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1. Introduction

The Empirical Mode Decomposition method (EMD for short), which was intro-
duced by Dr. Norden Huang, is an effective tool for adaptive local time–frequency
decomposition. Since its introduction in the mid-1990s, it has found successful
applications in a number of scientific and engineering fields. The detailed descrip-
tion of the EMD method can be found in the two pioneering papers of Huang
et al.10,11 Unlike other traditional data analysis methods, such as the Fourier Trans-
form and various wavelet decomposition methods, the EMD method does not use
a priori determined basis functions. Moreover, it allows the local time frequency
(the so-called instantaneous frequency) and its envelope to vary in time. Thus
it is capable of capturing some intrinsic physical features hidden in a nonlinear,
nonstationary signal. An important recent development was the introduction of the
Ensemble Empirical Mode Decomposition method (EEMD) by Wu and Huang.16,18

The effects of the decomposition using the EEMD are that the added white noise
series cancel each other, and the mean intrinsic mode functions (IMFs) stay within
the natural dyadic filter windows as discussed in Flandrin et al.7 and Wu and
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Huang,15,17 significantly reducing the chance of mode mixing and preserving the
dyadic property. We refer to the recent review paper13 for detailed discussions on
their latest developments and applications.

Despite of its considerable success, EMD still has some limitations. One of the
main difficulties is the lack of a solid mathematical foundation. In some cases,
this could lead to ambiguity in choosing the optimal parameters in EMD and the
loss of physical uniqueness of the decomposed IMFs. The lack of physical unique-
ness makes it difficult to interpret the physical significance of the decomposed
IMFs.

One of the main purposes of this paper is to provide some theoretical under-
standing of EMD for a class of multiscale data. One of the advantages of considering
multiscale data is that there is already a well-established theory called homogeniza-
tion,1 which provides a guidance for us in decomposing a multiscale signal into its
IMFs. We would like to understand under what conditions on the multiscale data
that we can decompose them accurately and uniquely into their IMFs. It turns out
that the near orthogonality of the IMFs is required to ensure physical uniqueness
of the decomposed IMFs. For multiscale data, this near orthogonality property
of IMFs is related to the scale separation of the multiscale data among differ-
ent IMFs. Another main finding of this paper is that if the multiscale data have
a sparse representation in certain bases, then one can exploit this sparsity prop-
erty of the multiscale data to obtain highly accurate and efficient recovery of the
IMFs.

Let us first recall the basic steps in EMD. For a given signal, f(x), we would
like to decompose it as the sum of a local median mn−1(x), and an IMF, which is
expressed as an(x) cos(θn(x)):

f(x) = mn−1(x) + an(x) cos(θn(x)). (1)

The EMD method provides an approximation to the local median via a sifting pro-
cedure. Specifically, the EMD method uses a cubic spline polynomial to interpolate
all the local maxima to obtain an upper envelope, and a cubic spline to interpolate
all the local minima to obtain a lower envelope, then average the upper and lower
envelopes to obtain an approximate median for mn−1(x). One then decides whether
or not to accept the obtained mn−1(x) as our local median depending on whether
f(x)−mn−1(x) gives an acceptable IMF. The conditions on the IMFs are (roughly)
the following: (1) the number of zeros and the number of extrema of an IMF must
be equal or differ at most by one, (2) an IMF must be “symmetric” with respect to
zero (the local median is zero). If f(x)−mn−1(x) does not satisfy these conditions,
one can treat f(x) − mn−1(x) as a new signal and construct a new candidate for
IMF for f(x) − mn−1(x) using the same procedure described above. This sifting
procedure continues until we obtain a satisfactory IMF, which we denote as fn(x).
Now we can treat f(x) − fn(x) as a new signal, and apply the same procedure
to generate the second IMF, fn−1(x). This procedure can continue until f0(x) no
longer contains any local extrema.
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After the individual IMFs are found by EMD, their instantaneous frequencies
are typically obtained via the Hilbert transform. However, this technique can be
justified only under certain conditions that are seldom satisfied by components of
practical data. Some empirical methods have been proposed to circumvent this
difficulty with some success, but pose their own problems.

In this paper, we propose several alternative ways of determining the instan-
taneous frequency without using the Hilbert Transform. We consider two types of
data. The first type of data is a periodic data set consisting of a smooth median
function a0(x), a smooth envelope function, a1(x), and a smooth phase function,
θ1(x) of the form:

f(x) = a0(x) + a1(x) cos θ1(x). (2)

We assume that a0, a1 and θ′1 have a sparse representation in the Fourier bases in
the sense that the number of nonzero Fourier coefficients is small compared with
the size of the data. It is important to point out that the data we consider are not
sparse in the Fourier bases although we assume that a0, a1 and θ′1 are sparse in
the Fourier bases. Further, we assume that the data satisfy certain scale separation
property, which will be made precise in the next section. For this class of peri-
odic data, we introduce a variant of EMD which we call the Newton–Raphson-based
EMD method. By exploiting the sparsity of data, we design a Newton–Raphson iter-
ative method to recover the sparse Fourier coefficients of a0, a1, and θ′1 accurately
and efficiently. We remark that the Newton–Raphson-based EMD method can be
applied to nonperiodic data as long as a0, a1 and θ′ have a sparse representation
with respect to certain bases which could be cubic spline bases, wavelet bases, or
curvelet bases for example.

The Newton–Raphson-based EMD method can be considered as a nonlinear
version of the sifting procedure in the original EMD method since the Newton–
Raphson iterations provide a nonlinear correction mechanism to correct the errors
we make in the sifting algorithm used in the EMD method. This method can
also be considered as a nonlinear version of compressed sensing2–5 in the sense
that the bases in which the signal is sparse are unknown a priori. These bases
are constructed adaptively to fit a given physical signal in a sparsest possible
way so that it preserves some important physical features of the signal. This
is similar in spirit to the Multiscale Finite Element Methods (see e.g. Refs. 6
and 8), in which multiscale finite element bases are constructed adaptively to
incorporate the key physical multiscale features of the underlying solution into
the bases so that we obtain an uniformly accurate coarse grid approximation
(or sparse representation) of the multiscale solution via the local multiscale
bases.

