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Abstract

We study the global well-posedness of the Lagrangian averaged Euler equations in
three dimensions. We show that a necessary and sufficient condition for the global
existence is that the BMO norm of the stream function is integrable in time. We also
derive a sufficient condition in terms of the total variation of certain level set functions,
which guarantees the global existence. Furthermore, we obtain the global existence
of the Lagrangian averaged 2D Boussinesq equations and the Lagrangian averaged
2D quasi-geostrophic equations in finite Sobolev space in the absence of viscosity or
dissipation.

1 Introduction

The question of global existence for the 3D incompressible Euler equations is a very
challenging open question. The main difficulty is to understand the effect of vortex
stretching, which is absent in the 2D Euler equations. As part of the effort to under-
stand the vortex stretching effect for 3D flows, various simplified model equations have
been proposed in the literature. Amongst these models, the 2D Boussinesq system and
the quasi-geostrophic equations are two of the most commonly used because they share
a similar vortex stretching effect as that in the 3D incompressible flow. An interesting
recent development is the Lagrangian averaged Euler equations [14, 15]. This work was
originally motivated by the development of a one-dimensional shallow water theory [3].
The averaged Euler models have been used to study the average behavior of the 3D
Euler and Navier-Stokes equations and used as a turbulent closure model (see e.g. [5]).
The theoretical and computational aspects of the Lagrangian averaged Euler equations
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has been studied by several authors [4, 5, 15, 21, 20]. However, the global existence
of the 3D Lagrangian averaged Euler equations is still open, although the Lagrangian
averaged Navier-Stokes equations have been shown to have global existence [20].

In this paper, we consider the global existence of the 3D Lagrangian averaged Euler
equations and the corresponding 2D Lagrangian averaged Boussinesq equations and
the averaged 2D quasi-geostrophic equations in the absence of viscosity or dissipation.
The 3D Lagrangian averaged Euler equations have been derived by Holm, Marsden
and Ratiu in [14, 15] (see page 1458 of [20]) in the following form:

∂tu+ (uα · ∇)u+ (∇uα)T · u = −∇p (1)

here the notations are different from those in [20]. Our uα corresponds to the original
u and our u corresponds to (1− α24)u in [20].

We will adopt the vorticity formulation [20]:

∂tω + (uα · ∇)ω = ∇uα · ω, (2)

where u, ω, the α-averaged velocity uα, and the divergence free vector stream function
ψ are related by:

−4ψ = ω, u = ∇× ψ (3)

uα = (1− α24)−1u, (4)

One of the important properties of the averaged Euler equations is the following
identity (see (3.3) in page 1457 of [20], recall that uα is called u in [20]):

1
2
d

dt

∫
R3

(
|uα|2 + α2|∇uα|2

)
dx = 0.

This conservation property gives a priori bound on the H1 norm of uα:

‖uα‖H1 ≤ Cα. (5)

The above reformulation gives a clear physical interpretation of the Lagrangian
averaged Euler equations. The vorticity is convected by the α-averaged velocity field.
If one discretizes the averaged Lagrangian Euler equations by the point vortex method,
i.e. to approximate the initial vorticity by a collection of point vortices (Dirac delta
functions), then the resulting numerical approximation is a vortex blob method with
α being the vortex blob size [22, 13].

With the above interpretation of the averaged Lagrangian Euler equations, we can
clearly apply the same averaging principle to other fluid dynamics equations. For
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example, if we apply the same Lagrangian averaging principle to the density equation,
we would obtain the following Lagrangian averaged 2D Boussinesq equations

ωt + u · ∇ω = ρx1 , (6)

ρt + uα · ∇ρ = 0 , (7)

where uα = (1−α24)−1u and u is related to the vorticity ω through the usual vorticity
stream function formulation, see (3). We refer to [23] for the derivation and discussions
of the physical applications for the Boussinesq equations. Note that we only replace
the velocity by the averaged velocity in the density equation, but not in the vorticity
equation.

