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Abstract
Whether the 3D incompressible Euler equations can develop a finite time singularity
from smooth initial data is one of the most challenging problems in nonlinear PDEs.
In this paper, we present some new numerical evidence that the 3D axisymmetric
incompressible Euler equations with smooth initial data of finite energy develop a
potential finite time singularity at the origin. This potential singularity is different
from the blow-up scenario revealed by Luo and Hou (111:12968–12973, 2014) and
(12:1722–1776, 2014), which occurs on the boundary. Our initial condition has a sim-
ple form and shares several attractive features of a more sophisticated initial condition
constructed by Hou and Huang in (arXiv:2102.06663, 2021) and (435:133257, 2022).
One important difference between these two blow-up scenarios is that the solution for
our initial data has a one-scale structure instead of a two-scale structure reported inHou
and Huang (arXiv:2102.06663, 2021) and (435:133257, 2022). More importantly, the
solution seems to develop nearly self-similar scaling properties that are compatible
with those of the 3D Navier–Stokes equations. We will present numerical evidence
that the 3D Euler equations seem to develop a potential finite time singularity. More-
over, the nearly self-similar profile seems to be very stable to the small perturbation
of the initial data.
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1 Introduction

The question regarding the global regularity of the 3D incompressible Euler equations
with smooth initial data of finite energy is one of the most important fundamental
questions in nonlinear partial differential equations. The main difficulty associated
with the global regularity of the 3D Euler equations is due to the presence of vortex
stretching [33]. In [31, 32], Luo-Hou presented some strong numerical evidence that
the 3D axisymmetric Euler equations develop a finite time singularity on the boundary.
The presence of the boundary and the odd-even symmetry properties of the solution
seem to play an essential role in generating a stable blow-up of the 3D Euler equations.

In this paper, we present some new numerical evidence that the 3D axisymmet-
ric incompressible Euler equations with smooth initial data of finite energy seem to
develop a potential finite time singularity at the origin. Our initial condition has a very
simple analytic expression and is purely driven by large swirl initially. This potential
singularity is different from the blow-up scenario revealed by Luo-Hou in [31, 32],
which occurs on the boundary. It is also different from the two-scale traveling wave
scenario considered by Hou-Huang in [20, 21] although the two scenarios share some
common features. One important difference between these two blow-up scenarios is
that the solution for our initial data has a one-scale structure instead of a two-scale
structure reported in [20, 21]. More importantly, the solution seems to develop nearly
self-similar scaling properties that are compatible with those of the 3D Navier–Stokes
equations. This property is critical for the potentially singular behavior of the 3D
Navier–Stokes equations using our new initial data.

We consider the 3D axisymmetric Euler and Navier–Stokes equations in a periodic
cylindrical domain. We impose a no-flow boundary condition at r = 1 for the Euler
equations and a no-slip no-flow boundary condition at r = 1 for the Navier–Stokes
equations. We use a periodic boundary condition in the axial variable z with period
1 for both Euler and Navier–Stokes equations. Let uθ , ωθ , and ψθ be the angular
components of the velocity, the vorticity, and the vector stream function, respectively.
Following [22], we make the following change of variables:

u1 = uθ /r , ω1 = ωθ/r , ψ1 = ψθ/r .

Then theNavier–Stokes equations can be expressed by the following equivalent system

u1,t + uru1,r + uzu1,z = 2u1ψ1,z + ν�u1, (1.1a)

ω1,t + urω1,r + uzω1,z = 2u1u1,z + ν�ω1, (1.1b)

−
(

∂2r + 3

r
∂r + ∂2z

)
ψ1 = ω1, (1.1c)

where ur = −rψ1,z, uz = 2ψ1+rψ1,r , and� = ∂2r + 3
r ∂r+∂2z is the five-dimensional

diffusion operator.
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1.1 Major Features of the Potential Singularity of the Euler Equations

Although the angular vorticity is set to zero initially, the large swirl and the oddness
of u1 as a function of z induce a large odd angular vorticity dynamically. The odd-
ness of angular vorticity induces two antisymmetric vortex dipoles, which generate
a hyperbolic flow structure near the symmetry axis r = 0. The antisymmetric vor-
tex dipoles produce a strong shear layer for the axial velocity, which transports the
solution toward z = 0. At the same time, they also induce an antisymmetric local
convective circulation that pushes the solution near z = 0 toward the symmetry axis.
Moreover, the oddness of u1 in z generates a large positive gradient u1z dynamically,
which induces a rapid growth of ω1. The rapid growth of ω1 in turn feeds back to the
rapid growth of ψ1,z , forming a positive feedback loop.

After a relatively short transition period, the solution of the 3D Euler equations
seems to develop nearly self-similar scaling properties. Denote by (R(t), Z(t)) the
location in the r z plane at which u1 achieves its maximum. If we introduce ξ =
(r − R(t))/Z(t) and ζ = z/Z(t) as the dynamically rescaled variables, we observe
nearly self-similar profiles of the rescaled solutions in terms of (ξ, ζ ). Moreover,
Z(t) seems to scale like O((T − t)1/2), which is consistent with potential blow-
up scaling of the 3D Navier–Stokes equations. In our computation, we observe that
R(t) and Z(t) are roughly of the same order, but they have not settled down to a
stable scaling relationship without viscous regularization. On the other hand, our
numerical results seem to indicate that themaximumvorticity grows like O((T −t)−1)

and
∫ t
0 ‖ω(s)‖L∞ds seems to grow without bound. The Beale-Kato-Majda blow-up

criterion [1] implies that the 3DEuler equationswould develop a finite time singularity.
Furthermore, we observe that the maximum velocity grows like O((T − t)−1/2),
‖u1‖L∞ and ‖ψ1z‖L∞ scale likeO((T−t)−1), and ‖ω1‖L∞ scales likeO((T−t)−3/2).
These scaling properties are consistent with the scaling property Z(t) ∼ (T − t)1/2.

One important feature is that ψ1,z(t, r , z) is relatively flat in a local region near the
origin {(r , z) ∈ [0, 0.9R(t)]×[0, 0.5Z(t)]}. This important propertywas not observed
in [20, 21]. We observe that ψ1,z(t, r , z) drops quickly beyond this local region and
becomes negative near the tail region. The large value of ψ1,z in the local region near
the origin generates a large growth of u1 through the vortex stretching term 2ψ1,zu1
in (1.1a). On the other hand, the small or negative value of ψ1,z in the tail region leads
a relatively slower growth rate of u1. The difference in the growth rate in the local
region and the tail region produces a one-scale traveling wave solution propagating
toward the origin, overcoming the upward transport along the z-direction.

Our velocity field shares some important features observed in [20, 21]. In particular,
we observe that the 2D velocity field (ur (t), uz(t)) in the r z-plane forms a closed
circle right above (R(t), Z(t)) and the corresponding streamline is trapped in the
circle region in the r z-plane. This local circle structure has the desirable property of
keeping the bulk parts of the u1, ω1 profiles near the most singular region without
being transported away by the upward advection. The flow in this local circle region
spins rapidly around the symmetry axis. As we get closer to the symmetry axis, the
streamlines induced by the velocity field travel upward along the vertical direction and
then move outward along the radial direction. The local blow-up solution resembles
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the structure of a tornado. On the other hand, we do not observe the formation of a
no-spinning region in our blow-up scenario. The formation of a no-spinning region is
an important signature of the two-scale traveling singularity reported in [20, 21].

1.2 Potentially Singular Behavior of the 3D Navier–Stokes Equations

Given that the solution of the 3D Euler equations has scaling properties that are com-
patible with those of the Navier–Stokes equations, it is natural to investigate whether
the 3DNavier–Stokes equations would develop a potential finite time singularity using
the same initial condition. We have performed some preliminary study by solving the
Navier–Stokes equationswith a relatively large viscosity ν = 5·10−3. Surprisingly, the
viscous regularization enhances nonlinear alignment of vortex stretching. We observe
a relatively long stable phase of strong nonlinear alignment of vortex stretching. The
solution of the 3D Navier–Stokes equations develops nearly self-similar scaling prop-
erties that are similar to what we have observed for the solution of the 3D Euler
equations. Moreover, the maximum vorticity has increased by a factor of 107. To
the best of our knowledge, such a large growth rate of maximum vorticity has not
been reported in the literature for the 3D Navier–Stokes equations. We refer to the
companion paper on the potentially singular behavior of the Navier–Stokes equations
published in the same issue of this journal for more discussion, see also [19].

1.3 Comparison with the Two-Scale TravelingWave Singularity [20, 21]

Our initial condition shares several attractive features of a more sophisticated initial
condition constructed in [20, 21]. However, there are also some important differences
between our new initial condition and the one considered in [20, 21]. First, the solu-
tion of the 3D Euler equations studied in [20, 21] has a three-scale structure. The
smallest scale characterized by the thickness of the sharp front does not seem to settle
down to a stable scaling relationship. That is why it is essential to apply degenerate
viscosity coefficients of order O(r2) + O(z2) to select a two-scale solution structure.
In comparison, the solution of the 3D Euler equations using our initial data has essen-
tially a one-scale structure with scaling properties compatible with those of the 3D
Navier–Stokes equations. This property is critical for us to observe potentially singular
behavior of the 3D Navier–Stokes equations. In comparison, the maximum vorticity
of the 3D Navier–Stokes solution with a constant viscosity ν = 10−5 reported in [20]
has grown by a factor less than 2.

A second important difference is that we roughly have ‖ψ1‖L∞ ∼ (T − t)−1/2

for our new initial data while for the solution in [20, 21] we have ‖ψ1‖L∞ = O(1),
which is consistent with scaling property Z(t) ∼ (T − t). Finally, the solution of the
Navier–Stokes equations with degenerate viscosity coefficients in [20, 21] develops
strong shearing instability in the tail region. We need to apply some low pass filtering
to stabilize this shearing instability. In comparison, our solutions are very stable and
do not suffer from the shearing instability in the tail region; thus, there is no need to
apply any low pass filtering.
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1.4 Numerical Methods

Weuse a similar adaptivemesh strategy developed in [20] by constructing two adaptive
mesh maps for r and z explicitly. For the Navier–Stokes equations, our solutions are
much smoother than those considered in [20, 21] due to the relative large viscous
regularization. For the Euler equations, we need to allocate a large percentage of the
adaptive mesh to resolve the sharp front. The elliptic problem for the stream function
becomes very ill-conditioned in the late stage. Moreover, the interpolation from one
adaptive mesh to another adaptive mesh introduces some high frequency errors. To
alleviate this difficulty, we apply a second-order numerical diffusion with ν = 1/n21
for the u1 and ω1 equations, here n1 is the number of mesh points along z direction
(we use a square grid).

We use a second-order finite difference method to discretize the spatial derivatives
and a second-order explicit Runge–Kutta method to discretize in time. An adaptive
time-step size is used according to the standard time-stepping stability constraint with
the smallest time-step size of order O(10−15). As in [20, 21], we adopt the second-
order B-spline-based Galerkin method developed in [31, 32] to solve the Poisson
equation for the stream function. The overall method is second-order accurate. We
have performed careful resolution study and confirm that our method gives at least
second-order accuracy in the maximum norm.

