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Abstract In this paper, we propose a multiscale tech-
nique for the simulation of porous media flows in a
flow-based coordinate system. A flow-based coordinate
system allows us to simplify the scale interaction and
derive the upscaled equations for purely hyperbolic
transport equations. We discuss the applications of the
method to two-phase flows in heterogeneous porous
media. For two-phase flow simulations, the use of a
flow-based coordinate system requires limited global
information, such as the solution of single-phase flow.
Numerical results show that one can achieve accurate
upscaling results using a flow-based coordinate system.
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1 Introduction

The modeling of two-phase flow in porous forma-
tions is important for both environmental remediation
and the management of petroleum reservoirs. Practical
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situations involving two-phase flow include the disper-
sal of a nonaqueous phase liquid in an aquifer or the
displacement of a nonaqueous phase liquid by water.
In the subsurface, these processes are complicated by
the effects of permeability heterogeneity on the flow
and transport. Simulation models, if they are to provide
realistic predictions, must accurately account for these
effects. However, because permeability heterogeneity
occurs at many different length scales, numerical flow
models cannot in general resolve all of the scales of
variation. Therefore, approaches are needed for repre-
senting the effects of subgrid scale variations on larger-
scale flow results. Typically, upscaled or multiscale
models are employed for such systems. The main idea
of upscaling techniques is to form coarse-scale equa-
tions with a prescribed analytical form that may differ
from the underlying fine-scale equations. In multiscale
methods, the fine-scale information is carried through-
out the simulation and the coarse-scale equations are
generally not expressed analytically but, rather, formed
and solved numerically.

On the fine (fully resolved) scale, the subsurface
flow and transport of N components can be described
in terms of an elliptic (for incompressible systems)
pressure equation coupled to a sequence of N − 1
hyperbolic (in the absence of dispersive and capillary
pressure effects) conservation laws. Our purpose in this
paper is to perform upscaling of two-phase immisci-
ble flow in a flow-based coordinate system. The flow-
based coordinate system provides us with a solution
that is better suited for upscaling because the solution
is smoother and the scale interaction can be simpler.
We would like to note that single-phase flow upscaling
methods have been employed in the Cartesian frame-
work using flow-based grids [25]. In flow-based grid
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upscaling, the original equations are solved in a flow-
based grid generated using the streamlines of the
flow. Because of the similarities with the upscaling in
flow-based grid, we use the terminology “flow-based
coordinate system.” The use of flow-based coordinate
system allows us to perform accurate upscaling of the
transport equation, which is purely hyperbolic. The
upscaling of the transport equation along the stream-
lines in the current pressure-streamline coordinate
system can be obtained because the equation is one-
dimensional. We discuss the upscaling of the saturation
equation across the streamlines. This type of upscaling
introduces nonlocal macrodispersion terms, where the
macrodispersion term involves two-point correlation of
the velocity field along the streamlines. The advan-
tage of using the flow-based coordinate system is that
the computation of macrodispersion can be performed
semianalytically. This allows us to avoid the typical
difficulties [13] associated with the computation of the
macrodiffusion term, including cross diffusion terms.

For upscaling of the pressure equation, we employ
multiscale finite element type methods (MsFEM). Ms-
FEM was first introduced in Hou and Wu [16]. Its main
idea is to incorporate the small-scale information into
finite element basis functions and capture their effect
on the large scale via finite element computations. This
approach shares common features with a number of
other multiscale numerical methods, such as residual
free bubbles [6, 22], variational multiscale method [18],
MsFEM [16], two-scale finite element methods [21],
and two-scale conservative subgrid approaches [2]. We
remark that special basis functions in finite element
methods have been used earlier in Babus̆ka and Osborn
[3] (cf. [4]). Multiscale finite element methodology has
been modified and successfully applied to two-phase
flow simulations in Jenny et al. [19, 20] and Aarnes
[1] and later in Chen and Hou [8]. Arbogast [2] used
variational multiscale strategy and constructed a mul-
tiscale method for two-phase flow simulations. When
considering two-phase flow upscaling, we use multi-
scale basis functions to compute the macrodispersion.
Recently, a limited global information has been used
[1, 11] in constructing multiscale basis functions. It is
interesting to note that, in the flow-based coordinate
system, these multiscale methods reduce to a standard
multiscale finite element method [16].

The paper is organized in the following way: In
the next section, we present the governing equations.
In Section 3, we briefly present a motivation for our
approach. Section 4 is devoted to the upscaling of
transport equation (hyperbolic equation). In Section 5,
we briefly mention multiscale finite element methods.
The numerical results are presented in Section 6.

2 Fine-scale equations

We consider two-phase flow in a reservoir ! under
the assumption that the displacement is dominated by
viscous effects; i.e., we neglect the effects of gravity,
compressibility, and capillary pressure. Porosity will
be considered to be constant. The two phases will be
referred to as water and oil, designated by subscripts
w and o, respectively. We write Darcy’s law, with all
quantities dimensionless, for each phase as follows:

v j = −krj(S )

µj
k · ∇ P, (1)

where v j is the phase velocity, k is the permeability ten-
sor, krj is the relative permeability to phase j ( j = o, w),
S is the water saturation (volume fraction), P is pres-
sure, and µj is the viscosity of phase j ( j = 0, w). In this
work, a single set of relative permeability curves is used
and k is assumed to be a diagonal tensor. Combining
Darcy’s law with a statement of conservation of mass
allows us to express the governing equations in terms
of the so-called pressure and saturation equations:

∇ · (λ(S )k · ∇ P) = q, (2)

∂S
∂t

+ v · ∇ f (S ) = 0, (3)

where λ is the total mobility, f is the fractional flow
of water, q is a source term, and v is the total velocity,
which are respectively given by:

λ(S ) = krw(S )

µw

+ kro(S )

µo
,

f (S ) = krw(S )/µw

krw(S )/µw + kro(S )/µo
, (4)

v = vw + vo = −λ(S )k · ∇ P. (5)

The above descriptions are referred to as the fine
model of the two-phase flow problem. For simplicity,
in further analyses, we will assume q = 0 and impose
nonhomogeneous boundary conditions.