The convergence of the Newton–Raphson method depends critically on our abil-
ity in producing an accurate initial guess. To this end, we propose a second order
method, via either EMD or least square spline fit (LSSF), to approximate a0 and
a1. Once we obtain an accurate approximation to a0 and a1, we can produce an



October 19, 2009 16:52 WSPC/244-AADA 00031

486 T. Y. Hou, M. P. Yan & Z. Wu

approximation to θ1 by using the relationship (2). However, this involves the division
operation which could be unstable or lead to loss of accuracy when a1 has small
amplitude in some grid points. To overcome this difficulty, we introduce a second-
derivative method which gives an accurate approximation to the instantaneous
frequency without the need of first obtaining a good approximation of a1. This
method works well for data whose envelope functions have small amplitude. Our
numerical experiments show that the Newton–Raphson-based EMD method gives
a very accurate recovery of the IMFs when the data satisfy our scale-separation
condition. The recovery can be made as accurate as the machine precision when
the amplitude is not too small.

The method that we use in generating the initial guess for the Newton–Raphson
iterations is robust and it is interesting by itself. With some extra effort, we gener-
alize it to study the second type of data, the multiscale data (nonperiodic), which
are of the form:

f(x) = f0(x) + f1(x, x/ε1(x)) + f2(x/ε1(x), x/ε2(x))

= a0(x) + a1(x) cos(x/ε1(x)) + a2(x/ε1(x)) cos(x/ε2(x)), (3)

where ai(x) and εi(x) (i = 0, 1, 2) are assumed to be smooth, and 0 < ε2(x) �
ε1(x) � 1. The method for determining εi(x) (i = 1, 2) now involves solving a
first order nonlinear ordinary differential equation. For this reason, we call this
method the ODE-based EMD method. For multiscale data that satisfy a similar
scale separation property, we demonstrate that the ODE-based EMD method can
recover the exact IMFs accurately and uniquely, even for multiscale data with
small amplitude in their envelopes or nearly singular instantaneous frequencies. It
is worth emphasizing that the ODE-based EMD method extracts the envelope of an
IMF, and its instantaneous frequency independently. Thus they can be computed
independently and in parallel.

We also compare the method that uses the local median with the method that
uses the local mean in the EMD decomposition. Under the assumption that the
envelope function and the instantaneous frequency of an IMF are smoother than
the IMF itself, both approaches give accurate approximations to the envelope and
the instantaneous frequency. However, when this assumption is violated, the method
that uses the local median gives a much more accurate EMD decomposition than
the method that uses the local mean. We provide some preliminary analysis and
numerical evidence to support this conclusion.

We also study how to deal with noisy data using our approach. As we men-
tioned earlier, EEMD provides an effective way to deal with noisy data by adding
additional white noise to the noisy signal and decomposing the noise as an IMF.
While EEMD is robust, it could be expensive since it needs to apply EMD to a
large number of random samples with the added Gaussian noise. In this paper,
we propose an alternative denoising method based on the Least Square Spline
Fitting method (LSSF) to extract the noise from a noisy signal. Our prelimi-
nary numerical experiments show that the LSSF denoising method gives results



October 19, 2009 16:52 WSPC/244-AADA 00031

A Variant of the EMD Method for Multi-Scale Data 487

comparable with those obtained by EEMD but with considerable computational
saving.

We remark that the methods we introduce in this paper still have some limita-
tions. They work only for special synthetic data that satisfy our scale separation
property. More effort is required to generalize these methods for more complicated
data that arise from realistic applications. This important issue will be addressed
in an upcoming paper using a different approach.9

The rest of this paper is organized as follows. In Sec. 2, we introduce the
Newton–Raphson-based EMD method for periodic data. We also describe an accu-
rate and robust method to generate the initial guess for the Newton–Raphson-based
EMD method. In Sec. 3, we introduce the ODE-based EMD method for multiscale
data. In Sec. 4, we introduce our LSSF denoising method for noisy data and com-
pare its performance with that of EEMD. Some concluding remarks are given in
Sec. 5.

2. Sparse Periodic Data

In this section, we consider periodic data which satisfy certain scale separation
property. Specifically, we consider data that consist of n number of IMFs, each of
them has the form:

fj(x) = aj(x) cos θj(x), j = 1, . . . , n, a ≤ x ≤ b, (4)

where aj(x) is a positive envelope function, and θj(x) the phase function, and its
instantaneous frequency is defined as dθj(x)/dx. We assume that the data satisfy
the following the scale separation property:

Assumption 1 (Scale-Separation). The IMFs {fj} (j = 1, . . . , n) are said to
satisfy the scale-separation property if (1) fi(x), fj(x) with i �= j are nearly orthog-
onal; (2) for each pair of IMFs (fj−1, fj) (1 ≤ j ≤ n), fj−1, aj , and dθj(x)/dx are
smoother than cos(θj(x)).

Throughout this paper, we say that g1(x) is smoother than g2(x) if the amplitude
of the first order derivative of g1 is much smaller than that of g2, that is∣∣∣g′1(x)

g′2(x)

∣∣∣� 1.

The above assumption implies that fj−1 is smoother than fj . This is to ensure that
we can decompose a given signal by a finite number of IMFs. The near orthogonality
condition between two different IMFs is to ensure the physical uniqueness of the
EMD decomposition. We can measure the degree of orthogonality between fi and
fj (j �= i) by using the following quantity:

µ(fi, fj) =
1

‖fi‖L2[a,b]‖fj‖L2[a,b]

∫ b

a

fi(x)fj(x)dx. (5)
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This quantity is similar to the mutual coherence of two columns in a matrix which
has been used in the Compressed Sensing literature, see e.g. page 40 of the recent
review paper.2 Near orthogonality between fi and fj requires that the mutual
coherence between fi and fj be small. Without imposing the near orthogonality
condition on fi(x) and fj(x), there may be more than one way to decompose the
data into their IMFs, thus violating the physical uniqueness property. How small
the mutual coherence needs to be in order to guarantee the physical uniqueness of
the EMD decomposition is a nontrivial question which requires further analysis.
This will be investigated in an upcoming paper.9

Next, we will discuss a variant of the EMD method to separate the median,
f0(x), from its original signal f(x).

2.1. Approximation of the local median

In this section, we discuss how to approximate the local median, f0, from a given
signal, f . Again, we express the signal f in the form:

f(x) = f0(x) + a1(x) cos θ1(x). (6)

Under the assumption stated above, one can show that

df(x)
dx

≈ a1(x)
d cos θ1(x)

dx
.

By f ≈ g, we mean that |f − g| � 1. The above statement can be verified directly
by our assumption that a0 and a1 are smoother than cos(θ1(x)). Thus, the local
maximum of f(x) is achieved approximately at the points in which cos θ1(x) = 1.
Denote xmax the points of local maxima of the discretized data and xmin the minima.
Then we have cos θ1(xmax) ≈ 1 and cos θ1(xmin) ≈ −1.