Similarly, we can derive the Lagrangian-averaged 2D quasi-geostrophic equations
as follows:

θt + uα · ∇θ = 0, (8)

u = ∇⊥ψ, (−4)1/2ψ = θ, (9)

uα = (1− α24)−1/2u , (10)

where ∇⊥ψ = (∂x2ψ,−∂x1ψ) and (−4)1/2 is defined as

(−4)1/2ψ ≡
∫
e2πix·ξ(2π|ξ|)ψ̂(ξ) dξ,

with ψ̂(ξ) being the Fourier transform of ψ. We refer to [9] for derivation and discus-
sions of the quasi-geostrophic equation. Note that we use a weaker averaged velocity
field for the 2D quasi-geostrophic equation. The exponent 1/2 in the averaging opera-
tor corresponds to the critical case in the corresponding dissipative quasi-geostrophic
equations [8].

In this paper, we prove that a necessary and sufficient condition for the global
existence is that the BMO norm of the stream function is integrable in time. This is an
analogue of the well-known Beale-Kato-Majda condition [1] for the 3D Euler equations.
For some recent results on the 3D Euler equations that explore the geometric properties
of the Euler flow, we refer to [10, 11]. Moreover, using a level formulation, we derive
a sufficient condition for the global existence. The non-blowup condition we obtain
is expressed in terms of the total variation of a level set function, see (53) in Section
3 for the precise definition. Assume that the initial vorticity can be expressed in the
form ω(0, x) = ω0(φ0, ψ0)∇φ0 ×∇ψ0 for some smooth and bounded levelset functions
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φ0 and ψ0. Let φ and ψ be the levelset functions satisfying

φt + (uα · ∇)φ = 0, φ(0, x) = φ0(x),
ψt + (uα · ∇)ψ = 0, ψ(0, x) = ψ0(x).

Then vorticity can be expressed in terms of these two levelset functions:

ω = ω0(φ, ψ)∇φ×∇ψ.

Moreover, if the total variation of either φ or ψ is intergral in time, then there is no
finite time blow-up of the 3D averaged Euler equations. This result has a geometric
interpretation. In particular, it excludes the possibility of a finite number of isolated
singularities when vorticity is considered as a one-dimensional function by fixing the
other two variables. If there is a finite time singularity, the one-dimensional restriction
of vorticity must be highly oscillatory at the singularity time, and the singularities are
dense in the singular region.

Application of the same argument to the corresponding 2D models gives much
sharper existence results. In particular, we prove the global existence of the Lagrangian
averaged 2D Boussinesq equations and the averaged 2D quasi-geostrophic equations in
finite Sobolev spaces without any assumption on the solution itself.

The rest of the paper is organized as follows. In Section 2, we prove the necessary
and sufficient condition for the 3D Lagrangian averaged Euler equations, and prove the
global existence for the averaged 2D Boussinesq equations and the averaged 2D quasi-
geostrophic equations. In Section 3 we present some result for the global existence of
the 3D Lagrangian averaged Euler equations using a noval level set formulation.

2 Main Results and Proofs

In this section, we present three results. The first result is a necessary and sufficient
condition for the global existence of the averaged Euler equations. The second result is
the global existence of the averaged 2D Boussinesq equations. The third result is the
global existence of the averaged 2D quasi-geostrophic equations. We begin by stating
our first result for the 3D averaged Euler equations. Our result uses the BMO norm.
Before we state our existence result, we remind the reader of the definition of the BMO
norm which is defined as follows:

‖f‖BMO = sup
x∈R3

sup
r>0

1
|Br|

∫
|f − f̄ |dx,

where f̄ = 1
|Br|

∫
Br
f(y)dy, Br = {y ∈ R3, |y− x| ≤ r}, and |Br| is the volume of Br.

