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Abstract

We present a novel method of analysis and prove finite time asymptotically self-
similar blowup of the De Gregorio model [13,14] for some smooth initial data on
the real line with compact support. We also prove self-similar blowup results for
the generalized De Gregorio model [41] for the entire range of parameter on R
or S1 for Hölder continuous initial data with compact support. Our strategy is to
reformulate the problem of proving finite time asymptotically self-similar singu-
larity into the problem of establishing the nonlinear stability of an approximate
self-similar profile with a small residual error using the dynamic rescaling equa-
tion. We use the energy method with appropriate singular weight functions to
extract the damping effect from the linearized operator around the approximate
self-similar profile and take into account cancellation among various nonlocal
terms to establish stability analysis. We remark that our analysis does not rule
out the possibility that the original De Gregorio model is well posed for smooth
initial data on a circle. The method of analysis presented in this paper provides a
promising new framework to analyze finite time singularity of nonlinear nonlocal
systems of partial differential equations. c© 2000 Wiley Periodicals, Inc.

1 Introduction

In the absence of external forcing, the three-dimensional Navier-Stokes equa-
tions for incompressible fluid read:

(1.1) ut + u · ∇u = −∇p+ ν∆u, ∇ · u = 0.

Here u(x, t) : R3 × [0, T ) → R3 is the 3D velocity vector of the fluid, and
p(x, t) : R3 × [0, T ) → R describes the scalar pressure. The viscous term ν∆u
models the viscous forcing in the fluid. In the case of ν = 0, equations (1.1) are re-
ferred to as the Euler equations. The divergence-free condition∇ · u = 0 enforces
the incompressibility of the fluid. The Navier-Stokes equations are among the most
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fundamental nonlinear partial differential equations. The fundamental question re-
garding the global regularity of the 3D Euler and Navier-Stokes equations for gen-
eral smooth initial data with finite energy remains open, and it is generally viewed
as one of the most important open questions in mathematical fluid mechanics, see
the surveys [10, 18, 19, 22, 33].

Define vorticity ω = ∇× u, then ω is governed by

ωt + (u · ∇)ω = ∇u · ω + ν∆ω.

The term∇u ·ω on the right hand side is referred to as the vortex stretching term,
which is absent in the two dimensional case. Note that∇u is formally of the same
order as ω. In fact, if u decays sufficiently fast in the far field, one can show that
cp‖ω‖Lp ≤ ‖∇u‖Lp ≤ Cp‖ω‖Lp for 1 < p < ∞ with constants cp, Cp > 0
depending on p. Thus the vortex stretching term scales quadratically as a function
of vorticity, i.e. ∇u ·ω ≈ ω2. The vortex stretching term in the 3D Navier-Stokes
or Euler equations is the main source of difficulty in obtaining global regularity.

1.1 The De Gregorio model and its variant
In this paper, we study the finite time singularity of the 1D De Gregorio model

[13, 14] and its generalization. The De Gregorio model is a simplified model to
study the effect of advection and vortex stretching in the 3D incompressible Euler
equations. Specifically, the inviscid De Gregorio model is given below

(1.3) ωt + auωx = uxω , ux = Hω ,

where H is the Hilbert transform and a ∈ R is a parameter. In this 1D model, ω
models the vorticity ω in the 3D Euler equations (1.2) with ν = 0. The nonlinear
terms uωx and uxω model the advection term (u · ∇)ω and the vortex stretching
term ∇u · ω, respectively. The Biot-Savart law is modeled by ux = Hω, which
preserves the same scaling as that of the original Biot-Savart law. The case of
a = 0 is reduced to the well-known Constantin-Lax-Majda model [11], in which
the authors proved the finite time singularity formation for a class of smooth initial
data. The case of a = 1 was proposed by De Gregorio in [13] and its generalization
to a ∈ R was proposed by Okamoto et. al. in [41]. Throughout this paper, we call
equation (1.3) the De Gregorio (DG) model. There are various 1D models proposed
in the literature. We refer to [17, 28] for excellent surveys of other 1D models for
the 3D Euler equations and the surface quasi-geostrophic equation.

