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ON STABILITY AND INSTABILITY OF C1,α SINGULAR SOLUTIONS TO

THE 3D EULER AND 2D BOUSSINESQ EQUATIONS

JIAJIE CHEN AND THOMAS Y. HOU

Abstract. Singularity formation of the 3D incompressible Euler equations is known to be
extremely challenging [14, 17, 27, 34, 40]. In [18] (see also [19]), Elgindi proved that the 3D
axisymmetric Euler equations with no swirl and C1,α initial velocity develops a finite time
singularity. Inspired by Elgindi’s work, we proved that the 3D axisymmetric Euler and 2D
Boussinesq equations with C1,α initial velocity and boundary develop a stable asymptotically
self-similar (or approximately self-similar) finite time singularity [8] in the same setting as
the Hou-Luo blowup scenario [38, 39]. On the other hand, the authors of [35, 52] recently
showed that blowup solutions to the 3D Euler equations are hydrodynamically unstable. The
instability results obtained in [35,52] require some strong regularity assumption on the initial
data, which is not satisfied by the C1,α velocity field. In this paper, we generalize the analysis
of [8,18,35,52] to show that the blowup solutions of the 3D Euler and 2D Boussinesq equations
with C1,α velocity are unstable under the notion of stability introduced in [35,52]. These two
seemingly contradictory results reflect the difference of the two approaches in studying the
stability of 3D Euler blowup solutions. The stability analysis of the blowup solution obtained
in [8,18] is based on the stability of a dynamically rescaled blowup profile in space and time,
which is nonlinear in nature. The linear stability analysis in [35, 52] is performed by directly
linearizing the 3D Euler equations around a blowup solution in the original variables. It does
not take into account the changes in the blowup time, the dynamic changes of the rescaling rate
of the perturbed blowup profile and the blowup exponent of the original 3D Euler equations
using a perturbed initial condition when there is an approximate self-similar blowup profile.
Such information has been used in an essential way in establishing the nonlinear stability of
the asymptotically self-similar blowup profile in [8, 18, 19].

1. Introduction

Whether the 3D incompressible Euler equations can develop a finite time singularity from
smooth initial data with finite energy is one of the most challenging open questions in nonlinear
partial differential equations [14, 17, 27, 34, 40]. In [38, 39], the authors provided convincing
numerical evidence that the 3D incompressible Euler equations with smooth initial data and
boundary develop a finite time singularity. This work has inspired a number of subsequent
theoretical studies,see e.g. [8–12,21,23,32,33]. Inspired by Elgindi’s seminal work on singularity
formation of the 3D axisymmetric Euler equations with no swirl and C1,α velocity [18], we
have proved rigorously that the axisymmetric Euler and the 2D Boussinesq equations with C1,α

initial velocity of finite energy and boundary develop a stable asymptotically self-similar (or
approximately self-similar) finite time singularity [8]. There has been some important progress
on singularity formation and small-scale creation in incompressible fluids. We refer to [17, 34]
for excellent surveys. On the other hand, in two recent papers [35,52], the authors showed that
blow-up solutions to the 3D Euler equations are hydrodynamically unstable. The instability
results obtained in [35,52] require some strong regularity assumption on the initial data, which
is not satisfied by the C1,α velocity. In this paper, we generalize the analysis of [8,18,19,35,52] to
prove that the C1,α blowup solutions of the 3D Euler and the 2D Boussinesq equations [8,18,19]
are unstable under the notion of stability introduced in [35, 52].

These two seemingly contradictory results reflect the difference of the two approaches in
studying the stability of singular solutions to the 3D Euler equations. The stability analysis
in [35, 52] is based on the linearized Euler equations around a blowup solution in the original
physical variables. However, the perturbed solution of the linearized Euler equations is com-
pletely different from the perturbed solution of the original 3D Euler equations using a perturbed
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initial condition. If the perturbed initial condition leads to a blowup time T ∗ that is smaller
than the blowup time T of the background blowup solution, i.e. T ∗ < T , the perturbed solution
of the linearized Euler equations would not be able to capture this effect and will remain regular
for t ∈ [T ∗, T ). On the other hand, if T ∗ > T , then the perturbed solution of the linearized
Euler equations cannot be extended beyond T due to the singularity of the background singular
solution. But the solution of the original Euler equations is still regular for t ∈ [T, T ∗). Thus, the
linearized Euler equations do not capture the singular behavior of the original Euler equations
close to the blowup time due to a small perturbation in the initial data. This seems to be one
of the main sources of instability induced by the framework of studying stability of a singular
solution to the 3D Euler equations using the linearized Euler equations. Note that the blowup
time T ∗ depends nonlinearly on the perturbed initial data [8, 19].

The nonlinear stability of the asymptotically self-similar (or approximately self-similar) blowup
profile using the dynamic rescaling formulation or the modulation technique in [8,18,19] is very
different from the linear stability performed in [35, 52]. The dynamic rescaling formulation or
the modulation technique involve a nonlinear transform of the physical equations by rescaling
the solution dynamically in the spatial and the temporal variables. The dynamic rescaling for-
mulation allows us to incorporate the changes of the blowup time, the blowup profile and the
blowup exponent (see β below) by choosing suitable rescaling parameters that come from the
scaling symmetry of (1.1) or (1.5). Since the linearization around an approximate blowup profile
is performed after we make this nonlinear transform, the linear stability under this framework
is nonlinear in nature.

We remark that the authors of [35] also studied the profile instability of a self-similar blowup
solution to the 3D Euler equations in [35]. More specifically, given a background self-similar
blowup solution u(x, t) = (T − t)αU(t, x

(T−t)β
), the authors assumed that the perturbed solution

of the linearized equation (1.2) takes the same form v(x, t) = (T − t)αV (t, x
(T−t)β

). Thus, the

perturbed solution of the linearized equation does not capture the change in the blowup time and
the dynamic changes of the rescaling rate of the perturbed profile and the blowup exponent β
of the original 3D Euler equations using a perturbed initial condition. Therefore, the perturbed
profile of the linearized Euler equations cannot be used to study the stability of the self-similar
blowup profile of the original 3D Euler equations close to the blowup time using a perturbed
initial condition.

The 3D incompressible Euler equations read

(1.1) ut + u · ∇u = −∇p, ∇ · u = 0,

where u is the velocity field and p is the scalar pressure. In [52], the authors studied the stability
of a singular solution u(t) of the 3D Euler equations by analyzing the growth of the perturbation
v(t) using the following linearized Euler equations around u(t):

(1.2) vt + u · ∇v + v · ∇u+∇q = 0, ∇ · v = 0.

In a subsequent paper [35], the authors generalized their earlier results to the axisymmetric
Euler equations. Recall that a vector field f(x) is axisymmetric [40] if it can be represented as

(1.3) f(x) = f r(r, z)er + fϑ(r, z)eϑ + fz(r, z)ez,

where (r, ϑ, z) are the cylindrical coordinate with basis er = (cosϑ, sinϑ, 0), eϑ = (− sinϑ, cosϑ, 0),
ez = (0, 0, 1). For a solution u with axisymmetric initial data u0, the axisymmetry property is
preserved dynamically by the Euler equations (1.1).

1.1. Main results. We consider singular solutions u to (1.1) in a domain D with the following
symmetry in z

(Sym) u = urer + uϑeϑ + uzez, ur, uϑ are even in z, uz is odd in z.

Denote by X the set of axisymmetric functions with symmetry given in (Sym), H1
X(D) =

H1(D) ∩X . Let v be the solution of the linearized Euler equations (1.2) with initial data v0.
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Following [35], we define the growth factors λp,σ,D(t) and λ
sym
p,σ,D(t) as follows:

(1.4)

λp,σ,D(t) = sup
v0∈H1(D),v0 6=0

||r−σv(t, ·)||Lp(D)

||r−σv0||Lp(D)
, λsymp,σ,D(t) = sup

v0∈H1
X(D),v0 6=0

||r−σv(t, ·)||Lp(D)

||r−σv0||Lp(D)
.

Note that λsymp,σ (t) ≤ λp,σ(t) since H
1
X(D) is a subclass of axisymmetric functions in H1(D).

In the first main result, we consider (1.1) in a cylinder D = {(r, z) : r ≤ 1, z ∈ T} periodic in
z (axial direction) with period 2, where r is the radial variable and T = R/(2Z). This setting is
the same as that in [8, 38, 39]. We prove that the blowup solution constructed in [8] is linearly
unstable under the notion of stability introduced in [35], even in the symmetry class (Sym).

Theorem 1. There exists α0 > 0 such that for any 0 < α < α0, the 3D axisymmetric Euler
equations (1.1) in the cylinder (r, z) ∈ [0, 1] × T develops a singularity at finite time T∗ from
some C1,α initial data u0 with finite energy. Moreover, there exists R2,α < 1

4 , such that the

solution u (1.3) satisfies ur, uz, uϑ ∈ L∞([0, T ], C50(Σ)) for any compact domain Σ ⊂ {(r, z) :
r ∈ (0, 1), z 6= 0} ∩B(1,0)(R2,α) and T < T∗. For any p ∈ [1,∞) and σ ∈ R, we have

lim
t→T∗

λsymp,σ,D(t) = ∞.

Note that the range of σ is larger than that in [35]. We can prove the whole range of σ since
the singular solution [8] is supported near (r, z) = (1, 0), which allows us to construct a unstable
solution supported near (r, z) = (1, 0). Thus, the weight r−σ in (1.4) is essentially equal to 1.

In the second main result, we consider the singular solution in R3 constructed by Elgindi [18]
(see also [19]) and prove a similar instability result for a smaller range of parameter σ < −1.

Theorem 2. There exists α0 > 0 such that for any 0 < α < α0, the 3D axisymmetric Euler
equations (1.1) in R3 develops a singularity at finite time T∗ from some C1,α initial data u0

with finite energy and without swirl. Moreover, the solution u (1.3) satisfies uϑ ≡ 0, ur, uz ∈
L∞([0, T ], C50(Σ)) for any compact domain Σ ⊂ {(r, z) : r > 0, z 6= 0} and T < T∗. For any

p ∈ (2,∞) and σ ∈ (− 2(p−1)
p ,−1), we have

lim
t→T∗

λsymp,σ,R3(t) = ∞.

Note that for p ∈ [1, 2], the interval (− 2(p−1)
p ,−1) is empty.

Next, we generalize the instability results to the 2D Boussinesq equations in R+
2

(1.5) ωt + u · ∇ω = θx, θt + u · ∇θ = 0,

where the velocity field u = (u, v)T : R2
+ × [0, T ) → R2

+ is determined via the Biot-Savart law

(1.6) −∆ψ = ω, u = −ψy, v = ψx,

with no flow boundary condition v(x, 0) = 0. Given a singular solution (θ,u), the linearized
equations of (1.5) in the velocity-density formulation around (θ,u) read

(1.7)
∂tη + u · ∇η + v · ∇θ = 0,

∂tv + u · ∇v + v · ∇u+∇q = −(0, η)T , div v = 0.

Denote w = (η,v) and define

γsymp (T ) = sup
||w0||Lp≤1

||w||Lp , with ||w||Lp ∼ ||η||Lp + ||v||Lp ,

with the symmetry property that v1(x, y) is odd in x and v2(x, y), η0 are even in x.
We have the following instability result for the singular solution constructed in [8].

Theorem 3. There exists α0 > 0 such that for 0 < α < α0, the 2D Boussinesq equations (1.5)
in D = R+

2 develops a singularity at finite time T∗ from some initial data ω0 ∈ Cαc (R
2
+), θ0 ∈

C1,α
c (R2

+). The initial data satisfy that ω0(x, y) is odd in x, θ0(x, y) is even in x, and u0 has
finite energy ||u0||2 < +∞. Moreover, the solution satisfies (u, θ) ∈ L∞([0, T ], C50(Σ)) for any
T < T∗ and any compact domain Σ ⊂ {(x, y) : x 6= 0, y > 0}. For any p ∈ (1,∞), we have

lim
t→T∗

γsymp (t) = ∞.
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For the same C1,α blowup solution to these equations in Theorems 1-3 , stability of the
asymptotically (or approximately) self-similar blowup profile has been established in [8, 18, 19]
using the dynamic rescaling formulation [36, 43] or the modulation technique [31, 47].

1.2. Comparison of the stability and instability results. Given that the same blowup
solution of the 3D Euler equations can be both linearly unstable under one definition and non-
linearly stable under a different definition, it is important to have a better understanding how
we define stability and how to quantify instability. First of all, we would like to emphasize that
the instability results in Theorems 1-3 measure the absolute instability, i.e. the growth of the
perturbation relative to the initial perturbation. The fact that instability develops using the lin-
earized equation is not due to the violation of certain symmetry conditions for the perturbation.
In fact, the perturbation in Theorems 1-3 satisfies the same symmetry as the blowup solution,
e.g., (Sym). This rapid growth is not surprising since the background singular solution u blows
up and contributes to a singular forcing term v · ∇u to the linearized equations (1.2). Such
instability is quite common in several nonlinear PDEs. In Section 2, we will use a nonlinear
PDE of Riccati type and the inviscid Burgers’ equation to show that a similar forcing term
generates linear instability for these equations.

Since we consider the stability of a blowup solution, we believe that it is more reasonable to
study the relative stability or instability, which measures the relative growth of the perturbation
compared with the growth of the background singular solution. In Section 2.4, we use a nonlinear
PDE of Riccati-type to illustrate that the blowup profile is very unstable when we compare
the growth of its perturbation relative to its initial perturbation using the linearized equation
similar to (1.2). In fact, the growth rate of the perturbation can be much faster than that of the
background blowup solution. On the other hand, by incorporating the changes of the blowup
time, the blowup profile and the blowup exponent via the dynamic rescaling formulation, we
can establish the nonlinear stability of the blowup solution. This stability results show that the
relative growth of the perturbed profile compared with the growth of the background blowup
profile remains small up to the blowup time.

More importantly, the nonlinear stability results presented in [8, 18, 19] quantify the relative
stability: for a small initial perturbation to the blowup profile, some weighted norm X of the
perturbation remains relatively small up to the blowup time. These estimates and the embedding
inequalities imply that the growth of the perturbation of the vorticity ||ω̃||L∞ remains much
smaller than the growth of the blowup solution ||ω||L∞ up to the blowup time. The L∞ norm
of the vorticity is of fundamental importance since it controls the blowup of (1.1). Moreover,
this stability result implies that for a small initial perturbation, the change of the blowup time
T∗ is very small. Thus, if a blowup solution has stability similar to that obtained in [8, 18, 19],
one can perform reliable numerical computations to provide compelling evidence of finite time
blowup despite unavoidable numerical errors [28–30,38, 39].

Studying stability of the blowup based on the self-similar variables, dynamic rescaling for-
mulation, or the modulation technique has been used in many other equations, such as the
nonlinear heat equations [47], the Burgers’ equation [13], the complex Ginzburg-Landau equa-
tion [42,50], the nonlinear Schrödinger equation [44], the generalized KdV equation [41], and the
compressible Euler equations [2, 3]. On the other hand, there are also some instability results
of the blowup based on these approaches. For example, the authors in [13] proved that many
blowup profiles of the 1D Burgers’ equation have a finite number of unstable directions. See also
the blowup of the nonlinear Schrödinger equation [46] and the blowup of compressible fluids [45]
with finite many potential unstable directions.

1.3. Main ideas in the instability analysis. There are several main ideas in proving the main
instability results stated in Theorems 1, 2. One of the main difficulties in proving Theorems 1,
2 is to relax the regularity assumptions in the arguments [35, 52] by using the properties of the
singular solutions in [8, 18]. We then construct an axisymmetric approximate solution to (1.2)
and follow the arguments in [35] to prove the main theorems.

For the 2D Boussinesq equations, we use ideas similar to the 3D Euler equations to relax the
regularity assumption in [51] and then apply the argument in [51] to prove Theorem 3.
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Relaxing the regularity assumption. In [35], the regularity assumption u ∈ C0([0, T ), Hs)∩
C1([0, T ), Hs−1) with s > 7

2 is to ensure
(a) the solvability of the bicharacteristics-amplitude ODE system [25, 35, 52];
(b) that the poloidal component of the vorticity ωp = ωrer + ωzez satisfies 1

raωp ∈ L∞ for
some a > 0, which is used in [35] to connect the blowup criteria with the instability.

To relax the regularity assumption for (a), we make an important observation that the singular
solution u constructed in [8,18] is smooth away from the symmetry axis and the boundary. The
C1,α low regularity is used essentially near the singularity, the symmetry axis, and the boundary
to weaken the advection. The higher-order interior regularity of the solution u can be propagated
by using careful higher-order weighted energy estimates and the elliptic estimates with weights
degenerated near the symmetry axis and the boundary [8, 18]. In particular, in a compact
interior domain, the weighted energy norms are comparable to the standard Sobolev norms,
which allows us to establish higher-order interior regularity of the solution using the embedding
inequalities. See Theorems 7-9.

Using the higher-order interior regularity, we can solve the bicharacteristics-amplitude ODE
system, which is local in nature, in the interior of the domain and construct smooth solution to
the modified bicharacteristics-amplitude ODE system. See Lemma 3.2 and Proposition 3.4 .

Remark 1.1. In [8], we proved the blowup results for the 3D axisymmetric Euler equations with
initial data (uϑ0 )

2, ur0, u
z
0 ∈ C1,α and ωϑ0 ∈ Cα. Though the velocity ur, uz in the axisymmetric

setting is C1,α, our interpretation that the velocity is C1,α is not correct since uϑ is not C1,α.
This oversight can be fixed easily with minor changes in the construction of the approximate
steady state and the truncation of the approximate steady state. These changes do not affect
the nonlinear stability estimates of the 3D Euler equations, see the update arXiv version of [8].

Blowup quantities. An important step in [35,52] is to show that the growth factor λp,σ (1.4)
controls ||ω||∞, which blows up for a singular solution [1]. The singular solutions in [8, 18] are
self-similar or approximately self-similar. In addition to ||ω||∞, there are several other blowup
quantities. By comparing some of these blowup quantities and the growth factor λp,σ (1.4), we
can simplify the proof in [35] and further relax some constraints. For example, in the proof of
Theorem 1, we use the property that ||ωp||∞ (the poloidal component) blows up and thus do
not rely on the blowup criterion on ||ωp/ra||∞ for some a > 0 established in [35]. This relaxes
the condition (b).

The singularity considered in [18] develops near the axis r = 0 and has zero swirl uθ ≡ 0,
which implies ωp ≡ 0. Thus we cannot follow the argument in [35] to prove Theorem 2. Instead,
we use the bicharacteristics-amplitude ODE system and the flow structure near the singularity
in [18] to show that the growth λσ,p(t) controls another blowup quantity.

Axisymmetric velocity. Another important step in proving Theorems 1 and 2 is to construct
an axisymmetric solution to (1.2). We remark that the initial data of (1.2) constructed in [35]
is not axisymmetric under the canonical notion (1.3) [40], see Remark 3.5 for more discussions.
We use the PDE (Eulerian) form of the bicharacteristics-amplitude ODE system to construct
the amplitude b(t, x) and the phase S(t, x) in the WKB construction of the approximate solution
to (1.2). The initial data b(0, x), ξ(0, x) are axisymmetric flows in the whole domain, which are
constructed by extending some constant initial data b0, ξ0 = ∇S0 ∈ R3 of the bicharacteristics-
amplitude ODE system. The axisymmetry properties of b(t, x), ξ(t, x) are preserved dynamically
by the equations. We further show that b(t, x) controls the solution to the bicharacteristics-
amplitude ODE system and captures the growth of the vorticity. Based on these functions, we
construct the axisymmetric velocity using the formula in [35, 52].

Symmetry of the unstable solution. The singular solutions constructed in [8, 18] are sym-
metric with respect to some axis, e.g., (Sym), and the flow does not cross the symmetry axis
or the symmetry plane. This allows us to first construct unstable solution in the upper half
domain following [35], and then extend it naturally to a symmetric solution to the linearized
Euler equations using linear superposition. Therefore, we can further restrict the perturbation
in (1.4) to the natural symmetry class.
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The rest of the paper is organized as follows. In Section 2, we use several nonlinear PDEs,
including a simple nonlinear PDE of Riccati type and the inviscid Burgers’ equation, to demon-
strate the difference between the notion of stability introduced in [35,52] and the stability based
on dynamically rescaling formulation or modulation technique. Section 3 is devoted to prove
the main theorems of this paper. Some important properties that we use in proving the main
theorems will be established for the 2D Boussinesq equations in Section 4 and for the 3D Euler
equations in Sections 5, respectively. Some technical lemmas are deferred to the Appendix.

2. Comparison of stability vs instability through several nonlinear PDEs

In this section, we will use several examples to demonstrate that under the notion of stability
introduced in [52], linear instability of a blowup solution is quite common in several nonlin-
ear equations, even for those nonlinear equations whose blowup solutions can be shown to be
nonlinearly stable using a suitable functional space and the dynamic rescaling formulation.

2.1. The 3D Euler equations. We first consider the 3D Euler equations. Suppose that u(x, t)
is a singular solution of the 3D Euler equations that blows up at a finite time T with ||u||L2 <
+∞. Clearly, we have ∂iu0 6= 0 for all i. If ∂iu0 ≡ 0 for some i, the initial velocity u0 would
have reduced to the two dimensional Euler equations, which could not blow up in a finite time.

For a domain without boundary, e.g. T3 or R3, the linearized equation (1.2) has exact
solutions v = ∂iu for i = 1, 2, 3, which was observed in [52] for the Navier Stokes equations.
Suppose that X is some functional space equipped with a norm that is stronger than the L∞

norm, e.g. X = L∞, Ck,α, k ≥ 0, α ∈ (0, 1), or X = Hs, s > 3
2 , and it satisfies ∇u0 ∈ X . Since∫ t

0 ||∇u(s)||∞ds controls the blowup of the solution, we obtain

∞ = lim sup
t→T

3∑

i=1

||∂iu(t)||L∞

||∂iu0||X
. lim sup

t→T

3∑

i=1

||∂iu(t)||X
||∂iu0||X

. lim sup
t→T

sup
v0∈X,v0 6=0

||v(t)||X
||v0||X

.

Under the notion of stability introduced in [52], the blowup is linearly unstable in the norm of
X . Yet, this instability result is a direct consequence of the blowup criterion and does not use
further properties of the blowup solution, e.g., the blowup profile and the blowup exponent.

2.2. 1D models for the 3D Euler equations. Consider the De Gregorio model [15, 16] and
the generalized Constantin-Lax-Majda model [49]

(2.1) ωt + auωx = uxω, ux(ω) = Hω, x ∈ R or S1,

where H is the Hilbert transform and a is a parameter. If a = 1, (2.1) becomes the De Gregorio
model. We consider the following linearized equation for a singular solution ω̄(t) that develops
a finite time singularity at T

(2.2) ∂tω + aūωx + auω̄x = ūxω + uxω̄, ux = Hω.

It is easy to see that ω = ∂xω̄ is a solution to (2.2). Following [52], we introduce the growth
factor

(2.3) λp(t) , sup
ω0∈Lp,ω0 6=0

||ω(t)||p
||ω0||p

, p ∈ (1,∞).

For a = 1, in a joint work with Huang [10], we constructed a finite time blowup of the De
Gregorio model ((2.1) with a = 1) from C∞

c initial data. The singular solution satisfies

ω̄(x, t) = Cω(t)
−1Ω(Cω(t)x, t), Cω(0) = 1, lim

t→T
Cω(t) = 0, Ω(x, t) = Ω̄(x) + Ω̃(x, t),

where Cω(t) is decreasing, Ω(·, t) ∈ C∞, Ω̄ is the approximate self-similar profile, and Ω̃(x, t) is
a small perturbation. In particular, the estimates in [10] imply

|Ω̃(x, t)| . |x|3/2, |Ω̄(x) −Ax| . x2
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for some A 6= 0, where the implicit constants are time-independent. Therefore, for some small
δ > 0, we get |Ω(δ, t)| ≥ A

2 δ > 0 for t ∈ [0, T ). For any p ∈ [1,∞), we obtain

||∂xω̄||Lp = Cω(t)
−1/p||Ωx(·, t)||p &p Cω(t)−1/p

∫ δ

0

|Ωx(y, t)|dy &p Cω(t)
−1/p|Ω(δ, t)| &p Cω(t)−1/pAδ.

Since ||∂xω̄0||Lp 6= 0 and Cω(t) → 0 as t→ T , we yield λp(t) → ∞ (2.3) as t→ T .
Similarly, we can obtain that the smooth blowup solutions of (2.1) on R with small |a| [10,22],

on R with a close to 1
2 [4], and on S1 with a slightly less than 1 [6] are linearly unstable in the

Lp norm with p ∈ [1,∞) under the notion of stability introduced in [52].
On the other hand, nonlinear stability of these blowup solutions in some weighted H1 norms

has been established in [4, 6, 10, 20] using the dynamic rescaling formulation [36, 43]. The non-
linear stability in [4, 6, 10, 20] is established by analyzing the stability of the asymptotically (or
approximate) self-similar blowup profile, which is very different from the linear stability in [52].

Similar discussions on the stability of the blowup solution in the dynamic rescaling equations
and the instability of the blowup solution in the linearized equation apply to the singular solution
of De Gregorio model on S1 [5] and of the Hou-Luo model [9].

