ωx−2||22 + 1

4t34
||ωx−1||22) = λ1τ1

〈
ω2,

t34
25

x−4 + 1

4t34
x−2

〉
,

(3.32)

for some t34 > 0. For t31, t32 > 0 to be defined, we denote

Su1 = t31x
−6 + t32x

−4 + 2 · 10−5x−10/3, (3.33)

We estimate IR directly using Young’s inequality and the weighted estimate in
Lemma A.8

IR = −λ1〈ũ,Kuωω〉 ≤ λ1(||ũS1/2u1 ||22 + 1

4
||S−1/2

u1 Kuωω||22)

≤ λ1

〈
ω2,

4t31
25

x−4 + 4t32
9

x−2 + 1

4
K2

uωS
−1
u1

〉
+ 36λ1

49
· 2 · 10−5||ũx x−2/3||22,

(3.34)

where Kuω in defined (3.30).

Remark 3.6 From (3.7),(3.8) and (3.9), we have asymptotically Kuω ∼ Cx−4 for x
close to 0. The slowly decaying part in Kuω is given by f = (ω̄x + χξ3)α6x−2/3 +
1
3e3α6x−2 = (1 − χ)(ω̄x + 1

3e3x
−4/3)α6x−2/3. In the support of 1 − χ , since
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− 1
3e3x

−4/3 approximates ω̄x , f can be approximated by cx−2 with some very small
constant c. We add x−6, 2 · 10−5x−10/3 in Su1 so that K2

uωS
−1
u1 can be bounded by ϕ.

We also add the power x−4 in Su1 to obtain a sharper estimate. See also Remark 3.3
for the discussion on the parameters.

Combining the above estimates on IMi , IR, we prove

Iuω = J + Ir2 ≤ λ1

〈
ω2,

4t31
25

x−4 + 4t32
9

x−2 + 1

4
K2
uωS

−1
u1 + τ1(

t34
25

x−4 + 1

4t34
x−2)

〉

+ A(u) + 72λ1
49

· 10−5||ũx x−2/3||22 + Ir2.

(3.35)

The term Ir2 was not estimated and we keep it on both sides. We can determine
the ranges of parameters t31, t32, t34, τ1 so that J + D1 + D2 ≤ −0.01(||θxψ1/2||2 +
λ1||ωϕ1/2||22).

3.9 Estimates of the Ir1, Ir2

Recall Ir1, Ir2 in (3.16) and (3.29). Since χ is supported in the far field |x | ≥ ρ2 > 108

and the profile (ω̄, θ̄x ) decays, we can get a small factor in the estimate of these terms.
We establish the following estimate in Appendix B.2

|Ir1| + |Ir2| ≤ 〈Gθ , θ
2
x 〉 + 〈Gω, ω2〉 + Gcc

2
ω, (3.36)

where Gθ ,Gω,Gc are given by

Gθ = 1010 · (2 + √
3)2

4
χ2(ξ1ψn + ξ2ψ f )

2, Gc = λ21||xξ3χ1/2ϕ1/2||22
4

· 102,

Gω = 10−10x−4/3 + 10−5x−2/3 + 105

4
(
6λ1(2 + √

3)

5
)2(x4/3χξ3ϕ)2 + 10−2χϕ.

(3.37)

These functions are very small compared to the weights ϕ,ψ (3.8)-(3.9). We focus on
a typical term Gθ to illustrate the smallness. From (3.7)-(3.8), for large |x |, ξi , ψ f , ψ

have decay rate x−2/3, ψn has a decay rate at least x−2. For ∂ ix θ̄x , we recall from
the beginning of Section 3.1 that it has decay rate x2α−i with α slightly smaller
than − 1

3 . Thus |χ(ξ1ψn + ξ2ψ f )|2/ψ has decay rate x−2. Since χ is supported in
|x | ≥ ρ2 > 108, we get a small factor x−21|x |>ρ2 < 10−16, which absorbs the large
constant 1010 in Gθ . Therefore, Gθ is very small compared to ψ .

3.10 Summary: estimates ofLθ1,Lω1

Recall Lθ1,Lω1 in (3.11), the quadratic terms in (3.11), (3.14). Combining (3.13),
(3.27),(3.21), (3.28), (3.35) and (3.36), we obtain the estimate on Lθ1,Lω1
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〈Lθ1θx , θxψ〉 + λ1〈Lω1ω,ωϕ〉 ≤ 〈Dθ + Aθψ
−1, θ2xψ〉 + 〈λ1Dω + Aωϕ−1, ω2ϕ〉

−
(
Du − 9

49
t12 − 72λ1

49
· 10−5

)
||ũx x−2/3||22 + A(u) + Gcc

2
ω, (3.38)

where A(u) is defined in (3.31), Du, t12 are given in (C.2), and the Aθ , Aω terms are
the sum of the integrals of ω2, θ2x in the upper bounds in (3.27),(3.21), (3.28), (3.36)
given by

Aθ �
(

1

4t1
x−2/3 + 1

4t12
(ψ f θ̄xx x

5/3)2
)

+
(

1

4t2
(α2x

−1 + α1x
−2)2 + 1

4t22
(x3θ̄xxψn)

2
)

+ (λ1α4)
2

4t4
x−5 + Gθ ,

Aω � t1

(
α2
3x

−2 + α3λ1α6√
3

x−4/3 + (λ1α6)
2x−2/3

)
+

(
t2x

−4 + t22
25

x−4 + t2(λ1α5)
2x−2

)

+ t4x
−3 + λ1

(
4t31
25

x−4 + 4t32
9

x−2 + 1

4
K2

uωS
−1
u1 + τ1

(
t34
25

x−4 + 1

4t34
x−2

))
+ Gω.

(3.39)

In the previous estimates, we have obtained the ranges of ti j such that I+D1+D2 ≤
−0.01(||θxψ1/2||22 + λ1||ωϕ1/2||22) for several terms I in (3.14), e.g. I = I f , In . We
further determine the approximate values of λ1, ti j so that

Dθ + Aθψ
−1 ≤ −c, λ1Dω + Aωϕ−1 ≤ −λ1c (3.40)

with c > 0 as large as possible. The functions in (3.40) depend on the parameters
and other explicit functions. The above task is equivalent to solving a constrainted
optimization problembymaximizing c, subject to the constraints (3.40) andλ1, ti j > 0
within an interval that we have determined.

Estimates (3.38), (3.40) imply the linear stability estimate (3.12) up to the cω terms
in (3.14), A(u) (3.31) andGcc2ω. In Section 3.11,we further control these cω terms. The
estimate of these cω terms are small. We will perturb λ1, ti j around their approximate
values and finalize the choices of λ1, ti j . The final values of these parameters are given
in (C.2), (C.3).

The main reasons that we can establish (3.40) are the followings. Firstly, we exploit
several cancellations using LemmaA.8 and apply sharp weighted estimates in Lemma
A.8 to estimate the nonlocal terms. Secondly,we have I+D1+D2 ≤ −c(||θxψ1/2||22+
λ1||ωϕ1/2||22) for I being the main terms in (3.14), i.e. I = I f , In or Is . Thirdly, the
interactions in I f , In, Is are mainly supported in different regions. See the discussion
after (3.16). Finally, the main term in Iuω is estimated using several cancellations.

To illustrate that the inequalities in (3.40) can actually be achieved, we plot in
Figure 1 the grid point values of the functions −Dθ − Aθψ

−1 and −λ1Dω − Aωϕ−1

for x ∈ [0, 40] with the parameters λ1, ti j given in (C.2), (C.3). It is shown that
their grid point values are all positive and uniformly bounded away from 0. In fact,
the minimum of the grid point values of −Dθ − Aθψ

−1 is above 0.032 and that of
−λ1Dω − Aωφ−1 is above 0.054.
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Fig. 1 Left : Grid point values of −Dθ , Aθψ−1 and −Dθ − Aθψ−1 for x ∈ [0, 40]. Right: Those of
−λ1Dω , Aωφ−1 and −λ1Dω − Aωφ−1 (with λ1 = 0.32)

Estimate (3.38) onLθ1,Lω1 is important and we will use it in Section 5 to establish
the weighted H1 estimates.

3.11 Estimate of the cω term

We use the idea in Model 2 in Section 2.3.2 to obtain the damping term for cω by
deriving the ODEs for c2ω and 〈θx , x−1〉2. We introduce some notations

dθ � 〈θx , x−1〉, d̄θ � 〈θ̄x , x−1〉, ūθ,x � H θ̄x , u� = ũ − 1

5
ũx x . (3.41)

3.11.1 Derivation of the ODEs

Recall cω = ux (0) = − 2
π

∫ +∞
0

ω
x dx from (3.3). Using a derivation similar to that in

Model 2 in Section 2.3.2, , we derive the following ODE in Appendix B.3

1

2

d

dt

π

2
c2ω = π

2
(c̄ω + ūx (0))c

2
ω + cω

∫ ∞

0

ūωx + uω̄x

x
dx

− cωdθ − cω

∫ ∞

0

Fω + N (ω)

x
dx .

(3.42)

TheODE for d2θ (B.5) is derived similarly inAppendixB.3.1. There is a cancellation
between these two ODEs, which is captured by Model 2 in Section 2.3.2. To exploit
this cancellation, we combine two ODEs and derive the following ODE in Appendix
B.3 with λ2, λ3 > 0 to be chosen

1

2

d

dt
(
λ2π

2
c2ω + λ3d

2
θ ) = πλ2

2
(c̄ω + ūx (0))c

2
ω + 2c̄ωλ3d

2
θ + T0 + RODE , (3.43)

where T0 is the sum of the quadratic terms that do not have a fixed sign

T0 = − (λ2 − λ3d̄θ )cωdθ + λ2cω〈ω, f2〉 − λ3dθ 〈θx , f6〉 + λ3dθ 〈ω, f4〉
+ λ2cω〈u�x−1, f8〉 − λ3dθ 〈u�x−1, f9〉,

(3.44)
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u� is defined in (3.41), fi defined in (B.2) are some functions depending on the profile
(ω̄, θ̄ ), and RODE is the sum of the remaining terms in the ODEs given by

RODE � −λ2cω〈Fω + N (ω), x−1〉 + λ3dθ 〈Fθ + N (θ), x−1〉. (3.45)

Since the approximate steady state satisfies c̄ω < 0, ūx (0) < 0, πλ2
2 (c̄ω + ūx (0))c2ω

and 2c̄ωλ3d2θ in (3.43) are damping terms.

3.11.2 Derivation of theT0 term

Let us explain how we obtain (3.43). The ODEs of c2ω, d2θ ((3.42) and (B.5)) involves
the integrals of the nonlocal terms u, ux in the form of 〈ũ, f 〉 or 〈ũx , g〉 for some
functions f , g. To estimate these terms effectively, we use the antisymmetry property
of the Hilbert transform in Lemma A.3 to transform these terms into integrals of ω.
We first consider 〈ũx , g〉 and 〈ux , g〉. Using ux = Hω, ux−ux (0)

x = H(ω
x ) and Lemma

A.3, we get

〈ux , g〉 = 〈Hω, g〉 = −〈ω, Hg〉, 〈ũx , g〉 =
〈
H

(ω

x

)
, xg

〉
= −

〈ω
x

, H(xg)
〉
. (3.46)

For 〈ũ, f 〉, we first approximate f by px for some function p and then perform a
decomposition ũ = cxũx + (ũ − cxũx ). We obtain

〈ũ, f 〉 = 〈ũ, px 〉 + 〈ũ, f − px 〉 = 〈ũ, px 〉 + 〈cxũx , f − px 〉
+〈ũ − cxũx , f − px 〉 � I1 + I2 + I3.

The last term enjoys much better estimate than 〈ũ, f 〉 due to (2.9) and the fact that
f − px is much smaller than f . For I1, I2, using integration by parts, we get

I1 + I2 = 〈ũx ,−p + cx( f − px )〉.

Using (3.46), we can further rewrite the above term as an integral of ω.
In addition, we introduce the function fi to simplify the integrals of ω, θx . These

derivations lead to the T0 term. We refer the details to Appendix B.3.
We remain to estimate the cω terms in (3.11) in the weighted L2 estimates and

f3, f7 that are defined in (B.2). We combine T0 and these cω terms, and define

T � T0 + cω〈θ̄x − x θ̄xx , θxψ〉 + λ1cω〈ω̄ − xω̄x , ωϕ〉
= T0 + cω〈ω, f3〉 + cω〈θx , f7〉. (3.47)

In the weighted L2 estimates, it remains to estimate T . Though each term in T can
be estimated by the weighted L2 norms of ω, θx and c2ω, 〈θx , x−1〉2 using the Cauchy-
Schwarz inequality, these straightforward estimates do not lead to sharp estimates
since these Cauchy-Schwarz inequalities do not achieve (or are close to) equalities for
the same functions. We use the optimal-constant argument in [11] to obtain a sharp
estimate on T .
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3.11.3 Sharp estimates onT

For positive T1, T2, T3 ∈ C(R+) and positive parameter s1, s2 > 0 to be determined,
we consider the following inequality with sharp constant Copt

T ≤ Copt (||ωT 1/2
1 ||22 + ||θx T 1/2

2 ||22 + ||u�

x
T 1/2
3 ||22 + s1c

2
ω + s2d

2
θ ), (3.48)

where u� is defined in (3.41). We define several functions

X = ωT 1/2
1 , Y = θx T

1/2
2 , Z = u�x−1T 1/2

3 ,

g1 = − 2

π
x−1T−1/2

1 , g2 = f2T
−1/2
1 , g3 = f3T

−1/2
1 , g4 = f4T

−1/2
1 ,

g5 = x−1T−1/2
2 , g6 = f6T

−1/2
2 , g7 = f7T

−1/2
2 , g8 = f8T

−1/2
3 , g9 = f9T

−1/2
3 .

(3.49)

Notice that each term in (3.44) and (3.47) can be seen as the projection of X ,Y , Z
onto some function gi . For example, cω, dθ can be written as follows

cω = ux (0) = − 2

π

∫ ∞

0

ω

x
dx = 〈X , g1〉, dθ =

∫ ∞

0

θx

x
dx = 〈Y , g5〉.

Using the definition of T in (3.44), (3.47) and the functions in (3.49), we rewrite
(3.48) as

T =〈X , g1〉〈X , g3〉 + 〈X , g1〉〈Y , g7〉
− (λ2 − λ3d̄θ )〈X , g1〉〈Y , g5〉 + λ2〈X , g1〉〈X , g2〉
− λ3〈Y , g5〉〈Y , g6〉 + λ3〈Y , g5〉〈X , g4〉+
λ2〈X , g1〉〈Z , g8〉 − λ3〈Y , g5〉〈Z , g9〉

≤Copt (||X ||22 + ||Y ||22 + ||Z ||22 + s1〈X , g1〉2 + s2〈Y , g5〉2).

(3.50)

We project X ,Y , Z onto the following finite dimensional spaces

X ∈ span{g1, g2, g3, g4} � �1, Y ∈ span{g5, g6, g7} � �2,

Z ∈ span{g8, g9} � �3, (3.51)

which onlymakes the right hand side of (3.50) smaller. Then (3.50) completely reduces
to an optimization problemon the finite dimensional space. Using the optimal-constant
argument in [11], we obtain

Copt = λmax(D
−1/2MsD

−1/2),

where D, Ms defined in (B.14) are symmetric matrices with entries determined by
the inner products among gi . In particular, Copt can be computed rigorously and we
present the details in Appendix B.5.
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3.12 Summary of the estimates

Recall the cω terms in (3.11), the operators in (3.5). Combining (3.38), (3.44) and
(3.47), we yield

〈Lθ θx , θxψ〉 + λ1〈Lωω,ωϕ〉 + T0 = 〈Lθ1θx , θxψ〉 + λ1〈Lω1ω,ωϕ〉 + T
≤ 〈Dθ + Aθψ

−1, θ2xψ〉 + 〈λ1Dω + Aωϕ−1, ω2ϕ〉
−

(
Du − 9

49
t12 − 72λ1

49
· 10−5

)
||ũx x−2/3||22 + T + A(u) + Gcc

2
ω � J .

