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Abstract
We provide a concise review of the exponentially convergent multiscale finite element 
method (ExpMsFEM) for efficient model reduction of PDEs in heterogeneous media with-
out scale separation and in high-frequency wave propagation. The ExpMsFEM is built 
on the non-overlapped domain decomposition in the classical MsFEM while enriching 
the approximation space systematically to achieve a nearly exponential convergence rate 
regarding the number of basis functions. Unlike most generalizations of the MsFEM in the 
literature, the ExpMsFEM does not rely on any partition of unity functions. In general, it 
is necessary to use function representations dependent on the right-hand side to break the 
algebraic Kolmogorov n-width barrier to achieve exponential convergence. Indeed, there 
are online and offline parts in the function representation provided by the ExpMsFEM. 
The online part depends on the right-hand side locally and can be computed in parallel 
efficiently. The offline part contains basis functions that are used in the Galerkin method to 
assemble the stiffness matrix; they are all independent of the right-hand side, so the stiff-
ness matrix can be used repeatedly in multi-query scenarios.
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1  Introduction

Multiscale methods provide an efficient way to solve challenging PDEs. A few local basis 
functions adapted to the problem are constructed offline to provide an effective model reduc-
tion of the equation. One can then use the reduced model to compute the solution online, pos-
sibly with different right-hand sides and in a way much faster than solving the original equa-
tion. This property is beneficial in multi-query scenarios such as optimal design and inverse 
problems. Moreover, multiscale methods are inevitable for challenging problems in rough 
media and high-frequency wave propagation since standard numerical methods suffer from 
a vast number of degrees of freedom. See examples of the failure of finite element methods 
(FEMs) in elliptic equations with rough coefficients [4] and the pollution effect in the Helm-
holtz equation [6].

In this paper, we present the framework of the exponentially convergent multiscale FEM 
(ExpMsFEM). It is a generalization of the classical MsFEM [22]. The main contribution of 
the ExpMsFEM is the systematic improvement over the MsFEM to achieve exponentially 
convergent accuracy regarding the number of basis functions. Also, unlike most generaliza-
tions of the MsFEM in the literature, the ExpMsFEM does not rely on the partition of unity 
functions to connect local and global approximation spaces. Instead, ExpMsFEM uses edge 
localization and coupling intrinsic to the non-overlapped domain decomposition to communi-
cate the local and global approximations.

In the literature, exponentially convergent multiscale methods have been pioneered in the 
work of optimal basis [2] based on the partition of unity functions; see also the developments 
in [3, 8, 9, 30, 31, 44, 45]. The work demonstrates the importance of Caccioppoli’s inequal-
ity in establishing exponential convergence; more precisely, the inequality implies the low 
approximation complexity of the restriction operator acting on harmonic-type functions. The 
theory of the ExpMsFEM is also based on some arguments using Caccioppoli’s inequality. 
Additionally, since no partition of unity functions is used, technical tools such as C� estimates 
and trace theorems are needed to analyze the ExpMsFEM. We will comment on the similarity 
and differences between the optimal basis work and the ExpMsFEM at the end of the article.

This review is based on our previous work on exponentially convergent multiscale methods 
for elliptic equations [11] and Helmholtz equations [12]. We focus on articulating the main 
ideas and the computational framework in the case of 2D stationary problems with homogene-
ous boundary data. We provide references for the detailed analysis in corresponding papers.

1.1 � Organization

In Sect. 2, we present the model problem that is the focus of this article. In Sect. 3, we pre-
sent the motivation and framework of the ExpMsFEM. We provide numerical experiments to 
demonstrate the effectiveness of the ExpMsFEM framework in Sect. 4. In Sect. 5, we discuss 
related literature, future possibilities, and open questions.

2 � Model Problem

Consider the model problem in a bounded domain 𝛺 ⊂ ℝd with a Lipschitz boundary �  . 
Here, d = 2 . For generality, the boundary can contain disjoint parts � = �1 ∪ �2 where 
�1 corresponds to the Dirichlet boundary conditions and �2 corresponds to the Neumann 
and Robin type boundary conditions. The model equation is
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Here, A,V , � are functions in L∞(�) and can be rough, which makes the solution oscillat-
ing and difficult to solve. The vector � is the outer normal to the boundary.

In particular, when V = 0 , the equation is the standard elliptic equation [11]. If 
Vu = −k2u and u is a complex-valued function, one obtains the Helmholtz equations 
[12] with the wavenumber k.