1.5 Review of PreviousWorks

There have been a number of theoretical developments for the 3D incompressible Euler
equations. These include the well-known non-blow-up criterion due to Beale–Kato–
Majda [1], the geometric non-blow-up criteria due to Constantin–Fefferman–Majda
[11] and its Lagrangian analog due to Deng-Hou-Yu [12]. Recently, Elgindi-Jeong
[16] proved finite time singularity formation for incompressible 3D Euler equations
with bounded and piecewise smooth vorticities using Kida symmetry flow. There was
a recent breakthrough due to Elgindi [14] (see also [15]) who proved that the 3D
axisymmetric Euler equations develop a finite time singularity for a class of C1,α

initial velocity with no swirl. There have been a number of interesting theoretical
results inspired by the Hou–Luo blow-up scenario [31, 32], see, e.g., [4, 6–9, 27, 28]
and the excellent survey article [26].

There have been a number of previous attempts to search for potential Euler sin-
gularities numerically. These include the work of Grauer–Sideris [18] for the 3D
axisymmetric Euler equations, the work of E and Shu [13] for the 2D Boussinesq
equations, the two anti-parallel vortex tube computation by Kerr in [25] and a related
work by Hou-Li in [23], the work of Boratav and Pelz in [2] for Kida’s high-symmetry
initial data (see also [24]), and a more recent work of Luo-Hou for 3D axisymmetric
Euler equations [31, 32]. There is also an interesting proposal for potential Euler sin-
gularity by Brenner–Hormoz–Pumir in [3]. We refer to a review article [17] for more
discussions on potential Euler singularities.

In [35], Vasseur and Vishik showed that blow-up solutions to 3D Euler are hydro-
dynamically unstable (see also [29] for the axisymmetric Euler). In a recent preprint
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[5], we use a Riccati equation, the inviscid Burgers equation, the axisymmetric Euler
equations with C1,α velocity and boundary to demonstrate that the notion of stability
proposed in [35] may not be suitable to study the stability of a blow-up solution. See
Sect. 3.7 for a summary of the main findings in [5].

The rest of the paper is organized as follows. In Sect. 2, we describe the setup of
the problem. In Sect. 3, we report the potential finite time singularity of the 3D Euler
equations. In particular, we will study the rapid growth of the solution, the velocity
field and the dipole structure. We also perform careful resolution study and scaling
analysis. Some concluding remarks aremade in Sect. 4. The technical details regarding
the construction of our adaptive mesh for the 3D Euler equations will be deferred to
the Appendix.

2 Description of the Problem

We consider the 3D incompressible Navier–Stokes equations:

ut + u · ∇u = −∇ p + ν�u, ∇ · u = 0, (2.1)

where u = (ux , uy, uz)T is the 3D velocity vector, p is the scalar pressure, ∇ =
(∂x , ∂y, ∂z)

T is the gradient operator in R
3, and ν is a constant diffusion coefficient.

When the diffusion is absent (i.e., ν = 0), equations (2.1) reduce to the 3D Euler
equations. In this paper, we will study the potential singularity formulation for 3D
axisymmetric Euler and Navier–Stokes equations. In the axisymmetric scenario, it is
convenient to rewrite equations (2.1) in cylindrical coordinates. Consider the change
of variables

x = r cos θ, y = r sin θ, z = z.

We decompose the radially symmetric velocity field as follows

u(t, r , z) = ur (t, r , z)er + uθ (t, r , z)eθ + uz(t, r , z)ez,

er = 1

r
(x, y, 0)T , eθ = 1

r
(−y, x, 0)T , ez = (0, 0, 1)T .

Define ω = ∇ × u as the 3D vorticity vector. The vorticity can be represented in
cylindrical coordinates as follows:

ω(t, r , z) = −(uθ )zer + ωθ(t, r , z)eθ + 1

r
(ruθ )r ez .

Let ψθ be the angular stream function. In [22], Hou and Li introduced the variables

u1 = uθ /r , ω1 = ωθ/r , ψ1 = ψθ/r

and derived an equivalent system of equations for the axisymmetric Navier–Stokes
equations as follows:
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u1,t + uru1,r + uzu1,z = 2u1ψ1,z + ν

(
u1,rr + 3

r
u1,r

)
+ νu1,zz, (2.2a)

ω1,t + urω1,r + uzω1,z = 2u1u1,z + ν

(
ω1,rr + 3

r
ω1,r

)
+ νω1,zz (2.2b)

−
(

∂2r + 3

r
∂r + ∂2z

)
ψ1 = ω1, (2.2c)

ur = −rψ1,z, uz = 2ψ1 + rψ1,r . (2.2d)

This reformulation has the advantage of removing the 1/r singularity from the cylin-
drical coordinates.

Our smooth initial condition has a very simple form and is given below:

u1(0, r , z) = 12000(1 − r2)18 sin(2π z)

1 + 12.5(sin(π z))2
, ω1(0, r , z) = 0. (2.3)

The nontrivial part of the initial data lies only in the angular velocity uθ = ru1. The
other two velocity components are set to zero initially. Thus, the flow is completely
driven by large swirl initially. An important property of this initial condition is that
u1 is an odd function of z and decays rapidly as r approaches the boundary r = 1.
The specific form of the denominator in u1 is also important. It breaks the symmetry
along the z-direction and generates an appropriate bias toward z = 0. The maximum
(or the minimum) of u1 is located at r = 0 and is closer to z = 0 than to z = 1/2 (or
z = −1/2). This specific form of the initial condition is designed in such a way that
the solution has comparable scales along the r and z directions, leading to a one-scale
traveling solution moving toward the origin.

Such initial condition does not favor nonlinear alignment of vortex stretching ini-
tially. In fact, the maximum of u1 first decreases in time due to the large negative value
of ψ1z in the very early stage. Then the solution propagates away from the symmetry
axis r = 0 and generates some favorable solution structure. The location of maxi-
mum u1 soon turns around and approaches the origin. From that time on, the solution
generates a positive feedback loop to maintain strong nonlinear alignment of vortex
stretching.

2.1 Settings of the Solution

We will solve the transformed equations (2.2)-(2.3) in the cylinder

D= {(r , z) : 0 ≤ r ≤ 1}.

Wewill impose a periodic boundary condition in z with period 1 and the odd symmetry
of u1, ω1 and ψ1 as a function of z. According to [30], uθ , ωθ , ψθ must be an odd
function of r , which implies that u1, ω1, ψ1 must be an even function of r . Thus, we
impose the following pole conditions:

u1,r (t, 0, z) = ω1,r (t, 0, z) = ψ1,r (t, 0, z) = 0. (2.4)
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For both the Euler andNavier–Stokes equations, the velocity satisfies a no-flow bound-
ary condition on the solid boundary r = 1:

ψ1(t, 1, z) = 0 for all z. (2.5)

For the Navier–Stokes equations, we further impose a no-slip boundary condition at
r = 1:

uθ (t, 1, z) = uz(t, 1, z) = 0, for all z. (2.6)

Using (2.2d) and (2.5), we obtain ψ1,r (t, 1, z) = 0. Therefore, the no-slip boundary
is reduced to the following boundary condition for u1 and ω1 at r = 1:

u1(t, 1, z) = 0, ω1(t, 1, z) = −ψ1,rr (t, 1, z), for all z. (2.7)

The second no-slip boundary condition will be implemented as a numerical vorticity
boundary condition for ω1 by using a ghost grid point and enforcingψ1,r (t, 1, z) = 0.
By the periodicity and the odd symmetry of the solution, we only need to solve
equations (2.2) in the half-period domain

D1 = {(r , z) : 0 ≤ r ≤ 1, 0 ≤ z ≤ 1/2}.

Moreover, we have

ur = −rψ1,z = 0 on r = 0, 1 and uz = 2ψ1 + rψ1,r = 0 on z = 0, 1/2,

due to the periodicity and the odd symmetry of the solution. Thus, the boundaries of D1
behave like “impermeable walls”. To numerically compute the potential singularity
formation of equations (2.2)-(2.3), we adopt the numerical methods developed in my
recent joint work with Dr. De Huang [20] except that there is no need to apply any low
pass filtering in our computation. The detailed descriptions of our numerical methods
can be found in Appendix A in [20].

A key step in our numerical method is the construction of the adaptive mesh. The
construction of the adaptive mesh will be different for the 3D Euler and Navier–Stokes
equations since theEuler solution ismore singular than theNavier–Stokes solution.We
need to allocate more grid points to resolve the sharp front for the 3D Euler equations
in the late stage. We will provide more details how to construct the adaptive mesh for
the 3D Euler and Navier–Stokes equations in the Appendix.

3 Potential Finite Time Singularity of the 3D Euler Equations

In this section, we will investigate potential finite time singularity of the 3D Euler
equations at the origin. Due to the fast decay of the initial data near the boundary, the
boundary at r = 1 essentially has no effect on the singularity formation. This is very

123



Foundations of Computational Mathematics

Fig. 1 The evolution of the profiles of u1 (row 1) andω1 (row 2) for the 3D Euler equations at three different
times

different from the Hou-Luo blow-up scenario in which the boundary plays an essential
role in generating a stable finite time singularity.

3.1 Numerical Results: First Sign of Singularity

We have numerically solved the 3D axisymmetric Euler equations (2.2)-(2.3) with
ν = 0 on the half-period cylinder D1 = {(r , z) : 0 ≤ r ≤ 1, 0 ≤ z ≤ 1/2} using
meshes of size (n1, n2) = (256p, 256p) for p = 2, 3, . . . , 6. In this subsection,
we first present the major features of the potential Euler singularity revealed by our
computation. In Sect. 3.4, we carry out a careful resolution study of the numerical
solutions. Thenwe provide some qualitative study of the scaling properties in Sect. 3.5.

3.1.1 Profile Evolution

In this subsection, we investigate how the profiles of the solution evolve in time. We
will use the numerical results computed on the adaptive mesh of size (n1, n2) =
(1536, 1536). We have computed the numerical solution up to time t = 0.00227648
when it is still well resolved.

Figure1 illustrates the evolution of u1, ω1 by showing the solution profiles at 3
different times t = 0.002271815, 0.002274596, 0.002276480. We can see that the
magnitudes of u1, ω1 grow in time. The profiles travel toward the origin and the
singular support shrinks in space. The solution u1 develops sharp gradients in both
directions. Moreover, we observe that ω1 is essentially supported along a thin curved
region. Both u1 and ω1 form a tail part that decays rapidly into the far field.

Let (R(t), Z(t))denote themaximum location ofu1(t, r , z).Wewill always use this
notation throughout the paper. In Fig. 2, we plot the cross sections of u1 going through
the point (R(t), Z(t)) in both directions, i.e., u1(t, r , Z(t)) versus r and u1(t, R(t), z)
versus z, respectively. We can see more clearly that u1 develops sharp gradients in
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Fig. 2 Cross sections of u1 in both directions at t = 0.002271815, t = 0.002274596 and t = 0.002276480,
respectively

both directions and u1 develops a sharp front along the r -direction. Unlike the two-
scale travel wave solution reported in [20, 21], we do not observe the formation of a
no-spinning region between the sharp front and r = 0 and u1 does not form a compact
support along the z-direction that is shrinking toward z = 0.

3.2 Trajectory and Alignment

Figure3 (first column) shows the trajectory of the maximum location (R(t), Z(t))
of u1(t, r , z). In the early time, the maximum of u1 lies on the symmetry axis and
travels downward along the symmetry axis. There is a negative alignment between
ψ1z and u1. After a short time, (R(t), Z(t)) moves away from the symmetry axis
almost horizontally and the alignment continues to be negative for a while. Then
(R(t), Z(t)) begins to turn around and propagates toward the origin (r , z) = (0, 0).
From this time on, we have a positive alignment betweenψ1z and u1 and the alignment
becomes stronger for some period of time, see Fig. 3c. As shown in Fig. 3b, the ratio
R(t)/Z(t) has a modest growth during this time but is still of O(1), indicating a one-
scale solution structure. Then we see a phase transition. The ratio R(t)/Z(t) begins
to drop and the alignment begins to decrease. During this second phase, the cross
section of u1 develops a sharp front and ψ1z(t, r , Z(t)) develops a sharp drop along
the r -direction just in front of the sharp front. This explains the sharp drop in the
alignment. However, the alignment eventually becomes stabilized and begins to grow
again in the final stage of our computation. We will revisit this point in Sect. 3.3.