2.3. A nonlinear Riccati PDE and the inviscid Burgers’ equation. In the next two
subsections, we consider the blowup solutions of the inviscid Burgers’ equation

(2.4) ∂tu+ uux = 0, x ∈ R

and a nonlinear PDE of Riccati type

(2.5) ∂tu(t, x) = u2(t, x), x ∈ R.

We will show that the blowup solutions of these two nonlinear PDEs are unstable under the
notion of stability introduced in [52]. See Theorems 4, 5. On the other hand, using the dynamic
rescaling formulation, we can prove the nonlinear stability of the blowup solutions to (2.5) in
Theorem 6. In Section 2.4, we will use (2.5) to illustrate the importance of studying the stability
of the asymptotically (or approximate) self-similar blowup profile using suitable rescaling and
renormalization rather than studying the stability of the blowup solution itself.

Following [52], we define the growth factor

(2.6) λp(t) = sup
v0 6=0,v0∈Lp

||v(t)||Lp

||v0||Lp

for the solution v to the linearized equations of (2.4) or (2.5) around a singular solution.
We first consider the Burgers’ equation. It is well-known that (2.4) blows up (develops a

shock) in finite time T for initial data u0 ∈ C∞
c satisfying u0(0) = 0 and that ∂xu0 is minimal

at 0 with ∂xu0(0) < 0. Let v be a solution to the linearized equation of (2.4) around the blowup
solution u

(2.7) vt + ∂x(uv) = vt + uvx + uxv = 0.

It has been shown in [52] that the blowup is linearly stable in L1 in the sense that λp(t) ≤ 1
(2.6) up to the blowup time. However, this stability result does not generalize to Lp with p > 1.
In particular, we have the following instability result.

Theorem 4. Suppose that the initial data u0 ∈ C1 of (2.4) satisfies that u0(0) = 0, ∂xu0 is
minimal at 0 with ∂xu0(0) < 0. Then the solution u blows up in finite time T∗ = − 1

u0,x(0)
.

Moreover, for any p ∈ (1,∞), we have

lim
t→T∗

λp(t) → ∞.

Since the linearized equation (2.7) contains a singular forcing term uxv, it is not surprising
that v(t) can blow up in some Lp norm. In the following proof, since the equation is local, we
localize the perturbation v to the region where −ux blows up to show that v can grow rapidly.

We remark that the stability of the blowup of (2.4) has been studied in details in [13] using
the modulation technique. The stability of the blowup of (2.4) has been used to establish shock
formation in the 2D and the 3D compressible Euler equations [2, 3].
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Proof. Fix T < T∗ = − 1
u0,x(0)

= 1
|u0,x(0)|

. It is easy to obtain that u(t, 0) = 0 for any t < T∗.

Note that ux(t, 0) satisfies the ODE

(2.8) ∂tux(t, 0) = −(ux(t, 0))
2, u0,x(0) < 0, ux(t, 0) =

−|u0,x(0)|
1− t|u0,x(0)|

= − 1

T∗ − t
,

where we have used T∗ = |u0,x(0)|−1 in the last equality. It follows the blowup result and
ux(t, 0) ≤ u0,x(0) < 0. Since u(t) ∈ C0([0, T ], C1), there exists δ > 0 such that

(2.9) ux(t, x) ≥ −1

2
ux(t, 0) > 0, x ∈ [−δ, δ],

for any t ≤ T , which implies

(2.10) u(t, x) ≤ 0, x ∈ [0, δ], u(t, x) ≥ 0, x ∈ [−δ, 0],
for any t ≤ T . Consider v0 ∈ C∞, v0 6= 0, supp(v0) ⊂ [−δ, δ]. Due to (2.10), supp(v(t)) remains
in [−δ, δ] for t ≤ T . Performing Lp estimate on (2.7) and using integration by parts, we obtain

1

p

d

dt
||v||pLp =

∫

R

−(uv)x · |v|p−2vdx =

∫

R

−ux|v|p − uvx|v|p−2vdx =

∫

R

−ux|v|p +
1

p
ux|v|pdx.

Since supp(v(t)) ⊂ [−δ, δ], using (2.9), we further obtain

1

p

d

dt
||v||pLp = (1− 1

p
)

∫

[−δ,δ]

−ux|v|pdx ≥ (1− 1

p
)
−ux(t, 0)

2

∫

[−δ,δ]

|v|pdx = (1− 1

p
)
−ux(t, 0)

2
||v||pLp .

Solving the above ODE and using (2.8), we prove

||v(T )||Lp ≥ ||v0||Lp exp
(1
2
(1− 1

p
)

∫ T

0

−ux(t, 0)dt
)
= ||v0||Lp exp

(
− 1

2
(1− 1

p
) log(T∗ − T )

)
.

From the definition of λp(t), we yield

λp(T ) ≥ exp
(
− 1

2
(1− 1

p
) log(T∗ − T )

)
= (T∗ − T )−

1
2 (1−

1
p ).

Since p > 1, taking T → T∗, we obtain the desired result. �

2.4. The Riccati-type PDE. It is easy to show that if the initial data u0 of (2.5) satisfies
max(u0) > 0, the PDE blows up at finite time T (u0) = 1

max(u0)
. Moreover, the equation can

develop a self-similar blowup

(2.11) ū(t, x) =
1

1− t+ x2
=

1

1− t
Ū(

x

(1 − t)1/2
), Ū =

1

1 + x2
.

The linearized equation around the blowup solution ū (2.5) reads

(2.12) ∂tv = 2ūv.

Denote Pε

(2.13) Pε , {u : u = C(Ū + V0), C > 0, |V0| ≤ εmin(1, |x|3)}.
We will study the stability of the blowup solution of (2.5) for initial data in Pε. Let us motivate
the class Pε. For initial data u0 close to (2.11), we have u0(x) = u0(0)u1(x) with u1(0) = 1
and u1 being a perturbation of Ū . Since the solution u first blows up at argmax u0 and Ū(x) =
1− x2 + O(x4) near x = 0, we require that V0 vanishes to higher order O(|x|3) near x = 0 and
ε is small so that the maximum of u0 does not shift. The vanishing order can be relaxed to
|v| . |x|2+δ for any δ > 0, and the stability result similar to that in Theorem 6 holds.

To further study the instability of the blowup profile Ū (2.11) to (2.5), we consider the
following ansatz of the linearized solution (2.12) and the rescaled growth factor Λp(t) similar to
that for the 3D Euler equations in [35]

(2.14) v(t, x) =
1

1− t
V (

x

(1 − t)β
, t), β =

1

2
, Λp(v, t) =

||V (t)||Lp

||V0||Lp

.
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Since the blowup exponent 1
1−t is factored out, Λp can be seen as measuring the relative linear

instability between V and the background profile Ū (2.11), while λp (2.13) measures the absolute
linear instability. We have the following instability results.

Theorem 5. For any v0 ∈ C0
c with v0(0) > 0 and any p ∈ [1,∞], we have

||v(t)||Lp & C(v0, p)(1− t)−2+ 1
2p , lim

t→1
||v(t)||p = ∞, lim

t→1

||v(t)||Lp

||u(t)||Lp

= ∞.

As a result, we have λp(t) → ∞,Λp(v, t) → ∞ as t→ 1.

In the above theorem, we can choose perturbation v0 with u0 = ū + v0 ∈ Pε (2.13). On the
other hand, we can prove stability of the blowup for u0 ∈ Pε in Theorem 6.

We remark that the above instability results are not surprising since ū in the forcing term ūv
(2.12) blows up. The problems of using the ansatz (2.14) to study the stability of the blowup
profile Ū (2.11) are the following. For initial data u0 perturbed from ū, we expect that the
blowup time T changes and the blowup exponent β in (2.14) can also change. Moreover, to
observe the blowup profile, we need to rescale the solution using a different rescaling rate in the
spatial variable. These lead to the following ansatz of the singular solution u from initial data
u0 near ū

(2.15) u(x, t) =
1

T̃ − t
U
(
µ

x

(T̃ − t)β̃
, t
)
, β̃ ≈ 1

2
, T̃ ≈ 1, µ ≈ 1, U ≈ Ū .

However, in (2.14), the parameter T̃ , β̃, µ are all fixed. Moreover, in the above ansatz, due

to the composition, the parameters β̃, T̃ , µ depend on the initial data and perturbation in a
nonlinear fashion. Thus, they cannot be captured by the linearized equation (2.12) around ū.
Without incorporating the perturbation of these parameters, it is not expected to observe the
stability of the profile.

Remark 2.1. There is some progress on modulating the instability caused by the change of the
blowup time T (u) using the Calkin semi-norm 1

(2.16) λp(t) = inf
K compact operator

sup
||v0||Lp≤1

||v(t)−Kv0||Lp .

Suppose that u is a solution that blows up at T∗, and uε is another solution from a perturbed
initial data u0

ε = u+ εv0 and blows up at T ∗
ε . Considering the change of the blowup time, if ε

is very small, one would expect that the solution v(t) to (1.2) takes the form

v(t, x) ≈ uε(t, x) − u(t+ T ∗ − T ∗
ε , x)

ε
=

uε(t, x) − u(t, x)

ε
+
u(t, x)− u(t+ T ∗ − T ∗

ε , x)

ε
, I+II.

The first part measures the change of the profile, and the second part measures the effect due
to the change of the blowup time. Using the Taylor expansion, for small ε, one has

II ≈ c[v0]∂tu, c[v0] ≈
T ∗
ε − T ∗

ε
.

If u blows up with a rate (T∗−t)−α, then ∂tu can blow up even faster with a rate (T∗−t)−α−1.
This can lead to the fast growth of v(t, x). If c[v0] is a linear operator of v0, since ∂tu(t, x) is
a given function, then c(v0)∂tu is a rank-one operator. Therefore, to modulate this effect, the
speaker proposed to subtract v(t) by Kv0 for a compact operator K, and then v(t) − Kv0
measures the more interesting quantity I. See more details from the link in the footnote.

However, since the blowup time T (u0) depends nonlinearly on the initial data u0, c[v0] may
not be linear in v0. For example, in (2.5), the blowup time is T (u0) =

1
max(maxu0,0)

. Consider

initial data ū0 with ū0(0) = 1 and ū0(x) < 1 for x 6= 0. For any perturbation v0, we yield

lim
ε→0

−T (ū0 + εv0) + T (ū0)

ε
= lim

ε→0

max(ū0 + εv0)− 1

ε ·max(ū0 + εv0)
= lim
ε→0

max(ū0 + εv0)− 1

ε
= max(v0(0), 0).

1Pages 9 and 13 in the slide of the talk ”Instability of finite time blow-ups for incompressible Euler” by
Alexis Vasseur in New Mechanisms for Regularity, Singularity, and Long Time Dynamics in Fluid Equations.
https://www.birs.ca/events/2021/5-day-workshops/21w5110/videos/watch/202107301430-Vasseur.html

https://www.birs.ca/events/2021/5-day-workshops/21w5110/videos/watch/202107301430-Vasseur.html
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The functional max(v0(0), 0) is a nonlinear functional of v0. In general, the blowup time T and
the corresponding functional can depend on the initial data in a nonlinear fashion, and thus
the modification using the Calkin semi-norm (2.16) may not remove the instability due to the
change of the blowup time.

Using the dynamic rescaling formulation, we prove the stability of the blowup of (2.5).

Theorem 6. There exists an absolute constant ε > 0, such that for any u0 ∈ Pε ∩L∞, we have

(2.17) u(x, t(τ)) =
1

T − t(τ)
U
(
T 1/2 x

(T − t(τ))1/2
, τ
)
, T =

1

C
=

1

u0(0)
, t(τ) = T (1− e−τ),

for any τ ∈ [0,∞). Moreover, we have the following stability estimate

(2.18) ||(U(·, τ)− Ū)(|x|−3 + 1)||L∞ ≤ ||(U0 − Ū)(|x|−3 + 1)||L∞e−
τ
4 .

The formula (2.17) and estimate (2.18) are consistent with the ansatz (2.15). For initial data
u different from ū (2.11), we have a different blowup time T and we need to adjust the rescaling
rate T 1/2(T − t)−1/2 in the spatial variable. To study the stability of the blowup profile, we
rescale the spatial variable, the temporal variable, and normalize the amplitude of the solution
according to the initial data. These rescaling relations and renormalization are nonlinear and
thus are not captured by the ansatz (2.14) and the linearized equation (2.12).

We first prove Theorem 5 and then Theorem 6 .

Proof of Theorem 5. Recall ū = 1
1−t+x2 from (2.11). Using (2.12), we obtain

v(t, x) = v0(x) exp
( ∫ t

0

2ū(s, x)ds
)
= v0(x) exp

(∫ t

0

2
1

1− s+ x2
ds
)

= v0(x) exp(2 log(1 + x2)− 2 log(1− t+ x2)) = v0(x)
(1 + x2)2

(1− t+ x2)2

= ṽ(x)
1

(1 − t)2
(Ū(

x

(1 − t)1/2
))2, ṽ = v0(x)(1 + x2)2,

where Ū is given in (2.11). In particular, v blows up with a rate (1 − t)−2, which is even faster
than that of ū. We remark that the exponent 2 in (1− t)−2 is generic and does not relate to the
coefficient 2 in (2.12) or the formulation of (2.5). We obtain the same exponent if we consider
ut = cu2 for other constant c > 0 instead of (2.5).

Since v0(0) > 0 and v0 ∈ C0
c , there exists c, δ > 0 such that v0(x) ≥ c for |x| ≤ δ. For any

p ∈ [1,∞), we have

∫

R

|v|pdx ≥ c

∫

|x|≤δ

(1− t)−2p(Ū(
x

(1 − t)1/2
))2pdx = c(1− t)−2p+1/2

∫

|y|≤δ(1−t)−1/2

|Ū(y)|2pdy.

For t sufficiently close to 1, we get

||v(t)||Lp & C(v0, p)(1− t)−2+ 1
2p .

Recall ū from (2.11). A direct calculation yields ||ū(t)||p = Cp(1− t)−1+ 1
2p for some absolute

constant Cp > 0. For p ∈ [1,∞), these estimates imply the result in Theorem 5 . For p = ∞,
the calculation is even simpler and thus is omitted. �

Remark 2.2. For smooth initial data v0 with v0(0) > 0, since v(t) blows up even faster than
u(t), it is expected that the relative instability ||v(t)||X/||ū||X occurs in many norms X , e.g., the
Sobolev norms W k,p and the Holder norms Ck,α. This relative instability is generic for (2.12).
Thus, using the linearized equation (2.12) around a blowup solution ū is not suitable to study
the stability of the profile (2.11).
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Dynamic rescaling formulation. To study the stability of the blowup, we use the dynamic
rescaling formulation. Suppose that u is a solution to (2.5). Then it is easy to show that

(2.19) U(x, τ) = Cω(τ)u(Cl(τ)x, t(τ))

is the solution to the dynamic rescaling equation

(2.20) ∂τU + clx∂xU = cωU + U2,

where

(2.21) Cω(τ) = Cω(0) exp

(∫ τ

0

cω(s)dτ

)
, Cl(τ) = exp

(∫ τ

0

−cl(s)ds
)
, t(τ) =

∫ τ

0

Cω(s)ds.

We have the freedom to choose the scaling parameters cl, cω dynamically.
Note that a similar dynamic rescaling formulation was employed in [36, 43] to study the

nonlinear Schrödinger (and related) equation. This formulation is closely related to the mod-
ulation technique, which has been developed by Merle, Raphael, Martel, Zaag and others, see
e.g. [31, 41, 44, 47, 48]. It has been a very effective tool to study singularity formation for many
problems like the nonlinear Schrödinger equation [31, 44], the nonlinear wave equation [48],
the nonlinear heat equation [47], the generalized KdV equation [41], compressible Euler equa-
tions [2, 3]. Recently, it has been used to establish singularity formation in 3D incompressible
Euler equations [8, 18, 19], and related De Gregorio model [5, 10], the Hou-Luo model [9], and
the gCLM model [4, 6, 10, 20].

Proof of Theorem 6. Firstly, since Ū is a self-similar solution to (2.5), it is easy to see that
Ū , c̄l =

1
2 , c̄ω = −1 is the steady state to (2.20). For any u0 = C(Ū + v) ∈ Pε (2.13), we choose

Cω(0) = C−1 = u0(0)
−1. We summarize these parameters below

(2.22) c̄l =
1

2
, c̄ω = −1, Cω(0) = C−1 = u0(0)

−1.

Then from (2.19), we get U0(x) = Cω(0)u0(x) = Ū+V0. Denote U(x, τ) = Ū(x)+V (x, τ), cl(τ) =
c̄l + c̃l, cω = c̄ω + c̃ω. Substituting U(x, τ) = Ū(x) + V (x, τ) into (2.20), we obtain the equation
for V as follows:

(2.23) ∂τV + c̄lx∂xV + c̃lx∂xŪ + c̃lx∂xV = c̄ωV + c̃ωV̄ + c̃ωV + 2ŪV + V 2,

with V (x, 0) = V0, |V (x, 0)| . min(1, |x|3). We choose normalization conditions on cl(τ), cω(τ)
such that

V (0, τ) ≡ 0, ∂xxV (0, τ) ≡ 0,

for sufficiently smooth V . These requirements motivate the following conditions

(2.24) c̃ω(τ) ≡ 0, c̃l(τ) ≡ 0.

Thus, we can simplify (2.23) as follows

∂τV + c̄lx∂xV = c̄ωV + 2ŪV + V 2.

The above equation implies that ∂xV (0, τ) = 0 is also preserved. Thus, we have |V (x, τ)| . |x|3
near x = 0. We choose ρ = |x|−3 + 1 and estimate V ρ

∂τ (V ρ) + c̄lx∂x(V ρ) = c̄ωV ρ+ 2ŪV ρ+ c̄lx∂xρV + V 2ρ = (c̄ω + 2Ū +
c̄lxρx
ρ

)ρV + ρV 2 .

Denote E = ||V ρ||L∞ . Since x∂xρ = −3|x|−3, a direct calculation yields

D , c̄ω + 2Ū +
c̄lxρx
ρ

= −1 +
2

1 + x2
+

1

2
· −3|x|−3

|x|−3 + 1
= 1− 2x2

1 + x2
− 3

2
+

3

2
· |x|3
1 + |x|3 .

Using Young’s inequality, we get 4x2(1+ |x|3)− 3|x|3(1+x2) = |x|5 +4x2− 3|x|3 = |x|5 +2x2+
2x2 − 3|x|3 ≥ 3(4)1/3|x|3 − 3|x|3 ≥ 0. It follows

3 · |x|3
1 + |x|3 ≤ 4

x2

1 + x2
, D ≤ −1

2
.
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Performing L∞ estimate on V ρ and using |V | ≤ ||V ρ||∞ = E, we establish

1

2

d

dτ
||V ρ||2L∞ ≤ −1

2
||V ρ||2L∞ + ||V ρ||3L∞ ,

d

dτ
E(τ) ≤ (−1

2
+ E)E.

Now, we pick ε = 1
8 . Recall the assumption of the initial perturbation V0 from (2.13). We yield

|V0|(1 + |x|−3) ≤ εmin(1, |x|3)(1 + |x|−3) ≤ 2ε ≤ 1
4 . Solving the above inequality, we prove

d

dτ
E(τ) ≤ −1

4
E(τ), E(τ) ≤ E(0)e−τ/4,

which is exactly the stability estimate (2.18).
Using (2.22) and (2.24), we can compute the rescaling parameters (2.21)

cl(τ) ≡
1

2
, cω(τ) ≡ −1, Cω(τ) = Cω(0) exp(−τ), Cl(τ) = exp(

−τ
2

),

t(τ) =

∫ τ

0

Cω(s)ds = Cω(0)(1− e−τ ), T = t(∞) = Cω(0) =
1

u0(0)
, T − t(τ) = Cω(τ).

It follows Cl(τ) = (T−t(τ)
T )1/2. Plugging the above relations into (2.19), we prove

u(x, t(τ)) = Cω(τ)
−1U(Cl(τ)

−1x, τ) =
1

T − t
U
( xT 1/2

(T − t)1/2
, τ
)
, T =

1

u0(0)
,

which is exactly (2.17). �

3. Proof of main theorems

In this Section, we first discuss several important properties of the singular solutions con-
structed in [8, 18]. We will generalize the arguments and estimates in [8] to prove some of
these properties and defer the proofs to Sections 4 and 5. Using these properties of the blowup
solutions, we will prove Theorems 1-3 by generalizing the arguments in [35, 51].

Notations. We first introduce some notations to be used in the analysis. We use (r, ϑ, z) to
denote the cylindrical coordinate in R3. The associated basis is

(3.1) er = (cosϑ, sinϑ, 0), eϑ = (− sinϑ, cosϑ, 0), ez = (0, 0, 1).

For x with coordinate (xr, xϑ, xz) and A ⊂ R3, we use x̃, Ã to denote the poloidal component

(3.2) x̃ = (xr, xz), Ã = {x̃ : x ∈ A}.

The poloidal component of the axisymmetric vorticity ω is defined as follows

(3.3) ωp , ωrer + ωzez, ω = ωrer + ωϑeϑ + ωzez.

In the analysis of the axisymmetric Euler equations, for any 2D domain Σ of (r, z), we abuse
the notation and use

(3.4) x ∈ Σ if x̃ = (xr , xz) ∈ Σ.

For example, x ∈ B(1,0)(δ) means (xr , xz) ∈ B(1,0)(δ), or equivalently, x in the annulusB(1,0)(δ)×
R/(2πZ). We abuse this notation since the flow is axisymmetric and thus many variables, e.g.,
ur, uz, uϑ, ωϑ, depend on (r, z) only.

3.1. The WKB expansion and the bicharacteristics-amplitude ODEs. The main idea
in [35, 52] is to construct an approximate solution to (1.2) using a WKB expansion

(3.5) v(t, x) ≈ b(t, x) exp(
iS(t, x)

ε
)
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for sufficiently small ε, where b(t, x) ∈ R3 and S is a scalar, and the following bicharacteristics-
amplitude ODE system (3.6)-(3.8) [35, 52]

γ̇t = u(t, γt), γ0 = x0,(3.6)

ξ̇t = −(∇u)T (t, γt)ξt,(3.7)

ḃt = −(∇u)(t, γt)bt + 2
ξTt (∇u)(t, γt)bt

|ξt|2
ξt,(3.8)

with initial data (x0, ξ0, b0), where (∇u)ij = ∂jui. The regularity assumption u ∈ C0([0, T ], Hs), s >
9/2 in [52] is mainly used to guarantee the solvability of the above ODEs with smooth depen-
dence on the initial data.

The ODE system (3.6)-(3.8) has been derived in [25] to define the fluid Lyapunov exponent
and used to study the stability of steady states of the Euler equations [24, 26]. The WKB
expansion (3.5) was developed in [53] to study the spectrum of small oscillations in an ideal
incompressible fluid. It has also been used to study the local stability conditions for the Euler
equations [37].

For the sake of completeness, in Appendix A, we begin with the WKB expansion (3.5) and
then explain the use of the bicharacteristics-amplitude ODE system (3.6)-(3.8), which arise
naturally in the construction of the approximate solution. We also explain the connections
among the WKB expansion, the bicharacteristics-amplitude ODE system (3.6)-(3.8), and the
growth of the unstable solution. From the review in Appendix A, we have a few remarks.

Remark 3.1. (a) From the proof in [52] and the simplified derivations in Appendix A, the WKB
construction and the high frequency (3.5) are mainly used to construct an approximate solution
to (1.2) with a small error in the Lp norm but not used to show the growth of the unstable
solution.

(b) The growth of the solution v and the linear instability are coupled with the growth of the
vorticity via the ODE system (3.6)-(3.8) and (A.10).

(c) As we mentioned in Section 2.1, for a domain without boundary, ∂iu, i = 1, 2, 3 are the
exact solutions to (1.2) and blow up in a functional space X equipped with a norm stronger
than the L∞ norm. These simple instability results do not use (3.5) and (3.6)-(3.8).

(d) The argument in [52] has an advantage that several nonlocal terms become local. It is
based on the characteristics and is local in nature. Due to this local property, we can relax the
regularity assumptions in the proof in [52] for the singular solutions in [8, 18] and generalize it
to prove Theorems 1-3.

3.2. Properties of the singular solutions. The singular solution to the 2D Boussinesq equa-
tions (1.5)-(1.6) constructed in [8] satisfies the following properties. The Ck norm in the following
theorem is defined in (4.16). The reader should not confuse it with the standard Ck norm.

Theorem 7. Let ω be the vorticity and θ be the density in the 2D Boussinesq equations described
by (1.5)-(1.6). There exists α0 > 0 such that for 0 < α < α0, the unique local solution of the
2D Boussinesq equations in the upper half plane develops a focusing asymptotically self-similar
singularity in finite time T∗ for some initial data ω0 ∈ Cαc (R

2
+), θ0 ∈ C1,α

c (R2
+). Moreover, we

have limt→T∗
||∇θ(t)||∞ = ∞, the velocity field is in C1,α with finite energy. For any T < T∗

and any compact domain Σ in the interior of {(x, y) : x 6= 0, y > 0}, we have θ0 ∈ C50(Σ) and
ω,∇θ, 1√

x2+y2
u ∈ L∞([0, T ], C50 ∩C50(Σ)),u ∈ L∞([0, T ], C50(Σ)).