3 Motivation

The upscaling and multiscale methods for two-phase
flow systems have been discussed by many authors.
In most upscaling procedures, the upscaled quantities
are computed on a coarse grid obtained from the un-
derlying fine-grid. Because of strong scale interactions
associated with complex spatial correlations, most up-
scaling and multiscale methods may require some type
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of global information or border regions to take into
account nonlocal neighboring information. In the pro-
posed work, multiscale, and upscaling techniques are
used in a flow-based coordinate system. This coordinate
system, which is based on limited global information,
can provide additional smoothness for the solution, and
it simplifies the scale interaction.

Next, we present the flow-based coordinate system
and the modified equation and discuss some asymp-
totic properties of the modified equations in the flow-
based coordinate system. We will restrict our analysis
to the two-dimensional case and assume that the het-
erogeneous porous medium is isotropic, k(x) = k(x)I.
In general, the stream function is defined as ∇ × ψ =
v = (v1, v2). In two dimensions, the stream function ψ

reduces to a scalar field defined by

∂ψ/∂x1 = −v2, ∂ψ/∂x2 = v1. (6)

It can be easily shown that ∇ψ · ∇ p = 0, where p is
initial pressure. Denote the initial stream function and
pressure by ψ = ψ(x, t = 0) and p = P(x, t = 0). If we
assume S = 0 at time zero, then (ψ, p) can be ob-
tained from the pressure equation with λ(S ) = 1. Then,
the equation for pressure and stream function can be
written down in this curvilinear orthogonal coordinate
system using standard coordinate transformation tech-
niques (see [11, 23]). As a result, we obtain

∂

∂ψ

(
k2λ(S )

∂ P
∂ψ

)
+ ∂

∂p

(
λ(S )

∂ P
∂p

)
= 0. (7)

Applying the same change of variables to saturation
equation, we get

∂S
∂t

+ (v · ∇ψ)
∂ f (S )

∂ψ
+ (v · ∇ p)

∂ f (S )

∂p
= 0. (8)

Our objective is to present an upscaling method
in pressure-streamline framework for two-phase flow
equations. The cornerstone of our upscaling method
is the fact that the pressure at later times is a smooth
function of initial pressure and, thus, the upscaling of
initial pressure-streamline framework is more robust
and accurate. In Efendiev et al. [11], the authors con-
sider a special case when the permeability has strong
nonlocal effects with a single high-permeability chan-
nel. The authors show that, in this case, the pressure
evolution can be written as

P(ψ, p, t) = P0(p, t) + h.o.t, (9)

where P0 is the solution of

∂

∂p

(
λ0(p, t)

∂ P0

∂p

)
= 0, (10)

where λ0 depends S0. If λ is a smooth function, then P0

is a smooth function with respect to p. Here, h.o.t are
related to the contrast in the permeability field, which is
very high inside the channel. This expansion shows that,
in porous media with strong channelized nonlocal ef-
fects, the initial pressure-streamline coordinate system
can provide a better coordinate system for performing
upscaling. First, this coordinate system can simplify the
scale interaction and nonlocal effects can be modeled
more accurately.

4 Upscaling of saturation equation in flow-based
coordinate system

4.1 Homogenization of saturation equation

In this section, we would like to derive an upscaled
model for the transport equation. We will assume that
the velocity is independent of time, λ(S ) = 1, and
restrict ourselves to the two-dimensional case. Then,
using the pressure-streamline framework, one obtains

S ε
t + vε

0 f (S ε)p = 0

S(p, ψ, t = 0) = S0, (11)

where ε denotes the small scale and vε
0 denotes the

Jacobian of the transformation and is positive. For
simplicity, we assume k(x) = k(x)I and we have ∇ψ ·
∇ p = 0. For deriving upscaled equations, we will first
homogenize Eq. 11 along the streamlines, and then ho-
mogenize across the streamlines. The homogenization
along the streamlines can be done following Bourgeat
and Mikelić [5] or following Hou and Xin [17] and
Weinan [10]. The latter uses two-scale convergence
theory, and we refer to Strinopoulos [23] for the re-
sults on homogenization of Eq. 11 using two-scale
convergence theory. We note that the homogenization
results of Bourgeat and Mikelic are for general het-
erogeneities without an assumption on periodicity, and
thus, they are more appropriate for problems consid-
ered in the paper. Following Bourgeat and Mikelić [5],
the homogenization of Eq. 11 can be easily derived
(see Proposition 3.4 in [5]).

For ease of notations, we ignore the ψ dependence
of vε

0 and Sε and treat ψ as a parameter. We consider

vε
0(p) = v0

(
p,

p
ε

)
,

where the velocity field has both large-scale and small-
scale variations. Moreover, we assume that the domain
is a unit interval. Then, for each ψ , it can be shown that
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Sε(p, ψ, t) → S̃(p, ψ, t) in L1((0, 1) × (0, T)), where S̃
satisfies

S̃t + ṽ0 f (S̃ )p = 0, (12)

and where ṽ0 is harmonic average of vε
0 , i.e.,

1
vε

0
→ 1

ṽ0
weak ∗ in L∞(0, 1),

as ε → 0. The proof of this fact follows from Proposi-
tion 3.4. of Bourgeat and Mikelić [5]. Here, we briefly
sketch the proof.

Following Bourgeat and Mikelić [5] and assuming for
simplicity

∫ 1
0

dη
vε

0(η)
=

∫ 1
0

dη
ṽ0(η)

= 1, we introduce

dXε(p)

dp
= vε

0(Xε(p)),
dX0(p)

dp
= ṽ0(X0(p)).

Then (Lemma 3.1 of Bourgeat and Mikelić [5]):

Xε → X0 in C[0, 1] as ε → 0. (13)

Consequently,

∫ T

0

∫ 1

0
|Sε(p, τ ) − S̃(p, τ )|dpdτ

=
∫ T

0

∫ 1

0
|Sε(Xε(p), τ )− S̃(Xε(p), τ )|vε

0(Xε(p))dpdτ

≤
∫ T

0

∫ 1

0
|Sε(Xε(p), τ )− S̃(X0(p), τ )|vε

0(Xε(p))dpdτ

+
∫ T

0

∫ 1

0
|S̃(Xε(p), τ )− S̃(X0(p), τ )|vε

0(Xε(p))dpdτ

≤
∫ T

0

∫ 1

0
|Sε(Xε(p), τ ) − S̃(X0(p), τ )|dpdτ

+
∫ T

0

∫ 1

0
|S̃(Xε(p), τ ) − S̃(X0(p), τ )|dpdτ (14)

The first term on the right-hand side of Eq. 14 con-
verges to zero because Sε(Xε(p), τ ) and S̃(X0(p), τ )

satisfy the same equation ut + f (u)p = 0, however, with
the following initial conditions Sε(Xε(p), t = 0) = S0 ◦
Xε S̃(X0(p), τ ) = S0 ◦ X0. Because of Eq. 13 and com-
parison principle
∫ T

0

∫ 1

0
|Sε(Xε(p), τ ) − S̃(X0(p), τ )|dpdτ

≤ C
∫ 1

0
|S0 ◦ Xε − S0 ◦ X0|dp,

the first term converges to zero. The convergence of the
second term for each ψ follows from the argument in

Bourgeat and Mikelić ([5], page 368) using Lebesgue’s
dominated convergence theorem.

