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In this paper, we introduce a new adaptive data analysis method to study trend and
instantaneous frequency of nonlinear and nonstationary data. This method is inspired by
the Empirical Mode Decomposition method (EMD) and the recently developed compressed
(compressive) sensing theory. The main idea is to look for the sparsest representation of
multiscale data within the largest possible dictionary consisting of intrinsic mode functions
of the form {a(t) cos(θ(t))}, where a ∈ V (θ), V (θ) consists of the functions smoother than
cos(θ(t)) and θ ′ � 0. This problem can be formulated as a nonlinear l0 optimization
problem. In order to solve this optimization problem, we propose a nonlinear matching
pursuit method by generalizing the classical matching pursuit for the l0 optimization
problem. One important advantage of this nonlinear matching pursuit method is it can
be implemented very efficiently and is very stable to noise. Further, we provide an
error analysis of our nonlinear matching pursuit method under certain scale separation
assumptions. Extensive numerical examples will be given to demonstrate the robustness
of our method and comparison will be made with the state-of-the-art methods. We also
apply our method to study data without scale separation, and data with incomplete or
under-sampled data.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. A brief review of time–frequency analysis and instantaneous frequency

Developing a truly adaptive data analysis method is important for our understanding of many natural phenomena. Tra-
ditional data analysis methods, such as the Fourier transform, use pre-determined basis. They provide an effective tool to
process linear and stationary data. However, there are still some limitations in applying these methods to analyze nonlinear
and nonstationary data. Time–frequency analysis has been developed to overcome the limitations of the traditional tech-
niques by representing a signal with a joint function of both time and frequency. The recent advances of wavelet analysis
have opened a new path for time–frequency analysis. A significant breakthrough of wavelet analysis is the use of multi-
scales to characterize signals. This technique has led to the development of several wavelet-based time–frequency analysis
techniques [19,8,23].

Another important approach in the time–frequency analysis is to study instantaneous frequency of a signal. Some of the
pioneering work in this area was due to Van der Pol [36] and Gabor [14], who introduced the so-called Analytic Signal (AS)
method that uses the Hilbert transform to determine instantaneous frequency of a signal. This AS method is one of the most
popular ways to define instantaneous frequency. Until very recently, this method works mostly for monocomponent signals
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in which the number of zero-crossings is equal to the number of local extrema [1]. There were other attempts to define
instantaneous frequency such as the zero-crossing method [32,33,24] and the Wigner–Ville distribution method [1,21,30,11,
20,28]. However most of these methods are rather restrictive. The zero-crossing method cannot apply to the signal with
multiple components and is sensitive to noise. The methods based on the Wigner–Ville distribution suffer from the basic
limitation introduced by the Wigner–Ville distribution, i.e. the interference between different components. These methods
extract the instantaneous frequency only but do not give the corresponding components directly. Some post processing is
required if one would like to extract these components.

More substantial progress has been made only recently with the introduction of the EMD method [18]. The EMD method
provides an effective tool to decompose a signal into a collection of Intrinsic Mode Functions (IMFs) that allow well-behaved
Hilbert transforms for computation of physically meaningful time–frequency representation. We remark that the Hilbert
spectral representation based on the wavelet projection has been carried in [27].

There has been some recent progress in developing a mathematical framework for an EMD like method using syn-
chrosqueezed wavelet transforms by Daubechies, Lu and Wu [9]. This seems to be a promising approach. We have performed
some preliminary numerical experiments to compare the synchrosqueezed wavelet approach with our method. We find that
the two methods give complementary results. The synchrosqueezed wavelet method does not extract IMFs directly. Some
post processing is required to obtain IMFs.

1.2. Adaptive time–frequency analysis via a nonlinear optimization

Inspired by the EMD method and the recently developed compressed (compressive) sensing theory, we propose a data-
driven time–frequency analysis method. There are two important ingredients of this method. The first one is that the basis
that is used to decompose the data is derived from the data rather than determined a priori. This explains the name “data-
driven” in our method. The second ingredient is to look for the sparsest decomposition of the signal among the largest
possible dictionary consisting of intrinsic mode functions. The adoption of this data-driven basis and the search for the
sparsest decomposition over this highly redundant basis make our time–frequency analysis method fully adaptive to the
signal. As we are going to demonstrate later, our method can reveal some hidden physical information of the signal, such
as trend and instantaneous frequency.

Our data-driven time–frequency analysis method is motivated by the observation that many multiscale data have a sparse
representation over certain multiscale basis. This basis is unknown a priori and is adapted to the data. Finding such nonlinear
multiscale basis is an essential ingredient of our method. In some sense, our problem is more difficult than the compressed
(compressive) sensing problem in which the basis is assumed to be known a priori. In our method, we reformulate the
problem as a nonlinear optimization and find the basis and the decomposition simultaneously by looking for the sparsest
decomposition among all the possible decompositions.

Our nonlinear optimization problem is formulated as follows:

Minimize
(ak)1�k�M , (θk)1�k�M

M,

subject to:

{
f = ∑M

k=1 ak cos θk,

ak cos θk ∈D,
(1)

where D is the dictionary we use to decompose the signal which will be defined later in the paper. When the signal is
polluted by noise, the equality in the above constraint is relaxed to be an inequality depending on the noise level.

This optimization problem can be viewed as a nonlinear version of the l0 minimization problem and is known to be very
challenging to solve. Inspired by the compressed (compressive) sensing theory [13,2,5,10], we propose an l1-regularized
nonlinear matching pursuit method to solve this nonlinear optimization problem.

1.3. Nonlinear matching pursuit

Our nonlinear matching pursuit follows an idea similar to that of matching pursuit [22]. In each step, we solve an l1

regularized nonlinear least square problem to get the decomposition:

min
a,θ

γ ‖â‖l1 + ‖ f − a cos θ‖2
l2 ,

subject to: a cos θ ∈D,

where γ > 0 is a regularization parameter and â is the representation of a in an overcomplete Fourier basis which will be
detailed later. Denote by r the residual after subtracting a cos θ from f , i.e. r = f − a cos θ . We can then treat r as a new
signal to extract the remaining components.

There are two important advantages of this nonlinear matching pursuit approach. The first one is that this method is
very stable to noise perturbation. The second one is that it can be implemented very efficiently. For periodic data, the
resulting method can be solved approximately by the Fast Fourier Transform, and the complexity of our algorithm is of
order O (N log N) where N is the number of data sample points that we use to represent the signal. The low computational
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cost and the robustness to noise perturbation make this method very effective in many applications. Moreover, for data that
satisfy certain scale separation conditions, we prove that our method recovers the IMFs and their instantaneous frequencies
accurately.

We perform extensive numerical experiments to test the robustness and the accuracy of our data-driven time–frequency
analysis method for both synthetic data and some real data. Our results show that the nonlinear matching pursuit can
indeed decompose a multiscale signal into a sparse collection of intrinsic mode functions. We also compare our method with
the original EMD method. For data without noise, we find that our method gives results comparable to those obtained by
the EMD method. Moreover, for noisy data, our method seems to provide better estimation of the instantaneous frequency
and IMFs than EMD and recently developed EEMD method [37].

1.4. End effect and under-sampled data

A common difficulty in many data analysis methods is the relatively large error produced near the boundary of the data
set. For the EMD method, this source of error is referred to as the “end effect”, which is primarily caused by the use of
cubic spline interpolation in constructing the envelopes and the median of the signal [37]. Our data-driven time–frequency
analysis method seems to be less sensitive to this end effect, especially when the data satisfy certain scale separation
property.

We also demonstrate that our data-driven time–frequency analysis method can be applied to recover the original signal
with missing data in certain interval. The recovered signal as well as their instantaneous frequency seems to have reasonably
good accuracy. We also apply our method to decompose under-sampled data. The result is quite encouraging even if the
under-sampled data are polluted by noise.

1.5. Organization of this paper

The remaining of the paper is organized as follows. In Section 2, we give a brief review of some existing data analysis
methods such as matching pursuit, basis pursuit and the EMD method. We also review an earlier version of our adaptive
data analysis method based on the T V 3 norm. We introduce our data-driven time–frequency analysis method in Section 3.
A simplified version of our method is introduced for periodic data. In Section 4, we present some numerical experiments to
demonstrate the performance of our method. We also study incomplete or under-sampled data. In Section 5, we generalize
our method to analyze data with poor scale separation property. We present some error analysis of our method in Section 6.
Some conclusions are made in Section 7.

2. Brief review of the existing sparse decomposition methods

A considerable focus of activities in recent signal processing literature has been the development of the sparse signal rep-
resentations over a redundant dictionary. Among these methods, matching pursuit [22] and basis pursuit [6] have attracted
a lot of attention in recent years due to the development of compressed (compressive) sensing. All these methods consist
of two parts: a dictionary to decompose the signal and a decomposition method to select the sparsest decomposition.

2.1. Dictionaries

A dictionary is a collection of parameterized waveforms D = {φγ }γ ∈Γ . Many dictionaries have been proposed in the
literature. Here we review a few of them that have been used widely.