3.2.1 Rapid Growth

In this subsection, we study the rapid growth of the solution. First, we define the
vorticity vector:

ω = (ωθ , ωr , ωz)T = (rω1, −ru1,z, 2u1 + ru1,r )
T
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Fig. 3 a The trajectory of (R(t), Z(t)), b the ratio R(t)/Z(t) as a function of time (0 ≤ t ≤ 0.002276938.
c the alignment between ψ1z and u1 at (R(t), Z(t)) in the early stage with 0 ≤ t ≤ 0.002264353. d the
late stage with 0.002264353 ≤ t ≤ 0.002276938

and its magnitude

|ω| =
√

(ωθ )2 + (ωr )2 + (ωz)2.

In Fig. 4, we plot ‖u1‖L∞ , ‖ω1‖L∞ and ‖ω‖L∞ as functions of time. We can see that
these variables grow rapidly in time. Moreover, from the second row in Fig. 4. we
conclude that the solution grows much faster than a double-exponential rate.

The rapid growth of the maximum vorticity ‖ω‖L∞ is an important indicator of
a finite time singularity. The well-known Beale–Kato–Majda criterion [1] states that
the solution to the 3D Euler equations ceases to exist in some regularity class Hs (for
s ≥ 3) at some finite time T∗ if and only if

∫ T

0
‖ω(t)‖L∞ dt = +∞. (3.1)
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Fig. 4 First row: the growth of ‖u1‖L∞ , ‖ω1‖L∞ and ‖ω‖L∞ as functions of time. Second row:
log log ‖u1‖L∞ , log log ‖ω1‖L∞ and log log ‖ω‖L∞

We will demonstrate in Sect. 3.5 that the growth of ‖ω‖L∞ has a very good fitting of
the form

‖ω(t)‖L∞ ≈ (T − t)−1.

This is only a qualitative fitting. If this qualitative scaling relationship holds, it implies
that the solution would develop a potential finite time singularity. Moreover, we
also compute the relative growth of maximum vorticity ‖ω(t)‖L∞/‖ω(0)‖L∞ and∫ t
0 ‖ω(s)‖L∞ ds in Fig. 5. The final time of this computation is at t = 0.002276938.
We use two resolutions to compute this quantity (1280× 1280 vs 1536× 1536). The
two solutions are almost indistinguishable.We observe that themaximum vorticity has
grownmore than 5000 compared with the maximum of the initial vorticity vector. The
rapid growth of

∫ t
0 ‖ω(s)‖L∞ ds provides further evidence that the 3D Euler equations

seem to develop a finite time singularity.

3.2.2 Velocity Field

In this subsection, we investigate the velocity field. We first study the 3D velocity field
u = ur er +uθ eθ +uzez (denoted by (ur , uθ , uz)) by studying the induced streamlines.
A streamline {�(s; X0)}s≥0 ⊂ R

3 is determined by the background velocity u and
the initial point X0 = (x0, y0, z0)T through the initial value problem

∂

∂s
�(s; X0) = u(�(s; X0)), s ≥ 0; �(0; X0) = X0.

We will generate different streamlines with different initial points X0 =
(r0 cos(2πθ), r0 sin(2πθ), z0)T . Due to the axisymmetry of the velocity field u, it

123



Foundations of Computational Mathematics

Fig. 5 Left plot: the amplification of maximum vorticity relative to its initial maximum vorticity,
‖ω(t)‖L∞/‖ω(0)‖L∞ as a function of time. Right plot: the time integral of maximum vorticity,∫ t
0 ‖ω(s)‖L∞ds as a function of time. Two resolutions with (n1, n2) = (1280, 1280) and (n1, n2) =

(1536, 1536) are used. They are almost indistinguishable. The final time instant is t = 0.002276938

is sufficient to prescribe (r0, z0) as a starting point. We will plot the streamlines with
different angular parameter θ to illustrate the rotational symmetry of the streamlines.

3.2.3 A Tornado Singularity

In Fig. 6, we plot the streamlines induced by the velocity field u(t) at t = 0.00227648
in a macroscopic scale (the whole cylinder domain D1 × [0, 2π ]) for different initial
points with (a) (r0, z0) = (0.8, 0.2), (b) (r0, z0) = (0.5, 0.1), and (c)-(d) (r0, z0) =
(0.1, 0.01).We can see that the velocity field generates a tornado like structure spinning
around the symmetry axis (the green pole). In Fig. 6a, we observe that the streamlines
first travel toward the symmetry axis, then move upward toward z = 1/2, and at last
turn outward away from the symmetry axis. If wemove z0 a bit lower toward z = 0, we
observe in Fig. 6b that the streamlines first approach the symmetry axis, move upward
along the symmetry axis, and then turn outward as they approach z = 1/2, and move
downward. At the same time, they slowly circle around the symmetry axis. On the
other hand, if the initial point is very close to z = 0 as in Fig. 6c, d, the streamlines will
just spin around the symmetry axis and stay near z = 0 instead of moving upward.

Next, we demonstrate the 3D velocity in a local region near (R(t), Z(t)). In Fig. 7,
we plot the streamlines at time t = 0.00227648 for different initial points near
(R(t), Z(t)). The red ring represents the location of (R(t), Z(t)), and the green pole is
the symmetry axis r = 0. The 3 different starting points (r0, z0) are given as follows.

(a) (r0, z0) = (2R(t), 0.01Z(t)). The streamlines start near z = 0 and below
the red ring (R(t), Z(t)). They first travel toward the symmetry axis and then
travel upward away from z = 0. There is almost no spinning since uθ = ru1
is small in the region near r = 0.

(b) (r0, z0) = (1.05R(t), 2Z(t)). The streamlines start some distance above the
ring (R(t), Z(t)). They get trapped in a local region, oscillating and spinning
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Fig. 6 The streamlines of (ur (t), uθ (t), uz(t)) at time t = 0.002276480 with initial points given by a
(r0, z0) = (0.8, 0.2), b (r0, z0) = (0.5, 0.1), c (r0, z0) = (0.1, 0.01) (3D view), d (r0, z0) is the same as
(c), a zoom view. The green pole is the symmetry axis r = 0

around the symmetry axis periodically. The spinning is strong since uθ = ru1
is quite large near (r0, z0).

(c)-(d) (r0, z0) = (0.8R(t), 2.5Z(t)). The streamlines start even higher than z =
2Z(t), but is inside the ring (R(t), Z(t)). They first spin upward and outward,
then travel downward away from the blow-up region. We have computed sev-
eral other starting points and obtained the same qualitative result as long as z0
is larger than 2Z(t). We can take r0 smaller or larger than R(t).

3.2.4 The 2D Flow

To understand the phenomena in the blow-up region as shown in Fig. 7, we look at the
2D velocity field (ur , uz) in the computational domain D1. In Fig. 8a, we show the
vector field of (ur (t), uz(t)) in a local microscopic domain [0, Rb] × [0, Zb], where
Rb = 0.015 and Zb = 0.01. The color corresponds to the amplitude of the velocity
field. We have rescaled the domain in the figure for better visualization. Figure8b is a
schematic for the vector field in Fig. 8a.
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Fig. 7 The streamlines of (ur (t), uθ (t), uz(t)) at time t = 0.002276480 with initial points given by a
(r0, z0) = (2R(t), 0.01Z(t)), b (r0, z0) = (1.05R(t), 2Z(t)), c (r0, z0) = (0.8R(t), 2.5Z(t)) (3D view),
d (r0, z0) is the same as (c), a top view. (R(t), Z(t)) is the maximum location of u1(t), indicated by the
red ring. The green pole is the symmetry axis r = 0

We observe a hyperbolic flow structure. The streamlines below (R(t), Z(t)) first
travel toward r = 0 and then move upward away from z = 0, going around the sharp
front near (R(t), Z(t)) as if it were an obstacle. As the flow gets close to r = 0, the
strong axial velocity uz transports u1 from near z = 0 upward along the z direction.
Due to the odd symmetry of u1, the angular velocity uθ = ru1 is almost 0 in the region
near z = 0. As a consequence, the value of u1 becomes very small near the symmetry
axis r = 0. This explains why the streamlines almost do not spin around the symmetry
axis in this region, as illustrated in Fig. 7a.

Moreover, we observe that the velocity field (ur (t), uz(t)) forms a closed circle
right above (R(t), Z(t)) as illustrated in Fig. 8b. The corresponding streamline is
trapped in the circle region in the r z-plane. Due to the large positive value of u1 in this
region, the induced streamlines oscillate and spin fast inside a 3D torus surrounding
the symmetry axis, see also Fig. 7b. This local circle structure of the 2D velocity field
plays an essential role in stabilizing the blow-up process since it retains a large portion
of u1, ω1 within this circle structure instead of being pushed upward. Moreover, u1
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Fig. 8 a The velocity field (ur (t), uz(t)) near the maximum location (R(t), Z(t)) of u1(t) at t =
0.00227648. The color corresponds to the amplitude of the velocity field. The size of the domain has
been rescaled. b A schematic of the vector field near the point (R(t), Z(t))

and ω1 within this circle region develop some favorable alignment that leads to strong
nonlinear alignment between u1 and ψ1z and a sustainable blow-up mechanism. We
will revisit this point in the next subsection when we study the mechanism for the
potential blow-up of the 3D Euler equations.

The velocity field (ur (t), uz(t)) also explains the sharp structures of u1, ω1 in their
local profiles. Figure9 shows the level sets of ur , uz at t = 0.00227648. One can
see that the radial velocity ur has a strong shearing layer below (R(t), Z(t)) (the red
point). This shearing layer contributes to the sharp gradient of u1 in the z-direction.
Similarly, the axial velocity uz also has a strong shearing layer close to the point
(R(t), Z(t)). This shearing layer contributes to the sharp front of u1 in the r -direction.

Despite the sharp front developed near (R(t), Z(t)) in the solution as shown in the
contours of ur and uz in Fig. 9, we tend to believe that the solution will not develop a
shock like singularity before it reaches the symmetry axis r = 0. The sharp front that
we observe is due to the strong shearing layers developed along the r and z directions,
which is very different from a shock formation in the compressible Euler equations.
The potential singularity of the 3D Euler equations most likely will occur at the origin,
which is a stagnation point of the flow where the effect of advection is minimized.

3.3 Understanding the Blow-upMechanism

In this subsection, we further investigate the blow-upmechanism by examining several
important factors that lead to a sustainable blow-up solution.

3.3.1 Vortex Dipoles and Hyperbolic Flow

First of all, the dipole structure induced by the antisymmetric angular vorticity plays
an important role in generating a favorable flow structure. To better visualize the dipole
structure, we plot the velocity field in the whole period {(r , z); 0 ≤ r ≤ 1,−1/2 ≤
z ≤ 1/2}. Since u1 and ψ1 are even function of r , the 2D velocity field (ur , uθ ) is also
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Fig. 9 The level sets of ur (left) and uz (right) at t = 0.00227648. The red point is the maximum location
(R(t), Z(t)) of u1(t)
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Fig. 10 The dipole structure of ω1 and the induced local velocity field at two different times, t =
0.002271815 (left plot) and t = 0.00227648 (right plot). The red point is themaximum location (R(t), Z(t))
of u1(t)

an even function of r . We can extend it to the negative r plane as an even function of r .
The odd symmetry (in z) ofω1 contributes to a dipole structure of the angular vorticity
ωθ . The dipole structure induces a hyperbolic flow in the r z-plane and generates a pair
of antisymmetric (with respect to z) local circulations. This pair of antisymmetric
convective circulations has the desirable property of pushing the solution near z = 0
toward r = 0.

