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A MODIFIED PARTICLE METHOD FOR SEMILINEAR
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Abstract. We introduce a modified particle method for semi-linear hyperbolic systems with
highly oscillatory solutions. The main feature of this modified particle method is that we do not
require different families of characteristics to meet at one point. In the modified particle method,
we update the ith component of the solution along its own characteristics, and interpolate the other
components of the solution from their own characteristic points to the ith characteristic point. We
prove the convergence of the modified particle method essentially independent of the small scale for
the variable coefficient Carleman model. The same result also applies to the non-resonant Broadwell
model. Numerical evidence suggests that the modified particle method also converges essentially
independent of the small scale for the original Broadwell model if a cubic spline interpolation is used.
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1. Introduction. Particle methods have been demonstrated to be effective in
approximating oscillatory solutions of semi-linear hyperbolic differential equations. In
[5, 6, 7, 4], it was showed that by using a sampling technique and a particle method
approximation, it is possible to capture the large scale components of the solution
for a class of hyperbolic equations without resolving the small scale quantities on the
computational grid. In the particle method studied in [6], the computational grid is
formed by the intersection of different families of characteristic lines. The solution is
updated along its own characteristic line. Since the other components of the solution
are available at the same grid point, there is no need to use interpolation from one
family of characteristics to another. This is important because interpolation may
introduce large dissipative or dispersive errors which can damage the high frequency
components of the solution. Because the particle method treats advection accurately
and does not introduce dissipative or dispersive errors, it is an excellent method
for computing multiscale solutions of partial differential equations. The sampling
technique is used to avoid certain resonance between the coarse grid and the period
of the small scale solution. By avoiding the resonant sampling of a coarse grid, one
can approximate the correct mean and high order moments of the solution using only
a coarse grid. On the other hand, forming the computational grid by the intersection
of characteristic lines is a severe limitation of the method. When more than two
equations are considered, the characteristics may never meet at one point. Special
consideration is required in choosing the computational grid.

In this paper, we propose a modified particle method that overcomes the diffi-
culty in choosing a computational grid. Our modified particle method retains most
of the advantages in the original particle method and can be applied to hyperbolic
systems with any number of families of characteristics. The modified method consists
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of the following steps: 1) compute the characteristics corresponding to each com-
ponent ui of an n-dimensional semilinear hyperbolic system, 2) update each scalar
component ui (i = 1, . . . , n) along its own characteristics, 3) interpolate to obtain all
other components uj (j 6= i) of the solution to the ui-characteristics, then return to
Step 1 and continue. In order to avoid excessive numerical dissipation or dispersion,
the interpolation scheme must be chosen carefully and the choice of an interpolation
scheme depends on the semi-hyperbolic system being considered. In general, a high
order interpolation scheme, such as a cubic spline interpolation or a spectral interpo-
lation method, gives a better result than a lower order interpolation method. But for
problems which do not have resonant interaction among high frequency components,
such as the Carleman model, we found that lower order interpolation methods work
equally well. This can be explained by our error analysis.

We apply our modified particle method to the variable coefficient Carleman model
and the Broadwell model. We implement the modified particle method on a coarse
grid without requiring that different families of characteristics intersect at the same
point. Our numerical results indicate that the modified particle method preserves the
main features (mean and variation of oscillations) of oscillatory solutions of Carleman
and Broadwell models. In the case of the Carleman model with variable coefficients,
we prove rigorously the convergence of the modified particle method essentially inde-
pendent of the small scale. The proof relies on the homogenization theory developed
for this model. As is the case for the original particle method, we need to take into
account the cancellation of local truncation errors in time along the characteristics.
Similar analysis applies to the non-resonant Broadwell model (see (6) with α being
an irrational number). The convergence analysis for the original Broadwell model (4)
is more subtle due to the resonant interaction among the three components of the
solution. We have not yet obtained a convergence proof for this case. Nonetheless,
our numerical results seem to indicate that the modified particle method applied to
the original Broadwell model converges essentially independent of the small scale if
a cubic spline or spectral interpolation is used. We plan to generalize the modified
particle method to more complicated and more realistic hyperbolic systems in the
future.

The paper is organized as follows. In Section 2 we introduce the Carleman and
Broadwell models. Section 3 describes the modified particle method for the variable
coefficient Carleman model. In Section 4 we study the convergence of the modified
particle method proposed in Section 3. In Section 5 we present the numerical results
of the modified particle method applied to both Carleman and Broadwell models.
Some technical results are included in the Appendix.

2. Carleman and Broadwell models.

The Carleman model. The Carleman model is the simplest model of the dis-
crete Boltzmann equations. It describes a one-dimensional gas whose molecules can
only have two distinct velocities that change under collision [3]. The variables u(x, t),
v(x, t) represent the number densities of molecules at point x and time t with veloc-
ities +1 and −1, respectively. Based on mass conservation, the Carleman model is
described by the following semi-linear hyperbolic system:

∂u

∂t
+

∂u

∂x
+ u2 − v2 = 0, (1a)

∂v

∂t
− ∂v

∂x
− u2 + v2 = 0. (1b)



A MODIFIED PARTICLE METHOD FOR HYPERBOLIC SYSTEMS 575

The model can be extended to include variable coefficients by replacing the constant
velocities +1 and −1 with smooth functions a(x, t) and −b(x, t), respectively, satisfy-
ing

0 < amin ≤ a(x, t) ≤ amax < ∞, 0 < bmin ≤ b(x, t) ≤ bmax < ∞.

The variable velocity Carleman model reads:

∂u

∂t
+ a(x, t)

∂u

∂x
+ u2 − v2 = 0, (2a)

∂v

∂t
− b(x, t)

∂v

∂x
− u2 + v2 = 0. (2b)

We consider initial data of multiple scale type:

u(x, 0) = u0

(
x,

x

ǫ

)
, v(x, 0) = v0

(
x,

x

ǫ

)
, (3)

where u0(x, y) and v0(x, y) are assumed to be 1−periodic in y.
The high frequency components in the solution of Carleman equations (1),(3) or

(2), (3), interact through the nonlinear terms and create low frequency components
that affect the averaged solutions. The homogenization of the Carleman system has
been studied in [12] and [6].

The Broadwell model. The 1D Broadwell model is given by the following
semi-linear hyperbolic system:

∂u

∂t
+

∂u

∂x
+ uv − w2 = 0, (4a)

∂v

∂t
− ∂v

∂x
+ uv − w2 = 0, (4b)

∂w

∂t
− uv + w2 = 0. (4c)

The set of equations (4) represents a reduced version of the full Broadwell system
(see [2]) that describes a three-dimensional model of a rarefied gas in which particles
travel in either direction along a coordinate axis. In (4), u(x, t), v(x, t) and w(x, t)
represent the number density of particles with velocity (1, 0, 0), (−1, 0, 0) and (0, 1, 0),
respectively. To obtain (4) from the full Broadwell system one needs to assume that
the number densities of particles moving in either direction are independent of y, z.
Moreover, we assume that the number densities of particles moving in the negative y
direction or in either z direction are equal to w.

We consider oscillatory initial data:

u(x, 0) = u0

(
x,

x

ǫ

)
, v(x, 0) = v0

(
x,

x

ǫ

)
, w(x, 0) = w0

(
x,

x

ǫ

)
, (5)

where u0(x, y), v0(x, y) and w0(x, y) are 1−periodic in y.
The nonlinear interaction between the various components of the system (4) is

very intricate [8, 11]. The high frequency components of u and v interact and create
order O(1) oscillations on w even in the limit ǫ → 0. The w2 term will then generate
low frequency contribution to u and v, thus affecting the average of the solution (see
the homogenized equations (7)).

In [8], the authors introduce an additional convection term in the last equation
(4c) of the Broadwell model in order to study how oscillatory solutions depend on
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velocity coefficients. The modified system is referred to as the generalized Broadwell
model and it reads

∂u

∂t
+

∂u

∂x
+ uv − w2 = 0, (6a)

∂v

∂t
− ∂v

∂x
+ uv − w2 = 0, (6b)

∂w

∂t
+ α

∂w

∂x
− uv + w2 = 0. (6c)

The behavior of the solutions uǫ, vǫ and wǫ of (6) as ǫ → 0 is very sensitive to the
coefficient α. Two different sets of effective equations are obtained depending on
whether α is a rational or an irrational number. They are given below.

Case I: α = m/n (m and n mutually prime); the homogenized equations for (6)
are

∂U

∂t
+

∂U

∂x
+ U

∫ 1

0

V dy −
∫ 1

0

W 2dy = 0, (7a)

∂V

∂t
− ∂V

∂x
+ V

∫ 1

0

Udy −
∫ 1

0

W 2dy = 0, (7b)

∂W

∂t
+ α

∂W

∂x
+ W 2

− 1

n

∫ n

0

U
(
x, y +

(m

n
− 1

)
z, t

)
V

(
x, y +

(m

n
+ 1

)
z, t

)
dz = 0. (7c)

If m = 0, then n = 1 in (7c).