Next, we provide a convergence rate (see also [23])
of the fine saturation S ε to the homogenized limit S̃ as
ε → 0.

Theorem 1 Assume that vε
0(p) is bounded uniformly

C−1 ≤ vε
0

(
p,

p
ε

)
≤ D.

Denote by F(t, T) the solution to St + f (S )T = 0. The
solution S̃ of Eq. 12 converges to S ε (assuming initial
conditions that don’t depend on the fast scale) at a rate
given by

‖S ε − S̃‖∞ ≤ Gε,

when F remains Lipschitz for all time, and

‖S ε − S̃‖n ≤ Gε1/n,

when F develops at most a finite number of dis-
continuities.

The proof of this theorem is provided in the
Appendix (see also [23]). We remark that T, which
is time-of-flight, is used as an independent variable.
We briefly show the results of a numerical exper-
iment to demonstrate the estimate of Theorem 1
for a discontinuous solution. We consider a non-
linear flux f (S ) with µo = µw = 1, T final = 0.1, v =
1 − 20p sin

(
10π 1

p+0.1

)
+ 20sin

(
5π

2

)
. Note that we only

solve the hyperbolic equation, and Riemann initial con-
dition is considered. To find the rate of convergence
of S̃ to S ε , we have to use a grid that resolves the
velocity and the shock so that numerical error, es-
pecially the numerical diffusion near the shock, does
not mask the upscaling error. We use a grid of 4,096
cells for both upscaled and fine computation to avoid
the discretization errors as much as possible. At the
same time, the velocity must vary enough in the cells
so that the upscaling error is large. The top row of
Table 1 shows the number of coarse grid blocks. To
avoid numerical diffusion, we use a small final time.
The upscaling errors are shown in Table 1. The L∞
norm shows that, in all experiments with less than 64
coarse cells, the numerical diffusion was not significant.
The convergence rate seems to be slightly larger than 1,
which is consistent with Theorem 1.

The homogenized operator given by Eq. 12 still con-
tains variation of order ε through the fast variable ψ

ε
;

however, there, it does not contain any derivatives in
that variable. Its dependence on ψ

ε
is only parametric.

We can homogenize the dependence of the partially ho-
mogenized operator on ψ

ε
and arrive at a homogenized
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Table 1 Numerical
demonstration of Theorem 1

2 4 8 16 32 64 128

L1 0.0432 0.0124 0.0063 0.0049 0.0022 6.62 × 10−4 1.41 × 10−4

L∞ 0.670 0.664 0.663 0.665 0.653 0.61 0.096

operator that is independent of the small scale. In the
latter case, we will only obtain weak convergence of
the partially homogenized solution. When we homog-
enized along the streamlines, the resulting equation
was of hyperbolic type, like the original equation. In a
seminal and celebrated paper, Tartar [24] showed that
homogenization across streamlines leads to transport
with the average velocity plus a time-dependent diffu-
sion term, referred to as macrodispersion, a physical
phenomenon that was not present in the original fine
equation. In particular, if the velocity field does not
depend on p inside the cells, that is, ṽ(ψ, ψ

ε
), then the

homogenized solution, S̃ (weak∗ limit of S̃, which will
be denoted by S ), satisfies

St + ṽ0Sp =
∫ t

0

∫
Spp(p − λ(t − τ ), ψ, τ )dµ ψ

ε
(λ)dτ.

(15)

Here, dνψ
ε

the Young measure associated with the
sequence ṽ0(ψ, ·) and dµ ψ

ε
is a Young measure that

satisfies
(∫ dνψ

ε
(λ)

s
2π iq + λ

)−1

= s
2π iq

+ ṽ0 −
∫ dµ ψ

ε
(λ)

s
2π iq + λ

.

We have denoted by ṽ0 the weak limit of the velocity.
This equation has no dependence on the small scale,
and we consider it to be the full homogenization of the
fine saturation equation. Efendiev and Popov [14] have
extended this method for the Riemann problem in the
case of nonlinear flux. Note that the homogenization
across streamlines provides a weak limit of partially
homogenized solution. Because the original solution Sε

strongly converges to partially homogenized solution
for each ψ , it can be easily shown that Sε → S weakly.
We omit this proof here.

In numerical simulations, it is difficult to use Eq. 15
as a homogenized operator, and often, a second-order
approximation of this equation is used. These approxi-
mate equations can also be derived using perturbation
analysis. In particular, using the higher moments of
the saturation and the velocity, one can model the
macrodispersion. In the context of two-phase flow, this
idea was introduced by Efendiev et al. [12, 13]. In
our case, the computation of the macrodispersion is
much simpler because the transport equations have

been already averaged along the streamlines, and thus,
we will be applying the perturbation technique to one-
dimensional problem.

We expand S̃, ṽ0 (following [13]) as an average
over the cells in the pressure-streamline frame and the
corresponding fluctuations

S̃ = S(p, ψ, t) + S′(p, ψ, t)

ṽ0 = ṽ0(p, ψ, t) + ṽ′
0(p, ψ, t). (16)

We will derive the homogenized equation for f (S ) =
S. Averaging Eq. 12 with respect to ψ , we find an
equation for the mean of the saturation

St + ṽ0Sp + ṽ′
0S′

p = 0.

An equation for the fluctuations is obtained by sub-
tracting the above equation from Eq. 12

S′
t + (ṽ0 − ṽ0) Sp + ṽ0S′

p − ṽ′
0S′

p = 0.