The regularity C50, C50 can be further improved to Ck, Ck with larger k directly by choosing
smaller α0. The first part of the theorem about the blowup has been proved in [8]. To prove
the regularity in the interior of the domain, we generalize the weighted energy estimates for
the perturbation and the estimates of the approximate steady state in [8] to sufficiently high
order. Since the weighted norms used in [8] and the energy estimates, e.g. Hk (see (4.15)), are
comparable to the standard Sobolev norms Hk in the interior of the domain, we establish the
interior regularity using the embedding inequalities. See Section 4 for the proof.
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In [8], the 3D axisymmetric Euler equations are studied in a cylinder D = {(r, z) : r ∈
[0, 1], z ∈ T},T = R/(2Z) that is periodic in z. Here, r, z are the cylindrical coordinates in R3.
The equations are given below:

(3.9) ∂t(ru
ϑ) + ur(ruϑ)r + uz(ruϑ)z = 0, ∂t

ωϑ

r
+ ur(

ωϑ

r
)r + uz(

ωϑ

r
)z =

1

r4
∂z((ru

ϑ)2),

where ωϑ is the angular vorticity and uϑ is the angular velocity. The radial and the axial
components of the velocity can be recovered from the Biot-Savart law

(3.10) − (∂rr +
1

r
∂r + ∂zz)ψ̃ +

1

r2
ψ̃ = ωϑ, ur = −ψ̃z, uz = ψ̃r +

1

r
ψ̃

with a no-flow boundary condition on the solid boundary r = 1

(3.11) ψ̃(1, z) = 0

and a periodic boundary condition in z. For the 3D Euler equations, we have the following
results

Theorem 8. There exists α0 > 0 such that for 0 < α < α0, the unique local solution of the
3D axisymmetric Euler equations in the cylinder D = {r, z ∈ [0, 1] × T} given by (3.9)-(3.11)
develops a singularity in finite time T∗ for some initial data ωϑ0 ∈ Cα(D), uϑ0 ∈ C1,α(D). The
initial data ωϑ0 , u

ϑ
0 are supported away from the symmetry axis r = 0 with uϑ0 ≥ 0, ωϑ0 is odd in

z, uϑ0 is even in z, and the velocity field u0 in each period has finite energy.
Moreover, the singular solution satisfies the following properties.
(a) The poloidal component ωp = ωrer + ωzez blows up limt→T∗

||ωp(t)||∞ = ∞.
(b) There exists constants 0 < 4R1,α < R2,α <

1
4 such that for any particle within the support

of ωϑ0 , u
ϑ
0 , its trajectory up to the blowup time is within B(1,0)(R1,α) ∩D.

(c) For any compact domain Σ in {(r, z) : r ∈ (0, 1), z 6= 0} ∩ B(1,0)(R2,α) and T < T∗, we

have uϑ0 ∈ C50(Σ), ωϑ, (uϑ)2, ur, uz, uϑ ∈ L∞([0, T ], C50(Σ)).

Except for result (c), the above theorem has been mostly proved in [8]. We recall from
Remark 1.1 that the oversight uϑ0 /∈ C1,α in [8] has been fixed in the updated arXiv version
of [8]. See also Remark 5.5. The parameter R2,α and domain B(1,0)(R2,α) in the above theorem
relate to the localized elliptic estimate. In particular, the cutoff function to localize the estimate
is 1 in B(1,0)(R2,α). One of the main difficulties in the proof is to show that uϑ is smooth in Σ.

This does not follow from (uϑ)2 ∈ C50(Σ) since uϑ has compact support and can degenerate in
Σ. We use the property that ruϑ is transported along the flow to prove that it is smooth. See
Section 5 for the proof.

The singular solution constructed in [18,19] enjoys the following properties, which follow from
the estimates in [18, 19].

Theorem 9. There exists α0 > 0 such that for 0 < α < α0, the unique local solution of the
axisymmetric Euler equations (3.9)-(3.10) in R3 without swirl uϑ ≡ 0 develops a singularity in
finite time T∗ for some initial data ωϑ0 ∈ Cαc (R

3) odd in z with finite energy ||u0||L2 < +∞. In
addition, we have urr(t, 0, 0) > 0 and

(3.12)

∫ T∗

0

urr(t, 0, 0)dt = ∞.

For any compact domain Σ ⊂ {(r, z) : r > 0, z 6= 0} and T < T∗, we have ωϑ, ur, uz ∈
L∞([0, T ], C50(Σ)).

In the blowup results in Theorem 7 and 8, ∇u also blows up at the singularity point. Since
the blowup of ∇u implies the blowup of the solution, (3.12) can be seen as a blowup criterion
for the singular solution in [18]. A similar one-point blowup criterion has been established to
prove global regularity of the De Gregorio model for a large class of initial data in [5].

In the remaining part of this Section, we prove Theorems 1-3 using the important properties
of the blowup solution in Theorems 7-9 and the argument in [35,51]. We first prove Theorem 1.
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3.3. Trajectory and the bicharacteristics-amplitude ODE. Due to the periodicity in z,
we consider the domain within one period

(3.13) D1 , {(r, z) : r ∈ [0, 1], |z| ≤ 1}.
We further decompose D1 into the two parts and introduce Υ

(3.14)
D+

1 , {(r, z) : r ∈ [0, 1], z ∈ [0, 1]}, D−
1 , {(r, z) : r ∈ [0, 1], z ∈ [−1, 0]},

Υ , {(r, z) : r = 1 or z = 0}.
The set Υ denotes the boundary of the cylinder D and the symmetry plane z = 0.

Let u be the velocity in Theorem 8. In the cylindrical coordinate (r, ϑ, z)(3.1), we have
u = urer + uϑeϑ + uzez. Since the singular solutions ωϑ, uz in Theorem 8 are odd in z and we
impose the no flow boundary condition (3.11), we obtain

(3.15) u(t) · n
∣∣∣
Υ
= ur(t) · nr + uz(t) · nz = 0,

where n is the normal vector of Υ. Let γ̃t = (rt, zt) (3.2) be the (r, z) component of γt in (3.6).
Since the flow is axisymmetric, we have

(3.16)
d

dt
rt = ur(rt, zt, t),

d

dt
zt = uz(rt, zt, t),

d

dt
γ̃t = (ur, uz)(γ̃t, t).

Thus, the angular coordinate x0,ϑ of the initial data x0 does not affect γ̃t, and γ̃t depends on
x̃0 = (r0, z0) only. Therefore, we have

(3.17) γ̃t(x̃0) = γ̃t(x0) = (rt, zt), γ̃−1
t (x) = (γ̃t)

−1(x) = (γ̃t)
−1(x̃).

We have the following results for the system (3.6)-(3.8).

Lemma 3.2. Let γt be the solution to (3.6) with initial data x0, T∗ be the blowup time, T < T∗,
and D±

1 be the domains defined in (3.14). (a) For any x0 ∈ Υ and t ∈ [0, T∗), the trajectory γt
remains in Υ; for any x0 ∈ D±

1 \Υ and t ∈ [0, T∗), we have γt ∈ D±
1 \Υ. For any t ∈ [0, T ], γt

is invertible, and γt, γ
−1
t are Lipschitz in time and the initial value.

Let R1,α, R2,α be the radius in Theorem 8.

(b) Suppose that x0 ∈ (D±
1 \Υ) ∩ supp(ω0). There exists δ(x̃0, T ) ∈ (0, 18 ) depending on x̃0, T

and a compact set Σ2, such that for any t ∈ [0, T ], we have

(3.18) γ̃t(Bx̃0(δ)) ∪Bγ̃t(x̃0)(δ) ⊂ Σ2 ⊂ (D±
1 \Υ) ∩B(1,0)(R2,α).

As a result, for initial data z0 with z̃0 ∈ Bx̃0(δ) and any b0, ξ0, there exist unique solutions
(γt, bt, ξt) to (3.6)-(3.8) on t ∈ [0, T ]. For t ∈ [0, T ], the functions (γt, bt, ξt) are Lipschitz in
time and C4 with respect to initial data z0 with z̃0 ∈ Bx̃0(δ) and b0, ξ0, and γ

−1
t (x) is Lipschitz

in time and C4 in x with x̃ ∈ γ̃t(Bx̃0(δ)) ∪Bγ̃t(x̃0)(δ).

In the above Theorem, we have used the notation (3.4). For example, x0 ∈ D±
1 \Υ means

x̃0 ∈ D±
1 \Υ. The domain of x with x̃ ∈ Bx̃0(δ) is the annulus (r, z, ϑ) ∈ Bx̃0(δ) × R/(2πZ).

The ideas of the above Lemma are simple. Firstly, for any x0 ∈ D±
1 \Υ, the trajectory γt with

t ∈ [0, T ] remains in D±
1 \Υ. Using the Lipschitz property of γ̃t, γ̃

−1
t , we can find a neighborhood

of γ̃t that still remains in D±
1 \Υ. We further restrict x̃0 sufficiently close to (1, 0) and use the

property that u(x) is smooth for x with x̃ ∈ D±
1 \Υ ∩ B(1,0)(R2,α) from Theorem 8 to solve

(3.6)-(3.8).

Proof. Recall the notation x̃ = (r, z) from (3.2). Due to u ∈ C0([0, T∗), C
1,α) and the non-

penetrated property (3.15), the results in (a) follow directly from the Cauchy-Lipschitz theorem.
Without loss of generality, we consider the domain D+

1 \Υ. For any x0 ∈ (D+
1 \Υ)∩ supp(ω0),

from result (b) in Theorem 8 and (3.17), we know

(3.19) γ̃t(x̃0) ∈ (D+
1 \Υ) ∩B(1,0)(R1,α), t ∈ [0, T ].
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Since γ̃t(x̃0) is continuous in t, using compactness, we have dist(γ̃(x̃0, [0, T ]),Υ) > 0. Let Lγ be

the Lipschitz constant of γt, γ
−1
t on [0, T ]. Denote

d1 = dist(γ̃(x̃0, [0, T ]),Υ), δ1 ,
1

2
min(d1, R1,α) > 0, δ = min(

δ1
2(Lγ + 1)

,
1

16
).

For y = γ̃t(x̃), x̃ ∈ Bx̃0(δ), using (3.19), we yield

|y − γ̃t(x̃0)| ≤ Lγ |x̃− x̃0| ≤ Lγδ <
δ1
2
, dist(y,Υ) ≥ dist(γ̃t(x̃0),Υ)− δ1

2
>
δ1
2
,

|y − (1, 0)| < |γ̃t(x̃0)− (1, 0)|+ δ1
2

≤ 3

2
R1,α.

It follows that y ∈ D+
1 \Υ ∩B(1,0)(

3
2R1,α). We define the compact set

(3.20) Σ2 = {x̃ : dist(x̃,Υ) ≥ 1

4
δ1} ∩ D̄+

1 ∩ B̄(1,0)(2R1,α).

Recall from Theorem 8 that R2,α > 4R1,α. The above derivations imply γ̃t(Bx̃0(δ)) ⊂ Σ2. The
proof of Bγ̃t(x̃0)(δ) ⊂ Σ2 follows from the same argument and is easier. We obtain (3.18).

Now, we consider (3.6)-(3.8) for initial data z0 with z̃0 ∈ Bx̃0(δ) and b0, ξ0. Since Σ2 is a
compact set in (D+

1 \Υ)∩B(1,0)(R2,α), from Theorem 8, we have ur, uz, uϑ ∈ L∞([0, T ], C50(Σ2)).
Since γ̃t(Bx̃0(δ)), Bx̃0(δ) ⊂ Σ2 and u(x) is smooth for x with x̃ ∈ Σ2, using the Cauchy-Lipschitz
theorem, there exist unique solutions (γt, bt, ξt) to (3.6)-(3.8) on t ∈ [0, T ], and γt, bt, ξt are
Lipschitz in time and C4 with respect to the initial data.

Next, we consider the backward equation. Denote δ2 = δ
Lγ+1 . Fix t ≤ T . For any s ∈ [0, t],

from (3.17) and (3.18), we get

γ̃−1
s γ̃t(Bx̃0(δ2)) = γ̃t−s(Bx̃0(δ2)) ⊂ Σ2, γ̃−1

s Bγ̃t(x̃0)(δ2) ⊂ Bγ̃t−s(x̃0)(Lγδ2) ⊂ Bγ̃t−s(x̃0)(δ) ⊂ Σ2.

From Theorem 8 and ur, uz, uϑ ∈ L∞([0, T ], C50(Σ2)), we can solve (3.6) backward on [0, t] for
initial data xt with x̃t ∈ γ̃t(Bx̃0(δ2)) ∪Bγ̃t(x̃0)(δ2) ⊂ Σ2, and γ

−1
t is Lipschitz in time and C4 in

the initial data.
Finally, due to the inclusion

γ̃t(Bx̃0(δ2)) ∪ (Bγ̃t(x̃0)(δ2)) ⊂ γ̃t(Bx̃0(δ)) ∪ (Bγ̃t(x̃0)(δ)) ⊂ Σ2, t ∈ [0, T ],

we prove result (b) for Σ2 defined in (3.20) and δ = δ2. �

3.4. Relaxation of βσ(t). Recall the definition of βσ(t) from [35]

(3.21) βσ(t) = sup
(x0,b0,ξ̃0)∈D1×R3×S1,b0·ξ0=0,|b0|=rσ0

|r−σt bt(x0, ξ̃0, b0)|,

where D1 is the domain for the Euler equations (3.13). Here, the notation ξ0 = ξ̃0 ∈ S1

means that the initial data ξ0 satisfies ξ0 · eϑ(x0) = 0 and (ξ0 · er(x0))
2 + (ξ0 · ez)2 = 1, where

er(x0), eϑ(x0), ez are the basis (3.1) associated with x0. Since ξ0 · eϑ(x0) = 0, it relates to the
notation (3.2).

We focus on the case σ = 0 and relax the domain D1 (3.13) to (D1\Υ) ∩ supp(ω0)

(3.22) β(t) = sup
(x0,b0,ξ̃0)∈(D1\Υ)∩supp(ω0)×R3×S1,b0·ξ0=0,|b0|=1

|bt(x0, ξ̃0, b0)|,

where ω0 is the vorticity of the singular solution in Theorem 8. From Lemma 3.2, for any
t < T ∗, x0 ∈ D1\Υ, b0 ∈ R3, ξ̃0 ∈ S1, bt(x0, ξ̃0, b0) is well defined.

We have the following result, which modifies Proposition 2 in [35].

Proposition 3.3. Assume that u is the singular solution in Theorem 8, ω is the associated
vorticity, and ωp is the poloidal component (3.3). For any t ∈ (0, T ∗), we have

||ωp(t, ·)||∞ ≤ ||ωinp ||∞β(t)2.
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Proof. We assume ||ωp(t)||∞ > 0. Otherwise, the result is trivial. Since ω(t) ∈ Cα and |ω| is
even in z, using continuity and symmetry, we get

||ωp(t, ·)||∞ = sup
x∈D+

1 ∩supp(ω(t))

|ωp(t, x)| = sup
x∈(D+

1 \Υ)∩supp(ω(t))

|ωp(t, x)|.

Now, for each (t, xt) ∈ (0, T ∗)× (D+
1 \Υ) with |ω(t, xt)| > 0, we can solve (3.6) backward on

[0, t] with initial data γt = xt. Since xt ∈ D+
1 \Υ and |ω(t, xt)| > 0, using (1.1) and a simple

energy estimate along the trajectory implies |ω(0, x0)| > 0. Thus, we get x0 ∈ supp(ω0). From
Lemma 3.2, we further obtain x0 ∈ (D+

1 \Υ) ∩ supp(ω0). Then we can solve (3.6)-(3.8) with
initial data x0 and any b0, ξ0 and solve (3.6)-(3.8) backward with initial data xt and any bt, ξt.

We relax the definition of β(t) since it suffices to consider x0 ∈ (D+
1 \Υ) ∩ supp(ω0) ⊂

(D1\Υ) ∩ supp(ω0) instead of all x0 ∈ D1. The rest of the proof follows the same argument
in [35]. �

Next, we show that for the singular solution in Theorem 8, Proposition 3 in [35] remains true.
Recall the definition of λsymp,σ from (1.4). We drop the domain D to simplify the notation.

Proposition 3.4. Let t ∈ (0, T∗), p ∈ [1,∞). Assume that u is the singular solution in Theorem
8. Then we have β(T ) .σ λsymp,σ (T ) for any σ ∈ R.

One of the difficulties in the proof is to construct an axisymmetric solution to (1.2).

Remark 3.5. The approximate solution and the initial data vinε,δ to (1.2) constructed in [35]

(3.23) vε,δ = εcurl
(b× ξ

|ξ|2 ϕe
iS/ε

)
= iϕbeiS/ε + εc(x)eiS/ε , A+B, c(x) = curl(

b × ξ

|ξ|2 ϕ)

are not axisymmetric, where b(t, x), ξ(t, x) ∈ R3, S, ϕ are scalar functions, and ε is a small
parameter. See equation (21) in [35]. To illustrate this point, we study the initial data more
carefully. According to the construction in the proof of Proposition 3 in [35], for t = 0, we have
b(0, x) ≡ b0, ξ(0, x) ≡ ξ0 for some

(3.24) |b0| = 1, |ξ0| = 1, b0 · ξ0 = 0.

In particular, b, ξ are constant vectors. Moreover, ϕ, S are independent of the angular variable
ϑ [35], i.e. ϕ(x) = ϕ(r, z), S(x) = S(r, z). Hence, we get

(3.25) c(x) = ∇ϕ× b0 × ξ0
|ξ0|2

= ∇ϕ× s0, s0 ,
b0 × ξ0
|ξ0|2

, ∂ϑA = 0.

Suppose that vε,δ is axisymmetric (1.3). Then vε,δ · η does not depend on ϑ for η = er, eϑ, ez
(3.1). Using these properties, (3.25), and ∂ϑer = eϑ, ∂ϑeϑ = −er, we get

0 = ∂ϑ(vε,δ · er) = ∂ϑ((A +B) · er) = A · eϑ + ∂ϑ(B · er) = A · eϑ + εeiS/ε∂ϑc(x) · er −B · eϑ.
Since the second and the third term have size O(ε) and ε is taken to ε→ 0 in [35], for sufficiently
small ε, A · eϑ and ∂ϑ(B · er) must be 0. Similarly, we get A · er = 0, ∂ϑ(B · ez) = 0. Since the
direction of A is given by b0, it follows that b0 = (0, 0, b0,z) = b0,zez. Note that ϕ(x) = ϕ(r, z)
and ∇ϕ = ∂rϕ(r, z)er + ∂zϕ(r, z)ez. From (3.25) and ∂ϑ(B · ez) = 0, we get

c(x) · ez = (∂rϕer × s0 + ∂zϕez × s0) · ez = ∂rϕ · (er × s0) · ez,
0 = ∂ϑ(B · ez) = εeiS/ε∂ϑ(c(x) · ez) = εeiS/ε∂rϕ · (∂ϑer × s0) · ez = εeiS/ε∂rϕ · (eϑ × s0) · ez.

Since b0 = b0,3ez, we get s0 · ez = 0, eϑ · ez = 0, which implies that eϑ × s0 and ez are parallel.
Then the above identity implies eϑ × s0 = 0. Since s0 is a constant vector and ϑ is arbitrary,
we further obtain s0 = 0, which contradicts (3.24) and (3.25).

The proof of Proposition 3.4 consists of several steps. Firstly, given x0, b0, ξ0, we construct
axisymmetric flows ξ(t, x), b(t, x) and function S(t, x) using the PDE form of (3.6)-(3.8) such
that ξ(0, x0) = ξ0, b(0, x0) = b0,∇S = ξ. Since the singular solution u in Theorem 8 is only C1,α,
these functions ξ, b, S are not smooth enough to apply the argument in [35] to prove Proposition
3.4. Our key observation is that the solution (3.23) leading to the instability [35] is constructed
locally along the trajectory of x0. Thus, we can apply Lemma 3.2 and Theorem 8 to localize
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u and obtain a much smoother localized velocity u · χ. Then we can obtain smooth b, ξ, S and
an axisymmetric velocity field given by (3.23). Finally, we show that b(T, x) can control β(T )
using the axisymmetric property of b. The remaining proof follows the argument in [35].

Before we present the proof, we need a simple Lemma for axisymmetric flows.

Lemma 3.6. Suppose that A(x), B(x) are axisymmetric flows (1.3), and C(x) = C(r, z) is
independent of ϑ. Then A×B, C(x)A, ∇×A, ∂rA, ∂zA, ∂ϑA are axisymmetric flows, and A ·B
is independent of ϑ.

Proof. Since er, eϑ, ez (3.1) are orthonormal basis, a simple calculation implies that A×B,C(r, z)A
are axisymmetric and that A ·B is independent of ϑ. The property that the curl operator does
not change axisymmetry is standard. For example, if the velocity u is axisymmetric, the vortic-
ity ω = ∇× u is also axisymmetric. The same reasoning and calculation apply to ∇×A. Since
∂rη = 0, ∂zη = 0 for η = er, eϑ, ez and ∂ϑA = Ar(r, z)eϑ−Aϑ(r, z)er for A = Arer+A

ϑeϑ+A
zez,

we conclude that ∂rA, ∂zA, ∂ϑA are axisymmetric. �

Proof of Proposition 3.4. Recall the poloidal component (3.2),(3.17)

(3.26) x̃ = (r, z), γ̃t = (rt, zt), Ã = {ã : a ∈ A}.

We fix T < T∗. Suppose that β(T ) > 0. Otherwise, the proof is trivial. Using the definition of
(3.22) and result (b) in Theorem 8, for any η > 0, we can choose (x0, ξ0, b0) such that

(3.27) x0 ∈ (D1\Υ) ∩ supp(ω0) ⊂ B(1,0)(1/4), r0 6= 0, ξ0 = ξ̃0, ξ0 · b0 = 0,

and

(3.28) 0 < β(T ) ≤ (1 + η)|bT (x0, ξ̃0, b0)|.

We have r0 6= 0 since x0 ∈ B(1,0)(1/4) implies r0 ≥ 3
4 . Denote

(3.29) ϑ0 = x0,ϑ.

Without loss of generality, we assume x0 ∈ D+
1 . From Lemma 3.2, there exists δ > 0 and a

compact set Σ2 such that (3.6)-(3.8) have a unique solution (γt, bt, ξt) on [0, T ] for initial data
x with x̃ ∈ Bx̃0(δ), b0, ξ0 and

(3.30) γ̃t(Bx̃0(δ)) ∪Bγ̃t(x̃0)(δ) ⊂ Σ2 ⊂ D+
1 \Υ ∩B(1,0)(R2,α), t ∈ [0, T ].

3.4.1. Construction of axisymmetric functions. Our goal is to construct smooth (at least
C4) axisymmetric flows ξ(t, x), b(t, x) satisfying (1.3) and function S(t, x) such that

ξ(0, x̃, ϑ0) = ξ0, b(0, x̃, ϑ0) = b0, ξ(t, x) · b(t, x) ≡ 0,(3.31)

ξ(t, γt(x̃, ϑ0)) = ξt(x̃, ϑ0, ξ0), b(t, γt(x̃, ϑ0)) = bt(x̃, ϑ0, ξ0, b0),(3.32)

∇S(t, x) = ξ(t, x), ∂θS(t, x) = ξ · eθ = 0,(3.33)

for any x̃ ∈ Bx̃0(δ), t ∈ [0, T ], where ϑ0 = x0,ϑ (3.29) and (x̃, ϑ0) means (r, ϑ0, z) in the cylindrical
coordinate. Thus, b(t, x), ξ(t, x) can be seen as the axisymmetric extensions of the solutions ξt, bt
to the ODE (3.6)-(3.8) with initial data (x̃, ϑ0), ξ0, b0. We construct initial data as follows

(3.34) ξ(0, x) = ξr0er + ξz0ez, b(0, x) = br0er + bϑ0eϑ + bz0ez,

where er(x0) = (cosϑ0, sinϑ0, 0), eϑ(x0) = (− sinϑ0, cosϑ0, 0), and

ξr0 = ξ0 · er(x0), ξ
z
0 = ξ0 · ez, br0 = b0 · er(x0), b

ϑ
0 = b0 · eϑ(x0), b

z
0 = b0 · ez.

The initial data ξ(0, x), b(0, x) are axisymmetric and only depend on xϑ (3.1). From Lemma
3.6, |ξ(0, x)|, |b(0, x)|, ξ(0, x) · b(0, x) are independent of ϑ. Using (3.27) and (3.34), we have

(3.35) ξ(0, x̃, ϑ0) = ξ0, b(0, x̃, ϑ0) = b0, |ξ(0, x)| = 1, |b(0, x)| = 1, ξ(0, x) · b(0, x) = ξ0 · b0 = 0.
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Localization of the velocity. We want to construct ξ(t, x), b(t, x) using (3.7)-(3.8) with the
above initial data. Yet, the singular solution u is only C1,α and the resulting solutions ξ, b are not
smooth enough. To fix this problem, we localize the velocity. From (3.30), using compactness,
we can find a smooth cutoff function χT (r, z) such that

(3.36) χT (x̃) = 1, x̃ ∈ Σ2, Σ2 ⊂ supp(χT ) = Σ3 ⊂ D+
1 \Υ ∩B(1,0)(R2,α),

where Σ3 is another compact domain. Now, we modify the velocity u as follows

(3.37) uT (t, x) , u(t, x)χT (r, z).