Case II: α is an irrational number; the homogenized equations for (6) are

∂U

∂t
+

∂U

∂x
+ U

∫ 1

0

V dy −
∫ 1

0

W 2dy = 0, (8a)

∂V

∂t
− ∂V

∂x
+ V

∫ 1

0

Udy −
∫ 1

0

W 2dy = 0, (8b)

∂W

∂t
+ α

∂W

∂x
+ W 2 −

(∫ 1

0

U(x, y, t)dy

) (∫ 1

0

V (x, y, t)dy

)
= 0. (8c)

The following homogenization theorem is stated and proved in [8]:

Theorem 2.1. For smooth and bounded non-negative initial data, the solutions
of (6) and (5) converge to those of the corresponding homogenized equations strongly
in L∞-norm,

uǫ(x, t) − U

(
x,

x − t

ǫ
, t

)
→ 0 as ǫ → 0, (9a)

vǫ(x, t) − V

(
x,

x + t

ǫ
, t

)
→ 0 as ǫ → 0, (9b)

wǫ(x, t) − W

(
x,

x − αt

ǫ
, t

)
→ 0 as ǫ → 0 for 0 ≤ t ≤ T. (9c)

Moreover,
∣∣∣∣uǫ(x, t) − U

(
x,

x − t

ǫ
, t

)∣∣∣∣ ≤ Cǫ, for all x, t,
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t0t1
t2

xi�1 xi xi+1
Fig. 1. The grid used for the modified Lagrangian method

where the constant C is independent of ǫ. Similar inequalities hold for vǫ, V and
wǫ, W .

3. A modified particle method. In this section we consider a modified particle
method for semi-linear hyperbolic systems. The method in principle works for any
number of families of characteristics and in any dimension.

The modified particle method. A diagram representing the computational
grid for a 2 × 2 system is presented in Figure 1. We will make use of this schematic
diagram to describe the method for the variable coefficient Carleman model (2) with
initial data (3).

For the Carleman system (2), the particle paths moving to the right in Figure 1
correspond to the u-characteristics and the ones moving to the left correspond to the
v-characteristics.

The numerical scheme is initialized at t = 0 by

u0
i = u0

(
xi,

xi

ǫ

)
, v0

i = v0

(
xi,

xi

ǫ

)
.

Here, xi = i∆x with i ∈ Z are equally spaced gridpoints, ∆x is the mesh size. They
represent the Lagrangian coordinates (labels on the particles). To update the solution
we use a fixed timestep ∆t and a sequence of discrete times tn = n∆t.

Approximate characteristics. At each timestep in our modified particle method,
we solve numerically the characteristic equations corresponding to each component of
(2):

dΦ(s; t, x)

ds
= a(Φ(s; t, x), s), Φ(t; t, x) = x, (10)

and

dΨ(s; t, x)

ds
= −b(Ψ(s; t, x), s), Ψ(t; t, x) = x. (11)

Here, Φ(s; t, x) represents the location of a particle at time s occupying the position
x at time t.
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Let x̃n
i,u and x̃n

i,v denote the approximations of Φ(tn; 0, xi) and Ψ(tn; 0, xi), respec-
tively. In the numerical scheme we use an explicit forward Euler method to compute
the numerical characteristics:

x̃n+1
i,u = x̃n

i,u + ∆t a(x̃n
i,u, tn), (12a)

x̃n+1
i,v = x̃n

i,v − ∆t b(x̃n
i,v, tn). (12b)

In Figure 1 we represent schematically the points x̃n
i,u and x̃n

i,v (for n = 1, 2) with filled
ellipses and filled rectangles, respectively. We use a particle method to update the
initial values u0

i , v0
i along the numerical u, v characteristics, respectively. To update

from t = t0 to t = t1, we compute

ũ1
i = u0

i + ∆t
(
(v0

i )2 − (u0
i )

2
)
, (13a)

ṽ1
i = v0

i + ∆t
(
(u0

i )
2 − (v0

i )2
)
. (13b)

The values ũ1
i are evaluated at x̃1

i,u (the filled ellipses) and the values ṽ1
i are evaluated

at x̃1
i,v (the filled rectangles).

Interpolation. Consider an interpolation operator Ĩn : l∞ → l∞. The operator
Ĩn takes the components of a sequence in l∞ (considered to be a discrete function
evaluated at the points x̃n

i,v, i ∈ Z) and returns their interpolated values at x̃n
i,u, i ∈ Z.

We can also consider the interpolation operator that takes an l∞ sequence re-
garded as a discrete function evaluated at x̃n

i,u, i ∈ Z, and returns the interpolated

values at x̃n
i,v, i ∈ Z. We use the same symbol Ĩn for the two interpolation operators,

hoping that it is clear from the context which one we refer to.
The modified particle algorithm is given by (12) and

ũn+1
i = ũn

i + ∆t
(
Ĩn(ṽn)2i − (ũn

i )2
)

, (14a)

ṽn+1
i = ṽn

i + ∆t
(
Ĩn(ũn)2i − (ṽn

i )2
)

, (14b)

where ũn
i , ṽn

i denote the numerical solution evaluated at x̃n
i,u, x̃n

i,v, respectively. We
denote by ũn, ṽn the l∞ sequences with components ũn

i , ṽn
i , respectively, and by

Ĩn(ũn)2i and Ĩn(ṽn)2i, i ∈ Z, the i-th components of the sequences Ĩn(ũn)2 and

Ĩn(ṽn)2, respectively.
In summary, the modified particle method consists of the following steps: 1)

compute the numerical characteristics, 2) update the ith (i = 1, ..., n) component of
the solution along its own numerical characteristics, 3) interpolate other components
of the solution from their own characteristic points to the ith characteristic points
and return to Step 1 for the next timestep.

Interpolation operator. In our numerical tests we use several interpolation
procedures: linear, cubic spline, and convolution with a discrete delta function. It
is clear that all these interpolation operators are linear. In the convergence proof to
be presented in Section 4, we consider the case when the interpolation is done by a
convolution with a discrete delta function.

Let θσ(x) be a smooth mollifier of the delta function δ(x) defined as follows:

θσ(x) =
1

σ
θ
(x

σ

)
with σ = ∆xβ , 0 < β < 1, (15)
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where ∆x is the grid size of the initial Lagrangian particle positions, and θ is a C1

shape function with compact support normalized such that
∫

θ(x)dx = 1. An example
of such shape function is the “cosine function”

θ(x) =

{
1
2 (1 + cos(πx)) |x| < 1
0 |x| ≥ 1.

(16)

We consider for instance the interpolated sequence Ĩn(ṽn)2. Using the discrete con-

volution interpolation, we approximate the i-th component of the sequence Ĩn(ṽn)2

by

Ĩn(ṽn)
2
i = ∆x

∑

j

θσ(x̃n
i,u − x̃n

j,v)(ṽn
j )2

∂Ψ

∂x
(tn; 0, xj). (17)

The values ∂Ψ
∂x (tn; 0, xj) are computed numerically, by discretizing:

d

dt

(
∂Ψ

∂x

)
= − ∂b

∂x

∂Ψ

∂x
,

∂Ψ

∂x

∣∣∣∣
t=0

= 1. (18)

The value in (17) is an approximation of

∫

R

θσ(Φ(tn; 0, xi) − Ψ(tn; 0, y))v2(Ψ(tn; 0, y), tn)
∂Ψ

∂y
(tn; 0, y)dy

=

∫

R

θσ((Φ(tn; 0, xi) − z)v2(z, tn)dz,

which, in turn, approximates
∫

R

δ((Φ(tn; 0, xi) − z)v2(z, tn)dz = v2((Φ(tn; 0, xi), tn).

The approximation of Ĩn(ũn)2 is defined similarly.
In [1, Section 4], the authors present several discrete approximations of the delta

function and discuss the order of the approximation error in using the corresponding
discrete convolutions as interpolation. Their study, however, considers only interpo-
lation of discrete values f(xj) evaluated at the equally spaced grid points xj = j∆x,
j ∈ Z.

In the Appendix, we present a convergence analysis of the approximation error
from the interpolation using a discrete convolution (17).

4. Convergence of the modified particle method. In this section we will
prove the convergence of the modified particle scheme (12), (14) in the case when the
interpolation is done by using discrete convolutions, as discussed in Section 3.

The following concept of convergence was introduced by Engquist in [5]:

Definition. Let un represent the numerical approximation to u at time tn
(tn = n∆t, n = 1, 2, . . . ). The approximation un converges to u as ∆t → 0 essentially
independent of ǫ if for any δ > 0, T > 0 there exists a set s(ǫ, ∆t0) ⊂ (0, ∆t0) with
measure(s(ǫ, ∆t0))≥ (1 − δ)∆t0 such that

||u(·, tn) − un|| ≤ δ, 0 < tn ≤ T,

for all ∆t ∈ s(ǫ, ∆t0) and where ∆t0 is independent of ǫ.
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Remark. For the particle method investigated in [6], the set s(ǫ, ∆t0) excludes
timesteps ∆t for which ∆t/ǫ equals some rational numbers (see formula (21)).

The convergence proof presented in this section relies on the homogenization
result available for the Cauchy problem (2)-(3) (see [6]). We will state it without
proof:

Theorem 4.1. The solution to (2) and (3) converges uniformly to that of the
homogenized equations (19) and (20):

uǫ(x, t) − U

(
x,

Φ(0; t, x)

ǫ
, t

)
→ 0 as ǫ → 0,

vǫ(x, t) − V

(
x,

Ψ(0; t, x)

ǫ
, t

)
→ 0 as ǫ → 0, for 0 ≤ t ≤ T,

where Φ(s; t, x), Ψ(s; t, x) are the characteristic maps defined by (10)-(11), and
U(x, y, t), V (x, y, t) are the solutions of the homogenized equations (19) and (20):

∂U

∂t
+ a(x, t)

∂U

∂x
+ U2 −

∫ 1

0

V 2 dy = 0, (19a)

∂V

∂t
− b(x, t)

∂V

∂x
+ V 2 −

∫ 1

0

U2 dy = 0, (19b)

U(x, y, 0) = u0(x, y), V (x, y, 0) = v0(x, y). (20)

Let us state the following lemmas:

Lemma 4.1. The Cauchy problem (2)-(3) has bounded solutions in C3. Moreover,
if 0 ≤ u0, v0 ≤ M < ∞, then 0 ≤ u(x, t), v(x, t) ≤ M for t > 0.