The weak formulation of (1) is given by

where (⋅, ⋅)X is the standard L2 inner product on the set X. The space for v is 
H(�) ∶= {w ∈ H1(�)∶ w|�1

= 0} and the solution u ∈ H(�) . The energy norm ‖ ⋅ ‖H(�) 
is defined as

Here, we adopt an abuse of notation that the space can be real-valued or complex-valued, 
depending on the context.

A generic assumption for A is 0 < Amin ⩽ A(x) ⩽ Amax < ∞ . We will present more 
detailed assumptions on V , � later in specific problems that our theory in [11, 12] 
covers. Indeed, the theory can encompass the case for very general V, provided that 
|(Vu, u)|� ⩽ V0(u, u)� for some constant V0 and the PDE satisfies good stability esti-
mates; see for example the rough Helmholtz example in [12]. In this review, we mainly 
focus on the conceptual algorithmic framework of solving (1) via the ExpMsFEM rather 
than a detailed analysis of the equation and the method.

3 � The ExpMsFEM Framework

In Sect. 3.1, we discuss the general recipe for solving PDEs as a function approximation 
problem. This motivates us to find accurate function representations to be used in the 
Galerkin method. We explain how the ExpMsFEM manages to get exponentially con-
vergent representations in Sects. 3.2–3.5.

3.1 � Solving PDEs as Function Approximation

By the standard finite element theory (e.g., [7]), when using the Galerkin method to 
solve (2), a key step is to find a function representation, or a space of basis functions 
that can approximate the solution accurately. More precisely, suppose the space is S, 
then, one usually wants

(1)

⎧
⎪⎨⎪⎩

−∇ ⋅ (A∇u) + Vu = f in �,

u = 0 on �1,

A∇u ⋅ � = �u on �2.

(2)a(u, v) ∶= (A∇u,∇v)� + (Vu, v)� − (�u, v)�2
= (f , v)�, ∀v ∈ H(�),

‖w‖2
H(�)

∶= (A∇w,∇w)� + �(Vw,w)��.

(3)�(S) ∶= sup
f∈L2(�)�{0}

inf
v∈S

‖N(f ) − v‖H(�)

‖f‖L2(�)
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to be small. Here, N∶ f → u is the solution operator1 of (1).
For example, consider the elliptic equation with V = 0 and �2 = ∅ . In such case, the 

Galerkin method provides an optimal approximation of the solution in the space of basis 
functions with respect to the energy norm [7, 11], due to the Galerkin orthogonality. There-
fore, a small �(S) directly implies a small error in the solution. For the Helmholtz equation, 
similar arguments hold based on the Gårding-type inequality, which leads to the quasi-
optimality of the solution; see, for example, [12, 35]. The failure of many finite element 
methods in elliptic equations with rough coefficients [4] and Helmholtz’s equations [6] is 
due to the poor approximation property. �(S) is typically not small if S is the standard finite 
element space, such as the space of tent functions.

Conceptually, the ExpMsFEM finds an exponentially convergent function representa-
tion of the solution through the following three steps: (i) harmonic-bubble splitting, (ii) 
edge localization, (iii) oversampling and exponentially convergent singular value decompo-
sition (SVD). We will detail the three steps and discuss relevant rigorous results at the end 
of Sects. 3.2–3.4. Then, we summarize the algorithm in Sect. 3.5.

3.2 � Harmonic Bubble Splitting

Consider a shape regular and uniform partition of the domain � into finite elements 
with a mesh size H. The collection of elements is denoted by TH = {T1, T2,⋯ , Tr} . 
Let EH = {e1, e2,⋯ , eq} be the collection of edges in the interior of � . We use 
NH = {x1, x2,⋯ , xp} to denote the collection of interior nodes. We also use EH to denote 
the collection of interior edges as a set, i.e., EH =

⋃
e∈EH

e ⊂ 𝛺 . A more detailed explana-
tion of the mesh structure can be found in [11, 12].

In each element T ∈ TH , we decompose the solution u into u = u�
T
+ u�

T
 such that

In short, u�
T
 incorporates the interior boundary value of u on the element, while u�

T
 contains 

the information of the right-hand side. All equations in (4) should be understood in the 
standard weak sense as in (2).

We can further define a global decomposition u = u� + u� , such that for each T, it holds 
that u�(x) = u�

T
(x) , u�(x) = u�

T
(x) when x ∈ T  . Here, the component u�

T
 (resp. u� ) is called 

the local (resp. global) harmonic part, u�
T
 (resp. u� ) is the local (resp. global) bubble part, 

of the solution u. Here, the harmonic part u� is not necessarily a harmonic function due to 
the existence of A and V, but it has a similar low complexity property that a harmonic func-
tion has, due to the iterative argument of Caccioppoli’s inequality first proposed in [2]. We 
will discuss this low complexity property in Sect. 3.4.