2.1.1. EMD

By applying a cubic spline interpolation, we can get an approximation of the upper
envelope function which connects all the local maxima. The upper envelope, denoted
as f̄(x), is given approximately as

f̄(x) ≈ f0(x) + a1(x). (7)

Similarly, the lower envelope function, denoted as f(x), is given approximately by

f(x) ≈ f0(x) − a1(x). (8)

Note that the accuracy of the upper and lower envelope functions depends on both
the local wavelength of the given signal and the grid resolution in which we sample
the signal. The accuracy of the spline interpolation depends on the local wavelength.
On the other hand, the accuracy of the location of the local extrema, xmax or xmin,
depends on the grid resolution.
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We define the local median of a signal to be the average of the two envelope
functions given in (7) and (8), respectively. This local median gives a good approx-
imation to the low frequency IMF, f0(x),

f0(x) ≈ 1
2
(f̄(x) + f(x)).

After we obtain an approximation to f0, we can extract the high frequency IMF by
defining f1(x) = f(x) − f0(x).

2.1.2. Least square spline fit (LSSF )

In this section, we introduce the Least Square Spline Fit method (LSSF), which we
will use extensively throughout this paper. First, we divide the domain into finite
intervals, i.e.

a = x0 < x1 < · · · < xm = b.

By our assumption, the median function f0(x) and the envelope a1(x) are smoother
than the original signal. We will approximate f0 and a1 by piecewise polynomials
f̃0(x) and ã1(x), respectively, with the following properties:

(1) f̃0(x), ã1(x) ∈ C2(a, b), i.e. they are second order continuously differentiable in
the domain [a, b].

(2) f̃0(x) and ã1(x) are third order polynomials in each interval [xk−1, xk] for k =
1, . . . , m.

It is not difficult to see that the basis functions that generate this class of polyno-
mials are given by

1, x, x2,

({
(x − xk)3, for x > xk;
0 for x < xk,

)
k=0,1,...,m−1

. (9)

In order to find the least-square fit of f̃0(x) and ã1(x) in terms of the bases given
in Eq. (9), we formulate it as a least square problem by imposing the following
condition using the data from the local extrema

f(xmax) = f̃0(xmax) + ã1(xmax),

f(xmin) = f̃0(xmin) − ã1(xmin).

In general, LSSF requires that the number of extrema be greater than m + 3, and
the system is solved by the least square method.

2.2. Local median versus local mean

Another possible approach to approximate f0 is to use the local mean of the signal
instead of its local median. The local mean can be obtained by averaging the signal
over one local period, which is defined as the interval between two local maxima
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or minima. Under Assumption 1, f0(x) and a1(x) can be considered approximately
as constant in one local period of the signal. Let x1 and x2 be the two neighboring
grid points at which the signal achieves its local maxima or minima. Using Eq. (6),
we approximate the local mean at the midpoint between x1 and x2 as follows:

f̃(x0) ≡ 1
x2 − x1

∫ x2

x1

f(x)dx ≈ f0(x0) + a1(x0)
∫ x2

x1

cos θ1(y)dy,

where x0 = 1/2(x1+x2). If we further have
∫ x2

x1
cos θ1(y)dy = 0, then the local mean

f̃(x0) gives a good approximation to f0(x0). However, in many cases, this is not
true. If we make an additional assumption that θ′1(x) is smoother than cos θ1(x),
then one can show easily that

∫ x2

x1
cos θ1(y)dy ≈ 0. Then we have f̃(x0) ≈ f0(x0).

Our numerical results show that it is in general more accurate to approximate f0

using its local median than using its local mean. For example, if we choose f0 = 0,
a1 = 1, and θ1 = 2πx + 1 + cos(2πx), then we have θ′1 = 2π(1 − sin(2πx)), which
is as oscillatory as cos(θ1) itself. In this case,

∫ x2

x1
cos θ1(y)dy = 0 is not valid and

the local mean of f(x) is not zero, see Fig. 1. If we approximate f0 by its local
mean, then a1 will be highly oscillatory with frequency of the same order as that
of cos(θ1). This would violate Assumption 1. This is not surprising since this signal
does not satisfy the scale-separation condition stated in Assumption 1.

Fig. 1. f(x) = cos(2πx + 1 + cos 2πx). The median curve is obtained by averaging the upper
and lower envelopes. The mean curve is obtained by averaging the upper mean curve, which
interpolates the local mean between two neighboring maxima, and the lower mean curve, which
interpolates the local mean between two neighboring minima.
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2.3. EMD decomposition via the Newton–Raphson method

In this section, we introduce an iterative method based on the Newton–Raphson
iterations to improve the accuracy of the IMFs. The success of this iterative EMD
method depends on two factors. The first one is that the signal has a sparse rep-
resentation in some appropriate bases. The second one is that we can generate a
good initial guess for the Newton–Raphson iterations. In this paper, we will only
focus on the simplest case of periodic data. We assume that a0, a1 and θ′1 have a
sparse representation in the Fourier bases. More precisely, we assume that a0(x),
a1(x) and θ1(x) have the following form:

a0(x) = b
(0)
0 +

K0∑
k=1

b
(0)
2k−1 cos(2πkx) +

K0∑
k=1

b
(0)
2k sin(2πkx); (10)

a1(x) = b
(1)
0 +

K1∑
k=1

b
(1)
2k−1 cos(2πkx) +

K1∑
k=1

b
(1)
2k sin(2πkx); (11)

θ1(x) = 2Tπx + b
(2)
0 +

K2∑
k=1

b
(2)
2k−1 cos(2πkx) +

K2∑
k=1

b
(2)
2k sin(2πkx). (12)

The sparsity means that K0 + K1 + K2 is relatively small compared with the size
of the discrete data set f(x). In this case, the EMD decomposition is equivalent to
determining the Fourier coefficients of a0, a1 and θ1. Obviously, this idea can be
generalized to data which have a sparse representation in other bases, which are
not necessarily Fourier bases.

In our implementation, we will choose an upper bound for K0, K1, and K2.
We rearrange all the Fourier coefficients of a0(x), a1(x) and θ1(x) into a new
vector b. Then the EMD decomposition is reduced to solve a nonlinear system
with an unknown vector b, i.e.