Lemma 4.2. Let f(x), g(x, y) be C1 functions. Assume further that g(x, y) is 1-

periodic in y and satisfies
∫ 1

0 g(x, y)dy = 0. Then, for any ǫ > 0 and for any constants
a and b, there exists a constant C independent of ǫ such that

∣∣∣∣∣

∫ b

a

f(x)g
(
x,

x

ǫ

)
dx

∣∣∣∣∣ ≤ Cǫ.

Lemma 4.3. Let f(x) and g(x, y) be smooth functions with bounded derivatives.

Assume further that g(x, y) is 1-periodic in y and satisfies
∫ 1

0 g(x, y)dy = 0. Then,
for xk = k∆x, 0 ≤ m < n ≤ T/∆x, we have

∣∣∣∣∣∆x
n∑

k=m

f(xk)g
(
xk,

xk

ǫ

)∣∣∣∣∣ → 0 as ∆x → 0,

essentially independent of ǫ.

Lemmas 4.1, 4.2 and 4.3 are stated in [6]. Lemma 4.1 can be proved by following
the proof of [9, Theorem 1]. Lemmas 4.2 and 4.3 are proved in [6].
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Remark. In [4], the authors explicitly state the set s(ǫ, ∆x0) corresponding to
the essentially independent of ǫ convergence from Lemma 4.3. This set is given by

s(ǫ, ∆x0) =

{
0 < ∆x ≤ ∆x0; (k∆x/ǫ) /∈

(
i − τ

|k|3/2
, i +

τ

|k|3/2

)}
, (21)

with i ∈ Z and 0 6= k ∈ Z. If ∆x ∈ s(ǫ, ∆x0), the following estimate is proved in [4]:
∣∣∣∣∣∆x

n∑

k=m

f(xk)g
(
xk,

xk

ǫ

)∣∣∣∣∣ ≤ C
∆x

τ
, (22)

where C is independent of ∆x and ǫ.

The next lemma is stated and proved by Engquist in [5]. It is an essential tool to
prove convergence of the modified particle scheme (14).

Lemma 4.4. Let En, Rm,n ∈ l∞ with the properties:

En+1 = (P + ∆tAn)En + Rn,n+1, n = 0, 1, . . . ,

E0 = 0,

where the operators P and An satisfy

||P || = 1, ||An|| ≤ C,

Rn,n+1 + PRm,n = Rm,n+1, 0 ≤ m < n.

Then, ||En|| ≤ exp(Ctn)max 0≤m<k≤n||Rm,k||.
Step 1. We suppose first that the particle paths (the characteristic maps)

Φ(s; t, x), Ψ(s; t, x) can be solved exactly from (10)-(11). We denote

xn
i,u = Φ(tn; 0, xi), xn

i,v = Ψ(tn; 0, xi). (23)

Hence, there is no error in generating the grid corresponding to the modified particle
algorithm (14).

We denote by un
i , vn

i the solution of the modified particle algorithm when the
characteristics are known analytically. The algorithm for solving un

i , vn
i is given by

un+1
i = un

i + ∆t
(
In(vn)2i − (un

i )2
)
, (24a)

vn+1
i = vn

i + ∆t
(
In(un)2i − (vn

i )2
)
. (24b)

In (24a), the interpolation operator In : l∞ → l∞ takes the components of a sequence
in l∞ (regarded as a discrete function evaluated at the points xn

i,v = Ψ(tn; 0, xi), i ∈ Z)
and returns their interpolated values at xn

i,u = Φ(tn; 0, xi), i ∈ Z. A similar statement,
with the roles of u and v interchanged, can be made about the interpolation operator
used in (24b). For convenience, we use the same notation In for the two operators.

Lemma 4.5. Let un
i , vn

i be the solution of the modified particle algorithm (24)
with initial values given by

u0
i = u0

(
xi,

xi

ǫ

)
, v0

i = v0

(
xi,

xi

ǫ

)
. (25)

If the initial data are bounded and the mollifier function θσ in the discrete convolution
is non-negative, then there exists a constant M such that for ∆t ≤ 1/(2M), we have
0 ≤ un

i , vn
i ≤ M for n = 1, 2, . . . .
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The proof of Lemma 4.5 will be deferred to the Appendix.

Theorem 4.2. Assume that the grid points xn
i,u and xn

i,v have been solved exactly.
Then, the solution un

i , vn
i of the modified particle algorithm (24) with initial values

given by (25) converges in the maximum norm to the solution u, v of the Cauchy
problem (2)-(3) as ∆x, ∆t → 0, essentially independent of ǫ.

Proof. We will prove the theorem in the case when the interpolation is done by
means of discrete convolutions.

Integrating (2) along the characteristics gives

u(xn+1
i,u , tn+1) = u(xn

i,u, tn) +

∫ tn+1

tn

[
v2(Φ(s; 0, xi), s) − u2(Φ(s; 0, xi), s)

]
ds, (26a)

v(xn+1
i,v , tn+1) = v(xn

i,v , tn) +

∫ tn+1

tn

[
u2(Ψ(s; 0, xi), s) − v2(Ψ(s; 0, xi), s)

]
ds. (26b)

Further we denote by en and fn the errors in the approximation of u and v along
their respective characteristics:

en
i = u(xn

i,u, tn) − un
i , fn

i = v(xn
i,v , tn) − vn

i .

We denote by v(xn
·,v, tn), u(xn

·,u, tn) ∈ l∞ the sequences whose i-th components are
v(xn

i,v , tn), u(xn
i,u, tn), i ∈ Z, respectively.

Subtracting (24a) from (26a) we obtain

en+1
i = en

i + ∆t
[
Inv2(xn

·,v, tn)
i
− In(vn)2i

]
− ∆t

[
u2(xn

i,u, tn) − (un
i )

2
]

+

∫ tn+1

tn

v2(Φ(s; 0, xi), s)ds − ∆tInv2(xn
·,v, tn)

i

−
[∫ tn+1

tn

u2(Φ(s; 0, xi), s)ds − ∆tu2(xn
i,u, tn)

]
. (27)

Similarly, subtracting (24b) from (26b) we get

fn+1
i = fn

i + ∆t
[
Inu2(xn

·,u, tn)
i
− In (un)

2
i

]
− ∆t

[
v2(xn

i,v , tn) − (vn
i )

2
]

+

∫ tn+1

tn

u2(Ψ(s; 0, xi), s)ds − ∆tInu2(xn
·,u, tn)

i

−
[∫ tn+1

tn

v2(Ψ(s; 0, xi), s)ds − ∆tv2(xn
i,v, tn)

]
. (28)

By using the linearity of the interpolation operator and the boundedness properties
given by Lemmas 4.1 and 4.5, equations (27) and (28) can be written as:

en+1
i = en

i − ∆tαn
i en

i + ∆tIn(βnfn)i + Jn,n+1
+,i (v2) − In,n+1

+,i (u2), (29)

fn+1
i = fn

i − ∆tα̃n
i fn

i + ∆tIn(β̃nen)i + Jn,n+1
−,i (u2) − In,n+1

−,i (v2), (30)
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respectively. Here,

Jm,n
+,i (w) =

∫ tn

tm

w(Φ(s; 0, xi), s)ds − ∆t

n−1∑

k=m

Ikw(xk
·,v, tk)

i
, (31)

Im,n
+,i (w) =

∫ tn

tm

w(Φ(s; 0, xi), s)ds − ∆t

n−1∑

k=m

w(xk
i,u, tk), (32)

Jm,n
−,i (w) =

∫ tn

tm

w(Ψ(s; 0, xi), s)ds − ∆t

n−1∑

k=m

Ikw(xk
·,u, tk)

i
, (33)

Im,n
−,i (w) =

∫ tn

tm

w(Ψ(s; 0, xi), s)ds − ∆t

n−1∑

k=m

w(xk
i,v , tk), (34)

and 0 ≤ αn
i , βn

i , α̃n
i , β̃n

i ≤ 2M , i ∈ Z.
Define:

En = (. . . , en
i , fn

i , . . . ), (35)

AnEn = (. . . ,−αn
i en

i + In(βnfn)i,−α̃n
i fn

i + In(β̃nen)i, . . . ), (36)

Rm,n = (. . . , Jm,n
+,i (v2) − Im,n

+,i (u2), Jm,n
−,i (u2) − Im,n

−,i (v2), . . . ). (37)

Note that the operator An is bounded as a map from l∞ to l∞. This is a consequence
of the boundedness of the interpolation operator and the boundedness of the sequences
αn, βn, α̃n and β̃n. Moreover, Rm,n satisfy

Rn,n+1 + Rm,n = Rm,n+1, 0 ≤ m < n.

Let P = Id and define En, An, Rm,n by (35)-(37). By applying Lemma 4.4 to P , En,
An, Rm,n defined above, we prove convergence of the modified particle method if we
can show ||Rm,k|| → 0 as ∆x, ∆t → 0 essentially independent of ǫ.

There are two generic terms in (37), i.e. Jm,n
+,i (v2) − Im,n

+,i (u2) and Jm,n
−,i (u2) −

Im,n
−,i (v2). We will analyze only the first term. The analysis for the second term is

completely analogous.
Observe that

∣∣∣∣
d

ds
u2(Φ(s; 0, xi))

∣∣∣∣ = 2
∣∣uv2 − u3

∣∣ ≤ 4M3.

A classical error estimate [10] gives:

|Im,n
+,i (u2)| ≤ C∆t → 0 as ∆t → 0.

For the term Jm,n
+,i (v2), we consider two cases. In both cases we take ∆t ∼ O(∆x).

Case 1. ǫ > ∆xβ/2, where 0 < β < 1 is defined in (15).