Together, the equations for the saturation are

St + ṽ0Sp + ṽ′
0S′

p = 0

S′
t + ṽ′

0Sp + ṽ0S′
p − ṽ′

0S′
p = 0. (17)

We can consider the second equation to be the aux-
iliary (cell) problem and the first equation to be the
upscaled equation. We remind that the cell problem for
a hyperbolic equation is O(1), whereas for an elliptic,
it is O(ε). We can obtain an approximate numerical
method by solving the cell problem only near the shock
region in space time, where the macrodispersion term
is largest. In that case, it is best to diagonalize these
equations by adding the first to the second one

St + ṽ0 Sp = −ṽ′
0(S̃p − Sp)

S̃t + ṽ0 S̃p = 0.

Compared to Eq. 17, it has fewer forcing terms and no
cross fluxes, which leads to a numerical method with
less numerical diffusion that is easier to implement. In
most cases, we can make a better approximation, which
is described in the following sections.

4.2 Comparison with the cell problem
in the cartesian frame

Before we derive the numerical approximation, we will
briefly compare the homogenized equations in flow-
based frame with the homogenized equations in a
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Cartesian frame obtained recently in Hou et al. [15]
and Westhead [26]. The homogenized equations in the
Cartesian variables as derived in Hou et al. [15] and
Westhead [26] are defined in terms of the average satu-
ration over the coarse blocks S and the fluctuations S′′.
Note that, whereas the fluctuations S′ in the pressure-
streamline frame depend only on one fast variable,
the fluctuations S′′ in the Cartesian frame depend on
two fast variables. P is a projection operator onto the
average along the streamlines within the cell, which cor-
responds to the fast variable along the streamlines, and
Q is a projection onto the orthogonal complement, so
that any function u can be written as u = P(u) + Q(u).
With this notation, the homogenized equations are

St + v · ∇S + ∇ · v′′S′′ = 0

S′′
t + (v + P(v′′)) · ∇S′′ + P(v′′) · ∇S

− ∇ · v′′S′′ = G
(

x,
x
ε
, t

)
, (18)

where

G
(

x,
x
ε
, t

)
= (v + P(v′′)) · Q(∇S′′)

−P(Q(v′′) · Q(∇S′′)) + Q(S′′).

The Cartesian cell problem, which is the equation for
the fluctuations in Eq. 18, is a two-dimensional equation
along two fast variables. Prior to solving it, one must
compute the projections P and Q, which adds to the
complexity of the method and its computational cost.
In contrast, the pressure-streamline cell problem in
Eq. 17 contains only one fast variable and no projection
operator. In some sense, in the pressure-streamline
frame, the projection operation, which was carried out
by restricting the oscillatory test functions, removes a
fast variable and reduces one fast dimension to arrive
at the cell problem of Eq. 17. In the Cartesian frame,
the projection operation remains in the equations in the
form of P and Q and the fast variation along the flow is
not cleanly removed. This is a strong indication that the
pressure-streamline frame reveals the structure of the
flow correctly.

4.3 Numerical averaging across streamlines

The derivation in the previous sections contained no
approximation. In this section, we follow the same
idea as in the derivation to solve the equation for
the fluctuations along the characteristics, but with the
purpose of deriving an equation on the coarse grid. To
achieve this, we will not perform analytical upscaling
in the sense of deriving a continuous upscaled equation
as in the previous section. We will first discretize the

equation with a finite volume method in space and then
upscale the resulting equation. Our upscaled equation
will therefore be dependent on the numerical scheme.

We use the same definition for the average satura-
tion and the fluctuations as in Eq. 16 and follow the
same steps until Eq. 17. We discretize the macrodisper-
sion term in the equation for the average saturation

ṽ′
0S′

p = ṽ′
0S′i+1 − ṽ′

0S′i

*p
+ O(*p).

A superscript ·i refers to a discrete quantity defined at
the center of the conservation cell. Instead of solving
the equation for the fluctuations on the fine characteris-
tics as before, which would lead to a fine grid algorithm,
we solve it on the coarse characteristics defined by

dP
dt

= ṽ0, with P(p, 0) = p.

Compared to the equation that we obtained in the
previous section for S′, this equation for S′ has an extra
term, which appears second

S′ = −
∫ t

0

(
ṽ′

0(P(p, τ ), ψ)Sp(P(p, τ ), ψ, τ )

+ ṽ′
0(P(p, τ ), ψ)S′

p(P(p, τ ), ψ, τ ) + ṽ′
0S′

p)
)

dτ.

The second term is second-order in fluctuating quanti-
ties, and we expect it to be smaller than the first term so
we neglect it. As before, we multiply by ṽ′

0 and average
over ψ to find

ṽ′
0S′ = −

∫ t

0
ṽ′

0ṽ0(P(p, τ ), ψ)Sp(P(p, τ ), ψ, τ )dτ.

In this form at time t, it is necessary to know infor-
mation about the past saturation in (0, t) to compute
the future saturation. Following [13], it can be easily
shown that Sp(P(p, τ ), ψ, τ ) depends weakly on time,
in the sense that the difference between Sp and Sp is of
third-order in fluctuating quantities. Therefore, we can
take Sp out of the time integral to find

ṽ′
0S′ = −

∫ t

0
ṽ′

0ṽ
′
0(P(p, τ ), ψ)dτ Sp.

The term inside the time integral is the covariance of
the velocity field along each streamline. The macrodis-
persion in this form can be computed independent of
the past saturation.
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The nonlinearity of the flux function introduces an
extra source of error in the approximation. We expand
f (S̃ ) near S (cf. [12]) and keep only the first term

S̃ = S(p, ψ, t) + S′(p, ψ, t)

ṽ0 = ṽ0(p, ψ, t) + ṽ′
0(p, ψ, t)

f (S̃ ) = f (S ) + fS(S )S′ + O(S′2)

f (S )p = fS(S )Sp + f (S )S′ + . . . (19)

This approximation is not accurate near the shock
because S′ is not small near sharp fronts. The region
near the shock is important because the macrodisper-
sion is large. Due to the dependence of the jump in the
saturation on the mobility, we expect this approxima-
tion to be better for lower oil mobilities. Nevertheless,
this approximation works well in practice. For more
accuracy, it is also possible to retain more terms in
the Taylor expansion. We will show that, in realistic

examples, these higher-order terms are not important
in our setting.

Using these definitions, we derive the following
equations for the average saturation and the fluctua-
tions (see [23] for more details)

St + ṽ0 f (S )p + ṽ′
0( fS(S )S′)p = 0 (20)

S′
t + ṽ′

0 fS(S )Sp + ṽ0 fS(S )S′
p − ṽ′

0S′
p = 0. (21)

The macrodispersion is discretized as

ṽ′
0( fS(S )S′)p = ṽ′

0 fS(S )S′
i+1

− ṽ′
0 fS(S )S′

i

*p
+ O(*p).