(3.52)

We use the remaining damping of ω, θx , ũx and the argument in Section 3.11.3 to
control T . In (B.16), Appendix B.6, we define Ti > 0, si > 0 that are used to compute
the upper bound of Copt < 1 in (3.48). These functions and scalars are essentially
determined by four parameters λ2, λ3, κ, t61 > 0. Using the estimate (3.48), we obtain

T ≤ ||ωT 1/2
1 ||22 + ||θx T 1/2

2 ||22 + ||u�

x
T 1/2
3 ||22 + s1c

2
ω + s2d

2
θ . (3.53)

The u� term can be further bounded by ||ũx x−2/3||2 and ||ωx−2||2 similar to (3.34),
which is established in (B.19) in Appendix B.6. Plugging (B.19) and (3.53) in (3.52),
we obtain

J ≤ −κ||θxψ1/2||22 − κλ1||ωϕ1/2||22 + (s1 + Gc)c
2
ω

+s2d
2
θ − 10−6||ũx x−2/3||22 + A(u), (3.54)

for κ > 0 determined in Appendix C. The details are elementary and presented in
Appendix B.6. For λ2, λ3 > 0 given in (C.3), we define the weighted L2 energy

E2
1(θx , ω) = ||θxψ1/2||22 + λ1||ωψ1/2||22 + λ2

π

2
· 4

π2 〈ω, x−1〉2 + λ3〈θx , x−1〉2.
(3.55)

Note that 2
π
〈ω, x−1〉 = −ux (0) = −cω (3.3). Recall the relations of different oper-

ators in (3.5). Combining the equations (3.11), (3.43) and using the estimates (3.52)
and (3.54), we establish

1

2

d

dt
E2
1(θ, ω) = 〈Lθ θx , θxψ〉 + λ1〈Lωω,ωϕ〉 + T0

+ πλ2

2
(c̄ω + ūx (0))c

2
ω + 2c̄ωλ3d

2
θ + RL2

≤ −κ||θxψ1/2||22 − κλ1||ωϕ1/2||22 − 10−6||ũx x−2/3||22 + A(u)

+
(πλ2

2
(c̄ω + ūx (0)) + s1 + Gc

)
c2ω + (2c̄ωλ3 + s2)d

2
θ + RL2 ,
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where RL2 is given by

RL2 � N1 + F1 + λ1N2 + λ1F2 + RODE (3.56)

and Ni , Fi are defined in (3.11) and RODE in (3.45). Recall A(u) in (3.31), cω =
ux (0). Using the definitions of si in (B.16), we get

πλ2

2
(c̄ω + ūx (0)) + s1 + Gc + πλ1e3α6

12
= −rcω , s2 + 2c̄ωλ3 = −κλ3,

for rcω , κ > 0 determined in Appendix C. Hence, we obtain

A(u) +
(πλ2

2
(c̄ω + ūx (0)) + s1 + Gc

)
c2ω + (2c̄ωλ3 + s2)d

2
θ

= −rcωc
2
ω − κλ3d

2
θ − λ1e3α6

3
〈�u

x
,
u

x
〉.

Therefore, we obtain

1

2

d

dt
E2
1(θ, ω) ≤ −κ||θxψ1/2||22 − κλ1||ωϕ1/2||22

− 10−6||ũx x−2/3||22 − λ1e3α6

3
〈�u

x
,
u

x
〉

− rcωc
2
ω − κλ3d

2
θ + RL2 � Q + RL2 ,

(3.57)

These parameters satisfy rcω ≥ π
2 κλ2. Thus (3.57) implies

1

2

d

dt
E2
1(θ, ω) ≤ −κE2

1(θ, ω) + RL2 , (3.58)

and we establish the linear stability. See also (3.12). Compared to (3.58), (3.57) con-
tains extra damping terms−||ũx x−2/3||22,−〈� u

x , u
x 〉 and−(rcω − π

2 κλ2)c2ω.We choose
rcω > κ π

2 λ2 and keep these terms in (3.57) mainly to obtain sharper constants in our
later weighted H1 estimates.

3.13 From linear stability to nonlinear stability with rigorous verification

In this subsection, we describe some main ideas how to go from linear stability to
nonlinear stability with computer-assisted proof.

(1) As we discuss at the beginning of Section 2, the most challenging and essential
part in the proof is the weighted L2 linear stability analysis established in Section 3,
since there is no small parameter and the linearized equations (2.7) are complicated.

(2) The weighted L2 linear stability estimates can be seen as a-priori estimates
on the perturbation, and we proceed to perform higher order energy estimates in a
similar manner and establish the nonlinear energy estimate for some energy E(t) of
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the perturbation

d

dt
E2 ≤ CE3 − λE2 + εE . (3.59)

Here, −λE2 with λ > 0 comes from the linear stability, CE3 with some constant
C(ω̄, θ̄ ) > 0 controls the nonlinear terms, and ε is the weighted norm of the residual
error of the approximate steady state. See more details in Section 5. To close the
bootstrap argument E(t) < E∗ with some threshold E∗ > 0, a sufficient condition is
that ε < ε∗ = λ2/(4C), which provides an upper bound on the required accuracy of
the approximate steady state.

The essential parts of the estimates in (1), (2) are established based on the grid point
values of (ω̄, θ̄ ) constructed using a moderate fine mesh. These parts do not involve
the lengthy rigorous verification in the Supplementary Material [10]. These estimates
already provide a strong evidence of nonlinear stability.

A significant difference from this step and step (1) is that we have a small parameter
ε. As long as ε is sufficiently small, thanks to the damping term −λE2 established in
step (1), we can afford a large constant C(ω̄, θ̄ ) in the estimate of the nonlinear terms
and close the nonlinear estimates. We can complete all the nonlinear estimates in this
step.

(3) We follow the general approach in [11] to construct an approximate steady state
with residual error below a required level ε∗. To achieve the desired accuracy, the
construction is typically done by solving (2.2) for a sufficiently long time using a fine
mesh. The difficulty of the construction depends on the target accuracy ε∗, and we
refer to Section 4 for more discussion on the new difficulty and the construction of the
approximate steady state for the HL model. Here, the mesh size plays a role similar to
a small parameter that we can use. In practice, the profile (ω̄1, θ̄1) constructed using
a moderate fine mesh �1 is close to the one (ω2, θ2) constructed using a finer mesh
�2 with higher accuracy. As a result, the constants C(ω̄, θ̄ ) and λ that we estimate
in (3.59) using different approximate steady states (ωi , θi ) are nearly the same. This
refinement procedure allows us to obtain an approximate steady state, based on which
we close the nonlinear estimates (3.59). We refer more discussion of this philosophy
to [11].

(4) Finally, we follow the standard procedure to perform rigorous verification on
the estimates to pass from the grid point value to its continuous counterpart. Estimates
that require rigorous verification with computer assistance are recorded in Appendix
D. In the verification step, we can evaluate the approximate steady state on a much
finer mesh �3 with many more grid points so that they almost capture the whole
behavior of the solution. Then, we use the regularity of the solution to pass from finite
grid points to the whole real line. In this procedure, the mesh size in �3 plays a role
similar to a small parameter that we can exploit. In practice, to perform the rigorous
verification, we evaluate the solution computed in a mesh with about 5000 grid points
using a much denser mesh with more than 5 · 105 grid points.

In summary, in steps (2)-(4), we can take advantage of a small parameter which
can be either the small error or the small mesh size, while there is no small parameter
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in step (1). Though these three steps could be technical, they are relatively standard
from the viewpoint of analysis.

We remark that the approach of computer-assisted proof has played an important
role in the analysis of many PDE problems, especially in computing explicit tight
bounds of complicated (singular) integrals [4, 19, 34] or bounding the norms of linear
operators [1, 30]. We refer to [33] for an excellent survey on computer-assisted proofs
in establishing rigorous analysis for PDEs,which also explains the use of interval arith-
metics that guarantees rigorous computer-assisted verifications. Examples of highly
nontrivial results established by the use of interval arithmetics can be found in, for
example, [31, 35, 51, 67]. Our approach to establish stability analysis with computer
assistance is different from existing computer-assisted approach, e.g. [3], where the
stability is established by numerically tracking the spectrum of a given operator and
quantifying the spectral gap. The key difference between their approach and ours is
that we do not use direct computation to quantify the spectral gap of the linearized
operator. One of the main reasons is that the linearized operator in our case is not com-
pact due to the Hilbert transform, and the non-compact component cannot be treated
as a small perturbation. Thus we cannot approximate the linearized operator by a finite
rank operator that can be further analyzed using matrix computation.

4 On the approximate steady state

The proof of themain Theorem 2 heavily relies on an approximate steady state solution
(θ̄ , ω̄, c̄l , c̄ω) to the dynamic rescaling equations (2.2), which is smooth enough, e.g.
ω̄, θ̄x ∈ C3. Moreover, as discussed in Section 3.13, the residual error of the approx-
imate steady state must be small enough in order to close the nonlinear estimates.
In particular, the residual error ε requirement depends on the stability gap λ via the
inequality ε < λ2/(4C).

For comparison, we refer the reader to our previous work on proving the finite-time,
approximate self-similar blowup of the 1DDeGregorio model via a similar computer-
aided strategy [11], where the corresponding approximate steady state is constructed
numerically on a compact domain [−10, 10]. The stability gap that the authors proved
in that work is relatively large (around 0.3), and thus the point-wise error requirement
on the residual can be relaxed to 10−6.

For the HL model, however, the stability gap λ ≈ κ = 0.03 (see (C.3)) that we
can prove in the linear stability analysis (3.58) is much smaller, which leads to a
much stronger requirement on the residual error. More precisely, we need to bound
the residual in a weighted norm by 5.5× 10−7 with weights (3.9) that are singular of
order x−k, k ≥ 4 near 0 and decay slowly for large x . This effectively requires the
point-wise values of the residual to be as small as 10−10. To achieve this goal, it is not
sufficient to simply follow the method in [11], mainly due to the following reasons:

(1) The steady state solution to (2.2) is supported on the whole real line and has a
slowly decaying tail in the far field (see below). If we approximate the steady
state on a finite domain [−L, L], we need to use an unreasonably large L (roughly
L ≥ 1030) for the tail part beyond [−L, L] to be considered as a negligible
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error, since truncating the tail leads to an error of order Lcω/cl ≈ L−1/3. It is
then impractical to achieve a uniformly small residual by only using mesh-based
algorithms such as spline interpolations.

(2) Numerically computing theHilbert transform of a function supported on the whole
real lineR is sensitively subject to round-off errors. For example, when computing
u from an odd function ω via the Hilbert transform, we need to evaluate the
convolution kernel log(|y−x |/|y+x |), which will be mistaken as 0 by a computer
program using double-precision if |x/y| < 10−16. Such round-off errors, when
accumulated over the whole mesh, are unacceptable in our case since we have a
very high accuracy requirement for the computation of the approximate steady
state solution.

To design a practical method of obtaining a sufficiently accurate construc-
tion, we must have some a priori knowledge on the behavior of a steady state
(ω∞, θ∞, cl,∞, cω,∞). Assume that the velocity u∞ grows (if it grows) only sub-
linearly in the far field, i.e. u∞(x)/x, u∞,x (x) → 0 as x → ∞. Substituting this
ansatz into the steady state equation of θx in (2.2) yields

θ∞,xx

θ∞,x
∼ 2cω,∞

cl,∞
· x−1, which implies θ∞,x ∼ x2cω,∞/cl,∞ .

Furthermore, using these results to the steady state equation of ω in (2.2) yields

ω∞,x

ω∞
∼ cω,∞

cl,∞
· x−1, which implies ω∞ ∼ xcω,∞/cl,∞ .

From our preliminary numerical simulation, we have cω,∞/cl,∞ close to −1/3. This
straightforward argument implies thatω∞ and θ∞,x should behave asymptotically like
xcω,∞/cl,∞ , x2cω,∞/cl,∞ as x → +∞, respectively, which in turn justifies the sub-linear
growth of u∞.

Guided by these observations, we will construct our approximate steady state as
the combination of two parts:

ω̄ = ωb + ωp, θ̄ = θb + θp. (4.1)

We will call (ωb, θb) the explicit part and (ωp, θp) the perturbation part. The explicit
part (ωb, θb) is constructed analytically to approximate the asymptotic tail behavior
of the steady state for x ≥ L , and satisfies ωb, θb,x ∈ C5 and ωb ∼ xα, θx,b ∼ x2α

with α ≈ c̄ω/c̄l < − 1
3 . The construction of ωb and its Hilbert transform relies on the

following crucial identity

H(sgn(x)|x |−a) = − cot
πa

2
· |x |−a, a ∈ (0, 1), (4.2)

which is proved in the proof of Lemma A.5 in the Appendix. It indicates that the
leading order behavior of H f for large x is given by − cot πa

2 · |x |−a , if f is odd with
a decay rate |x |−a . By perturbing sgn(x)|x |−a and (4.2), we construct ωb ∈ C5 and
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obtain the leading order behavior of Hωb for large x . This is one of the main reasons
that we can compute the Hilbert transform of a function with slow decay accurately
and overcome large round-off error in its computation. The perturbation part (ωp, θp)

is constructed numerically using a quintic spline interpolation and methods similar to
those in [11] in the domain [−L, L] for some reasonably large L (around 1016). By our
construction, they satisfy that ωp, θp,x ∈ C3

c . Since achieving a small residual error
is critical to our proof, a large portion of the Supplementary Material [10] is devoted
to the construction (Section 10) and error estimates of the approximate steady state
(Section 11-15) with the above decomposition, especially the ωb part.

4.1 Connection to the approximate steady state of the 2D Boussinesq inR2+

To generalize the current framework to the 2D Boussinesq equations, an important
step is to construct an approximate steady state with a sufficiently residual error. The
construction of the approximate steady state of the HL model provides important
guidelines on this. The steady state equations of the dynamic rescaling formulation of
the 2D Boussinesq, see e.g. [7], read

(cl x + u) · ∇ω = cωω + θx ,

(cl x + u) · ∇θ = (cl + 2cω)θ, u = ∇⊥(−�)−1ω.

Denote r = |x |. Assume that the velocity u grows sub-linearly in the far field :
u(x)
r → 0 as r → ∞ and the scaling factors satisfy cl > 0, cω < 0. Note that

x · ∇ = r∂r . Passing to the polar coordinate (r , β), r = |x |, β = arctan x2
x1

and
dropping the lower order terms, we yield

clr∂rω(r , β) = cωω + θx + l.o.t ., clr∂rθ(r , β) = (2cω + cl)θ + l.o.t .

Using an argument similar to the above argument for the HL model, we obtain

ω(r , β) ∼ p(β)rα, θ(r , β) ∼ q(β)r1+2α, α = cω

cl
< 0.

We remark that θx has a decay rate r2α faster than that of ω. The computation in
[55] suggests that α ≈ − 1

3 . Thus, the profile (if it exists) for the 2D Boussinesq
does not have a fast decay, and we also encounter the difficulties similar to (1) and
(2). In particular, the 2D analog of difficulty (2) is to obtain the stream function
ψ = (−�)−1ω accurately in R

2+. To design a practical method that overcomes these
difficulties, it is important to perform a decomposition similar to (4.1), whereωp,∇θp
have compact support and ωb, θb capture the tail behavior of the steady state. For the
2DBoussinesq,ωb, θb become semi-analytic since the angular part p(β), q(β) cannot
be determined a-priori. To overcome the difficulty of solving the stream function in
the far field, we seek a generalization of (4.2). We consider the ansatz ψ = r2+α f (β)

and solve

−�(r2+α f (β)) = rα p(β)
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with boundary condition f (0) = f (π/2) = 0 due to the Dirichlet boundary condition
and the odd symmetry for the solution ω. In the polar coordinate, the above equation
is equivalent to

(−∂2β − (2 + α)2) f (β) = p(β), f (0) = f (π/2) = 0.