F (xj ;b) = f(xj), j = 1, 2, . . . , N,

where xj (j = 1, 2, . . . , N) are the discrete sampling grid points. We will use the
Newton–Raphson Iterative Method to solve the above nonlinear system. Specifi-
cally, if we already obtain the nth iteration, b(n), then we update the (n + 1)th
iteration by

b(n+1) = b(n) − B(b(n))f(b(n)), (13)

where B is an approximate inverse to the Jacobian matrix

D(b) = ∂f/∂b.

Under the sparsity assumption, we have N � (K0 + K1 + K2). This means that
the Jacobian matrix D has many more rows than columns. Therefore, we cannot
invert the Jacobian matrix directly. Instead, we approximate the inverse of the
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Jacobian matrix using the least square method. More precisely, if we denote y(n) =
B(b(n))f(b(n)), we approximate y(n) by solving the following least square problem:

(DT (b(n))D(b(n)))y(n) = DT (b(n))f(b(n)). (14)

The method we described above involves solving a nonlinear system using the
Newton–Raphson method. We will call this method the Newton–Raphson-based
EMD method.

For the convergence of the Newton–Raphson iterative method, it is essential to
generate a good initial guess for b. Next we discuss how to generate a good initial
guess for the coefficients of a0(x), a1(x) and θ1(x).

2.4. Initial guess of a0(x) and a1(x)

The initial guess for a0 and a1 can be generated by using the upper and lower
envelopes defined in Sec. 2.1. In order to improve the accuracy in approximating
the upper and lower envelopes, we use a second order accurate interpolation to
generate a more accurate approximation to the local extrema. Specifically, if f(xj)
is a discrete extremum point of the data, we generate an updated extremum at
xj + δx with second order accuracy,

δx =




f(xj−1) − f(xj+1)
2(f(xj−1) + f(xj+1) − 2f(xj))

, for f(xj−1) + f(xj+1) �= 2f(xj);

0, for f(xj−1) + f(xj+1) = 2f(xj).

The function value at the updated extremum is updated to

f(xj) − δx2

2
(f(xj−1) − 2f(xj) + f(xj+1)).

With the updated extrema, we can use either a finite Fourier interpolation of
the updated extrema with some low pass filtering (Fourier smoothing) or LSSF to
generate an approximation to the upper and lower envelope functions, f̄(x) and
f(x), respectively:

f̄(x) ≈ a0(x) + a1(x),

f(x) ≈ a0(x) − a1(x),

from which we obtain

a0(x) ≈ 1
2
(f̄(x) + f(x)),

a1(x) ≈ 1
2
(f̄(x) − f(x)).
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Once we obtain a0 and a1, we can extract their finite Fourier coefficients by using the
least square method. This produces a good initial guess for the Fourier coefficients
of a0 and a1.

2.5. Initial guess of instantaneous frequency θ′
1(x)

There are several ways to generate a good initial guess for θ1. A natural approach
is to use the relation:

cos θ1(x) =
f1(x)
a1(x)

, (15)

where f1(x) = f(x) − a0(x). First, we would like to point out that an interesting
method has been recently proposed in Ref. 14 without using the Hilbert transform.
This method uses the following equation:

θ′1(x) ≈
∣∣∣cos θ1(xj+1) − cos θ1(xj−1)

2∆x
√

1 − cos θ1(xj)

∣∣∣. (16)

Note that the above formula is not well defined at those points in which
cos θ1(xj) = 1. Thus, one cannot use this formula around those points. Instead
one may interpolate the instantaneous frequency based on those points in which
cos θ1(xj) �= 1, e.g. cos θ1(xj) < 0.9. Another difficulty is that due to numerical
errors in approximating a0 and a1, the amplitude of the approximated cosine func-
tion (15) at some grid points may be strictly greater than one. In this case, one
needs to normalize the right hand side of (15) so that its amplitude is less than or
equal to one for all grid points. While such procedure works well for many cases, it
suffers from some numerical instability in the region where the amplitude of a1 is
small.

Next, we introduce a different method which uses the discrete second-derivative
of the signal to determine the instantaneous frequency θ′1(x). This method is sec-
ond order accurate and requires that the envelope function be smooth and satisfy
a′′
1(x)/a1(x) ≈ 0. This requirement can be easily satisfied by normalizing the IMF

with the approximated envelope given by EMD or least-square-spline method. In
this case, we would have a1(x) ≈ 1.

Our method explores the smoothness of a1 and θ1. By using a Taylor expansion
of f1(xj+1) and f1(xj−1) around xj , we obtain

f1(xj+1) =
(

a1(xj) + ∆xa′
1(xj) +

1
2
∆x2a′′

1

)
cos
(

θ1(xj) + ∆xθ′1(xj) +
1
2
∆x2θ′′1

)
+ o(∆x2),

f1(xj−1) =
(

a1(xj) − ∆xa′
1(xj) +

1
2
∆x2a′′

1

)
cos
(

θ1(xj) − ∆xθ′1(xj) +
1
2
∆x2θ′′1

)
+ o(∆x2).
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Thus, we have

f1(xj+1) + f1(xj−1)
2f1(xj)

= cos

[
∆xθ′1

√
1 − tan θ1(xj)

(
θ′′1

(θ′1)2
+

2a′
1

a1θ′1

)
+

a′′
1

a1(θ′1)2

]

+ o(∆x2).

We apply the above formula at the local extrema of the IMF such that
tan θ1(xj) = 0. By using the assumption a′′

1/a1 ≈ 0, we can further simplify the
above equation to

f1(xj+1) + f1(xj−1)
2f1(xj)

= cos[∆xθ′1(xj)] + o(∆x2).

Note that since we apply our formula only at the local extrema, the left-hand side
of the above equation is less than or equal to one. Then the values of instantaneous
frequency at those local extrema of an IMF are approximated by

θ′1(xj) =
1

∆x
arccos

f1(xj+1) + f1(xj−1)
2f1(xj)

. (17)

Then, we can interpolate the instantaneous frequency using EMD or LSSF. The
scale-separating property implies that the instantaneous frequency can be well
approximated by its values at the local extrema.

One advantage of this method is that it can be applied directly to the signal
of the form f1(x) = a1(x) cos θ1(x) which satisfies a′′

1(x)/a1(x) ≈ 0. As we will see
later, this method works well even when the approximation of the envelope a1(x)
is not very accurate, see e.g. our simulations of signals (24) and (25).

In addition, we can exploit the sparsity of the instantaneous frequency with
respect to certain bases. If the instantaneous frequency is sparse in the Fourier space,
we can extract its Fourier coefficients from those local extrema as we did for the
upper and lower envelopes. This gives a very accurate recovery of the instantaneous
frequency.