2.1.1. A Fourier dictionary
A Fourier dictionary is a collection of sinusoidal waveforms with γ = (ω,ν), where ω ∈ [0,2π ] is an angular frequency

variable and ν ∈ {0,1} indicates the phase type: sine or cosine. More specifically, the waveforms consist of the following
two families,

φω,0(t) = cos(ωt), φω,1(t) = sin(ωt), ∀t ∈ R. (2)

For a standard Fourier dictionary, ω runs through the set of all cosines with Fourier frequencies ωk = 2kπ/n, k =
0,1, . . . ,n/2, and all sines with Fourier frequencies ωk = 2kπ/n, k = 1, . . . ,n/2−1, where n is the number of sample points.
We can also obtain an overcomplete Fourier dictionary by sampling the frequencies more finely. Let l > 1. We may choose
ωk = 2kπ/(ln), k = 0,1, . . . , ln/2 for cosines and ωk = 2kπ/(ln), k = 1, . . . , ln/2 − 1 for sines. This is an l-fold overcomplete
system. In our algorithm to decompose non-periodic data, we will use this kind of overcomplete Fourier dictionary.

2.1.2. A wavelet dictionary
A wavelet dictionary is a collection of translations and dilations of the basic mother wavelet ψ , together with translations

of the scaling function ϕ defined below:
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φa,b,0(t) = 1√
a
ψ

(
t − b

a

)
, φa,b,1(t) = 1√

a
ϕ

(
t − b

a

)
, ∀t ∈ R. (3)

In this dictionary, the index γ = (a,b, ν), where a ∈ (0,∞) is a scale variable, b ∈ Z indicates location and ν ∈ {0,1}
indicates gender. For a standard wavelet dictionary, we let a,b run through the discrete collection of mother wavelets
with dyadic scales a j = 2 j/n, j = j0, . . . , log2(n) − 1, and locations that are integer multiples of the scale b j,k = ka j , k =
0, . . . ,2 j − 1, and the collection of scaling functions at the coarse scale j0. This dictionary consists of n waveforms, which
form an orthonormal basis. As in the Fourier dictionary, an overcomplete wavelet dictionary can be obtained by sampling
the locations more finely.

2.1.3. A time–frequency dictionary
A typical time–frequency dictionary is the Gabor dictionary due to Gabor [14]. In this dictionary, we take γ = (ω, τ , θ, δ),

where ω ∈ [0,π) is frequency, τ is a location, θ is a phase, and δ is the duration. We define the waveform as follows:

φγ (t) = exp

(
− (t − τ )2

δ2

)
cos

(
ω(t − τ ) + θ

)
, ∀t ∈ R. (4)

Such waveforms consist of frequencies near ω and essentially vanish far away from τ .

2.1.4. An EMD dictionary
We can also define a dictionary via the EMD method. In the EMD method [18], the dictionary is the collection of all

Intrinsic Mode Functions (IMFs), which are functions defined descriptively by enforcing the following two conditions:

1. The number of the extrema and the number of the zero crossings of the function must be equal or differ at most by
one;

2. At any point of the function, the average of the upper envelope and the lower envelope defined by the local extrema
should be zero (symmetric with respect to zero).

In some sense, this dictionary is the largest one among the dictionaries listed here. Roughly speaking, any oscillatory
sinusoidal wave multiplied by a smooth envelope function satisfies the definition of IMFs. In fact, many commonly used
dictionaries are included in this dictionary. For example, all the elements of a Fourier dictionary defined in (2) (standard
or overcomplete) are IMFs. The elements in the Gabor dictionary given above, which is generated by applying a Gaussian
envelope on a sinusoidal wave, are IMFs. Some wavelets, such as the Morlet wavelet, also satisfy the conditions of IMFs.

Inspired by the EMD method, we will use a variant of the EMD dictionary to construct a sparse decomposition of a signal
via nonlinear optimization.

2.2. Decomposition methods

In this subsection, we review a few decomposition methods that can be used to give a sparse decomposition of a signal
by exploiting the intrinsic sparsity structure of the signal. In recent years, there have been a lot of research activities in
looking for the sparest representation of a signal over a redundant dictionary [22,6,10,4,5], i.e. looking for a decomposition
of a signal f over a given dictionary D = {φγ }γ ∈Γ as

f =
M∑

k=1

αγk φγk + RM , (5)

with the smallest M , where RM is the residual. Whether or not a signal can be decomposed into a sparse decomposition
depends on the choice of the dictionary that we use to decompose the signal. In general, a more redundant dictionary tends
to give better adaptivity, which implies better sparsity of the decomposition. However, if the dictionary is not a basis, the
decomposition is not unique. We need to give a criterion to select the “best” decomposition among all the possible choices.

2.2.1. Matching pursuit
In [22], Mallat and Zhang introduced a general decomposition method called matching pursuit that exploits the sparsity

of a signal. Starting from an initial approximation s0 = 0 and a residual r0 = s, matching pursuit builds up a sequence of
sparse approximations step by step. At stage k, the method identifies an atom that best matches the residual and then adds
it to the current approximation, so that sk = sk−1 + αkφγ k , where αk = 〈rk−1, φγ k〉 and rk = s − sk . After m steps, one has a
representation of the form (5), with residual Rm = rm . A similar algorithm was proposed for Gabor dictionaries by S. Qian
and D. Chen [31].

An intrinsic feature of this algorithm is that when stopped after a few steps, it yields an approximate sparse repre-
sentation using only a few atoms. When the dictionary is orthogonal, the method works perfectly. If the dictionary is not
orthogonal, the situation is less clear. To improve the performance of matching pursuit, many other algorithms are pro-
posed, such as the Orthogonal Matching Pursuit (OMP) which is analyzed by J. Tropp and A. Gilbert [35], compressive
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sampling matching pursuit by D. Needell and J. Tropp [25], Regularized Orthogonal Matching Pursuit (ROMP) by D. Needell
and R. Vershynin [26] etc.

2.2.2. Basis pursuit
Another important class of decomposition methods is basis pursuit, which was introduced by S. Chen, D. Donoho and

M. Saunders [6]. First, we reformulate the decomposition problem in the following way. Suppose we have a discrete dictio-
nary of p waveforms and we collect all these waveforms as columns of an n by p matrix �. The decomposition problem
(5) can be reformulated as:

s = �α, (6)

where α = (αγ ) is the vector of coefficients in (5).
The basic idea of basis pursuit is to find a sparse representation of the signal whose coefficients have a minimal l1 norm,

i.e. the decomposition is obtained by solving the problem

min‖α‖l1 , subject to �α = s. (7)

Recently, basis pursuit has received a lot of attention. An important property of basis pursuit is that it can recover the
exact solution of the original l0 minimization problem under some sparsity condition on the data [4,10]. There has been
extensive research to obtain a sparse representation by basis pursuit in a variety of applications. An essential component
of basis pursuit is to solve the l1 minimization problem. The computational cost of solving this l1 minimization is more
expensive than that of the least-square problem in matching pursuit, although several powerful algorithms have been in-
troduced to speed up the l1 minimization problem, such as the split Bregman method [15], proximal algorithms [7,3] and
so on. We remark that the split Bregman method is also known as the augmented Lagrangian technique and can be derived
from Douglas–Rachford algorithm [34] or PPXA+ [29].

2.2.3. The EMD decomposition via a sifting process
The EMD method decomposes a signal to its IMFs sequentially. The basic idea behind this approach is the removal of

the local median from a signal by using a sifting process. Specifically, for a given signal, f (t), one tries to decompose it as a
sum of the local median m(t) and an IMF. A cubic spline polynomial is used to interpolate all the local maxima (minima) to
obtain an upper (lower) envelope. By averaging the upper and lower envelopes, one obtains an approximate median for m(t).
One then decides whether or not to accept the obtained m(t) as our local median depending on whether f (t) − m(t) gives
an acceptable IMF that satisfies the two conditions that are specified in the definition of an EMD dictionary. If f (t) − m(t)
does not satisfy these conditions, one can treat f (t) − m(t) as a new signal and construct a new candidate for the IMF
by using the same procedure described above. This sifting process continues until we obtain a satisfactory IMF, which we
denote as fn(t). Now we can treat f (t) − fn(t) as a new signal, and apply the same procedure to generate the second IMF,
fn−1(t). This procedure continues until f0(t) is either monotone or contains at most one extremum. For more details of the
sifting process, we refer to [18].

2.2.4. Decomposition based on a nonlinear T V 3 minimization
Inspired by the EMD method, we proposed a decomposition method based on a nonlinear TV3 minimization in our previ-

ous paper [16]. Here TV3 is the total variation of the third order derivative of a function, defined as TV3( f ) = ∫ b
a | f (4)(t)|dt .

We use a TV3 norm because the l1 norm or the total variation norm is not strong enough to enforce the regularity of the
median or the envelope.

In our approach, we decompose a signal f (t) into its local median a0 and an IMF a1 cos θ(t) by solving the following
nonlinear optimization problem:

(P ) min
a0,a1,θ

TV3(a0) + TV3(a1),

subject to:

{
a0 + a1 cos θ = f ,
θ ′(t) � 0, ∀t ∈ R.

(8)

To solve this nonlinear optimization problem, we proposed the following Newton type of iterative method:

Initialization: θ0 = θ0.
Main iteration:
Step 1: Update an

0, an
1, bn

1 by solving the following linear optimization problem:(
an

0,an
1,bn

1

) ∈ Argmin
a0,a1,b1

TV3(an
0

) + TV3(an
1

) + TV3(bn
1

)
,

subject to: an
0 + an

1 cos θn−1 + bn
1 sin θn−1 = f . (9)
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Step 2: Update the phase function θ :

θn = θn−1 − μarctan

(
bn

1

an
1

)
, (10)

where μ ∈ [0,1] is chosen to enforce that θn is an increasing function:

μ = max

{
α ∈ [0,1]: d

dt

(
θn−1

k − α arctan

(
bn

1

an
1

))
� 0

}
. (11)

Step 3: If ‖θn − θn−1‖2 � ε0, stop. Otherwise, go to Step 1.