From Lemma 3.6 and Theorem 8, uT is axisymmetric and uT ∈ L∞([0, T ], C50(D)) is smooth
in the whole domain.

Constructions of b, ξ, S. Consider the PDE (Eulerian) formulations of (3.7)-(3.8) with the
modified velocity uT

(3.38) ∂tξ + uT · ∇ξ = −(∇uT )
T ξ, ∂tb+ uT · ∇b = −(∇uT )b+

2ξT (∇uT )b

|ξ|2 ξ

and initial data ξ(0, ·), b(0, ·). We will show that the evolution preserves the axisymmetry of ξ, b.
For any axisymmetric functions g, f , using ∂ϑer = eϑ, ∂reϑ = −er, we have

g · ∇f = (gr∂r +
gϑ

r
∂ϑ + gz∂z)f =

∑

α=α,ϑ,z

(gr∂r + gz∂z)f
α · eα +

gϑ

r
(f reϑ − fϑer),

which is axisymmetric. Therefore, we obtain

uT · ∇ξ, (∇uT )ξ = ξ · ∇uT , uT · ∇b, (∇uT )b

are axisymmetric. Lemma 3.6 implies that ξ · (∇uT )b, |ξ|2 = ξ · ξ are independent of ϑ. Thus
ξT (∇uT )b

|ξ|2 ξ is axisymmetric. Using the identity

−(∇uT )
T ξ = (∇uT − (∇uT )

T )ξ − (∇uT )ξ = (∇× uT )× ξ − (∇uT )ξ

and Lemma 3.6 again, we conclude that −(∇uT )
T ξ is axisymmetric. Therefore, the equations

(3.38) preserves axisymmetry. From (3.38), it is easy to see that

∂t(ξ · b) + uT · ∇(ξ · b) = 0.

Recall the initial data (3.34). From (3.35), we have ξ(0, x) · b(0, x) ≡ 0. The above transport
equation implies that ξ(t, x) · b(t, x) = 0 in (3.31).

Next, we prove the identities in (3.32). First, for initial data x with x̃ ∈ Bx̃0(δ), due to (3.30)
and uT = u in Σ2 (3.36), (3.37), the flow maps on [0, T ] generated by uT and u are identical.
Hence, we obtain

u(t, γt(x)) = uT (t, γt(x)), (∇u)(t, γt(x)) = (∇u)(t, γt(x)).

Using (3.38) and the flow map γt (3.6), we have

d

dt
ξ(t, γt(x)) = −(∇u)T ξ(t, γt(x)),

d

dt
b(t, γt(x)) = −(∇u)b(t, γt(x)) +

2ξT (∇u)b

|ξ|2 ξ(t, γt(x))

where ∇u is evaluated at (t, γt(x)). Thus, ξ(t, γt(x)) and b(t, γt(x)) satisfy the same ODE (3.7)-
(3.8) for ξt, bt. According to Lemma 3.2 and the discussion below (3.29), we can solve these
ODEs for initial data x with x̃ ∈ Bx̃0(δ). Using (3.35), we get

ξ(0, γ0(x̃, ϑ0)) = ξ0 = ξt(x̃, ϑ0, ξ0)|t=0, b(0, γ0(x̃, ϑ0)) = b0 = bt(x̃, ϑ0, ξ0)|t=0.

Using the uniqueness of ODEs, we obtain (3.32).
To construct S, following [35, 52] we solve the transport equation with the modified velocity

uT

(3.39) ∂tS + uT · ∇S = 0, S(0, x) = rξr0 + zξz0 .

The equation for ∇S reads

∂t(∇S) + uT · ∇(∇S) = −(∇uT )
T (∇S), (∇S)(0, x) = ξr0er + ξz0ez = ξ(0, x).
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Comparing the above equations with (3.38), we yield ∇S(t, x) = ξ(t, x) for any x and t ∈ [0, T ].
Next, we consider ∂ϑS. Since ∇S = ξ and uT are axisymmetric, using Lemma 3.6, we get

∂ϑ(uT · ∇S) = ∂ϑ(uT · ξ) = 0.

Using (3.39) and (∂ϑS)(0, x) = 0, we yield

∂t∂ϑS = 0, ∂ϑS(t, x) ≡ 0.

This proves (3.33).
Since uT ∈ L∞([0, T ], C50(D)), ξ(t, x), b(t, x), S(t, x) are smooth and at least C4 in x.

3.4.2. Control of b(T, x). We will show that b(T, x) can control β(T ) via (3.28).
Recall the poloidal notation (3.26). Let xT = γT (x0) and Lγ ≥ 1 be the Lipschitz constant

of γt, γ
−1
t on [0, T ]×D1. From (3.28) and (3.32), we get

0 < |bT (x0, b0, ξ0)| = |b(T, xT )|.
Using the continuity of b(T, ·), there exists small δ2 with

(3.40) δ2 ∈ (0,
δ

4(Lγ + 1)3
)

such that

(3.41) (1− η)|bT (x0, b0, ξ0)| = (1− η)|b(T, xT )| ≤ inf
x̃∈Bx̃T (δ2)

|b(T, x̃, xT,ϑ)| = inf
x∈AxT

(δ2)
|b(T, x)|.

where we have used the continuity of b(T, x) in the inequality, and the axisymmetry property
that |b(T, x)| is independent of ϑ in the third equality. Here, AxT (δ2) = {x : x̃ ∈ Bx̃T (δ2)} is an
annulus. The above inequality reproduces Equation (19) in [35].

3.4.3. Construction of the axisymmetric velocity vε,δ. We follow [35, 52] to construct a
cutoff function ϕ so that we can localize b(T, x) to the domain where it is large using (3.41).
Let ϕT (x) = ϕT (r, z) be a smooth function supported in AxT (δ2) with ||ϕT ||p = 1. For any
t ∈ [0, T ], we define

(3.42) ϕ(t, x) , ϕT (γT ◦ γ−1
t (x)).

Since ϕT is independent of ϑ, using (3.16) and (3.17), we know that the (r, z) component of
γT ◦ γ−1

t (x) only depends on x̃. Thus, we yield

ϕ(t, x) = ϕT (γ̃T ◦ γ̃−1
t (x̃))

and ϕ(t, x) is independent of ϑ.

Remark 3.7. We can also solve ϕ(t, x) using the PDE similar to (3.38), (3.39)

(3.43) ∂tϕ+ uT · ∇ϕ = 0, ϕ(T, x) = ϕT (x).

Tracking the support of ϕ and using the argument similar to that in the proof of (3.32), one
can show that these two constructions are the same.

Using (3.42) and (3.17), for x ∈ supp(ϕ(t, ·)), we have |γ̃T ◦ γ̃−1
t (x) − γ̃T (x0)| ≤ δ2. Since

γ̃T ◦ γ̃−1
t has Lipschitz constant L2

γ , from (3.40), we get

|x̃− γ̃t(x0)| ≤ L2
γ |γ̃T ◦ γ̃−1

t (x)− γ̃T (x0)| ≤ L2
γδ2,

˜supp(ϕ(t, ·)) ⊂ Bγ̃t(x0)(L
2
γδ2) ⊂ Bγ̃t(x0)(δ/2).

Using (3.30), we further obtain

(3.44) ˜supp(ϕ(t, ·)) ⊂ Σ2 ⊂ (D+
1 \Υ) ∩B(1,0)(R2,α) ⊂ B(1,0)(1/4), t ∈ [0, T ].

For fixed η, δ2, from Lemma 3.2, the function ϕ is Lipschitz in time and C4 in x on [0, T ]×D1.
Moreover, from (3.36), (3.37), we get

(3.45) uT (t, x) = u(t, x), x ∈ supp(ϕ(t, ·)), t ∈ [0, T ].
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Now, we follow [35,52] to construct an approximate solution (3.23) via the WKB expansion.
Since ξ, b are axisymmetric flows and S(t, x), ϕ(t, x), |ξ(t, x)| are independent of ϑ, using Lemma
3.6 repeatedly, we yield that

b× ξ,
b× ξ

|ξ|2 ϕe
iS/ε, vε,η = ε∇× (

b × ξ

|ξ|2 ϕeiS/ε)

are axisymmetric. We remark that |ξ(t, x)|−1 is uniformly bounded on [0, T ]×D1, which can be
proved using the Lagrangian version of (3.38), the boundedness of |∇uT |, and |ξ(0, ·)| = |ξ0| = 1
(3.34). Due to (3.44), vε,η is supported in the interior of D1 and vε,η · n = 0 on ∂D1.

Since supp(vε,η) ⊂ supp(ϕ), from (3.45), the localization of u in (3.36) and (3.37) does not
change the estimates of vε,η in [35, 52]. Following the argument in [35, 52], we obtain that vε,δ2
is a solution to (1.2) with a small forcing term

(3.46) ∂tvε,δ2 + (u · ∇)vε,δ2 + (vε,δ2 · ∇)u+∇qε,δ2 = Rε,δ2 .

Moreover, we have the following estimates

(3.47)
||vε,δ2(T )||Lp ≥ (1 − η)|b(T, x0, ξ0)| − Cη,δ2ε,

||vε,δ2(0, ·)||Lp ≤ 1 + Cη,δ2ε, ||Rε,δ2 ||Lp ≤ Cη,δ2ε,

where Cη,δ2 is some constant independent of ε. The first two estimates are consequences of
the leading order formula of vε,η (3.23), (3.35), (3.41), and the conservation of ||ϕ(t, ·)||Lp = 1,
which follows from the fact that ϕ is transported by an incompressible flow, see e.g., (3.43). See
also Appendix A for some formal derivations related to (3.46)-(3.47).

3.4.4. Symmetrization. An important observation is that vε,δ2 is only supported in the upper

half domain D+
1 \Υ due to (3.44) and supp(vε,δ2 ) ⊂ supp(ϕ(t, ·)). For the singular solution u in

Theorem 8, ωϑ(t) is odd and uϑ(t) is even in z, which induces the symmetry property (Sym)
that uz(t) is odd and uϑ(t), ur(t) are even in z. For vector f = vε,δ2 , Rε,δ2 , we extend it to D−

1

according to the same symmetry

f̄ r = f r(r, z) + f r(r,−z), f̄z = fz(r, z)− fz(r,−z), f̄ϑ = fϑ(r, z) + fϑ(r,−z),

where f = f rer+f
ϑeϑ+f

zez, f̄ = f̄ rer+ f̄
ϑeϑ+ f̄

zez. For the pressure qε,δ2 in (1.2), we extend
it as an even function in z

q̄ε,δ2 = qε,δ2(r, z) + qε,δ2(r,−z).
The above symmetry properties are preserved by (1.1) and (1.2). We obtain that v̄ε,δ2 is a

solution to (1.2) with pressure q̄ε,δ2 and forcing R̄ε,δ2 and enjoys the symmetry property (Sym).

Since supp(vε,δ2) ∈ D+
1 , v̄ε,δ2 − vε,δ2 and vε,δ2 are disjoint, applying (3.47) yields

(3.48)
||v̄ε,δ2(T )||Lp ≥ 2(1− η)|b(T, x0, ξ0)| − Cη,δ2ε,

||v̄ε,δ2(0, ·)||Lp ≤ 2 + Cη,δ2ε, ||R̄ε,δ2 ||Lp ≤ Cη,δ2ε.

The last inequality on R̄ε,δ2 follows from the triangle inequality. Let v̄(T ) be the solution to
(1.2) with initial data v̄ε,δ2(0). Following the argument in [35, 52], we obtain

(3.49) ||v̄(T )− v̄ε,δ2(T )||Lp ≤ Cη,δ2ε.

Since the symmetry of v̄ε,δ2 (0) in z is preserved by (1.2), v(T ) satisfies the symmetry (Sym).

3.4.5. Control of λsymp,σ for all power σ. Denote χ2(x) = 1B(1,0)(
1
2 )
(r, z). Since supp(vε,δ2(t, ·)) =

supp(ϕ(t, ·)) ⊂ B(1,0)(1/4) (3.44) and v̄ε,δ2 is the symmetric extension of vε,δ2 , we get χ2v̄ε,δ2 =
v̄ε,δ2 . Moreover, for x ∈ supp(χ2) ∩ D1, we get r ∈ [1/2, 1]. Then for any σ ∈ R, using (3.47),
we obtain

||r−σ v̄ε,δ2(0, ·)||Lp = ||r−σχ2v̄ε,δ2(0, ·)||Lp ≤ Cσ||v̄ε,δ2(0, ·)||Lp ≤ Cσ(2 + Cη,δ2ε).
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Applying the above estimate, (3.41), (3.48), (3.49) and the definition (1.4), we yield

Cσ(2+Cη,δ2)λ
sym
p,σ (T ) ≥ ||r−σ v̄ε,δ2(0, ·)||Lpλsymp,σ (T ) ≥ ||r−σ v̄(T )||Lp ≥ ||r−σχ2v̄(T )||Lp

≥ C̃σ||χ2v̄(T )||Lp ≥ C̃σ(||χ2v̄ε,δ2(T )||Lp − ||χ2(v̄(T )− v̄ε,δ2(T ))||Lp)

≥ C̃σ(||v̄ε,δ2 (T )||Lp − Cη,δ2ε) ≥ C̃σ(2(1− η)b(T, x0, ξ0)− Cη,δ2ε) ≥ C̃σ

(1− η

1 + η
β(T )− Cη,δ2ε

)
.

Taking η = 1/2 and letting ε→ 0 conclude the proof. �

Proof of Theorem 1. From Theorem 8, we have limt→T∗ ||ωp(t)||∞ = ∞. Combining Proposi-
tions 3.3 and 3.4, we establish

lim inf
t→T∗

λsymp,s (t)2 ≥ Cσ lim inf
t→T∗

β2(T ) ≥ Cσ lim
t→T∗

||ωp(t)||∞
||ωp,0||∞

= ∞.

We conclude the proof of Theorem 1. �

3.5. Proof of Theorem 3. The proof of Theorem 3 is completely similar to that of Theorem
1 and is easier. We follow the arguments in [51]. Firstly, we note that there is a sign difference
between the Boussinesq equations used in [8] (1.5) and [51]. In [51], the Boussinesq equations
are given by

(3.50) θt + u · ∇θ = 0, ut + u · ∇u+∇p = (0, θ)T , ∇ · u = 0.

The velocity-density formulation of (1.5) is the above equations with (0, θ)T replaced by (0,−θ)T .
Clearly, (1.5) and (3.50) are equivalent: (u, θ) solves (1.5) if and only if (u,−θ) solves (3.50).
The linearized equation of (3.50) around a solution (u, θ) of (3.50) is given by

(3.51) ∂tη + u · ∇η + v · ∇θ = 0, ∂tv + u · ∇v + v · ∇u+∇q = (0, η)T , div v = 0,

which is also different from (1.7) with (0, η)T in (3.51) replaced by (0,−η)T in (1.7). Given
solution (u, θ) of (1.5) and (v, η,u, θ) satisfying (1.7), we obtain that (u,−θ) is solution of
(3.50) and (v,−η,u,−θ) satisfies (3.51). To keep the minimal changes of sign and other notations
among this paper, [8], and [51], due to this connection, we use the following setting. Given a
singular solution (u,−θ) of (1.5) in Theorem 7, we obtain the solution (u, θ) of (3.50), which
satisfies the same properties in Theorem 7, e.g., the blowup quantities and the regularity. Then
we consider (3.50) and (3.51) in the following discussions so that the derivations and notations
are consistent with those in [51].

The bicharacteristics-amplitude ODE system of (3.50) [51] read

γ̇(t, x0) = u(t, γ(t, x0)),(3.52)

ξ̇(t, x0, ξ0) = −(∂xu)
T ξ(t, x0, ξ0),(3.53)

ḃ(t, x0, ξ0) = −(∂x~z)b+ Lb + (2
~ξT (∂x~z)b

|ξ|2 −
~ξ · (Lb)
|ξ|2 )~ξ,(3.54)

where ~z , (θ,u), b ∈ R3, the matrix ∂x~z, vector ~ξ, and linear operator L are given below

(3.55) ∂x~z ,




0 ∂1θ ∂2θ
0 ∂1u1 ∂2u1
0 ∂1u2 ∂2u2


 , ~ξ ,




0
ξ1
ξ2


 , Lb ,




0
0
b1


 .

The initial data is given by γ|t=0 = x0, ξ|t=0 = ξ0 ∈ R2\{0} and b|t=0 = b0 ∈ R3. Denote

(3.56) Υ2 , {(x, y) ∈ R2
+ : x = 0 or y = 0}, D = R2

+, D± , {(x, y) : y ≥ 0,±x ≥ 0}.
For the singular solution (u,−θ) in Theorem 7 (then (u, θ) solves (3.50)), since ω is odd, θ is

even in x, and v(x, 0) = 0, we have

(3.57) u · n|Υ2 = 0,

where n is the normal vector of Υ2. We first generalize Lemma 3.2 as follows.
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Lemma 3.8. Let γt be the solution to (3.52) with initial data x0, T∗ be the blowup time, T < T∗,
and D± be the domains defined in (3.56). (a) For any x0 ∈ Υ2 and t ∈ [0, T∗), its trajectory γt
remains in Υ2; for any x0 ∈ D±

1 \Υ2 and t ∈ [0, T∗), we have γt ∈ D±\Υ2. For any t ∈ [0, T ],

γt is invertible, and γt, γ
−1
t are Lipschitz in time and the initial value.

(b) For x0 ∈ D±\Υ2, there exists δ(x0, T ) > 0 depending on x0, T and a compact set Σ2 such
that

(3.58) γt(Bx0(δ)) ∪Bγt(x0)(δ) ⊂ Σ2 ⊂ D±\Υ2.

As a result, for initial data z0 ∈ Bx0(δ) and any b0, ξ0, there exista a unique solution (γt, bt, ξt)
to (3.52)-(3.54) on t ∈ [0, T ]. The functions (γt, bt, ξt) are Lipschitz in time and C4 with
respect to initial data z0 ∈ Bx0(δ) and b0, ξ0, and γ

−1
t (x) is Lipschitz in time and C4 in x ∈

γt(Bx0(δ)) ∪Bγt(x0)(δ).

Unlike Lemma 3.2 for the 3D Euler equations, in the above Lemma, since it is in 2D, we
do not need to consider the angular variable ϑ and the poloidal component x̃ (3.2). Moreover,
unlike (3.18), we do not restrict the initial data x0 and the trajectory γt(x0) to a domain near
the singularity (0, 0) since the velocity u(t) in Theorem 7 is smooth in any interior compact
domain in R+

2 . The proof of Lemma 3.8 follows from the non-penetrated condition (3.57), the
regularity u, θ ∈ C1,α and u, θ ∈ C50(Σ) for any compact set Σ ⊂ D±\Υ2 from Theorem 7, and
the same argument in the proof of Lemma 3.2.

We adopt the following notation from [51] by replacing the domain D by D\Υ2

α(T ) , sup
|b0|=1,|ξ0|=1,x0∈D\Υ2,b0·~ξ0=0

|b(T, x0, ξ0, b0)|.

Recall from (3.55) that b0, ~ξ0 ∈ R3, ξ0 ∈ R2. From Lemma 3.8, for x0 ∈ D\Υ2, b(T, x0, ξ0, b0)
and α(T ) are well-defined. We modify Proposition 3.1 from [51] as follows.

Proposition 3.9. Assume that (u,−θ) is the singular solution in Theorem 7. Then (u, θ) is
the singular solution of (3.50). For any t ∈ (0, T ∗), we have

||∇θ(T )||∞ ≤ ||∇θ0||∞α2(T ).

Note that ∇θ ∈ Cα is continuous, and we can solve (3.52)-(3.54) for x0 ∈ D±\Υ2 from Lemma
3.8. The proof follows from the proof of Proposition 3.1 in [51] with minor modifications similar
to those in the proof of Proposition 3.3. Thus, we omit the proof.

We modify Proposition 3.2 from [51] as follows.

Proposition 3.10. Assume that (u,−θ) is the singular solution in Theorem 7. Then (u, θ) is
the singular solution of (3.50). For any T ∈ (0, T ∗) and p ∈ (1,∞), we have

α(T ) ≤ Cpγ
sym
p (T ).

The proof follows from the argument in [51] and the argument in the proof of Theorem
3.4. The key point is that the approximate solution (ηε,δ, vε,δ) constructed in [51] is similar to
(3.23) and supported in a compact domain Σ2 ⊂ D±\Υ2. See (3.44) for the case of the 3D
Euler equations. The proof is much simpler since we do not need to construct an axisymmetric
solution.

We give a sketch of the proof. We fix T < T∗. For any initial data x0 ∈ D±\Υ2 and b0, ξ0
with b0 · ~ξ0 = 0, |b0| = 1, |ξ0| = 1, from Lemma 3.8, there exists δ > 0 and a compact set Σ2 such
that (3.58) holds. Without loss of generality, we assume x0 ∈ D+\Υ2. We construct a smooth
cutoff function χT similar to (3.36) such that

χT (x) = 1, x ∈ Σ2, Σ2 ⊂ supp(χT ) = Σ3 ⊂ D+\Υ2.

We localize the singular solution (u, θ) similar to (3.37) as follows

(3.59) uT (t, x) , u(t, x)χT (x), θT (t, x) , θ(t, x)χT (x).

From Theorem 7, we get uT , θT ∈ L∞([0, T ], C50(D)). Then we construct b(t, x), ξ(t, x), γ(t, x)
by solving the PDE (Eulerian) form of (3.52)-(3.54) with u, θ, ~z replaced by uT , θT , zT = (θT ,uT )
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using the following initial data

b(0, x) ≡ b0, ξ(0, x) = ξ0, S(0, x) = x · ξ0.
We choose δ2 = δ

4(1+Lγ)3
similar to (3.40) and choose ϕT that is supported in Bδ2(γT (x0)) with

||ϕT ||Lp = 1. Then we construct a localized function with properties similar to (3.44)

ϕ(t, x) = ϕT (γT ◦ γ−1
t (x)), supp(ϕ(t, x)) ⊂ Bγt(x0)(δ/2) ⊂ Σ2.

These functions b(t, x), ξ(t, x), S(t, x), ϕ(t, x) are at least C4 in the whole domain for t ∈ [0, T ].
From (3.59), we have

uT (t, x) = u(t, x), θT (t, x) = θ(t, x), x ∈ supp(ϕ(t)) ⊂ Σ2, t ∈ [0, T ].

Using these functions b, ξ, S, ϕ, we follow [51] to construct the WKB solution, which is supported
in supp(ϕ(t)) ⊂ Σ2. Due to the above relation, the localization (3.59) does not change the
estimates of the solution. We can further symmetrize the solution using the argument in Section
3.4.4. The rest of the proof follows [51].

One difference between our settings and those in [51] is that our domain R+
2 has boundary,

while the domain in [51] is R2 or T2. In the proof of Proposition 3.10, this difference appears
only in the elliptic estimate

−∆q = ∇ · g, x ∈ R+
2 , − ∂q

∂n
= n · g, on ∂R+

2 ,

where n is the unit normal vector. In [51], there is no boundary and the second equation. In
R+

2 , the L
p estimate

||∇q||Lp .p ||g||Lp , p ∈ (1,∞)

follows from the Poisson’s formula for q and the Calderon-Zygmund estimates of the kernel.
Now, we are in a position to prove Theorem 3. The proof is simpler than that in [51] since

we do not require the blowup criterion on
∫ T
0
||∇θ||∞dt.

Proof of Theorem 3. From Theorem 7, we have limt→T∗ ||∇θ(t)||∞ = ∞. Combining Proposi-
tions 3.9 and 3.10, we establish

lim inf
t→T∗

γsymp (t)2 ≥ Cp lim inf
t→T∗

α2(T ) ≥ Cp lim
t→T∗

||∇θ(t)||∞
||∇θ0||∞

= ∞.

We conclude the proof of Theorem 3. �

3.6. Proof of Theorem 2. For the singular solution [18], near the singularity (r, z) = (0, 0),
the flow moves down the z axis, and then travel outward in the r direction. See also Remark
2.1 in [18]. We will use the outward flow to prove Theorem 2. Denote

(3.60)
Υ3 , {(r, z) : r = 0 or z = 0}, β̃σ(t) = sup

(x0,b0,ξ̃0)∈(R3\Υ3)×R
3×S1,

b0·ξ0=0,|b0|=r
σ
0

|r−σt bt(x0, ξ̃0, b0)|.

The definition of β̃σ(t) modifies (3.21) and is similar to (3.22). The velocity ur, uz in Theorem
9 satisfies

(3.61) u(t) · n
∣∣∣
Υ3

= ur(t) · nr + uz(t) · nz(t) = 0,

and (ur, uz) is smooth in R3\Υ3 and uϑ = 0. In particular, γt is a bijection from R3\Υ3 to
R3\Υ3. Hence, we can generalize Lemma 3.2 to the current setting, and solve (3.6)-(3.8) in
R3\Υ3 with solutions bt, γt, ξt, γ

−1
t that are C4 on the initial data.