2.6. Numerical results using the Newton–Raphson-based

EMD method

In this section, we present some numerical results to demonstrate how well the
Newton–Raphson-based EMD method works. Without loss of generality, we assume
that all signals have period 1. We test four different signals, which all have sparse
Fourier representations in a0(x), a1(x) and θ′1(x). In the first two examples, the
amplitude of a1 is not small. In this case, it is relatively easier to obtain a perfect
recovery. In the last two examples, we test a more difficult case in which the ampli-
tude of a1 is small in some grid points. We will show that the Newton–Raphson
iterations still converge and give a reasonably accurate recovery of its IMFs and
instantaneous frequency.
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2.6.1. Regular periodic data

We first test the signal for which a1 is not small. We choose the signal of the form

f(x) = a0(x) + a1(x) cos θ1(x), (18)

and sample 256 equally spaced points in the domain [0, 1). In our example, a0(x),
a1(x), and the instantaneous function, θ′1(x), are sparse in the Fourier bases and
are given as follows:

a0(x) = b
(0)
0 +

3∑
k=1

b
(0)
2k−1 cos(2πkx) +

3∑
k=1

b
(0)
2k sin(2πkx);

a1(x) = b
(1)
0 +

3∑
k=1

b
(1)
2k−1 cos(2πkx) +

3∑
k=1

b
(1)
2k sin(2πkx);

θ1(x) = 2Tπx + b
(2)
0 +

3∑
k=1

b
(2)
2k−1 cos(2πkx) +

3∑
k=1

b
(2)
2k sin(2πkx),

where

{b(0)
i }i=0,1,...,6 = [0, 0, 1, 0.5, 0, 0.2, 0]; (19)

{b(1)
i }i=0,1,...,6 = [2, 1, 0, 0.5, 0, 0, 0.3]; (20)

{b(2)
i }i=0,1,...,6 = [2, 0, 1, 0.4, 0, 0, 0]. (21)

In order to satisfy the scale-separation assumption (Assumption 1) between f0(x)
and f1(x), we choose the coefficient, T , which appears in the linear term of θ1(x),
to satisfy the following condition:

T ≥ K0 + K1. (22)

This is not required in general, but it is a sufficient condition to satisfy the scale
separation condition. The inequality (22) implies that T ≥ 6. In practice, we observe
that even if we choose T as small as 5, we can still obtain a perfect recovery. If we
choose a larger T , we can accommodate more Fourier modes in a0 and a1. For a
fixed number of Fourier modes in a0 and a1, larger T gives a more accurate initial
guess for a0, a1 and θ1. In Fig. 2, we illustrate the convergence of the Newton–
Raphson iteration for two cases with T = 5 and T = 10, respectively. In both cases,
we can see that we recover the f, a0, a1 and θ1 up to the machine precision. The
iterations converge exponentially fast, reaching the machine precision within just a
few iterations. Moreover, the larger the value of T is, the faster is the convergence.

2.6.2. Periodic data with small amplitude envelope

In the previous two examples, we recover a0(x), a1(x) and θ1(x) almost perfectly
up to the machine precision. In the next two examples, we consider a more difficult
case when the envelope a1(x) has small amplitude in some grid points. We keep the
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coefficients of a0(x) in (19) and θ1(x) in (21) the same and replace those of a1(x)
in (20) by

{b(1)
i }i=0,1,...,2K2 = [1.01, 1, 0, 0.5, 0, 0, 0.3]. (23)

The envelope a1(x) has two local minimum points at x1 = 0.6051 and x2 =
0.2848, respectively, see the upper-left corner of Fig. 3. The minimum values of a1

at these two local minima are

a1(0.6051) = 0.0689, a1(0.2848) = 0.1024.

One of the main difficulties in recovering accurately the IMFs is due the ill-
conditioning of the resulting linear system when a1 has small amplitude at some
grid points. Our numerical results show that as long as the values of cos θ1(x) are not
too small at the points at which a1 achieves its minimum, then we can still expect
a perfect recovery of a0, a1 and θ1. For example, if we choose T = 6, we have

cos θ1(0.6051) = 0.6704, cos θ1(0.2848) = 0.7089.

The Newton–Raphson iteration can still recover the Fourier coefficients of a0, a1

and θ1 up to the machine precision (see the lower figures of Fig. 3). On the other
hand, if we choose T = 10, then we have

cos θ1(0.6051) = −0.2319, cos θ1(0.2848) = −0.0857.

The small amplitude of cos θ1(0.2848) makes the resulting linear system ill-
conditioned. Although the signal of T = 10 has a better scale-separation property
than that of T = 6, the Newton–Raphson iteration does not give a perfect recovery
of the signal in the case of T = 10, see the upper-right figure of Fig. 3. The errors
are the largest at the points in which a1(x) achieves its minimum. Even in this very
difficult test, we still retain a reasonably good recovery of its IMFs.

2.7. Computing instantaneous frequencies for nearly singular data

In this section, we will apply the method that we introduced earlier in Sec. 2.5 to
compute instantaneous frequencies for nearly singular data. This method has the
advantage of determining the instantaneous frequency only requiring a smoother
second derivative of the envelope. Thus, it works very effectively for data with very
small amplitude. We also compare the performance of our method with the EMD
method that uses the Hilbert–Huang transform and renormalizes the amplitude
of a1.13,14 For the purpose of comparison, we call our method the second-derivative
method and the normalized EMD method the first-derivative method.

2.7.1. Envelopes with small amplitude

We first test two examples with different envelope functions a1. In both cases, we
set the median to be zero. In the first example, we choose

f1(x) = (0.1 + (x − 4)2) cos{20πx + 0.5 sin(2πx)}. (24)
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In the second example, we choose

f1(x) = (0.2 + |(x − 4)(x − 1.5)(x − 6.5)|) cos{20πx + 0.5 cos(2πx)}. (25)

Note that the absolute value sign in the second example (25) is to ensure that a1

is positive.
In the first signal, we observe that the error obtained by the second-derivative

method is significantly smaller than that obtained by the first-derivative method. In
the second example, the signal (25) has three nearly singular points in the envelope
a1(x). When we use the first-derivative method, the error of the instantaneous
frequency is magnified near the points at which a1 reaches its minimum, while the
second-derivative method is relatively insensitive to the smallness of the envelope
(see the right-lower corner of Fig. 4).

2.7.2. Instantaneous frequency with jump

Next, we study an interesting signal with a frequency jump in the time domain.
For simplicity, we ignore the effect of the envelope function and the low-frequency
IMF by setting

a0(x) = 0, a1(x) = 1.