In [16], we performed a number of numerical experiments and compared the results with those obtained by the EMD
(or EEMD) method. Our results show that this method shares many important properties with the original EMD method.
Moreover, its performance does not depend on numerical parameters such as the number of sifting or the stop criterion,
which seem to have a major effect on the original EMD method. In many cases, this algorithm converges to the right
decomposition in a few steps. However, we have not been able to prove that its convergence is guaranteed.

There are two limitations of this approach. The first one is that the computational cost to solve the TV3 minimization
problem is relatively high, even if we use the split Bregman method of Goldstein and Osher [15]. The second one is that
this method is more sensitive to noise perturbation, although a nonlinear filter was introduced to alleviate this difficulty. In
comparison, the nonlinear matching pursuit method we introduce in this paper is very stable to noise perturbation and has
a relatively low computational cost.

3. A sparse time–frequency decomposition method based on nonlinear matching pursuit

Our data-driven time–frequency analysis method is based on finding the sparsest decomposition of a signal by solv-
ing a nonlinear optimization problem. First, we need to construct a large dictionary that can be used to obtain a sparse
decomposition of the signal. In principle, the larger the dictionary is, the more adaptive (or sparser) the decomposition is.

3.1. Dictionary

In our method, the dictionary is chosen to be:

D = {
a cos θ : a, θ ′ is smoother than cos θ, ∀t ∈ R, θ ′(t) � 0

}
. (12)

Let V (θ, λ) be the collection of all the functions that are smoother than cos θ(t). In general, it is most effective to construct
V (θ, λ) as an overcomplete Fourier basis given below:

V (θ, λ) = span

{
1,

(
cos

(
kθ

2Lθ

))
1�k�2λLθ

,

(
sin

(
kθ

2Lθ

))
1�k�2λLθ

}
, (13)

where Lθ = � θ(1)−θ(0)
2π �, �μ� is the largest integer less than μ, and λ � 1/2 is a parameter to control the smoothness of

V (θ, λ). In our computations, we typically choose λ = 1/2. The dictionary D can be written as

D = {
a cos θ : a ∈ V (θ, λ), θ ′ ∈ V (θ, λ), and θ ′(t) � 0, ∀t ∈ R

}
. (14)

In some sense, the dictionary D defined above can be considered as a collection of IMFs. This property makes our method
as adaptive as EMD. We also call an element of D as an IMF. Since the dictionary D is highly redundant, the decomposition
over this dictionary is not unique. We need a criterion to select the “best” one among all possible decompositions. We
assume that the data we consider have an intrinsic sparse structure in the time–frequency plane in some nonlinear and
nonstationary basis. However, we do not know this basis a priori and we need to derive (or learn) this basis from the data.
Based on this consideration, we adopt sparsity as our criterion to choose the best decomposition. This criterion yields the
following nonlinear optimization problem:

P : Minimize
(ak)1�k�M ,(θk)1�k�M

M,

subject to:

{
f = ∑M

k=1 ak cos θk,

ak cos θk ∈D, k = 1, . . . , M,
(15)

Pδ : Minimize
(ak)1�k�M ,(θk)1�k�M

M,

subject to:

{‖ f − ∑M
k=1 ak cos θk‖l2 � δ,

ak cos θk ∈D, k = 1, . . . , M,
(16)

if the signal has noise with noise level δ.
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After this optimization problem is solved, we get a very clear time–frequency representation ωk(t) = θ ′
k(t) with the

amplitude ak(t).

3.2. Nonlinear matching pursuit

The above optimization problem can be seen as a nonlinear l0 minimization problem. Thanks to the recent developments
of compressed (compressive) sensing, two types of methods have been developed to study this problem. Specifically, match-
ing pursuit has been shown to be a powerful method to solve the l0 minimization problem while basis pursuit has provided
an effective alternative by relaxing the original l0 minimization problem to a convex l1 minimization problem. Since the
dictionary we adopt here has infinitely many elements, the l1 norm of the coefficient vector consisting of infinitely many
elements may not be well defined. Moreover, it is impossible to evaluate the l1 norm of a vector with infinitely many ele-
ments in real computations. Therefore, it is not so straightforward to generalize basis pursuit directly. On the other hand,
the idea of matching pursuit can be generalized.

Applying the idea of matching pursuit to our problem directly, we need to solve a nonlinear least square problem to get
the decomposition:

min
a,θ

‖ f − a cos θ‖2
l2 ,

subject to: a cos θ ∈D.

For non-periodic data, since we use the overcomplete Fourier basis to construct V (θ, λ), the above nonlinear least square
problem may be ill-conditioned or even underdetermined (the number of sample points is less than the number of bases
of V (θ, λ)). Moreover, in this case, the simple least square method would introduce severe interference among different
IMFs. In order to stabilize the above optimization problem and remove the interference, we add an l1 term to regularize
the nonlinear least square problem. This would give us the following algorithm based on the l1 regularized nonlinear least
square:

• r0 = f , k = 1.

Step 1: Solve the following l1-regularized nonlinear least-square problem (P2):

P2: (ak, θk) ∈ Argmin
a,θ

γ ‖â‖l1 + ‖rk−1 − a cos θ‖2
l2 ,

subject to: a ∈ V (θ, λ), θ ′ � 0, ∀t ∈ R, (17)

where γ > 0 is a regularization parameter and â is the representation of a in the overcomplete Fourier basis previ-
ously detailed in (13).

Step 2: Update the residual

rk = f −
k∑

j=1

a j cos θ j. (18)

Step 3: If ‖rk‖l2 < ε0, stop. Otherwise, set k = k + 1 and go to Step 1.

If signals are periodic, we can use the standard Fourier basis to construct V (θ, λ) instead of the overcomplete Fourier
basis. The l1 regularization term is not needed (i.e. we can set γ = 0) since the standard Fourier basis are orthogonal to
each other. In the next section, we will use this property to further simplify above algorithm for periodic signals.

3.2.1. An l1 regularized nonlinear least square solver
One of the main difficulties in solving our l1 regularized nonlinear least square problem is that the objective functional

is nonconvex since the basis is not known a priori. We need to find the basis and the decomposition simultaneously. In the
following, we propose a Gauss–Newton type method to solve the l1 regularized nonlinear least square problem. To alleviate
the difficulty of generating a good initial guess for our iterative method, we gradually enlarge the space V (θ,η) to update θ ′
by increasing η during the iterations. Note that V (θ,η = 0) for the first iteration consists only constants while V (θ,η = λ)

during the final iteration is the space in which our nonlinear optimization is defined. Throughout our computations, we
choose λ = 1/2 and the increment �η = λ/20.

• θ0
k = θ0, η = 0.

Step 1: Solve the following l1 regularized least-square problem:
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P2,l2 :
(
an+1

k ,bn+1
k

) ∈ Argmin
a,b

γ
(‖â‖l1 + ‖b̂‖l1

) + ∥∥rk−1 − a cos θn
k − b sin θn

k

∥∥2
l2 ,

subject to: a ∈ V
(
θn

k , λ
)
, b ∈ V

(
θn

k , λ
)
,

where â, b̂ are the representations of a,b in the V (θn
k , λ) space.

Step 2: Update θn
k :

�θ ′ = P V (θn;η)

(
d

dt

(
arctan

(
bn+1

k

an+1
k

)))
, �θ =

t∫
0

�θ ′(s)ds, θn+1
k = θn

k − β�θ, (19)

where β ∈ [0,1] is chosen to make sure that θn+1
k is monotonically increasing:

β = max

{
α ∈ [0,1]: d

dt

(
θn

k − α�θ
)
� 0

}
, (20)

where P V (θn
k ;η) is the projection operator to the space V (θn

k ;η) and V (θn
k ;η) is the space defined in (13).

Step 3: If ‖θn+1
k − θn

k ‖2 > ε0, set n = n + 1 and go to Step 1. Otherwise, go to Step 4.
Step 4: If η � λ, stop. Otherwise, set η = η + �η and go to Step 1. λ is the parameter we choose in (13).

3.2.2. Some implementation details
In the first step of the above algorithm, we solve an l1 regularized least square problem. The l1 regularization tends to

stabilize the least square problem using an overcomplete Fourier basis. It also favors a sparse decomposition of the data.
In the second step to update the phase function, the time derivative is calculated in the following way:

d

dt

(
arctan

(
bn+1

k

an+1
k

))
= an+1

k (bn+1
k )′ − bn+1

k (an+1
k )′

(an+1
k )2 + (bn+1

k )2
, (21)

where the derivatives are approximated by a central difference.
In the above formula (21), when we calculate the change of the instantaneous frequency at the points where the de-

nominator (an+1
k )2 + (bn+1

k )2 is small, the error may be amplified and our algorithm may become unstable. To overcome
this difficulty, we modify our computation in the degenerate region where the denominator is smaller than certain pre-
determined threshold α. More precisely, we interpolate the values of �θ from the non-degenerate region to obtain the
value of �θ in the degenerate region. In our computations, we set the threshold α to be 0.1.