4



Theorem 1. Assume that ω0 ∈ Hm(R3), m ≥ 0. Then for any α > 0, the solution
of the Lagrangian averaged 3D Euler equations (2)-(4) has a unique global solution in
Hm(R3) satisfying

‖ω(t)‖Hm ≤ C(T )‖ω0‖Hm , for 0 ≤ t ≤ T,

if we have ∫ T

0
‖ψ‖BMOdt <∞, (11)

for any T > 0. Conversely, if the maximal time T of the existence of classical solutions
is finite, then necessarily we have∫ T

0
‖ψ‖BMOdt = ∞. (12)

Proof. The proof relies on the following estimate obtained by Kozono and Taniuchi
in [17]:

‖f‖∞ ≤ C (1 + ‖f‖BMO(1 + log(‖f‖W s,p + e)) (13)

for all f ∈W s,p with 1 < p <∞ and s > n/p, n is the space dimension.
Another useful result is the following embedding estimate in the BMO norm:

‖Rf‖BMO ≤ C‖f‖BMO, (14)

for any Riesz type operator R (see [24] and appendix A of this paper).
It follows from (2)-(4) that

uα = (1− α24)−1∇× ψ. (15)

This implies that

∇uα = R̃ψ, (16)

where R̃ = ∇(1− α24)−1∇× is a Riesz type operator.
Now applying the embedding estimate (14) to (16), we obtain

‖∇uα‖BMO ≤ C‖ψ‖BMO. (17)

Using estimates (13) and (17), we get

‖∇uα‖∞ ≤ C (1 + ‖∇uα‖BMO log(‖∇uα‖W 1,4 + e)) (18)

≤ C (1 + ‖ψ‖BMO log(‖ω‖L2 + e)) ,
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where we have used u = ∇× (−4)−1ω and the Sobolev embedding estimate

‖∇uα‖W 1,p ≤ C(‖uα‖H3) ≤ C(‖uα‖H1 + ‖ω‖L2),

for p ∈ [2, 6] and the fact that ‖uα‖H1 is bounded from (5).
Next, we perform an energy estimate for the vorticity equation. Multiplying both

sides of the vorticity equation (2) by ω and integrating over R3, we get

1
2
d

dt

∫
R3

|ω|2dx+
∫
R3

(uα · ∇ω) · ωdx =
∫
R3

(∇uαω) · ωdx. (19)

Note that using integration by parts, we have∫
R3

(uα · ∇ω) · ωdx =
1
2

∫
R3

(uα · ∇)|ω|2dx = −1
2

∫
R3

(∇ · uα)|ω|2dx = 0, (20)

since ∇ · uα = 0.
On the other hand, we obtain by using estimate (18)

|
∫
R3

(∇uαω) · ωdx| ≤ ‖∇uα‖∞
∫
R3

|ω|2dx

≤ C (1 + ‖ψ‖BMO log(‖ω‖L2 + e)) ‖ω‖2
L2 . (21)

Putting together estimates (19)-(21), we get

1
2
d

dt
‖ω‖2

L2 ≤ C (1 + ‖ψ‖BMO log(‖ω‖L2 + e)) ‖ω‖2
L2 . (22)

The Gronwall inequality then implies that

‖ω(t)‖L2 ≤ C(T ), for 0 ≤ t ≤ T, (23)

since
∫ T
0 ‖ψ‖BMOdt <∞ by our assumption (11). Moreover,

‖∇uα(t)‖∞ ≤ C||uα||H3 ≤ C(||uα||H1 + ||ω||L2) ≤ C(T ). (24)

Using (2) and (24), we can easily show that

‖ω(t)‖∞ ≤ ‖ω0‖∞ exp
(∫ T

0
‖∇uα‖∞dt

)
≤ C(T ), for 0 ≤ t ≤ T. (25)

Now it is a standard exercise to obtain energy estimates in high order Sobolev norms
[18]

d

dt
‖ω‖Hm ≤ Cm(‖∇uα‖∞ + ‖ω‖∞)‖ω‖Hm . (26)
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Since ‖∇uα(t)‖∞ and ‖ω(t)‖∞ are bounded for 0 ≤ t ≤ T , we obtain the desired
estimate for ‖ω‖Hm up to time T .

Now, if the maximal time T of the existence of classical solutions is finite, then we
must have ∫ T

0
‖ψ‖BMOdt = ∞,

since if
∫ T
0 ‖ψ‖BMOdt < ∞, the above argument would imply that ‖ω(t)‖Hm ≤

C(T )‖ω0‖Hm for t ≤ T , which is a contradiction. This completes the proof.

Next we prove the global existence of the averaged Boussinesq equations (6)-(7).