One important feature of the De Gregorio model is that it captures the competi-
tion between the advection term and the vortex stretching term. It is not hard to see
that when a < 0, the advection effect would work together with the vortex stretch-
ing effect to produce a singularity. Indeed, Castro and Córdoba [1] proved the finite
time blow-up for a < 0 based on a Lyapunov functional argument. For a > 0, there
are competing nonlocal stabilizing effect due to the advection and the destabilizing
effect due to vortex stretching, which are of the same order in terms of scaling.
Even for arbitrarily small a > 0, in which case we expect that the advection effect
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is much weaker than the vortex stretching, using the same Lyapunov functional
argument in [1] would fail to prove a finite time singularity since the control of the
solution through the Lyapunov functional is not strong enough. We remark that the
stabilizing effect of advection has also been studied by Hou-Li in [24] for an exact
1D model of the 3D axisymmetric Navier-Stokes equations along the symmetry
axis and by Hou-Lei for a 3D model of the axisymmetric Navier-Stokes equations
in [23].

The question of whether the De Gregorio model would develop a finite time
singularity for a > 0 has remained unsolved for some time, especially in the case of
a = 1. In a recent paper by Elgindi and Jeong [17], they constructed a smooth self-
similar profile for small |a| and aCα self-similar profile for all a ∈ R using a power
series expansion and an iterative construction. We note that the self-similar profiles
constructed in [17] decay slowly in the far field and the corresponding velocity u
does not have finite energy. In [35], Castro performed some preliminary study on
(1.3) with a = 1 both analytically and numerically and obtained finite time blowup
from C∞c initial data under some convexity and monotonicity assumptions on the
solution.

1.2 Main results
Let Ω, cl, cω be the solution of the self-similar equation of (1.3) given below

(1.4) (clx+ aU)Ωx = (cω + Ux)Ω, Ux = HΩ,

with cω < 0 and a self-similar profile Ω 6= 0 in some weighted H1 space. Then for
some given T > 0,

(1.5) ω(x, t) =
1

(T − t)|cω|
Ω

(
x

(T − t)γ

)
, γ = − cl

cω
,

is a self-similar singular solution of (1.3).
We define some notions about the self-similar singularities to be used in this

paper.

Definition 1.1 (Two types of asymptotically self-similar singularities). We say that
a singular solution ω of (1.3) is asymptotically self-similar if there exists a solution
of (1.4) (Ω, cl, cω) with Ω 6= 0 in some weightedH1 space and cω < 0 such that the
following statement holds true. By rescaling ω dynamically, i.e. Cω(t)ω(Cl(t)x, t)
for some time dependent scaling factors Cω(t), Cl(t) > 0, it converges to Ω as
t→ T− in some weighted L2 norm, where T > 0 is the blowup time. In addition,
we say that the asymptotically self-similar singularity is of the expanding type if
the self-similar solution (1.5) associated to (Ω, cl, cω) satisfies γ < 0 and of the
focusing type if γ > 0. We call γ the scaling exponent.

Remark 1.2. We will specify in later Sections the weighted L2 norm in which the
dynamically rescaled function of ω converges to the self-similar profile Ω in the
following Theorems. We will also specify in later Sections the stronger weighted
H1 norm that the self-similar profile Ω belongs to, so that the Hilbert transform
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Ux = HΩ is well defined and (Ω, cl, cω) is a solution of (1.4). In the case of small
|a|, we refer to Propositions 3.1, 3.2 and Section 3.3 for more precise statements.
Similar statements also apply to other cases.

Our first main result is regarding the finite time singularity of the original De
Gregorio model.

Theorem 1.3. There exist some C∞c initial data on R such that the solution of
(1.3) with a = 1 develops an expanding and asymptotically self-similar singularity
in finite time with scaling exponent γ = −1 and compactly supported self-similar
profile Ω ∈ H1(R).

Although the initial data and the self-similar profile Ω have compact support,
due to the expanding nature of the blowup, the support of the solution will become
unbounded at the blowup time.

Remark 1.4. Surprisingly, the blowup solution in Theorem 1.3 satisfies the prop-
erty that ||ω(x, t)/x||L∞ is uniformly bounded up to the blowup time (that is,
supt∈[0,T ) ||ω(x, t)/x||∞ < +∞), which can be seen from the special scaling ex-
ponent γ = −1 and the proof of Theorem 1.3.

Remark 1.5. The uniform boundedness of ||ω(t)/x||L∞ over [0, T ) implies that
ω(x, t) cannot blowup at any finite x, which is consistent with the expanding nature
of the blowup.