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧
⎪⎨⎪⎩

−∇ ⋅ (A∇u�
T
) + Vu�

T
= 0 in T ,

u�
T
= u on �T ⧵ (�1 ∪ �2),

u�
T
= 0 on �T ∩ �1,

A∇u�
T
⋅ � = �u�

T
on �T ∩ �2,

⎧⎪⎨⎪⎩

−∇ ⋅ (A∇u�
T
) + Vu�

T
= f in T ,

u�
T
= 0 on �T ⧵ (�1 ∪ �2),

u�
T
= 0 on �T ∩ �1,

A∇u�
T
⋅ � = �u�

T
on �T ∩ �2.

1  Sometimes, N is chosen to be the solution operator of the adjoint equation; for example see [35].
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Now, in the representation u = u� + u� , the part u� can be directly computed by solving 
local problems in parallel since the local boundary conditions are all known. We are left to 
deal with the part u�.

Remark 1  We discuss several theoretical concerns and possible generalizations below.

•	 A sufficient condition for the local components in (4) to be well-defined is that the 
operator u → −∇ ⋅ (A∇u) + Vu (as well as the corresponding boundary conditions) is 
elliptic in each local element, implied by the Poincaré inequality. In [11], we considered 
elliptic equations with V = 0 and �2 = ∅ , so this condition is satisfied. In [12], we con-
sidered the Helmholtz equation where V < 0, |V| = O(k2) and Re � = 0, Im � = O(k) . 
For such a case, the elliptic property is guaranteed when H = O(1∕k).

•	 For the global components u� , u� to be well-defined, we need the condition that the 
solution u is continuous. This can be guaranteed by the C� estimates of  (1) under the 
assumptions mentioned earlier; see discussions in [11, 12].

•	 We can generalize the above decomposition to PDEs with inhomogeneous boundary 
conditions. To achieve so, we incorporate these boundary data into the equation for 
u� ; see also Sect. 5.3 in [12] for a concrete example of problem with inhomogeneous 
boundary data.

3.3 � Edge Localization

The next step is to find some local basis functions that accurately approximate u� . The 
ExpMsFEM uses the idea of edge localization to localize this approximation task.

First, we define the “harmonic extension” operator QEH
 that maps the edge values 

ũ� = u�|EH
∈ H1∕2(EH) to u� ∈ H1(�) , through the relation in the first set of equation in 

(4). Here, we adopt the convention that if we write a tilde on the top of a function, it is the 
restriction of this function on the edge set. We have that u� = QEH

ũ� = QEH
ũ , since u� and u 

have the same edge values.
Then, let C(EH) be the space of continuous functions on EH . We consider the edge inter-

polation operator I
H
∶ H

1∕2(E
H
) ∩ C(E

H
) → H

1∕2(E
H
) ∩ C(E

H
) such that

where the edge function 𝜓̃i is linear on EH and satisfies 𝜓̃i(xj) = 𝛿ij . Note that by the con-
vention of our notation we have 𝜓i = QEH

𝜓̃i ∈ H1(𝛺) . It is worth noting that � ′
i
s are the 

basis functions used in the vanilla MsFEM.
With the interpolation operator, we can write

Now, the residue ũ − IHũ is zero at each interior node. This property allows us to localize 
the residue to each edge. Indeed, by an abuse of notation, we can write

IHũ =
∑

xi∈NH

ũ(xi)𝜓̃i,

QEH
ũ = QEH

(ũ − IHũ) +
∑

xi∈NH

u(xi)𝜓i.

(5)QEH
(ũ − IHũ) =

∑
e∈EH

QEH
(ũ − IHũ)|e,



	 Communications on Applied Mathematics and Computation

1 3

where we equate the function (ũ − IHũ)|e that is defined on e to its zero extension to EH , so 
that (ũ − IHũ)|e ∈ H1∕2(EH) and thus QEH

(ũ − IHũ)|e makes sense.
Therefore, we localize the approximation task of u� to QEH

(ũ − IHũ)|e , which is defined 
for each edge e.

Remark 2  Again, we discuss several theoretical concerns below.