We solve the second equation on the coarse character-
istics defined by

dP
dt

= ṽ0 fS(S ), with P(p, 0) = p

and form the terms that appear in the macrodispersion

ṽ′
0 fS(S )S′ = −

∫ t

0
ṽ′

0 fS(S )ṽ′
0(P(p, τ ), ψ) fS(S(P(p, τ ), ψ, τ ))Sp(P(p, τ ), ψ, τ )dτ.

As before, we have dropped terms that are second-
order in fluctuating quantities. It can be shown (see
[23]) that fS(S(P(p, τ ), ψ, τ ))Sp(P(p, τ ), ψ, τ ) does
not vary significantly along the streamlines, and it can
be taken out of the integration in time:

ṽ′
0 fS

(
S

)
S′ = −

∫ t

0
ṽ′

0ṽ
′
0(P(p, τ ), ψ)dτ fS

(
S

)2Sp. (22)

This expression is similar to the one obtained in the
linear case; however, the macrodispersion depends on
the past saturation through the equation for the coarse
characteristics.

Even though the macrodispersion depends on the
past saturation, it is possible to compute it incremen-
tally, as it is done in Efendiev and Durlofsky [12]. Given
its value D(t) at time t, we compute the values at t + *t
using the macrodispersion at the previous time

D(t + *t) =
∫ t+*t

0
. . . dτ =

∫ t

0
. . . dτ +

∫ t+*t

t
. . . dτ.

This is possible because, in the derivation for the ap-
proximate expression for the macrodispersion, we took
the terms that depend on S(τ ) outside the time inte-
gration. The integrand, the average covariance of the
velocity field along the streamlines, needs to be com-
puted only once at the beginning. Then, updating the

macrodispersion takes O(n2) computations, as many as
it takes to update S.

5 Multiscale finite element methods for upscaling
of pressure equation

The multiscale finite element framework will be used
for upscaling of the pressure equation. We will choose
a finite volume element method as a global solver.
The proposed method is similar to an earlier intro-
duced multiscale finite volume method in Jenny et al.
[19, 20]. Let Kh denote the collection of coarse ele-
ments/rectangles K. Consider a coarse element K, and
let ξ K be its center. The element K is divided into
four rectangles of equal area by connecting ξ K to the
midpoints of the element’s edges. We denote these
quadrilaterals by Kξ , where ξ ∈ Zh(K ) are the vertices
of K. Also, we denote Zh = ⋃

K Zh(K ) and Z 0
h ⊂ Zh

the vertices that do not lie on the Dirichlet boundary of
!. The control volume Vξ is defined as the union of the
quadrilaterals Kξ sharing the vertex ξ .

The key idea of the method is the construction of
basis functions on the coarse grids, such that these
basis functions capture the small-scale information on
each of these coarse grids. The basis functions are
constructed from the solution of the leading order
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homogeneous elliptic equation on each coarse element
with some specified boundary conditions. Thus, if we
consider a coarse element K that has d vertices, the
local basis functions φi, i = 1, · · · , d are set to satisfy the
following elliptic problem:

−∇ · (k · ∇φi) = 0 in K, φi = gi on ∂K, (23)

for some function gi defined on the boundary of the
coarse element K. In previous findings, the function
gi for each i is chosen to vary linearly along ∂K or to
be the solution of the local one-dimensional problems
[19] or the solution of the problem in a slightly larger
domain is chosen to define the boundary conditions
[16]. We will be using linear boundary conditions and
require φi(x j) = δij. Finally, a nodal basis function asso-
ciated with the vertex xi in the domain ! is constructed
from the combination of the local basis functions that
share this xi and zero elsewhere.

Next, we denote by Vh the space of our approxi-
mate pressure solution, which is spanned by the basis
functions {φ j}x j∈Z 0

h
. A statement of mass conserva-

tion on a coarse-control volume Vx is formed from
(2), where now the approximate solution is written
as a linear combination of the basis functions. As-
sembly of this conservation statement for all con-
trol volumes would give the corresponding linear
system equations that can be solved accordingly. To be
specific, the problem now is to seek P h ∈ Vh with P h =∑

x j∈Z 0
h

P jφ j such that
∫

∂Vξ

λ(S )k · ∇ P h · n dl = 0, (24)

for every control volume Vξ ⊂ !. Here, n defines the
normal vector on the boundary of the control volume,
∂Vξ , and S is the fine-scale saturation field at this point.

In the previous studies [1, 7, 11], it was found that the
use of global information can improve the multiscale
finite element method. In particular, the solution of the

pressure equation at initial time is used to construct
the boundary conditions for the basis functions. It is
interesting to note that the multiscale finite element
methods that employ a limited global information re-
duce to standard multiscale finite element methods in a
flow-based coordinate system. This can be verified di-
rectly, and the reason behind it is that we have already
employed a limited global information in a flow-based
coordinate system.

6 Numerical results

In this section, we first show representative simulation
results for λ(S ) = 1 for flux functions f (S ) = S and
nonlinear f (S ) with viscosity ratio µo/µw = 5. For
such a setting, the pressure and saturation equations
are decoupled and we can investigate the accuracy of
saturation upscaling independently from the pressure
upscaling. We note that this decoupling of the pressure
and saturation equations is artificial. At the end of
the section, we will present numerical results for two-
phase flow with variable λ(S ). We consider two types
of permeability fields. The first type includes a per-
meability field generated using two-point geostatistics
with correlation lengths lx = 0.3, lz = 0.03, and σ 2 =
1.5 (see Fig. 1, left). The second type corresponds to
a channelized system, and we consider two examples.
The first example (middle figure of Fig. 1) is a synthetic
channelized reservoir generated using both multipoint
geostatistics (for the channels) and two-point geostatis-
tics (for permeability distribution within each facies).
The second channelized system is one of the layers
of the benchmark test (representing the North Sea
reservoir), the Society of Petroleum Engineers compar-
ative project [9] (upper Ness layers). These permeabil-
ity fields are highly heterogeneous, channelized, and
difficult to upscale. Because the permeability fields are

-1

0

1

2

3

4

5

6

7

8

9

-4

-2

0

2

4

6

8

-3

-2

-1

0

1

2

3

Fig. 1 Permeability fields used in the simulations. Left, permeability field with exponential variogram; middle, synthetic channelized
permeability field; right, layer 36 of the Society of Petroleum Engineers comparative project [9]
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highly heterogeneous, they are refined to 400 × 400 to
obtain accurate comparisons.