The following result is established in the proof of Proposition 2 in [35].

Proposition 3.11. For any (T, xT ) ∈ (0, T ∗) × R3\{r = 0} and σ ∈ R, let xt be the backward
solution of (3.6) from time T and xT , ω0 = ω(0, x0), ξt be the solution of (3.7) with initial data
ξ0 · ω0 = 0, ξ0 6= 0, ξ0 · eϑ(x0) = 0, and bt be a solution of (3.8) with initial data b0 = rσ0 eϑ and

b0 · ξ0 = 0. Then we have rσ+1
0 ≤ rT |bT |.
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Applying the above result to xT ∈ R3\Υ3 ⊂ R3\{r = 0} and using definition (3.60), we yield

rσ+1
0

rσ+1
T

≤ r−σT |bT | ≤ β̃σ(T ).

Since xT = γT (x0) is arbitrary in R3\Υ3 and γT is a bijection from R3\Υ3 to itself, we derive

supx0∈R3\Υ3

rσ+1
0

rσ+1
T

≤ β̃σ(T ). Since u ∈ C1,α and γT (x) is Lipschitz in x, we get γT (r0, ϑ0, 0) =

limz→0 γT (r0, ϑ0, z). Hence, we further obtain

(3.62) sup
x0∈R3\{r=0}

rσ+1
0

rσ+1
T

≤ β̃σ(T ).

We have the following estimate for rT /r0. The idea is that the outgoing flow in the r direction
near (r, z) = (0, 0) generates rapid growth of rT /r0.

Lemma 3.12. Let u be the singular solution in Theorem 9. Then for any T < T∗, we have

sup
r0 6=0

rT
r0

≥ exp
(1
2

∫ T

0

urr(t, 0, 0)dt
)
.

Proof. Note that ur(t, 0, z) = 0. For T < T∗, since u
r(t) ∈ C0([0, T ], C1,α) and urr(t, 0, 0) >

0, t ∈ [0, T ], there exists δ > 0, such that

(3.63) 0 <
1

2
urr(t, 0, 0) ≤

ur(t, r, 0)

r
≤ 2urr(t, 0, 0).

for all r ≤ δ, t ∈ [0, T ]. Since uz(t, r, 0) = 0, solving the r component of the ODE (3.6) backward
with initial data xT = (rT , 0), rT = δ/2, we get that the trajectory is on z = 0 and

d

dt
rT−t = −ur(T − t, rT−t, 0) = −rT−t

ur(T − t, rT−t, 0)

rT−t

Since ur(T − t, r, 0) ≥ 0 on r ∈ [0, δ], rT−t is decreasing in t and rT−t ∈ [0, δ]. Using the above
ODE, (3.63), and Gronwall’s inequality, we obtain

r0 ≤ exp(−1

2

∫ T

0

urr(t, 0, 0)dt)rT , r0 ≥ exp(−2

∫ T

0

urr(t, 0, 0)dt)rT > 0.

The desired result follows. �
For the singular solution in Theorem 9 , Proposition 3 in [35] remains true.

Proposition 3.13. Let t ∈ (0, T∗), p ∈ (1,∞), σ ∈ (− 2
p′ ,

2
p ) and u be the singular solution in

Theorem 8. Then we have β̃p(T ) . λsymp,σ (T ).

From Theorem 9, for any T < ∞ and any compact domain Σ ⊂ R3\Υ3, we can localize u
using some cutoff function such that u(t, x)χ(x) = u(t, x) for (x, t) ∈ Σ× [0, T ], and uχ is much
smoother. The weighted estimate involving the weight r−σ in Lemma 4.1 in [35] does not require
higher order regularity on u. Thus the proof follows from [35] and the proof of proposition 3.4.

Now, we are in a position to prove Theorem 2

Proof of Theorem 2. From Theorem 9, we have
∫ T∗

0
urr(t, 0, 0)dt = ∞. For σ < −1, −σ − 1 > 0,

combining Lemma 3.12 and (3.62), we obtain

λsymp,σ (T ) ≥ Cβ̃σ(T ) ≥ C sup
r0 6=0

(
r0
rT

)σ+1 = C( sup
r0 6=0

rT
r0

)−1−σ ≥ C exp(
−1− σ

2

∫ T

0

urr(t, 0, 0)dt).

Letting T → T∗, we complete the proof. �
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4. Properties of the singular solutions to the 2D Boussinesq equations

In this Section, we prove Theorem 7 regarding the properties of the singular solutions to the
2D Boussinesq equations (1.5) constructed in [8]. In Section 5, we generalize these estimates to
the 3D Euler equations with boundary using the connection between the 2D Boussinesq and the
3D Euler equations [8, 40] and the argument in [8].

We remark that we will only use the higher-order interior regularity in Theorems 7-9 qual-
itatively to prove Theorems 1-3. These estimates could be established by performing energy
estimates of the physical equations directly with a continuation criterion similar to the BKM
criterion [1]. Yet, since the singular solution has only low regularity in the whole domain, we
need some delicate weighted estimates. Instead, we prove these regularity estimates by generaliz-
ing the nonlinear stability estimates in [8] to the higher order and using embedding inequalities.
These quantitative stability estimates can be useful for future study of the singular solution.

4.1. Setup for the 2D Boussinesq equations. Firstly, we recall the setup from [8].

4.1.1. Dynamic rescaling formulation. The analysis of the singular solutions [8] is based on
the dynamic rescaling formulation [36, 43]. To distinguish the solutions to (1.5)-(1.6) and the
solutions to its dynamic rescaling formulation, we denote by ωphy(x, t), θphy(x, t),uphy(x, t) the
solutions of (1.5)-(1.6). Then it is easy to show that

(4.1)
ω(x, τ) = Cω(τ)ωphy(Cl(τ)x, t(τ)), θ(x, τ) = Cθ(τ)θphy(Cl(τ)x, t(τ)),

u(x, τ) = Cω(τ)Cl(τ)
−1uphy(Cl(τ)x, t(τ)),

are the solutions to the dynamic rescaling equations

(4.2) ωτ (x, τ) + (cl(τ)x + u) · ∇ω = cω(τ)ω + θx, θτ (x, τ) + (cl(τ)x + u) · ∇θ = 0,

where u = (u, v)T = ∇⊥(−∆)−1ω, x = (x, y)T ,

(4.3) Cω(τ) = exp

(∫ τ

0

cω(s)dτ

)
, Cl(τ) = exp

(∫ τ

0

−cl(s)ds
)
, Cθ = exp

(∫ τ

0

cθ(s)dτ

)
,

t(τ) =
∫ τ
0 Cω(τ)dτ and the rescaling parameter cl(τ), cθ(τ), cω(τ) satisfies

cθ(τ) = cl(τ) + 2cω(τ).

We have the freedom to choose the time-dependent scaling parameters cl(τ) and cω(τ) ac-
cording to some normalization conditions. After we determine the normalization conditions for
cl(τ) and cω(τ), the dynamic rescaling equation is completely determined and the solution of
the dynamic rescaling equation is equivalent to that of the original equation using the scaling
relationship described in (4.1)-(4.3), as long as cl(τ) and cω(τ) remain finite. We refer more
discussion about this reformulation for the 2D Boussinesq equations to [8].

To simplify our presentation, we still use t to denote the rescaled time.

4.1.2. Change of coordinates and the approximate steady state. Consider the polar coordinate
in R+

2

r =
√
x2 + y2, β = arctan(y/x), R = rα.

Let ω, θ, ψ = (−∆)−1ω be the vorticity, density, and the stream function in (4.2). Denote

(4.4) Ω(R, β, t) = ω(x, y, t), Ψ =
1

r2
ψ, η(R, β, t) = (θx)(x, y, t), ξ(R, β, t) = (θy)(x, y, t).

Using the (R, β) coordinates and the above new variables, we reformulate (4.2) as follows

(4.5)

Ωt + αclR∂RΩ+ (u · ∇)Ω = cωΩ + η,

ηt + αclR∂Rη + (u · ∇)η = (2cω − ux)η − vxξ,

ξt + αclR∂Rξ + (u · ∇)ξ = (2cω − vy)ξ − uyη.

The elliptic equation (1.6) reduces to

(4.6) − α2R2∂RRΨ− α(4 + α)R∂RΨ− ∂ββΨ− 4Ψ = Ω,
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with boundary conditions

(4.7) Ψ(R, 0) = Ψ(R, π/2) = 0, lim
R→∞

Ψ(R, β) = 0.

Here, instead of working with the equations of (ω, θ) (4.2), we consider the equations of
(ω, θx, θy) in (4.5) since these variables have similar regularities.

The above polar coordinates (R, β) and the change of variables from ω, ψ to Ω,Ψ were first
introduced in [18]. The advantages of these transforms are that for small α, the solution can
be expressed as a smooth function of R, and the structure of the equations (4.5) and (4.6) are
clear under the (R, β) coordinates.

The approximate steady state of (4.5) under the coordinate (R, β) is given by

(4.8)

Ω̄(R, β) =
α

c
Γ(β)

3R

(1 +R)2
, η̄(R, β) =

α

c
Γ(β)

6R

(1 +R)3
, c̄l =

1

α
+ 3, c̄ω = −1,

Γ(β) = (cos(β))α, c =
2

π

∫ π/2

0

Γ(β) sin(2β)dβ.

We decompose a solution (Ω̂, η̂, ξ̂, ĉl, ĉω) of (4.5) into the approximate steady state and their
perturbations

Ω̂ = Ω̄ + Ω, η̂ = η̄ + η, ξ̂ = ξ̄ + ξ, ĉl = c̄l + cl, ĉω = c̄ω + cω.

To uniquely determine the dynamic rescaling formulation, we impose the following normal-
ization conditions on the perturbation of the rescaling parameters cl(t), cω(t)

(4.9) cω(t) = − 2

πα
L12(Ω(t))(0), cl(t) = −1− α

α

2

πα
L12(Ω(t))(0) =

1− α

α
cω(t),

where L12(·) is defined below in (4.10). We use Ω, η, ξ to denote the perturbation since we will
mainly focus on the analysis of the perturbation in the rest of the paper. The reader should not
confuse them with the solution to (4.5).

4.1.3. Linearization. We introduce

(4.10)
L12(Ω) ,

∫ ∞

R

∫ π/2

0

sin(2β)Ω(s, β)

s
dsdβ, L̃12(Ω)(R) , L12(Ω)(R)− L12(Ω)(0),

Ψ∗ , Ψ− sin(2β)

πα
L12(Ω).

For sufficiently small α, the operator L12 captures the leading order term of the Biot-Savart
law u = ∇⊥(−∆)ψ , and Ψ∗ is the lower order part in the modified stream function Ψ. In
particular, the leading order parts of the velocity u, ū are given by

(4.11)

u = −2r cosβ

πα
L12(Ω) + l.o.t., v =

2r sinβ

πα
L12(Ω) + l.o.t.,

ux = −vy = − 2

πα
L12(Ω) + l.o.t., uy = l.o.t., vx = l.o.t..

L12(Ω̄) =
π

2

3α

1 +R
, Ψ̄ =

sin(2β)

2

3

1 +R
+ l.o.t.,

ūx = −v̄y = − 3

1 +R
+ l.o.t., ūy, v̄x = l.o.t..

where l.o.t. denotes the lower order terms and we have used the formula of Ω̄ in (4.8) to derive
L12(Ω̄). The smallness of the lower order terms can be justified using the elliptic estimates in
Propositions B.3, B.4. The formulas of u, v in (R, β) coordinate are given in (D.1). We refer
the complete calculation and the formulas of the lower order terms to Section 8.1 in [8].

Definition 4.1. We define the differential operators

DR = R∂R, Dβ = sin(2β)∂β
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and the linear operators Li

(4.12)

L1(Ω, η) , −DRΩ− 3

1 +R
DβΩ− Ω + η + cω(Ω̄−DRΩ̄),

L2(Ω, η) , −DRη −
3

1 +R
Dβη + (−2 +

3

1 +R
)η +

2

πα
L̃12(Ω)η̄ + cω(η̄ −DRη̄),

L3(Ω, ξ) , −DRξ −
3

1 +R
Dβξ + (−2− 3

1 +R
)ξ − 2

πα
L̃12(Ω)ξ̄ + cω(3ξ̄ −DRξ̄),

where L̃12(Ω) is defined in (4.10) and Ω̄, η̄ are defined in (4.8).

With the above notations, in the (R, β) coordinate, the linearized equations of (4.5) around
the approximate steady state (Ω̄, η̄, ξ̄, c̄l, c̄ω) read

(4.13) Ωt = L1(Ω, η) +RΩ, ηt = L2(Ω, η) +Rη, ξt = L3(ξ) +Rξ,

where Ω, η, ξ are the perturbations. The above definitions of the linearized operators are moti-
vated by the leading order structures of the velocity (4.11), and we only keep the leading order
terms in Li. The remaining terms R contain the lower order terms with a small factor α, the
residual error of the approximate steady state, and the nonlinear terms. They are treated as
the lower order terms in the energy estimates. The full expansion of R is rather lengthy, and
we refer the formulas and derivations to Sections 5.1 and 8.1 in [8].

4.1.4. Weights and energy norms. Recall the following singular weights from [8].

Definition 4.2. Recall Γ(β) = cosα(β). Let σ = 99
100 , γ = 1 + α

10 . Define ϕi, ψi, φi by

(4.14)

ψ0 ,
3

16

(
(1 +R)3

R4
+

3

2

(1 +R)4

R3

)
Γ(β)−1, ϕ0 ,

(1 +R)3

R3
sin(2β),

ϕ1 ,
(1 +R)4

R4
sin(2β)−σ, ϕ2 ,

(1 +R)4

R4
sin(2β)−γ ,

ψ1 ,
(1 +R)4

R4
(sin(β) cos(β))−σ , ψ2 ,

(1 +R)4

R4
sin(β)−σ cos(β)−γ ,

φ1 ,
1 +R

R
, φ2 , 1 + (R sin(2β)α)−

1
40 , φij = 1i≥1φ1 + 1j≥1φ2.

The special forms of ψ0, ϕ0 are designed carefully to exploit nonlocal cancellations in the
linearized equations (4.13) and are crucial for the linear stability analysis of the weighted L2

part of the energy in (4.18). The weights ϕi, ψi, which are singular near R = 0, are important
to derive the damping effect from the linearized equations (4.13). The singular weights ϕ1, ϕ2

were first introduced in [18]. We define the weighted Hk norms as follows

(4.15) ||f ||Hm(ρ) ,
∑

0≤k≤m

||ρ1/21 Dk
Rf ||L2 +

∑

i+j≤m−1

||ρ1/22 Di
RD

j+1
β f ||L2 .

Choosing ρi = ϕi and ρi = ψi, i = 1, 2, we get the Hm(ϕ) and Hm(ψ) norm, respectively. We
simplify Hm(ϕ) as Hm. The Hm norm is used for Ω, η and the Hk(ψ) norm for ξ.

We need the weighted Ck norm to control ξ
(4.16)

||f ||Ck , ||f ||∞ +
∑

1≤i≤k

(||φ1Di
Rf ||∞ + ||φ2Di

βf ||∞) +
∑

i,j≥1,i+j≤k

||(φ1 + φ2)D
i
RD

j
βf ||∞.

We remark that the second weights ϕ2, ψ2, φ2 are used to handle the angular derivatives. For
mixed derivatives only involving DR, we use the first weights ϕ1, ψ1, φ1.

To estimate the velocity of the approximate steady state, we use the W l,∞ norm [8, 18]

(4.17) ||f ||Wl,∞ ,
∑

0≤k+j≤l,j 6=0

∣∣∣
∣∣∣ sin(2β)−

α
5

Dk
RD

j
β

α
10 + sin(2β)

f
∣∣∣
∣∣∣
L∞

+
∑

0≤k≤l

∣∣∣
∣∣∣Dk

Rf
∣∣∣
∣∣∣
L∞

.
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4.2. Hk estimates. The nonlinear stability analysis in [8] is based on the weighted L2 and H1

linear stability analysis of the following energy with a lower order remaining term R1

(4.18)

E2
1(Ω, η, ξ) ,||Ωϕ1/2

0 ||22 + ||ηψ1/2
0 ||22 +

81

4πc
L2
12(Ω)(0) + µ1(||Ωϕ1/2

1 ||22 + ||ηϕ1/2
1 ||22)

+ ||ξψ1/2
1 ||22 + µ2(||Ωϕ1/2

1 ||22 + ||ηϕ1/2
1 ||22) + ||Dβξψ

1/2
2 ||22

+ µ3(||DRΩϕ
1/2
1 ||22 + ||DRηϕ

1/2
1 ||2 + ||DRξψ

1/2
1 ||22),

R1(Ω, η, ξ) ,〈RΩ,Ωϕ0〉+ 〈Rη , ηψ0〉+
81

4πc
L12(Ω)(0)〈RΩ, sin(2β)R

−1〉
+ µ1(〈DβRΩ, DβΩϕ2〉+ 〈DβRη, Dβηϕ2〉) + 〈Rξ, ξψ1〉
+ µ2(〈RΩ,Ωϕ1〉+ 〈Rη, ηϕ1〉) + 〈DβRξ, (Dβξ)ψ2〉

+ µ3

(
〈DRRΩ, DRΩϕ1〉+ 〈DRRη, DRηϕ1〉+ 〈DRRξ, DRξψ1〉

)
,

where the absolute constant µ1, µ2, µ3 > 0 are determined in order. Higher order stability
analysis is further established inductively for the energy Ek with a remaining term Rk

(4.19)

E2
k(Ω, η, ξ) , E2

1 +
∑

2≤i≤k

∑

0≤j≤i

µi,j

(
||p1/2j Dj

RD
i−j
β Ω||22 + ||p1/2j Dj

RD
i−j
β η||22 + ||q1/2j Dj

RD
i−j
β ξ||22

)
,

Rk(Ω, η, ξ) , R1 +
∑

2≤i≤k

∑

0≤j≤i

µi,j

(
〈Dj

RD
i−j
β RΩ, (D

j
RD

i−j
β Ω)pj〉+ 〈Dj

RD
i−j
β Rη, (D

j
RD

i−j
β η)pj〉

+〈Dj
RD

i−j
β Rξ, (D

j
RD

i−j
β ξ)qj〉

)
,

where the weights (pj , qj) = (ϕ1, ψ1) for j = 0 and (pj , qj) = (ϕ2, ψ2) for j ≥ 1. The absolute
constants µj,i−j can be determined in the order (2, 0), (1, 1), (0, 2), (3, 0), (2, 1).... We apply the
first weights ϕ1, ψ1 if the mixed derivatives only contain DR, and (ϕ2, ψ2) otherwise.

The case k = 1, 2, 3 of the following estimate has been established in Corollary 6.4 [8], and
its generalization to general k ≥ 3 is straightforward.

Proposition 4.3. For any k ≥ 1, there exists some absolute constants Ck and µi,j > 0, j ≤ i,
which can be determined inductively in the order (i1, j1) � (i2, j2) if i1 < i2 or i1 = i2 and
j1 ≤ j2, such that

1

2

d

dt
E2
k(Ω, η, ξ) ≤ (− 1

15
+ Ckα)E

2
k +Rk.

We refer the details to Sections 5, 6 in [8] and its arXiv version [7]. Note that the remaining
term Rk is a lower order term and can be treated as a small perturbation in the final energy
estimates.

We define the inner products on Hk and Hk(ψ) associated with energy Ek (4.18), (4.19),
which are equivalent to Hk,Hk(ψ)

(4.20)

〈f, g〉Hk ,µ1〈Dβf,Dβgϕ2〉+ µ2〈f, gϕ1〉+ µ3〈DRf,DRgϕ1〉
+

∑

2≤i≤k

∑

0≤j≤i

µi,j〈Dj
RD

i−j
β f,Dj

RD
i−j
β gpj〉,

〈f, g〉Hk(ψ) ,〈Dβf,Dβgψ2〉+ 〈f, gψ1〉+ µ3〈DRf,DRgψ1〉
+

∑

2≤i≤k

∑

0≤j≤i

µi,j〈Dj
RD

i−j
β f,Dj

RD
i−j
β gqj〉,

where pj = ϕ1, qj = ψ1 for j = 0 and pj = ϕ2, qj = ψ2 for j 6= 0. We will use the notations
(4.20) in the estimates of the transport term in Proposition B.8 .

To estimate the remaining termsRk (4.19) in the weightedHk energy estimates in Proposition
4.3 and perform the weighted Ck estimate in Section 4.3, we need to generalize the functional
inequalities in Section 7.2 in [8] to the higher order. We generalize them one by one. Since
most estimates follow from the argument in [8], for completeness, we present the generalizations
and give a sketch of the proof in Appendix B . We further generalize the estimates of the
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approximate steady state Ω̄, η̄, ξ̄ from [8] in Appendix C . The proof of these estimates follows
the argument in [8] and thus is omitted.

The estimates of the remaining term R3 in Proposition 4.3 with k = 3 established in [8] are
based on the elliptic estimates in Proposition B.3, the functional inequalities in Appendix B, the
estimates of the approximate steady state in Appendix C and the L12(·) operator in Lemma C.4.
With the higher order analogs of these estimates, we can follow the derivations and arguments
in Section 8 in [8] to establish the following estimate

|Rk| . α1/2(E2
k + α||ξ||2Ck−2) + α−3/2(Ek + α1/2||ξ||Ck−2)3 + α2Ek.

It generalizes the corresponding estimate in the case of k = 3 in Section 8.4.1 in [8]. Plugging
the above estimate in Proposition 4.3, we complete the Hk estimate

(4.21)
1

2

d

dt
E2
k ≤ − 1

15
E2
k +Ckα

1/2(E2
k +α||ξ||2Ck−2) +Ckα

−3/2(Ek +α1/2||ξ||Ck−2)3 +Ckα
2Ek,

which generalizes estimate (8.1) in [8] from k = 3 to k ≥ 3.

4.3. Ck estimate of ξ. To close the k − th order nonlinear estimates, we need to control the
L∞ norm of Di

RD
j
βΩ, D

i
RD

j
βη,D

i
RD

j
βξ, i + j ≤ k − 2. For ξ, however, since the weight ψ2 (see

Definition 4.2) is less singular in β for β close to 0, the weighted Hk(ψ) space associated to ξ is
not embedded continuously into Ck−2. Alternatively, we estimate the Ck norm of ξ. The case
k = 1 has been established in Section 6.3 and 8.5 in [8]. The general case of k ≥ 1 is not so
straightforward and thus we present the estimate. Throughout the rest of the paper, we only
consider k ≤ 100 to avoid tracking absolute constants related to k.

Following the derivation in Section 6.3 in [8] (or Section 6.4 in the arXiv version [7]), we can
rewrite the linearized equation of ξ in (4.13) as follows

(4.22) ∂tξ +A(ξ) = (−2− 3

1 +R
)ξ + Ξ1 + Ξ2 + F̄ξ +No,

where A(ξ) denotes the transport term in the ξ equation in (4.5), including the nonlinear part

(4.23) A(ξ) , (1 + 3α+ αcl)DRξ + ((ū+ u) · ∇)ξ,

Ξ1,Ξ2 are lower order terms that contain a small factor

(4.24) Ξ1 , (
3

1 +R
− v̄y)ξ, Ξ2 = −vy ξ̄+ cω(2ξ̄−R∂Rξ̄)+(αcωR∂R− (u ·∇))ξ̄− (uy η̄+ ūyη),

No is some nonlinear term, and F̄ξ is the error

(4.25) No = (2cω − vy)ξ − uyη, F̄ξ , −(2c̄ω − v̄y)ξ̄ + ūyη̄ + αc̄lR∂Rξ̄ + (ū · ∇)ξ̄.

Here, we have expanded the remaining term Rξ in (4.13). The above decomposition and Ξ1,Ξ2

are motivated by the leading order structure of the velocity (4.11) and the properties that ξ̄ is
a lower order term of size α2.

We introduce T [8] to denote the lower order part of the transport operator u · ∇

(4.26) T (Ω) , −2 cos(2β)

π
L12(Ω)DR − α∂βΨ∗DR +

2Ψ∗ + αDRΨ

sin(2β)
Dβ.

Using this notation, we decompose ū · ∇ into the main term and the lower order term T (Ω̄)

ū · ∇ =
3

1 +R
Dβ + T (Ω̄),

which further motivates the following decomposition of (4.23)

(4.27) A(ξ) = ((1+3α+αcl)DRξ+
3

1 +R
Dβξ)+(((u+ ū) ·∇− 3

1 +R
Dβ)ξ) , A1(ξ)+A2(ξ).

The main part in A(ξ) is captured by A1(ξ). We refer the detailed derivation to Section 6.4 and
Section 8.1 in [8].

We need the following simple estimates for the weights.

Lemma 4.4. For φ = φ1, φ2, φij defined in (4.2), we have |DRφ| . φ, |Dβφ| . αφ, 1 . φ1, 1 .
φ2.
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The estimate for φ1, φ2 follows from a simple calculation. The estimate for φij follows from
a triangle inequality.