•	 Once the condition in Remark 1 is satisfied, the extension operator QEH
 is well-defined 

because the local equation is elliptic.
•	 According to the comment in Remark 1, the solution u is continuous, so the nodal 

interpolation IHũ is well-defined.
•	 One can rigorously show that if we can approximate each local term with 

 then the global approximation error satisfies 

where Cmesh is a constant dependent on the mesh structure only. In our previous work [11, 
12], we formalized the approximation in the edge space via the H1∕2

00
(e) norm, which is 

equivalent to the H(�) norm here after the extension by QEH
 ; see Proposition 2.5 and The-

orem 2.6 in [11]. In this review paper, we explain the ideas using QEH
 rather than H1∕2

00
(e) , 

since the former is more concise in an algorithm-focused exposition. We call the step from 
local approximation to global approximation edge coupling.

3.4 � Exponentially Convergent SVD

Recall that by using the harmonic-bubble splitting and edge localization, we get the 
representation

The ExpMsFEM then relies on the oversampling and local SVD to get an exponentially 
convergent approximation of each QEH

(ũ − IHũ)|e . For each e, consider an oversampling 
domain we ⊃ e . Any domain containing e in the interior may be used, and as an illustrative 
example, we set

An illustration of this choice for a quadrilateral mesh is given in Fig. 1.
We can view (ũ − IHũ)|e as the image of an operator acting on u|�e

∈ H1(�e) . We 
denote this operator by Re such that QEH

(ũ − IHũ)|e = QEH
Re(u|𝜔e

) . Now, we apply the 
harmonic-bubble splitting in Sect. 3.2 to the domain �e , which leads to u|�e

= u�
�e

+ u�
�e

 . 
It follows that

‖QEH
(ũ − IHũ)�e − we‖H(𝛺) ⩽ 𝜖e,

‖QEH
(ũ − IHũ) −

�
e∈EH

we‖2H(𝛺)
⩽ Cmesh

�
e∈EH

𝜖2
e
,

(6)u = u� + u� =
∑
e∈EH

QEH
(ũ − IHũ)|e +

∑
xi∈NH

u(xi)𝜓i + u�.

�e =
⋃

{T ∈ TH ∶ T ∩ e ≠ ∅}.

(7)QEH
(ũ − IHũ)|e = QEH

Reu
�

𝜔e
+ QEH

Reu
�

𝜔e
.
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The term Reu
�

�e
 is a restriction of a harmonic part. As we mentioned at the beginning of 

this article, one can prove that the restriction operator acting on harmonic-type functions is 
of low approximation complexity. More precisely, consider the space of harmonic parts in 
�e , defined via

The space is equipped with the norm ‖ ⋅ ‖H(�e)
 . Then, one can show that the left singular 

values (in descending order) of the local operator

decays as �e,m ⩽ C exp(−bm
1

d+1 ) in dimension d, for some generic constant C, b independ-
ent of m and H. Equivalently, if we write the left singular vectors as ve,m ∈ H1(�) , which 
is local and supported in the neighboring elements of the edge e, then there exists some 
coefficient be,j such that

For more details, see Theorem 3.10 in [12]. Then, summing these local errors up, we get

where we used the fact that ‖u�
�e
‖H(�e)

= O(‖f‖L2(�e)
) by the elliptic estimate.

Combining the above  estimates with edge coupling in Remark 2, we get the representation

where u� ∶= u� +
∑

e∈EH
QEH

Reu
�

�e
 is a part that depends on f locally.

(8)
U(�e) ∶= {v ∈ H(�e)∶ −∇ ⋅ (A∇v) + Vv = 0 in �e,

A∇v ⋅ � = �v on �1 ∩ ��e}.

Q
E
H

R
e
∶ (U(�

e
), ‖ ⋅ ‖H(�

e
)) → (H(�), ‖ ⋅ ‖H(�))

(9)
������
QEH

Reu
�

�e
−

�
1⩽j⩽m

be,jve,j

������H(�)

⩽ C exp(−bm
1

d+1 )‖u�
�e
‖H(�e)

.

(10)

�
e∈EH

‖u�
�e
‖2
H(�e)

⩽ 2
�
e∈EH

(‖u��e
‖2
H(�e)

+ ‖u�
�e
‖2
H(�e)

)

= O(‖u‖2
H(�)

+ ‖f‖2
L2(�)

),

(11)

u = u� + u� =
�
e∈EH

�
1⩽j⩽m

be,jve,j +
�

xi∈NH

u(xi)�i + u�

+ O
�
exp(−bm

1

d+1 )
�‖u‖H(�) + ‖f‖L2(�)

��
,

Fig. 1   Illustration of oversampling domains. On the right, we use an edge connected to the upper boundary 
as an illustrating example
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Remark 3  We discuss several theoretical aspects and the implication of the above 
representation.