Solving the above equation is significantly simpler than solving −�ψ = ω in R
2+

since it is one-dimensional and in a compact domain. The above two formulas are a
generalization of (4.2) that connects the leading order far field behavior of ω with that
of the velocity. We believe that the above decomposition is crucial to construct the
approximate steady state with sufficiently small residual error for the 2D Boussinesq
equations. The supplementary material on the analysis of the decomposition (4.1) for
the HL model can be seen as a preparation for the more complicated decomposition
in the 2D Boussineq equations.

5 Nonlinear stability and finite time blowup

In this section, we further establish nonlinear stability analysis of (3.6).

5.1 Weighted H1 estimate

In order to obtain nonlinear stability, we first establish the weighted H1 estimate
similar to

1

2

d

dt
(||Dxθxψ

1/2||22 + λ1||Dxωϕ1/2||22) ≤ −c(||Dxθxψ
1/2||22

+ λ1||Dxωϕ1/2||22) + CE2
1(θ, ω) + RH1

(5.1)

for some c,C > 0, where Dx = x∂x , E1 is defined in (3.55) and RH1 are the error
terms and nonlinear terms in the weighted H1 estimate to be introduced.

In thework ofElgindi-Ghoul-Masmoudi [26], theymade a goodobservation that the
weighted H1 estimates of the equation studied in [26] can be established by performing
weighted L2 estimates of x∂x f with the same weight as that in the weighted L2

estimate, since the commutator between the linearized operator and x∂x is of lower
order. Inspired by this observation, we perform weighted L2 estimates on x∂xθx and
x∂xω. However, one important difference between our problem and that considered
in [26] is that the commutator between the linearized operator in (3.6) and x∂x is not
of lower order.

Denote Dx = x∂x . Similar weighted derivatives have been used in [7, 24, 26] for
stability analysis. We derive the equations for Dxθx , Dxω. Taking Dx on both side of
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(3.6), we get

∂t Dxθx = Lθ1(Dxθx , Dxω) + cωDx (θ̄x − x θ̄xx )

+ [Dx ,Lθ1](θx , ω) + Dx Fθ + Dx N (θ),

∂t Dxω = Lω1(Dxθx , Dxω) + cωDx (ω̄ − xω̄x )

+ [Dx ,Lω1](θx , ω) + Dx Fθ + Dx N (θ),

(5.2)

where [Dx ,L]( f , g) � DxL( f , g)−L(Dx f , Dxg). In the Appendix B.4, we obtain
the following formulas for the commutators

[Dx ,Lθ1](θx , ω) = −(ūx − ū

x
)Dxθx − Dx ūxθx − Dx ũθ̄xx − ũ(θ̄xx + Dx θ̄xx ),

[Dx ,Lω1](θx , ω) = −(ūx − ū

x
)Dxω − ũ(ω̄x + Dx ω̄x ),

(5.3)

where ũ, ũx are defined in (3.10).
Performing the weighted H1 estimates, we get

1

2

d

dt

(
〈Dxθx , Dxθxψ〉 + λ1〈Dxω, Dxωϕ〉

)

=
(
〈Lθ1(Dxθ, Dxω), Dxθxψ〉 + λ1〈Lω1(Dxθ, Dxω), Dxωϕ〉

)

+
(
〈[Dx ,Lθ1](θx , ω), Dxθxψ〉 + λ1〈[Dx ,Lω1](θx , ω), Dxωϕ〉

)

+
(
〈cωDx (θ̄x − x θ̄xx ), Dxθxψ〉

+ λ1〈cωDx (ω̄ − xω̄x ), Dxωϕ〉
)

+ RH1

� Q1 + Q2 + Q3 + RH1 ,

(5.4)

where RH1 is the remaining term in the weighted H1 estimate

RH1 = 〈Dx N (θ), Dxθxψ〉 + λ1〈Dx N (ω), Dxωϕ〉
+〈Dx Fθ , Dxθxψ〉 + λ1〈Dx Fω, Dxωϕ〉. (5.5)

5.1.1 Estimate of Q1

Applying the estimate of Lθ,1,Lω1 in (3.38) to (Dxθx , Dxω), we obtain

Q1 ≤ 〈Dθ + Aθψ
−1, (Dxθx )

2ψ〉 + 〈λ1Dω + Aωϕ−1, (Dxω)2ϕ〉
+ A(−�−1(Dxω)) + Gc · (HDxω(0))2,

(5.6)

where Gc is defined in (3.37), and we have dropped the term related to ||ũx x−2/3||22 in
(3.38) since Du − 9

49 t12 − 72λ1
49 ·10−5 > 0. In addition, we have replaced u = −�−1ω

123



   24 Page 36 of 75 J. Chen et al.

in A(u) in (3.38) by −�−1(Dxω) and replaced cω = Hω(0) by HDxω(0). Recall
the definition of A(u) in (3.31). Since � = H∂x and H ◦ H = −I d, we yield

∂x (−�−1Dxω)(0) = HDxω(0) = − 1

π

∫
R

ωxdx = 0,

which implies

Gc · (H(Dxω)(0))2 = 0, A(−�−1Dxω) ≤ 0. (5.7)

We treat Q1 as the damping terms in the weighted H1 estimate since from (D.5), we
have

Dθ + Aθψ
−1 ≤ −κ, λ1Dω + Aωϕ−1 ≤ −λ1κ, κ > 0. (5.8)

5.1.2 Estimate of Q2

Recall the commutators in (5.3). The profile satisfies ūx − ū
x > 0 and thus−(ūx − ū

x ) f
with f = Dxθx , Dxω is a damping term in the Dxθx or Dxω equation. We do not
estimate these terms.

For the term Dx ūxθx in (5.3), using integration by parts, we get

−〈Dx ūxθx , Dxθxψ〉 = −〈x2ūxxψ,
1

2
∂x (θx )

2〉 = 1

2
〈(x2ūxxψ)x , θ

2
xψ〉.

The approximate steady state satisfies the following inequality

(x2ūxxψ)x ≤ 0.02ψ, (5.9)

which will be verified rigorously by the methods in the Supplementary Material [10].
We record it in (D.8), Appendix D. Using (5.9), we obtain

− 〈Dx ūxθx , Dxθxψ〉 ≤ ε1||θxψ1/2||22, ε1 = 0.01. (5.10)

The nonlocal terms in (5.3) are of lower order than Dxω and we estimate then
directly. We introduce some weights

Su2 = t71x
−6 + t72x

−4 + 2 · 10−6x−10/3,

Su3 = t81x
−6 + t82x

−4 + 2 · 10−6x−10/3, (5.11)

for some parameters ti j > 0 to be determined. Using Young’s inequality, we get

|〈Dx ũθ̄xx , Dxθxψ〉| + |〈ũ(θ̄xx + Dx θ̄xx ), Dxθxψ〉|
≤ ||DxũS

1/2
u2 ||22 + 1

4
||S−1/2

u2 θ̄xx Dxθxψ ||22 + ||ũS1/2u3 ||22
+ 1

4
||S−1/2

u3 (θ̄xx + Dx θ̄xx )Dxθxψ ||22.
(5.12)
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We introduce the weights Su2, Su3 for a reason similar to that of Su1 in Remark 3.6.
Recall Dx ũ = ũx and ũ, ũx in (3.10). Using the weighted estimates in Lemma A.8
yields

||DxũS
1/2
u2 ||22 + ||ũS1/2u3 ||22

≤
〈
ω2, (t71 + 4t81

25
)x−4 + (t72 + 4t82

9
)x−2

〉
+ (1 + 36

49
) · 2 · 10−6||ũx x−2/3||22.

(5.13)

In (5.13), we do not estimate ||ũx x−2/3||22 in ||DxũS
1/2
u2 ||2 and keep it on both sides.

Remark 5.1 We will choose large enough parameters ti j in Su2, Su3 (5.11) so that the
weighted L2 norm of Dxθx terms in (5.12) are relative small compared to the damping
term of Dxθx in the weighted H1 estimate (5.4), e.g. Q1 in (5.6). See also (5.8). The
weighted L2 norm of ω and ||ũx x−2/3||2 in (5.13) will be bounded using the damping
terms in the weighted L2 estimate (3.57). The same argument applies to controlling
the weighted L2 norm of Dxω term in (5.18).

Next, we estimate the ũ((ω̄x + Dx ω̄) term in (5.3). The idea is similar to that in
Section 3.8. We perform the following decomposition

−λ1〈ũ(ω̄x + Dx ω̄x ), Dxωϕ〉 = −λ1〈ũ(ω̄x + Dx ω̄x − 1

3
χξ3), Dxωϕ〉

− 1

3
λ1〈ũχξ3, Dxωϕ〉

� J + Ir3.

(5.14)

The estimate of Ir3 is similar to (3.36) and we obtain the following estimate in
Appendix B.2

|Ir3| ≤ 〈Gω2, ω
2〉 + 〈Gω3, (Dxω)2〉 + Gc2c

2
ω, (5.15)

where Gω2,Gω3 and Gc2 are given by

Gω2 = 1

4 · 106 (
2λ1(2 + √

3)

5
)2x−2/3, Gc2 = λ21||xξ3χ1/2ϕ1/2||22

36
· 103,

Gω3 = 106(x4/3χξ3ϕ)2 + 10−3χϕ.

(5.16)

These functions are small due to the same reason that we describe in Section 3.9.
For J , we perform a decomposition

J = −λ1

〈
ũ,

(
(ω̄x + Dx ω̄x − 1

3
χξ3)ϕ − e3α6

9
x−2

)
Dxω

〉

−λ1e3α6

9
〈ũ, Dxωx

−2〉 � I1 + I2
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Note that ũ = u − ux (0)x and
∫ ∞
0 xDxωx−2dx = ∫ ∞

0 ωxdx = 0. Using Lemma
A.4 with f = ω and g = u, we get

I2 = −λ1e3α6

9

(
〈u, Dxωx

−2〉 − ux (0)
∫ ∞

0
xDxωx

−2dx
)

= −λ1e3α6

9
〈u, ωx x

−1〉

= λ1e3α6

9
〈�u

x
,
u

x
〉,

which can be controlled using the damping term in (3.57). Denote

Su4 = t91x
−6 + t92x

−4 + 5 · 10−4x−10/3,

Kuω2 = (ω̄x + Dx ω̄x − 1

3
χξ3)ϕ − e3α6

9
x−2. (5.17)

For I1, using Young’s inequality and the weighted estimate in Lemma A.8, we get

|I1| ≤ λ1〈Su4, ũ2〉 + λ1

4
〈K2

uω2S
−1
u4 , (Dxω)2〉

≤ λ1〈ω2,
4t91
25

x−4 + 4t92
9

x−2〉 + 36λ1
49

· 5 · 10−4||ũx x−2/3||22
+ λ1

4
〈K2

uω2S
−1
u4 , (Dxω)2〉.

(5.18)

We introduce the weight Su4 for a reason similar to that of Su1 in Remark 3.6. The
||ũx x−2/3||22 term is further controlled by the corresponding damping term in (3.57).

Combining the above estimates on the commutators in (5.3), we obtain

Q2 ≤〈−(ūx − ū

x
) + Bθψ

−1, (Dxθx )
2ψ〉 + 〈−λ1(ūx − ū

x
) + Bωϕ−1, (Dxω)2ϕ〉

+ ε1||θxψ1/2||22
+ 〈Aω2, ω

2〉 + λ1e3α6

9
〈�u

x
,
u

x
〉 +

(
(1 + 36

49
) · 2 · 10−6

+ 36λ1
49

· 5 · 10−4
)
||ũx x−2/3||22 + Gc2c

2
ω,

(5.19)

where Gc2 is defined in (5.16). The term (ūx − ū
x ) comes from the commutators (5.3)

and we do not estimate them in Q2 in (5.4). The terms Bθ , Bω, Aω2 are the sum of
the coefficients in the integrals of (Dxθx )

2, (Dwω)2, ω2 in the above estimates

Bθ � 1

4
S−1
u2 (θ̄xxψ)2 + 1

4
S−1
u3

(
θ̄xx + Dx θ̄xx

)2
ψ2, Bω � λ1

4
K2

uω2S
−1
u4 + Gω3,

Aω2 �
(
t71 + 4t81

25

)
x−4 +

(
t72 + 4t82

9

)
x−2 + λ1

(
4t91
25

x−4 + 4t92
9

x−2
)

+ Gω2.

(5.20)
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5.1.3 Estimate of Q3

Recall the cω terms in (5.2). Denote by K1, K2 the following L2 norms

K1 � ||∂x (x3θ̄xxxψ)ψ−1/2||2, K2 � ||∂x (x3ω̄xxϕ)ϕ−1/2||2. (5.21)

Using integration by parts and the Cauchy-Schwarz inequality, we obtain

|cω〈Dx (θ̄x − x θ̄xx ), Dxθxψ〉| =|cω〈−x2θ̄xxx · (xψ), ∂xθx 〉| = |cω〈∂x (x3θ̄xxxψ), θx 〉|
≤|cω| · ||∂x (x3θ̄xxxψ)ψ−1/2||2||θxψ1/2||2

∗ = K1|cω| · ||θxψ1/2||2,

where we have used x∂x ( f −x∂x f ) = −x2 fxx , f = θ̄x in the first equality. Similarly,
we have

λ1|cω〈Dx (ω̄ − xω̄x ), Dxωϕ〉| ≤ λ1|cω| · ||∂x (x3ω̄xxϕ)ϕ−1/2||2||ωϕ1/2||2
= λ1K2|cω| · ||ωϕ1/2||2.

Using Young’s inequality, we obtain

Q3 ≤K1|cω| · ||θxψ1/2||2 + λ1K2|cω| · ||ωϕ1/2||2
≤γ1||θxψ1/2||22 + γ2||ωϕ1/2||22 + c2ω

( K 2
1

4γ1
+ (λ1K2)

2

4γ2

)
,

(5.22)

where γ1, γ2 > 0 are chosen in (C.4).

5.1.4 Summary of the estimates

We determine the parameters ti j in the estimates in Sections 5.1.1-5.1.3 and choose
κ2 so that

Dθ2 + Bθψ
−1 ≤ −κ2, Dω2 + Bωϕ−1 ≤ −κ2λ1,

Dθ2 � Dθ + Aθψ
−1 − (ūx − ū

x
), Dω2 � λ1Dω + Aωϕ−1 − λ1(ūx − ū

x
).
(5.23)

The terms Dθ2, Dω2 are the coefficients of the damping terms in the weighted H1

estimate (5.4) and are already determined in the weighted L2 estimates. The terms
Bθψ

−1, Bωϕ−1 defined in (5.20) are the coefficients in the weighted L2 norm of
Dxθx , Dxω in (5.12), (5.18). The motivation of (5.23) is that we use the damping
terms to control the weighted L2 norms of Dxθx , Dxω in the estimates of Qi . The
idea is the same as that in Remark 5.1.

We first choose κ2 < κ = 0.03 in Appendix C, where κ is related to (3.58). This
choice is motivated by our estimate (5.28). The dependences of Aω2, Bθ , Bω on ti j are
given in (5.20), (5.11), (5.17). Inequalities in (5.23) can be seen as constraints on ti j .
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We choose ti j subject to the constraints (5.23) such that ||Aω2ϕ
−1||∞ is as small as

possible. This enables us to obtain sharper constant aH1 in the weighted H1 estimate
(5.25). After ti j are determined, we verify (5.23) and

||Aω2ϕ
−1||∞ ≤ aH1 , (5.24)

using the methods in the Supplementary Material [10], and record them in (D.9),
Appendix D, where aH1 is given in (C.4).