4.3.1. Estimate of φijD
i
RD

j
βξ. To establish the Ck estimate, we performL∞ estimate on φijD

i
RD

j
βξ.

Denote the commutator and the weighted derivatives

(4.28) [P,Q] = PQ−QP, Pij , φijD
i
RD

j
β.

In the L∞ estimate, we need to estimate the commutator [Pij ,A] (4.27), which is given below.

Lemma 4.5. For i+ j = k ≤ 100, we have

(4.29) [Pij ,A1]ξ = −(1 + 3α+ αcl)
DRφij
φij

Pijξ + εij

with error terms εij satisfying

(4.30) ε0k . α|Pijξ|, |εij | . |Pi−1,j+1ξ|+ ||ξ||Ck−1 + α|Pijξ|, i ≥ 1 .

For A2, we have

(4.31) |[Pij ,A2]ξ| . (α−1||Ω||Hk+2 + α)||ξ||Ck .

The first term on the right hand side of (4.29) is a damping term so that we do not need to
control it. The upper bound of (4.31) is of order α||ξ||Ck , and the second commutator is a lower
order term. The above estimate shows that P0k almost commutes with A up to some lower order
terms, which are small or can be controlled by lower order energy. Thus we will first perform
L∞ estimate on P0kξ. Then we estimate other terms Pi,k−iξ in the order of i = 1, 2, 3.., k so
that in each step, we can control the bad term |Pi−1,j+1ξ| in (4.30) using the previous estimate.

Proof. To simplify the notation, we denote φ = φij . We decompose A1 (4.27) into

A1 = A11 +A12, A11 = aαDR, A12 = f(R)Dβ, aα = (1 + 3α+ αcl), f(R) =
3

1 +R
.

Note that DR and Dβ commute. For A11, a direct computation yields

[Pij ,A11]ξ = φDi
RD

j
βA11ξ −A11(φD

i
RD

j
βξ) = aα(φD

i+1
R Dj

βξ −DR(φD
i
RD

j
βξ))

= −aαDRφD
i
RD

j
βξ = −aαφ−1DRφPijξ,

which gives the first term on the right hand side of (4.29). For A12, similarly, we get

[Pij ,A12]ξ = φDi
RD

j
β(f(R)Dβξ)− f(R)Dβ(φD

i
RD

j
βξ)

= φ
(
Di
RD

j
β(f(R)Dβξ)− f(R)Di

RD
j+1
β ξ

)
− f(R)DβφD

i
RD

j
βξ , I + II.

Using Lemma 4.4 and f(R) . 1, we yield

|II| . αf(R)|φDi
RD

j
βξ| . α|Pijξ|.

For I, since Dβf(R) = 0, if i = 0, we get I = 0. This proves the first inequality in (4.30).
If i ≥ 1, using the Leibniz rule, we derive

(4.32)

|I| = |φ(Di
R(f(R)D

j+1
β ξ)− f(R)Di

RD
j+1
β ξ)|

. φDRf(R)D
i−1
R Dj+1

β ξ + φ
∑

l≤i−2

|Di−l
R f(R)Dl

RD
j+1
β ξ|.

From the definition of φ1, φ2, φij (4.2), we have

Dl
Rf(R) .

R

(1 +R)2
, 1 ≤ l ≤ 100, φ1

R

(1 +R)2
. 1, φij

R

(1 +R)2
. 1 + 1j≥1φ2 . φn,j+1

for any n ≥ 0. Using the above derivations and the definition of Ck (4.16), we yield

|I| . |φi−1,j+1D
i−1
R Dj+1

β ξ|+
∑

l≤i−2

φl,j+1|Dl
RD

j+1
β ξ| . |Pi−1,j+1ξ|+ ||ξ||Ci+j−1 .

This completes the proof of (4.29) and (4.30).
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For A2, we follow the decomposition in Section 8.5.3 in [8]

A2(ξ) =
2

πα
L12(Ω)Dβξ + (T (Ω̄) + T (Ω))ξ =

2

πα
L12(Ω)Dβξ −

2

π
cos(2β)

(
L12(Ω) + L12(Ω̄)

)
DRξ

− α(∂βΨ∗ + ∂βΨ̄∗)DRξ +
2Ψ∗ + αDRΨ+ 2Ψ̄∗ + αDRΨ̄

sin(2β)
Dβξ

,(H1Dβ +H2DR +H3DR +H4Dβ)ξ,

where L12(Ω),Ψ∗ defined in (4.10) relate to the leading order terms of the velocity, and T (·)
(4.26) denotes the lower order part in the transport operator u · ∇.

Let (H,D) be one of the pairs (H1, Dβ), (H2, DR), (H3, DR), (H4, Dβ) in the above decom-
position. Next, we show that

(4.33) |[Pij , HD]ξ| . ||H ||Ck ||ξ||Ck .

Since DR and Dβ commute, applying the Leibniz rule, we derive

[Pij , HD]ξ = φDi
RD

j
β(HDξ)−HD(φDi

RD
j
β)ξ = φDi

RD
j
β(HDξ)−HφDi

RD
j
βDξ −HDφ ·Di

RD
j
βξ

= φ
∑

l≤i,m≤j,l+m<i+j

(
i

l

)(
j

m

)
(Di−l

R Dj−m
β H)(Dl

RD
m
β Dξ)−HDφ ·Di

RD
j
βξ , J1 + J2.

Using Lemma 4.4, we obtain

|J2| . ||H ||∞|φDi
RD

j
βξ| . ||H ||∞|Pijξ| . ||H ||∞||ξ||Ck .

Recall φ = 1i≥1φ1 +1j≥1φ2. We estimate two weights in J1 separately. If i = 0, the estimate
is trivial since 1i≥1φ1 = 0. If i ≥ 1, we have i − l ≥ 1 or l ≥ 1. In the first case, using the
definition of Ck (4.16), Proposition B.2, and i+ j − l−m ≤ i+ j = k, l+m ≤ i+ j = k, we get

|φ1Di−l
R Dj−m

β H ·Dl
RD

m
β ξ| . |φ1Di−l

R Dj−m
β H |∞|Dl

RD
m
β ξ|∞

. ||Di−l−1
R Dj−m

β H ||C1 ||ξ||Ck . ||H ||Ck ||ξ||Ck .

The estimates of the other case l ≥ 1 and that of the second weight are completely similar.
Thus, using the triangle inequality, we establish

|J1| . ||H ||Ck ||ξ||Ck ,

which along with the estimate of J2 implies (4.33).
To further control the ||H ||Ck , we have the following estimates

(4.34) ||H ||Ck . α−1||Ω||Hk+2 + α.

The case of k = 1 has been established in Section 8.5.3 in [8]. The general case k ≥ 1 follows from
a similar argument by using the elliptic estimates in Propositions B.3, B.4, and the embedding
in Proposition B.2. We refer to [8] for more discussions.

Combining (4.33) and (4.34), we conclude the proof of (4.31). �
Now, we are in a position to estimate Pijξ. Applying Pij on both sides of (4.22), we yield

(4.35) ∂tPijξ +APijξ = Pij((−2− 3

1 +R
)ξ)− [Pij ,A]ξ + Pij(Ξ1 + Ξ2 + F̄ξ +No).

The main damping term is (−2− 3
1+R )ξ.

For the first term on the right hand side, applying estimate similar to (4.32), we have

−Pij((2 +
3

1 +R
)ξ) = −φDi

RD
j
β((2 +

3

1 +R
)ξ) = −(2 +

3

1 +R
)Pijξ + δij ,

with δ0k = 0 and

|δi,j | =
∣∣∣φ

∑

l≤i−1

(
i

l

)
Di−l
R (2 +

3

1 +R
)Dl

RD
j
βξ

∣∣∣ .
∑

l≤i−1

φ
R

(1 +R)2
|Dl

RD
j
βξ| .

∑

l≤i−1

(1 + φlj)|Dl
RD

j
βξ|

. ||ξ||Ck−1
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for i ≥ 1. From the definition of φ1, φ2, φ = φij (4.2), we have DRφij ≤ 0. Using the above
estimate and Lemma 4.5, we derive

Pijξ ·
(
Pij((−2− 3

1 +R
)ξ)− [Pij ,A]ξ

)
≤ −2|Pijξ|2 + |Pijξ|(|εij |+ |δij |)

≤ −2|Pijξ|2 + C|Pijξ|
(
||ξ||Ck−1 + α|Pijξ|+ 1i≥1|Pi−1,j+1ξ|

)
.

To derive the first inequality, we have dropped the first term on the right hand side of (4.29)
since DRφij ≤ 0

Now, multiplying both sides of (4.35) by Pijξ and performing the L∞ estimate, we establish

1

2

d

dt
||Pijξ||2∞ ≤− (2− Cα)||Pijξ||2∞ + C||Pijξ||∞

(
||ξ||Ck−1 + 1i≥1||Pi−1,j+1ξ||∞

)

+ C||Pijξ||∞||Pij(Ξ1 + Ξ2 + F̄ξ +No)||∞.
Notice that for i = 0, the leading order term −(2−Cα)||Pijξ||2∞ is a damping term. Moreover,

if i+j = k = 0, the term ||ξ||Ck−1 on the right hand side is 0. Thus, there exists absolute constants
νi,j > 0 with i+ j ≤ k, which can be determined inductively on i+ j, such that for

(4.36) E2
k,∞(ξ) , ||ξ||2∞ +

∑

i+j≤k

νij ||Pijξ||2∞,

we have
1

2

d

dt
E2
k,∞ ≤ −(

3

2
− Cα)E2

k,∞ + CEk,∞||Ξ1 + Ξ2 + F̄ξ +No||Ck .

To further control Ξ1 + Ξ2 + F̄ξ +No, we have the following estimate

Lemma 4.6. For 1 ≤ k ≤ 100, we have

||Ξ1||Ck . α||ξ||Ck , ||Ξ2||Ck . α1/2||Ω||Hk+2 + α1/2||η||Hk+2 ,

||No||Ck . α−1||ξ||Ck ||Ω||Hk+2 + α−1||Ω||Hk+2 ||η||Hk+2 , ||F̄ξ||Ck . α2.

The case of k = 1 has been established in Sections 8.5.1 and 8.5.2 in [8]. The general case
follows from a similar argument, Proposition B.2, and the elliptic estimates in Propositions B.3
and B.4. Note that the Ck norm (4.16) and E2

k,∞ are equivalent, we conclude the Ck estimate

(4.37)

1

2

d

dt
E2
k,∞ ≤− (

3

2
− Ckα)E

2
k,∞ + CkEk,∞

(
α2 + α1/2||Ω||Hk+2 + α1/2||η||Hk+2

+ α−1Ek,∞||Ω||Hk+2 + α−1||Ω||Hk+2 ||η||Hk+2

)
.

4.4. Nonlinear stability and finite time blowup. We fix k = 100 and construct the energy

(4.38) E(Ω, η, ξ) = (Ek(Ω, η, ξ)
2 + αEk−2,∞(ξ)2)1/2, k = 100.

Adding the estimates (4.21) and α×(4.37) with k replaced by k − 2, we have

1

2

d

dt
E2(Ω, η, ξ) ≤ − 1

15
E2 +Kα1/2E2 +Kα−3/2E3 +Kα2E,

for some absolute constant K, where we have used the fact that Ek,∞(ξ) (4.36) is equivalent to
||ξ||Ck since νij are absolute constants. Using a standard bootstrap argument, we establish that
there exists a small absolute constant α1 <

1
1000 and K∗, such that if E(Ω(·, 0), η(·, 0), ξ(·, 0)) <

K∗α
2, we have

(4.39) E(Ω(t), η(t), ξ(t)) < K∗α
2

for all time t > 0 and α < α1. We refer the detailed bootstrap argument to [8].
Finally, we consider the regularity of the solutions ω+ω̄, η+ η̄, ξ+ ξ̄ in the physical space using

the relations (4.1), (4.3). Following the argument in [8], we obtain that the scaling parameters
cl(t), cω(t) defined in (4.8), (4.9) satisfy

−3

2
< cω(t) + c̄ω < −1

2
,

1

2α
+ 3 < cl + c̄l <

2

α
+ 3,
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where c̄ω, c̄l denote the scaling parameters associated to the approximate steady state, and cω, cl
are the perturbations. In particular, Cω(τ), Cl(τ) defined in (4.3) remains finite for any τ < +∞
with bounds depending on τ, α only.

Next, we show that 1
r (u + ū) ∈ Ck−2. Applying L̄12(Ω) = π

2
3α
1+R (4.11), the embedding in

Proposition B.2, and Proposition B.4 to U(Ψ̄) (D.1), we yield

(4.40)
||1
r
U(Ψ̄)||Ck . || 1

1 +R
||Ck + ||Ψ̄∗||Ck + ||DRΨ̄||Ck + ||∂βΨ̄∗||Ck

.α 1 + ||1 +R

R
Ψ̄∗||Wk,∞ + ||1 +R

R
DRΨ̄||Wk,∞ + ||1 +R

R
∂βΨ̄∗||Wk,∞ .α 1.

For U(Ψ), we first consider L12(Ω) using Lemma C.4. Let χ be the radial cutoff function
defined in Lemma C.4, which is constant near r = 0. Using Proposition B.2 and (4.39), we have

||L12(Ω)||Ck−2 . ||L12(Ω)− χ1L12(Ω)(0)||Ck−2 + ||χ1||Ck−2 |L12(Ω)(0)| .α ||Ω||Hk .α 1.

Applying Propositions B.3 and B.2 to control the Ψ,Ψ∗ terms in U(Ψ) (D.1) , we get

||1
r
U(Ψ)||Ck−2 . ||L12(Ω)||Ck−2 + ||Ω||Hk .α 1.

Similarly, using the estimates of the approximate steady state in Lemmas C.2, C.3, and
Proposition B.2, we obtain

(4.41) ||1
r
(V (Ψ+Ψ̄)||Ck−2 .α 1, ||Ω̄+Ω||Ck−2 .α 1, ||η̄+ η||Ck−2 .α 1, ||ξ̄+ ξ||Ck−2 .α 1.

Since the (R, β) coordinate of (Clx,Cly) is (C
α
l R, β), using the rescaling relation (4.1), (4.4),

in (R, β) coordinate, we obtain

Ω(R, β, τ) = Cω(τ)ωphy(C
α
l (τ)R, β, t(τ)), ωphy(R, β, t(τ)) = C−1

ω Ω(C−α
l R, β, τ).

Similar relations apply for θ,u. Applying (4.40), (4.41), the above relation, and ρ(λR, β) .
C(λ)ρ(R, β) for any weight ρ in Definition 4.2, we have

(4.42)

||ωphy(t(τ))||Ck−2 + ||θx,phy(t(τ))||Ck−2 + ||θy,phy(t(τ))||Ck−2

+ ||1
r
uphy||Ck−2 + ||1

r
vphy ||Ck−2 . C(Cl(τ), Cω(τ), α, τ) . C(α, τ) < +∞.

To further estimate the Ck regularity, we have the following simple embedding.

Lemma 4.7. Let S , {(x, y) : x 6= 0, y > 0} = {(r, β) : r > 0, β ∈ (0, π/2) ∪ (π/2, π)}. For any
compact domain Σ ⊂ S and l ≥ 1, we have

||f ||Cl−1(Σ) .l,α,Σ ||f ||Cl .

Proof. Recall DR = R∂R and R = rα. Using the chain rule, we yield r∂r = αR∂R. For any
compact domain Σ ⊂ S, i ≥ 0 and p ∈ R, since r 6= 0, sin(β), | cos β| ∈ (0, 1), it is easy to obtain
that

|∂irrp| .i,p,Σ 1, |∂iβ sinp(β)| .i,p,Σ 1, |∂iβ | cos(β)|p| .i,p,Σ 1.

Recall the relation among ∂x, ∂y, ∂r, ∂β

∂x = cos(β)∂r −
sin(β)

r
∂β, ∂y = sin(β)∂r +

cos(β)

r
∂β .

Using the Leibniz rule, induction on l and the above estimate, for i + j ≤ l and (x, y) ∈ Σ,
we obtain

|∂ix∂jyf | .l,Σ
∑

m+n≤l

|∂mr ∂nβ f | .l,Σ
∑

m+n≤l

|(r∂r)m∂nβ f | .l,α,Σ
∑

m+n≤l

|Dm
R ∂

n
β f | .l,α,Σ ||f ||Cl .

It follows f ∈ Cl−1(Σ). �
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Since u = r · 1
ru and r ∈ Ck−2(Σ), from (4.42) and Lemma 4.7, we further get u ∈ Ck−3(Σ)

for any compact set Σ ⊂ {(x, y) : x 6= 0, y > 0}. Using the above bootstrap estimates, e.g.
(4.39), the regularity estimates, the arguments of localizing the initial data and that for the
finite time blowup in [8], we prove Theorem 7. We refer these two arguments to [8].

5. Properties of the singular solution to the 3D Euler equations

In [8], to generalize the blowup results from the 2D Boussinesq equations in R+
2 to the 3D

axisymmetric Euler equations with boundary, we need two additional steps. The first step is to
control the support of the solutions in the domain (r, z) ∈ [0, 1] × T so that it does not touch
the symmetry axis r = 0. The second step is to generalize the H3 elliptic estimates in the
Boussinesq equations to the 3D Euler equations. See Section 1.3 and Section 9 in [8].

For higher order estimates of the singular solutions to the 3D Euler equations, we only need
to generalize the H3 elliptic estimates to the Hk version since the first step does not involve
higher order estimates. Note that the H3 elliptic estimates in Proposition 9.9 in [8] is proved

inductively with the weighted L2( (1+R)4

R4 ) elliptic estimate being the based case. Therefore, its

generalization to the Hk estimate in Proposition 5.2 below is straightforward.
These higher order estimates imply the interior regularity estimates of ωϑ, (uϑ)2, ur, uz in

Theorem 8. See Section 5.3. The estimate of uϑ does not follow from that of (uϑ)2. In Sections
5.5 and 5.6, we further estimate uϑ.

The proof of Theorem 9 is similar and is mostly based on the estimates in [18,19]. Thus, we
will only sketch the proof.

5.1. Setup of the 3D axisymmetric Euler equations. We first review the basic setup of
the 3D axisymmetric Euler equations from Section 9 in [8]. Recall the 3D axisymmetric Euler
equations from (3.9)-(3.11) and the cylindrical coordinates (r, ϑ, z) (3.1) in R3. We introduce
the following variables

(5.1) θ̃(r, z) , (ruϑ)2, ω̃(r, z) = ωϑ/r,

new coordinates (x, y) centered at r = 1, z = 0, and its related polar coordinates

(5.2) x = Cl(τ)
−1z, y = (1 − r)Cl(τ)

−1, ρ =
√
x2 + y2, β = arctan(y/x), R = ρα,

where Cl(τ) is defined below (5.5). The reader should not confuse the relation R = ρα with
R = rα in the 2D Boussinesq. Since the domain D = {(r, z) : r ≤ 1, z ∈ T} of the equations
(3.9)-(3.11) is periodic in z with period 2, we focus on one period

(5.3) D1 , {(r, z) : r ≤ 1, |z| ≤ 1}.
In the proof in [8], the variables ω̃, θ̃ (5.1) are the analog of (ω, θ) in the 2D Boussinesq equations
(1.5). The cylindrical coordinate (r, z) for the 3D Euler equations relate to (y, x) in the 2D
Boussinesq equations (1.5) via the change of variables (5.2).

We consider the following dynamic rescaling formulation centered at r = 1, z = 0

(5.4)

θ(x, y, τ) = Cθ(τ)θ̃(1− Cl(τ)y, Cl(τ)x, t(τ)) = Cθ(τ)θ̃(r, z, t(τ)),

ω(x, y, τ) = Cω(τ)ω̃(1− Cl(τ)y, Cl(τ)x, t(τ)) = Cω(τ)ω̃(r, z, t(τ)),

ψ(x, y, τ) = Cω(τ)Cl(τ)
−2ψ̃(1 − Cl(τ)y, Cl(τ)x, t(τ)) = Cω(τ)Cl(τ)

−2ψ̃(r, z, t(τ)),

where Cl(τ), Cθ(τ), Cω(τ), t(τ) are given by Cθ(τ) = C−1
l (τ)C2

ω(τ),
(5.5)

Cω(τ) = Cω(0) exp

(∫ τ

0

cω(s)dτ

)
, Cl(τ) = Cl(0) exp

(∫ τ

0

−cl(s)ds
)
, t(τ) =

∫ τ

0

Cω(τ)dτ.

These rescaling relations are similar to those in (4.1)-(4.3). Denote

(5.6) Ψ(R, β) =
1

ρ2
ψ(ρ, β), Ω(R, β) = ω(ρ, β), η(R, β) = (θx)(ρ, β), ξ(R, β) = (θy)(ρ, β).

Since we rescale the cylinder D1 = {(r, z) : r ≤ 1, |z| ≤ 1}, the domain for (x, y) is

(5.7) D̃1 , {(x, y) : |x| ≤ C−1
l , y ∈ [0, C−1

l ]}.
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Using the above change of variables, one can reformulate the elliptic equation (3.10) as follows

(5.8)

− α2R2∂RRΨ− α(4 + α)R∂RΨ− ∂ββΨ− 4Ψ

+
Clρ

r
(sin(β)(2 + αDR)Ψ + cos(β)∂βΨ) +

C2
l ρ

2

r2
Ψ = rΩ,

with boundary condition of Ψ (in the sector R ≤ C−α
l ) given below

(5.9) Ψ(R, 0) = Ψ(R, π/2) = 0.

See Sections 9.1 and 9.2 [8] for the details.

Definition 5.1. We define the size of support of the rescaling variables (θ, ω) (5.4)

S(τ) = ess inf{ρ : θ(x, y, τ) = 0, ω(x, y, τ) = 0 for x2 + y2 ≥ ρ2}.
Obviously, the support of Ω, η defined in (5.6) is S(τ)α. After rescaling the spatial variable,

the support of (θ̃, ω̃) (5.1), (3.9) satisfies

(5.10) supp(θ̃(t(τ))), supp(ω̃(t(τ))) ⊂ {(r, z) : ((r − 1)2 + z2)1/2 ≤ Cl(τ)S(τ)}.
5.2. Localized elliptic estimates. Let χ1(·) : [0,∞) → [0, 1] be a smooth cutoff function,
such that χ1(R) = 1 for R ≤ 1, χ1(R) = 0 for R ≥ 2 and (DRχ1)

2 . χ1. This assumption can
be satisfied if χ1 = χ2

0 where χ0 is another smooth cutoff function. Denote

(5.11) χλ(R) = χ1(R/λ), Ψχλ
= Ψχλ, Ωχλ

= Ωχλ.

In Section 9.2.2 in [8], we showed that the leading order part of Ψ near 0 is captured by

(5.12) L12(Zχλ
)(0) = −L12(Ω)(0) + 4α

∫ π/2

0

Ψ(0, β) sin(2β)dβ,

when λ ≥ (S(τ))α.
As discussed at the beginning of Section 5, we can generalize Proposition 9.9 in [8] as follows.

Proposition 5.2. Suppose that Ψ is the solution of (5.8) and Ω ∈ Hk. There exists some
absolute constant α2 and constant δk ∈ (0, 1/4), such that if α < α2, λ = δkC

−α
l , ClS <

α · δ1/α+1
k , then we have

α2||R2∂RRΨχλ
||Hk + α||R∂RβΨχλ

||Hk + ||∂ββ(Ψχλ
− sin(2β)

απ
(L12(Ω) + χ1L12(Zχλ

)(0)))||Hk .k ||Ω||Hk ,

|L12(Zχλ
)(0)| . 3−

1
α ||Ω1 +R

R
||L2 .

In Proposition 9.9 in [8], we prove the case for k = 3 with δk = 2−13. The following results

generalize Proposition 9.11 from [8]. The conditions λ = δkC
−α
l , ClS < αδ

1/α+1
k guarantee that

λ ≥ (S(τ))α in (5.12).

Proposition 5.3. Let Ψ̄0(t) be the solution of (5.8) with source term Ω = Ω̄0 = Ω̄χ(R/ν), and

α2, δk be the constants in Proposition 5.2. If α < α2, λ = δkC
−α
l , ClS < αδ

1/α+1
k , 2ν < λ, then

we have

α||1 +R

R
D2
RΨ̄0,χλ

||Wk,∞ + α||1 +R

R
R∂RβΨ̄0,χλ

||Wk,∞

+ ||1 +R

R
∂ββ(Ψ̄0,χλ

− sin(2β)

απ
(L12(Ω̄0) + χ1L12(Z̄χλ

)(0)))||Wk,∞ .k α,

|L12(Z̄χλ
)(0)| . 3−

1
α ,

where L12(Z̄χλ
)(0) associated to Ψ̄0 is defined in (5.12).

The case of k = 5 is Proposition 9.11 in [8]. The general case follows from a similar argument.
Choosing k = 100 in Propositions 5.2 and 5.3 and using (5.11), we obtain the elliptic estimates

for Ψ(R, β) = Ψχλ
(R, β), R ≤ λ = δ100C

−α
l in the dynamic rescaling equations. Using the

relations (5.2) and (5.6) and rescaling the domain, we obtain that R ≤ λ is equivalent to

ρ ≤ C−1
l δ

1/α
100 , ρCl ≤ δ

1/α
100 , |(r, z)− (1, 0)| ≤ δ

1/100
100 .
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Thus, we have H100 estimate of the stream function ψ̃ (3.9) in the physical domain

(5.13) B(1,0)(R2,α), R2,α = δ
1/α
100 < 1/4.