We write:

Jm,n
+,i (v2) =

∫ tn

tm

v2(Φ(s; 0, xi), s)ds − ∆t

n−1∑

k=m

v2(xk
i,u, tk)

+ ∆t

n−1∑

k=m

v2(xk
i,u, tk) − ∆t

n−1∑

k=m

Ikv2(xk
·,v, tk)

i
. (38)
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We have:
∣∣∣∣∣

∫ tn

tm

v2(Φ(s; 0, xi), s)ds − ∆t

n−1∑

k=m

v2(xk
i,u, tk)

∣∣∣∣∣ ≤ C∆t max0≤s≤T

∣∣∣∣
d

ds
v2(Φ(s; 0, xi), s)

∣∣∣∣

≤ C̃
∆x

ǫ
< C̃∆x1−β/2. (39)

On the other hand, the interpolation error estimate (71) from the Appendix gives:

∣∣∣v2(xk
i,u, tk) − Ikv2(xk

·,v, tk)
i

∣∣∣ ≤ C1
∆x

σ
+ C2

σ

ǫ
,

where C1 and C2 are constants. Recall that σ = ∆xβ from (15). We have

∣∣∣∣∣∆t

n−1∑

k=m

[
v2(xk

i,u, tk) − Ikv2(xk
·,v, tk)

i

]∣∣∣∣∣ ≤ C1

(
∆x1−β

)
+ C2

(
∆xβ/2

)
. (40)

Now, (38)-(40) prove the desired result in Case 1.

Case 2. ǫ ≤ ∆xβ/2.

By Theorem 4.1 we can replace v(x, t) by V (x, Ψ(0; t, x)/ǫ, t). We split V 2(x, y, t)
into a mean and a fluctuation part as follows:

V 2(x, y, t) =

(∫ 1

0

V 2(x, y, t) dy

)
+ Ṽ 2(x, y, t).

It suffices to study Jm,n
+,i (Ṽ 2). Using the formula for the discrete convolution interpo-

lation (see (17)), we have

Jm,n
+,i (Ṽ 2) =

∫ tn

tm

Ṽ 2

(
Φ(s; 0, xi),

Ψ(0; s, Φ(s; 0, xi))

ǫ
, s

)
ds (41)

−∆t

n−1∑

k=m

∆x
∑

j

θσ(Φ(tk; 0, xi) − Ψ(tk; 0, xj))Ṽ 2
(
Ψ(tk; 0, xj),

xj

ǫ
, tk

) ∂Ψ

∂x
(tk; 0, xj),

where we have used Ψ(0; tk, Ψ(tk; 0, xj)) = xj .
For a fixed xi, define

h(s) = Ψ(0; s, Φ(s; 0, xi)), (42)

g(s, y) = Ṽ 2(Φ(s; 0, xi), y, s). (43)

The first term in the right hand side (RHS) of (41) becomes:

∫ tn

tm

g

(
s,

h(s)

ǫ

)
ds.

By changing the variable h(s) = t (note that h(s) is strictly increasing and hence, it
has an inverse h−1(s)), we have

∫ tn

tm

g

(
s,

h(s)

ǫ

)
ds =

∫ h(tn)

h(tm)

dh−1(t)

dt
g

(
h−1(t),

t

ǫ

)
dt.
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Now we apply Lemma 4.2 to obtain:

∣∣∣∣
∫ tn

tm

Ṽ 2

(
Φ(s; 0, xi),

Ψ(0; s, Φ(s; 0, xi))

ǫ
, s

)
ds

∣∣∣∣ ≤ Cǫ ≤ C∆xβ/2. (44)

It remains to investigate the sum:

∆t

n−1∑

k=m

∆x
∑

j

θσ(Φ(tk; 0, xi) − Ψ(tk; 0, xj))Ṽ 2
(
Ψ(tk; 0, xj),

xj

ǫ
, tk

) ∂Ψ

∂x
(tk; 0, xj).

(45)

Due to the finite support of the function θσ, the index j in (45) satisfies

|Φ(tk; 0, xi) − Ψ(tk; 0, xj)| ≤ σ. (46)

Interchange the order of the two summations. Then, the index j will vary between
j = M and j = N − 1 for some finite integers M and N , and tk varies according to
the inequality (46), for j fixed. Denote by Ij the set of indices k that satisfy (46).
Then, the sum (45) can be written as

∆x
N−1∑

j=M

∆t
∑

k∈Ij

θσ(Φ(tk; 0, xi) − Ψ(tk; 0, xj))Ṽ 2
(
Ψ(tk; 0, xj),

xj

ǫ
, tk

) ∂Ψ

∂x
(tk; 0, xj).

(47)
We denote the time continuous version of the term

∆t
∑

k∈Ij

θσ(Φ(tk; 0, xi) − Ψ(tk; 0, xj))Ṽ 2
(
Ψ(tk; 0, xj),

xj

ǫ
, tk

) ∂Ψ

∂x
(tk; 0, xj),

by w
(
xj ,

xj

ǫ

)
, where

w
(
x,

x

ǫ

)
=

∫

Ix

θσ(Φ(t; 0, xi) − Ψ(t; 0, x))Ṽ 2
(
Ψ(t; 0, x),

x

ǫ
, t

) ∂Ψ

∂x
(t; 0, x)dt,

and

Ix = {t, |Φ(t; 0, xi) − Ψ(t; 0, x)| ≤ σ}.

We write (47) as

∆x

N−1∑

j=M

w
(
xj ,

xj

ǫ

)
− ∆x

N−1∑

j=M

[
w

(
xj ,

xj

ǫ

)

− ∆t
∑

k∈Ij

θσ(Φ(tk; 0, xi) − Ψ(tk; 0, xj))Ṽ 2
(
Ψ(tk; 0, xj),

xj

ǫ
, tk

) ∂Ψ

∂x
(tk; 0, xj)

]
.

(48)

We label tk ∈ Ij by t1, t2, . . . , tpj
. Clearly, tk, k = 1, . . . , pj are also in the continuous

set Ixj
. The measure of the set Ixj

\ [t1, tpj
] is of order O(∆t).

We also note that the length of the interval [t1, tpj
] is of order O(σ). To see this,

we use a Taylor expansion

Φ(tpj
; 0, xi) − Ψ(tpj

; 0, xj) = Φ(t1; 0, xi) − Ψ(t1; 0, xj) + (tpj
− t1)[a(ξ) + b(η)],
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where ξ = (Φ(t̃; 0, xi), t̃) and η = (Ψ(t∗; 0, xj), t
∗), with t̃ and t∗ being two intermedi-

ate points. Now we use

|Φ(t1; 0, xi) − Ψ(t1; 0, xj)| ≤ σ

and

|Φ(tpj
; 0, xi) − Ψ(tpj

; 0, xj)| ≤ σ,

to conclude

0 ≤ tpj
− t1 ≤ 2σ

a(ξ) + b(η)
≤ 2σ

a0 + b0
,

where a0 and b0 are the minimum values of a(x, t) and b(x, t), respectively.
We now estimate (48). By Lemma 4.3, the first sum converges to zero essentially

independent of ǫ since w(x, y) has zero mean with respect to the second variable. As
for the second sum, we study the term in the square bracket carefully. We have:

w
�
xj ,

xj

ǫ

�
− ∆t

X
k∈Ij

θσ(Φ(tk; 0, xi) − Ψ(tk; 0, xj))fV 2
�
Ψ(tk; 0, xj),

xj

ǫ
, tk

�
∂Ψ

∂x
(tk; 0, xj)

=

Z tpj

t1

θσ(Φ(t; 0, xi) − Ψ(t; 0, xj))fV 2
�
Ψ(t; 0, xj),

xj

ǫ
, t
�

∂Ψ

∂x
(t; 0, xj)dt

−∆t

pj−1X
k=1

θσ(Φ(tk; 0, xi) − Ψ(tk; 0, xj))fV 2
�
Ψ(tk; 0, xj),

xj

ǫ
, tk

�
∂Ψ

∂x
(tk; 0, xj)

+

Z
Ixj

\[t1,tpj
]

θσ(Φ(t; 0, xi) − Ψ(t; 0, xj))fV 2
�
Ψ(t; 0, xj),

xj

ǫ
, t
�

∂Ψ

∂x
(t; 0, xj)dt

−∆tθσ(Φ(tpj
; 0, xi) − Ψ(tpj

; 0, xj))fV 2
�
Ψ(tpj

; 0, xj),
xj

ǫ
, tpj

�
∂Ψ

∂x
(tpj

; 0, xj). (49)

The first two terms in the RHS of (49) give the standard error in the rectangle rule
approximation [10]. Denote the integrand by f(t):

f(t) = θσ(Φ(t; 0, xi) − Ψ(t; 0, xj))Ṽ 2
(
Ψ(t; 0, xj),

xj

ǫ
, t

) ∂Ψ

∂x
(t; 0, xj).

Recall that the function θσ is defined by (15). Since Ṽ 2
(
Ψ(t; 0, xj),

xj

ǫ , t
)

and
∂Ψ
∂x (t; 0, xj) is a smooth function of t, we conclude that

f ′(t) = O

(
1

σ2

)
,

where the leading order term comes from the differentiation of θσ(Φ(t; 0, xi) −
Ψ(t; 0, xj)) with respect to t. Thus the error estimate for the rectangle rule ap-
proximation implies that the difference of the first two terms in the RHS of (49) is of
order:

O

(
∆t(tpj

− t1)

σ2

)
= O

(
∆t

σ

)
.

Moreover, using the fact that

measure(Ixj
\ [t1, tpj

]) = O(∆t),
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and the boundedness of the integrand in the third term of the RHS of (49), we obtain

∣∣∣∣∣

∫

Ixj
\[t1,tpj

]

θσ(Φ(t; 0, xi) − Ψ(tk; 0, x))Ṽ 2
(
Ψ(t; 0, x),

x

ǫ
, t

) ∂Ψ

∂x
(t; 0, x)dt

∣∣∣∣∣ ≤ C
∆t

σ
.