Combining (5.6), (5.7), (5.10), (5.19), (5.22) and (5.23), we prove

1

2

d

dt
(||(Dxθx )ψ

1/2||22 + λ1||(Dxω)ϕ1/2||22) ≤ −κ2||(Dxθx )ψ
1/2||22 − κ2λ1||(Dxω)ϕ1/2||22

+ (ε1 + γ1)||θxψ1/2||22 + (aH1 + γ2)||ωϕ1/2||22 +
(
Gc2 + K 2

1

4γ1
+ (λ1K2)

2

4γ2

)
c2ω

+ λ1e3α6

9
〈� u

x
,
u

x
〉 +

(
(1 + 36

49
) · 2 · 10−6 + 36λ1

49
· 5 · 10−4

)
||ũx x−2/3||22 + RH1 .

(5.25)

Recall the weighted L2 energy E1 in (3.55). For some λ4 > 0, we construct the
energy

E2(θx , ω) = E2
1(θx , ω) + λ4(||Dxθxψ

1/2||22 + λ1||Dxωϕ1/2||22)
=||θxψ1/2||22 + λ1||ωψ1/2||22 + λ2

π

2
c2ω + λ3d

2
θ

+ λ4(||Dxθxψ
1/2||22 + λ1||Dxωϕ1/2||22).

(5.26)

Note that cω, ||θxψ1/2||2, ||ωϕ1/2||2 in (5.25) can be bounded by the energy E1 in
(3.55). The terms 〈� u

x , u
x 〉 and ||ũx x−2/3||22 can be bounded by their damping terms

in (3.57). To motivate later estimates and the choice of several parameters, we neglect
these two terms. Then (5.25) implies (5.1) with c = κ2 and some C > 0. Combining
(3.58) and (5.1), we get

1

2

d

dt
E2(θx , ω) ≤ −(κ − λ4C)E2

1 − κ2(||Dxθxψ
1/2||22 + λ1||Dxωϕ1/2||22) + RL2

+λ4RH1 , (5.27)

where κ = 0.03. We first choose κ2 < κ and then λ4 small enough, such that

κ − λ4C ≥ κ2. (5.28)

Then we obtain the linear stability of (3.6) in the energy norm E .
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5.2 Nonlinear stability

Combining (3.57) and (5.25), we derive

1

2

d

dt
E2(θx , ω) ≤ −κ||θxψ1/2||22 − κλ1||ωϕ1/2||22 − rcωc

2
ω − κλ3d

2
θ

− λ4κ2||(Dxθx )ψ
1/2||22 − λ4κ2λ1||(Dxω)ϕ1/2||22 + λ4(ε1 + γ1)||θxψ1/2||22

+ λ4(aH1 + γ2)||ωϕ1/2||22 + λ4

(
Gc2 + K 2

1

4γ1
+ (λ1K2)

2

4γ2

)
c2ω

+
(

λ1e3α6

9
λ4 − λ1e3α6

3

) 〈
�
u

x
,
u

x

〉

+
((

(1 + 36

49
) · 2 · 10−6 + 36λ1

49
· 5 · 10−4

)
λ4 − 10−6

)
||ũx x−2/3||22

+ RL2 + λ4RH1 .

Since κ2 < κ , we choose small λ4 > 0 in Appendix C so that

λ4 · λ1e3α6

9
<

λ1e3α6

3
,

(
(1 + 36

49
) · 2 · 10−6 + 36λ1

49
· 5 · 10−4

)
λ4 < 10−6,

rcω − λ4

( K 2
1

4γ1
+ (λ1K2)

2

4γ2

)
− λ4Gc2 > κ2 · πλ2

2
,

κ − λ4γ1 − λ4ε1 ≥ κ2, κλ1 − λ4γ2 − λ4aH1 ≥ κ2λ1, κλ3 ≥ κ2λ3,

(5.29)

where K1, K2 are defined in (5.21). The above inequalities will be verified rigorously
by the methods in the Supplementary Material [10]. Note that rcω > π

2 λ2κ and κ2 <

κ . The above conditions are essentially the same as (5.28). We keep the damping
term 〈� u

x , u
x 〉 and ||ũx x−2/3||22 in (3.57) to control the corresponding terms in (5.25).

Plugging the above estimates and (5.29) into the differential inequality, we yield

1

2

d

dt
E2(θx , ω) ≤ − κ2||θxψ1/2||22 − κ2λ1||ωϕ1/2||22 − κ2

πλ2

2
c2ω − κ2λ3d

2
θ

− λ4κ2||(Dxθx )ψ
1/2||22 − λ4κ2λ1||(Dxω)ϕ1/2||22 + RL2 + λ4RH1

≤ − κ2E
2(θx , ω) + RL2 + λ4RH1 � −κ2E

2(θx , ω) + R,

(5.30)

where R = RL2 + λ4RH1 and κ2 = 0.024 is given in (C.4).

5.2.1 Outline of the estimates of the nonlinear and error terms

Recall the definitions of RL2 and RH1 in (3.56) and (5.5). The nonlinear terms in
RL2 ,RH1 , e.g. 〈Dx N (θ), Dxθxψ〉, depend cubically on θx , ω. In the Supplementary
Material [10], we use the energy E(θx , ω) and interpolation to control ||ux ||∞ and
||θx ||∞. Using these L∞ estimates, we further estimate the nonlinear terms inR. For
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example, a typical nonlinear term inR can be estimated as follows

|〈uθxx , θxψ〉| = 1

2
|〈uψ, ∂x (θx )

2〉| = 1

2
|〈(uψ)x , θ

2
x 〉| = 1

2
|〈uxψ + uψx , θ

2
x 〉|

≤ 1

2
(||ux ||L∞ + ||u

x
||∞|| xψx

ψ
||L∞)||θxψ1/2||22

≤ 1

2
||ux ||L∞

(
1 + || xψx

ψ
||L∞

)
||θxψ1/2||22,

where we have used | ux | ≤ ||ux ||∞ in the last inequality since u(0) = 0. The above
upper bound can be further bounded by E3(θx , ω).

The error terms in RL2 ,RH1 , e.g. F1 = 〈Fθ , θxψ〉, depend linearly on θx , ω. We
estimate these terms using the Cauchy-Schwarz inequality. A typical term F1 can be
estimated as follows

|F1| ≤ ||Fθψ
1/2||2||θxψ1/2||2.

The error term ||Fθψ
1/2||2 is small and ||θxψ1/2||2 can be further bounded by

E(θx , ω).
In the Supplementary Material [10], we work out the constants in these estimates

and establish the following estimates

R = RL2 + λ4RL2 ≤ 36E3 + εE, ε = 5.5 · 10−7.

5.2.2 Nonlinear stability and finite time blowup

Plugging the above estimate on R in (5.30), we establish the nonlinear estimate

1

2

d

dt
E2(θx , ω) ≤ −κ2E(θx , ω)2 + 36E(θx , ω)3 + εE(θx , ω),

where κ2 = 0.024 is given in (C.4). We choose the threshold E∗ = 2.5 · 10−5 in the
Bootstrap argument. Since

−κ2E
2∗ + 36E3∗ + εE∗ < 0,

the above differential inequality implies that if E(0) < E∗, the bootstrap assumption

E(θx (t), ω(t)) < E∗ (5.31)

holds for all t > 0. Consequently, we can choose odd initial perturbations θx , ω which
satisfy ωx (0) = θxx (0) = 0, E(θx , ω) < E∗ and modify the far field of θ̄ , ω̄ so that
ω̄+ω, θx + θ̄x ∈ C∞

c . The bootstrap result implies that for all time t > 0, the solution
ω(t)+ ω̄, θx (t)+ θ̄x , cl(t)+ c̄l , cω(t)+ c̄ω remain close to ω̄, θ̄x , c̄l , c̄ω, respectively.
Using the rescaling argument in Section 2, we obtain finite time blowup of the HL
model.
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5.3 Convergence to the steady state

We use the time-differentiation argument in [11] to establish convergence. The initial
perturbations (θx , ω) satisfy the properties in the previous Section. Since the linearized
operators and the error terms in (3.6) are time-independent, differentiating (3.6) in t ,
we get

∂t (θx )t = Lθ ((θx )t , ωt ) + ∂t N (θ), ∂t (ω)t = Lω((θx )t , ωt ) + ∂t N (ω).

Applying the estimates of Lθ ,Lω in Section 3 and (3.58) to (θx )t , ωt , we obtain

1

2

d

dt
E1((θx )t , ωt )

2 ≤ −κE1((θx )t , ωt )
2 + R2,

where the energy notation E1 is defined in (3.55) and R2 is given by

E1((θx )t , ωt ) = ||(θx )tψ1/2||22 + λ1||ωtψ
1/2||22 + λ2

π

2
(∂t cω)2 + λ3(∂t dθ )

2,

R2 = 〈∂t N (θ), (θx )tψ〉 + λ1〈∂t N (ω), ωtϕ〉
− λ2∂t cω〈∂t N (ω), x−1〉 + λ3∂t dθ 〈∂t N (θ), x−1〉.

The term ∂t cω in the above estimates is from

Hωt (0) = ∂t Hω(0) = ∂t cω.

Similarly, we obtain the term ∂t dθ . Using the a-priori estimate E(θx , ω) < E∗ in
(5.31) and the energy E1((θx )t , ωt ), we can further estimateR2. In the Supplementary
Material [10], we prove

1

2

d

dt
E1((θx )t , ωt )

2 ≤ −0.02E1((θx )t , ωt )
2. (5.32)

Using this estimate and the argument in [11], we prove that the solution ω +
ω̄, θx + θ̄x converge to the steady state ω∞, θ∞,x in L2(ϕ), L2(ψ) and cl(t), cω(t)
converge to cl,∞, cω,∞ exponentially fast.Moreover, the steady state admits regularity
(Dx )

i (ω∞ − ω̄) ∈ L2(ϕ), (Dx )
i (θx,∞ − θ̄x ) ∈ L2(ψ) for i = 0, 1. We obtain θ∞

from θ∞,x by imposing θ∞(0) = 0 and integration.
Recall the energy E in (5.26). Since

λ2π/2 > 3 > 1.52, E > (λ2π/2)1/2|cω| ≥ 1.5|cω|

(see (C.3)), using the convergence result, the a-priori estimate (5.31) and (3.3), we
obtain

E(θx,∞ − θ̄x , ω∞ − ω̄) ≤ E∗, cl,∞ = c̄l = 3, |cω,∞ − c̄ω| ≤ 2

3
E∗ = 5

3
· 10−5.(5.33)
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Recall c̄ω < −1.0004 from the beginning of Section 3.1. Thus, cω,∞ < −1 and
we conclude that the blowup is focusing and asymptotically self-similar with blowup
scaling λ = cl,∞

−cω,∞ satisfying

|λ − λ̄| ≤ | cl,∞
cω,∞

− c̄l
c̄ω

| + | c̄l
c̄ω

+ λ̄| < 3|c̄ω − cω,∞|
+10−5 < 6 · 10−5, λ̄ = 2.99870,

where λ̄ is the determined by the first 6 digits of −c̄l/c̄ω.

5.4 Uniqueness of the self-similar profiles

Suppose that (ω1, θ1) and (ω2, θ2) are two initial perturbations which are small in the
energy norm E(ωi , θi,x ) < E∗. The associated solution (ωi , θi,x ) solves (3.6)

∂tθi,x = Lθ (θi,x , ωi ) + Fθ + N (θi ), ∂tωi = Lω(θi,x , ωi ) + Fω + N (ωi ).

Denote

δω � ω1 − ω2, δθ � θ1 − θ2,

δNθ = N (θ1) − N (θ2), δNω = N (ω1) − N (ω2). (5.34)

A key observation is that the forcing terms Fθ , Fω do not depend on (ωi , θi ). Thus,
we derive

∂tδθx = Lθ (δθx , δω) + δNθ , ∂tδω = Lω(δθx , δω) + δNω.

Applying the estimates of Lθ ,Lω in Section 3 and (3.58), we get

1

2

d

dt
E1(δθx , δω)2 ≤ −κE1(δθx , δω)2 + R3

where the energy notation E1 is defined in (3.55) and R3 is given by

R3 = 〈δNθ , δθxψ〉 + λ1〈δNω, δωϕ〉 − λ2cω(δω) · 〈δNω, x−1〉
+λ3dθ (δθx ) · 〈δNθ , x

−1〉.

The above formulations are very similar to that in Section 5.3. Formally, the differ-
ence operator δ is similar to the time differentiation ∂t . In the Supplementary Material
[10], we show that (δθx , δω) enjoys the same estimates as that of (∂tθx , ωt ) in (5.32)

1

2

d

dt
E1(δθx , δω)2 ≤ −0.02E1(δθx , δω)2. (5.35)
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As a result, E1(δθx , δω) converges to 0 exponentially fast and the two solutions (ωi +
ω̄i , θi + θ̄i ), i = 1, 2 converge to steady states (ωi,∞, θi,∞) with the same ω∞ and
θ∞,x . Since θi,∞(0) = 0, two steady states are the same.

5.5 Numerical evidence of stronger uniqueness

The above discussion argues that the steady state is unique at leastwithin a small energy
norm ball. However, our numerical computation suggests that the steady state of the
dynamical rescaling equations (2.2),(2.3) is unique (up to rescaling) for a much larger
class of smooth initial data ω, θ with θ(0) = 0 that satisfy the following conditions:

(1) odd symmetry: ω(x) and θx (x) are odd functions of x ;
(2) non-degeneracy condition: ωx (0) > 0 and θxx (0) > 0;
(3) sign condition: ω(x), θx (x) > 0 for x > 0.

In fact, these conditions are consistent with the initial data considered by Luo-Hou in
[54, 55] restricted on the boundary. They are preserved by the equations as long as the
solution exists. Moreover, this class of initial data leads to finite time blowup of the
HL model [12].

Here we present the convergence study for the dynamic rescaling equations for four
sets of initial data that belong to the function class described above. The four initial
data of ω are given by ω(i)(x) = ai fi (bi x), i = 1, 2, 3, 4, where

f1(x) = x

1 + x2
, f2(x) = xe−(x/10)2

1 + x2
, f3(x) = x

1 + x4
, f4 = x(1 − x2)2

(1 + x2)3
,

and the parameters ai , bi are chosen to normalize the initial data such that they satisfy
the same normalization conditions:

ω(i)
x (0) = 1 and u(i)

x (0) = −2.5, i = 1, 2, 3, 4.

The initial data of θx are chosen correspondingly as

θ(i)
x = (cl x + u(i))ω(i)

x − cωω(i), i = 1, 2, 3, 4,

so that the initial residual of the ω equation is everywhere 0. The initial value of the
scaling parameters are set to be cl = 3 and cω = −1, respecting our preliminary
numerical result that c̄l/c̄ω ≈ −3. Note that all these initial data of ω, θx are far away
from the approximate steady (with proper rescaling) with O(1) distance in the the
energy norm that is used in our analysis. In particular, we have ω(1)(x) = O(x−1),
ω(2)(x) = O(x−1e−(x/10)2),ω(3)(x) = O(x−3) for x → +∞, while the approximate
steady should satisfy ω̄(x) = O(xc̄ω/c̄l )where c̄ω/c̄l is approximately−1/3 according
to our numerical results. Moreover, ω(4)(x) has two peaks, while ω̄(x) only has one.
Figure 2(a) plots the four initial data of ω for x ∈ [0, 40].

With each set of these initial data, we numerically solve the dynamic rescaling
equations (2.2) subject to the normalization conditions (2.3) using the algorithm
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Fig. 2 (A) Four different initial data of ω; (B)(C) Profiles of ω and θx when Re drops below 10−4 the first
time. (D)(E) Profiles of ω and θx when Re drops below 10−6 the first time

described in Section 10 of the Supplementary Material [10] (by modifying the ini-
tial values of the part ωp and (θx )p). We verify the uniqueness of the steady state
by comparing the profiles of ω at the first time the maximum grid-point residual
Re := maxi {|Fω(xi )|, |Fθx (xi )|} drops below some small number ε. Here the residu-
als Fω and Fθx are defined as

Fω = −(cl x + u)ωx + cω + v, Fθx = −(cl x + u)θxx + (2cω − ux )θx . (5.36)

Figure 2 (b) and (c) plot the solutions of ω when Re ≤ 10−4 and when Re ≤ 10−6,
respectively. We can see that the profiles of ω from different initial data are barely
distinguishable when the residual is smaller than 10−4; they become even closer to
each other when the residual is even smaller. This implies that the solutions in the four
cases of computation should converge to the same steady state.