In Fig. 10, we plot the dipole structure of ω1 in a local symmetric region with
the hyperbolic velocity field induced by the dipole structure in the background. The
antisymmetric vortex dipoles generate a negative radial velocity near z = 0, which
pushes the solution toward r = 0. This is one of the drivingmechanisms for a potential
singularity on the symmetry axis.
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3.3.2 The Odd Symmetry and Sharp Gradient of u1

One important feature of our initial condition is that ψ1,z(r , z, t) is large, positive and
relatively flat in a local rectangular domain {(r , z) | 0 ≤ r ≤ 0.9R(t), 0 ≤ z ≤
0.5Z(t)}. This is an important property that was not observed in the blow-up scenario
considered in [20, 21]. Moreover, ψ1z decays quickly outside this local domain and
becomes negative in the tail region. Through the vortex stretching term 2ψ1zu1 in
the u1-equation, u1 grows rapidly in this local domain while the growth outside his
local domain (especially in the tail region) is relatively slow. The difference in the
growth rate in the local region and the tail region produces a one-scale traveling wave
solution propagating toward the origin. In particular, this implies that (R(t), Z(t))will
propagate toward the origin. Since the close circle structure of the flow is located right
above (R(t), Z(t)) and there is still a relatively strong nonlinear alignment within
the circle region, see Fig. 11, the induced traveling wave also pushes the close circle
region toward the origin.

The fact that ψ1z achieves its maximum at z = 0 can be explained by evaluating
the Poisson equation (2.2c) at z = 0 using the odd symmetry of ψ1, i.e., ψ1,zz = −ω1
at z = 0. This reduced equation is still approximately valid near z = 0. Due to the
oddness of ω1, ω1 vanishes at z = 0. Thus, z = 0 is a critical point of ψ1z . Moreover,
we haveω1 > 0 for z > 0 andω1 < 0 for z < 0. This further implies thatψ1z achieves
a local maximum at z = 0.

The odd symmetry of u1 as a function of z and the fact that ψ1z(t, R(t), z) is large,
positive and monotonically decreasing near z = 0 induces a large positive gradient of
u21 in the z-direction between z = Z(t) and z = 0. The vortex stretching term 2(u21)z
then induces a rapid growth for ω1. The growth of ω1 generates a rapid growth of
ψ1,z . This in turn contributes to the rapid growth of u1 through the vortex stretching
term 2ψ1,zu1 in the u1-equation. As Z(t) approaches to z = 0, u21 develops an even
sharper gradient in the z-direction, leading to an even faster growth of ω1. The whole
coupling mechanism described above forms a positive feedback loop,

(u21)z ↑ ⇒ ω1 ↑ ⇒ ψ1,z ↑ ⇒ u1 ↑ ⇒ (u21)z ↑, (3.2)

leading to a sustainable blow-up solution at the origin.
To ensure that this positive feedback loop is dynamically stable, it is important

that the maximum location of ω1 should align with the location where u1,z is positive
and large, which is slightly below z = Z(t). Although our initial condition of ω1 is
set to zero, the dynamically generated ω1 automatically has this favorable alignment
property between u1 and ω1. In [20, 21], we need to design the initial data in such a
way that this special alignment property is achieved initially and continues to hold at
later time. It is quite amazing that our simple initial data have this desirable property
developed dynamically although such alignment property between u1 and ω1 does not
hold in the very early stage.

Figure11 demonstrates the alignment between ψ1,z and u1. Figure11b shows the
cross section of u1, ψ1,z in the z-direction through (R(t), Z(t)) at t = 0.002271815.
We can see that ψ1,z(t, R(t), z) is monotonically decreasing for z ∈ [0, 2Z(t)] and
relatively flat for z ∈ [0, 0.5Z(t)]. Moreover, ψ1,z is large, positive, and comparable
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Fig. 11 The alignment between u1 and ψ1,z . a and b: cross sections of u1 and ψ1,z through the point
(R(t), Z(t)) at t = 0.002271815. c and d: cross sections of u1 and ψ1,z through the point (R(t), Z(t)) at
t = 0.00227648

to u1 in magnitude, which leads to the rapid growth of u1 and pushes Z(t) moving
toward z = 0.

Figure11c shows the cross sectionofu1, ψ1,z in the r -direction through (R(t), Z(t))
at t = 0.00227648. We observe that ψ1,z(r , Z(t), t) is relatively flat for r ∈
[0, 0.9R(t)]. This property is critical for u1 remains large between the sharp front
and r = 0, thus avoiding the formation of a no-spinning region and a two-scale
solution structure. We also observe that ψ1z(t, r , Z(t)) experiences a sharp drop as a
function of r near the sharp front. In Fig. 12a, b, we plot the local 3D profile of ψ1z
and its contours. We see more clearly that there is a sharp drop and a plateau region
for ψ1z behind (R(t), Z(t)). This explains why the alignment between ψ1z and u1
experiences a sharp decline in the late stage, see Fig. 3d.

We would like to emphasize that the blow-up scenario revealed in this paper is
genuinely three dimensional. The most singular behavior and the strong nonlinear
interaction occur away from the symmetry axis r = 0 and the symmetry plane z = 0.
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Fig. 12 a The 3D profile of ψ1,z at t = 0.00227648, back view. b The contour of ψ1,z , the red dot
corresponds to (R(t), Z(t))

The angular velocity uθ develops a sharp front and the angular vorticity ωθ develops
a Delta function like structure and changes sign across the sharp front. The strong
vortex stretching generates a traveling wave that propagates toward the origin. The
geometric structure of the solution in the most singular region is quite complicated.
Thus, we cannot model this blow-up phenomena by using the 1D Hou-Li model along
the symmetry axis r = 0 [22]. The magical cancellation between the advection and
vortex stretching in the Hou-Li model does not occur in our blow-up scenario. The
positive feedback loop that develops near (R(t), Z(t)) away from r = 0 and z = 0
makes such a blow-up scenario sustainable in the interior domain.

3.4 Numerical Results: Resolution Study

In this subsection, we perform resolution study and investigate the convergence prop-
erty of our numerical methods. In particular, we will study

(i) the effectiveness of the adaptive mesh (Sect. 3.4.1), and
(ii) the convergence of the solutions when hρ, hη → 0 (Sect. 3.4.2).

3.4.1 Effectiveness of the Adaptive Mesh

To resolve the potential finite time singularity of the 3D Euler equations, it is essential
to design the adaptive mesh to resolve the solution in the most singular region as well
as in the far field. The detail of how to construct our adaptive mesh for the Euler
equations will be given in Appendix A. In this subsection, we study the effectiveness
of our adaptive moving mesh.

To see how well the adaptive mesh resolves the solution, we first visualize how
it transforms the solution from the r z-plane to the ρη-plane. Figure13a shows the
function u1 at t = 0.00227648 in the original r z-plane. This plot suggests that the
solution develops a focusing singularity at the origin. For comparison, Fig. 13b plots
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Fig. 13 The adaptive mesh resolves the solution in the ρη-plane. The left subplot a shows the focusing
singularity structure of u1 at t = 0.00227648 in the r z-plane on the whole computational domain D1. The
right subplot b plots the profile of u1 in the ρη-plane

Fig. 14 The adaptive mesh has different densities in different regions. Left: adaptive mesh for u1. Right:
adaptive mesh for ω1

the profile of u1 at the same time in the ρη-plane. We can see that our adaptive mesh
resolves the potential singular solution in the (ρ, η) coordinates.

In Fig. 14, we show the top views of the profiles of u1, ω1 in a local domain at
t = 0.00227648. This figure demonstrates how the mesh points are distributed in
different phases of the adaptive mesh. We can see that a large number of the adaptive
meshes concentrate in phase 1 in both directions where solution is most singular.

Inspired by the recent work in [20], we define the mesh effectiveness functions
MEρ(v), MEη with respect to some solution variable v as follows:

MEρ(v) = hρvρ

‖v‖L∞
= hρrρvr

‖v‖L∞
, MEη(v) = hηvη

‖v‖L∞
= hηrηvz

‖v‖L∞
.

We further define the correspondingmesh effectiveness measures (MEMs) as follows:

MEρ,∞(v) = ‖MEρ(v)‖L∞ , MEη,∞(v) = ‖MEη(v)‖L∞ .
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Fig. 15 First row: the mesh effectiveness functions of u1 at t = 0.00227648 with mesh dimension
(n1, n2) = (1536, 1536). Second row: the mesh effectiveness functions of ω1 in the same setting

TheMEMs quantify the largest relative growth of a function v in one single mesh cell.
The smallness of the MEMs measures the effectiveness of an adaptive mesh.

In Fig. 15, we plot the mesh effectiveness functions of u1, ω1 at time 0.00227648
on the mesh of size (n1, n2) = (1536, 1536). We can see that the mesh effectiveness
functions of u1, ω1 are relatively small and uniformly bounded by a small number.

Table 1 reports the MEMs of u1, ω1 at t = 0.00227648 on meshes of different
sizes. We can see that the MEMs decrease as the grid sizes hρ, hη decrease since the
MEMs are proportional to hρ, hη. Table 2 reports the MEMs of u1, ω1 at different
times with the same mesh size (n1, n2) = (1536, 1536). We can see that the MEMs
remain relatively small throughout this time interval, although there is an increasing
trend in time. The above study implies that our adaptive mesh strategy is effective in
resolving the potentially singular solution both in the most singular region and in the
far field.

We remark that our mesh strategy can well resolve the solution up to t =
0.00227648. With our highest resolution (1536, 1536), we can push the computa-
tion up to t = 0.002276938 and still maintain a reasonable accuracy. To continue the
computation beyond t = 0.002276938, one may need to use a finer resolution or a
more sophisticated adaptive mesh strategy to resolve the sharp front.
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Table 1 MEMs of u1, ω1 at t = 0.00227648 on the meshes of different sizes

Mesh size MEMs on mesh at t = 0.00227648

MEρ,∞(u1) MEη,∞(u1) MEρ,∞(ω1) MEη,∞(ω1)

768 × 768 0.016 0.020 0.129 0.163

1024 × 1024 0.013 0.016 0.113 0.148

1280 × 1280 0.010 0.012 0.096 0.126

1536 × 1536 0.009 0.010 0.082 0.108

Table 2 MEMs of u1, ω1 at different times on the mesh of size (n1, n2) = (1536, 1536)

Time MEMs on mesh (n1, n2) = (1536, 1536)

MEρ,∞(u1) MEη,∞(u1) MEρ,∞(ω1) MEη,∞(ω1)

0.00226435 0.006 0.004 0.014 0.020

0.002271815 0.006 0.006 0.022 0.031

0.002274696 0.007 0.006 0.042 0.060

0.002276480 0.009 0.010 0.082 0.108

0.002276938 0.01 0.012 0.093 0.126

3.4.2 Resolution Study

In this subsection,we perform resolution study on the numerical solutions of the initial-
boundary value problem (2.2) at various time instants t . We will estimate the relative
error of a solution variable f p computed on the 256p × 256p mesh by comparing
it to a reference variable f̂ that is computed on the finest mesh of size 1536 × 1536
at the same time instant. If f p is a number, the absolute relative error is computed
as ep = | f p − f̂ |/| f̂ |. If f p is a spatial function, the reference variable f̂ is first
interpolated to the mesh on which f is computed. Then the sup-norm relative error is
computed as

ep = ‖ f − f̂ ‖∞
‖ f̂ ‖∞

if f is a scalar function,

and ep =
∥∥∥∣∣( f θ

p − f̂ θ
p , f rp − f̂ rp , f zp − f̂ zp)

∣∣∥∥∥∞
‖( f̂ θ

p , f̂ rp , f̂ zp)‖∞
if f is a vector function.