Finally, it is easy to see that the fourth term in the RHS of (49) is also of order
O(∆t/σ).

We conclude that the expression in the left hand side (LHS) of (49) and hence,
the expression in the square brackets in the second sum in (48), is of order O

(
∆t
σ

)
.

From this result and the estimate (22) we infer that the expression in (48) is of order

O

(
∆x

τ

)
+ O

(
∆t

σ

)
.

We combine the above estimate for the term in (45) with estimate (44) to conclude
that

Jm,n
+,i (Ṽ 2) → 0 as ∆t → 0,

essentially independent of ǫ. This completes the proof of Theorem 4.2.

Step 2. Now we consider the case when the particle paths are not known analyti-
cally. Let x̃n

i,u, x̃n
i,v be the approximations of xn

i,u = Φ(tn; 0, xi) and xn
i,v = Ψ(tn; 0, xi),

i ∈ Z, which are obtained by solving (12a)-(12b) respectively.
We continue to use un

i , vn
i to denote the solution of the modified particle algorithm

(24) using the exact grid xn
i,u, xn

i,v, as in Step 1. We denote by ũn
i , ṽn

i the solution of
the modified particle algorithm (14) using the approximated grid x̃n

i,u, x̃n
i,v.

We first note that the proof of Lemma 4.5 can be extended to the solution of the
modified particle algorithm (14). Thus, we can find a constant M̃ > 0 such that for

∆t ≤ 1/(2M̃), we have 0 ≤ ũn
i , ṽn

i ≤ M̃ , i ∈ Z.

Theorem 4.3. The solution ũn
i , ṽn

i of the modified particle algorithm (12), (14),
with initial values given by (25), converges in the maximum norm to the solution u,
v of the Cauchy problem (2,3) as ∆x, ∆t → 0, essentially independent of ǫ.

Proof. The algorithm (12) is the forward Euler method, which is first order. We
have:

xn
i,u − x̃n

i,u = O(∆t), i ∈ Z,

xn
i,v − x̃n

i,v = O(∆t), i ∈ Z.

Denote

en
i = |un

i − ũn
i |, fn

i = |vn
i − ṽn

i |.

Subtracting (14a) from (24a) we obtain

en+1
i ≤ en

i + ∆t
∣∣∣In(vn)2i − Ĩn(ṽn)2i

∣∣∣ + C1∆ten
i , (50)

with C1 > 0.
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The interpolation using Ĩn involves the numerical approximations of ∂Ψ
∂x (tn; 0, xj)

(see (17)) obtained by solving (18). Let (Ψ̃x)n
j denote the numerical solution of (18),

using the forward Euler method. Then we have

∂Ψ

∂x
(tn; 0, xj) − (Ψ̃x)n

j = O(∆t).

We compute

In(vn)2i − Ĩn(ṽn)2i

= ∆x
∑

j

θσ(xn
i,u − xn

j,v)(vn
j )2

∂Ψ

∂x
(tn; 0, xj) − ∆x

∑

j

θσ(x̃n
i,u − x̃n

j,v)(ṽn
j )2(Ψ̃x)n

j

= ∆x
∑

j

[
θσ(xn

i,u − xn
j,v)

∂Ψ

∂x
(tn; 0, xj) − θσ(x̃n

i,u − x̃n
j,v)(Ψ̃x)n

j

]
(vn

j )2

+ ∆x
∑

j

θσ(x̃n
i,u − x̃n

j,v)(Ψ̃x)n
j

[
(vn

j )2 − (ṽn
j )2

]
. (51)

We estimate each term in the RHS of (51). Using the fact that the approximations of
xn

i,u, xn
i,v and ∂Ψ

∂x (tn; 0, xj) are first order, the term in the square brackets in the first
sum of the RHS of (51) can be estimated by

∣∣∣θσ(xn
i,u − xn

j,v)
∂Ψ

∂x
(tn; 0, xj) − θσ(x̃n

i,u − x̃n
j,v)(Ψ̃x)n

j

∣∣∣ ≤ C2

(
∆t

σ2

)
.

Then we have
∣∣∣∣∆x

∑

j

[
θσ(xn

i,u − xn
j,v)

∂Ψ

∂x
(tn; 0, xj) − θσ(x̃n

i,u − x̃n
j,v)(Ψ̃x)n

j

]
(vn

j )2
∣∣∣∣ ≤ C3

∆t

σ
,

where we have used the fact that the number of terms in the summation is of order
O (σ/∆x).

Regarding the second term in the RHS of (51), we have

∣∣∣∆x
∑

j

θσ(x̃n
i,u − x̃n

j,v)(Ψ̃x)n
j

[
(vn

j )2 − (ṽn
j )2

]∣∣∣ ≤ C4 maxj fn
j ,

where we have used the boundedness properties of the solutions vn
i , ṽn

i .
Using the last two estimates for the RHS of (51), we obtain

en+1
i ≤ en

i + C1∆ten
i + C4∆t maxj fn

j + C3
∆t2

σ
.

A similar inequality can be derived for fn+1
i . Denote

En = max {maxi en
i , maxi fn

i } .

Then we have

En+1 ≤ (1 + C∆t)En + C∆t2/σ, (52)

for a positive constant C.
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From (52) one can prove by induction the following inequality:

En ≤ C∆t

( n∑

j=0

(1 + C∆t)j

)
∆t/σ. (53)

Note that

C∆t

( n∑

j=0

(1 + C∆t)j

)
= (1 + C∆t)n − 1 ≤ exp(CT ),

which implies

En ≤ C5

(
∆t

σ

)
. (54)

Now, the proof follows from the estimate (54) and Theorem 4.2.

Remark. We remark that the same analysis applies to the generalized Broadwell
model (6) with α being irrational. The analysis is essentially the same as that for
the Carleman model. However, the modified particle method approximation to the
original Broadwell model with α = 0 is more subtle. The low order interpolation
scheme using a discrete convolution would not be accurate enough to capture the
resonant interaction among the three components of the solution. On the other hand,
we found convincing numerical evidences which indicate that high order interpolation
schemes such as cubic spline or spectral interpolations capture the resonant interaction
of the solution very well even on a coarse grid. We present some numerical results of
this study in the next section.

The reason why the convergence proof can be extended to the Broadwell model
in the non-resonant case is because only the averages of u and v would affect the
third component w, as revealed by the homogenization result given by (8). Thus
the interaction among the three components of the solution is not sensitive to the
interpolation scheme being used.

5. Numerical results.

5.1. Numerical results for 1D Carleman and Broadwell equations. In
this subsection, we perform two sets of numerical experiments to illustrate the con-
vergence of our modified particle method. In the first experiment, we consider the
modified particle algorithm (12), (14) applied to the variable coefficients Carleman
model (2). The convergence of this scheme was proved in Section 4 in the case when
the interpolation is done by using discrete convolutions. The second set of numerical
experiments considers the analogue of the scheme (12)-(14) for the Broadwell model
(4). This algorithm is given by (60) and (61).

Carleman model. We consider the following initial data for the variable coeffi-
cient Carleman model:

u(x, 0) =

{
0.5 sin4

(
π(x−3)

2

) (
1 + sin

(
2π(x−3)

ǫ

))
|x − 4| < 1

0 |x − 4| ≥ 1
(55)

and

v(x, 0) =

{
0.5 sin4

(
π(x−4)

2

)(
1 + sin

(
2π(x−4)

ǫ

))
|x − 5| < 1

0 |x − 5| ≥ 1,
(56)
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Fig. 2. Typical characteristic lines corresponding to the oscillatory velocity field a(x, t) given
by (57a) and (59a), respectively. Note that the exact characteristics are oscillatory.

where ǫ =
√

2/100 ≈ 0.014. This particular initial condition was used in [6].
To make a more severe test, we consider oscillatory variable coefficients:

a(x, t) = 1 + 0.5 sin

(
xt

ǫ

)
, (57a)

b(x, t) = 1 + 0.2 cos

(
xt

ǫ

)
. (57b)

A typical characteristic line is plotted in Figure 2(a). Note that the exact character-
istics are oscillatory.

We run the modified Lagrangian algorithm (12)-(14) with a coarse space and
time mesh. We take the spatial gridsize to be ∆x = 0.01 and the timestep ∆t = ∆x√

5
.

Thus ∆x and ∆t are of order O(ǫ). The numerical solution obtained with the coarse
mesh is compared to an “accurate” solution obtained by using a very fine grid with
∆x = 0.001 and ∆t = 0.00025. Note that ∆x is related to ǫ by ǫ = ∆x

√
2. We make

this choice of the coarse grid mesh to avoid the resonant sampling error between the
coarse gridsize and the oscillations (see (21)). We use a discrete convolution-based
interpolation with the cut-off function given by the “cosine function” (16). The width
of the cut-off function is taken to be σ = ∆xβ , with β = 0.75.
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Fig. 3. Solution u at time t = 1.28 for the oscillatory coefficient Carleman model (ǫ ≈ 0.014)
using the algorithm given by (12) and (14) with ∆x = 0.01. Note that the coarse grid solution
preserves the highly oscillatory features.