Theorem 2. Assume that ω0 ∈ Hm(R2) and ρ0 ∈ Hm+1(R2) for m ≥ 0. Then for any
α > 0, the Lagrangian averaged 2D Boussinesq equations (6)-(7) has a unique global
solution in Hm(R2) satisfying

‖ω(t)‖Hm + ‖ρ(t)‖Hm+1 ≤ C(T )(‖ω0‖Hm + ‖ρ0‖Hm+1), 0 ≤ t ≤ T,

for any T > 0.

Proof. First of all, a standard energy estimate shows that ‖u‖L2 is bounded since
‖ρ‖L2 is conserved in time and bounded.

Let W = ∇⊥ρ. Then W satisfies the following evolution equation:

Wt + (uα · ∇)W = ∇uα ·W. (27)

For any odd integer p > 2, we multiply (6) by ωp−1 and (27) by |W |p−2W respec-
tively and integrate over R2. Upon using integration by parts for the convection terms
and exploring the incompressibility of the velocity fields, u and uα, we obtain

1
p

d

dt

∫
R2

(|ω|p + |W |p) dx ≤ (1 + ‖∇uα‖∞)
∫
R2

|W |pdx+
∫
R2

|ω|pdx (28)

≤ (1 + ‖∇uα‖∞)
(∫

R2

|ω|pdx+
∫
R2

|W |pdx
)
,

where we have used the Yang’s inequality to obtain∫
R2

ωp−1|ρx1 |dx ≤ p− 1
p

∫
R2

|ω|pdx+
1
p

∫
R2

|ρx1 |pdx

≤
∫
R2

|ω|pdx+
∫
R2

|W |pdx.
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Using estimates (13), we get

‖∇uα‖∞ ≤ C (1 + ‖∇uα‖BMO log(‖∇uα‖W 1,p + e)) (29)

≤ C (1 + ‖∇uα‖BMO log(‖ω‖Lp + e)) ,

where we have used u = ∇⊥(−4)−1ω and the Sobolev embedding estimate

‖∇uα‖W 1,p ≤ C(‖uα‖H1 + ‖ω‖Lp),

for p ≥ 2 and the fact that ‖uα‖H1 ≤ C‖u‖L2 is bounded.
On the other hand, we obtain by using the John-Nirenberg type estimate (definition

of BMO) in 2D
‖∇uα‖BMO ≤ C‖∇uα‖H1 ≤ C‖u‖L2 ≤ C, (30)

where we have used the fact that ‖u‖L2 is bounded. Therefore, we obtain by combining
(28), (29) and (30) that

d

dt

(
‖ω‖pLp + ‖W‖pLp

)
≤

(
‖ω‖pLp + ‖W‖pLp

) (
1 + log(‖ω‖pLp + ‖W‖pLp + e)

)
. (31)

The Gronwall inequality then implies that

‖ω(t)‖Lp + ‖W (t)‖Lp ≤ C(T ), for 0 ≤ t ≤ T. (32)

Using (29), (30) and (32), we get

‖∇uα(t)‖∞ ≤ C(T ), for 0 ≤ t ≤ T. (33)

It follows from (27) and (33) that

‖W (t)‖∞ ≤ C(T ), for 0 ≤ t ≤ T, (34)

which in turns implies

‖ω(t)‖∞ ≤ C(T ), for 0 ≤ t ≤ T. (35)

Now it is a standard exercise to show [18] that

d

dt
(‖ω‖Hm + ‖W‖Hm) ≤ C(T )(‖∇uα‖∞ + ‖W‖∞)(‖ω‖Hm + ‖W‖Hm).

The theorem now follows from (34)-(35) and the Gronwall inequality. This completes
the proof of the theorem.

Next we prove the global existence of the averaged 2D quasi-geostrophic equations
(8)-(10).
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Theorem 3. Assume that θ0 ∈ Hm+1(R2) for m ≥ 0. Then for any α > 0, the solution
of the Lagrangian averaged 2D quasi-geostrophic equations (8)-(10) has a unique global
solution in Hm+1(R2) satisfying

‖θ(t)‖Hm+1 ≤ C(T )‖θ0‖Hm+1), 0 ≤ t ≤ T,

for any T > 0.