The numerical order of the error is computed as

βp = log p
p−1

(
ep−1

ep

)
.

We first study the sup-norm error of the solution, which is the most important
measure of accuracy for our numericalmethod. Tables 3–6 report the sup-norm relative
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Table 3 Sup-norm relative errors and numerical orders of u1, ω1, ψ1 at t = 0.002264353 for the 3D Euler
equations

Mesh size Sup-norm relative error at t = 0.002264353 for 3D Euler equations

u1 Order ω1 Order ψ1 Order

512 × 512 1.080 × 10−1 – 3.6465 × 10−1 – 3.0167 × 10−2 –

768 × 768 4.2066 × 10−2 2.326 1.5520 × 10−1 2.107 1.1469 × 10−2 2.385

1024 × 1024 1.7730 × 10−2 3.003 6.6567 × 10−2 2.942 4.8033 × 10−3 3.025

1280 × 1280 6.2685 × 10−3 4.659 2.3668 × 10−2 4.634 1.6947 × 10−3 4.669

Table 4 Sup-norm relative errors and numerical orders of ur , uz , ω at t = 0.002264353 for 3D Euler
equations

Mesh size Sup-norm relative error at t = 0.002264353 for 3D Euler equations

ur Order uz Order ω = (ωθ , ωr , ωz) Order

512 × 512 1.0761 × 10−1 – 2.4350 × 10−1 – 3.6878 × 10−1 –

768 × 768 4.2298 × 10−2 2.303 9.6378 × 10−2 2.286 1.5573 × 10−1 2.126

1024 × 1024 1.7850 × 10−2 2.999 4.0709 × 10−2 2.996 6.6667 × 10−2 2.949

1280 × 1280 6.3127 × 10−3 4.658 1.4403 × 10−2 4.656 2.3694 × 10−2 4.636

Table 5 Sup-norm relative errors and numerical orders of u1, ω1, ψ1 at t = t = 0.002271815 for the 3D
Euler equations

Mesh size Sup-norm relative error at t = 0.002271815 for 3D Euler equations

u1 Order ω1 Order ψ1 Order

512 × 512 2.4869 × 10−1 – 7.8344 × 10−1 – 5.3814 × 10−2 –

768 × 768 1.1086 × 10−1 1.993 5.5565 × 10−1 0.847 2.0597 × 10−2 2.369

1024 × 1024 4.8370 × 10−2 2.883 2.7929 × 10−1 2.391 8.6479 × 10−3 3.017

1280 × 1280 1.7214 × 10−2 4.630 1.0298 × 10−1 4.471 3.0525 × 10−3 4.667

Table 6 Sup-norm relative errors and numerical orders of ur , uz , ω at t = t = 0.002271815 for 3D Euler
equations

Mesh size Sup-norm relative error at t = 0.002271815 for 3D Euler equations

ur Order uz Order ω = (ωθ , ωr , ωz) Order

512 × 512 3.1741 × 10−1 – 6.3493 × 10−1 – 8.0538 × 10−1 –

768 × 768 1.4943 × 10−1 1.858 3.1370 × 10−1 1.739 5.5844 × 10−1 0.903

1024 × 1024 6.5946 × 10−2 2.843 1.3984 × 10−1 2.809 2.7905 × 10−1 2.411

1280 × 1280 2.3730 × 10−2 4.580 4.9944 × 10−2 4.614 1.0285 × 10−1 4.473
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errors and numerical orders of different solution variables at times t = 0.002264353
and t = 0.002271815, respectively. The results confirm that our method is at least
second-order accurate.

Next, we study the convergence of some variables as functions of time. In particular,
we report the convergence of the quantities ‖u1‖L∞ , ‖ω1‖L∞ , ‖ω‖L∞ , and the kinetic
energy E . Here the kinetic energy E is given by

E := 1

2

∫
D1

|u|2 dx = 1

2

∫ 1

0

∫ 1/2

0

(
|ur |2 + |uθ |2 + |uz |2

)
r dr dz.

For smooth solutions, the kinetic energy is a non-increasing function of time: E(t1) ≤
E(t2) for t2 ≥ t1 ≥ 0. Figures16 and 17 plot the relative errors and numerical orders
of these quantities as functions of time. The results further confirm that our method is
at least second order in hρ, hη.

We remark that in the early stage of the computation, the solution is quite smooth.
As a result, the discretization error is small, the total error may be dominated by the
interpolation error when we change from one adaptive mesh to another. The change
of mesh tends to happen more frequently for the computation with a finer mesh. Thus,
it is possible that the total error on a coarser mesh may be smaller than that on a finer
mesh in the early stage of the computation, as we can see in the first row of Fig. 16.
We can only observe the expected order of accuracy when the discretization error
dominates the interpolation error. On the other hand, we also observe an increasing
trend in the relative errors of ‖u1‖L∞ , ‖ω1‖L∞ , and ‖ω‖L∞ . This is due to the rapidly
decreasing thickness of the sharp front as t approaches the potential singularity time.

We also observe that the order of convergence seems to be better than the second-
order accuracy. One possible explanation for this super-convergence phenomenon is
that the coefficient in the leading error term may vanish at the position at which u1 or
ω1 is most singular due to some symmetry property of the solution. As we refine the
mesh, we seem to obtain a fourth-order convergence.

3.5 Potential Blow-up Scaling Analysis

In this subsection, we will study the scaling properties of the Euler solution. We will
provide some qualitative numerical evidences that the 3D Euler equations seem to
develop nearly self-similar scaling properties.

3.5.1 Fitting of the Growth Rate

We will perform linear fitting to the numerical solutions obtained in our computation.
Since the solution has not settled down to a stable phase, we will not try to look for an
optimal fitting exponent as we did in [20]. Instead, we will perform some qualitative
fitting and use the R-Square values of the linear fitting as an indication on the goodness
of the linear fitting.

We use the data obtained from 1536 × 1536 resolution. Figure18 shows the fit-
ting results for the quantity ‖u1(t)‖L∞ and ‖ψ1,z‖L∞ on the time interval [t1, t2] =
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Fig. 16 First row: relative error and numerical order of ‖u1(t)‖L∞ . Second row: relative error and numerical
order of ‖ω1(t)‖L∞ . The last time instant shown in the figure is t = 0.00227648 for the first row and
t = 0.002274596 for the second row

[0.0021007568, 0.0022742813].We can see that the linear fitting ‖u1(t)‖−1
L∞ ∼ (T−t)

and ‖ψ1,z‖−1
L∞ ∼ (T − t) have excellent linear fitness with R-Square values (we use

R2 values for short in the relevant figures) very close to 1. As wementioned earlier, we
observed a strong positive alignment between ψ1,z and u1 around the maximum loca-
tion (R(t), Z(t)) of u1 in the early stage withψ1,z(R(t), Z(t), t) ∼ u1(R(t), Z(t), t).
Thus, the equation of ‖u1(t)‖L∞ can be approximated by

d

dt
‖u1(t)‖L∞ = 2ψ1,z(R(t), Z(t), t) · u1(R(t), Z(t), t) ∼ c0‖u1(t)‖2L∞ .

This would imply that ‖u1(t)‖L∞ ∼ (T − t)−1 for some finite time T , which is
consistent with our linear fitting results.

Next, we study the growth of the maximum vorticity ‖ω(t)‖L∞ . Figure19a shows
the linear fitting of ‖ω(t)‖−1

L∞ as a function of time on the time interval [t1, t2] =
[0.0018441297, 0.0022742812]. Again, we see that ‖ω(t)‖−1

L∞ ∼ (T − t) has good
linear fitness with R-Square values very close to 1, which provides evidences of the
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Fig. 17 First row: relative error and numerical order of ‖ω(t)‖L∞ . Second row: relative error and numerical
order of ‖ψ1(t)‖L∞ . Third row: relative error and numerical order of E(t). The last time instant shown in
the first row is t = 0.002274596 and the last time instant in the second and third rows is t = 0.00227648

finite-time blow-up of ‖ω(t)‖L∞ in the form of an inverse power law

‖ω(t)‖L∞ ∼ (T − t)−1.

This scaling property is consistent with the rapid growth of
∫ t
0 ‖ω(s)‖L∞ds as we

demonstrated in Fig. 5b. Similarly, Fig. 19b shows the linear fitting of ‖ω1(t)‖−2/3
L∞ on
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Fig. 18 The linear regression of a ‖u1‖−1
L∞ vs t , b ‖ψ1z‖−1

L∞ vs t . The blue points are the data points
obtained from our computation, and the red lines are the linear models

Fig. 19 The linear regression of a ‖ω(t)‖−1
L∞ vs t , b ‖ω1(t)‖−2/3

L∞ vs t . The blue points are the data points
obtained from our computation, and the red lines are the linear models

the same time interval. We see that ‖ω1(t)‖L∞ = O(1/(T − t)3/2) has good fitness
with R-Square values close to 1.

To further illustrate the existence of a potential finite-time blow-up, we perform
the linear fitting for the maximum velocity and Z(t). For the fitting of the maximum
velocity, the fitting time interval is the same as that for u1 and ψ1z , i.e., [t1, t2] =
[0.0021007568, 0.0022742813]. For Z(t), we use a larger time interval [t1, t2] =
[0.0016006384, 0.0022742813]. In Fig. 20a, we observe that ‖u(t)‖L∞ = O(1/(T −
t)1/2) has good linear fitness with R-Square values very close to 1. This implies that
‖u(t)‖L∞ has an inverse power law

‖u(t)‖L∞ ∼ (T − t)−1/2.

123



Foundations of Computational Mathematics

Fig. 20 The linear regression of a ‖u(t)‖−2
L∞ vs t , b Z(t)2 vs t . The blue points are the data points obtained

from our computation, and the red lines are the linear models

Fig. 21 The linear regression of a R(t)2 vs t . b Linear regression of (log(‖ψ1z‖L∞ )‖ψ1‖L∞ )−2. The
blue points are the data points obtained from our computation, and the red lines are the linear models

The scaling properties of the maximum vorticity and maximum velocity seem to
suggest that the spatial length scale of the potential blow-up, which is characterized
by Z(t), should be Z(t) ∼ (T − t)1/2. Indeed, Fig. 20b, we observe that Z(t) =
O((T − t)1/2) has reasonably good linear fitness although the R-Square values are
not as close to 1 as in the other quantities. This is due to the fact that the solution
experiences a phase transition in the late stage as the thickness of the sharp front
becomes smaller and smaller. We can also see that the deviation from the linear fitting
mainly occurs near the end. The fitting in the early time is much better.