Discrete averages. One of the main issues in designing good methods for oscilla-
tory problems is to obtain correct averaged solutions. The formula for the dynamical
average that we use is given by discrete convolutions as in [6]. The discrete average
for the numerical solution un

i is defined by

un
i = ∆x

∑

k

θσ(xi − x̃n
u,k)un

k

∂Φ

∂x
(tn; 0, xk), (58)

where x̃n
u,k represent the numerical u characteristics and θσ is a cut-off function of

width σ, constructed by (15) using the cosine shape function (16) and σ = ∆xβ with
β = 0.4. The values ∂Φ

∂x (tn; 0, xk) are computed numerically by discretizing:

d

dt

(
∂Φ

∂x

)
=

∂a

∂x

∂Φ

∂x
,

∂Φ

∂x

∣∣∣∣
t=0

= 1.

In Figure 3 we plot the numerical solution u at t = 1.28 obtained with the modified
particle algorithm (12), (14), using a coarse mesh. We observe that the oscillatory
features are well captured. Moreover, in Figure 4 we plot the solution of the coarse
grid computation on top of a well-resolved computation. We include only a portion
of this plot in order to see how well the coarse grid computation (the circles) recovers
the main features (mean, amplitude of oscillations) of the oscillatory pulse (solid line).

Figure 5 displays the moving averages (see equation (58)) of the numerical solution
u computed using a coarse and a fine grid respectively. We observe that the average of
the coarse grid solution (the dash-dot line) agrees very well with that of the fine grid
solution, even in the oscillatory region. An excellent agreement is also obtained for
the averaged second order moment u2 (see Figure 6). The latter test is an indication
of how well the amplitudes of the oscillations are recovered.

Interpolation schemes. The above numerical results, which are obtained using
discrete convolution as interpolation, support the convergence analysis in Section 4.
In fact, we consider a more difficult problem, by allowing the coefficients a(x, t) and
b(x, t) to be oscillatory.

We have also considered other interpolation schemes such as cubic spline and
linear interpolation schemes for the modified particle method (12),(14). They all
produce results very similar to the ones depicted in Figures 3-6.
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Fig. 4. Numerical solution u at time t = 1.28 for the oscillatory coefficient Carleman model
with ǫ ≈ 0.014. The ◦’s represent the coarse grid with ∆x = 0.01. The solid line represents a very
well resolved computation with ∆x = 0.001.
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Fig. 5. Averaged solution u (dash-dot
line) at time t = 1.28 for the oscillatory co-
efficient Carleman model (ǫ ≈ 0.014) with a
coarse mesh ∆x = 0.01. Note the excellent
agreement with a very well resolved compu-
tation (solid line) with ∆x = 0.001.
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Fig. 6. Averaged second order moment
u2 (dash-dot line) at time t = 1.28 for the
oscillatory coefficient Carleman model (ǫ ≈

0.014) with a coarse mesh ∆x = 0.01. The
solid line represents a very well resolved com-
putation with ∆x = 0.001.

Numerical convergence. Table 1 contains a list of numerical errors in the averaged
solution u of the oscillatory coefficient Carleman model using the algorithm (12), (14).
Here, ǫ ≈ 0.014 and the “accurate” solution is computed with ∆x = 0.001. The
convergence is better than first order accuracy in l1, l2 and the maximum norms.

A case with highly oscillatory velocity coefficients. We investigate to a certain
extent how the accuracy of the modified particle method changes when the coefficients
a(x, t), b(x, t) become highly oscillatory. Consider the Carleman equations with the
same initial conditions, given by (55), (56), and with the variable coefficients a(x, t)
and b(x, t) given by

a(x, t) = 1 + 0.75

(
sin

(
2πt

ǫ

)
+ sin

(πx

ǫ

))
, (59a)

b(x, t) = 1 + 0.7

(
sin

(
2πt

ǫ

)
+ cos

(πx

ǫ

))
. (59b)
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Table 1

Errors in the solution u of the oscillatory coefficient Carleman model for the algorithm (12),
(14). Here, ǫ ≈ 0.014 and the “accurate” solution is computed with ∆x = 0.001.

Gridsize l1-norm l2-norm Max-norm
0.02 0.0328 0.0236 0.0326
0.01 0.0061 0.0042 0.0048

0.005 0.0024 0.0016 0.0018
0.002 7.2 × 10−4 4.9 × 10−4 5.7 × 10−4

As before, ǫ =
√

2/100 ≈ 0.014.
A typical characteristic line is plotted in Figure 2(b). Note that the exact char-

acteristics are more oscillatory than those presented in Figure 2(a) that corresponds
to (57a)).

A coarse space and time computation (∆x = 0.01, ∆t = ∆x√
5
) using the modified

particle method leads to relatively unsatisfactory results in terms of obtaining correct
averaged solutions. However, by taking a smaller timestep (∆t = 0.001), the results
improve greatly. We do not present the results here, as they are very similar to the
results presented above (see Figures 5-6 or Table 1). We conjecture that this behavior
is generic, namely a coarse Lagrangian method may work for problems involving highly
oscillatory characteristics (particle paths) if the characteristics are well resolved in
time.

Broadwell model. We now study numerically the analogue of the algorithm
(12), (14) for the Broadwell system (6). In (6), the characteristics are known exactly.
Hence, the discrete characteristics are updated by

xn+1
i,u = xn

i,u + ∆t, (60a)

xn+1
i,v = xn

i,v − ∆t, (60b)

xn+1
i,w = xn

i,w + α∆t. (60c)

Let un
i , vn

i and wn
i denote the numerical approximations of u(xn

i,u, tn), v(xn
i,v , tn) and

w(xn
i,w , tn), respectively. The modified particle scheme for the Broadwell system is

given by

un+1
i = un

i + ∆t
(
In(wn)2i − un

i Invn
i

)
, (61a)

vn+1
i = vn

i + ∆t
(
In(wn)2i − vn

i Inun
i

)
, (61b)

wn+1
i = wn

i − ∆t
(
(wn

i )
2 − (Inun

i ) · (Invn
i )

)
. (61c)

In (61), (a)-(c), In denotes interpolation at the points xn
i,u, xn

i,v and xn
i,w, respectively.

In the numerical experiments we take the initial data for u and v as in (55) and
(56) and zero initial values for w. We take ǫ ≈ 0.0138 and compute the solution using
the algorithm (60)-(61) with a coarse space and time mesh, ∆x = 0.01 and ∆t = ∆x√

5
.

We note again that ∆x and ∆t are of order O(ǫ). We compare the coarse grid solution
with an “accurate” solution obtained by using a very fine grid with ∆x = 1.25×10−3.

In view of the homogenization results for (6) (see equations (7) and (8)), we
consider two cases:

Case I: α is rational (the resonance case). We take α = 0, so (6) reduces to (4).
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Fig. 7. Solution w at time t = 2.5 for
the Broadwell model (ǫ ≈ 0.0138) with α = 0
using the modified particle scheme (60)-(61)
with ∆x = 0.01.
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Fig. 8. Numerical solution w at time
t = 2.5 for the Broadwell model (4) (ǫ ≈

0.0138), ∆x = 0.01 (circles) and ∆x =
1.25 × 10−3 (solid line).
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Fig. 9. Averaged solution w at time t =
2.5 for the Broadwell model (4) using a coarse
grid ∆x = 0.01 (dash-dot line), and a fine
grid ∆x = 1.25 × 10−3 (solid line).
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Fig. 10. Averaged second order moment
w2 at time t = 2.5 for the Broadwell model
(4) using a coarse grid ∆x = 0.01 (dash-dot
line), and a fine grid ∆x = 1.25×10−3 (solid
line).

In Figure 7 we plot the numerical solution w at t = 2.5 obtained by the modified
particle scheme (60)-(61) with a coarse grid. As we know from the homogenization
equations, the nonlinear interaction of the uv term in (4) generates an oscillatory
pulse on w. We observe in Figure 7 that the oscillatory features are well captured by
the modified particle method on a coarse grid. In Figure 8 we plot the solution of the
modified particle method using a coarse grid on top of a well-resolved computation.
We note that the coarse grid computation (the circles) recovers very well the main
features (mean, amplitude of oscillations) of the oscillatory pulse (solid line).

In Figures 9 and 8 we test how well the coarse modified particle method captures
the mean and the second order moment of the solution. We find excellent agreement
with the results of a fine grid computation.

Interpolation schemes. We experiment with various interpolation schemes in al-
gorithm (60)-(61). The results presented in Figures 7-10 are obtained by using a cubic
spline interpolation. We believe that higher order interpolation schemes (cubic spline
or Fourier) are important to capture the resonant interaction of the three components
of the solution. Our numerical experiments show that the modified particle method
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Fig. 11. Solution u at time t = 2.0 for
the Broadwell model (6) with α = π/2 with
∆x = 0.01.
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Fig. 12. Solution u at time t = 2.0 for
the Broadwell model (6) with α = π/2, ∆x =
0.01 (circles) and ∆x = 1.25 × 10−3 (solid
line).

with a cubic spline interpolation captures accurately the mean and the amplitude of
an oscillating pulse, even if we integrate the solution for a large number of time steps.
On the other hand, our experiments indicate that the modified particle method using
a linear or discrete convolution interpolation scheme with σ ≫ ∆x would not capture
the oscillatory features of w.

Numerical convergence. Table 2 contains the numerical errors in the averaged
solution w of the Broadwell model (4) for algorithm (60)-(61). Here, ǫ ≈ 0.0138 and
the “accurate” solution is computed with ∆x = 1.25 × 10−3. We observe that the
averaged solution converges with first order accuracy.

Table 2

Errors in the solution w of the Broadwell model with α = 0 for the algorithm (60)-(61). Here,
ǫ ≈ 0.0138 and the “accurate” solution is computed with ∆x = 1.25 × 10−3.

Gridsize l1-norm l2-norm Max-norm
0.02 0.0022 0.0021 0.0030
0.01 0.0013 0.0013 0.0019

0.005 4.9 × 10−4 4.7 × 10−4 6.5 × 10−4

0.0025 2.3 × 10−4 2.2 × 10−4 3.4 × 10−4

Case II: α = irrational (the non-resonance case). We take α = π/2 in (6).