Proof.
Again, we can perform a standard energy estimate to show that ‖θ‖Lp is bounded by

‖θ0‖Lp (including p = ∞ which can be obtained via the so-called maximum principle).
Let ω = ∇⊥θ. Then ω satisfies the following evolution equation:

ωt + (uα · ∇)ω = ∇uα · ω. (36)

Thus, ω shares the similar vortex stretching term as the 3D Euler equation. Now using
an argument similar to our energy estimate for (27), we can obtain

1
p

d

dt

∫
R2

|ω|pdx ≤ ‖∇uα‖∞
∫
R2

|ω|pdx. (37)

Note that
∇uα = ∇(1− α24)−1/2(−4)−1/2∇⊥θ ≡ Rθ,

for some Riesz type operator R. Using the following embedding estimates (see the
Appendix)

‖∇uα‖BMO ≤ C‖θ‖BMO,

and
‖∇uα‖W 1,p ≤ C‖θ‖W 1,p ≤ C(‖θ‖Lp + ‖∇θ‖Lp), for 1 < p <∞,

we obtain using (13) that

‖∇uα‖∞ ≤ C (1 + ‖∇uα‖BMO log(‖∇uα‖W 1,p + e))
≤ C (1 + ‖θ‖BMO log(‖θ‖Lp + ‖ω‖Lp + e))
≤ C (1 + ‖θ‖∞ log(‖ω‖Lp + e))
≤ C (1 + log(‖ω‖Lp + e)) . (38)

Substituting (38) into (37) gives

d

dt
‖ω‖pLp ≤ C (1 + log(‖ω‖Lp + e)) ‖ω‖pLp . (39)

The Gronwall inequality then implies that

‖ω(t)‖Lp ≤ C(T )‖ω0‖Lp , 0 ≤ t ≤ T, (40)
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which, together with (38), gives

‖∇uα‖∞ ≤ C(T ), 0 ≤ t ≤ T. (41)

Now it follows from (41) and (36) that

‖ω‖∞ ≤ C(T ), 0 ≤ t ≤ T. (42)

Now it is a standard exercise to show [18] that

d

dt
‖ω‖Hm ≤ C(T )(‖ω‖∞ + ‖∇uα‖∞)‖ω‖Hm .

The theorem now follows from (41)-(42) and the Gronwall inequality. This completes
the proof of the theorem.

3 The Level Set Formulation for the 3D Euler

Equations

In this section, we will present a level set formulation for the 3D Euler equations and
show how they can be used to obtain a sufficient condition to guarantee the global
existence of the averaged Euler equations.

We consider the 3D Euler equations in the vorticity form:

∂tω + (u · ∇)ω = ∇u · ω, ω(0, x) = ω0(x), (43)

where ω = ∇× u and u is divergence free.
Let X(t, α) be the Lagrangian flow map, satisfying

d

dt
X(t, α) = u(t,X(t, α)), X(0, α) = α. (44)

Since u is divergence free, we know that the determinant of the Jacobian matrix ∂X
∂α is

identically equal to one. It is well-known that vorticity along the Lagrangian trajectory
has the following analytical expression [6]

ω(t,X(t, α)) =
∂X

∂α
ω0(α). (45)

Let θ(t, x) be the inverse map of X(t, α), i.e. X(t, θ(t, x)) ≡ x. Then it is easy to
show that θ satisfies the following evolution equation:

θt + (u · ∇)θ = 0, θ(0, x) = x. (46)
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Let θ = (θ1, θ2, θ3) and ω0 = (ω(1)
0 , ω

(2)
0 , ω

(3)
0 ). Using (45) and the fact thatXαθx = I

and |θx| = 1, we can show that

ω(t, x) = ω
(1)
0 (θ)∇θ2 ×∇θ3 + ω

(2)
0 (θ)∇θ3 ×∇θ1 + ω

(3)
0 (θ)∇θ1 ×∇θ2. (47)

Note that θj(j = 1, 2, 3) are level set functions convected by the flow velocity u. In
general, one can show that if the initial vorticity ω(0, x) = ω0(φ0, ψ0)∇φ0 ×∇ψ0, and
the level set functions φ and ψ satisfy