We remark that we have not been able to obtain good linear fitting of R(t)2 in the
same time interval in which we obtained good linear fitting for Z(t)2. This is possibly
due to the fact that the solution of the 3D Euler equations have not settled down to a
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stable phase. In Fig. 21a, we show the linear fitting of R(t)2 in a smaller time interval,
[0.0022052019, 0.0022742813]. During this time interval, we do observe good linear
fitting of R(t)2 with R-Square values close to 1. In Fig. 21b, we plot the linear fitting
for (log(‖ψ1z‖L∞)‖ψ1‖L∞)−2 in the same time interval as we did for the fitting of ω

and ω1, i.e., [t1, t2] = [0.0018441297, 0.0022742812]. We can see that

‖ψ1‖L∞ ∼ 1

(T − t)1/2| log(T − t)| ,

gives good linear fitting with R-Square values close to 1. The fact that R(t)2 does not
enjoy a good linear fitting on the same time interval as Z(t)2 did and the logarithmic
correction in the fitting of ‖ψ1‖L∞ seem to suggest that the potential blow-up of the
Euler equations is only nearly self-similar.

3.5.2 Numerical Evidence of Locally Self-Similar Profiles

In addition to performing linear fitting of some variables in the previous subsection,
we will further investigate the nearly self-similar solution by comparing the properly
normalized profiles of the solution at different time instants. We will focus our study
on the solution profile in a small neighborhood centered around (R(t), Z(t)).

As in [20], we propose the following self-similar ansatz in the axisymmetric setting:

u1(r , z, t) ∼ (T − t)−cuU

(
t,

r − R(t)

(T − t)cl
,

z

(T − t)cl

)
, (3.3a)

ω1(r , z, t) ∼ (T − t)−cω�

(
t,

r − R(t)

(T − t)cl
,

z

(T − t)cl

)
, (3.3b)

ψ1(r , z, t) ∼ (T − t)−cψ �

(
t,

r − R(t)

(T − t)cl
,

z

(T − t)cl

)
, (3.3c)

R(t) ∼ (T − t)cs R0. (3.3d)

HereU ,�,� denote the self-similar profiles of u1, ω1, ψ1 respectively. By this ansatz,
the solution develops locally nearly self-similar blow-up centered at the point (R(t), 0)
that travels toward the origin with scaling (T − t)cl .

By slightlymodifying the asymptotic scaling analysis developed in [20] for variable
diffusion coefficients to theEuler equations, one canobtain a set of governing equations
for the evolution of the rescaled profiles U ,�,� by further introducing a rescaled
time τ . From our numerical study of the scaling properties of the solution, we have
roughly cl = 1/2. This in turns gives cu = 1, cω = 3/2, and cψ = 1/2. From
these scaling properties, we obtain ‖ω‖L∞ ∼ 1

T−t , which is consistent with what we
observed numerically. It is important to note that the scaling exponent cl = 1/2 is
consistent with the scaling properties of the Navier–Stokes equations with a constant
viscosity coefficient.

We remark that such scaling analysis would not be able to account for the potential
logarithmic correction in ψ1. It is likely that the dynamic rescaling equations that
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Fig. 22 Comparison of the level sets of u1 at t = 0.0022749, t = 0.0022759, and t = 0.0022766,
respectively. First row: original level sets of u1 in the domain (r , z) in different times. Second row: rescaled
level sets of u1 as a function of (ξ, ζ ) in the domain (ξ, ζ )

govern the evolution of the rescaled profiles may not converge to a steady state as
the rescaled time tends to infinity. Instead it may oscillate around an approximate
self-similar profile. If this is the case, we will not have an asymptotically self-similar
blow-up of the 3D Euler equations. Instead, the solution of the dynamic rescaled
Euler equations is close to an approximate self-similar profile with scaling properties
qualitatively similar to those of an asymptotic self-similar blow-up.

In Fig. 22, we compare the level sets of u1 at different time instants. In the first row
of Fig. 22, we plot the level sets of u1 in a local domain (r , z) ∈ [0, 0.015]×[0, 0.006].
We plot the profiles in a short time interval from t = 0.0022749 to t = 0.0022766.
The main part of the profile shrinks in space and travels toward the origin. However,
if we plot the level sets of the spatially rescaled function

ũ1(ξ, ζ, t) = u1(R(t) + Z(t)ξ, Z(t)ζ, t) (3.4)

as in the second row of Fig. 22, we can see that the rescaled profile of ũ1 (in the ξζ -
plane) is almost indistinguishable in a small neighborhood near (R(t), Z(t)). Here

ξ = r − R(t)

Z(t)
, ζ = z

Z(t)

are the dynamically rescaled variables motivated by the self-similar ansatz (3.3). This
observation suggests that there exists an approximate self-similar profile U (ξ, ζ ).

In Fig. 23, we compare the level sets ofω1 and the level sets of the spatially rescaled
function

ω̃1(ξ, ζ, t) = ω1(R(t) + Z(t)ξ, Z(t)ζ, t) (3.5)

123



Foundations of Computational Mathematics

Fig. 23 Comparison of the level sets of ω1 at t = 0.0022749, t = 0.0022759, and t = 0.0022766,
respectively. First row: original level sets of ω1 in the domain (r , z) in different times. Second row: rescaled
level sets of ω1 as a function of (ξ, ζ ) in the domain (ξ, ζ )

in a similar manner. Again, we can see that although the profile of ω1 has changed
noticeably in the original physical space, the rescaled profile ω̃1 seems to converge.
This again suggests that there exists an approximate self-similar profile �(ξ, ζ ).

Finally, we compare the cross sections of the solution at different time instants to
study the nearly self-similar blow-up. In Fig. 24a and c, we present the evolution of
the cross sections of u1 through the point R(t), Z(t) in both directions. The length
scale of the profile shrinks in both directions, and the sharp front travels toward r = 0.
For comparison, in Fig. 24b and d, we plot the corresponding cross sections of the
normalized function u1/‖u1‖L∞ in the dynamically rescaled variables (ξ, ζ ). We can
see that the normalized profiles for u1 seem to converge to a limiting profile as time
increases. These results further support the existence of an approximate self-similar
profile of the solution near the reference location (R(t), Z(t)).

3.6 The Need for Applying a Second-Order Numerical Viscosity

In this subsection, we provide some justification for the need to apply a second-order
numerical viscosity to compute the Euler equations. We will compare the numerical
solution of the 3D Euler equations using a second-order numerical viscosity with that
without using any numerical viscosity.

In Fig. 25a, we plot the contours of ω1 using grid 1280 × 1280 to solve the Euler
equations without using any numerical viscosity. The solution is obtained after 90, 000
time steps at t = 0.0022761539. We observe some high frequency oscillations devel-
oped in the contourwhereω1 is smooth and relatively small in amplitude. Judging from
Fig. 25a, these high frequency oscillations occur near the interface between the two
adaptive mesh phases. It is most likely that this high frequency instability is triggered
by the frequent changes of adaptive mesh in the late stage.
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Fig. 24 Cross sections and rescaled cross sections of u1 through the point R(t), Z(t) in both directions at
different time instants. a Cross sections in the r direction. b Rescaled cross sections in the r directions. c
Cross sections in the z direction. d Rescaled cross sections in the z directions

By the design of our adaptive mesh strategy, we change the adaptive mesh when
the most singular part of solution is about to depart from phase 1 of the adaptive
mesh, which has the finest grid, and enter phase 0 of the adaptive mesh, which has
a relatively coarse grid. Thus, the interpolation from the old mesh to the new mesh
introduces some non-smooth high frequency errors that are largest in amplitude near
the interface between the phase 1 mesh and the phase 0 mesh.

Another contributing factor is that the Poisson solver for the stream function
becomes very ill-conditioned in the late stage due to the extremely large ratio between
the coarsest mesh and the finest mesh. As a result, the high frequency errors intro-
duced by the frequent changes of mesh in the late stage get amplified through the very
ill-conditioned Poisson solver. We remark that these high frequency oscillations are
different from the oscillations generated by fluid dynamic instability, which typically
occurs near the sharp front where the shearing instability is strongest. A second-order
vanishing numerical viscosity would not be strong enough to suppress such instability.
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Fig. 25 a Contours of ω1 without using numerical viscosity after 90000 time steps. ‖ω(t)‖L∞/‖ω(0)‖L∞
has grown roughly 3500.Weobserve that oscillations develop by this time.bContours ofω1 using numerical
viscosity ν = 1/n21 after 90000 time steps. c Comparison of the log(‖ω‖L∞ ) with and without using
numerical viscosity. d same as (c), a close-up view

In Fig. 25b, we plot the contours of ω1 using a second-order numerical viscosity
with ν = 1/n21 after 90, 000 time steps at t = 0.0022761342. We can see that the
contours are very smooth and the high frequency oscillations that we observed without
using any numerical viscosity have been regularized by the second-order numerical
viscosity.

In Fig. 25c, we compare the growth of maximum vorticity with and without using
numerical viscosity. To better visualize the difference between the two solutions, we
plot log(‖ω‖∞). These two solutions are almost indistinguishable. We show a close-
up view of the same picture in the late stage of the computation in Fig. 25d. We can
see that the maximum vorticity computed with a second-order numerical viscosity
grows slightly slower than that without using any numerical viscosity. The difference
is really small.
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Fig. 26 a Comparison of z-cross section of u1 at r = R(t) as a function of η with and without using numer-
ical viscosity after 90000 time steps. b Comparison of z-cross section of ω1 at r = R(t) with and without
using numerical viscosity. cComparison of the Fourier spectrumof the z-cross section u1/max(u1(R(t), z))
at r = R(t) as a function of η with and without using numerical viscosity. d Comparison of the Fourier
spectrum of the z-cross section ω1/max(ω1(R(t), z)) at r = R(t)

In Fig. 26a, b, we plot the z-cross section of u1 and ω1 at r = R(t) as a function of
η with and without using numerical viscosity. Recall that z = z(η) is the mesh map in
the z direction. We can see that two solutions are almost indistinguishable except for
some mild oscillation in ω1 without using the second-order numerical viscosity. To
further illustrate the source of numerical instability and the effect of using a second-
order numerical viscosity, we plot the Fourier spectrum of u1/maxz(u1(t, R(t), z)
and ω1/maxz(ω1(t, R(t), z) as a function of η in Fig. 26c, d. In order to reduce the
boundary effect at η = 0, 1, we apply a soft cut-off fc(η) that is approximately
equal to 1 for η ∈ (0.1, 0.9) and goes to zero smoothly at the boundary η = 0, 1.
We can see that without using numerical viscosity, the solution develops some high
frequency instability. On the other hand, the solution obtained by applying a second-
order numerical viscosity does not suffer from this high frequency instability.
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3.7 Remark on“Hydrodynamic Instability of Blow-up Solutions to 3D Euler”

In [29, 35], the authors showed that blow-up solutions to 3D Euler are hydrodynami-
cally unstable. Assume that u(t) is a smooth solution of the 3D Euler equations with
smooth initial value u0 ∈ Hs(�) ( s > 9/2) for t < T ∗ but becomes singular at
t = T ∗ (possibly infinite). The authors considered the following linearized equation
for the perturbation v around the blow-up solution u:

vt + u · ∇v + (v · ∇)u = −∇P ′, ∇ · v = 0, v · n|∂� = 0. (3.6)

Denote γp(T ) as the growth in the L p norm of the perturbation v as follows:

γp(T ) = sup
v0∈H1(�),‖v0‖L p≤1

‖v(T )‖L p .

One of the main results obtained in [35] is that

lim sup
T→T ∗

γp(T ) = ∞.

In a recent preprint [5], we use a Riccati equation, the inviscid Burgers equation and
the 3D Euler equations to demonstrate that using the linearized equation (3.6) around
a blow-up solution may not be suitable to study stability of a blow-up solution. Here
we summarize the main findings in [5]. We begin with a Riccati equation

ut = u2, u(0) = 1.