In this case, the homogenization result indicates that non-oscillatory initial data
for w will remain non-oscillatory at later times. This is because the u and v com-
ponents enter the homogenized w-equation only through their averaged values. On
the other hand, oscillatory initial data for u and v will stay oscillatory at later times.
This subtle aspect is well captured by the modified particle method on a coarse grid.

Figure 11 displays the solution u of the coarse grid computation at time t = 2.0.
We notice that the oscillatory features are captured. In Figure 12 we plot the coarse
grid solution u on top of a very well resolved solution. We notice that the mean
and the amplitude of the oscillatory pulse are very well preserved by the coarse grid
solution.

In Figure 13 we plot the mean of the solution u obtained by the coarse grid
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Fig. 13. Averaged solution u at time t =
2.0 for the Broadwell model (6) with α = π/2,
∆x = 0.01 (dash-dot line) and ∆x = 1.25 ×

10−3 (solid line).
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Fig. 14. Averaged solution w at time
t = 2.0 for the Broadwell model (6) with α =
π/2, ∆x = 0.01 (dash-dot line) and ∆x =
1.25 × 10−3 (solid line).

computation and compare it with a very-well resolved computation. We again see
excellent agreement between the coarse and the fine grid computations. Figure 14
displays the solution w of the coarse grid computation at time t = 2.0 together with
the solution of a very well-resolved computation. The agreement between the two
numerical solutions is excellent.

Interpolation schemes. We also experiment with various interpolation schemes
in algorithm (60), (61) for this non-resonant case. The results presented in Figures
11-14 are obtained by using a discrete convolution-based interpolation with the cut-off
function given by (16). The width of the cut-off function was taken to be σ = ∆xβ ,
with β = 0.75. Unlike the resonant case, lower order interpolation schemes (linear
interpolation, discrete convolutions with σ ≫ ∆x) works equally well as the high
order interpolation schemes. The oscillatory features of the solution is well preserved.
This is due to the fact that there is no resonant interaction in the w equation. Only
the averages of u and v enter to the homogenized w-equation. Thus the interaction
is not sensitive to the interpolation scheme being used.

Numerical convergence. We display in Table 3 the numerical errors in the averaged
solution u of the Broadwell model (6) with α = π/2 for algorithm (60)-(61). Here, ǫ ≈
0.0138 and the “accurate” solution is computed with ∆x = 1.25× 10−3. Convergence
in all three norms is evident.

Table 3

Errors in the solution u of the Broadwell model with α = π/2 for the algorithm (60), (61).
Here, ǫ ≈ 0.0138 and the “accurate” solution is computed with ∆x = 1.25 × 10−3.

Gridsize l1-norm l2-norm Max-norm
0.02 0.0090 0.0077 0.0109
0.01 0.0052 0.0046 0.0063

0.005 0.0023 0.0020 0.0028
0.0025 7.8 × 10−4 6.7 × 10−4 9.7 × 10−4

5.2. Numerical results for 2D Carleman equations. In this subsection we
investigate the performance of the modified particle method for the 2D Carleman
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equations with constant coefficients, given by

∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
+ u2 − v2 = 0, (62a)

∂v

∂t
+ b1

∂v

∂x
+ b2

∂v

∂y
− u2 + v2 = 0, (62b)

where a1, a2, b1, b2 are constants.

The numerical results presented in this subsection correspond to the velocity
fields:

(a1, a2) = (1, 1) and (b1, b2) = (−1, 1).

We consider initial data with multiple scales. In addition to periodic initial data (a
2D analogue of (3)), we also consider initial data with random phase.

Periodic initial data. We consider the following periodic initial data:

u(x, y, 0) =





0.5 sin3
(

π(x−2)
2

)
sin3

(
π(y−3)

2

)(
1 + 0.5 sin

(
2π(x−2)

ǫ

)

+0.5 sin
(

2π(y−3)
ǫ

))
, for |x − 3| < 1 and |y − 4| < 1

0 otherwise ,

(63)

and

v(x, y, 0) =





0.5 sin3
(

π(x−3)
2

)
sin3

(
π(y−3)

2

)(
1 + 0.5 sin

(
2π(x−3)

ǫ

)

+0.5 sin
(

2π(y−3)
ǫ

))
, for |x − 4| < 1 and |y − 4| < 1

0 otherwise .

(64)

Here, ǫ = 0.07
√

2 ≈ 0.0989.

We run the coarse modified particle method with ∆x = 8/128 = 0.0625 and
∆t = ∆x/

√
5. This space meshsize corresponds to N = 1282 equally spaced particles

in a square of size 8. We compare the results with a very well resolved computation
with ∆x = 8/1024 ≈ 0.0078 and ∆t = ∆x/2. For the well resolved computation
we use pseudospectral techniques and update the solution in the Fourier space. The
integration in time is done using the fourth-order Runge-Kutta method.

The results are presented in Figures 15-17. The figures represent cross sections of
the numerical solution u at time t = 1.25. They show an excellent agreement of the
coarse modified particle method with the well resolved computation. The averages in
Figures 16-17 are computed by discrete convolutions (the 2D analogue of (58)) with
the cut-off function

θσ(x, y) =

{
1/σ2 (x, y) ∈ [−σ, σ] × [−σ, σ]
0 otherwise,

(65)

where σ = 0.35.

Table 4 provides numerical errors that indicate the excellent performance of the
coarse particle method in the 2D case. The relative l2- and maximum-norm errors
of the coarse particle method solution are computed with respect to the “accurate”
solution, obtained by a very well-resolved computation with ∆x ≈ 0.0078.
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Table 4

Coarse modified particle method (∆x = 0.0625): relative errors in the solution u (first row)

and u2 (second row). The “accurate” solution is obtained by a very well resolved computation with
∆x ≈ 0.0078. Here, ǫ ≈ 0.098.

relative l2-norm relative max-norm
error in u 0.0140 0.0276

error in u2 0.0175 0.0363
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Fig. 15. Cross section (y = const.) of the solution u at time t = 1.25 for the 2D constant
coefficient Carleman model with periodic initial data (ǫ ≈ 0.098). The ◦’s represent the coarse grid
(∆x = 0.0625) computation using the modified particle algorithm. The solid line represents a very
well resolved computation with ∆x ≈ 0.0078.

Random initial data. We performe a more challenging test for an initial con-
dition similar to (63), (64), but with a random phase, i.e.

u(x, y, 0) =





0.5 sin3
(

π(x−2)
2

)
sin3

(
π(y−3)

2

) [
1 + 0.5 sin

(
2π

(
x−2

ǫ + θ1(x, y)
))

+0.5 sin
(
2π

(
y−3

ǫ + θ1(x, y)
)) ]

, for |x − 3| < 1 and |y − 4| < 1

0 otherwise ,
(66)

and

v(x, y, 0) =





0.5 sin3
(

π(x−3)
2

)
sin3

(
π(y−3)

2

) [
1 + 0.5 sin

(
2π

(
x−3

ǫ + θ2(x, y)
))

+0.5 sin
(
2π

(
y−3

ǫ + θ2(x, y)
)) ]

, for |x − 4| < 1 and |y − 4| < 1

0 otherwise .
(67)

Here, θ1(x, y) and θ2(x, y) are random variables that take values in the interval [0, 1]
and ǫ = 0.07

√
2 ≈ 0.0989. To initialize our code with the initial data (66), (67), we use

a random number generator to get the values θ1(xi, yj), θ2(xi, yj) at each grid point
(xi, yj). We generate the initial data by evaluating (66), (67) on an equally spaced
256×256 grid in a square of size 8 (∆x = 8/256 ≈ 0.0312). Then we interpolate these
values on a 1024× 1024 grid. This will ensure that the initial random oscillations are
well resolved.
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Fig. 16. Cross section (y = const.) of
the averaged solution u at time t = 1.25 for
the 2D constant coefficient Carleman model
with periodic initial data (ǫ ≈ 0.098). The
dash-dot line corresponds to a computation
using the modified particle method with a
coarse mesh, ∆x = 0.0625. Note the excel-
lent agreement with a well resolved computa-
tion with ∆x ≈ 0.0078 (solid line).
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Fig. 17. Cross section (y = const.)

of the averaged second order moment u2 at
time t = 1.25 for the 2D constant coefficient
Carleman model with periodic initial data
(ǫ ≈ 0.098). The dash-dot line corresponds
to a computation using the modified particle
method with a coarse mesh, ∆x = 0.0625.
The solid line represents a well resolved com-
putation with ∆x ≈ 0.0078.

We perform a similar comparison as the one presented in the previous paragraph.
The coarse modified particle method is run with N = 1282 particles (∆x = 0.0625).
The well-resolved computation uses a pseudospectral code on a 10242 grid (∆x ≈
0.0078). The averages are computed using discrete convolutions with θσ given by (65)
with σ = 0.35. The results are presented in Figures 18-20.

Table 5 displays the numerical relative l2- and maximum-norm errors of the coarse
particle method solution for initial data with random phase. The errors are computed
with respect to the “accurate” solution, obtained by a very well-resolved computation
with ∆x ≈ 0.0078.