Then the signal becomes f(x) = cos θ(x). We let θ(0) = 0 and choose the instanta-
neous frequency as

θ′(x) =

{
20π + π cos 2πx, for x ∈ (0, 4];

30π + π cos 2πx, for x ∈ (4, 8].

The signal we choose has a frequency-jump at x = 4 (see the lower-left of Fig. 5).
We compare the relative error of the recovered instantaneous frequency to the exact
one, using these two methods. As we can see from Fig. 5, the error curve of the
second-derivative method (thick line) is an order of two magnitude smaller than
that of the normalized first-derivative method throughout the domain, except at
the location of the frequency jump (because of under-sampling). The improvement
of the new method over the original EMD method (first-derivative method) is quite
significant.

3. Multiscale Data Set

In this section, we generalize the method that we developed in the previous section
to multiscale data which have the form of

f(x) = f0(x) + f1(x, x/ε1(x)) + f2(x/ε1(x), x/ε2(x)), (26)

where ε1(x) and ε2(x) satisfy:

0 < ε2(x) � ε1(x) � 1.
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We further assume that f1(x, y) and f2(x, y) are periodic in y with period 1. For
this class of multiscale data, we express its high frequency IMF as

fi(x, x/ε1) = ai(x) cos{2πx/εi(x)}, i = 1, 2. (27)

We assume that the multiscale data satisfy the same scale-separation property
as stated in Assumption 1 for periodic signals. However, we do not assume that the
multiscale data are periodic with respect to x.

We will use the same second order method which was introduced in Sec. 2.4
to approximate its local median, denoted as rn−1(x), and its envelope function
an(x). Based on the second order approximation of an, we can extract the Fourier
coefficients of the envelope by using a finite number of Fourier modes and the least
square method.

After we obtain an approximation to rn−1(x), we can approximate fn by using
fn(x) = f(x) − rn−1(x). By our assumption, an(x) and εn(x) are smoother than
cos(2πx/εn). We denote the phase function

θn(x) =
2πx

εn(x)
.

The instantaneous frequency θ′n(x) can be generated using the methods we
described in Sec. 2.5. On the other hand, the instantaneous frequency is given by

θ′n(x) =
2π

εn(x)
− 2πxε′n(x)

ε2n(x)
. (28)

Once we have the approximated θ′1(x), we have an ordinary differential equation

dεn(x)
dx

=
−θ′n(x)ε2n(x) + 2πεn(x)

2πx
. (29)

The additional work here is that we need to solve an ordinary differential equa-
tion to obtain an approximation for εn(x). Notice that when x = 0 the IMF (27)
reaches its local maximum point. Without loss of generality, we denote local max-
imum point xj = 0 as an initial time and apply a high order ODE solver such
as the classical fourth order Runge–Kutta method (RK4) to solve the initial value
problem.

By our assumption, the length scale function εn(x) is a smooth function which
has a well-defined first order derivative. This implies that the numerator in the
quotient of (29) must be zero at x = 0, i.e.

εn(0) = 2π/θ′n(0). (30)

In addition, the right-hand side of the ODE (29) has weak singularity at x = 0.
In order to remove it, we apply the L’Hospital rule to the quotient of Eq. (29) to
derive

lim
x→0

(θ′n(x)ε2n(x))′ = 0.
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Hence, θ′n(x)ε2n(x) is approximately a constant near x = 0. Denote x1 as the nearest
point to x = 0. Then, we have

θ′n(x1)ε2n(x1) ≈ θ′n(0)ε2n(0) =
4π2

θ′n(0)
.

Thus, we obtain a new initial condition associated with x = x1:

εn(x1) = 2π

√
1

θ′n(0)θ′n(x1)
.

We will choose εn(x) to be positive. In our implementation, we solve the ODE,
in both directions, for εn(x) over an interval between a discrete maximum and
minimum point. This is to prevent the error propagation from one local period to
another. Within each local interval, the initial point xj+1 of ODE (29) is chosen to
be the closest point to the discrete maximum.

The εn(x) function we obtain from solving the ODE over each interval is a
piecewise smooth curve defined on each interval. Because of the periodicity of the
cosine function, we need to generate its global approximation in a proper way.
Specifically, once the discrete point crosses one local maximum, the phase function,
(2πx)/εn(x), has to increase by 2π. After we obtain the global approximation of
εn(x), we will apply a low pass filtering to smooth out the high frequency error by
using the least square method and imposing the sparse representation of εn(x) in
its Fourier bases, as we did for the envelope functions.

For a general multi-scale signal consisting of multiple IMFs, we can apply the
above procedure recursively to find all its IMFs. As in the original EMD method,
we will first use the second order method to find its upper and lower envelopes.
From these two envelopes, we can determine the envelope function, an(x). The
length-scale function, εn(x), will be determined by solving the first order ODE that
we described above. This gives the first and the highest frequency IMF,

fn(x) = an(x) cos(2πx/εn(x)).

Now we can apply the same procedure to f(x) − fn(x) by treating f(x) − fn(x)
as a new signal. This will generate the next envelope function an−1(x) and the
new length-scale function εn−1(x). This procedure can continue until f0(x) is a
monotone function. Since the above method involves solving an ODE to determine
the length scale function, we call this method the ODE-based EMD method.

3.1. Numerical results for the ODE-based EMD method

In this section, we will present some numerical results to demonstrate the robustness
of our ODE-based EMD method. The implementation of the ODE-based EMD
method consists of two steps. The first step is to use the second order method
to approximate the upper and lower envelopes of a given signal. Once we obtain
these two envelopes, we can extract the local median of the signal, rn−1(x), which
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contains the lower frequency information and its envelope function, an(x). In the
second step, we define the approximate IMF, f̃n(x) = f(x) − rn−1(x), and solve
for the ODE based on this approximate IMF to obtain the length-scale function,
εn(x). After we solve for εn(x), we obtain the first and the highest frequency IMF,
fn(x), as

fn(x) = an(x) cos(2πx/εn(x)).

Then we repeat the same procedure to the lower frequency signal, f(x)− fn(x), to
extract the remaining IMFs, fn−1, . . . , f0(x).

We test a multiscale signal consisting of three IMFs. We also compare the per-
formance of the method that uses the local median with the method that uses the
local mean in our approximation of the envelope function. Our numerical results
show that the method that uses the local median gives a superior performance than
the method that uses the local mean.