Simulation results will be presented for saturation
snapshots and the oil cut as a function of pore volume
injected (PVI). Note that the oil cut is also referred to as
the fractional flow of oil. The oil cut (or fractional flow)
is defined as the fraction of oil in the produced fluid and
is given by qo/qt, where qt = qo + qw, with qo and qw

being the flow rates of oil and water at the production
edge of the model. In particular, qw =

∫
∂!out f (S )v · ndl,

qt =
∫
∂!out v · ndl, and qo = qt − qw, where ∂!out is the

outer flow boundary. We will use the notation Q for
total flow qt and F for fractional flow qo/qt in numerical
results. PVI, defined as PV I = 1

Vp

∫ t
0 qt(τ )dτ , with Vp

being the total pore volume of the system, provides a
dimensionless time for the displacement.

When using multiscale finite element methods for
two-phase flow, one can update the basis functions
near the sharp fronts. Indeed, sharp fronts modify the
local heterogeneities, and this can be taken into ac-

count by resolving the local equations, Eq. 23, for basis
functions. If the saturation is smooth in the coarse
block, it can be approximated by its average in Eq. 23,
and consequently, the basis functions do not need to
be updated. It can be shown that this approximation
yields first-order errors (in terms of coarse mesh size).
In our simulations, we have found only a slight im-
provement when the basis functions are updated; thus,
the numerical results for the MsFEM presented in this
paper do not include the basis function update near the
sharp fronts. Because a pressure-streamline coordinate
system is used, the boundary conditions are given by
P = 1, S = 1 along the p = 1 edge and P = 0 along the
p = 0 edge, and no flow boundary condition on the rest
of the boundaries.

For the upscaled saturation equation, which is a
convection–diffusion equation, we need to observe an
extra Courant–Friedrichs–Lewy (CFL)-like condition
to obtain a stable numerical scheme *t ≤ *p2

2ν
, where

ν is the diffusivity. In our case, the diffusivity is
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Fig. 2 Saturation snapshots for variogram based permeability field (top) and synthetic channelized permeability field (bottom). Linear
flux is used. The left figures represent the upscaled saturation plots, and the right figures represent the fine-scale saturation plots
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Fig. 3 Saturation snapshots for variogram based permeability field (top) and synthetic channelized permeability field (bottom). Non-
linear flux is used. The left figures represent the upscaled saturation plots, and the right figures represent the fine-scale saturation plots

∫
cell

∫ t
0 ṽ′

0(p(τ ), ψ)ṽ′
0(p, ψ)dτdψ . If the macrodispersion

is large, this can be a very restrictive condition. To
remedy this, we used an implicit discretization for the
macrodispersion. This is straightforward because the
problem is one-dimensional. The resulting system was
solved by a tridiagonal solver very fast. Because the
order of the highest derivative in the equation has
increased, we require extra boundary conditions. For
the computation of the macrodispersion term, we im-
pose no flux on both boundaries of the domain.

In the upscaled algorithm, a moving mesh is used
to concentrate the points of computation near the
sharp front. Because the saturation equation is one-
dimensional in the pressure-streamline coordinates, the
implementation of the moving mesh is straightforward
and efficient. For the details, we refer to Strinopoulos
[23]. We compare the saturation right before the break-
through time so that the shock front is largest. For this
comparison, we also average the fine saturation over
the coarse blocks because the upscaled model is defined

Table 2 Upscaling error for
permeability generated using
two-point geostatistics

25 × 25 50 × 50 100 × 100 200 × 200

Linear flux
L1 error of S̃ 0.0021 6.57 × 10−4 2.15 × 10−4 8.75 × 10−5

L1 error of S with macrodispersion 0.115 0.0696 0.0364 0.0135
L1 error of S fine without macrodispersion 0.1843 0.0997 0.0505 0.0191

Nonlinear flux
L1 error of S̃ 0.0023 8.05 × 10−4 2.89 × 10−4 1.29 × 10−4

L1 error of S with macrodispersion 0.116 0.0665 0.0433 0.0177
L1 error of S fine without macrodispersion 0.151 0.0805 0.0432 0.0186
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Table 3 Upscaling error
for synthetic channelized
permeability field

25 × 25 50 × 50 100 × 100 200 × 200

Linear flux
L1 error of S̃ 0.0222 0.0171 0.0122 0.0053
L1 error of S with macrodispersion 0.0819 0.0534 0.0333 0.0178
L1 error of S fine without macrodispersion 0.123 0.0834 0.0486 0.0209

Nonlinear flux
L1 error of S̃ 0.0147 0.0105 0.0075 0.0040
L1 error of S with macrodispersion 0.0842 0.0658 0.0371 0.0207
L1 error of S fine without macrodispersion 0.119 0.0744 0.0424 0.0214

Table 4 Upscaling error
for SPE10, layer 36 25 × 25 50 × 50 100 × 100 200 × 200

Linear flux
L1 error of S̃ 0.0128 0.0093 0.0072 0.0042
L1 error of S with macrodispersion 0.0554 0.0435 0.0307 0.0176
L1 error of S fine without macrodispersion 0.123 0.0798 0.0484 0.0258

Nonlinear flux
L1 error of S̃ 0.0089 0.0064 0.0054 0.0033
L1 error of S with macrodispersion 0.0743 0.0538 0.0348 0.0189
L1 error of S fine without macrodispersion 0.0924 0.0602 0.0395 0.0202

Table 5 Total error for
permeability field generated
using two-point geostatistics

25 × 25 50 × 50 100 × 100 200 × 200

Linear flux
L1 upscaling error of S̃ 0.0021 6.57 × 10−4 2.15 × 10−4 8.75 × 10−5

L1 error of S̃ computed on coarse grid 0.0185 0.0062 0.0019 0.0015
L1 upscaling error of S 0.115 0.0696 0.0364 0.0135
L1 error of S computed on coarse grid 0.139 0.0779 0.0390 0.0144

Nonlinear flux
L1 upscaling error of S̃ 0.0023 8.05 × 10−4 2.89 × 10−4 1.29 × 10−4