φt + (u · ∇)φ = 0, φ(0, x) = φ0(x), (48)
ψt + (u · ∇)ψ = 0, ψ(0, x) = ψ0(x), (49)

then the vorticity at later time can be expressed in terms of these two level set functions
and their gradients:

ω(t, x) = ω0(φ, ψ)∇φ×∇ψ. (50)

This level set formulation has been considered by Deng, Hou, and Yu in their study
of the 3D Euler equations [12]. The special case when ω0 = 1 is also known as the
Clebsch representation [7]. In this case, the velocity field has the form

u = ∇p+ φ∇ψ,

for some potential function p.
It is easy to see that the above level set formulation of vorticity for the 3D Euler

equations also applies to the 3D Lagrangian averaged Euler equations. The only change
is that the level set functions now satisfy

φt + (uα · ∇)φ = 0, φ(0, x) = φ0(x), (51)
ψt + (uα · ∇)ψ = 0, ψ(0, x) = ψ0(x). (52)

Now we state a sufficient condition for the global existence of the Lagrangian av-
eraged Euler equations in terms of the property of the level set functions defined by
(51)-(52). Before we state our result, we first introduce a definition of the total varia-
tion of a level set function, φ, as follows:

‖φ‖TV x1 = sup
x2,x3

∫ ∞

−∞
| ∂
∂x1

φ(x1, x2, x3)|dx1. (53)

We can define ‖φ‖TV x2 and ‖φ‖TV x3 similarly and let ‖φ‖TV =
3∑
i=1

‖φ‖TV xi .
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Theorem 4. Assume that the initial vorticity has the form ω(0, x) = ω0(φ0, ψ0)∇φ0×
∇ψ0 with ω0, φ0 and ψ0 being smooth and bounded. Moreover, we assume that φ and
ψ satisfy (51)-(52) such that either

∫ T
0 ‖φ‖TV dt < ∞ or

∫ T
0 ‖ψ‖TV dt < ∞ for any

T > 0. Then the averaged 3D Euler equations have a unique smooth global solution
satisfying

‖ω(t)‖Hm ≤ C(T )‖ω(0)‖Hm), 0 ≤ t ≤ T,

for any T > 0.

Remark. As we mentioned before, the above result has a clear geometric interpreta-
tion. It implies that if the one-dimensional restriction of the levelset function φ or ψ
has a total variation which is integrable in time, then there is no finite time blow-up.
This excludes the possibility of a finite number of isolated singularities when vorticity
is considered as a one-dimensional function by fixing the other two variables. In par-
ticular, if there is a finite time singularity, the one-dimensional restriction of vorticity
must be highly oscillatory at the singularity time, and the singularities are dense in
the singular region.

Proof.
Recall that

uα = (1− α24)−1∇× (−4)−1ω.

Thus we have
∇uα = (1− α24)−1Rω,

where R = ∇∇× (−4)−1 is a Riesz operator.
First, we consider the special case when ω0 ≡ 1. In this case, we have ω = ∇φ×∇ψ

for all times. Without loss of generality, we may assume that
∫ T
0 ‖ψ‖TV dt < ∞. We

can further rewrite ω = ∇× (φ∇ψ).
Let B(y) be the integral kernel of the operator (1− α24)−1R in R3. We set x = 0

and omit the reference to time. Then we can express

|∇uα(0)| = |
∫
R3

B(y)ω(y)dy|

= |
∫
R3

∇B(y)× (φ(y)∇ψ(y))dy|.