6 Hölder regularity of the blowup solution

To estimate the Cγ norm with γ = cθ,∞
cl,∞ of the solution θ , we will use the following

estimate

| f (y) − f (x)|
|x − y|γ = |x − y|−γ |

∫ y

x
fx (z)dz| � |x − y|−γ

∫ y

x
zγ−1dz · || fx x1−γ ||∞

� |x − y|−γ (yγ − xγ ) · || fx x1−γ ||∞ � || fx x1−γ ||∞. (6.1)
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for any 0 ≤ x < y. The difficulty lies in the decay estimate of θx since the previous
a-priori estimates only imply that θx decays with rate slower than xγ−1. The decay rate
xγ−1 is sharp since it is exactly the decay rate of the self-similar profile θ∞,x , which
will be established in Section 6.1. In Section 6.2, we establish the decay estimates of
the perturbation. In Section 6.3, we estimate the Hölder norm of the solution.

Notations In this Section, we use the notation A � B if there exists some finite
constant C > 0, such that A ≤ CB. The constant C can depend on the norms of the
approximate steady state (θ̄ , ω̄) and the self-similar profile (θ∞, ω∞) constructed in
Section 5.3, e.g. ||θx ||∞, ||θ̄x ||∞, as long as these norms are finite. These constants
do not play an important role in characterizing several exponents and thus we do not
need to track them.

6.1 Decay estimates of the self-similar profile

Recall that we have constructed the self-similar profile (θ∞, ω∞) in Section 5.3. Using
the estimate (5.33),we obtain

|u∞(x)| � |x |5/6, |cl,∞x + u∞(x)| ≥ 0.3|x |, u∞,x ∈ L∞,

θ∞(1) 
= 0, θx,∞ ∈ L∞, (6.2)

whose proofs are referred to Section 10 in the Supplementary Material [10]. Recall
that the profile (θ∞, ω∞) solves

(cl,∞x + u∞)θ∞,x = cθ,∞θ∞, u∞,x = Hω∞. (6.3)

Solving the ODE on θ∞, we obtain

θ∞(x) = θ∞(1) exp(J (x)), J (x) �
∫ x

1

cθ,∞
cl,∞y + u∞(y)

dy,

θ∞,x = cθ,∞θ∞(x)

cl,∞x + u∞(x)
. (6.4)

Denoteγ = cθ,∞
cl,∞ . Using the estimates on u∞ in (6.2),we obtain |J (x)−γ log(x)| �

1. Thus, for some constant C1 > 0 depending on the profile, we get

lim
x→∞ θ∞(x)x−γ = C1θ∞(1) 
= 0.

Plugging the above limit and (6.2) in the formula of θ∞,x in (6.4), we yield

lim
x→∞ θx,∞x1−γ = lim

x→∞
cθ,∞x

cl,∞x + u∞(x)
· θ∞(x)x−γ = C1γ θ∞(1). (6.5)

Combining the above estimate and θ∞,x ∈ L∞ from (6.2), we prove

||θ∞,x x
1−γ ||∞ � 1. (6.6)
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Differentiating (6.3) and using cθ,∞ = cl,∞ + 2cω,∞, we get

(cl,∞x + u∞)θ∞,xx = (cθ,∞ − cl,∞ − u∞,x )θ∞,x = (2cω,∞ − u∞,x )θ∞,x . (6.7)

Using (6.2), we further obtain

∣∣∣ xθ∞,xx

θ∞,x

∣∣∣ =
∣∣∣ (2cω,∞ − u∞,x )x

cl,∞x + u∞

∣∣∣ �
∣∣∣ x

cl,∞x + u∞

∣∣∣ � 1. (6.8)

6.2 Decay estimates of the perturbation

Note that we have constructed (θ∞, ω∞) in Section 5.3 with estimate (5.33). We treat
them as known functions. Similar to (3.1), (3.2), linearizing the θx equation around
the self-similar profile, we get

∂tθx + (cl,∞x + u∞ + u)θxx = (2cω,∞ − u∞,x )θx + (2cω − ux )θ∞,x

−uθ∞,xx + (2cω − ux )θx ,

with normalization conditions

cω = ux (0), cl = 0, cθ = cl + 2cω. (6.9)

Here, the nonlinear terms are given by uθxx , (2cω −ux )θx , and the error term is 0 since
we linearize the equation around the exact steady state. To obtain the decay estimates
of θx with a decay rate O(|x |γ−1), we choose ρ with a growth rate O(|x |1−γ ) and
perform L∞ estimate on θxρ, which will imply |θx | ≤ |ρ−1| � |x |γ−1 for large x .
We derive the equation for θxρ as follows

∂t (θxρ) + (cl,∞x + u∞ + u)(θxρ)x = I (ρ)θxρ + J ,

I (ρ) � 2cω,∞ − u∞,x + (cl,∞x + u∞)ρxρ
−1,

J � (2cω − ux )θ∞,xρ − uθ∞,xxρ + uθxρx + (2cω − ux )θxρ.

(6.10)

For a typical function ρ with a growth rate O(|x |γ−1), e.g. ρ = sgn(x)|x |γ−1, since
u∞ has sublinear growth (6.2), for large x > 0, we get

I (ρ) = 2cω,∞ + cl,∞x(x1−γ )x x
γ−1 + l.o.t .

= 2cω,∞ + cl,∞(1 − γ ) + l.o.t . = l.o.t .,

where we have cl,∞(1 − γ ) = cl,∞ − cθ,∞ = −2cω,∞ to obtain the last equality.
Thus, we expect that I (ρ) is not uniformly negative, i.e. I (ρ) ≤ −c for some c > 0,
and we do not obtain a damping term in the L∞ estimate of θxρ, which is different
from the weighted L2 and H1 estimates in Sections 3, 5. In some sense, the decay rate
O(|x |γ−1) is critical. An ideal choice of ρ with the desired growth rate is θ−1∞,x , since
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we have (6.5) and I (ρ) term in (6.10) vanishes :

I (ρ) = 2cω,∞ − u∞,x − (cl,∞x + u∞)θ∞,xx

θ∞,x

= (2cω,∞ − u∞,x )θ∞,x − (cl,∞x + u∞)θ∞,xx

θ∞,x
= 0,

where we have used (6.7) to obtain the last equality.
Recall cω = ux (t, 0). Using ρ = θ−1∞,x , | xθ∞,xx

θ∞,x
| � 1 in (6.8) and | ux | � ||ux ||∞,

we get

|J | =
∣∣∣(2cω − ux )

θ∞,x

θ∞,x
− u

θ∞,xx

θ∞,x
− uθx

θ∞,xx

θ2∞,x
+ (2cω − ux )θxρ

∣∣∣
� ||ux ||∞(1 + ||θxρ||∞).

For θx (·, 0)ρ ∈ L∞, performing L∞ estimates in (6.10), we yield

d

dt
||θxρ||∞ � ||ux ||∞(1 + ||θxρ||∞). (6.11)

Next, we control ||ux ||∞. Recall the energy E in (5.26) and the a-priori estimates
in (5.31),(5.33)

E(θx,∞ + θx − θ̄x , ω∞ + ω − ω̄) ≤ E∗, E(θx,∞ − θ̄x , ω∞ − ω̄) ≤ E∗.

Using the triangle inequality, for any t ≥ 0, we get

||θxψ1/2||2 + ||Dxθxψ
1/2||2 + ||ωϕ1/2||2 + ||Dxωϕ1/2||2

+|cω(ω)| + |dθ (θx )| � 1. (6.12)

Denote κ3 = 0.02. Applying (5.35) to two solutions (θ∞, ω∞) and (θ∞ + θ, ω∞ +
ω), we get

||θx (t)ψ1/2||2 + ||ω(t)ϕ1/2||2 + |cω(t)| � E1(θx (t), ω(t))

≤ e−κ3t E1(θx (0), ω(0) � e−κ3t , (6.13)

where we have used (6.12) to obtain the last inequality. Since H(Dxω)(0) = 0, using
Lemma A.1, we get H(Dxω) = Dx Hω = xuxx . From (3.8) and (3.9), we have
x−4/3 + x−2/3 � ϕ. Applying Lemma A.6 to f = Dxω and f = ω (note that
H(Dxω)(0) = 0), we obtain

||ux ||2∞ �
∫
R

|uxxux |dx =
∫
R

|H(Dxω) · Hωx−1|dx
� ||H(Dxω)x−2/3||2||Hωx−1/3||2
� ||Dxωx

−2/3||2||ωx−1/3||2 � ||Dxωϕ1/2||2||ωϕ1/2||2 � e−κ3t/2. (6.14)
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Plugging the above estimate in (6.11), we yield

d

dt
||θxρ||∞ � e−κ3t/4(1 + ||θxρ||∞).

Since κ3 > 0, solving the differential inequality and using |x1−γ | � |θ−1
x,∞| from (6.6),

we prove

sup
t≥0

||θx (t)ρ||∞ � 1, sup
t≥0

||θx (t)x1−γ ||∞ � sup
t≥0

||θx (t)θ−1
x,∞||∞ � 1,

Since θ is even, using (6.1), (6.6) and the above estimate, we prove

sup
t≥0

||θ∞ + θ(t)||Cγ � 1. (6.15)

Remark 6.1 Since we do not have a damping term in the L∞ estimate (6.11), the
exponential convergence estimates in (6.13), (6.14) play a crucial role in obtaining
(6.15).

6.3 Hölder regularity

Denote θ̂ = θ∞ + θ and by θphy the solution with initial data θ̂ (0, ·) in the physical
space. Recall the rescaling relation and the normalization conditions (6.9)

Cω(τ) = exp(
∫ τ

0
cω(s) + cω,∞ds), t(τ ) =

∫ τ

0
Cω(s)ds,

Cθ (τ ) = exp(
∫ τ

0
cθ (s) + cθ,∞ds), Cl(τ ) = exp(−

∫ τ

0
(cl(s) + cl,∞)ds),

θ̂ (x, τ ) = Cθ (τ )θphy(Cl(τ )x, t(τ )), cθ = 2cω, cl = 0. (6.16)

From assumptions θ̂x (0)|x |1−γ ∈ L∞ in (d) in Theorem 2, E(θ̂x (0)− θ̄x , ω̂(0)−ω̄) �
1, and estimates (6.5) and E(θ∞,x − θ̄x , ω∞ − ω̄) � 1, it is not difficult to obtain
that θxρ ∈ L∞. Thus, θ, θ̂ enjoys the energy estimates in Section 6.2. Using (6.13),
(6.15), (6.16) and γ cl,∞ = cθ,∞, we prove

sup
τ≥0

||θphy(t(τ ))||Cγ = sup
τ≥0

||θ̂ (τ )||Cγ C−1
θ C−γ

l = sup
τ≥0

||θ̂ (τ )||Cγ exp(
∫ τ

0
−2cωdτ) � 1.

6.3.1 Blowup in higher Hölder norm

We show that for any β > γ , the Cβ norm of the solution blows up. Since 1 � ψ(x)
for x ∈ [0, 1], using (6.13) and Cauchy-Schwarz inequality, we get
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|θ(1) − θ(0)| = |
∫ 1

0
θx (y)dy| �

( ∫ 1

0
θx (y)

2dy
)1/2

� ||θxψ1/2||2 � e−κ3τ .

(6.17)

Recall the formulas in (6.16). Denote T = t(∞). Since |cω(τ)| decays exponen-
tially (6.13) and cω,∞ < − 1

2 , we obtain

Cω(τ) � ecω,∞τ , Cθ (τ )−1 � e−cθ,∞τ , Cl(τ )−1 � ecl,∞τ ,

T − t(τ ) =
∫ ∞

τ

Cω(s)ds �
∫ ∞

τ

ecω,∞sds � ecω,∞τ .

Recall γ cl,∞ = cθ,∞ = cl,∞ + 2cω,∞. Denote δ = −βcl,∞−cθ,∞
cω,∞ = 2(β−γ )

1−γ
> 0. We

have

S � lim inf
τ→∞ ||θphy(x, τ )||Cβ (T − t(τ ))δ � lim inf

τ→∞ ||θ̂ (x, τ )||CβC−1
θ C−β

l exp(δcω,∞τ).

Note that θ∞(0) = 0. Using (6.17), we have ||θ̂ (τ )||Cβ ≥ |θ̂ (τ, 1) − θ̂ (τ, 0)| ≥
|θ∞(1)|−C exp(−κ3τ). Using this estimate, δ = −βcl,∞−cθ,∞

cω,∞ and (6.2), we establish

S � lim inf
τ→∞ |θ∞(1)| exp((−cθ,∞ + βcl,∞ + δcω,∞)τ ) � |θ∞(1)| > 0.

We conclude the proof of result (d) in Theorem 2.

Remark 6.2 The exponential convergence in (6.13) is crucial for us to obtain the unique
Hölder exponent γ that characterizes the regularity of the singular solution and the
sharp blowup rate. It enables us to essentially treat the perturbation as 0.

7 Connection between the HLmodel and the 2D Boussinesq
equations inR

+
2

In this section, we discuss the connection between the leading order system of the HL
model and that of the 2D Boussinesq equations in R+

2 with low regularity initial data.

7.1 The leading order system for the 2D Boussinesq equations

The 2D Boussinesq equations in R+
2 read

ωt + u · ∇ω = θx ,

θt + u · ∇θ = 0,
(7.1)
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where the velocity field u = (u, v)T : R
2+ × [0, T ) → R

2+ is determined via the
Biot-Savart law

−�ψ = ω, u = −ψy, v = ψx ,

with no flow boundary condition ψ(x, 0) = 0 x ∈ R.
Consider the polar coordinate (r , β) in R

+
2 : r = (x2 + y2)1/2, β = arctan(y/x).

For α > 0, denote

R = rα, �(R, β) = ω(x, y), η(R, β) = θx (x, y), ξ(R, β) = θy(x, y).

In [7], the following leading order systemof (7.1) is derived based on the framework
developed in [24] under the assumption that ω,∇θ are in some Hölder space Cα with
sufficient small α

�t = η, ηt = 2

πα
L12(�)η, L12(�) =

∫ ∞

R

∫ π/2

0

�(s, β) sin(2β)

s
dsdβ.(7.2)

An important observation made in [7] is that for certain class of Cα data, θ is
anisotropic in the sense that |θy | � α|θx |. Moreover, this property is preserved dynam-
ically. Therefore, the θy variable does not appear in the leading order system. Define
the following operators

P f (R) =
∫ π/2

0
f (R, β) sin(2β)dβ, S f (R) = 2

πα

∫ ∞

R
f (S)

dS

S
. (7.3)

By definition, we have

2

πα
L12(�) = 2

πα

∫ ∞

R
P�(s)

ds

s
= S(P�). (7.4)

Since L12(�) does not depend on β, we apply the operator P to both sides of (7.2)
to obtain

∂P� = Pη, ∂t Pη = 2

πα
L12(�)Pη = S(P�) · Pη. (7.5)

The above system is an 1D coupled system on P�, Pη. Once P�, Pη are deter-
mined, we can obtain an explicit solution of (7.2).