L1 error of S̃ computed on coarse grid 0.0268 0.0099 0.0027 9.38 × 10−4

L1 upscaling error of S 0.116 0.0665 0.0433 0.0177
L1 error of S computed on coarse grid 0.146 0.0797 0.0461 0.0184

Table 6 Total error for
synthetic channelized
permeability field

25 × 25 50 × 50 100 × 100 200 × 200

Linear flux
L1 upscaling error of S̃ 0.0222 0.0171 0.0122 0.0053
L1 error of S̃ computed on coarse grid 0.0326 0.0161 0.0107 0.0113
L1 upscaling error of S 0.0819 0.0534 0.0333 0.0178
L1 error of S computed on coarse grid 0.135 0.0849 0.0477 0.0274

Nonlinear flux
L1 upscaling error of S̃ 0.0147 0.0105 0.0075 0.0040
L1 error of S̃ computed on coarse grid 0.0494 0.0295 0.0150 0.0130
L1 upscaling error of S 0.0842 0.0658 0.0371 0.0207
L1 error of S computed on coarse grid 0.17 0.11 0.0541 0.0303
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Table 7 Total error
for SPE10 layer 36 25 × 25 50 × 50 100 × 100 200 × 200

Linear flux
L1 upscaling error of S̃ 0.0128 0.0093 0.0072 0.0042
L1 error of S̃ computed on coarse grid 0.023 0.0095 0.0069 0.0052
L1 upscaling error of S 0.0554 0.0435 0.0307 0.0176
L1 error of S computed on coarse grid 0.0683 0.052 0.0361 0.0205

Nonlinear flux
L1 upscaling error of S̃ 0.0089 0.0064 0.0054 0.0033
L1 error of S̃ computed on coarse grid 0.0338 0.0148 0.0074 0.0037
L1 upscaling error of S 0.0743 0.0538 0.0348 0.0189
L1 error of S computed on coarse grid 0.115 0.0720 0.0406 0.0204

on a coarser grid. In Figs. 2 and 3, we plot the saturation
for linear and nonlinear (with µo/µw = 5) f (S ). We
remind that λ(S ) = 1 in these simulations. As we see
in both cases, we have very accurate representation of
the saturation profile.

We proceed with a quantitative description of the er-
ror. We will distinguish between two sources of errors.
We will refer to the difference between the upscaled
and the fine-scale solution as the upscaling or modeling
error. In this case, the upscaled equations are solved on
the fine grid to avoid the discretization errors on the
coarse grid. We note that the discretization errors, such
as the ones associated with a numerical diffusion, can
be very large on relatively coarse grids. We will refer to
the difference between the fine-scale solution and the
solution of the upscaled equation on the coarse grid as
the total error. In this case, the upscaled equations are
solved on the coarse grid and the total error includes
both the upscaling error and the discretization error on
the coarse grid. To compute the upscaling error, we
compare the upscaled solution computed on a 400 ×
400 grid with the fine-scale saturation computed on
the 400 × 400 grid and averaged over the coarse grid.
The errors are computed in the p, ψ frame and are
relative errors. We display the upscaling error against
the number of coarse cells in Tables 2, 3, and 4. Linear
flux and nonlinear (µo/µw = 5) flux cases are consid-
ered with λ(S ) = 1. In these tables, S̃ refers to the

solution upscaled along streamlines (see Eq. 12) and S
refers to the solution upscaled both along and across
the streamlines (see Eq. 21). We see from this table that
upscaling using macrodispersion reduces the upscaling
errors. Note that the effects of macrodispersion are
more significant in the case of linear flux when the
jump discontinuity in the saturation profile is larger. We
remark that the macrodispersion errors become less
significant as the coarse mesh size decreases. Because
the sharp fronts are resolved in our numerical simula-
tions, the macrodispersion represents the fluctuations
of the solution away from these fronts. The effects of
these fluctuations decrease as the coarse mesh becomes
smaller.

In Tables 5, 6, and 7, we show the total error, that
is, the modeling and discretization error, for the cases
considered in Tables 2, 3, and 4. We again remind that S̃
is the solution upscaled along streamlines (see Eq. 12),
S is the solution upscaled both along and across the
streamlines (see Eq. 21). The first and third rows in
these tables are the errors computed on the fine grid,
while the second and fourth rows represent the errors
computed on the coarse grid. First, we note that the
total errors are much smaller when the upscaling is only
performed along the streamlines. It is interesting that
the convergence of S̃ to S is observed even though the
upscaling error is larger than the numerical error of
the fine solution. The reason is that the location of the

Table 8 Computational cost
Fine x.y Fine p, ψ S̃ S

Layered, linear flux 5648 257 9 1
Layered, nonlinear flux 14543 945 28 4
Percolation, linear flux 8812 552 12 1
Percolation, nonlinear flux 23466 579 12 1
SPE10 36, linear flux 40586 1835 34 2
SPE10 36, nonlinear flux 118364 7644 25 2
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Fig. 4 Left: pressure and streamline function at time t = 0.4 in Cartesian frame. Right: pressure and streamline function at time t = 0.4
in initial pressure-streamline frame

moving mesh points was selected so that the points are
as dense near the shock as the fine solution using the
parameter hmin. This was done to observe the upscaling
error clearly and also to have similar CFL constraints
on the time step, which allows a clean comparison of
computational times. We compare the require CPU
times in Table 8. We note that it took 26 units of
time to interpolate one quantity from the Cartesian to
the pressure-streamline frame. The upscaled solutions
were computed on a 25 × 25 grid, and the fine solution
was computed on a 400 × 400 grid, so we expect the
S computations to be 256 times faster or more. The
extra gain comes from a less restrictive CFL condition
because we use an averaged velocity. The computations
in the Cartesian frame are much slower.