The second result is finite time blowup of (1.3) for small |a| with C∞c initial
data.

Theorem 1.6. There exists a positive constant δ > 0 such that for |a| < δ, the
solution of (1.3) with some C∞c initial data develops a focusing and asymptotically
self-similar singularity in finite time with self-similar profile Ω ∈ H1(R).

The third result is finite time blowup of (1.3) for all a with Cαc initial data.

Theorem 1.7. There exists C1 > 0 such that for 0 < α < min(1/4, C1/|a|),
the solution of (1.3) with some Cαc initial data develops a focusing and asymp-
totically self-similar singularity in finite time with self-similar profile Ω satisfying
|x|−1/2Ω ∈ L2 and |x|1/2Ωx ∈ L2.

The blowup results in Theorem 1.6 and Theorem 1.7 also hold for the De Gre-
gorio model on the circle.

Theorem 1.8. Consider (1.3) on the circle. (1) There exists C1 > 0 such that if
|a| < C1, the solution of (1.3) develops a singularity in finite time for some C∞c
initial data. (2) If 0 < α < min(1/4, C1/|a|), then the solution of (1.3) develops
a finite time singularity for some initial data ω0 ∈ Cα with compact support.

Remark 1.9. Due to the fact that (1.3) on a circle does not enjoy the perfect spatial
scaling symmetry, we do not establish the result on the asymptotically self-similar
singularity in the above theorem.
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The initial data ω0 we constructed for the previous theorems satisfied the prop-
erty that ω0 is odd and ω0 ≤ 0 for x > 0. Theorem 5 in the arXiv version of this
paper [7] shows that for large a > 0, the Hölder regularity with a small Hölder ex-
ponent α for ω0 in this class is crucial for the focusing asymptotically self-similar
blow-up.

Recently, the first author established finite time blowup of (1.3) on the circle
with 1 − δ < a < 1 from smooth initial data for some δ > 0 in [3]. This resolves
the endpoint case of the conjecture made in [17, 42] that equation (1.3) develops a
finite time singularity for a < 1 from smooth initial data in the case of a circle. We
remark that Theorems 1.3, 1.8 and the result in [3] do not rule out the possibility
that the De Gregorio model (1.3) with a = 1 is globally well-posed for smooth
initial data on the circle. In a recent paper by Jia, Stewart and Sverak [26], they
studied the De Gregorio model with a = 1 on a circle and proved the nonlinear
stability of the equilibrium A sin(2(θ − θ0)) of (1.3) for periodic solutions with
period π. In [30], Lei, Liu and Ren proved global well-posedness of the solution of
(1.3) with a = 1 on the real line or a circle for initial data ω0 that does not change
sign and |ω0|1/2 ∈ H1(S1). These results shed useful light on the DG model on
S1 for smooth solutions.

We remark that an important observation made by Elgindi and Jeong in [17] is
that the advection term can be substantially weakened by choosing Cα data with
small α. We use this property in the proof of Theorem 1.7. After we completed our
work, we learned from Dr. Elgindi that results similar to Theorems 1.6 and 1.7 have
recently been established independently by Elgindi, Ghoul and Masmoudi [16] on
the asymptotically self-similar solutions of (1.3) with finite energy and the stability
of the asymptotically self-similar blowup.

1.3 A novel method of analysis
One of the main contributions of this paper is that we introduce a novel method

of analysis that enables us to prove finite time singularity for the original De Gre-
gorio model with C∞c initial data. Our method of analysis consists of several steps.
The first step is to construct an approximate self-similar profile for the De Gre-
gorio model with a small residual error in some energy norm. The second step
is to perform linear stability analysis around this approximate self-similar profile
in the dynamic rescaling equation with some appropriately chosen normalization
conditions and energy norm. The third step is to establish nonlinear stability using
a bootstrap argument. See Section 2 for more details on these steps.

Finally, we choose an initial perturbation sufficiently small in the energy norm
so that the initial condition of the De Gregorio model has compact support and
show that the solution develops a singularity in finite time. Moreover, we prove that
the solution of the dynamic rescaling equation converges to the exact self-similar
solution exponentially fast in time in the weighted L2 norm. This enables us to
show that by rescaling the solution of (1.3) dynamically, it converges to the exact
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self-similar profile at the blowup time in the weighted L2 norm and the singularity
is asymptotically self-similar.