•	 The proof of the exponentially decaying singular values of QEH
Re is based on two 

steps. The first step is the iterative argument of Caccioppoli’s inequality, first pro-
posed in [2] and then refined in [31]. It shows that the singular values of the restric-
tion operator on U(�e) , which restricts a function from the original domain �e to a 
subdomain 𝜔∗ ⊃ e , decay nearly exponentially fast. The second step is based on a 
stability estimate of the operator QEH

Re acting on U(�∗) ; see Lemma 3.10 in [11] or 
Lemmas 6.1 and 6.2 in [12].

•	 We can understand that the oversampling technique is used to take advantage of the 
low complexity property of the restriction operator. Historically, the idea of over-
sampling was proposed in [22] to reduce the resonance error in the MsFEM.

•	 The remarkable thing about the representation in (11) is the exponentially decaying 
error bound. First, for elliptic equations with rough coefficients, the error bound 
implies that these basis functions can capture the behavior of the solution, which is 
a hard task for FEMs. Therefore, the ExpMsFEM overcomes the difficulty of rough 
coefficients. Second, for the Helmholtz equation, the stability constant of the solu-
tion operator can depend on k; indeed, this is the main cause of the pollution effect 
[6]. Denote the stability constant by Cstab(k) such that ‖u‖H(�) ⩽ Cstab(k)‖f‖L2(�) . A 
prevalent and reasonable assumption on the constant is that of polynomial growth, 
namely, Cstab(k) ⩽ C(1 + k� ) for some constants � and C; see, for example, [27]. In 
such case, we can further bound the error by 

Therefore, once the number of basis functions per edge m ∼ logd+1(k) (logarithmically 
on k only), the approximation error can be uniformly small for all k. It implies that the 
quantity �(S) in (3) is small, which is important in determining the error of Galerkin’s 
methods. In this sense, the ExpMsFEM overcomes the difficulty of the pollution effect 
by using basis functions whose number scales at most logd+1(k).

•	 The exponentially accurate representation in (11) will not be possible if we do not 
use terms dependent on the right-hand side. Indeed, using basis functions inde-
pendent of f, the optimal approximation error rate will be algebraic if the right-
hand side is in L2(�) only, due to well-known results in approximation theory (the 
Kolmogorov n-width [34, 43]); see also the complexity analysis of the Green func-
tion of Helmholtz’s equation [15]. From this perspective, we can understand that 
the ExpMsFEM breaks the Kolmogorov barrier by using nonlinear model reduction 
[42], i.e., the basis functions can depend on the input of the model, here the right-
hand side.

3.5 � The Solver Based on ExpMsFEM

Now, we can use the representation in (11) to solve the equation efficiently. First, we form 
�i, ve,j by computing the local extension QEH

𝜓̃i for each node and the top-m left singular 
vectors ve,j, 1 ⩽ j ⩽ m of the local operator QEH

Re for each e; problems on different nodes 
and edges are independent and parallelizable. These become our offline basis functions.

exp
�
−bm

1

d+1

�
(‖u‖H(�) + ‖f‖L2(�)) ⩽ exp

�
−bm

1

d+1

�
(C(1 + k� ) + 1)‖f‖L2(�).
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For any right-hand side f, we compute the online part u� by solving local linear equa-
tions involving f. This step can be parallelized.

Then, we form an effective equation for u − u� as

for any v ∈ H(�) . We solve the equation for u − u� using a Galerkin method. As an exam-
ple, using the Ritz-Galerkin method, we choose

and find a numerical solution uS ∈ S that satisfies

for any v ∈ S . The final numerical solution is given by uS + u� . We call u� the online part 
and uS the offline part since uS lies in a space that is independent of f.

Note that in the Galerkin method for solving uS , the stiffness matrix only needs to be 
assembled once and can be used for different f afterward. We can understand (12) as a 
reduced model of the original equation.

Remark 4  We discuss several theoretical aspects regarding the effectiveness of the above 
method.

•	 The accuracy of the numerical solution is due to the quasi-optimality property men-
tioned earlier in Sect. 3.1: once �(S) is small, the solution error is of the same order 
compared to the optimal approximation using the basis functions, which is exponen-
tially small according to the representation (11).

•	 When the solution is complex-valued, such as in the Helmholtz equations, we can use 
both the Ritz and Petrov versions of the Galerkin methods; for the former, if S ≠ S , we 
need to replace S by S + S ; see discussions in [12].

•	 One thing worth noting is that ‖u�‖H(�) is of order O(H), due to the standard elliptic 
estimate [11, 12]. Therefore, if we aim for O(H) accuracy only, we can ignore this part, 
and simply setting u� = 0 in the above algorithm will lead to a solution accurate up to 
O(H).