It is known that a Gauss–Newton type iteration is sensitive to the initial guess. In general, it is very hard to find a
good initial guess when the signal is polluted by noise. In order to abate the dependence on the initial guess in the above
iteration, we gradually increase the value of η to improve the approximation to the phase function so that it converges
to the correct value. When η is small, �θ ′ is confined to a small space. In this small space, the objective functional has
fewer extrema. The iteration may find an good approximation for �θ ′ . By gradually increasing η, we enlarge the space for
�θ ′ which allows for the small scale structures of �θ ′ to develop gradually during the iterations. In our computations, this
process converges even with a very rough initial guess.

The initial guess of θ can be also generated by other time–frequency analysis methods, such as the synchrosqueezed
wavelet transforms [9]. In the following numerical examples, we obtain our initial guess using a simple approach based on
the Fourier transform. More precisely, by estimating the wavenumber by which the high frequency components are centered
around, we can obtain a reasonably good initial guess for θ . The initial guess for θ obtained in this way is a linear function.
As we will see in the following numerical examples, even with these relatively rough initial guesses for θ , our algorithm
still converges to the right answer with accuracy determined by the noise level.

3.3. A fast algorithm for periodic data

In the iterative algorithm given in previous section, we need to solve an l1 regularized least square problem in each step.
This is the most expensive part of the algorithm especially when the number of the data points is large. In this subsection,
we introduce a method based on the Fast Fourier Transform (FFT) for periodic data.

One big advantage of our algorithm for periodic data is that we can use a standard Fourier basis to construct the V (θ, λ)

space in the following way instead of the overcomplete Fourier basis given in (13).

V p(θ, λ) = span

{
1,

(
cos

(
kθ

Lθ

))
1�k�λLθ

,

(
sin

(
kθ

Lθ

))
1�k�λLθ

}
, (22)

where λ � 1/2 is a parameter to control the smoothness of functions in V p(θ, λ) and Lθ = (θ(T ) − θ(0))/2π is a positive
integer. Here we use a subscript p to denote this space is for the periodic signal.
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Since the standard Fourier basis is an orthogonal basis, the l1 regularized term is not necessary in our nonlinear opti-
mization. As a result, the nonlinear least-square problem that we need to solve in the iterative algorithm is reduced to the
following optimization problem (by setting γ = 0):

min
a,b

∥∥rk − a cos θn
k − b sin θn

k

∥∥2
l2 ,

subject to a,b ∈ V p
(
θn

k , λ
)
. (23)

Notice that in the iterative process, the derivative of the phase function θn
k is always monotonically increasing. Thus, we

can use θn
k as a new coordinate. In this new coordinate, cos θn

k , sin θn
k and the bases of V p(θn

k , λ) are simple Fourier modes,
then the least-square problem can be solved by using the Fast Fourier Transform.

3.3.1. A FFT-based algorithm
Suppose that the signal rk−1 is measured over a uniform grid t j = j/N , j = 0, . . . , N − 1 and it is well resolved which

means that r can be interpolated to any grid with small error. Let θn
k = θn

k −θn
k (0)

θn
k (T )−θn

k (0)
be the normalized phase function and

Lθn
k

= θn
k (T )−θn

k (0)

2π which is an integer.
Our FFT-based algorithm to approximately solve (23) is given below:

Step 1: Interpolate rk−1 from {ti}N
i=1 in the physical space to a uniform mesh in the θn

k -coordinate to get rθn
k

and compute

the Fourier transform r̂θn
k

:

rθn
k , j = Interpolate

(
rk−1, θ

n
k, j

)
, (24)

where θn
k, j , j = 0, . . . , N − 1 are uniformly distributed in the θn

k -coordinate, i.e. θn
k, j = 2π Lθn

k
j/N . And the Fourier

transform of rθn
k

is given as follows

r̂θn
k
(ω) = 1

N

N∑
j=1

rθn
k , je

−i2πωθn
k, j , ω = −N/2 + 1, . . . , N/2, (25)

where θn
k, j = θn

k, j−θn
k,0

2π Lθn
k

.

Step 2: Apply a cutoff function to the Fourier transform of rθn
k

to compute a and b on the mesh of the θn
k -coordinate,

denoted by aθn
k

and bθn
k

:

aθn
k

=F−1[(r̂θn
k
(ω + Lθn

k
) + r̂θn

k
(ω − Lθn

k
)
) · χλ(ω/Lθn

k
)
]
, (26)

bθn
k

=F−1[i · (r̂θn
k
(ω + Lθn

k
) − r̂θn

k
(ω − Lθn

k
)
) · χλ(ω/Lθn

k
)
]
. (27)

F−1 is the inverse Fourier transform defined in the θn
k coordinate:

F−1(r̂θn
k

) = 1

N

N/2∑
ω=−N/2+1

r̂θn
k

ei2πωθn
k, j , j = 0, . . . , N − 1. (28)

Step 3: Interpolate aθn
k

and bθn
k

from the uniform mesh {θn
k, j}N

j=1 in the θn
k -coordinate back to the physical grid points

{ti}N
i=1:

a(ti) = Interpolate(aθn
k
, ti), i = 0, . . . , N − 1, (29)

b(ti) = Interpolate(bθn
k
, ti), i = 0, . . . , N − 1. (30)

The low-pass filter χλ(ω) in the second step is determined by the choice of V p(θ, λ). The definition of V p(θ, λ) in (22)
implies that χλ(ω) a stair function given as following:

χλ(ω) =
{

1, −λ < ω < λ,

0, otherwise.
(31)

In the theoretical analysis in the subsequent section, we will see that the stair function is not a good choice as a filter.
We can define a different space for V p(θ, λ) by choosing an appropriate χλ(ω). This opens up many choices for V p(θ, λ).
In this paper, we choose the following low-pass filter χλ(ω) to define V p(θ, λ):

χλ(ω) =
{

1 + cos(πω/λ), −λ < ω < λ,

0, otherwise.
(32)
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3.3.2. A FFT-based nonlinear least square solver
By incorporating the FFT-based solver in our iterative algorithm, we get the following FFT-based iterative algorithm:

• θ0
k = θ0, η = 0.

Step 1: Interpolate rk−1 to a uniform mesh in the θn
k -coordinate to get rθn

k
and compute the Fourier transform r̂θn

k
.

Step 2: Apply a cutoff function to the Fourier transform of rθn
k

to compute a and b on the mesh of the θn
k -coordinate,

denoted by aθn
k

and bθn
k

.
Step 3: Interpolate aθn

k
and bθn

k
back to the uniform mesh of t .

Step 4: Update θn in the t-coordinate:

�θ ′ = P V (θ;η)

(
d

dt

(
arctan

(
bn+1

k

an+1
k

)))
, �θ(t) =

t∫
0

�θ ′(s)ds, θn+1
k = θn

k − β�θ, (33)

where β ∈ [0,1] is chosen to make sure that θn+1
k is monotonically increasing:

β = max

{
α ∈ [0,1]: d

dt

(
θn

k − α�θ
)
� 0

}
, (34)

and P V p(θ;η) is the projection operator to the space V p(θ; η).

Step 5: If ‖θn+1
k − θn

k ‖2 < ε0, go to Step 6. Otherwise, set n = n + 1 and go to Step 1.
Step 6: If η � λ, stop. Otherwise, set η = η + �η and go to Step 1.

We remark that the projection operator P V p(θ;η) is in fact a low-pass filter in the θ -space. For non-periodic data, we
apply a mirror extension to �θ before we apply the low-pass filter.

In the second step of the above FFT-based iteration method, we can see that it has a close connection to the wavelet
transform. In some sense, this step is equivalent to employing the continuous wavelet transform with a fixed scale in the
θ -coordinate. The low-pass filter χλ plays a role similar to the scale function in the multiresolution analysis. Inspired by
this observation, the space V (θ, λ) can be constructed based on multiresolution analysis. Let ψ be the wavelet and φ be the
corresponding scaling function. An alternative construction of the space V (θ, λ) is given as follows:

V (θ, λ) = span
{
φ
(
λθ(t) − n

)
, n ∈ Z

}
. (35)

A typical choice of λ is to set λ = 1/ω where ω is the central frequency of the wavelet ψ .

Remark 3.1. We have recently proved that the algorithm proposed in this subsection will converge if the signal has certain
scale separation property [17]. More specifically, let

f (t) = a0(t) + a1(t) cos θ∗(t), t ∈ [0, T ]. (36)

If the Fourier spectra of a0 and a1 as a function of θ∗ are separable from the spectrum of a1 cos θ∗ in the θ∗-space, then
we can prove that our algorithm will converge to the exact decomposition of the original data. We remark that the above
requirement is weaker than requiring the separation of spectra in the physical space t since transforming the data into the
θ∗-space makes it more adaptive to the signal.

If the above requirement is not satisfied, we can still prove that our algorithm would converge to a decomposition with
an error controlled by the degree of separation between the spectra of a0, a1 and that of a1 cos θ∗ in θ∗-space.

4. Numerical results

In this section, we will perform extensive numerical studies to demonstrate the effectiveness of our nonlinear matching
pursuit method. First we will present numerical results for the FFT-based algorithms for periodic data or data with a good
scale separation property (see Section 6 for the definition of the scale separation property). In the second subsection, we will
present numerical results for the l1 regularized nonlinear matching pursuit which gives reasonably accurate decompositions
for non-periodic data and even for under-sampled data or data with missing information in some physical domain.