Now, we are in a position to prove Theorem 8. Denote

(5.14) DR2 , {(r, z) : r ∈ (0, 1), z 6= 0} ∩B(1,0)(R2,α), Υ , {(r, z) : r = 1 or z = 0}.

Remark 5.4. In later estimates, we will choose α to be very small and then choose S(0) to be
very large. Finally, we choose Cl(0) much smaller than S(0)−1, α. We treat Cl(0) roughly as 0.

5.3. Blowup, control of the trajectory and the interior regularity. Recall from Defi-
nition 5.1 the size of support S(t) in the dynamic rescaling equations. Then Cl(t)S(t) is the
size of the support of the solution in the physical space. In [8], for some small α0 > 0 and
any 0 < α < α0, we construct a class of Cα singular solutions with the following control of the
support and trajectory. For a point within the support of the initial data (θ0, ω0) (5.4) and with
trajectory (R(t), β(t)), R(t) satisfies a uniform estimate

(5.15) Cl(t)R(t)
1/α ≤ C(α, S(0))Cl(0)

for some constant C(α, S(0)) up to the blowup time. See Section 9.3.5 in [8]. For initial data
with support size S(0), we can pick Cl(0) small enough such that

(5.16) Cl(t)S(t) ≤ C(α, S(0))Cl(0) < R2,α/8 , R1,α,

where R2,α is defined in (5.13). It follows

(S(t))α < Rα1,αC
−α
l < (R2,α/2)

αC−α
l < δ100C

−α
l .

Thus, within the support of the solution, we can apply the high order elliptic estimates (k = 100)
in Propositions 5.2 and 5.3 to estimate Ψ(R, β).

As discussed at the beginning of Section 5, using the argument in [8] and the higher order
elliptic estimates in Propositions 5.2 and 5.3, we can generalize the blowup results in Theorem 7
for the 2D Boussinesq equations to the 3D axisymmetric Euler equations. In particular, we have
the control of the support and the trajectory (5.15)-(5.16) and obtain the following generalization
of (4.40) and (4.41) for the solution (θ, ω, ψ) in the dynamic rescaling formulation (5.4) of (3.9)

(5.17) ||∇θ(τ)||C60 + ||ω(τ)||C60 + ||1
ρ
∇(ψ(τ)χλ)||C60 .α 1.

In general, θ, ω, ψ are only defined in the bounded and rescaled domain (5.7). Since θ, ω, ψχλ
have compact support with S(t) < 1

2C
−1
l (5.16) or (2λ)1/α < 1

2C
−1
l (see Lemma 5.2), these

variables can be extended naturally to (x, y) ∈ R+ × R. Then the Ck norm (4.16) of these

variables are well-defined. From (5.10) and (5.16), the solution θ̃(t, r, z), ω̃(t, r, z) are supported
in B(1,0)(R1,α) ⊂ B(1,0)(R2,α). Since χλ = 1 in B(1,0)(R2,α), using (5.17), (3.10), the rescaling
relation (5.4), (5.1), and estimates similar to those in Lemma 4.7, we yield

(5.18) ||θ̃(t)||C50(Σ) + ||ω̃(t)||C50(Σ) + ||ur(t)||C50(Σ) + ||uz(t)||C50(Σ) . C(α,Σ, Cl(τ), Cω(τ))

for the compact domain Σ ⊂ DR2 (5.14). Since r, 1r is smooth away from r = 0, from (5.1), we

yield (uϑ)2, ωϑ ∈ C50(Σ). We prove the estimates for ωϑ, (uϑ)2, ur, uz in result (c) in Theorem
8

In the (r, z) coordinate, from (5.15), (5.16), and (5.2), for (r0, z0) ∈ supp(ω̃0) ∪ supp(θ̃0) =
supp(uϑ0 ) ∪ supp(ωϑ0 ), we have

(5.19) γt(r0, z0) ∈ B(1,0)(R1,α).

This proves result (b) in Theorem 8.
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5.4. Result (a): Blowup of ωp. Recall the poloidal component of ω from (3.3)

ωp = ωrer + ωzez, ωr = −∂zuϑ, ωz =
1

r
∂r(ru

ϑ).

From (5.4), (5.5), and (5.1), we get ∂xθ(x, y, τ) = CθCl∂z θ̃ = C2
ω∂z((u

ϑ/r)2). It follows

I(τ) ,

∫ t(τ)

0

||∂z(
(uϑ(s))2

r2
)||∞ds =

∫ τ

0

C−2
ω ||∂xθ(x, y, s)||∞ds.

The nonlinear stability result implies that ||∂xθ(x, y, s)||∞ ≈ ||θ̄x||∞ &α 1 and Cω(τ) ≤
exp(−τ/2). See Section 9.3.6 in [8] for the derivations. Since uϑ is supported in B(1,0)(1/4) and

ruϑ(r, z, t) is transported (3.9), we obtain

||∂z(
(uϑ(s))2

r2
)||∞ . ||∂zuϑ(s)||∞||ruϑ(s)||∞ . ||ωp(s)||∞||ruϑ0 ||∞.

Therefore, we establish
∫ τ

0

exp(s)ds .α I(τ) =

∫ t(τ)

0

||∂z(
(uϑ(s))2

r2
)||∞ds . ||ruϑ0 ||∞

∫ t(τ)

0

||ωp(s)||∞ds.

Taking τ → ∞ yields
∫ T∗

0
||ωp(s)||∞ds = ∞, where T∗ = t(∞) < +∞ (5.5) is the blowup time.

5.5. Interior regularity of uϑ0 . The smoothness of uϑ does not follow from (uϑ)2 since uϑ

can degenerate. In this section, we choose uϑ0 smooth in the interior of the domain. In Section
5.6, we show that the regularity can be propagated.

Let Σ1 be any compact domain with

(5.20) Σ1 ⊂ {(x, y) : x 6= 0, y > 0}.
Remark 5.5. Recall from Remark 1.1 that we made a minor change of the approximate steady
state of the 3D Euler equations in the updated arXiv version of [8], i.e. [7]. More precisely, in [7],
we modify θ̄old used in [8] by θ̄ below

(5.21) θ̄old =

∫ x

0

θ̄x(z, y), θ̄ = 1 +

∫ x

0

θ̄x(z, y)dz,

where θ̄x(x, y) = η̄(R, β) (4.8). See Eq (A.20) in [7]. This modification does not change ∇θ̄, i.e.
∇θ̄ = ∇θ̄old, and we have θ̄ ∈ C1,α. We remark that [7] and [8] are essentially the same except
for this minor change. In the following derivations, we use this new approximate steady state θ̄.

The initial data for θ in [7] (see Eq (9.55) in Sections 9.3.2 and 9.3.6 [7]) is chosen as

θ0(x, y) = θ̄0(x, y) = χ1(R/ν)θ̄(x, y),

where θ̄ is given in (5.21) and χ1 is some smooth cutoff function satisfying that χ
1/2
1 is smooth.

We have the smoothness of χ
1/2
1 by choosing χ1 = χ̃2

1 for another smooth cutoff function χ̃1.
Since θ̄x(x, y) > 0 for x > 0, θ̄(0, y) ≥ 1 and θ̄ is even, we get θ̄ ≥ 1. Using induction and the

Leibniz rule, we get θ̄1/2 ∈ C60(Σ1). Since θ̄
1/2
0 = θ̄1/2χ

1/2
1 (R/ν), R ∈ C60(Σ1), and χ

1/2
1 is

smooth, we further obtain θ
1/2
0 (x, y) = θ̄

1/2
0 (x, y) ∈ C60(Σ1).

Since Σ1 is an arbitrary compact domain with (5.20), using the relation among θ0, θ̃0, u
ϑ
0 (5.1),

(5.4) and the relation between the coordinate (r, z) and (x, y) in (5.2), we obtain uϑ0 (r, z) =

θ
1/2
0 /r ∈ C60(Σ) for any compact domain Σ ⊂ DR2 (5.14). Moreover, uϑ0 is even in z and this
symmetry is preserved by (3.9).

5.6. Propagate the regularity of uϑ. In Theorem 8, it remains to prove uϑ(t) ∈ L∞([0, T ], C50(Σ))
for any compact set Σ ⊂ DR2 (5.14). Recall Υ from (5.14).

The idea is that if the domain Σ is away from supp(uϑ), then uϑ vanishes and it is smooth.
Otherwise, the trajectory gt (5.22) through Σ can be contained in a compact set in (D1\Υ) ∩
B(1,0)(R2,α) and is smooth according to Theorem 8. Since ruϑ is transported along the trajectory

and the initial data uϑ0 is smooth, we then obtain that uϑ(t) is smooth in Σ.
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Proof. Recall D1,Υ from (5.3), (5.14). We fix T < T∗ and a compact set Σ ⊂ (D1\Υ) ∩
B(1,0)(R2,α). Consider the flow map gt : (r, z) ∈ D1 → D1 generated by (ur, uz)

(5.22)
d

dt
gt(r, z) = (ur(gt(r, z), t), u

z(gt(r, z), t), g0(r, z) = (r, z).

It is the same as γ̃t in (3.16),(3.17). Since ur, uz ∈ L∞([0, T ], C1,α(D1)), we can solve the
above ODE with gt, g

−1
t being Lipschitz in (r, z). Due to the non-penetrated condition (3.15),

we obtain that gt, g
−1
t are bijections from D1 to D1 and D1\Υ to D1\Υ. One should not confuse

(5.22) with (3.6). Denote Lg by the Lipschitz constant of gt, g
−1
t for t ∈ [0, T ]. Recall from (3.9)

that

∂t(ru
ϑ) + (ur∂r + uz∂z)(ru

ϑ) = 0.

We abuse the notation by denoting x = (r, z). We get rtu
ϑ(t, gt(x)) = r0u

ϑ
0 (x). Inverting gt

yields

(5.23) ruϑ(t, x) = r(g−1
t (x))uϑ0 (g

−1
t (x)).

From result (b) in Theorem 8, we yield

(5.24) supp(uϑ(t)) ⊂ gt(supp(u
ϑ
0 )) ∩B(1,0)(R1,α), t ∈ [0, T∗).

Since Σ is compact, it suffices to show that for any x ∈ Σ, there exists δ > 0 such that
uϑ(t) ∈ C50(Bx(δ)) with norm uniformly bounded on [0, T ]. Since gt, g

−1
t are bijections and

Lipschitz in t and x and g−1
t (Σ) ∩Υ = ∅, we yield

(5.25) δ1 , min
t∈[0,T ]

dist(g−1
t (Σ),Υ) > 0.

Now, we define

(5.26)
δ =

1

4(Lg + 1)
min(R1,α, δ1), Σ2 , {x : dist(x,Υ) ≥ δ} ∩ B̄(1,0)(4R1,α) ∩ D̄1,

S(t, ρ) = {x : |x− y| ≤ ρ, y ∈ supp(uϑ(t))} ∩D1.

The set S(t, ρ) is the ρ neighborhood of supp(uϑ(t)), and Σ2 is a compact set in D1\Υ ∩
B(1,0)(R2,α). From result (c) in Theorem 8, we have ur, uz ∈ L∞([0, T ], C50(Σ2)).

If x ∈ Σ\S(t, 2δ), we get uϑ(t, x) = 0 on Bx(δ) and thus uϑ(t) ∈ C50(Bx(δ)).
If x ∈ Σ ∩ S(t, 2δ)), from (5.24), we have x = γt(x0) + z, x0 ∈ B(1,0)(R1,α), |z| ≤ 2δ. Hence,

we get Bx(δ) ⊂ Bγt(x0)(3δ). Next, we show that the trajectory passing through Bγt(x0)(3δ) is

contained in Σ2. Recall that Lg is the Lipschitz constant of gt, g
−1
t on [0, T ]. For any s ∈ [0, t]

and y = gt(x0) + z ∈ D1, |z| ≤ 3δ, using (5.25), (5.26), we get

|g−1
s (y)− g−1

s gt(x0)| ≤ Lg|y − gt(x0)| ≤ 3Lgδ,

dist(g−1
s (y),Υ) ≥ dist(g−1

s gt(x0),Υ)− 3Lgδ ≥ δ1 − 3Lgδ > δ,

|g−1
s (y)− (1, 0)| ≤ |g−1

s gt(x0)− (1, 0)|+ 3Lgδ ≤ 3Lgδ +R1,α ≤ 2R1,α,

where we have used gτ (x0) ∈ B(1,0)(R1,α) from Theorem 8 for x0 ∈ supp(uϑ0 ) and τ ∈ [0, T ].
Hence, we establish

g−1
s Bx(δ) ⊂ g−1

s Bγt(x0)(3δ) ⊂ Σ2, s ∈ [0, t].

Since ur, uz ∈ L∞([0, T ], C50(Σ2)) (5.18), solving (5.22) backward with backward initial data
in Bx(δ), we yield g−1

t ∈ C50(Bx(δ)), with bound depending on T and Σ2. Since r ∈ [1/2, 1]
within the support of uϑ(·), using (5.23), we prove uϑ(t) ∈ C50(Bx(δ)) with bound depending
on T,Σ2.

Combining both cases x ∈ Σ\S(t, 2δ), x ∈ Σ∩S(t, 2δ), we obtain uϑ ∈ L∞([0, T ], C50(Bx(δ)).
Since δ is uniform for x ∈ Σ and Σ can be covered by finite balls with radius δ, we obtain
uϑ ∈ L∞([0, T ], C50(Σ)). �
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5.7. Proof of Theorem 9. The proof of Theorem 9 is similar and simpler than that of Theorem
8 since we do not need to control the trajectory and estimate the swirl uϑ.

Proof. The first part of the theorem about the blowup result from some ωϑ0 ∈ Cαc and uϑ0 = 0
has been proved in Theorems 1, 2 in [19]. Moreover, higher order estimates of the perturbation
in the Hk norm for k ≥ 1 and the profile have been established in Theorem 2 in [19]. Thus,
the interior regularity ωϑ, ur, uz ∈ L∞([0, T ], C50(D2)) in Theorem 9 follows from these higher
order estimates and the argument in the proof of Theorem 7.

It remains to estimate urr(t, 0, 0). Let (r, ϑ, z) be the cylindrical coordinate in R3 (3.1), ρ,R, β
be the modified polar coordinate for (r, z) and Ω be the vorticity in the new coordinate

(5.27) β = arctan(z/r), ρ = (r2 + z2)1/2, R = ρα, Ω(R, β) = ωϑ(ρ, β).

Firstly, we show that
(5.28)

urr(0, 0) = −1

2
L(ωϑ)(0) = − 1

2α
L(Ω)(0), L(f)(r) ,

∫ ∞

r

∫ π/2

0

f(r, β) cos2(β) sin(β)

r
drdβ.

This can be obtained by following the derivations in [18, 19]. For the sake of completeness, we
derive (5.28) in Appendix D.1 using the formula u = ∇× (−∆)−1ω in R3.

In [19], it is proved that the blowup solution Ω satisfies

(5.29)
Ω(R, β, t) =

1

λ(t)
Ξ(

R

λ1+δ
, β, s),

ds

dt
=

1

λ(t)
, ||Ξ||L∞ .α 1,

Ξ = F + ε(τ) = F∗ + α2g + ε(τ),
1

α
L(F )(0) = −1 +O(α), L(ε(τ))(0) ≡ 0,

for some rescaled time s and factor T∗

T∗−t
λ(t) → 1 as t → T∗, where T∗ is the blowup time.

Here F = F∗+α
2g is the time-independent self-similar profile of (1.1) without swirl constructed

in [18]. See Sections 2.3-2.5 in [19]. In particular, for α small enough, we get

urr(0, 0, t) = − 1

2α
L(Ω)(0) = − 1

2αλ(t)
L(Ξ)(0) = − 1

2αλ(t)
L(F )(0) > 0,

urr(t, 0, 0) &α ||Ω(t)||L∞ = ||ω(t)||L∞ .

The last inequality is a consequence of that urr(t, 0, 0) and ||ωϑ||L∞ = ||ω||L∞ have the same

scaling and that the blowup is asymptotically self-similar. It follows
∫ T∗

0
urr(t, 0, 0)dt = ∞. �

Remark 5.6. In [18], the setup of the 3D axisymmetric Euler equations is not conventional and
differs from (3.9)-(3.11) by a negative sign. See Section 2 in [18] for this difference. Therefore, in
the current setting, the profile F for the vorticity is negative, and 1

αL(F )(0) = −1+O(α), while
the profile F is positive in [18, 19]. These changes do not affect the positive sign of urr(0, 0, t).
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Appendix A. Review of the construction of unstable solutions

We provide a brief review of the construction of the unstable solution in [35,52] via a WKB ex-
pansion and explain the connections among the WKB expansion, the bicharacteristics-amplitude
ODE system (3.6)-(3.8), and the growth of the unstable solution.

A.1. Construction of the approximate solution. Suppose that u(t, x) is a singular solution
of (1.1). Denote by γt(x) the flow map

(A.1)
d

dt
γt(x) = u(t, γt(x)), γ0(x) = x.
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The main idea in [52] is to construct an approximate solution to (1.2) using a WKB expansion

(A.2) v(t, x) ≈ b(t, x) exp(
iS(t, x)

ε
)

for sufficiently small ε and the characteristics of the flow, where b(t, x) ∈ R3 and S is a scalar.
Plugging the above ansatz into (1.2), we obtain

Rε = (∂t + u · ∇+∇u)v =
i

ε
(∂t + u · ∇)S · beiS/ε + (∂t + u · ∇+∇u)b · eiS/ε,

where (∇u)f = f · ∇u = fj∂juiei. To eliminate the O(ε−1) term, one requires

(A.3) (∂t + u · ∇)S = 0.

Then we can rewrite Rε as follows

(A.4) Rε = (∂t + u · ∇+∇u)b · eiS/ε , F (t, x) · eiS/ε, F , (∂t + u · ∇+∇u)b.

An important observation in [52] is that for high frequency oscillation, i.e. small ε, the
pressure term in (1.2) is almost local. We would like to construct (v,Q) such that

Rε = F (t, x)eiS/ε = ∇Q+ Eε,

where Eε is a small error term. This is possible since Q is one order more regular than a highly
oscillatory function F (t, x)eiS/ε. By integration and exploiting the cancellation, Q can be of
order O(ǫ). In fact, taking ∇× on both sides, we obtain

∇×Rε = (∇× F )eiS/ε +
i

ε
(∇S × F )eiS/ε = ∇× (∇Q+ Eε) = ∇× Eε .

To eliminate the O(ε−1) term, we require ∇S×F = 0, which implies F = c(t, x)∇S for some
scalar c(t, x). In this case, one can construct the pressure Q as follows

Q = −iεc(t, x)eiS/e.
As a result, the error is given by

(A.5) Eε = Rε −∇Q = c∇SeiS/ε + iε · ∇c · eiS/ε + iεc
i∇S
ε
eiS/ε = iε · ∇c · eiS/ε.

Suppose that c is smooth, then the Lp norm of the error Eε is small as ε→ 0.
From F = c(t, x)∇S and (A.4), we yield

(∂t + u · ∇+∇u)b = F (t, x) = c(t, x)(∇S)(t, x).
Using the Lagrangian coordinates and the flow map γt (A.1), we get

∂tb(t, γt(x)) = −(∇u)b(t, γt(x)) + c(t, x)(∇S)(t, γt(x)).
Denote

(A.6) ξt(x) , (∇S)(t, γt(x)), bt(x) , b(t, γt(x)) .

The above equation reduces to

(A.7)
d

dt
bt = −(∇u)bt + c(t, x)ξt.

Next, we determine the equations for b, ξ. In order for v(t, x) to be incompressible, from the
ansatz (A.2) and

∇ · v(t, x) = (∇ · b)eiS/ε + i

ε
b · ∇SeiS/ε ,

we require b(t, x) · (∇S)(t, x) = 0 to eliminate the O(ε−1) term. In the Lagrangian coordinates,
this condition is equivalent to enforcing

(A.8) b(t, γt(x)) · (∇S)(t, γt(x)) = bt(x) · ξt(x) = 0.

Taking the gradient in the transport equation (A.3), we get

(∂t + u · ∇)∇S = −(∇u)T∇S.
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Using the Lagrangian coordinates and (A.6), we derive

(A.9)
d

dt
ξt =

d

dt
(∇S)(t, γt(x)) = −(∇u)T (∇S)(t, γt(x)) = −(∇u)T ξt.

The incompressible condition (A.8) implies d
dt (bt · ξt) = 0. Thus, from (A.7) and (A.9), we

get

〈c(t, x)ξt, ξt〉 − 〈(∇u)bt, ξt〉 − 〈(∇u)T ξt, bt〉 = 0,

where 〈p, q〉 = piqi. It follows that

c(t, x) = 2
ξTt (∇u)bt

|ξt|2
.

Thus, from (A.1),(A.7),(A.9), γt, ξt, bt satisfy the bicharacteristics-amplitude ODE system (3.6)-
(3.8) of (1.1) [35, 52]

The above derivation reveals the main idea behind the construction of an approximate solution
to (1.2) in [52] and the relationship between the WKB expansion (A.2) and the bicharacteristics-
amplitude ODEs (3.6)-(3.8). The last step is to localize the solution v(t, x) to some trajectory
and add a correction to v(t, x) (A.2) so that it is incompressible. We refer to [52] for the details.

A.2. Growth of the solution. The solution v(t, x) satisfies (1.2) up to an error similar to
(A.5). Since Eε contains the highly oscillatory phase eiS/ε, the error may not be small in Ck,α

or Hs norm. In [52], based on the WKB construction (A.2) and using the smallness of the error
in the Lp norm, the authors constructed an approximate solution to (1.2) with error controlled
by ε. To prove the instability, they further showed the growth of v(t, x). From (A.2), the growth
of ||v||p is due to ||bt||p. The authors showed that if the velocity u(t, x) is smooth, the system
(3.6)-(3.8) satisfies the following conservations along the characteristic γt(x)

ω(t, γt(x)) · ξt = ω0(x) · ξ0, bt · ξt = b̃t · ξt, (bt × b̃t) · ξt = (b0 × b̃0) · ξ0,

where ω = ∇×u is the vorticity of the blowup solution u, ξt, bt, b̃t are the solution to (3.6)-(3.8)

with initial data x0, ξ0, b0, b̃0, b0 · ξ0 = b̃0 · ξ0 = 0 and b0, b̃0, ξ0 being linearly independent.
From the first and the third identity, formally, bt × b̃t plays a role similar to ω(t, γt(x)).

Indeed, using the above conservations, the authors further proved

(A.10) ||ω(t, ·)||∞ ≤ ||ω0||L∞

(
sup

|b0|=|ξ0|=1,x0∈Ω,b0·ξ0=0

|bt(x0, ξ0, b0)|
)2

.

According to the BKM blowup criterion, ||ω(t)||∞ must blowup, which leads to the growth of
bt and ||v(t)||Lp and implies linear instability.

Appendix B. Embedding inequalities and estimates of nonlinear terms

Notation. We use the notation A ≍ B if there are some absolute constants C1, C2 > 0 with
A ≤ C1B,B ≤ C2A.

We have the following equivalence, which allows us to generalize the lower order nonlinear
estimates in [8], which are based on the C1 and H3 norms, to the higher order easily.

Proposition B.1. Let Hk(ρ) and Ck be the norms defined in (4.15) and (4.16) with ρ1 . ρ2.
For i+ j + k ≤ m, we have

(B.1) ||Di
RD

j
βf ||Ck . ||f ||Cm , ||Di

RD
j
βf ||Hk(ρ) . ||f ||Hm(ρ).

For k ≥ 1, we have

(B.2) ||f ||Ck ≍
∑

i+j≤k−1

||Di
RD

j
βf ||C1 .

For k ≥ 3, we have

(B.3) ||f ||Hk(ρ) ≍
∑

i+j≤k−3

||Di
RD

j
βf ||H3(ρ).
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Proof of Proposition B.1. The inequalities (B.1) follow from the definitions of the norms (4.15),
(4.16). The key point is that in the definitions (4.15),(4.16), the weight associated with the

mixed derivatives Di
RD

j
β , i, j 6= 0 is larger than that with Di

R or Dj
β.

For (B.2) and (B.3), the & side of the inequality follows from (B.1). For the . side of (B.2),
we have

||f ||Ck . ||f ||∞ +
∑

i+j≤k

||(φ11i≥1 + φ21j≥1)D
i
RD

j
β ||∞

. ||f ||∞ +
∑

i+j≤k−1

(||φ1Di+1
R Dj

βf ||∞ + ||φ2Di
RD

j+1
β f ||∞) .

∑

i+j≤k−1

||Di
RD

j
βf ||C1 .

Denote by A,B the left and right hand side of (B.3), respectively. From (4.15), we get

A =
∑

i≤k

||ρ1/21 Di
Rf ||2 +

∑

j≥1,i+j≤k

||ρ1/22 Di
RD

j
βf ||2.

We remark that the ρ1 weight only applies to Di
Rf terms, and ρ2 applies to other derivatives.