4 � Numerical Experiments

In this section, we present some numerical experiments to demonstrate the effectiveness of 
the ExpMsFEM. For all the experiments, we consider the domain � = [0, 1] × [0, 1] and 
discretize it by a uniform two-level quadrilateral mesh; see a fraction of this mesh in Fig. 2, 
where we also show an edge e and its oversampling domain �e in solid lines.

The coarse and fine mesh sizes are denoted by H and h, respectively.
For a given equation, we compute the reference solution uref using the classical 

FEM on the fine mesh with a sufficiently small h, which we choose to be h = 1∕1 024 . 
By a posteriori estimates, we can check that the fine mesh indeed resolves the cor-
responding problems; thus, the associated fine mesh solutions could serve as accurate 
reference solutions for all of our numerical examples. In our numerical computation, 

(12)a(u − u�, v) = (f , v)� − a(u�, v)

S = span {�i for xi ∈ NH , ve,j for 1 ⩽ j ⩽ m, e ∈ EH},

(13)a(uS, v) = (f , v)� − a(u�, v)
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we solve local problems that are required in the ExpMsFEM framework using the fine 
mesh. For detailed implementation, we refer to [11, 12].

Remark 5  (Accuracy on the discrete level) For simplicity of presentation, we do not pro-
vide the error analysis of the ExpMsFEM on the fully discrete level, where the accuracy 
of the local problems can depend on the resolution of the fine grid. For a detailed error 
estimate on the fully discrete level in the context of partition of unity methods, see, for 
example, [29, 30].

The accuracy of a numerical solution usol is computed by comparing it with the ref-
erence solution uref on the fine mesh. The accuracy will be measured both in the L2 
norm and the energy norm:

In Sect. 4.1, we consider an elliptic equation where the coefficient A(x) is periodic but con-
tains multiple scales. This example demonstrates the exponential accuracy of the ExpMs-
FEM. In Sect. 4.2, we consider an elliptic equation where A(x) is of high contrast. This 
example shows the robustness of the ExpMsFEM regarding the high contrast. In Sect. 4.3, 
an instance of Helmholtz’s equation with rough media and mixed boundary conditions is 
presented. This example illustrates the effectiveness of the ExpMsFEM in solving general 
indefinite Helmholtz’s equations.

4.1 � A Periodic Example with Multiple Spatial Scales

In the first example, we consider an elliptic problem ( V = 0 ) with multiple spatial scales. 
We choose coefficient A with five scales as follows:

(14)

⎧⎪⎪⎨⎪⎪⎩

eL2 =
‖uref − usol‖L2(�)

‖uref‖L2(�)

,

eH =
‖uref − usol‖H(�)

‖uref‖H(�)

.

Fine mesh

Coarse mesh

Fig. 2   Two level mesh: a fraction
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where x = (x1, x2) , �1 = 1∕5 , �2 = 1∕13 , �3 = 1∕17 , �4 = 1∕31 , and �5 = 1∕65 . We choose 
homogeneous Dirichlet boundary conditions, i.e., �2 = ∅ . We set f = −1.

In this example, we illustrate the exponential accuracy and the convergence rate with 
respect to the coarse mesh size H. We take H = 2−i , i = 3, 4,⋯ , 7 and m = 1, 2,⋯ , 6 for 
each H. The numerical results are shown in Fig. 3, where Nc = 1∕H.

We can see an exponential decay of errors for every coarse mesh size H. For the smaller 
H, the convergence is faster. This can be understood as a finite-resolution effect. For exam-
ple, when H = 1∕128 , there are only H∕h − 1 = 7 total degrees of freedom on each edge, 
so of course, m = 6 basis per edge would result in a very accurate solution.

4.2 � An Example with High Contrast Channels

In the second example, we consider an elliptic problem ( V = 0 ) with high contrast chan-
nels. Let

and the coefficient is defined as

Here, M is a parameter controlling the contrast. We visualize log10 A in the left plot of 
Fig. 4 for M = 106.

Again, we choose homogeneous Dirichlet boundary conditions, i.e., �2 = ∅ , with a 
non-constant right-hand side f (x) = x4

1
− x3

2
+ 1.

In this example, we illustrate the convergence rate w.r.t the contrast M. We take different 
M using the coarse mesh size H = 2−5 and m = 1, 2,⋯ , 7 . The numerical results are shown 
in Fig. 5.