We know that u(t) = 1/(1 − t) for 0 ≤ t < 1 is the exact solution that blows up at
T ∗ = 1. Let ε be a small perturbation to the initial value, i.e., v(0) = ε. The linearized
equation for v is given by

vt = 2uv, v(0) = ε,

which can be solved analytically to give

v(t)/v(0) = 1/(T ∗ − t)2 → ∞, as t → T ∗.

By the notion of stability described in [35], the blow-up of this Riccati equation would
be considered unstable. On the other hand, it is clear that the blow-up of the Riccati
equation with a perturbed initial value uε(0) = 1 + ε is stable in the sense that the
blow-up solution has the same form uε(t) = 1/(T ε − t) with T ε = 1/(1+ ε) for any
small ε and we have |T ε − T ∗| = ε/(1 + ε).

We can make a similar argument for the blow-up solution of the inviscid Burgers
equation

ut + (u2/2)x = 0, u(0, x) = u0(x) = − x

1 + x2
, x ∈ � ≡ (−∞,∞), (3.7)
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where u0 ∈ C∞ satisfies the following properties: (i) ∂xu0 is minimal at x = 0,
(ii) u0(0) = 0, (iii) ∂xu0(0) = −1 < 0, (iv) ∂2x u0(0) = 0 and ∂3x u0(0) = 6 > 0.
Moreover, u0(x) is strictly monotonically decreasing for x ∈ [−0.5, 0.5]. It is well
known that the inviscid Burgers equation has an implicit solution formula of the form

u(t, x) = u0(x − tu(t, x)). (3.8)

It is easy to see that u(t, x) is odd and monotonically decreasing over [−0.5, 0.5] and
develops a finite time singularity in ux at x∗ = 0 and T ∗ = −1/u0,x (0) = 1. The
linearized equation is given by

vt + uvx + uxv = 0, v(0, x) = vε
0(x) ∈ V .

Here V is a subspace of H1(�) ∩ L p(�) that has the properties that any vε
0(x) ∈ V

is an odd smooth function with compact support in [−ε, ε] (ε ≤ 0.5) and satisfies
‖∂ j

x vε
0‖L∞ ≤ c jε4− j for 0 ≤ j ≤ 3. Further by choosing ε sufficiently small, we have

∂3x (u0 + vε
0)(0) > 0. Since v is transported by velocity u, v(t, x) has compact support

in [−X ε(t), X ε(t)], here X ε(t) = X(t, ε) and X(t, α) is the characteristics defined
by dX(t,α)

dt = u(t, X(t, α)) with X(0, α) = α. A simple calculation shows that

d

dt
‖v(t)‖p

L p = (p − 1)
∫

(−ux (t, x))v(t, x)pdx

= (p − 1)
∫ Xε (t)

−Xε (t)
(−ux (t, x))v(t, x)pdx

≥ (p − 1) min
X−ε (t)≤x≤Xε (t)

(−ux (t, x))
∫ Xε (t)

−Xε (t)
v(t, x)pdx .

By using the implicit solution formula (3.8) for u(t, x), we can show that

min
X−ε (t)≤x≤Xε (t)

(−ux (t, x)) ≥ 1 − ε2

(1 + ε2)2

(
1

T ∗ − t + 4ε2

)
.

For any fixed 0 < T < T ∗, by taking ε = min{1/3,√(T ∗ − t)/20}, we obtain

d

dt
‖v(t)‖p

L p ≥ (p − 1)

2(T ∗ − t)
‖v(t)‖p

L p , for any t ∈ [0, T ], 1 < p < ∞.

Thus, by choosing a different initial condition vε
0 �= 0with a smaller ε as T approaches

to T ∗ we obtain

sup
v∈V , v �=0

‖v(t)‖L p

‖v(0)‖L p
≥ (T ∗)μ

(T ∗ − t)μ
, μ = 1

2
− 1

2p
, for any t ∈ [0, T ], p > 1.
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Since V is a subspace of H1(�) ∩ L p(�), we conclude that

γp(T ) ≥ sup
v∈V , v �=0

‖v(T )‖L p

‖v(0)‖L p
,

which implies lim supT→T ∗ γp(T ) = ∞ . On the other hand, using the implicit
solution formula, we can solve for the solution of the inviscid Burgers equation with
a perturbed initial condition, uε

0(x) = u0(x) + vε
0(x). The solution u

ε(t, x) is defined
implicitly by uε

0(x) via (3.8) with the blow-up time given by T ε = 1/maxx (−(uε
0)x ).

By construction, we have (vε
0)x = O(ε3), therefore we can show that the perturbed

solution uε(t, x) develops a blow-up at time T ε = T ∗+O(ε3)with singularity located
at xε = x∗ + O(ε3). By construction, our perturbed initial condition uε

0 satisfies the
condition stated in Proposition 9 in [10] with i = 1. By applying Proposition 9 in [10],
we conclude that the inviscid Burgers equation develops stable asymptotically self-
similar blow-up solutions. However, by the notion of stability from [35], the blow-up
of the inviscid Burgers equation would be considered hydrodynamically unstable even
within this class of perturbation.

In [5], we will show that lim supT→T ∗ γp(T ) = ∞ (1 < p < ∞) for the 3D
axisymmetric Euler equations with C1,α initial velocity and boundary in the same
setting as the Hou-Luo blow-up scenario [32] except for the regularity of the initial
data. On the other hand, by using the dynamic rescaling formulation [4, 6, 7, 34], we
have been able to prove in [4] that the 3D axisymmetric Euler equations with boundary
develop a stable blow-up solution for a class of C1,α initial velocity with finite energy.
The blow-up solution is stable in the sense that it can be rescaled dynamically, and
the rescaled solution is close to an approximate self-similar profile in some weighted
Sobolev space.

The key difference between our approach to stability and the approach adopted in
[29, 35] is that we first reformulate the Euler equations using the dynamic rescaling
formulation (or using the modulation technique as in [14, 15]), and then perform lin-
earization around an approximate self-similar profile. The linearized equation that we
obtained is very different from (3.6). By choosing appropriate normalization condi-
tions and using the odd symmetry of the solution along the z direction,we can eliminate
some potentially unstable modes and prove stability of the linearized equation in an
appropriately chosen functional space. The dependence of the blow-up time on the
perturbation is naturally accounted in our analysis. The odd symmetry of the solution
and the perturbation plays a crucial role in establishing linear stability of the approx-
imate self-similar profile. The results in [29, 35] still apply with minor modification
when this odd symmetry is imposed.

3.8 Stability of the Self-Similar Profile to Small Perturbation of Initial Data

In this subsection, we study whether the observed nearly self-similar profile is stable
with respect to a small perturbation of the initial condition. Our study shows that
the approximate self-similar profile seems to be very stable to small perturbation of
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the initial data. On the other hand, the solution structure could have a very different
behavior if we make an O(1) perturbation to the initial data.

In our study, we solve the 3D Euler equations using four different initial data given
below.
Case 1 We choose the same initial condition given in (2.3),

u1(0, r , z) = 12000(1 − r2)18 sin(2π z)

1 + 12.5(sin(π z))2
, ω1(0, r , z) = 0. (3.9)

Case 2We choose the initial condition as a small perturbation to the initial condition
defined in (3.9),

u1(0, r , z) = 12000(1 − r2)18 sin(2π z)

1 + 12.5(sin(π z))2
+ (1 − r2)10 sin(6π z)

1 + 12.5(sin(π z))2
, ω1(0, r , z) = 0.

(3.10)

Case 3We choose the initial condition as a larger perturbation to the initial condition
defined in (3.9),

u1(0, r , z) = 12000(1 − r2)18 sin(2π z)

1 + 12.5(sin(π z))2

+42(1 − r2)6 sin(10π z)

1 + 12.5(sin(π z))2
, ω1(0, r , z) = 0. (3.11)

Case 4We choose the initial condition that is O(1) perturbation to the initial condition
(3.9),

u1(0, r , z) = 12000(1 − r2)18 sin(4π z)

1 + 12.5(sin(π z))2
, ω1(0, r , z) = 0. (3.12)

The relative size of the perturbation in Case 2 is approximately 1.928 · 10−4 while
the relative size of the perturbation in Case 3 is about 10−2. Notice that the decay of
the perturbation along the r -direction is slower than the original unperturbed initial
condition. Moreover, the perturbation along the z-direction is more oscillatory. One
would expect that the blow-up process may be sensitive to the perturbation of the
initial data due to the strong shearing induced by the Euler equations. To our surprise,
the blow-up profile is very stable with respect to the small perturbation of the initial
data.

In Case 4, we just change sin(2π z) in the numerator in the original initial condition
to sin(4π z). Everything else is the same.With this change, u1 is no longer non-negative
for z ∈ [0, 0.5]. In fact, u1 becomes negative for z near 0.5. This introduces an O(1)
structural change to u1 and the solution develops a two-scale structural similar to that
observed in [20, 21]. In Cases 2 and 3, the perturbation is also oscillatory and becomes
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Fig. 27 a The r -cross section of u1 at z = Z(t) at 75000 time steps for the first three initial data in the
original physical space. b Rescaled ξ -cross section of u1 at 75000 time steps for the first three initial data.
c The z-cross section of u1 at r = R(t) at 75000 time steps for the first three initial data in the original
physical space. d Rescaled ζ -cross section of u1 at 75000 time steps for the first three initial data

negative for z ∈ [0, 0.5]. But in these two cases, the size of the perturbation is relatively
small. The dominating part still comes from the original initial condition. Thus, the
solution behavior is dominated by the unperturbed part of the initial condition and the
solution behaves qualitatively similar to that of the original initial condition given by
(3.9).

In Fig. 27, we plot the solution u1 after computing 75000 time steps using the three
initial conditions defined above. The time for the first initial condition after 75000
time steps is t1 = 0.002276527323, the time for the second initial condition is t2 =
0.002276019761, and the time for the third initial condition is t3 = 0.002229117298.
We can see that t1 > t2 > t3 and the gap between t1 and t3 is the largest. However,
the growth of the third initial condition is the fastest in time.

From the r and z cross sections of u1 in the original physical space, we can see
that the solution obtained from the first initial condition agrees very well with that
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Fig. 28 a The r -cross section of u1 at z = Z(t) at 75000 time steps for the Case 1 and the Case 4 initial
data in the original physical space. b Rescaled ρ-cross section of u1 at 75000 time steps for the Case 1 and
Case 4 initial data

obtained from the second initial condition. This is also expected since the perturbation
of the second initial condition is quite small. On the other hand, there is a noticeable
difference between the solution obtained from the third initial condition and that from
the first initial condition. However, when we plot the rescaled solutionU as a function
of ξ and ζ defined below:

u1 = max(u1)U (t, ξ, ζ ), ξ = (r − R(t))/Z(t), ζ = z/Z(t),

we observe that the rescaled profiles U as a function of the dynamically rescaled
variables (ξ, ζ ) for the first three initial conditions almost collapse on each other. This
seems to suggest that the nearly self-similar profile of the solution is very stable to the
small perturbation of the initial condition.

Next, we study the comparison between the Case 1 and Case 4 initial data. As we
mentioned before, the perturbation in the Case 4 initial data is an O(1) perturbation to
the Case 1 initial data and the structures of the two initial data for u1 are also different.
In Fig. 28, we plot the cross sections of the solution u1 after computing 75000 time
steps using these two initial conditions. The time for the Case 1 initial condition after
75000 time steps is t1 = 0.002276527323, and the time for the Case 4 initial condition
is t4 = 0.001818245904. We observe that the solution for the Case 4 initial condition
develops a two-scale solution structure with a sharp front.