One can show that
|∇B(y)| ≤ Cα

|y|2(1 + |y|
1
4 )
. (54)

Let Bε denote the ball centered at the origin with radius ε < 1. Note that the level
set functions φ and ψ are bounded for all times. Let p > 3, q be the conjugate of p
satisfying 1

p + 1
q = 1. Further, we denote r = 3−2q

q . If yi is one of the three components
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of y in R3, we denote by y′ the remaining two dimensional vector excluding yi. Then
we have

|∇uα(0)| = |
∫
Bε

+
∫
|y|≥ε

∇B(y)× (φ(y)∇ψ(y))dy|

≤ ‖φ‖∞

(
ε

3−2q
q ‖∇ψ‖Lp +

3∑
i=1

∫
|y′|2+|yi|2≥ε2

dy′

(|yi|2 + |y′|2)(1 + |y|
1
4 )

∫
| ∂ψ
∂yi

|dyi

)

≤ ‖φ‖∞

(
εr‖∇ψ‖Lp + ‖ψ‖TV

∫
R2

dy′

(ε2 + |y′|2)(1 + |y|
1
4 )

+

+‖ψ‖TV
∫
|y′|≥ε

dy′

|y′|2(1 + |y′|
1
4 )

)

≤ ‖φ‖∞
(
εr‖∇ψ‖Lp + ‖ψ‖TV log

1
ε

)
,

where we have used the Hölder inequality in the estimate for the inner part. Note that
‖φ‖∞ ≤ ‖φ0‖∞. By setting εr(e+ ‖∇ψ‖Lp) = 1, we obtain

|∇uα(0)| ≤ C (1 + ‖ψ‖TV log(‖∇ψ‖Lp + e)) . (55)

Differentiating (52) with respect to x, we obtain

(∇ψ)t + (uα · ∇)(∇ψ) +∇uα∇ψ = 0. (56)

Performing the energy estimate to (56), we get

∂

∂t
‖∇ψ‖Lp ≤ ‖∇uα‖∞‖∇ψ‖Lp

≤ C (1 + ‖ψ‖TV log(‖∇ψ‖Lp + e)) ‖∇ψ‖Lp .

The Gronwall inequality then implies

‖∇ψ‖Lp ≤ C(T ), (57)

provided that
∫ T
0 ‖ψ‖TV dt <∞. Substituting (57) back to (55), we conclude that∫ T

0
‖∇uα‖∞dt ≤ C

∫ T

0
‖ψ‖TV dt ≤ C(T ). (58)

The bound on
∫ T
0 ‖∇uα‖∞dt immediately gives the maximum bound on ∇ψ from (56).

Similarly we obtain the maximum bound for ∇φ. Combining the maximum estimates
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for ∇ψ and ∇φ, we obtain the maximum bound for vorticity ω. Then it is a standard
argument to prove the energy estimate for ω in Hm norm using

∂

∂t
‖ω‖Hm ≤ C(‖∇uα‖∞ + ‖ω‖∞)‖ω‖Hm .

It remains to comment on the more general case when ω0 6= 1. Note that

ω0(φ, ψ)∇φ×∇ψ = ∇(ω0φ)×∇ψ − φ(ω0)φ∇φ×∇ψ
= ∇× (ω0φ∇ψ)− φ(ω0)φ∇φ×∇ψ.

Define

h(φ, ψ) =
∫ φ

0
s(ω0)φ(s, ψ)ds.

Then we have

∇h(φ, ψ) = hφ∇φ+ hψ∇ψ
= φ(ω0)φ∇φ+ hψ∇ψ.

This implies that

(φ(ω0)φ∇φ)×∇ψ = ∇h×∇ψ − hψ∇ψ ×∇ψ
= ∇× (h∇ψ).

Note that h is bounded since both φ and (ω0)φ are bounded. Therefore, we can rewrite

ω0(φ, ψ)∇φ×∇ψ = ∇× (ω0φ∇ψ)−∇× (h∇ψ),

with both ω0φ and h being bounded. Thus the previous argument for ω0 = 1 applies
the case when ω0 6= 1. This completes the proof of the theorem.

4 Appendix

In this appendix, we present some basic estimates about Riesz type operators that
have been used many times in this paper. The Lp (1 < p < ∞) estimates are based
on the well-known Calderon-Zygmund [2] decomposition and the Marcinkiewicz [19]
interpolations. The Lp,Φ estimates are due to Peetre [24]. We note that for Φ(r) = rλ,
Lp,Φ is the Morrey space if 0 < λ < n, the John-Nirenberg space (BMO) [16] if λ = n,
and Cα if n < λ < n + p. These beautiful and elegant results are very enlightening
and we collect only the main results that are closely related to the operators we have
used in this paper.
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The Riesz type operators are the translation invariant singular integral operators
of the following form:

(Tf)(x) =
∫
Rn

K(x− y)f(y)dy =
∫
Rn

K(z)f(z + x)dz, (59)

where the integral is taken in the sense of principle integration when needed. As usual,
the integral is first defined for f ∈ C∞

0 (Rn) (functions that are smooth with compact
support) and then extended to more general functions (Lp, Lp,Φ, etc.) based on the
so-called a priori estimates.