We have
||ρ1/21 Di

Rf ||2 ≤ 1i≤3||f ||H3(ρ) + 1i≥3||Di−3
R f ||H3(ρ) . B.

Denote j1 = min(3, j) ≥ 1, i1 = 3 − j1. When i + j ≥ 3, we get i − i1 = i + j1 − 3 =
min(i, i+ j − 3) ≥ 0. Since j ≥ 1, we yield

||ρ1/22 Di
RD

j
βf ||2 ≤ 1i+j≤3||f ||H3(ρ) + 1i+j≥3||ρ1/22 Di1

RD
j1
β (Di−i1

R Dj−j1
β f)||H3(ρ)

. ||f ||H3(ρ) + ||Di−i1
R Dj−j1

β f ||H3(ρ) . B.

We conclude the proof. �

B.1. Higher order embedding Lemmas. We have the following estimates for different norms.
The first and last inequality generalize Proposition 7.6 in [8]. The second inequality is exactly
Proposition 7.7 in [8]. The third inequality in (B.4) generalizes Lemma 7.11 in [8].

Proposition B.2. Let Ck and Wk,∞ be the norms defined in (4.16) and (4.17). For k ≥ 1,

(B.4)

||fg||Ck . ||f ||Ck ||g||Ck , ||fg||Wk,∞ . ||f ||Wk,∞ ||g||Wk,∞ ,

||f ||Ck . α−1/2||f ||Hk+2 , ||f ||Ck . ||1 + R

R
f ||Wk,∞ .

Proof. The first inequality follows from the Leibniz rule. The second inequality has been proved
in [7]. For the third inequality, the case k = 1 has been proved in Lemma 7.11 in [8]

(B.5) ||f ||C1 . α−1/2||f ||H3 .

For k ≥ 2, using (B.5) and the equivalences (B.3), (B.2), we obtain

||f ||Ck .
∑

i+j≤k−1

||Di
RD

j
βf ||C1 . α−1/2

∑

i+j≤k−1

||Di
RD

j
βf ||H3 . α−1/2||f ||Hk+2 .

Next, we consider the last inequality in (B.4). By the triangle inequality and the Leibniz
rule, it is not difficult to obtain the equivalence
(B.6)

||1 +R

R
f ||Wk,∞ ≍

∑

0≤i+j≤k,j 6=0

∣∣∣
∣∣∣
1 +R

R
sin(2β)−

α
5

Di
RD

j
β

α
10 + sin(2β)

f
∣∣∣
∣∣∣
L∞

+
∑

0≤i≤k

∣∣∣
∣∣∣
1 +R

R
Di
Rf

∣∣∣
∣∣∣
L∞

.

By definition of Ck (4.16) , it suffices to show

||(1 + 1i≥1φ1 + 1j≥1φ2)D
i
RD

j
βf ||∞ . ||1 +R

R
f ||Wk,∞ ,

for i+ j ≤ k. The estimate is trivial if j = 0. If j ≥ 1, we compare the weights. Since

1 +R

R
sin(2β)−

α
5 (
α

10
+ sin(2β))−1 &

1 +R

R
sin(2β)−α/5,

sin(2β)−α/5 & 1 + sin(2β)−α/40,
1 +R

R
& 1,
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the weight 1+1i≥1φ1+1j≥1φ2 with j ≥ 1 can be bounded by the corresponding weight in (B.6).
We conclude the proof. �

We have the following elliptic estimates for the stream function (4.10).

Proposition B.3. Assume that α ≤ 1
4 and Ω ∈ Hk, k ≥ 3. Let Ψ be the solution to (4.6) with

boundary condition (4.7). Then we have

α2||R2∂RRΨ||Hk + α||R∂RβΨ||Hk + ||∂ββ(Ψ− 1

απ
sin(2β)L12(Ω))||Hk .k ||Ω||Hk .

The above estimate with k = 3 has been established in [8]. The general case k ≥ 3 can be
proved similarly. See also [18].

We have the following estimates for the velocity ū of the approximate steady state.

Proposition B.4. For α ≤ 1
4 and k ≥ 5, we have

||1 +R

R
∂ββ(Ψ̄− sin(2β)

πα
L12(Ω̄))||Wk+2,∞ . α, ||L12(Ω̄)||Wk+2,∞ . α,

α||1 +R

R
D2
RΨ̄||Wk,∞ + α||1 +R

R
∂βDRΨ̄||Wk,∞ + ||1 +R

R
∂ββ(Ψ̄− sin(2β)

πα
L12(Ω̄))||Wk,∞ . α.

The case of k = 5 has been proved in Proposition 7.8 [8]. The general case k ≥ 5 follows from
a similar argument. See also [18].

We generalize Proposition 7.9 in [8] as follows.

Proposition B.5. Assume that (1+R)3

R2 f ∈ Wk,∞, then we have f ∈ Hk and

||f ||Hk . || (1 +R)3

R2
f ||Wk,∞ .

The proof with k = 3 is Proposition 7.9 in [8] with proof given in its arXiv version [7].

Proof. Denote g(R) = (1+R)3

R2 . Note that for i ≥ 0

||Di
Rg(R)| = |Di

R

(1 +R)3

R2
| . (1 +R)3

R2
= g(R).

From this estimate and using induction, it is not difficult to obtain

||g(R)f ||Wk,∞ ≍k
∑

0≤i+j≤k,j 6=0

∣∣∣
∣∣∣g(R) sin(2β)−

α
5

Di
RD

j
β

α
10 + sin(2β)

f
∣∣∣
∣∣∣
L∞

+
∑

0≤i≤k

∣∣∣
∣∣∣g(R)Di

Rf
∣∣∣
∣∣∣
L∞

.

Now applying the equivalence (B.3) in Proposition B.1, Proposition B.5 with k = 3 proved
in [8] and the above equivalence on Wk,∞, we obtain

||f ||Hk .
∑

i+j≤k−3

||Di
RD

j
βf ||H3 .

∑

i+j≤k−3

||g(R)Di
RD

j
βf ||W3,∞

.
∑

i+j≤k−3

( ∑

m+n≤3,n6=0

||g(R) sin(2β)−α/5
Di+m
R Dj+n

β
α
10 + sin(2β)

f ||∞ +
∑

m≤3

||g(R)Di+m
R Dj

βf ||∞
)

. ||g(R)f ||Wl,∞,

where we have used the fact that 1 . sin(2β)−α/5(α/10 + sin(2β))−1 to bound the term

g(R)Di+m
R Dj

βf by ||g(R)f ||Wl,∞. �
To control the remaining term 〈Rη, ηψ0〉 in (4.18), (4.19), we need Lemma 7.10 from [8] for

the decay estimate of ξ. We do not need to generalize it since we only apply it to estimate
〈Rη, ηψ0〉.
Lemma B.6. Suppose that ξ ∈ H2(ψ), we have

||R1/2 sin(2β)1/4ξ||L∞ . ||ξ||H2(ψ).
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B.1.1. The product rules. In this subsection, we generalize the estimates of nonlinear terms and
the transport terms established in [8] to higher order.

Denote the sum space Xk , Hk ⊕Wk+2,∞ with sum norm

(B.7) ||f ||Xk
, ∞{||g||Hk + ||h||Wk+2,∞ : f = g + h}.

We generalize the H3 product rules in Proposition 7.12 [8] as follows.

Proposition B.7. For all f ∈ X, g ∈ H3, ξ ∈ H3(ψ) ∩ C1, we have

(B.8)
||fg||Hk . α−1/2||f ||Xk

||g||Hk ,

||fξ||Hk(ψ) . α−1/2||f ||Xk
(α1/2||ξ||Ck−2 + ||ξ||Hk(ψ)).

The case k = 3 has been established in [8], which will be used in the following proof.

Proof. We focus on the inequality for Hk(ψ), which is more difficult. Using the equivalence
(B.3) and the Leibniz rule, we yield

S , ||fξ||Hk(ψ) .
∑

i+j≤k−3

||Di
RD

j
β(fξ)||H3(ψ) .

∑

i+j≤k−3

∑

p≤i,q≤j

||Dp
RD

q
βfD

i−p
R Dj−q

β ξ||H3(ψ).

Applying the above Proposition B.7 with k = 3 and Proposition B.1, we prove

S . α−1/2
∑

i+j≤k−3

∑

p≤i,q≤j

||Dp
RD

q
βf ||X3(α

1/2||Di−p
R Dj−q

β ξ||C1 + ||Di−p
R Dj−q

β ξ||H3(ψ))

. α−1/2||f ||Xk(α1/2||ξ||Ck−2 + ||ξ||Hk(ψ)).

The desired inequality follows. The proof of the first inequality in (B.8) is similar. �
Recall the inner products 〈·, ·〉Hk , 〈·, ·〉Hk(ψ) from (4.20). We generalize the H3 estimates of

the transport terms in Propositions 7.13, 7.14, 7.15 [8] to the following Propositions B.8-B.10.

Proposition B.8. Assume that u, ∂βu,DRu ∈ Hk and Ω ∈ Hk, ξ ∈ Hk(ψ) ∩ Ck−2 we have

|〈Ω, uDRΩ〉Hk | . α− 1
2 (||u||Hk + ||∂βu||Hk + ||DRu||Hk) ||Ω||2Hk ,

|〈ξ, uDRξ〉Hk(ψ)| . α− 1
2 (||u||Hk + ||∂βu||Hk + ||DRu||Hk) (||ξ||Hk(ψ) + α1/2||ξ||Ck−2)2.

Moreover, for all u,DRu ∈ Xk = Hk ⊕Wk+2,∞ and Ω ∈ Hk, ξ ∈ Hk(ψ) ∩ Ck−2, we have

|〈Ω, uDβΩ〉Hk | . α−1/2 (||u||Xk
+ ||DRu||Xk

)) ||Ω||2Hk ,

|〈ξ, uDβξ〉Hk(ψ)| . α−1/2 (||u||Xk
+ ||DRu||Xk

)) (||ξ||Hk(ψ) + α1/2||ξ||Ck−2)2.

Proposition B.9. Let Hk(ρ) be either Hk or Hk(ψ) defined in (4.15). For all g ∈ Hk(ρ), u

with ||Di
Ru||L∞ <∞ for i ≤ k and ||Di

RD
j
β∂βu||L∞ <∞ for i + j ≤ k − 1, we have

|〈g, uDRg〉Hk(ρ)| . α−1/2(
∑

0≤i≤k

||Di
Ru||L∞ +

∑

i+j≤k−1

||Di
RD

j
β∂βu||L∞)||g||2Hk(ρ),

Proposition B.10. Let Ψ be a solution of (4.6). Suppose that g,Ω ∈ Hk, ξ ∈ Hk(ψ) ∩ Ck−2.
We have

|〈g, 1

sin(2β)
DRΨDβg〉Hk | . α−3/2||Ω||Hk ||g||2Hk ,

|〈ξ, 1

sin(2β)
DRΨDβξ〉Hk(ψ)| . α−3/2||Ω||Hk(||ξ||Hk(ψ) + α1/2||ξ||Ck−2)2.

The case of k = 3 in Propositions B.8-B.10 has been proved in [8]. The ideas of the proof of
the above propositions are simple. To estimate a typical term

S = 〈Di
RD

j
β, ρj ·Di

RD
j
β(fDg)〉

in the expansion of 〈g, fDg〉Hk(ρ) with Hk(ρ) = Hk, ρj = ϕ11j=0+ϕ21j 6=0 or Hψ, ρ = 1j=0ψ1+

1j 6=0ψ2 (4.20), we perform integration by parts if all the derivatives Di
RD

j
β falls on Dg

|〈Di
RD

j
βg, ρjf ·Di

RD
j
βDg)〉| . ||ρ−1

j D(ρjf)||∞||ρ1/2j Di
RD

j
βg||22,
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which can be further bounded by the desired upper bound. In other cases, we estimate
∣∣∣
〈
Di
RD

j
βg, ρjD

m
RD

n
βf ·Di−m

R Dj−n
β Dg

〉∣∣∣ . ||ρ1/2j Di
RD

j
βg||22 · ||ρ

1/2
j Dm

RD
n
βf ·Di−m

R Dj−n
β Dg)||22,

for somem+n ≥ 1,m ≤ i, n ≤ j. Since the number of derivatives on f is less thanm+n ≤ k, and

that on g is less than i−m+j−n+1≤ i+j ≤ k, the estimate of ||ρ1/2j Dm
RD

n
βf ·Di−m

R Dj−n
β Dg)||2

follows from the same method of estimating the product in Proposition B.7. We refer to [8] for
the estimates in the case of k = 3, which can be generalized to k ≥ 3 in a straightforward
manner.

We generalize the H3 estimates in Proposition 7.16 in [8] to the Hk estimate.

Proposition B.11. Let Ψ, Ψ̄ be a solution of (4.6) with source term Ω, Ω̄, respectively, and
V1(Ψ) be the operator associated to vx

(B.9)
V1(Ψ) =α(1 + 2 cos2 β)DRΨ− αDRDβΨ−DβΨ∗ + 2Ψ∗ + sin2(β)∂2βΨ∗

+ α2 cos2(β)D2
RΨ , A(Ψ) + α2 cos2(β)D2

RΨ.

Assume that ξ ∈ Hk(ψ) ∩ Ck−2,Ω ∈ Hk. We have

(B.10)
||V1(Ψ)ξ||Hk . α−1/2||Ω||Hk(α1/2||ξ||Ck−2 + ||ξ||Hk(ψ)),

||V1(Ψ̄)ξ||Hk . α1/2||ξ||Hk(ψ).

We refer the derivation of (B.9) to Section 8.1 in [8]. The difficulty is due to the fact that
Hk(ψ) is weaker than Hk (see Lemma B.12). Moreover, it is more difficult to control the singular
weight φ2 in the Hk norm, which is singular in β. Thus we cannot apply Proposition B.7 directly
to estimate vxξ.

Lemma B.12. Let γ = 1 + α
10 , σ = 99

100 be the parameter given in Definition 4.2. For γ−σ
2 ≤

λ ≤ 1
2 and m ≥ 1, we have

(B.11) ||f ||Hm(ψ) . ||f ||Hm , || sin(β)λf ||Hm . ||f ||Hm(ψ).

The case of m ≤ 3 has been proved in [8]. The general case follows from the same argument,
which compares the corresponding weights in || sin(β)λf ||Hm and ||f ||Hm(ψ).

Proof of Proposition B.11. The proof of the second inequality in (B.10) follows from the product
rules in Proposition B.7, the elliptic estimates in Proposition B.4, and the argument in [8].

The proof of the first inequality in (B.10) also follows from the argument in [8] for the
special case k = 3. Note that V1(Ψ) vanishes on β = 0. Thus, we have sin(2β)−1/2V1(Ψ) ∈
Hk, sin(2β)1/2ξ ∈ Hk for ξ ∈ Hk(ψ), which allows us to apply the product rules similar to
Proposition B.7. We only give a sketch and refer related details to [8].

Recall the decomposition (B.9). From Propositions B.3 and Hardy’s inequality, we get
sin(2β)−1/2A(Ψ) ∈ Hk. Using Propositions B.3, B.7 and Lemma B.12, we yield

||A(Ψ)ξ||Hk . α−1/2|| sin(2β)−1/2A(Ψ)||Hk || sin(2β)1/2ξ||Hk . α−1/2||Ω||Hk ||ξ||Hk(ψ).

To estimate ||α2D2
RΨξ||Hk , from (4.15), we need to estimate two types of terms

I = ||ϕ1/2
1 Di

R(α
2D2

RΨ · ξ)||2, II = ||ϕ1/2
2 Dm

RD
n
βDβ(α

2D2
RΨ · ξ)||2

for some i ≤ k,m + n ≤ k − 1. Since ϕ1 ≍ ψ1 (4.14), using definition of Hk(ψ) in (4.15) and
Proposition B.7, we get

|I| . ||α2D2
RΨ · ξ||Hk(ψ) . α−1/2||Ω||Hk(α1/2||ξ||Ck−2 + ||ξ||Hk(ψ)).

For II, it contains at least one Dβ derivative. We perform the following decomposition

Dβ(α
2D2

RΨ · ξ) = sin(2β)1/4
(
α2D2

R∂βΨ · sin(2β)3/4ξ + sin(2β)−1/2α2D2
RΨ · sin(2β)1/4Dβξ

)

, sin(2β)1/4(J1 · J2 + J3 · J4) , sin(2β)1/4J.
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Sincem+n ≤ k−1 and sin(2β)1/4ϕ
1/2
2 . ϕ

1/2
1 , using the triangle inequalities and Propositions

B.7, we yield

II = ||ϕ1/2
2 Dm

RD
n
β(sin(2β)

1/4J)||2 .
∑

l≤n

||ϕ1/2
2 sin(2β)1/4Dm

RD
l
βJ ||2 .

∑

l≤n

||ϕ1/2
1 Dm

RD
l
βJ ||2 . ||J ||Hk−1 .

Applying Propositions B.7, B.3, and Lemma B.12, we get

|II| . α−1/2(||J1||Hk−1 ||J2||Hk−1 + ||J3||Hk−1 ||J4||Hk−1)

. α−1/2||Ω||Hk(|| sin(2β)3/4ξ||Hk−1 + || sin(2β)1/4Dβξ||Hk−1) . α−1/2||Ω||Hk ||ξ||Hk(ψ).

We conclude the proof. �

Appendix C. Estimate of the approximate steady state

Recall from (4.4) that Ω̄, η̄, ξ̄ denote the approximate steady state ω̄, θ̄x, θ̄y under the coordi-
nate (R, β), and the formula of Ω̄, η̄ in (4.8).

(C.1) Ω̄ =
α

c

3RΓ(β)

(1 +R)2
, η̄ =

α

c

6RΓ(β)

(1 +R)3
.

We generalize Lemma A.6 in [8] from k ≤ 3 to any k below.

Lemma C.1. The following results apply to any k ≥ 0, 0 ≤ i + j ≤ k, j 6= 0. (a) For f =
Ω̄, η̄, Ω̄−DRΩ̄, η̄ −DRη̄, we have

(C.2) |Dk
Rf | .k f, |Di

RD
j
βf | .k α sin(β)f.

(b) Let ϕi be the weights defined in (4.14). For g = Ω̄, η̄, we have

(C.3)

∫ π/2

0

R2(Dk
Rg)

2ϕ1dβ .k α
2,

∫ π/2

0

R2(Di
RD

j
βg)

2ϕ2dβ .k α
3,

uniformly in R and

(C.4) 〈(Dk
R(g −DRg))

2, ϕ1〉 .k α2, 〈(Di
RD

j
β(g −DRg))

2, ϕ2〉 .k α3.

We generalize Lemma A.7 in [8] from k = 7 to any k ≥ 7 below.

Lemma C.2. For any k ≥ 7, it holds true that Γ(β), Ω̄, η̄ ∈ Wk,∞ with

||Γ(β)||Wk,∞ .k 1, || (1 +R)2

R
Ω̄||Wk,∞ + || (1 +R)2

R
η̄||Wk,∞ .k α,

||DβΩ̄||Wk,∞ + ||Dβ η̄||Wk,∞ .k α
2.

We generalize Lemma A.8 in [8] from k = 5 to any k ≥ 5 below.

Lemma C.3. Assume that 0 ≤ α ≤ 1
1000 . For R ≥ 0, β ∈ [0, π/2], k ≥ 1 and 0 ≤ i+ j ≤ k, we

have

|Di
RD

j
β ξ̄| .k −ξ̄, |Di

RD
j
β(3ξ̄ −R∂Rξ̄)| .k −ξ̄,(C.5)

|ξ̄| . α2R2

1 +R

(
1β<π/4

sinα(β)

(1 +R sinα(β))3
+ 1β≥π/4

cosα+1(β)

(1 +R)3

)
,(C.6)

− ξ̄ . α2 cos(β), ||ξ̄||Ck . ||1 +R

R
(1 + (R sin(2β)α)−

1
40 )ξ̄||L∞ . α2,

where || · ||Ck is defined in (4.16). Let ψ1, ψ2 be the weights defined in (4.14). We have

(C.7)

∫ π/2

0

R2(Di
RD

j
β ξ̄)

2ψkdβ . α4

uniformly in R, and

(C.8) 〈(Di
RD

j
β(3ξ̄ −R∂Rξ̄))

2, ψk〉 . α4, 〈(Di
RD

j
β ξ̄)

2, ψk〉 . 〈ξ̄2, ψk〉 . α4,

where (Di
RD

j
β, ψk) represents (Di

R, ψ1) for 0 ≤ i ≤ k, and (Di
RD

j
β , ψ2) for i+ j ≤ k, j ≥ 1.
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The proofs of Lemmas C.1-C.3 follows from the argument in [8], and thus are omitted.
For the L12 operator (4.10), we generalize Lemma A.4 in [8] from H3 to its Hk version. The

proof follows from a similar argument.

Lemma C.4. Let χ(·) : [0,∞) → [0, 1] be a smooth cutoff function, such that χ(R) = 1 for
R ≤ 1 and χ(R) = 0 for R ≥ 2. For k = 1, 2, we have

(C.9)
||L12(Ω)||L∞ . ||1 +R

R
Ω||L2 , ||L̃12(Ω)(R

−2 +R−3)1/2||L2(R) . ||Ω(1 +R)2

R2
||L2 ,

||L12(Ω)||2 . ||Ω||2, || (1 +R)k

Rk
(L12(Ω)− L12(Ω)(0)χ)||L2(R) . || (1 +R)k

Rk
Ω||L2 ,

provided that the right hand side is bounded. Moreover, if Ω ∈ Hn, then for 0 ≤ k ≤ n, 0 ≤ l ≤
n− 1, n ≥ 3, we have

(C.10)

||L12(Ω)− L12(Ω)(0)χ||Hn + ||DR(L12(Ω)− L12(Ω)(0)χ)||Hn .n ||Ω||Hn ,

||Dk
RL12(Ω)||∞ + ||Dk

R(L12(Ω)− χL12(Ω)(0))||∞ .n ||Ω||Hn ,

||(1 +R)∂RD
l
RL12(Ω)||∞ + ||(1 +R)∂RD

l
R(L12(Ω)− χL12(Ω)(0))||∞ .n ||Ω||Hn ,

||L12(Ω)||Xn + ||DRL12(Ω)||Xn .n ||Ω||Hn ,

where Xn , Hn ⊕Wn+2,∞ is defined in (B.7).

Appendix D. Some derivations

The following formulas of velocity in the (R, β) coordinate are derived in Section 8.1 in [8]
(D.1)

U(Ψ) = −2r cos(β)

πα
L12(Ω)− 2r sin(β)Ψ∗ − αr sinβDRΨ− r cosβ∂βΨ∗,

V (Ψ) =
2r sin(β)

πα
L12(Ω) + 2r cosβΨ∗ + αr cosβDRΨ− r sinβ∂βΨ∗, Ψ∗ = Ψ− sin(2β)

πα
L12(Ω),

where Ψ is the solution of (4.6), and L12(·),Ψ∗ are defined in (4.10).

D.1. Derivation of urr(0, 0). We derive the formula (5.28) for urr(0, 0) using the formula

u(x) = ∇× (−∆)−1ω =
1

4π

∫

R3

ω(y)× (x− y)

|x− y|3 dy.

Recall the coordinates and change of variables (5.27)

β = arctan(z/r), ρ = (r2 + z2)1/2, R = ρα, Ω(R, β) = ωϑ(ρ, β),

where (r, ϑ, z) is the cylindrical coordinate in R3 (3.1). Note that urr(0, 0) = − 1
2u

z
z(0, 0) (3.10),

we compute uzz(0, 0). Since there is no swirl uϑ ≡ 0, we get

ω = ωϑeϑ = (−ωϑ sinϑ, ωϑ cosϑ, 0), (ω× (x−y))3 = −ωϑ sin(ϑ)(x2−y2)−ωϑ cos(ϑ)(x1−y1).
Since the above formula is independent of z = x3 and ωϑ(y) is odd in y3, we yield

∂3u
3 =

1

4π

∫

R3

(ω × (x − y))3∂x3

1

|x− y|3 dy =
1

4π

∫

R3

(ω × (x− y))3
−3(x3 − y3)

|x− y|5 dy.

Evaluating at x = 0 and using

(ω × (−y))3 = ωϑ(y) sin(ϑ)y2 + ωϑ cos(ϑ)y1,= ωϑ(y)r

and r = ρ cosβ, z = ρ sinβ, β ∈ [−π/2, π/2], we obtain

∂3u
3(0, 0) =

3

4π

∫

R3

ωϑ(y)ry3
|y|5 dy =

3

4π

∫ ∞

0

∫ 2π

0

∫

R

ωϑ(y)rz

|y|5 rdrdϑdz =
3

2

∫

R+×R

ωϑ(y)r2z

ρ5
drdz

=
3

2

∫ ∞

0

∫ π/2

−π/2

ωϑ(ρ, β) cos2(β) sin(β)

ρ
dρdβ = 3

∫ ∞

0

∫ π/2

0

ωϑ(ρ, β) cos2(β) sin(β)

ρ
dρdβ.

Using urr(0, 0) = − 1
2u

z
z(0, 0) (3.10) and

dρ
ρ = 1

α
dR
R , we prove (5.28).
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