4.1. Numerical results for the FFT-based algorithms

In this subsection, we present a number of numerical experiments to demonstrate the accuracy and robustness of our
FFT-based algorithms. We also compare the performance of our method with that of EMD or EEMD. A main focus of
our numerical study is the robustness of the decomposition to signals that are polluted by a significant level of noise.
When the signal is free of noise, we observe that the performance of our method is comparable to that of the EMD/EEMD



Author's personal copy

294 T.Y. Hou, Z. Shi / Appl. Comput. Harmon. Anal. 35 (2013) 284–308

method. However, when the signal is polluted by noise with a significant noise-to-signal ratio, our nonlinear matching
pursuit method tends to give better performance than that of the EMD/EEMD method.

Throughout this section, we denote X(t) as white noise with zero mean and variance σ 2 = 1. The Signal-to-Noise Ratio
(SNR, measured in dB) is defined by

SNR[dB] = 10 log10

(
var f

σ 2

)
. (37)

We will apply our method to several different signals with increasing level of difficulty.

Example 1. The first example we consider is a simple nonstationary signal consisting of a single IMF, which is given below

f (t) = cos
(
60πt + 15 sin(2πt)

)
. (38)

In Fig. 1, we plot the original signal on the left column and the instantaneous frequency on the right column. The curve
with the red color corresponds to the exact instantaneous frequency and the one with the blue color corresponds to the one
obtained by our method. The top row corresponds to the original signal without noise, f (t). The middle row corresponds to
the same signal with a moderate noise level ( f (t) + X(t), SNR = −3.01 dB) and the bottom row corresponds to the signal
with large noise ( f (t)+3X(t), SNR = −12.55 dB). In the case when no noise is added, the instantaneous frequency obtained
by our method is almost indistinguishable from the exact one, see the first row of Fig. 1. When the signal has noise, our
method can still extract the instantaneous frequency and corresponding IMF with reasonable accuracy, see Fig. 1 and Fig. 2.

In Fig. 2, we compare the IMFs extracted by our method with those obtained by the EMD/EEMD method. For the signal
without noise, we use the EMD method to decompose the signal. For the signal with noise, we use the EEMD method to
decompose the signal. In the EEMD approach, the number of ensembles is chosen to be 200 and the standard deviation of
the added noise is 0.2. In each ensemble, the number of sifting is set to 8. Even though the signal has only a single IMF, the
EEMD method still produces several IMFs. Among different components of IMFs that are produced by the EEMD method,
we select the one that is closest to the exact IMF in l2 norm and display it in Fig. 2.

When the signal does not have noise, both our method and the EMD method produce qualitatively the same result for
this simple signal, see the first row of Fig. 2. When noise is added, the situation is quite different. The IMFs extracted by
our method still have reasonable accuracy. However, the IMF decomposed by EEMD fails to capture the phase of the exact
IMF in some region. As a consequence, the accuracy of the instantaneous frequency obtained by the EEMD method is very
poor (not shown here).

Example 2. Now, we consider a signal that consists of three IMFs.

f (t) = 1

1.5 + cos(2πt)
cos

(
60πt + 15 sin(2πt)

) + 1

1.5 + sin(2πt)
cos

(
160πt + sin(16πt)

)
+ (

2 + cos(8πt)
)

cos
(
140π(t + 1)2). (39)

In Fig. 3, we study the accuracy of the instantaneous frequencies obtained by our method with the exact instantaneous
frequencies. The upper row corresponds to the signal without noise. As we can see, it is hard to tell any hidden structure
from this signal even without noise. Our method recovers the three components of the instantaneous frequencies (blue)
that match the exact instantaneous frequencies (red) extremely well. They are almost indistinguishable from each other. In
the case when noise is added to the original signal, the polluted signal looks really complicated and one cannot recognize
any hidden pattern from this polluted signal. It is quite amazing that our method could still recover the three components
of the instantaneous frequencies with accuracy comparable to the noise level, see the bottom row of Fig. 3.

Example 3 (Length-of-Day data). Next, we apply our method to the Length-of-Day data, see Fig. 4. The data we adopt here
was produced by Gross [12], covering the period from 20 January 1962 to 6 January 2001, for a total of 14,232 days
(approximate 39 years). In our previous paper [16], we also studied this data set. Due to the high computational cost
associated with the l1 minimization, we cannot decompose the entire data set. Instead, we decompose a segment of the
data that contains 700 consecutive days. Thanks to the low computational cost of the FFT-based nonlinear matching pursuit
method, we can now study the entire data set without any compromise.

Fig. 5 displays the first 5 IMFs extracted by the FFT-based method. These IMFs are sorted by their frequencies from high
to low. We note that the results obtained by our method do not suffer from the mode mixing phenomenon that is present
in the EMD decomposition. Moreover, each component is enforced to be an IMF by the construction of our dictionary. Thus,
there is no need to do shifting or post-processing as was done in the EMD or the EEMD method. And the IMFs we obtain
match qualitatively those obtained by EEMD with post-processing [37].

It is interesting to note that the each IMF that we obtain has a clear physical interpretation. For example, the period of
C1 is around 14 days, corresponding to the semi-monthly tides. The period of C2 is about 28 days, corresponding to the
monthly tides. Similarly, the period of C4 is about half a year, corresponding to the semi-annual cycle and C5 corresponds
to the annual cycle.
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Fig. 1. Top row: left: the original signal defined by (38) without noise; right: instantaneous frequencies; red: exact frequency; blue: numerical results.
Middle row: the same as the top row except white noise X(t) is added to the original signal, the corresponding SNR is −3.01 dB. Bottom row: white noise
3X(t) is added to the original signal, the corresponding SNR is −12.55 dB. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4.1.1. Comparison of CPU time
In this subsection, we compare the computational cost of three methods, the SynchroSqueezing Transform (SST), the

EMD/EEMD method, and our Nonlinear Matching Pursuit method (NMP). In Table 1, we give the CPU time of these three
methods. The data we use are the same as those given in Examples 1, 2 and 3. For the data given in Examples 1 and 2, the
number of sample points is 2048.
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Fig. 2. The IMFs extracted by our method and EMD/EEMD method. Left column: IMFs extracted by our method; right column: IMFs obtained by EMD/EEMD
method. Top row: IMFs from f (t); middle row: IMFs from f (t) + X(t); bottom row: IMFs from f (t) + 3X(t). f (t) is defined in (38).

For data without noise, our method is faster than SST but slower than EMD. On the other hand, for data with noise,
our method is still faster than SST and is much faster than the EEMD method. We remark that our method can give both
IMFs and corresponding instantaneous frequencies directly, but one can only get instantaneous frequencies using SST and
IMFs using the EMD method. If we are interested in the IMFs in the SST method (or instantaneous frequencies in the EMD
method), some post processing method is required to extract the corresponding information. This will give some extra
computational cost. This extra computational cost is not accounted for in our comparison given in Table 1. If we consider
the overall cost, our method would give more superior performance than that of SST or EMD/EEMD.
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Fig. 3. Upper row: left: the signal defined in (39) without noise; right: instantaneous frequencies; red: exact frequencies; blue: numerical results. Lower
row: the same as the upper row except that white noise 2X(t) was added to the original signal, the corresponding SNR is −0.8 dB. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The daily Length-of-Day data from January 20, 1962 to January 6, 2001.
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Fig. 5. The first 5 IMFs with highest frequencies given by our FFT-based method.

Table 1
Running time of SST, NMP and EMD/EEMD in seconds. EEMD instead of EMD is used for data with noise and the number
of ensembles is equal to 800.

SST NMP EMD/EEMD

Ex1 without noise 1.45 0.22 0.19
Ex1 with noise (3X) 1.49 0.31 264
Ex2 without noise 1.53 0.59 0.25
Ex2 with noise (2X) 1.47 0.79 248
LOD 11.59 5.94 1024

The computational cost of our method also depends on the initial guess. If the algorithm starts from a poor initial guess,
it may require more iterations. Then the computational cost would increase. Moreover, for data with poor scale separation,
different initial guesses may lead to different decompositions. In order to abate the effect of the initial guess, we gradually
relax the constraint on the phase function θ in our algorithm. Numerical studies show that this procedure works well for
signals with good scale separation. But for signals with poor scale separation, looking for a good initial guess is still an
important issue that we are currently investigating.

4.2. Numerical results for the l1 regularized nonlinear matching pursuit

The nonlinear matching pursuit method based on the Fast Fourier Transform works well only for periodic data. For non-
periodic data or data with poor scale separation, the results obtained by this method tend to produce some oscillations
near the boundary. This so-called “end effect” is also present in the EMD method and other data analysis methods. In our
method, the “end effect” comes from the use of the Fourier transform in the algorithm. To remove this “end effect” error,
we need to use the l1 regularized nonlinear matching pursuit described in Section 3.2 with V (θ, λ) being the overcomplete
Fourier basis defined in (13).