7.2 The leading order system for the HLmodel

We use the observation made in [28] that the advection can be substantially weakened
by choosing Cα data with sufficiently small α. Suppose that ω, θx ∈ Cα with small
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α. Then the advection terms in the system of (ω, θx ) in the HL model become lower
order terms

ωt = θx + l.o.t ., (θx )t = −uxθx + l.o.t ., ux = Hω. (7.6)

The above system is already very similar to (7.2) by taking � = ω, η = θx . We
further perform a simplification for the Hilbert transform. We impose extra assump-
tions that ω, θx are odd, which are preserved dynamically. Due to these symmetries,
it suffices to consider the HL model on R+. For x > 0, symmetrizing the kernel, we
get

Hω(x) = 1

π

∫
R+

ω(y)

(
1

x − y
− 1

x + y

)
dy = 1

π

∫
R+

ω(y)
2y

x2 − y2
dy

= 1

π

∫
R+

ω(y)
2

(x/y)2 − 1

dy

y
.

We learn the following formal derivation of the leading order part of general singular
integral operator from Dr. Elgindi. 1 Denote

X = xα, Y = yα, �(X) = ω(x), η(X) = θx (x). (7.7)

Using the above change of variables and dy
y = 1

α
dY
Y , we get

Hω(x) = 1

απ

∫
R+

ω(Y 1/α)
2

( XY )1/α − 1

dY

Y
= 1

απ

∫
R+

�(Y )Kα(X ,Y )
dY

Y
,

where Kα(X ,Y ) = 2
( X
Y )1/α−1

. Next, we consider the leading order part of Kα(X ,Y )

as α → 0+. Note that

lim
α→0+(

X

Y
)1/α = 0, for X < Y , lim

α→0+(
X

Y
)1/α = ∞, for X > Y .

Hence, for X 
= Y and X ,Y > 0, we get

lim
α→0+ Kα(X ,Y ) = −2 · 1Y>X .

Therefore, formally, we get

Hω(x) = − 2

απ

∫ ∞

X
ω(Y )

dY

Y
+ l.o.t . = −S�(X) + l.o.t ., (7.8)

1 Similar derivationwas presented in theOneWorld PDESeminar “Singularity formation in incompressible
fluids” by Dr. Elgindi. https://www.youtube.com/watch?v=29zUjm7xFlI&feature=youtu.be
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where the operator S is defined in (7.3). Now, plugging the above formula in (7.6),
dropping the lower order terms in (7.6) and applying the notations (7.7), we derive
another leading order system for the HL model

∂t�(X) = η(X), ∂tη(X) = S�(X) · η(X). (7.9)

The above system is exactly the same as that in (7.5). We remark that the lower
order term in the simplification (7.8) needs to be estimated rigorously. In general, the
system (7.6) is more complicated than (7.9) since the Hilbert transform is nonlocal
and is a singular operator, while we can obtain a local relation between S f and f by
taking derivative ∂X (S f )(X) = − 2

πα
f (X)
X .

Note that 1X<Y = 1x<y . Undoing the change of variables in (7.7), we get

S�(X) = 2

πα

∫
R+

1x<y�(Y )
dY

Y
= 2

απ

∫
R+

1x<yω(y) · α
dy

y

= 2

π

∫ ∞

x
ω(y)

dy

y
. (7.10)

The operator on the right hand side is closely related to theChoi-Kiselev-Yao (CKY)
simplification of the Hilbert transform [13]. Therefore, the leading order system (7.9)
can be seen as the CKY’s simplification of (7.6) without the lower order terms.

8 Concluding remarks

In this paper, we proved that the HL model develops a finite time focusing asymptot-
ically self-similar blowup from smooth initial data with compact support and finite
energy.Moreover, we showed that the solution of the dynamic rescaling equations con-
verges to an exact steady state exponentially fast in time and the self-similar blowup
profile is unique within a small energy ball. We also presented strong numerical evi-
dence to demonstrate the uniqueness of the self-similar profile for a much larger class
of initial data that satisfy certain symmetry and sign conditions consistent with the
initial data considered by Luo-Hou in [54, 55]. The possibility of having a unique self-
similar profile for a large class of initial data is very interesting and quite surprising if
it can be justified rigorously.

Oneof themaindifficulties in our stability analysis is to control a number of nonlocal
terms with a relatively small damping coefficient. This is also the essential difficulty
in generalizing the method of analysis presented in this work to prove the finite time
blowup of the 2D Boussinesq equations or 3D axisymmetric Euler equations with
smooth initial data and boundary. To establish linear stability, we designed singular
weight functions carefully, applied several sharp weighted functional inequalities to
control the nonlocal terms, and took into account cancellation among various nonlocal
terms.

Our ultimate goal is to prove rigorously the Luo-Hou blowup scenario for the 2D
Boussinesq equations and 3D Euler equations with smooth initial data and boundary.
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Our numerical study suggested that the real parts of the eigenvalues of the discrete lin-
earizedoperator for the 2DBoussinesq equationswith smooth initial data andboundary
are all negative and bounded away from 0 by a finite spectral gap. See also Section 3.4
in Dr. Pengfei Liu’s Ph.D. thesis [53] for an illustration of the eigenvalue distribution
of the discretized linearized operator. Moreover, our numerical study shows that |θy |
is an order of magnitude smaller than |θx |. This seems to imply that the main driving
mechanism for singularity formation is due to the coupling between ω and θx , which
is captured by our analysis for the HL model.

The framework of analysis that we established for the HLmodel provides a promis-
ing approach to studying the singularity formation of the 2D Boussinesq equations
and 3D axisymmetric Euler equations with smooth initial data and boundary. We can
follow the general strategy developed in this paper by (1) extracting the damping effect
from the local terms, (2) treating the advection terms as perturbation to vortex stretch-
ing, and (3) controlling the nonlocal terms by developing sharp functional inequalities
on the Biot-Savart law and exploiting cancellation among them to control the nonlo-
cal terms by using the damping effects from the local terms. Compared with the HL
model, we will encounter some additional difficulties associated with the advection
away from the boundary, and need to estimate more complicated Biot-Savart law in
2D Boussinesq and 3D Euler equations. We will explore a more effective functional
space, e.g. weighted L p or weightedCα space, to establish the stability analysis. Such
space offers the advantage of weakening the effect of the advection in the stability
analysis and extracting larger damping effect from the local terms in the linearized
equations. Moreover, it still allows us to estimate the Biot-Savart law effectively.

Guided by the singularity analysis presented in this paper, we have recently made
some encouraging progress towards the ultimate goal of proving finite time self-similar
blowup of the 2D Boussinesq equations and 3D Euler equations with smooth initial
data and boundary. We will report our results in our future work.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s40818-022-00140-7.
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Appendix A. Properties of the Hilbert transform

Throughout this section, we assume that ω is smooth and decays sufficiently fast. The
general case can be obtained by approximation. The properties of theHilbert transform
in Lemmas A.1-A.3 are well known, see e.g. [6, 11, 23].

Lemma A.1 Assume that ω is odd. We have

Hω(x) − Hω(0) = xH
(ω

x

)
.

123

https://doi.org/10.1007/s40818-022-00140-7
https://doi.org/10.1007/s40818-022-00140-7


   24 Page 56 of 75 J. Chen et al.

Lemma A.2 Assume that ω is odd and ωx (0) = 0. For p = 1, 2, we have

(ux − ux (0))x
−p = H(ωx−p). (A.1)

Consequently, the L2 isometry property of the Hilbert transform implies

||(ux − ux (0))x
−p||22 = ||ωx−p||22.

Recall the inner product 〈 f , g〉 = ∫ ∞
0 f gdx (see (2.5) )and� = (−D)1/2 = H∂x .

Lemma A.3 For f ∈ L p, g ∈ Lq with 1
p + 1

q = 1 and 1 < p < ∞, we have

〈H f , g〉 = −〈 f , Hg〉. (A.2)

Lemma A.4 Denote � = (−∂2x )
1/2. Assume that f is odd and gx = H f , g(0) = 0.

We have

〈H f − H f (0), f x−3〉 = 0, 〈g, fx x
−1〉 = −

〈
�
g

x
,
g

x

〉
,

〈g, f x−2〉 = −
〈
�
g

x
,
g

x

〉
− π

4
gx (0)

2.

Identities similar to those in Lemma A.4 have been used in [2, 6, 11, 26]. We refer
the proof of Lemma A.4 to the arXiv version of this paper [8].

Lemma A.5 Assume that ω ∈ L2(|x |−4/3 + |x |−2/3) is odd and ux = Hω. We have

∫
R

(ux (x) − ux (0))2

|x |4/3 =
∫
R

( w2

|x |4/3 + 2
√
3 · sgn(x)ω(ux (x) − ux (0))

|x |4/3
)
dx .

It seems that the identity (4.2) H(|x |−α) = tan
(

απ
2

)
sgn(x)|x |−α , which will be

used in the proof of Lemma A.5, is difficult to locate in the literature. We thus give a
proof.

Proof Firstly, we compute H(|x |−α). For α ∈ (0, 1), we have H(|x |−α) =
Cαsgn(x)|x |−α , for some constant Cα . We determine Cα by applying Lemma A.3
to

f = |x |−α, H f = Cαsgn(x)|x |−α, g = − x

1 + x2
, Hg = 1

1 + x2
,

which implies

Cα

∫ ∞

0

x1−α

1 + x2
dx =

∫ ∞

0

1

xα(1 + x2)
dx .
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The integrals can be evaluated using the Beta function B(x, y) and B(β, 1 − β) =
π

sin(βπ)
for β ∈ (0, 1). In particular, we get

Cα = B(α+1
2 , 1−α

2 )

B( 2−α
2 , α

2 )
= π/ sin((α + 1)π/2)

π/ sin((2 − α)π/2)
= tan

(απ

2

)
.

Choosing α = 1/3, we get

H(|x |−1/3) = 1√
3
sgn(x)|x |−1/3, H(sgn(x)|x |−1/3) = −√

3|x |−1/3. (A.4)

Recall that ω is odd. We assume that ω is in the Schwartz space. Applying the
Cotlar identity, see e.g. [11, 23],

(HF)2 = F2 + 2H(F · HF),

we yield

I �
∫
R

(ux (x) − ux (0))2

|x |4/3 =
∫
R

|x |2/3
(
H

(ω

x

))2
dx

=
∫
R

{
|x |2/3

(ω

x

)2 + 2|x |2/3H
(ω

x
H

(ω

x

)) }
dx .

Since the Hilbert transform is antisymmetric ( Lemma A.3), we get H(ωH(ω
x )) =

− 1
π

∫
R

ω
x H(ω

x )dx = 0. Using Lemma A.1, we obtain

|x |2/3H
(ω

x
H(

ω

x
)
)

= |x |2/3 1
x
H

(
ωH(

ω

x
)
)

= sgn(x)|x |−1/3H
(
ωH(

ω

x
)
)
.

Thus, applying Lemma A.3, then (A.4) and H(ω
x ) = ux−ux (0)

x in Lemma A.1, we
prove

I =
∫
R

{ ω2

|x |4/3 − 2H
(
sgn(x)|x |−1/3

)
ωH

(ω

x

) }
dx

=
∫
R

{ ω2

|x |4/3 + 2
√
3|x |−1/3ωH

(ω

x

) }
dx

=
∫
R

{ ω2

|x |4/3 + 2
√
3|x |−1/3ω

ux − ux (0)

x

}
dx

=
∫
R

( ω2

|x |4/3 + 2
√
3sgn(x)

ω(ux (x) − ux (0))

|x |4/3
)
dx .

To prove the Lemma for general odd ω ∈ L2(|x |−4/3 + |x |−2/3), or equivalently
ω
x ∈ L2(|x |2/3 + |x |4/3), we approximate ω

x by the Schwartz function and use the fact
that |x |2/3 is an A2 weight [23]. ��
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The weighted estimates in Lemma A.6 were established in [18].

Lemma A.6 For f ∈ L2(x−4/3 + x−2/3), we have

||(H f − H f (0))x−2/3||2 ≤ cot
π

12
|| f x−2/3||2 = (2 + √

3)|| f x−2/3||2,
||H f x−1/3||2 ≤ cot

π

12
|| f x−1/3||2 = (2 + √

3)|| f x−1/3||2.

The estimate in the following Lemma is the Hardy inequality [36].

Lemma A.7 Assume that u is odd. Then for p > 3
2 , we have

∫ +∞

0

(u(x) − ux (0)x)2

x2p
≤ 4

(2p − 1)2

∫ +∞

0

(ux (x) − ux (0))2

x2p−2 .

Lemma A.8 Assume that ω is odd and ω ∈ L2(x−4 + x−2/3). Let ux = Hω. For any
α, β, γ ≥ 0, we have

||(ux − ux (0))(αx
−4 + βx−2)1/2||22 = ||ω(αx−4 + βx−2)1/2||22∣∣∣

∣∣∣(u − ux (0)x)
( α

x6
+ β

x4
+ γ

x10/3

)1/2∣∣∣
∣∣∣2
2

≤
∣∣∣
∣∣∣ω( 4α

25x4

+ 4β

9x2

)1/2∣∣∣
∣∣∣2
2
+ 36γ

49
||(ux − ux (0))x

−2/3||22.

The first identity follows from Lemma A.2. Applying Lemma A.7 with p = 3, 2, 5
3

and then Lemma A.2 to the power x−4, x−2 yield the second inequality. The constants
4
25 ,

4
9 ,

36
49 are determined by 4

(2p−1)2
with p = 3, 2, 5

3 .

Appendix B. Derivations and estimates in the linear stability analysis

B.1 Derivation of (2.9)

For p ∈ [1, 3], using integration by parts yields

||(ũ − 1

2p − 1
ũx x)x

−p||22 =
∫
R+

( 1

(2p − 1)2
ũ2x

x2p−2 − 2

2p − 1

ũũx
x2p−1 + ũ2

x2p

)
dx

=
∫
R+

( 1

(2p − 1)2
ũ2x

x2p−2 + 1

2p − 1
(∂x x

−(2p−1))ũ2 + ũ2

x2p

)
dx

= 1

(2p − 1)2

∫
R+

ũ2x
x2p−2 dx .
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B.2. Estimate of Ir1, Ir2, Ir3

We construct the cutoff function χ in (3.8) as follows

χ(x) = 2

π
arctan((

x − l1
l2

)3)1x≥l1 , l1 = 5 · 108, l2 = 10l1.

Recall Ir1, Ir2 in (3.16), (3.29) and (5.14)

Ir1 = 〈ũxχ(ξ1ψn + ξ2ψ f ), θx 〉, Ir2 = λ1〈ũ, χξ3ωϕ〉,
Ir3 = −1

3
λ1〈ũχξ3, Dxωϕ〉. (B.1)

Recall from the beginning of Section 3.1 that ω̄, θ̄x , ω̄x , θ̄xx have decay rates
xα, x2α, xα−1, x2α−1, respectively, with α slightly smaller than − 1

3 . Using the for-
mulas of ξi in (3.7) and ϕ f , ϕn, ψ in (3.8), (3.9), we obtain the decay rates
χ(ξ1ψn + ξ2ψ f ) ∼ C1x−4/3, χξ3ϕ ∼ C2x−2 for sufficiently large x , where C1,C2
are some constants.

Recall ũx = ux − ux (0). Using the Cauchy-Schwarz inequality and Lemmas A.6,
we obtain

|Ir1| ≤ ||ũx x−2/3||2||χ(ξ1ψn + ξ2ψ f )θx ||2
≤ (2 + √

3)||ωx−2/3||2||χ(ξ1ψn + ξ2ψ f )θx ||2.

For Ir2, we first decompose it as follows using ũ = u − ux (0)x

Ir2 = λ1〈u, χξ3ωϕ〉 − ux (0)λ1〈x, χξ3ωϕ〉 � J1 + J2.

Using the Cauchy-Schwarz inequality, Lemma A.7 with p = 4
3 and Lemma A.6,

we get

|J1| ≤ λ1||ux−4/3||2||x4/3χξ3ωϕ||2 ≤ 6λ1
5

||ux x−1/3||2||x4/3χξ3ωϕ||2

≤ 6λ1(2 + √
3)

5
||ωx−1/3||2||x4/3χξ3ωϕ||2.