The method of analysis presented in this paper provides a promising new frame-
work to analyze potential finite time singularity of a nonlinear and nonlocal sys-
tem of partial differential equations. We have been able to generalize this method
of analysis in several aspects. The first author of this paper has generalized this
framework to prove finite time asymptotically self-similar blowup of (1.3) with
dissipation for certain range of a in [4]. We have also established finite time self-
similar blowup of the HL model proposed in [25,31] with C∞c initial data (see also
a recent paper in [9]). Recently the first two authors of this paper have been able
to generalize this framework to prove finite time blowup of the 2D Boussinesq and
3D axisymmetric Euler equations with C1,α velocity and boundary in [5], which
share the same symmetry and sign property as the Luo-Hou scenario [31, 32]. The
analysis of the HL model, 2D Boussinesq equations or the 3D Euler equations is
much more challenging than that of the De Gregorio model since it is a nonlinear
nonlocal system. We are currently working to extend our method of analysis to
prove the finite time blowup of the 2D Boussinesq system with smooth initial data.

Organization of the paper. In Section 2, we outline our general strategy that
we use to prove nonlinear stability for various cases. In Section 3, we study the
De Gregorio model with small |a|. In Section 4, we construct an approximate
self-similar profile with a small residual error numerically for the case of a = 1
and apply our method of analysis to prove the finite time self-similar blowup for
C∞c initial data. In Section 5, we study the case with any a ∈ R and prove finite
time singularity for any a ∈ R on both R and S1 for some Cα initial data with
compact support. Finally, in Section 6, we use a Lyapunov functional argument to
prove finite time blowup for all a < 0 with smooth initial data. In the Appendix,
we prove several useful properties of the Hilbert transform and some functional
inequalities.

Notations. Since the functions that we consider in this paper, e.g. ω, u, have
odd or even symmetry, we just need to consider R+. The inner product is defined
on R+, i.e.

〈f, g〉 ,
∫ ∞

0
fgdx, ||f ||Lp ,

(∫ ∞
0
|f |pdx

)1/p

.

In Section 4, we further restrict the inner product and the norm to the interval [0, L],
e.g 〈f, g〉 =

∫ L
0 fgdx, since the support of ω, ω̄ lies in [−L,L].

We use C,Ci to denote absolute constants and C(A,B, .., Z) to denote con-
stant depending on A,B, .., Z. These constants may vary from line to line, unless
specified. We also use the notation A . B if there is some absolute constant C
such that A ≤ CB, and denote A � B if A . B and B . A. We use →
to denote strong convergence and ⇀ to denote weak convergence in some norm.
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The upper bar notation is reserved for the approximate profile, e.g. ω̄. The letters
e, f, a1, a2, a3 are reserved for some parameters that we will choose in Section 4.

2 Outline of the general strategy in establishing nonlinear stability

Our general strategy in establishing nonlinear stability is to first construct an
approximate self-similar profile with a small residual error for the De Gregorio
model (1.3), then prove linear and nonlinear stability of this profile in the dynamic
rescaling equation (see equation (2.1) below). We use both analytic and numerical
approaches to construct the approximate self-similar profile in various cases. The
analytic approach is based on a class of self-similar profiles of the Constantin-Lax-
Majda model (CLM) [11], or equivalent (1.3) with a = 0, which are derived in [17].
In [17], the exact self-similar profiles of (1.3) with a 6= 0 are also constructed in
various cases. We remark that our analysis does not rely on these profiles of (1.3)
with a 6= 0.

In general, it is very difficult to construct a self-similar profile analytically. An
important observation is that the self-similar profile is equivalent to the steady state
of the dynamic rescaling equation. If we can solve the dynamic rescaling equa-
tion for long enough time numerically to obtain an approximate steady state with
a small residual error, this will give an approximate self-similar profile. Due to
this connection, we will not distinguish the approximate steady state of the dy-
namic rescaling equation and the approximate self-similar profile of the De Grego-
rio model throughout this paper. We will use this approach to obtain a piecewise
smooth approximate self-similar profile ω̄ with a small residual error for (1.3) in
the case of a = 1.