The operators we have used are the copoments of the vector valued operators:
∇(1− α24)−1∇×, ∇(1− α24)−1/2(−4)−1/2∇⊥ and ∇∇× (−4)−1. They share the
following common properties:

(i): ‖Tf‖L2 ≤ C‖f‖L2 ,

(ii): |K(x)| ≤ B
|x|n ,

(iii):
∫
|y|>2|x| |K(y − x)−K(y)|dy ≤ A.

Remark: The bound C in (i) can be obtained by computing the maximum value
of the Fourier transform of the operators for our Riesz type operators listed above.
In all three cases, C is equal to 1 or 1

α2 . Also, our operators can be regarded as
the composition of the standard Riesz transform Ri = ∂

∂xi
(−4)−1/2 with another

operator whose kernel is given by K(x) = ∂xi∂xjGα(x) (i, j = 1, 2, 3) where Gα(x) =
Cα

exp(−|x|/α)
|x| for x ∈ R3. Note that Gα is the Green’s (potential) function for the

oparetor (1− α24) in R3.
The above conditions and the Calderon-Zygmund decomposition [2] show that T

is weak (1, 1) type operator (see also page 31 in [25]). We can then employ the
Marcinkiewicz interpolations [19] to show that ‖Tf‖Lp ≤ Cp‖f‖Lp for 1 < p ≤ 2.
The translation invariant nature of T implies that the dual operator T ∗ also satisfies
(i)-(iii). Thus the duality argument implies the following result.

Theorem 5. If the operator T defined by (59) satisfies (i)-(iii), then

‖Tf‖Lp ≤ CK‖f‖Lp for 1 < p <∞, (60)

where C depends on the constants A, B, C, p, and n only.

Next, we present the BMO estimate of Peetre for our operators. It is a special case
of the LP,Φ estimates [24].

Let Φ = Φ(r), r > 0, be a positive and nondecreasing function that satisfies:
Φ(2r) ≤ CΦ(r). The space LP,Φ consists of locally integrable functions f on Rn such
that:

‖f‖LP,Φ = sup
x0∈Rn,r>0

inf
τ

‖f(y)− τ

Φ(r)
‖Lp(Br(x0)) <∞. (61)
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If we identify functions that differ by a constant then the above norm gives us a Banach
space.

To get the LP,Φ estimate, we need more assumptions on T and Φ:

(iv): |∇K(x)| ≤ B
|x|n+1 , lim|x|→∞K(x) = 0,

(v):
∫
|x|=rK(x)dσ = 0 for any r > 0,

(vi):
∫∞
r s

−2−n
p (Φ(s))

1
pds ≤ Cr

−1−n
p (Φ(r))

1
p ,

(vii) Φ(2r) ≤ CΦ(r).

Remark: Assumption (iv) implies (ii) and (iii). Assumptions (iv) and (v) imply
(i) (see theorem 4 of page 306 of [25]).

Simple calculations show that our operators satisfies all the conditions on T . The
function Φ(r) = rλ with 0 ≤ λ < n+ p satisfies (vi).

Theorem 6. (Peetre) Assume Φ and T satisfies (iv)-(vii), 1 < p <∞, then

‖Tf‖LP,Φ ≤ Cp‖f‖LP,Φ for 1 < p <∞. (62)

As mentioned in the first paragraph, the special case that Φ(r) = rn leads to the
BMO estimate:

‖Tf‖BMO ≤ C‖f‖BMO.
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fluids with nonlinear dispersion. Phys. Rev. Lett., 349, 1998, pp. 4173-4177.

[15] Holm, D. D., Marsden, J. E., and Ratiu, T. S., Euler-Poincaré equations and
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