The multiscale signal that we consider is defined on the interval between 0.1
and 2.1. The grid resolution is given by ∆x = 1/2560. The signal is of the form:

f(x) = f0(x) + f1(x) + f2(x)

= a0(x) + a1(x) cos
2πx

ε1(x)
+ a2(x) cos

2πx

ε2(x)
, (31)

where the envelopes and length-scale functions are given by

a0(x) = sin(2πx), (32)

a1(x) = 0.2(1 + 0.2 cos(2πx)), (33)

ε1(x) =
1
16

(1 − 0.05 cos(2πx)), (34)

a2(x) = 0.04(1 + 0.2 cos(2πx))2, (35)

ε2(x) =
1

256
(1 − 0.05 cos(2πx))2. (36)

In Fig. 6, we plot the three components, f0, f1, f2, and the signal f(x). In Fig. 7,
we plot the relative errors of the recovered IMFs for the multiscale signal defined
above. We observe that the relative errors for the envelope function of the highest
frequency IMF, f2, are below 1.4%. The relative errors for the length-scale function
are even smaller, below 0.004%. The relative errors for the second IMF are larger
than the corresponding errors for the first IMF, but are still reasonably small. This
behavior is to be expected since the major source of errors depend on the length-
scale εi. This can be traced back to the approximation errors in the two steps of
our method. In the first step, the grid space between two local extrema is roughly
εi. Thus the interpolation step in approximating the envelope functions produces
errors that depend on εi directly. This interpolation errors will propagate into the
second step of our method since we use fn(x) = f(x) − rn−1(x) as the starting
point in deriving our ODE for the length-scale function, εn(x).
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Fig. 6. The multi-scale data (lower right figure) is the sum of f0, f1 and f2.

In the previous example, we observe that the method that uses the local median
and the method that uses the local mean give a comparable performance. It is
mainly due to the smoothness property of the instantaneous frequency in this exam-
ple. In order to show how the regularity of the instantaneous frequency may affect
the performance of these two methods, we test another multiscale signal by doubling
the amplitude of ε2(x).

ε2(x) =
1

128
(1 − 0.05 cos(2πx))2, (37)

by keeping all other parameters the same as in Eqs. (32)–(35). In this case, the
distance between two closest extrema increases. It is not hard to show that in
order for the local mean method to give a good approximation to the envelope
function, the function, ε22/(ε2 − xε′2), must be close to a constant over one discrete
period between two extrema. By increasing the period between two extrema, this
quantity has a larger variation within one period. As a result, the method that
uses the local mean gives a worse approximation to the envelope function. This
error will propagate to the length-scale function, resulting in a larger error in our
approximation of the IMF. In Fig. 8, we plot the errors for both the envelope
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functions and the length-scale functions using these two approaches. As we can see,
the errors produced by the method that uses the local median are two orders of
magnitude smaller than those produced by the method that uses the local mean.
This is another strong evidence that the local median method gives a superior
performance than the local mean method.

4. LSSF Denoising and Decomposition

In this section, we introduce a least-square-spline-fit (LSSF) method to denoise or
decompose a noisy signal. We compare the performance of the method with EEMD
(or EMD for clean signal) for the data that we have tested in the previous sections.
The LSSF denoising method is a variant of the methods that we described earlier,
with only small modifications near the boundaries. Below we will describe the LSSF
denoising method in some detail.

4.1. LSSF denoising

To illustrate the main idea of the LSSF denoising method, we assume that a clean
signal f(x) is polluted by a Gaussian white noise with mean zero and variance
σ2, i.e.

f̃ = f + N(0, σ2). (38)

Since the Gaussian noise has very high frequency oscillations, we would like to first
denoise the signal. The main idea of the LSSF denoising is similar to that of finding
the local median in Sec. 2.1.2. We treat f(x) as the median function of a noisy
signal, f̃(x), and apply the LSSF method to denoise the signal.

In comparison, the EEMD method first adds a white noise to a signal, applies
EMD to each realization, and average over all ensembles. Specifically, EEMD gener-
ate M samples of noisy signals by adding a Gaussian noise N(0, σ̃2) into the original
signal with a given noise level σ̃. Then one applies EMD to each sample, and aver-
age these M sets of generated IMFs. The median generated by such procedure is
treated as the denoised signal f(x).

In the LSSF denoising method, we divide the domain [a, b] into a finite number
of sub-intervals, i.e.

a = x0 < x1 < · · · < xm = b.

The size of these sub-intervals is determined by the smoothness of f(x). Further-
more, we denote K as a class of functions, whose elements g(x) satisfy the following
conditions:

(1) g(x) ∈ C2(a, b), i.e. it is second order continuously differentiable in the domain
[a, b].

(2) g(x) is a third order polynomial in each interval [xk−1, xk], for k = 1, . . . , m.
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Then the LSSF method is to approximate f(x) by f̄(x):

f̄(x) = {g(x) ∈ K | min ‖f̃(x) − g(x)‖2}. (39)

Note that the dimension of the class K is m+3 and one possible basis decomposition
of K is to choose the bases as

1, x, x2,

({
(x − xk)3, for x > xk;

0, for x < xk,

)
k=0,1,...,m−1

. (40)

Then we use all data points to approximate the basis coefficients of f̄0(x) by mini-
mizing the energy norm (39).

4.2. The end-point effect of the LSSF decomposition

In this section, we will address an important issue, i.e. the end-point effect in
our LSSF decomposition. Since the frequency of a Gaussian noise is quite high,
thus the distance between the boundary of a signal and its nearest extremum is
very small. Hence the chance of an over-shoot in our piecewise cubic polynomial
approximation near boundaries is small. However, in the LSSF decomposition of
IMFs that have median to low frequencies, the chance of over-shoot is large due to
the large increasing distance between the boundary and it nearest extremum.

In order to alleviate this difficulty, we set up some reasonable criteria in our
polynomial approximation of the IMFs near the end-point of a signal. Here we
adopt the idea of linear extensions which has been introduced in Ref. 10. Denote x1

and x2 the first and second maximum points, and x0 the left boundary point. Then
the boundary value of the upper envelope function f̄(x0) is the linear extension of
the values of x1 and x2, i.e.

f̄(x0) = f(x1) +
f(x2) − f(x1)

x2 − x1
(x0 − x1).

The same applies to the lower envelope function f(x0), which comes from the
extension of the first and second minima. The way we treat the right end-point of
f̄ and f are analogous. Then the spline coefficients of both a0(x) and a1(x) are
specified by the least square method using the identities

f̄(x) = a0(x) + a1(x);

f(x) = a0(x) − a1(x).