4.2.1. Numerical results for non-periodic data
In this subsection, we perform a numerical experiment to test the effectiveness of our l1 regularized nonlinear matching

pursuit for non-periodic data. We first consider the following data in our experiment:

θ1 = 20π(t + 1)2 + 1, θ2 = 161.4πt + 4(1 − t)2 sin(16πt),

f (t) = 1

1.5 + sin(1.5πt)
+ (2t + 1) cos θ1 + (2 − t)2 cos θ2. (40)
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Fig. 6. IMF (left) and instantaneous frequency (right) of the signal in (40) obtained from different methods. Red: exact; blue: l1 regularized nonlinear
matching pursuit; black: FFT-based algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

In this numerical example, the parameter γ is chosen to be 1. From Fig. 6, we observe that the l1 regularized nonlinear
matching pursuit seems to produce considerably smaller error near the boundary for this non-periodic signal.

This example shows that using the l1 regularized nonlinear matching pursuit, we can handle non-periodic data reason-
ably well. On the other hand, the computational cost is considerably higher than that of the FFT-based algorithm due to
the extra cost of solving a l1 regularized least square problem in each iteration. There are various methods to speed up
the l1 optimization. A more efficient l1 solver could reduce the computational cost significantly. One can also use a hybrid
approach by applying the FFT-based algorithm in the majority of the interior domain and using the l1 minimization only
near the boundary of the signal. This would lead to considerable saving.

4.2.2. Numerical results for data with incomplete or sparse samples
Another advantage of the l1 regularized nonlinear matching pursuit given in Section 3.2 is that it can handle the incom-

plete data and the data with sparse samples. For these kinds of data, FFT-based algorithm does not work, since we cannot
do the Fourier transform. Thus, we need to employ the original algorithm proposed in Section 3.2. In this section, we will
use a few examples to illustrate the power of our method to deal with the incomplete data.

The signals considered in this section are all periodic. So in the computations, we use the standard Fourier basis instead
of the overcomplete Fourier basis. Although the signal is periodic, we cannot set the regularization parameter γ = 0, since
the sample points cannot well resolve the signal. If γ = 0, the resulting least square problem may become underdetermined.
In the computations of this section, γ is chosen to be 0.1.

The first example is an incomplete signal given by (41).

θ(t) = 120πt + 10 cos(4πt), a(t) = 2 + cos(2πt), f (t) = a(t) cos θ(t), t ∈ [0,0.4] ∪ [0.6,1]. (41)

For this signal, we have only eighty percent of the original data and miss twenty percent of the data in the gap interval
[0.4,0.6]. In Fig. 7, we plot the recovered signal in the gap interval [0.4,0.6] (see the middle panel). The initial guess we
use is θ0 = 120πt . The recovered signal matches the original signal almost perfectly in the gap interval. The recovered
instantaneous frequency also matches the exact instantaneous frequency with high accuracy.

In Fig. 8, we perform the same numerical experiment by enlarging the interval of missing data from (0.4,0.6) to
(0.3,0.7), i.e. we miss forty percent of the data. Even for this more challenging example, our method still gives quite
reasonable reconstruction of the original data in the region of missing data. The recovered instantaneous frequency still
approximates the exact instantaneous frequency with reasonable accuracy, especially away from the region of missing data.

Finally, we consider an example with insufficient samples. The signal is generated as follows:

θ(ti) = 120πti + 10 cos(2πti), a(ti) = 2 + cos(2πti), f (ti) = a(ti) cos θ(ti), ti ∈ [0,1], (42)

and i = 1,2, . . . , N . The location ti is chosen randomly in [0,1]. In this example, the number of samples is 64. This means
that we have about one sample point within one period of the signal on average.

Fig. 9 gives the results obtained by our method. In the case of insufficient samples without noise, the recovered signal
and the original signal are almost indistinguishable.
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Fig. 7. Left: blue: the original incomplete data, the gap is (0.4,0.6); red: the missing data recovered by our method. Middle: the recovered missing data,
red: exact; blue: numerical. Right: the instantaneous frequencies, red: exact; blue: numerical. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Left: blue: the original incomplete data, the gap is (0.3,0.7); red: the missing data recovered by our method. Middle: the recovered missing data,
red: exact; blue: numerical. Right: the instantaneous frequencies, red: exact; blue: numerical. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Left: original samples, red: exact; blue: recovered; ‘∗’ represent the sample points. Right: instantaneous frequency, red: exact; blue: numerical. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Author's personal copy

T.Y. Hou, Z. Shi / Appl. Comput. Harmon. Anal. 35 (2013) 284–308 301

Fig. 10. Left: original samples, red: exact; blue: recovered from the noised data, f (ti) + 0.2X(ti); ‘∗’ represent the sample points. Right: instantaneous
frequencies, red: exact; blue: numerical. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

We now add Gaussian noise to the original samples and apply our method to this noisy data. The result is given in
Fig. 10. In this case, the noise 0.2X(t) is added to the original signal f (t) given in (42). We can see that both the recovered
signal and the instantaneous frequency still have reasonable accuracy. This shows that our method is stable with respect to
noise perturbation even for sparse under-sampled data.

In the above examples, we both use 120πt as the initial guess. For some real data with sparse samples, it is challenging
to generate a reasonable initial guess since most of the traditional time–frequency analysis methods fail to produce a good
result.

5. Generalizations for the l1 regularized nonlinear matching pursuit

In the previous sections, we propose an iterative algorithm based on l1 regularized nonlinear matching pursuit and show
that for data with a good scale-separation property, this algorithm can give an accurate decomposition. In this section, we
will generalize this method to deal with the signal with poor scale separation. More precisely, we consider the signal given
as follows:

f =
M∑

k=1

ak cos θk, ak cos θk ∈D, (43)

where D is defined in (14). But now we do not require that the instantaneous frequencies θ ′
k are well separated. As a result,

f does not satisfy the scale-separation condition defined in Section 6.
It is well known that for data consisting of components with interfering frequencies, matching pursuit with a Gabor

dictionary may not give a sparse decomposition [23]. Since our method is based on matching pursuit, it is not surprising
that it may not be able to generate the sparsest decomposition either.

To illustrate, we consider the following signal consisting of two IMFs whose instantaneous frequencies intersect each
other. The signal is generated by the analytical formula given below.

f (t) = cos
(
20πt + 40πt2 + sin(2πt)

) + cos(40πt). (44)

Fig. 11 plots the instantaneous frequencies and IMFs recovered by the nonlinear matching pursuit given in the previous
section. Near the point of intersection, both the instantaneous frequencies and IMFs produce noticeable errors. The good
news is that the instantaneous frequency recovered by our method is still in phase with the exact one. Furthermore, the
accuracy is quite reasonable in the region far away from the point of intersection. This shows that our method has a
temporal locality property, which is important in many physical applications.

To further improve the accuracy of our decomposition when there are a number of instantaneous frequencies that are not
well separated, we need to decompose these components simultaneously since these IMFs have strong correlation. Assume
that we can learn from our l1 regularized nonlinear matching pursuit that there are M components of IMFs whose instan-
taneous frequencies are not well separated, we modify our decomposition method to find them by solving the following
optimization problem:
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Fig. 11. Left: instantaneous frequencies; red: exact frequencies; blue: numerical results. Middle and right: IMFs extracted by the previous nonlinear matching
pursuit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

min
ak,θk

∥∥∥∥∥ f −
M∑

k=1

ak cos θk

∥∥∥∥∥
2

l2

, such that ak cos θk ∈D, (45)

where âk is the representation of ak in V (θk, λ) space. In order to stabilize above nonlinear least square problem, here we
also need to add some l1 terms, then we get following l1 regularized nonlinear least square problem:

min
ak,θk

(
γ

M∑
k=1

‖âk‖l1 +
∥∥∥∥∥ f −

M∑
k=1

ak cos θk

∥∥∥∥∥
2

l2

)
, such that ak cos θk ∈D, (46)

where γ > 0 is a regularized parameter and âk is the representation of ak in V (θk, λ) space. Even though this signal is
periodic, we cannot drop the l1 terms since the different components may have strong correlation.

Based on the l1 regularized nonlinear matching pursuit that we introduced in the previous sections, we propose following
iterative method to solve the above optimization problem.

Initialize: n = 0, η = 0.

Step 1: Solve the following l11 regularized least-square problem:

(
an+1

k ,bn+1
k

) ∈ Argmin
ak,bk

(
γ

M∑
k=1

(‖âk‖l1 + ‖b̂k‖l1
) +

∥∥∥∥∥ f −
M∑

k=1

(
ak cos θn

k + bk sin θn
k

)∥∥∥∥∥
2

l2

)
,

subject to: ak ∈ V
(
θn

k , λ
)
, b ∈ V

(
θn

k , λ
)
, (47)

where âk , b̂k are the representations of ak , bk in the V (θn
k ) space.

Step 2: Update θn
k :

�θ ′
k = P V (θn

k ;η)

(
d

dt

(
arctan

(
bn+1

k

an+1
k

)))
, �θk =

t∫
0

�θ ′
k(s)ds, θn+1

k = θn
k − βk�θk, (48)

where βk ∈ [0,1] is chosen to make sure that θn+1
k is monotonically increasing:

βk = max

{
α ∈ [0,1]: d

dt

(
θn

k − α�θk
)
� 0

}
, (49)

and P V (θn
k ;η) is the projection operator to the space V (θn

k ;η).

Step 3: If
∑M

k=1 ‖θn+1
k − θn

k ‖2 > ε0, set n = n + 1 and go to Step 1. Otherwise, go to Step 4.
Step 4: If η � λ, stop. Otherwise, set η = η + �η and go to Step 1.