In Fig. 28a, we plot the r cross section of u1 in the original physical space. We can
see that the solution obtained from the Case 1 initial condition is significantly different
from that obtained from the Case 4 initial condition. Interestingly, we observe a no-
spinning region developed between the sharp front and the symmetry axis for the
Case 4 initial data as we observed in the two-scale traveling wave singularity in [20,
21]. In Fig. 28b, we plot the cross section using the dynamically rescaled variables
defined above.We observe that the rescaled profilesU as a function of the dynamically
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Fig. 29 Linear fitting for the solution using the Case 4 initial condition. a Linear fitting for R(t)3/2. b

Linear fitting for Z(t). c Linear fitting for ‖u1‖−1
L∞ . d Linear fitting for ‖ω1‖−1/2

L∞

rescaled variables (ξ, ζ ) for the two initial conditions do not agree with each other.
They seem to converge to two different self-similar profiles.

To illustrate the two-scale solution structure, we perform linear fitting for R(t),
Z(t), ‖u1‖L∞ and ‖ω1‖L∞ in Fig. 29. The linear fitting results obtained in Fig. 29
seem to imply the following scaling properties for the solution using the Case 4 initial
condition:

R(t) ∼ (T − t)2/3, Z(t) ∼ (T − t), ‖u1‖L∞ ∼ 1

T − t
, ‖ω1‖L∞ ∼ 1

(T − t)2
.

These scaling properties suggest a two-scale blow-up structure with Z(t)/R(t) ∼
(T − t)1/3. The fact that ‖ω1‖L∞ ∼ 1

(T−t)2
is also consistent with the scaling property

Z(t) ∼ (T − t). In comparison, we have Z(t) ∼ (T − t)1/2 and ‖ω1‖L∞ ∼ 1
(T−t)3/2

for the solution using the Case 1 initial condition.
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4 Concluding Remarks

In this paper, we presented strong numerical evidences that the 3D incompressible
axisymmetric Euler equations develop a finite time singularity at the origin. An impor-
tant feature of this potential singularity is that the solution develops an essentially
one-scale traveling wave solution with scaling properties compatible with those of the
Navier–Stokes equations. This property is critical for the potentially singular behavior
of the 3DNavier–Stokes equations.We presented some qualitative numerical evidence
that the Euler solution seems to develop nearly self-similar scaling properties. More-
over, the nearly self-similar profile seems to be very stable to small perturbation of
the initial data. On the other hand, the specific form of our initial data is important in
generating the observed scaling properties. If we make an O(1) change to the initial
data, the solution could behave very differently. We provided one such example in
which a simple change of the initial data leads to a two-scale traveling wave solution,
which is similar in spirit to what we observed in [20, 21].

We plan to use the dynamic rescaling formulation [4, 6, 7, 34] to investigate the
potential blow-up of the 3D Euler and Navier–Stokes equations in our future work.
One important advantage of using the dynamic rescaling approach is that we can use
a fixed mesh to solve the dynamically rescaled Euler or Navier–Stokes equations.
This avoids the numerical dissipation introduced by the frequent changes of adaptive
mesh in the late stage when we solve the 3D Euler or Navier–Stokes equations in the
physical domain. Another benefit is that the use of the dynamic rescaling formulation
may eliminate the mild high frequency instability that we observed when we solve
the Euler equation in the physical domain without using a second-order numerical
diffusion.
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Appendix A: Construction of the Adaptive Mesh

In this appendix, we describe our adaptive mesh strategy to study the singularity for-
mation near the origin (r , z) = (0, 0). We will use the method described in Appendix
B of [20] to construct our adaptive mesh maps r = r(ρ) and z = z(η). We will
discretize the equations in the transformed variables (ρ, η) with n1 grid points along
the z direction and n2 grid points along the r -direction.

The adaptive mesh strategy described in [20] was inspired by the adaptive mesh
strategy introduced in [32]. On the other hand, the adaptive mesh strategy developed in
[32] is simpler due to the fact that the singularity is located at a fixed stagnation point on
the boundary (r , z) = (1, 0),ω1 > 0 for z > 0 and has a bell-shaped structure near the
singularity. In our case, we have a traveling wave solution that approaches the origin
with ω1 changing sign in the most singular region. The singular region has a more
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complicated shape since the potentially singular solution produces a strong shearing
flow traveling downstream. Thus, we need to introduce a moving frame and design
our adaptive mesh map r(ρ) and z(η) to resolve the solution in different regions. Our
adaptive mesh strategy does not require that the solution has a bell-shaped structure
in the most singular region. To construct r(ρ), we use the distance dr between the
location at which u1 achieves its maximum and the location at which u1r achieves its
maximum to define the boundary ri for different singular regions (phases). Similarly,
we construct z(η)byusing the distancedz between the location atwhichω1 achieves its
maximum and the location at which ω1z achieves its maximum to define the boundary
z j for different phases.

A.1. The Adaptive (Moving) Mesh Algorithm

To effectively and accurately compute the potential blow-up, we have designed a
special meshing strategy that is dynamically adaptive to the singular structure of the
solution. The adaptive mesh covering the half-period computational domain D1 =
{(r , z) : 0 ≤ r ≤ 1, 0 ≤ z ≤ 1/2} is characterized by a pair of analytic mesh mapping
functions

r = r(ρ), ρ ∈ [0, 1]; z = z(η), η ∈ [0, 1].

These mesh mapping functions are both monotonically increasing and infinitely dif-
ferentiable on [0, 1], and satisfy r(0) = 0, r(1) = 1, z(0) = 0, z(1) = 1/2. In
particular, we construct these mapping functions by carefully designing their Jaco-
bians/densities rρ = r ′(ρ), zη = z′(η) using analytic functions that are even
functions at 0. The even symmetries ensure that the resulting mesh can be smoothly
extended to the full-period cylinder {(r , z) : 0 ≤ r ≤ 1,−1/2 ≤ z ≤ 1/2}. The den-
sity functions contain a small number of parameters, which are dynamically adjusted
to the solution. Once the mesh mapping functions are constructed, the computational
domain is covered with a tensor-product mesh:

G= {(ri , z j ) : 0 ≤ i ≤ n2, 0 ≤ j ≤ n1}, (A.1)

where rhi = r(ihρ), hρ = 1/n2; zhj = z( jhη), hη = 1/n1. The precise definition
and construction of the mesh mapping functions are described in Appendix B of [20].

Figure30 gives an example of the densities rρ, zη (in log scale) we use in the
computation. We design the densities rρ, zη to have three phases:

• Phase 1 covers the inner profile of the smaller scale near the sharp front;
• Phase 2 covers the outer profile of the larger scale of the solution;
• Phase 3 covers the (far-field) solution away from the symmetry axis r = 0.

We add a phase 0 in the density rρ to cover the region near r = 0 and also add a phase 0
in the density zη to cover the region near z = 0 in the late stage. In our computation, the
number (percentage) of mesh points in each phase are fixed, but the physical location
of each phasewill change in time, dynamically adaptive to the structure of the solution.

123



Foundations of Computational Mathematics

Fig. 30 The mapping densities rρ (left) and zη (right) with phase numbers labeled. This figure is for
illustration only. The parameters do not reflect the adaptive mesh used in our computation

Between every two neighboring phases, there is also a smooth transition region that
occupies a fixed percentage of mesh points.

A.2. Adaptive Mesh for the 3D Euler Equations

Weuse three different adaptivemesh strategies for three different timeperiods. Thefirst
time period corresponds to the time interval between t = 0 and t1 = 0.002231338with
‖ω(t1)‖L∞/‖ω(0)‖L∞ ≈ 46.54325 for the 1536× 1536 grid and the number of time
steps equal to 45000. The second time period corresponds to the time interval between
t1 = 0.002231338 and t2 = 0.002264353 with ‖ω(t2)‖L∞/‖ω(0)‖L∞ ≈ 295.39986
for the 1536× 1536 grid and the number of time steps equal to 60000. The third time
period is for t ≥ t2.

In the first time period, since we use a very smooth initial condition whose sup-
port covers the whole domain, we use the following parameters r1 = 0.001, r2 =
0.05, r3 = 0.2 and sρ1 = 0.001, sρ2 = 0.5, sρ3 = 0.85 to construct the map-
ping r = r(ρ) using a four-phase map. Similarly, we use the following parameters
z1 = 0.1, z2 = 0.25 and sη1 = 0.5, sη2 = 0.85 to construct the mapping z = z(η)

using a three-phase map. We then update the mesh z = z(η) dynamically using
z1 = 2z(I ) and z2 = 10z(I ) with sη1 = 0.6, sη2 = 0.9 when I < 0.25n1, but keep
r = r(ρ) unchanged during this early stage. Here I is the grid point index along the
z-direction at which ω1 achieves its maximum.

In the second time period, we use the following parameters sρ1 = 0.05, sρ2 =
0.6, sρ3 = 0.9, r2 = r(J ) + 2dr , r1 = max((sρ1/sρ2)r2, r(Jr ) − 5dr), and r3 =
max(3r(J ), (r2 − r1)(sρ3 − sρ2)/(sρ2 − sρ1) + r2), where J is the grid index at which
u1 achieves its maximum along the r -direction, Jr is the grid index at which u1,r
achieves its maximum along the r -direction, and dr = r(J ) − r(Jr ). We update the
mapping r(ρ) dynamically when Jr < 0.2n2. The adaptive mesh map for z(η) in the
second time period remains the same as in the first time period.

In the third time period, we need to allocate more grid points to resolve the sharp
front.We use the following parameters sρ1 = 0.05, sρ2 = 0.65, sρ3 = 0.9, r2 = r(J )+
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10dr , r1 = max((sρ1/sρ2)r2, r(Jr ) − 3dr), and r3 = max(2.3r(J ), (r2 − r1)(sρ3 −
sρ2)/(sρ2 −sρ1)+r2). To construct themeshmap z(η, we use the following parameters
sη1 = 0.05, sη2 = 0.65, sη3 = 0.9, z2 = z(Iw)+2dz, z1 = max((sη1/sη2)z2, z(Iwz)−
16dz), and z3 = max(2.3z(Iw), (z2 − z1)(sη3 − sη2)/(sη2 − sη1)+ z2), where Iw is the
grid index atwhichω1 achieves itsmaximumalong the z-direction, Iwz is the grid index
at which ω1,z achieves its maximum along the z-direction, and dz = z(Iw) − r(Iwz).
Wewill update r(ρ) dynamicallywhen Jr < 0.2n2 and update z(η)when Iz < 0.23n1.

The three time periods for different grids will be defined similarly through the
number of time steps by using a linear scaling relationship. For example, for the
1024 × 1024 grid, the first time period will be between t = 0 and the time step
30000 = 45000 · (1024/1536). The second time period will be between time steps
30000 and 40000 = 60000 · (1024/1536). The third time period will be beyond time
step 40000. The three time periods for other grids are defined similarly.

Aswementioned in the Introduction, we use a second-order Runge-Kuttamethod to
discretize theEuler andNavier–Stokes equations in timewith an adaptive time stepping
strategy. We discretize the Euler and Navier–Stokes equations in the transformed
domain (η, ρ) using a uniform mesh with h1 = 1/n1 and h2 = 1/n2. We choose our
adaptive time step as follows:

k = min(k1, k2), k1 = min( 0.2min(h1, h2)/umax, 10−3‖u1‖−1
L∞ , 2.5 · 10−7),

k2 = 0.1min(min(h1zη)
2/ν,min(h2rρ)2/ν),

where umax = max(‖ur/rρ‖L∞ , ‖uz/zη‖L∞) is the maximum velocity in the trans-
formed domain.
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