4.3. Denoising simulations

In the simulations via EEMD, we choose m = 800 samples of random realizations.
The numerical output of EEMD is a matrix of several columns. The first column
is the original signal, the last one is the median and the rest are different IMFs.
As the noise mainly stays in the high frequency IMFs, we compare the sum of
the low frequency IMFs (i.e. EEMD denoised signal) to the actually one, f(x).
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However, it is not clear which column is the best cut-off column that separates
the low frequency IMFs from the high frequency IMFs. In our simulations, we test
different cut-off columns and choose the one whose low-frequency sum is closest to
the true median, f(x).

In the LSSF method, we need to specify the spline sub-intervals. In general, the
sub-intervals are determined by the smoothness of the original noise free signal,
f(x). In the algorithm, we define s periods of noisy signals as a new spline interval.
Here one period is defined as the distance from one maximum (or minimum) to
the next maximum (or minimum). Typically, one needs to use several periods to
average out the Gaussian noise. The specific number of periods would depend on
the noise level. In our simulations, we determine the optimal number of periods
empirically by testing different values of s and choosing the one that gives the most
stable median f(x).

In addition, we use the Newton–Raphson-based method to decompose different
IMFs and compare the recovered functions with those obtained by EMD.

We choose the periodic signal we used before in Eqs. (19)–(21)

θ(x) = sin(2πx) + 0.4 cos(4πx) + 20πx + 2;
a0(x) = sin(2πx) + 0.5 cos(4πx) + 0.2 cos(6πx);
a1(x) = 2 + cos(2πx) + 0.5 cos(4πx) + 0.3 sin(6πx);
f̃(x) = a0(x) + a1(x) cos θ(x) + N(0, σ2),

(41)

over the domain [0, 1) with grid size h = 1/1024. In our denoising via LSSF, we
choose the best period number s = 4 for noise-level 0.1 and s = 5 for noise-level
0.2. For the comparison, we choose the sum of fourth, fifth and sixth columns of
EEMD matrix as the IMF f1(x) = a1 cos θ1(x) for noise-level σ = 0.1, and the sum
of fifth and sixth columns as the IMF for σ = 0.2. The sum of the columns after
the sixth one is treated as the median function a0(x).

Note that although the signal we used is periodic, we do not use this special
property when we denoise it via LSSF. They are treated as a general time signal.

From the simulations, we can see the errors of the denoised signals, via either
EEMD or LSSF, are at the same level. One advantage of LSSF over EEMD is
the computational cost. In our simulations, EEMD takes a long time to generate
800 samples of white noise in the averaging step with 1024 discrete points. If one
increases the size of the time sequence or increases the number of samples, the com-
putational cost would increase linearly for EEMD. In comparison, the LSSF denois-
ing method runs quite fast and effectively without generating any additional noise.

4.4. Simulations of LSSF decomposition

In this section, we compare the multiscale-signal decompositions of two methods,
LSSF and EMD. The data we use in the simulations are the same as those given in
Eqs. (32)–(36).
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The key of LSSF is to derive the spline coefficients of the local median a0(x)
and high-frequency envelope a1(x) by the information of local extrema. Because
of the scale-separating property, the envelope function a1(x) is smoother than the
data before decomposition, and hence we define a larger period number s = 5
for the spline intervals. Meanwhile, the local median a0(x) may still consist of
several IMFs and the median function. In order to preserve the high frequency
information in a0(x), we choose the period number to be s = 1. The errors of
the recovered IMFs and median function are illustrated in Fig. 11, in which we
compare LSSF with EMD. As we can see, the errors produced by the two methods
are comparable with the error curves of EMD stay slightly below those of the LSSF
method.

5. Conclusion

In this paper, we have introduced a variant of the EMD method to decompose a
sparse periodic signal and a multiscale signal into its IMFs. In principle, one can
separate the high frequency IMF by using either the local median method or the
local mean method. One of the main observations of this paper is that the local
median method gives a more superior performance than the local mean method.
The difference in their performance is especially pronounced when the instantaneous
frequency is not smoother than the signal itself. We provided some preliminary
analytical and numerical evidence to support this.

Another important observation of this paper is that the IMFs of the given data
need to satisfy certain scale-separation property. This scale-separation property is
related to the local orthogonality of the IMFs. This condition is required for the sake
of both accuracy and the physical uniqueness. Violation of such scale-separation
property would require additional selection criteria to define a unique and accurate
EMD decomposition. This is an important question, and is beyond the scope of
this paper. This issue will be addressed in a systematic way in an upcoming paper9

by using a Total-Variation-Diminishing (TVD) based optimization approach and
borrowing some ideas from compressed sensing.2–5

For the class of periodic signals with a finite number of Fourier modes in both
the envelopes and the instantaneous frequencies, we introduced a Newton–Raphson-
based EMD method. A less accurate but more robust method was proposed to
produce a good initial guess for the Newton–Raphson iterations. The Newton–
Raphson-based EMD method has the advantage of converging rapidly and produc-
ing a highly accurate recovery of the IMFs (often up to the machine precision) for
data satisfying our scale-separation assumption. We also introduced a method that
uses the second-derivative of the signal (Sec. 2.5) to determine the instantaneous
frequencies in the EMD decomposition instead of using the Hilbert transform. This
method has the advantage of not requiring a good approximation of the envelope
function. This method is especially useful when it is difficult to approximate the
envelope function accurately (e.g. it is nearly singular or has small amplitude).
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For multiscale data, we developed an ODE-based EMD method to determine
the length-scale function in the EMD decomposition without the prior knowledge
of the envelope. As for the periodic data, this ODE-based EMD method works very
effectively when the envelope is nearly singular or has small amplitude. Numerical
simulations confirm the superior performance of the proposed method.

For noisy signals, we proposed an LSSF-based denoising algorithm. The com-
putational cost of the LSSF denoising algorithm is significantly smaller than that
of EEMD, especially when the data size is huge. Our preliminary numerical experi-
ments indicate that for the special class of multiscale data considered here, the two
methods give a comparable performance.

There remain some limitations in the methods proposed in this paper. Right
now, we use a Fourier interpolation or a cubic spline to interpolate the envelope
function. In the future, we will explore other alternative approaches to better inter-
polate the envelope in the whole domain. Another open question is the recovery
of the instantaneous frequency for data with small amplitude in their high fre-
quency oscillations. The second-derivative method or the ODE-based method we
introduced here can alleviate this difficulty to some extent. However, this problem
remains when the scale-separation property is not satisfied. We still need to develop
a robust randomized sampling technique to extract data with noise or incomplete
data. This is a topic of our future research.
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