Here we give an example to demonstrate that this new method has the capability to deal with the signal with poor
scale separation. Fig. 12 gives the results obtained by our new method for the signal given in (44). We can see that both
the instantaneous frequencies and IMFs match the exact ones pretty well. These results are much better than those given
in Fig. 11.
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Fig. 12. Left: instantaneous frequencies. Middle (first component) and right (second component): IMFs obtained by extracting two IMFs together. Red: exact
results; blue: numerical results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6. Error analysis for the data with scale separation

In this section, we perform some error analysis for our nonlinear matching pursuit method. We consider data defined
in the entire physical space R. In this setting, we can also employ the FFT-based algorithm developed in Section 3.3 for
periodic data to decompose these signals. To guarantee uniqueness of the decomposition, we need to impose certain scale
separation property for the data that we try to decompose. Before we state our result, we first define what we mean by
scale separation for a given signal.

Definition 6.1 (Scale separation). One function f (t) = a(t) cos θ(t) is said to satisfy a scale-separation property with a sepa-
ration factor ε > 0, if a(t) and θ(t) satisfy the following conditions:

a(t) ∈ C1(R), θ ∈ C2(R),

inf
t∈R

θ ′(t) > 0, M = sup
t∈R

∣∣θ ′′(t)
∣∣ < ∞,

∣∣∣∣a′(t)
θ ′(t)

∣∣∣∣,
∣∣∣∣ θ ′′(t)
(θ ′(t))2

∣∣∣∣ � ε, ∀t ∈ R.

Definition 6.2 (Well-separated signal). A signal f : R → R is said to be well-separated with separation factor ε and frequency
ratio d > 1 if it can be written as

f (t) =
K∑

k=1

ak(t) cos θk(t)

where all fk(t) = ak(t) cos θk(t) satisfies the scale-separation property with separation factor ε , and their phase function θk
satisfies

θ ′
k(t) � dθ ′

k−1(t), ∀t ∈ R. (50)

Theorem 6.1. Let f (t) be a function satisfying the scale-separation property with separation factor ε and frequency ratio d as defined
in Definition 6.2. Choose a low-pass filter φ such that its Fourier transform φ̂ has support in [−�,�] with � < d−1

d+1/2 and φ̂(k) = 1,

∀k ∈ [−�/2,�/2]. If in the nth step, the approximate phase function θn
k0

satisfies the following condition:

∣∣∣∣ (θ
n
k0

)′(t)
θ ′

k0
(t)

− 1

∣∣∣∣ <
�

2
,

∣∣∣∣ (θn
k0

)′′(t)
((θn

k0
)′(t))2

∣∣∣∣ � ε, (51)

then the error in the (n + 1)st step in the FFT-based algorithm is of order ε , i.e.∣∣θn+1
k0

(t) − θk0(t)
∣∣ = O (ε). (52)

In order to prove the above theorem, we need the following lemma:
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Lemma 6.1. For any a(t) ∈ C1(R), θ ∈ C2(R), we have∣∣∣∣
∫

a(τ )e−iθ(τ )φ(τ − t)dτ − a(t)e−iθ(t)φ̂
(
θ ′(t)

)∣∣∣∣ � sup
∣∣a′(t)

∣∣I1 + 1

2

∣∣a(t)
∣∣ sup

∣∣θ ′′(t)
∣∣I2, (53)

where In = ∫ |tnφ(t)|dt.

Proof. The proof follows from the following direct calculations:∣∣∣∣
∫

a(τ )e−iθ(τ )φ(τ − t)dτ − a(t)e−iθ(t)φ̂
(
θ ′(t)

)∣∣∣∣
=

∣∣∣∣
∫ (

a(τ ) − a(t)
)
eiθ(τ )φ(τ − t)dτ + a(t)

∫ (
e−iθ(τ ) − e−i(θ(t)−θ ′(t)(τ−t)))φ(τ − t)dτ

∣∣∣∣
=

∣∣∣∣
∫ (

a(τ ) − a(t)
)
eiθ(τ )φ(τ − t)dτ + a(t)

∫ (
e−i(θ(τ )−θ(t)−θ ′(t)(τ−t)) − 1

)
e−i(θ(t)−θ ′(t)(τ−t))φ(τ − t)dτ

∣∣∣∣
� sup

∣∣a′(t)
∣∣ ∫ ∣∣τφ(τ )

∣∣dτ + ∣∣a(t)
∣∣∣∣∣∣
∫ (

e− 1
2 iθ ′′(s(τ ))(τ−t)2 − 1

)
e−i(θ(t)+θ ′(t)(τ−t))φ(τ − t)dτ

∣∣∣∣
� sup

∣∣a′(t)
∣∣ ∫ ∣∣τφ(τ )

∣∣dτ + ∣∣a(t)
∣∣ ∫ ∣∣∣∣1

2
θ ′′(s(τ )

)
(τ − t)2φ(τ − t)

∣∣∣∣dτ

� sup
∣∣a′(t)

∣∣ ∫ ∣∣τφ(τ )
∣∣dτ + 1

2

∣∣a(t)
∣∣ sup

∣∣θ ′′(t)
∣∣ ∫ ∣∣τ 2φ(τ )

∣∣dτ

= sup
∣∣a′(t)

∣∣I1 + 1

2

∣∣a(t)
∣∣ sup

∣∣θ ′′(t)
∣∣I2. � (54)

Remark 6.1. We remark that since we typically deal with data of finite support and extend them periodically to the whole
domain, the estimates for I1 and I2 in the above lemma are effectively taken only in the finite support of the data.

Corollary 6.1. If the Fourier transform of the low-pass filter φ is symmetric, i.e. φ̂(k) = φ̂(−k), then we have∣∣∣∣
∫

a(τ ) cos
(
θ(τ )

)
φ(τ − t)dτ − a(t) cos θ(t)φ̂

(
θ ′(t)

)∣∣∣∣ � sup
∣∣a′(t)

∣∣I1 + 1

2

∣∣a(t)
∣∣ sup

∣∣θ ′′(t)
∣∣I2, (55)∣∣∣∣

∫
a(τ ) sin

(
θ(τ )

)
φ(τ − t)dτ − a(t) sin θ(t)φ̂

(
θ ′(t)

)∣∣∣∣ � sup
∣∣a′(t)

∣∣I1 + 1

2

∣∣a(t)
∣∣ sup

∣∣θ ′′(t)
∣∣I2. (56)

Now we can prove Theorem 6.1.

Proof of Theorem 6.1. In order to simplify the notation, we denote θ = θn
k0

and use (·) to represent the mapping from t

to θ , i.e. f (θ) = f (t), ∀ f .
According to our FFT-based algorithm in Section 3.3, we update θn+1

k0
as follows:

θn+1
k0

= θ − arctan

(
b(t)

a(t)

)
, a(t) = A

(
θ(t)

)
, b(t) = B

(
θ(t)

)
, (57)

where

A(γ ) = 2
∫

f (θ) cos(θ)φ(θ − γ )dθ, B(γ ) = 2
∫

f (θ) sin(θ)φ(θ − γ )dθ. (58)

We first estimate A(γ ) as follows:

A(γ ) = 2
∫

f (θ) cos(θ)φ(θ − γ )dθ = 2
n∑

k=1

∫
ak(θ) cos θk(t) cos(θ)φ(θ − γ )dθ.

For k �= k0, we have

2
∫

ak(θ) cos θk(t) cos(θ)φ(θ − γ )dθ =
∫

ak(θ)
(
cos

(
θk(t) + θ

) + cos
(
θk(t) − θ

))
φ(θ − γ )dθ. (59)

Since
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∣∣∣∣dak(θ)

dθ

∣∣∣∣ =
∣∣∣∣a′

k(t)

θ ′(t)

∣∣∣∣ � ε

∣∣∣∣θ ′
k(t)

θ ′(t)

∣∣∣∣, (60)

we obtain∣∣∣∣ d2

dθ2

(
θk(t) ± θ

)∣∣∣∣ =
∣∣∣∣θ ′′

k (t)θ ′(t) − θ ′
k(t)θ

′′(t)
(θ ′(t))3

∣∣∣∣ � ε

∣∣∣∣ (θ ′
k(t))

2 − θ ′
k(t)θ

′(t)
(θ ′(t))2

∣∣∣∣, for k �= k0. (61)

Now we apply Corollary 6.1 for k �= k0 to obtain

2
∫

ak(θ) cos θk(t) cos(θ)φ(θ − φ)dθ

= ak(θ) cos
(
θk(t) + θ

)
φ̂

(
θ ′

k(t)

θ ′(t)
+ 1

)
+ ak(θ) cos

(
θk(t) − θ

)
φ̂

(
θ ′

k(t)

θ ′(t)
− 1

)
+ O (ε). (62)

Using the condition � < d−1
d+1/2 , θ ′

k(t) > dθ ′
k−1(t) and | θ ′(t)

θ ′
k0

(t)
− 1| < �

2 , we get

θ ′
k(t)

θ ′(t)
− 1 = θ ′

k(t)

θk0(t)

θ ′
k0

(t)

θ ′(t)
− 1 > d(1 − �/2) − 1 > �, if k > k0, (63)

θ ′
k(t)

θ ′(t)
− 1 = θ ′

k(t)