(15)

A(x) =
1

6

(
1.1 + sin

(
2πx1∕�1

)

1.1 + sin
(
2πx2∕�1

) +
1.1 + sin

(
2πx2∕�2

)

1.1 + cos
(
2πx1∕�2

) +
1.1 + cos

(
2πx1∕�3

)

1.1 + sin
(
2πx2∕�3

)

+
1.1 + sin

(
2πx2∕�4

)

1.1 + cos
(
2πx1∕�4

) +
1.1 + cos

(
2πx1∕�5

)

1.1 + sin
(
2πx2∕�5

) + sin
(
4x2

1
x2
2

)
+ 1

)
,

X ∶= {(x1, x2) ∈ [0, 1]2, x1, x2 ∈ {0.2, 0.3,⋯ , 0.8}} ⊂ [0, 1]2,

A(x) =

{
1, if dist(x,X) ⩾ 0.015,

M, else.

Fig. 3   Numerical results for the periodic example. Left: eH versus m; right: e
L2

 versus m 
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We observe a consistently exponential error decay independent of the contrast. Thus, 
our method demonstrates the robustness with respect to the contrast A(x). An intuitive 
explanation for this robustness could be that every step in the ExpMsFEM is adaptive to 
A(x). For example, the singular value decay of the operator QEH

Re would have some robust-
ness regarding high contrasts in A(x) because both of the norms in the domain and image 
of the operator is A(x)-weighted. We leave the theoretical analysis of deriving A(x)-adapted 
estimates for future study.

Also, we would like to mention that the size h = 1∕1 024 of the fine mesh can actu-
ally resolve contrasts M = 24 and 26 only; for higher contrast, a posterior error analysis 
shows the reference solution on the fine mesh is not very accurate. However, we consist-
ently observe a small error in our solution compared to the fine mesh solution, even in the 
regime where the fine mesh solution itself is not accurate. This implies that the ExpMs-
FEM admits a very accurate dimension reduction of the equation on the fine mesh.

1.0

2.0

3.0

Fig. 4   Left: the contour of log10 A for the high contrast example; right: the contour of A for the rough media 
example
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Fig. 5   Numerical results for the high contrast example. Left: eH versus m; right: e
L2

 versus m 
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4.3 � An Example of Helmholtz Equation with Rough Field and Mixed Boundary

In the last example, we consider the Helmholtz equation. This example is the same as 
Example 3 in [12]. We present it here to demonstrate that our methods are effective for 
complicated coefficients and mixed boundary conditions.

We impose the homogeneous Dirichlet boundary condition on (x1, 0), x1 ∈ [0, 1] , the 
homogeneous Neumann boundary condition on (x1, 1), x1 ∈ [0, 1] , and the homogeneous 
Robin boundary condition on the other two parts of �� . We choose A(x) to be a realiza-
tion of some random field; more precisely, we set

where the field �(x) satisfies

Here, {�i,j, 0 ⩽ i, j ⩽ 27} are i.i.d. standard Gaussian random variables. In addition, a
11

=

(i + 1 − 2
7
x
1
)(j + 1 − 2

7
x
2
) , a21 = (27x1 − i)(j + 1 − 27x2) , a12 = (i + 1 − 27x1)(2

7x2 − j) , 
and a22 = (27x1 − i)(27x2 − j) are interpolating coefficients to make �(x) piecewise linear. A 
sample from this field is displayed in the right plot of Fig. 4.

Moreover, we also take V∕k2 and �∕ik as independent samples drawn from this ran-
dom field. We choose the wavenumber k = 25 , the right-hand side f (x1, x2) = x4

1
− x3

2
+ 1 , 

and the coarse mesh H = 2−5 . Again, we take m = 1, 2,⋯ , 7 and present the numerical 
results in Fig. 6.

Clearly, a nearly exponential rate of convergence is still observed for this challenging 
example.

(16)A(x) = |�(x)| + 0.5,

�(x) = a11�i,j + a21�i+1,j + a12�i,j+1 + a22�i+1,j+1, if x ∈
[
i

27
,
i + 1

27

)
×

[
j

27
,
j + 1

27

)
.

Fig. 6   Numerical results for the mixed boundary and rough field example. Left: eH versus m; right: e
L2

 ver-
sus m 
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5 � Discussions

In this section, we discuss related multiscale methods in the literature; for a more spe-
cific review under the context of the elliptic and Helmholtz equations, see [11, 12]. We 
also outline future possibilities and open questions about the ExpMsFEM at the end of 
this section.