The application of the proposed method to two-
phase immiscible flow can be performed using the
implicit pressure and explicit saturation (IMPES)
framework. This procedure consists of computing the
velocity and then using the velocity field in updating
the saturation field. When updating the saturation field,
we consider the velocity field to be time-independent,
and we can use our upscaling procedure at each IMPES
time step. First, we note that, in the proposed method,
the mapping is done between the current pressure-
streamline and initial pressure-streamline. This map-
ping is nearly the identity for lower oil mobilities. In
Fig. 4, we plot the level sets of the pressure and stream
function at time t = 0.4 in a Cartesian coordinate
system (left plot) and in the coordinate system of the
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Fig. 5 Left: Saturation plot obtained using coarse-scale model. Right: The fine-scale saturation plot. Both plots are on coarse grid.
Variogram based permeability field is used. µo/µw = 5
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Fig. 6 Comparison of
fractional flow for coarse-
and fine-scale models.
Variogram-based
permeability field is used.
µo/µw = 5
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initial pressure and streamline (right plot). Clearly,
the level sets are much smoother in initial pressure-
streamline frame compared to Cartesian frame. This
also explains the observed convergence of upscaling
methods as we refined the coarse grid. In Fig. 5, we plot
the saturation snapshots right before the breakthrough.
In Fig. 6, the fractional flow is plotted. Again, the mov-
ing mesh algorithm is used to track the front separately.
The convergence table is presented in Table 9. We see
from this table that the errors decreases as first order,
which indicates that the pressure and saturation are
smooth functions of initial pressure and streamline.

Table 9 Convergence of the upscaling method for two-phase
flow for variogram based permeability field

50 × 50 100 × 100 200 × 200

With S̃
L2 pressure error at t = 3T final

4 0.0014 0.0007 0.0004

L2 velocity error at t = 3T final
4 0.0235 0.0137 0.0072

L1 saturation error t = T final 0.0105 0.0052 0.0027
With S

L2 pressure error at t = 3T final
4 0.0046 0.0021 0.0008

L2 velocity error at t = 3T final
4 0.0530 0.0335 0.0246

L1 saturation error t = T final 0.0546 0.0294 0.0134

7 Conclusions

In this paper, multiscale methods for two-phase im-
miscible flow using flow-based coordinate system are
considered. In particular, the upscaling of a convection-
dominated transport equation is discussed. The flow-
based coordinate system allows us to simplify the scale
interaction and obtain an upscaled model for transport.
Furthermore, this upscaled model is used to design
a coarse-scale algorithm for two-phase flow. In our
numerical methods, the shock front of the upscaled
equation was resolved using a moving mesh. Numerical
results show that one can achieve high accuracy using
the proposed algorithms. The proposed methods are
efficient when the solution is smooth in a new coordi-
nate system (perhaps with the exception of some sharp
moving fronts). However, if, under changing source
terms or boundary conditions, the solution dramatically
changes and no longer remains smooth, then one may
need to introduce another coordinate system for accu-
rate coarse-scale simulations.

Though the results presented in the paper are en-
couraging, there are possible extensions that are cur-
rently under investigation. The extension to three
dimensions does not seem to be difficult. However,
it fails when the coordinate transformation becomes
degenerate. We conjecture (see [23]) that, for most
permeability fields, the regions of the flow where this
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occurs do not carry much fluid. It should then be pos-
sible to regularize the transformation and apply this
method with only a small numerical error. Another di-
rection of future research is the development of fast and
accurate algorithms that perform interpolation from
the Cartesian to pressure-streamline grid. In particular,
our interest is in the development of such algorithms us-
ing coarse-scale information similar to multiscale finite
element methods. The latter will speed-up the interpo-
lation computations and make the method more desir-
able for multiphase flow and transport computations.
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Appendix

Proof of Theorem 1

First, we note that the velocity bound implies that
C̃−1 ≤ ṽ0(p) ≤ D̃, uniformly. We transform the equa-
tions for S ε Eq. 11 and S̃ Eq. 12 to the time-of-flight
variable defined by

dTε

dp
= 1

vε
0(p, ψ)

Tε(0)= 0
for S ε and

dT̃
dp

= 1

ṽ
(

p, ψ, ψ
ε

)

T̃(0)= 0

for S̃.

Both equations reduce to

St + f (S )T = 0.

The solution to this equation is F(t, T). Because the
initial condition does not depend on ε, neither does
F. Then, S = F(t, Tε(P, .)), S̃ = F(t, T̃(P, .)). Using
these expressions for the saturation, we can obtain
the desired estimates by following the same steps as
in the linear case. When F remains Lipschitz for all
times we can easily obtain a pointwise estimate in terms
of the Lipschitz constant M ‖S ε − S̃‖∞ = ‖F(t, Tε) −
F(t, T̃)‖∞ ≤ M‖Tε − T̃‖∞ ≤ Gε. Otherwise, we will
need the time-of-flight bound that we derived for the
linear flux that reduces here to

|Tε(P) − T̃(P)| ≤ 2Cε. (25)

We will divide the domain in regions where F is
Lipschitz with constant M in the second variable, de-
noted by A2, and shock regions, denoted by A1, and

estimate the difference of S ε and S̃ in each region sepa-
rately. To fix the notation, let there be n discontinuities
in F(t, ·) of magnitude less than *F, which does not
have to be small, at {T = Ti}i=1,...,n. We will denote
the thin strips of width 2Cε around the discontinuities
with A1

A1 ={T such that |T−Ti| ≤ 2Cε, for some i=1,. . ., n}

and with A2 its complement. We selected the width of
the strip based on Eq. 25, so that for any point P, if
Tε(P) /∈ A1, then Tε(P) and T̃(P) are on the same side
of any jump Ti. When Tε(P) ∈ A2, F is Lipschitz in the
region between Tε and T̃, and we can show
∫

A2
(S ε − S̃)2dpdψ =

∫
A2

(F(t, Tε) − F(t, T̃))2dpdψ

≤ M2‖Tε − T̃‖2
∞|Tε(A2)

−1|
≤ N2ε2|Tε(A2)

−1|,

where we used the time-of-flight bound Eq. 25. By
|Tε(A2)

−1|, we denoted the image of A2 under the in-
verse of Tε(P). Inside the strip A1, even though S ε and
S̃ differ by an O(1) quantity, we can use the smallness
of the area of the strip to make the L2 norm of their
difference small
∫

A1
(S ε − S̃ )2dpdψ =

∫
A2

(F(t, Tε) − F(t, T̃))2dpdψ

≤ (*S + Nε)2|Tε(A1)
−1|

≤ (*S + Nε)24CDnε.

We estimated the area |Tε(A1)
−1| by using the def-

inition of A1 and the fact that the Jacobian of the
transformation Tε(P)−1 is vε

0 and is bounded uniformly
in p, ψ . Putting together the two estimates for regions
A1 and A2, we obtain ‖S ε − S̃‖2 ≤ Gε1/2. Estimates in
terms of the other Lp norms follow similarly.
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