Recall cω = ux (0). For J2, using Cauchy-Schwarz inequality, we yield

|J2| ≤ λ1|cω| · ||χ1/2ωϕ1/2||2||xξ3χ1/2ϕ1/2||2.

In the above estimates of Ir1, if we further bound ||χ(ξ1ψn + ξ2ψ f )θx ||2 by

the weighted L2 norm ||θxψ1/2||2, we obtain a small factor ρ
−1/3
2 since χ is sup-

ported in |x | ≥ ρ2 and the profile has decay. See also the above discussion on
the decay rates. Similarly, we get a small factor in the estimates of J1, J2 from
||x4/3χξ3ωϕ||2, ||x4/3χξ3ωϕ||2, respectively.

123



   24 Page 60 of 75 J. Chen et al.

Using Young’s inequality ab ≤ ta2 + 1
4t b

2, we obtain

|Ir1| + |Ir2| ≤ t51||ωx−2/3||22 + (2 + √
3)2

4t51
||χ(ξ1ψn + ξ2ψ f )θx ||22 + t52||ωx−1/3||22

+ 1

4t52

(
6λ1(2 + √

3)

5

)2

||x4/3χξ3ωϕ||22

+ t53||χ1/2ωϕ1/2||22 + λ21||xξ3χ1/2ϕ1/2||22
4t53

c2ω,

where t51 = 10−10, t52 = 10−5, t53 = 10−2. We choose these weights t5i so that the
terms ta2, 1

4t b
2 in Young’s inequality are comparable. It follows the estimate (3.36).

Note that replacingω in Ir2 in (B.1) by− 1
3Dxω, we obtain Ir3. Therefore, applying

the same estimate as that of Ir2 to Ir3, we yield

|Ir3| ≤ 2λ1(2 + √
3)

5
||ωx−1/3||2||x4/3χξ3Dxωϕ||2

+λ1

3
|cω| · ||χ1/2Dxωϕ1/2||2||xξ3χ1/2ϕ1/2||2.

Using Young’s inequality ab ≤ ta2 + 1
4t b

2, we establish

|Ir3| ≤ t94||x4/3χξ3Dxωϕ||22
+ 1

4t94

(
2λ1(2+

√
3)

5

)2 ||ωx−1/3||22 + t95||χ1/2Dxωϕ1/2||22

+λ21||xξ3χ1/2ϕ1/2||22
36t95

c2ω.

where t94 = 106, t95 = 10−3. We choose these weights t94, t95 so that the terms
ta2, 1

4t b
2 in Young’s inequality are comparable. It follows (5.15).

B.3 Derivations of the ODE (3.43) in Section 3.11

We use the following functions in the derivations

f2 � 1

4

ūx
x

− 1

5
(
3

4
ūxx + 1

4

ūx
x

) − ūx
x

+ ū

x2
, f3 � λ1(ω̄ − xω̄x )ϕ,

f4 � 3

5

ūθ,x

x
+ 1

5

(
3

5
ūθ,xx + 2

5

ūθ,x

x

)
, f6 � ū

x2
,

f7 � (θ̄x − x θ̄xx )ψ, f8 � 3

4
ω̄x + 1

4

ω̄

x
, f9 � 3

5
θ̄xx + 2

5

θ̄x

x
.

(B.2)
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B.3.1. Derivations of the ODE for c2ω, d2
θ
and (3.43)

Recall cω = ux (0) = − 2
π

∫ +∞
0

ω
x dx from (3.3). Multiplying the equation of ω in

(3.1) by − 1
x and then taking the integral from 0,+∞ yield

d

dt

π

2
cω = d

dt

∫ +∞

0

ω

−x
dx =

∫ ∞

0

(c̄l x + ū)ωx + uω̄x

x
dx −

∫ ∞

0

θx

x
dx

+
∫ ∞

0

c̄ωω + cωω̄

−x
dx −

∫ ∞

0

Fω + N (ω)

x
dx

=
∫ ∞

0

ūωx + uω̄x

x
dx − dθ + π

2
(c̄ω + ūx (0))cω −

∫ ∞

0

Fω + N (ω)

x
dx,

where we have used the notation dθ in (3.41) and
∫ ∞
0

f
−x = π

2 H f (0) with f = ω, ω̄

in the last identity. Multiplying cω on both sides, we yield

1

2

d

dt

π

2
c2ω = π

2
(c̄ω + ūx (0))c

2
ω + cω

∫ ∞

0

ūωx + uω̄x

x
dx − cωdθ

− cω

∫ ∞

0

Fω + N (ω)

x
dx .

(B.3)

which is exactly (3.42).
We derive the ODE for dθ using the θ equation in (3.1). Since

∫
R+

c̄l xθxx
x dx = 0,

we get

d

dt
dθ = 2c̄ω

∫
R+

θx

x
+ 2cω

∫
R+

θ̄x

x
−

∫ ∞

0

ūxθx + ūθxx

x
dx −

∫ ∞

0

uθ̄xx + ux θ̄x
x

dx

+
∫ ∞

0

Fθ + N (θ)

x
dx � I1 + I2 + I3 + I4 + I5.

(B.4)

We use the notation 〈·, ·〉 in (2.5) to simplify the integral. For I3, using integration
by parts, we obtain

I3 = −〈(ūθx )x , x
−1〉 = 〈ūθx , ∂x x

−1〉 = −〈ūθx , x
−2〉.

Similarly, for I4, we get

I4 = −〈uθ̄x , x
−2〉.

Recall cω = ux (0). We rewrite the above term using the decomposition u =
ũ + ux (0)x (3.10)

I4 = −〈(ũ + ux (0)x)θ̄x , x
−2〉 = −〈ũθ̄x , x

−2〉 − cωd̄θ .
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where we have used the notation d̄θ defined in (3.41). Using (3.41), we can simplify
I1, I2 as

I1 = 2c̄ωdθ , I2 = 2cωd̄θ .

The cωdθ term in I2 and I4 are canceled partially. Using these computations and
multiplying both sides of (B.4) by dθ yields

1

2

d

dt
d2θ = 2c̄ωd

2
θ + cωd̄θdθ − dθ

∫ ∞

0

ūθx

x2
dx − dθ

∫ ∞

0

ũθ̄x

x2
dx

+ dθ

∫ ∞

0

Fθ + N (θ)

x
dx .

(B.5)

Since d̄θ > 0, the term cωdθ in (B.5) and (B.3) have cancellation.
The quadratic parts on the right hand sides in (B.3), (B.5) involve the following

terms remained to estimate

J1 = 〈ū, ωx x
−1〉, J2 = 〈u, ω̄x x

−1〉, J3 = 〈ū, θx x
−2〉, J4 = 〈ũ, θ̄x x

−2〉. (B.6)

We use the idea in Section 3.11.2 to rewrite the integrals of u as the integrals of ω

and of ũ − 1
5 ũx x = u� (see (3.41)). We use the functions fi defined (B.2) to simplify

the integrals of θx , ω. In Appendix B.3.2, we rewrite Ji as follows

J1 + J2 = 〈ω, f2〉 + 〈u�x−1, f5〉,
J3 = 〈θx , f6〉, J4 = 〈u�x−1, f9〉 − 〈ω, f4〉.

(B.7)

For some parameters λ2, λ3 > 0 to be determined, combining (B.3) and (B.5), we
yield

1

2

d

dt

(
λ2π

2
c2ω + λ3d

2
θ

)
= πλ2

2
(c̄ω + ūx (0)) c

2
ω + λ2cω(J1 + J2)

− λ2cωdθ − λ2cω〈Fω + N (ω), x−1〉
+ 2c̄ωλ3d

2
θ + λ3cωd̄θdθ

− λ3dθ J3 − λ3dθ J4 + λ3dθ 〈Fθ + N (θ), x−1〉.
Plugging (B.7) in the above ODE, we derive (3.43).

B.3.2 Derivations of (B.7) in the ODEs

Recall the integrals Ji from (B.6). We use the idea in Section 3.11.2 to derive the
formulas in (B.7).

Recall ũ = u − ux (0)x from (3.10). Firstly, we consider J2. Since
∫ ∞
0 ω̄xdx = 0,

we have

J2 = 〈u − ux (0)x, ω̄x x
−1〉 = 〈ũ, ω̄x x

−1〉.
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We approximate the far field of ω̄x x−1 by 1
4 (

ω̄
x )x and derive

J2 =
〈
ũ,

ω̄x

x
− 1

4
(
ω̄

x
)x

〉
+ 1

4

〈
ũ, (

ω̄

x
)x

〉
� J21 + J22.

Applying integration by parts, (A.1) and (A.2) yields

J22 = −1

4
〈ũx , ω̄x−1〉 = −1

4

〈
H

(ω

x

)
, ω̄

〉
= 1

4

〈ω
x

, H ω̄
〉
= 1

4

〈ω
x

, ūx
〉
.

In J21, the coeifficient

ω̄x

x
− 1

4
(
ω̄

x
)x = 3

4

ω̄x

x
+ 1

4

ω̄

x2

decays much faster than ω̄x x−1 for large x . We approximate ũ by 1
5 ũx x

J21 =
〈
ũ,

3

4

ω̄x

x
+ 1

4

ω̄

x2

〉
=

〈
ũ − 1

5
ũx x,

3

4

ω̄x

x
+ 1

4

ω̄

x2

〉

+1

5

〈
ũx x,

3

4

ω̄x

x
+ 1

4

ω̄

x2

〉
� I1 + I2.

Using a direct computation and then applying (A.1) and (A.2), we get

I2 = 1

5
(
3

4
〈ũx , ω̄x 〉 + 1

4
〈 ũx
x

, ω̄〉) = 1

5
(
3

4
〈ux , ω̄x 〉 + 1

4
〈H

(ω

x

)
, ω̄〉)

= 1

5
(−3

4
〈ω, H ω̄x 〉 − 1

4
〈ω
x

, H ω̄〉) = −1

5
〈ω,

3

4
ūxx + 1

4

ūx
x

〉,

where we have used
∫ ∞
0 ux (0)ω̄xdx = 0 in the second identity. Using the notation

and function in (3.41), (B.2), we can simplify I1 as

I1 = 〈u�x−1, f8〉.

Combining the above calculations on J22, I1, I2, we obtain

J2 = I1 + I2 + J22 =
〈
ω,

1

4

ūx
x

− 1

5
(
3

4
ūxx + 1

4

ūx
x

)
〉
+

〈u�

x
, f8

〉
.

For J1 in (B.6), using integration by parts, we obtain

J1 = 〈ūx−1, ωx 〉 = −〈∂x (ūx−1), ω〉 = 〈− ūx
x

+ ū

x2
, ω〉.

We can simplify J1 + J2 using the function f2 in (B.2)

J1 + J2 = 〈ω, f2〉 + 〈u�x−1, f5〉. (B.8)
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For J3, using f6 defined in (B.2), we get

J3 = 〈θx , ūx−2〉 = 〈θx , f6〉. (B.9)

For J4 in (B.6), we use a similar computation to obtain

J4 = 〈ũ, θ̄x x
−2〉 =

〈
ũ,

θ̄x

x2
+ 3

5

(
θ̄x

x

)
x

〉
− 3

5

〈
ũ,

(
θ̄x

x

)
x

〉
= 〈ũ,

3

5

θ̄xx

x
+ 2

5

θ̄x

x2
〉 − 3

5

〈
ũ, (

θ̄x

x
)x

〉

=
〈
ũ − 1

5
ũx x,

3

5

θ̄xx

x
+ 2

5

θ̄x

x2

〉
+ 1

5

〈
ũx x,

3

5

θ̄xx

x
+ 2

5

θ̄x

x2

〉
− 3

5

〈
ũ, (

θ̄x

x
)x

〉
� J41 + J42 + J43.

For J41, using the notations in (3.41) and (B.2), we obtain

J41 = 〈u�x−1, f9〉.

For J42, J43, using Lemmas A.2 and A.3, we derive

J42 = 1

5

〈
ũx ,

3

5
θ̄xx + 2

5

θ̄x

x

〉
= 1

5

(
3

5

〈
Hω − Hω(0), θ̄xx

〉
+ 2

5

〈
H

(ω

x

)
, θ̄x

〉)

= −1

5

(
3

5
〈ω, H θ̄xx 〉 + 2

5
〈ω
x

, H θ̄x 〉
)

,

J43 = 3

5

〈
ũx ,

θ̄x

x

〉
= 3

5

〈
H(

ω

x
), θ̄x

〉
= −3

5

〈ω
x

, H θ̄x

〉
.

Combining the above computations and using the notations ūθ,x , f4 defined in
(3.41), (B.2), we yield

J4 = J41 + J42 + J43 = 〈u�x−1, f9〉 −
〈
ω,

3

5

ūθ,x

x
+ 1

5

(
3

5
ūθ,xx + 2

5

ūθ,x

x

) 〉

= 〈u�x−1, f9〉 − 〈ω, f4〉.

The formulas in (B.8), (B.9) and the above formula imply (B.7).

B.4 Derivations of the commutators in (5.3)

Recall Dx = x∂x and the operators in (3.5). We choose f = θx , g = ω in (3.5). We
use the notation ux = Hω. Then u = −�−1ω.

Firsrly, we compute the commutator related to the transport term. Using (c̄l x +
ū)∂x = (c̄l + ū

x )Dx , for p = ω or θx , we yield

− [Dx , (c̄l x + ū) ∂x ]p = −[Dx ,

(
c̄l + ū

x

)
Dx ]

p = −Dx

((
c̄l + ū

x

)
Dx p

)
+

(
c̄l + ū

x

)
Dx (Dx p)
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= −Dx

(
c̄l + ū

x

)
Dx p = −

(
ūx − ū

x

)
Dx p. (B.10)

Next, we compute the velocity corresponding to Dxω. Using Lemma A.1, we get

H(Dxω) − H(Dxω)(0) = xH(ωx ) = x∂x Hω = xuxx .

Note that H(Dxω)(0) = − 1
π

∫
R

ωxdx = 0. We obtain Dxux = xuxx = H(Dxω).
From

(xux − u)x = xuxx = H(Dxω), (xux − u)(0) = 0,

we obtain that xux − x is the velocity corresponding to Dxω. Therefore, we have

Hω = ux , −�−1ω = u, H(Dxω)(0) = 0,

H(Dxω) = xuxx , −�−1(Dxω) = xux − u.

Using these formulas, for q = ω̄x or θ̄xx we obtain

Dx

(
− (−�−1ω − Hω(0)x)q

)
−

(
− (−�−1Dxω − HDxω(0)x)q

)
= Dx (−(u − ux (0)x)q) + (xux − u)q

= −(u − ux (0)x)Dxq + (−(xux − ux (0)x))q + (xux − u)

q = −(u − ux (0)x)(Dxq + q).

(B.11)

Similarly, we have

Dx

(
− (Hω − Hω(0)x)q

)
− (−(HDxω − HDxω(0))q)

= Dx (−(ux − ux (0))q) + xuxxq

= −Dxuxq − (ux − ux (0))Dxq + xuxxq = −(ux − ux (0))Dxq.

(B.12)

Since c̄ωω, θx in Lω1 (3.5) vanish in the commutator, applying (B.10) with p = ω

and (B.11) with q = ω̄x yields the formula for [Dx ,Lω1] in (5.3). Note that

Dx ((2c̄ω − ūx )θx ) − (2c̄ω − ūx )Dxθx = −Dx ūxθx .

Combining this computation, (B.10) with p = θx , (B.11) with q = θ̄xx and (B.12)
with q = θ̄x , we derive the formula for [Dx ,Lθ1] in (5.3).