θk0(t)

θ ′
k0

(t)

θ ′(t)
− 1 < (1 + �/2)/d − 1 < −�, if k < k0, (64)

θ ′
k(t)

θ ′(t)
+ 1 > 1 > �. (65)

Since the support of φ̂ is within [−�,�], we have

2
∫

ak(θ) cos θk(t) cos(θ)φ(θ − φ)dθ = O (ε). (66)

For k = k0, we proceed as follows

2
∫

ak(θ) cos θk(t) cos(θ)φ(θ − φ)dθ =
∫

ak0(θ)
(
cos

(
θk0(t) + θ

) + cos
(
θk0(t) − θ

))
φ(θ − φ)dθ. (67)

Similarly, by using the assumption∣∣∣∣dak0(θ)

dθ

∣∣∣∣ =
∣∣∣∣a′

k0
(t)

θ ′(t)

∣∣∣∣ � ε

∣∣∣∣θ
′
k0

(t)

θ ′(t)

∣∣∣∣, (68)

we obtain the following estimates:∣∣∣∣ d

dθ

(
θk0(t) + θ

)∣∣∣∣ =
∣∣∣∣θ

′
k0

(t)

θ ′(t)
+ 1

∣∣∣∣ > 1 > �, (69)

∣∣∣∣ d

dθ

(
θk0(t) − θ

)∣∣∣∣ =
∣∣∣∣θ

′
k0

(t)

θ ′(t)
− 1

∣∣∣∣ <
�

2
, (70)

∣∣∣∣ d2

dθ2

(
θk0(t) ± θ

)∣∣∣∣ =
∣∣∣∣θ

′′
k0

(t)θ ′(t) − θ ′
k0

(t)θ ′′(t)
(θ ′(t))3

∣∣∣∣ � ε

∣∣∣∣ (θ
′
k0

(t))2 − θ ′
k0

(t)θ ′(t)
(θ ′(t))2

∣∣∣∣. (71)

By applying Corollary 6.1 again, we get

2
∫

ak(θ) cos θk(t) cos(θ)φ(θ − φ)dθ

= ak0(θ) cos
(
θk0(t) + θ

)
φ̂

(
θ ′

k0
(t)

θ ′(t)
+ 1

)
+ ak0(θ) cos

(
θk0(t) − θ

)
φ̂

(
θ ′

k0
(t)

θ ′(t)
− 1

)
+ O (ε)

= ak0(θ) cos
(
θk0(t) − θ

) + O (ε). (72)

Finally, we get the following estimate for a(t),

a(t) = A
(
θ(t)

) = ak0(t) cos
(
θk0(t) − θ

) + O (ε). (73)

For b(t), we can obtain a similar estimate
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Fig. 13. IMFs with different factors of scale separation. Left: poor scale separation; right: good scale separation.

b(t) = B
(
θ(t)

) = ak0(t) sin
(
θk0(t) − θ

) + O (ε). (74)

Thus, we have

�θ = arctan

(
B(t)

A(t)

)
= θk0(t) − θ + O (ε), (75)

which implies that∣∣θn+1
k0

(t) − θk0(t)
∣∣ = O (ε). (76)

This completes the proof. �
Remark 6.2. Under the same assumption, we can prove that the error of the instantaneous frequency is also of order ε , i.e.∣∣(θn+1

k0

)′
(t) − θ ′

k0
(t)

∣∣ = O (ε). (77)

The argument is almost the same as the above proof, except that the calculation is a little more involved.

From the above theorem, we can see that the accuracy of our method depends on the factor of scale separation. This
is also consistent with our numerical results. In the following numerical example, we compare the IMFs obtained by our
method for two different signals. One has poor scale separation, the other one has better scale separation. The signals are
given by (78). The signal f2 has a better scale separation property than f1 since its instantaneous frequency is twice of that
of f1. As shown in Fig. 13, the error we obtain for f2 is considerably smaller than that of f1.

a0(t) = a1(t) = 1

1.1 + cos(2πt)
, θ = 10 sin(2πt) + 40πt,

f1(t) = a0(t) + a1(t) cos θ(t), f2(t) = a0(t) + a1(t) cos
(
2θ(t)

)
. (78)

We would like to point out that the error estimate given by Theorem 6.1 is highly over-estimated. In Fig. 13, we can
see that even for the signal with a poor scale separation property, the instantaneous frequency we obtain is still reasonably
accurate, although the corresponding scale separation factor ε ≈ 1.4 is quite big according to Definition 6.1.

In the estimate of Lemma 6.1, instead of taking the supreme over R, we can take supreme over a finite interval, since
we can choose a low-pass filter φ that decays exponentially fast. Then, we can get a more local estimate:∣∣∣∣

∫
a(τ )eiθ(τ )φ(τ − t)dτ − a(t)eiθ(t)φ̂

(
θ ′(t)

)∣∣∣∣ � sup
t∈Sφ

∣∣a′(t)
∣∣I1 + 1

2

∣∣a(t)
∣∣ sup

t∈Sφ

∣∣θ ′′(t)
∣∣I2, (79)

where Sφ = {t ∈ R: |φ(t)| > ε}.
This seems to suggest that for the signal that does not have a good scale separation property in some region, its influence

on the accuracy of the decomposition is limited to that region. This is the temporal locality property we have mentioned in
Section 5.1. This property can be also seen in Fig. 13. In this example, the scales are not well separated in the center of the
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Fig. 14. Instantaneous frequency at different steps.

interval. However, the scales are better separated near the two ends. We can see that the error near the boundary is much
smaller than that in the center.

From this analysis, we can also see that the low-pass filter with smooth Fourier spectrum (such as the cosine function
given by (32)) would perform better than that with discontinuous spectrum (such as the stair function given by (31)) in
terms of maintaining the temporal locality property of the decomposition. The low-pass filter with discontinuous spectrum
decays much slower in the time domain due to the Gibbs phenomena. This is why we use the cosine low-pass filter instead
of the stair one.

Theorem 6.1 tells us that if we have a good initial guess, then there is no need to do iterations. But in most cases, we
have only a rough initial guess, and the condition in Theorem 6.1 may not be satisfied. In this case, the iterative procedure
in our algorithm improves the result gradually as the number of iterations increases. Our method will generate a good
approximation after a number of iterations. In Fig. 14, we show how the iteration can improve the approximation of the
instantaneous frequency for a simple chirp signal: f (t) = cos(10π(3t + 1)2).

In this example, the initial guess for the instantaneous frequency is a constant, θ0 = 80πt . Near the intersection of
θ ′

0 = 80π and the exact instantaneous frequency, the initial guess is relatively good. After one step, we can get a better
approximation in this local region. This new estimate gives us a better guess for the instantaneous frequency in a slightly
larger interval that contains the good interval given by the initial guess. Then in the next step, we can get a good ap-
proximation in an even larger interval. Gradually, we can get an accurate approximation of the instantaneous frequency in
the whole interval. Fig. 14 plots the approximate instantaneous frequency in different steps. As the number of iterations
increases, the region in which we have a good approximation becomes larger and larger. Finally, the iterative algorithm
produces an accurate instantaneous frequency in the entire domain.

7. Conclusion

In this paper, we introduce a new data-driven time–frequency analysis method based on the nonlinear matching pursuit.
The adaptivity of our decomposition is obtained by looking for the sparsest representation of signals in the time–frequency
domain from a largest possible dictionary that consists of all possible candidates for Intrinsic Mode Functions (IMFs). Solv-
ing this nonlinear optimization problem is in general very difficult. We propose a nonlinear matching pursuit method to
solve this nonlinear optimization problem by generalizing matching pursuit for the l0 optimization problem. One important
advantage of this nonlinear matching pursuit method is it can be implemented very efficiently. Further, this approach is
very stable to noise. For data with good scale separation property, our method gives an accurate decomposition up to the
boundary.

We have also carried out some theoretical study for the nonlinear optimization method proposed in this paper. In the
case when the signal satisfies certain scale separation conditions, we show that our iterative algorithm gives an approximate
decomposition with the accuracy determined by the scale separation factor of the signal.

There are some remaining issues to be studied in the future, such as data with poor scale separation property, the so-
called ‘end effect’ of data, and data with incomplete or sparse samples and so on. We have addressed these issues to some
extent in this paper, but much more work need to be done to resolve these challenging issues.

Another important problem is to decompose data with intra-wave frequency modulation. This type of data is known to be
very challenging. Traditional data analysis methods tends to introduce many harmonics and could not capture the intrinsic
features of these data. Direct application of the methods proposed in this paper does not yield satisfactory results either
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since these data do not have a good scale separation property. Recently we have made some progress in decomposing type
of data. Specifically, we need to enlarge our dictionary by incorporating additional elements consisting of periodic functions
of different shapes. We then modify our decomposition method to look for the appropriate shape function that gives rise
to the sparsest decomposition of the signal. Our numerical preliminary study on both synthetic and real data suggest this
algorithm works well for a class of signals whose dominant component is generated by a single shape function. This method
is also stable under noise perturbation. Since this method is quite different from the ones presented in this paper, we will
report this work in a subsequent paper.

Another direction is to generalize this adaptive data analysis method to high dimensional data. In some physical appli-
cations such as propagation of nonlinear ocean waves, each waveform has a dominating propagation direction. In this case,
our method has a natural generalization by adopting a multi-dimensional phase function.
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