5.1 � Related Literature

There is a vast amount of literature on multiscale methods and numerical homogenization.
Earlier work mainly focuses on structured A(x) such as in periodic media and with scale 

separation; some examples include the generalized finite element methods (GFEMs) [5], 
the MsFEM [14, 22, 23], the variational multiscale (VMS) methods  [25], and the hetero-
geneous multiscale method (HMM) [1].

Later on, people are interested in multiscale methods that can address more general 
rough coefficients that lie in L∞(�) only; see, for example, the work of optimal basis using 
partition of unity functions [2, 3, 30, 31], harmonic coordinates [39], local orthogonal 
decomposition (LOD) [17, 18, 26, 32, 33], Gamblets related approaches [10, 24, 36–38, 
40, 41], and generalizations of the MsFEM [13, 16, 21, 28]. Different methods differ in 
how to find an accurate function representation. In deriving the function representation in 
the ExpMsFEM, the solution is first decomposed into a harmonic part and a bubble part. 
For elliptic equations, this decomposition is the same as the orthogonal decomposition in 
previous work of the MsFEM [21] and approximate component mode synthesis [19, 20].

To the best of our knowledge, among all the previous work, the optimal basis frame-
work using partition of unity functions (and its variant) is the only one that achieves nearly 
exponential accuracy regarding the number of basis functions. Our ExpMsFEM [11, 12] 
is motivated by the argument of Caccioppoli’s inequality used in the optimal basis frame-
work. The ExpMsFEM is the first framework that achieves exponential accuracy without 
using partition of unity functions and is a direct generalization of the MsFEM.

We comment in more detail on the differences and similarities between the optimal 
basis framework and the ExpMsFEM. In the optimal basis framework, the exponentially 
accurate representation is obtained through the partition of unity functions rather than the 
edge localization and coupling in the ExpMsFEM. More precisely, one can write

where {�i}i are partitions of unity functions subordinate to an overlapped domain decom-
position {�i}i and u�

�i
, u�

�i
 are obtained by the harmonic-bubble splitting in �i . The part 

�iu
�

�i
 can be seen as a “restriction” of harmonic-type functions. Thus, the argument using 

Caccioppoli’s inequality implies that this part can be approximated by basis functions with 
a nearly exponential convergence rate.

Compared to (11), the representation (17) admits better geometric flexibility since by 
using partition of unity functions, such representation can work for problems in general 
dimensions. The representation (11) produced by the ExpMsFEM is tied to the mesh struc-
ture. When d = 2 , we have nodal and edge basis functions in the representation (11). When 
d ⩾ 3 , we need facial basis functions and so on to represent the solution; for details see 
Sect. 7 in [12]. In this sense, the ExpMsFEM removes the partition of unity functions in the 
overlapped domain decomposition but pays the design cost of using a more complicated 

(17)u =
∑
i

�iu =
∑
i

�iu
�

�i
+
∑
i

�iu
�

�i
,
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geometric structure in the non-overlapped domain decomposition. Nevertheless, the ben-
efit of non-overlapped domain decomposition is that the basis functions are more local-
ized since the local domain is smaller. Also, the ExpMsFEM does not have the additional 
parameter of the partition of unity functions. Some basic numerical comparisons between 
the ExpMsFEM and optimal basis using partition of unity functions are presented in [12]. 
We need a more in-depth comparison between the two approaches to identify their trade-
offs more clearly.

5.2 � Future Directions

To now, the ExpMsFEM has been successfully applied to solve elliptic and Helmholtz 
equations. Moving forward, one can extend this idea to advection-dominated diffusion 
problems, time-dependent problems such as Schrödinger’s equations, and many other lin-
ear equations. Extension to nonlinear equations appears to be nontrivial since the decom-
position used in the ExpMsFEM requires linearity of the equation. It could be interesting 
to explore the combination of the ExpMsFEM and the linearization to provide nonlinear 
homogenization of these equations.

For the current the ExpMsFEM framework, we observe its robustness regarding the 
high contrast in the media numerically (Sect. 4.2), but a rigorous understanding of such 
robustness is still lacking. Moreover, a discrete-level analysis of the ExpMsFEM could be 
helpful for its practical use.

In essence, both the ExpMsFEM and the optimal basis using partition of unity functions 
take advantage of the low approximation complexity structures of the restriction operator 
on harmonic-type functions. Finding other novel low complexity structures is crucial to 
advance multiscale computation and model reduction.

The ExpMsFEM and the optimal basis using partition of unity functions imply that non-
linear model reduction can break the Kolmogorov barrier and achieve remarkable exponen-
tial convergence. Embedding this idea to data-driven model reduction or operator learning 
also represents an exciting avenue for future work.
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