B.5 Derivation and computing Copt in Section 3.11.3

Recall the inequality (3.50), the functions in (3.49) and the spaces �i in (3.51). We
use the argument similar to that in [11] to derive and compute Copt .
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In Section 3.11.3, we have reduced (3.50) to an optimization problem on the finite
dimensional space �1 ⊕ �2 ⊕ �3 with X ∈ �1,Y ∈ �2, Z ∈ �3. Here, we have a
direct sum of spaces since there is no inner product among X ,Y , Z . Let {e1, e2, e3, e4}
be an orthonormal basis (ONB) of �1 with e1 = g1

||g1||22
; {e5, e6, e7} be that of �2 with

e2 = g5
||g5||22

; {e8, e9} be that of �3. Then {ei }9i=1 is an ONB of � � �1 ⊕ �2 ⊕ �3.

Let vi ∈ R
9 be the coordinate of gi in� under the basis {ei }9i=1 and p = (x, y, z) ∈

R
4 × R

3 × R
2 be that of X + Y + Z . The vectors vi and p are column vectors. By

abusing notation, we also use 〈·, ·〉 to denote the Euclidean inner product in R9. With
these convections, each summand on the left hand side of (3.50) is a quadratic form
in p. For example, we have

〈X , g1〉〈Y , g7〉 = 〈p, v1〉〈p, v7〉 = (pT v1)(v
T
7 p) = pT (v1v

T
7 )p.

Hence, (3.50) is equivalent to

pT Mp ≤ Copt p
T Dp, (B.13)

where M and D are given by

M = v1v
T
3 + v1v

T
7 − (λ2 − λ3d̄θ )v1v

T
5 + λ2v1v

T
2

− λ3v5v
T
6 + λ3v5v

T
4 + λ2v1v

T
8 − λ3v5v

T
9 ,

D = I d + s1v1v
T
1 + s2v5v

T
5 .

(B.14)

By definition of e1, e5, i.e. e1 = g1
||g1||2 , e5 = g5||g5||2 , we have v1 = ||g1||2E1, v5 =

||g5||2E5, where Ei ∈ R
9 is the standard basis of R9, i.e. the i-th coordinate of Ei is

1 and 0 otherwise. Therefore, D is a diagonal matrix

D = diag(1 + s1||g1||22, 1, 1, 1, 1 + s2||g5||22, 1, 1, 1, 1) ∈ R
9×9.

Symmetrizing the left hand side of (B.13) and using a change of variable q =
D1/2 p, we obtain

Copt = λmax(D
−1/2MsD

−1/2), Ms = 1

2
(M + MT ).

Firstly, M can be written as

M = V1V
T
2 , V2 = (v3, v7, v5, v2, v6, v4, v8, v9),

V1 = (v1, v1,−(λ2 − d̄θλ3)v1, λ2v1,−λ3v5, λ3v5, λ2v1,−λ3v5).
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Then Ms = 1
2 (V1V

T
2 + V2V T

1 ) = 1
2U1UT

2 with U1 = [V1, V2],U2 = [V2, V1] ∈
R
9×16. Using the argument in [11], for any even integer p ≥ 2, we obtain

Copt ≤ (Tr|D−1/2MsD
−1/2|p)1/p = 2−1(Tr(D−1/2U1U

T
2 D−1/2)p)1/p

= 2−1(Tr(UT
2 D−1U1)

p)1/p.
(B.15)

We will explain how to rigorously estimate the bound above in the Supplementary
Material [10].

B.6 Estimate ofT in Section 3.12

For λ2, λ3, t61, κ, rcω > 0 chosen in (C.3), Appendix C and t62 determined by these
parameters, we define Ti and si

T1 = (−λ1Dω − Aωϕ−1 − λ1κ)ϕ − t61x
−4, T2 = (−Dθ − Aθψ

−1 − κ)ψ,

T3 = 25t61x
−4 + t62x

−4/3, s1 = −π

2
λ2(c̄ω + ūx (0)) − rcω − πλ1e3α6

12
− Gc,

s2 = −2c̄ωλ3 − κλ3,

(B.16)

We will verify that Ti > 0, si > 0 later. The parameter rcω is essentially determined
by κ . See Appendix C.2 for the procedure to determine these parameters. Plugging
the above Ti and si in (3.48), we can compute the upper bound of Copt in (3.48) using
(B.15) with p = 36

Copt ≤ 2−1(Tr(UT
2 D−1U1)

p)1/p < 0.9930 < 1, (B.17)

which is verified in (D.7), Appendix D. Thus from (3.48), we obtain

T ≤ ||ωT 1/2
1 ||22 + ||θx T 1/2

2 ||22 + ||u�

x
T 1/2
3 ||22 + s1c

2
ω + s2d

2
θ ,

which is exactly (3.53). By definition of T1, T2, we have

〈(Dθ + Aθψ
−1)ψ, θ2x 〉 + 〈T2, θ2x 〉 = −κ〈θ2x , ψ〉,

〈(λ1Dω + Aωϕ−1)ϕ, ω2〉 + 〈T1, ω2〉 = −κλ1〈ω2, ϕ〉 − t61〈ω2, x−4〉.

Hence, plugging the above estimate on T in (3.52), we yield

J = −κ||θxψ1/2||22 − κλ1||ωϕ1/2||22 − t61||ωx−2||22 + s1c
2
ω + s2d

2
θ

+ ||u�

x
T 1/2
3 ||22 −

(
Du − 9

49
t12 − 72λ1

49
· 10−5

)
||ũx x−2/3||22 + A(u) + Gcc

2
ω.

(B.18)
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It remains to estimate the u� term. Recall u� in (3.41) and T3 in (B.16). A direct
calculation yields

||u�

x
T 1/2
3 ||22 =

∫ ∞

0
(ũ − 1

5
ũx x)

2 · 25t61x−6dx

+
∫ ∞

0
(ũ − 1

5
ũx x)

2 · t62x−10/3dx � I1 + I2

Using (2.9) with p = 3 and Lemma A.2, we get

I1 = t61||ũx x−2||22 = t61||ωx−2||22.

For I2, using integration by parts and Lemma A.8 about ũ with α = β = 0, we get

I2 = t62

∫ ∞

0

1

25

ũ2x
x4/3

− 2

5

ũũx
x7/3

+ ũ2

x10/3
dx = t62

∫ ∞

0

1

25

ũ2x
x4/3

+ 1

5
ũ2∂x x

−7/3 + ũ2

x10/3
dx

= t62

∫ ∞

0

1

25

ũ2x
x4/3

+ (1 − 7

15
)

ũ2

x10/3
dx ≤ t62

∫ ∞

0

ũ2x
x4/3

(
1

25
+ 8

15
· 36
49

)
dx .

Combining the estimates of I1, I2 yields

||u�

x
T 1/2
3 ||22 ≤ t61||ωx−2||22 +

( 1

25
+ 8

15
· 36
49

)
t62||ũx x−2/3||22, (B.19)

We define t62 in Appendix C so that the terms ||ũx x−2/3||22 in (B.19) and (B.18)
are almost canceled. We establish (3.54), i.e.

J ≤ −κ||θxψ1/2||22 − κλ1||ωϕ1/2||22 + (s1 + Gc)c
2
ω

+s2d
2
θ − 10−6||ũx x−2/3||22 + A(u).

Appendix C. Parameters in the estimates

C.1. Parameters

Parameters e1, e2, e3 introduced in (3.7) are determined by the approximate self-
similar profiles

e1 = 1.5349, e2 = 1.2650, e3 = 1.3729. (C.1)

We choose the following parameters for the weights ψ, ϕ (3.8),(3.9)

α1 = 5.3, α2 = 3.3, α3 = 0.68, α4 = 12.1, α5 = 2.1, α6 = 0.77, (C.2)
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and the following parameters in the linear stability analysis in Section 3

λ1 = 0.32, t1 = 1.29, t12 = 49

9
· 0.9Du, t2 = 5.5, t22 = 13.5, t31 = 3.2,

t32 = 0.5, t34 = 2.9, τ1 = 4.7, t4 = 3.8, λ2 = 2.15, λ3 = 0.135,

t61 = 0.16, κ = 0.03, rcω = 0.15.

(C.3)

Parameter λ1 is introduced in (3.12), (3.14); t2, t22 are introduced in the estimates
of In (3.18), (3.20); t1, t12 are introduced in the estimate of I f (3.23), (3.25); t4 is
introduced in the estimate of Is in (3.28); (t31, t32), t34, τ1 are introduced in the estimate
of Iuω in (3.33), (3.32) and (3.30), respectively; λ2, λ3, t61, κ, rcω are introduced in
(B.16) to estimate T in (3.53).

The parameter Du introduced in (3.25), t62 in (B.16) are determined by the above
parameters

Du = t1α3λ1α6√
3

, t62 = (Du − 9

49
t12 − 72λ1

49
· 10−5 − 10−6)(

1

25
+ 8

15
· 36
49

)−1.

After we complete the weighted L2 estimate, we choose the following parameters
in the weighted H1 estimates and nonlinear stability estimates

κ2 = 0.024, t71 = 2.8, t72 = 2, t81 = 5, t82 = 0.7, t91 = 1, t92 = 1.2,

γ1 = 0.98, γ2 = 0.07, λ4 = 0.005, E∗ = 2.5 · 10−5, aH1 = 0.31.
(C.4)

Parameters t7i , t8i , t9i are introduced in the estimates of Q2 (5.11), (5.17); κ2 in (5.23);
γ1, γ2 in (5.22); λ4 in (5.29). Parameter aH1 is determined by the above parameters
via Aω2 (5.20) and (5.24)

aH1 = 0.31.

C.2. Choosing parameters inT and determining κ

We first choose rcω = κ π
2 λ2 with small κ = 0.001. The remaining unknown param-

eters in the linear stability analysis are λ2, λ3, t61 > 0. Once λ2, λ3, t61 are chosen,
the functions Ti and scalars si in (B.16) are determined and then we can compute
Copt in (3.48) using the argument in Section (3.47) and Appendix B.5. We optimize
λ2, λ3, t61 > 0 subject to the constraints Ti > 0, si > 0, such that Copt < 0.98 and
Copt is as small as possible. Then we obtain the approximate values for λ2, λ3, t61.

Our goal is to obtain κ as large as possible. The estimate of Copt depends on all
the parameters in (C.2)-(C.3). We gradually increase κ until Copt < 0.98 is violated.
We further refine all the parameters in (C.2)-(C.3) one by one and by modifying them
around their approximate values to obtain smaller Copt . Then we increase κ again.
Repeating this process several times, we obtain larger κ and κ = 0.03. Finally, we
increase rcω until Copt < 0.98 is violated. This allows us to obtain a damping term for
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c2ω with a larger coefficient in the weighted L2 estimate (3.57), Using this procedure,
we determine the parameters in (C.2), (C.3) and further establish (3.57).

In our process of determining the parameters, we actually first use the grid point
values of the functions and only need to track the constraints, e.g. Ti > 0, on the
grid points instead of every x ∈ R. After we determine all parameters, we verify the
constraints rigorously by using computer-assisted analysis and establish the desired
bound Copt < 0.993 < 1 (B.17).

Appendix D. Rigorous Verification

This section is a collection of inequalities that will be rigorously verified with the help
of computer programs. The methods of computer-assisted verification are introduced
and discussed in detail in the Supplementary Material [10]. All the numerical compu-
tations and quantitative verifications are performed in MATLAB (version 2020a) in
double-precision floating-point operations. The MATLAB codes can be found via the
link [9].

D.1. Ranges of the parameters

Denote by

G1(λ1, t2, t22) � t2x
−4 + t22

25
x−4 + t2(λ1α5)

2x−2, G2(t2, t22) � 1

4t2
(α2x

−1

+α1x
−2)2 + 1

4t22
(x3θ̄xxψn)

2

the coefficients in (3.21). Applying estimate (3.21) on In , we establish (3.22) with
c = 0.01 if

1

λ1
G1(λ1, t2, t22)ϕ

−1 + Dω ≤ −c, G2(t2, t22)ψ
−1 + Dθ ≤ −c,

where Dω, Dθ defined in (3.13) are the coefficients in D1, D2. To verify the above esti-
mate forλ1 ∈ [λ1l , λ1u] = [0.31, 0.33], t2 ∈ [t2l , t2u] = [5.0, 5.8], t22 ∈ [t22l , t22u] =
[13, 14], since G1,G2 are monotone in λ1, t2, t22, it suffices to verify

1

λ1l
G1(λ1u, t2u, t22u)ϕ

−1 + Dω ≤ −c, G2(t2l , t22l)ψ
−1 + Dθ ≤ −c. (D.1)

Similar, in order for I f + D1 + D2 ≤ −0.01(||θxψ1/2||2 +λ1||ωϕ1/2||22) with esti-
mate 3.27 on I f and λ1 ∈ [λ1l , λ1u] = [0.31, 0.33], t1 ∈ [t1l , t1u] = [1.2, 1.4], t12 ∈
[t12l , t12u] = [0.55, 0.65], it suffices to verify

1

λ1l
G3(λ1u, t1u, t12u)ϕ

−1 + Dω ≤ −c, G4(t1l , t12l)ψ
−1 + Dθ ≤ −c, (D.2)
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where

G3(λ1, t1, t12) = t1
(
α2
3x

−2 + α3λ1α6√
3

x−4/3 + (λ1α6)
2x−2/3

)
,

G4(t1, t12) = 1

4t1
x−2/3 + 1

4t12
(ψ f θ̄xx x

5/3)2.

In order for Is + D1 + D2 ≤ −0.01(||θxψ1/2||2 + λ1||ωϕ1/2||22) with estimate
(3.28) on Is and λ1 ∈ [λ1l , λ1u] = [0.31, 0.33], t4 ∈ [t4l , t4u] = [3.5, 4.0], it suffices
to verify

1

λ1l
G5(t4u) + Dω ≤ −c, G6(λ1u, t4l) + Dθ ≤ −c, (D.3)

where

G5(t4) = t4x
−3ϕ−1, G6(λ1, t4) = (λ1α4)

2

4t4
x−5ψ−1.

Remark D.1 We do not actually use the above estimates. Yet, they provide a useful
guideline to determine the parameters ti j in the estimates.

D.2. Inequalities on the approximate steady state

To establish the nonlinear estimates in Sections 3 and 5, we have used several inequal-
ities on the approximate steady state and the parameters defined in Appendix 1. These
inequalities are summarized below.

In (3.13), we derive the damping terms in theweighted L2 estimatewith coefficients
Dθ , Dω. These coefficients are negative uniformly. That is, for some c > 0, we have

Dθ , Dω ≤ −c < 0. (D.4)

Recall thatwe choose theweights Ti and si defined in (B.16) and apply the argument
in Section 3.11.3 to obtain the sharp estimate of the T term defined in (3.47). This
estimate requires that the weights are nonnegative, i.e.

T1 = (−λ1Dω − Aωϕ−1 − λ1κ)ϕ − t61x
−4 > 0,

T2 = (−Dθ − Aθψ
−1 − κ)ψ > 0,

T3 = 25t61x
−4 + t62x

−4/3 > 0.

(D.5)

and

s1 = −π

2
λ2(c̄ω + ūx (0)) − rcω − πλ1e3α6

12
− Gc > 0,

s2 = −2c̄ωλ3 − κλ3 > 0.
(D.6)
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Using the above Ti , si and the argument in Section B.5, we establish the following
estimate for the constant Copt in (3.48)

Copt ≤ 2−1(Tr(UT
2 D−1U1)

p)1/p < 0.9930 < 1. (D.7)

The fact that Copt < 1 implies (3.53).
In the weighted H1 estimates, we have used

(x2ūxxψ)x ≤ 0.02ψ (D.8)

in (5.9) to establish (5.10). We have also used

Dθ + Aθψ
−1 −

(
ūx − ū

x

)
+ Bθψ

−1 ≤ −κ2,

λ1Dω + Aωϕ−1 − λ1

(
ūx − ū

x

)
+ Bωϕ−1 ≤ −κ2λ1.

(D.9)

and

||Aω2ϕ
−1||∞ ≤ aH1 , (D.10)

originated from (5.9) and (5.24) to establish (5.25).
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