Table 5

Initial data with random phase: relative errors in the solution u (first row) and u2 (second
row) computed with a coarse modified particle method (∆x = 0.0625). The “accurate” solution is
obtained by a very well resolved computation with ∆x ≈ 0.0078. Here, ǫ ≈ 0.098.

relative l2-norm relative max-norm
error in u 0.0202 0.0359

error in u2 0.0342 0.0701

The numerical results for the multi-dimensional Carleman model with random
initial data are very encouraging. The modified particle method presented in this
paper can be applied to more general semi-linear hyperbolic systems with random
initial data. In the future, we would like to investigate how to extend this method to
more general multi-dimensional convection dominated transport problems.
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Fig. 18. Cross section (y = const.) of the solution u at time t = 1.25 for the 2D constant
coefficient Carleman model with random initial data. The ◦’s represent the coarse grid (∆x =
0.0625) computation using the modified particle algorithm. The solid line represents a very well
resolved computation with ∆x ≈ 0.0078.
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Fig. 19. Cross section (y = const.) of
the averaged solution u at time t = 1.25 for
the 2D constant coefficient Carleman model
with random initial data. The dash-dot line
corresponds to a computation using the mod-
ified particle method with a coarse mesh,
∆x = 0.0625. Note the excellent agree-
ment with a well resolved computation with
∆x ≈ 0.0078 (solid line).
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Fig. 20. Cross section (y = const.) of

the averaged second order moment u2 at time
t = 1.25 for the 2D constant coefficient Car-
leman model with random initial data. The
dash-dot line corresponds to a computation
using the modified particle method with a
coarse mesh, ∆x = 0.0625. The solid line
represents a well resolved computation with
∆x ≈ 0.0078.

6. Appendix.

6.1. Proof of Lemma 4.5.

Proof. We prove the lemma by induction. Suppose that at the discrete time tn
we have

0 ≤ un
i , vn

i ≤ Mn, i ∈ Z,

where Mn is a constant. Note that

∂Ψ

∂x
(s; t, x) = exp

(∫ s

t

− ∂b

∂x
(Ψ(τ ; t, x), τ)dτ

)
> 0.
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Then, we obtain

In(vn)
2
i = ∆x

∑

j

θσ(xn
i,u − xn

j,v)(vn
j )2

∂Ψ

∂x
(tn; 0, xj)

≤ M2
n∆x

∑

j

θσ(xn
i,u − xn

j,v)
∂Ψ

∂x
(tn; 0, xj)

= M2
n

[
∆x

∑

j

θσ(Φ(tn; 0, xi) − Ψ(tn; 0, xj))
∂Ψ

∂x
(tn; 0, xj)

−
∫

R

θσ(Φ(tn; 0, xi) − Ψ(tn; 0, y))
∂Ψ

∂y
(tn; 0, y)dy + 1

]
,

where we have used the fact that
∫

θσ(x − y)dy = 1 and θσ ≥ 0. Due to the finite
support of θσ, the nonzero contribution to the integral over y in the RHS of the above
equation comes from the interval defined by

|Φ(tn; 0, xi) − Ψ(tn; 0, y)| ≤ σ.

The length of such an interval is of order O(σ). Hence, using the error estimate for
the rectangle rule approximation [10], we obtain

∣∣∣∣∣∆x
∑

j

θσ(Φ(tn; 0, xi) − Ψ(tn; 0, xj))
∂Ψ

∂x
(tn; 0, xj)

−
∫

R

θσ(Φ(tn; 0, xi) − Ψ(tn; 0, y))
∂Ψ

∂x
(tn; 0, y)dy

∣∣∣∣∣

≤ C

(
σ∆x

σ2

)
= C

(
∆x

σ

)
,

where C is a constant independent of ∆x and σ. The denominator comes from
differentiating the mollifier function in the integrand. Therefore, we get

0 ≤ In(vn)
2
i ≤ M2

n (1 + C(∆x/σ)) .

Applying this inequality to (24a) leads to

minj un+1
j ≥ minj

[
un

j − ∆t
(
un

j

)2
]
,

maxj un+1
j ≤ maxj

[
un

j − ∆t
(
un

j

)2
]

+ ∆tM2
n + CM2

n∆t(∆x/σ)).
(68)

Consider the function f(u) = u−∆tu2. If ∆t ≤ 1/(2Mn), the function f has a global
maximum at u0 = 1/(2∆t) ≥ Mn. In the interval [0, Mn], f(u) is strictly increasing,
which implies

0 ≤ f(u) ≤ Mn − ∆tM2
n, for all 0 ≤ u ≤ Mn.

We combine this result with (68) to conclude

0 ≤ un+1
i ≤ Mn + CM2

n∆t(∆x/σ), i ∈ Z.

Therefore, we have

0 ≤ un+1
i ≤ Mn+1, i ∈ Z,
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with

|Mn+1 − Mn| ≤ CM2
n∆t(∆x/σ).

Thus, for any finite time T , there exists a ∆x0 > 0 and a constant M > 0 such that
for all 0 < ∆x ≤ ∆x0, we have Mn ≤ M and

0 ≤ un
i , vn

i ≤ M, i ∈ Z,

for 0 ≤ n∆t ≤ T .

6.2. Interpolation Error. Given a smooth, bounded function f(x, t), we are
interested in the approximation error made by interpolating the discrete values
f(Ψ(tn; 0, xj), tn), j ∈ Z, at α = Φ(tn; 0, xi). We consider the interpolation formula
(17) in the case when the characteristics are known exactly. Hence, we approximate

f(α, tn) ≈ ∆x
∑

j

θσ(α − Ψ(tn; 0, xj))f(Ψ(tn; 0, xj), tn))
∂Ψ

∂x
(tn; 0, xj). (69)

For simplicity, we regard the discrete time tn as a parameter and f as a function
of the space variable only. Define g(x) = Ψ(tn; 0, x). We have

f(α) ≈ ∆x
∑

j

θσ(α − g(xj))f(g(xj))g
′(xj).

Let yj = g(xj). If f(α) is a smooth function, we can expand f(yj) around α to obtain

f(yj) = f(α) + f ′(ηj)(yj − α),

where ηj is some point between yj and α. The interpolation error is now given by

f(α) − ∆x
∑

j

θσ(α − g(xj))f(g(xj))g
′(xj)

= f(α) − f(α)∆x
∑

j

θσ(α − g(xj))g
′(xj)

− ∆x
∑

j

θσ(α − g(xj))g
′(xj)f

′(ηj) (g(xj) − α) . (70)

The sum over j in the RHS of the above equation includes only the terms for which

|g(xj) − α| ≤ σ.

The number of such terms is of order O(σ/∆x).

Using the property
∫

θσ(x − y)dy = 1 of the mollifier θσ, we get

∆x
∑

j

θσ(α − g(xj))g
′(xj) = ∆x

∑

j

θσ(α − Ψ(tn; 0, xj))
∂Ψ

∂x
(tn; 0, xj)

−
∫

R

θσ(α − Ψ(tn; 0, y))
∂Ψ

∂x
(tn; 0, y)dy + 1.
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In the proof of Lemma 4.5 we have shown that

∣∣∣∣∣∆x
∑

j

θσ(α − Ψ(tn; 0, xj))
∂Ψ

∂x
(tn; 0, xj)

−
∫

R

θσ(α − Ψ(tn; 0, y))
∂Ψ

∂y
(tn; 0, y)dy

∣∣∣∣∣ ≤ C1

(
∆x

σ

)
,

which implies

∣∣∣∣∣∣
1 − ∆x

∑

j

θσ(α − g(xj))g
′(xj)

∣∣∣∣∣∣
≤ C1

(
∆x

σ

)
.

We use this estimate in (70) to obtain the following error estimate for the interpolation
error:

∣∣∣∣∣∣
f(α, tn) − ∆x

∑

j

θσ(α − Ψ(tn; 0, xj))f(Ψ(tn; 0, xj), tn))
∂Ψ

∂x
(tn; 0, xj)

∣∣∣∣∣∣

≤ C1

(
∆x

σ

)
+ C2σ ‖f ′‖L∞ . (71)

Remark. We remark that higher order approximation can be obtained for suf-
ficiently smooth f by using a shape function satisfying some moment conditions, i.e.∫

xkθ(x)dx = 0 for 1 ≤ k ≤ m − 1 for some integer m > 1. The improved moment
error is of order O(σm) with the error constant depending on the mth order deriva-
tive of f . However, for the problem we are interested in, f is highly oscillatory. The
formal gain of high order moment error could be offset by the large amplitude of the
high order derivatives of f , leading to an error of the form O((σ/ǫ)m). Nonetheless,
we found from our numerical experiments that high order interpolation methods give
more accurate results, especially for the original Broadwell model where there is a
resonant interaction among the three components of the solution.
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Mittag-Leffler, Uppsala, 1957.

[4] W. E and T. Y. Hou, Homogenization and convergence of the vortex method for 2-D Euler
equations with oscillatory vorticity fields, Comm. Pure and Appl. Math., 43(1990), pp.
821–855.

[5] B. Engquist, Computation of oscillatory solutions to partial-differential equations, Lecture
Notes in Mathematics, 1270(1987), pp. 10–22.



604 R.C. FETECAU AND T.Y. HOU

[6] B. Engquist and T. Y. Hou, Particle method approximation of oscillatory solutions to hy-
perbolic differential equations, SIAM J. Numer. Anal., 26:2(1989), pp. 289–319.

[7] B. Engquist and J-G. Liu, Numerical methods for oscillatory solutions to hyperbolic problems,
Comm. Pure Appl. Math., 46:10(1993), pp. 1327–1361.

[8] T. Y. Hou, Homogenization for semilinear hyperbolic systems with oscillatory data, Comm.
Pure and Appl. Math., 41(1988), pp. 471–495.

[9] R. Illner, Global existence for two-velocity models of the Boltzmann equation, Math. Methods
Appl. Sci., 1(1979), pp. 187–193.

[10] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover Publications, New
York, 1994.

[11] D.W. McLaughlin, G. Papanicolaou, and L. Tartar, Weak limits of semilinear hyperbolic
systems with oscillating data, volume 230 of Lecture Notes in Phys., pp. 277–289. Springer-
Verlag, 1985.
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