A very essential part of our analysis is to prove linear and nonlinear stability
of the approximate steady state of the dynamic rescaling equation. The dynamic
rescaling equation of (1.3) is given below

(2.1) ωt + (cl(t)x+ au)ωx = (cω(t) + ux)ω ,

where cl(t) and cω(t) are time-dependent scaling parameters. See (3.1)-(3.3) in
subsection 3.1 for more discussion on the dynamic rescaling formulation. Let
(ω̄, ū, c̄l, c̄ω) be an approximate steady state of the dynamic rescaling equation.
We define the linearized operator L(ω)

(2.2)
L(ω) = −(c̄lx+ aū)ωx + (c̄ω + ūx)ω + (ux + cω)ω̄ − (au+ clx)ω̄x,

ux = Hω,

where the scaling factors cl and cω, which depend on ω, will be chosen later. Let
ω be the perturbation around the approximate steady state ω̄. The stability around
ω̄ is reduced to analyzing the nonlinear stability of the dynamic equation

(2.3) ωt = L(ω) +N(ω) + F

around ω = 0. The perturbation ω lies in H(Ω), a Hilbert space on a domain
Ω. Here F = (c̄ω + ūx)ω̄ − (c̄lx + aū)ω̄x is the residual error and N(ω) =
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(cω + ux)ω − (clx + u)ωx is the non-linear operator. We remark that L(ω) and
N(ω) are nonlocal operators since ux = H(ω) is nonlocal. Due to the presence
of the non-linear operator N and the error term F , it is not sufficient to only show
that the spectrum of L has negative real parts.

Our approach is to first perform the weighted L2 estimate with appropriate
weight function ϕ to establish the linear stability (we drop the terms N(ω) and F
to illustrate the main ideas)

(2.4)
1

2

d

dt
〈ϕω, ω〉 = 〈ϕω,L(ω)〉 ≤ −λ〈ϕω, ω〉, ω ∈ H(Ω)

for some λ > 0 and then extend the above estimates to the weighted H1 estimates.
We can use a bootstrap argument to establish the nonlinear stability of (2.3), pro-
vided that F is sufficiently small in the energy norm.

We will focus on the linear stability (2.4) to illustrate the main ideas. The lin-
earized equation around some approximate self-similar profile (ω̄, ū, c̄l, c̄ω) reads

ωt = −(c̄lx+ aū)ωx + (c̄ω + ūx)ω + (ux + cω)ω̄ − (au+ clx)ω̄x .

The linear stability of the profile is mainly due to the damping effect from some
local terms and cancellation among several nonlocal terms.

2.1 Derivation of the damping term
The damping effect of the equation comes from two parts that depend locally

on ω: the stretching term (c̄lx+ aū)ωx and the vortex stretching term (c̄ω + ūx)ω.
An important observation of the approximate profile is that (c̄ω + ūx) is negative
for large |x|, thus the vortex stretching term (c̄ω + ūx)ω is a damping term for
large |x|. This is the main source of the damping effect for large |x|. However,
(c̄ω + ūx)ω is not a damping term for x near 0 since c̄ω + ūx is positive.

For x close to 0, we choose a singular weight x−k, k ∈ N+ to take advantage
of the stretching term. Performing the weighted L2 estimate, we get

(2.5)
1

2

d

dt
〈ω2, x−k〉 = 〈−(c̄lx+ aū)ωx + (c̄ω + ūx)ω, ωx−k〉

+ 〈(ux + cω)ω̄ − (au+ clx)ω̄x, ωx
−k〉 , I + II.

The profile we constructed satisfies c̄lx+ aū > 0 for all x > 0 and c̄lx+ aū ≈
Cx near x = 0 for some C > 0, which can be seen in later sections. Hence, we
make a simplified assumption that c̄lx+ aū = Cx for some C > 0 to illustrate the
idea. Using integration by parts, we obtain

I =
〈
− C(k − 1)

2
+ (c̄ω + ūx), ω2x−k

〉
, 〈D,ω2x−k〉 .

We will choose k so that the coefficient D is negative (we choose k = 4 for a = 1
and small |a|). In our analysis, the main damping term for x near 0 is obtained
from (c̄lx+aū)ωx. In addition, for large |x|, under the assumption (c̄lx+aū)ωx =
Cxωx, we can obtain a damping term from (c̄lx + aū)ωx in the L2(x−k) energy
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estimate after performing integration by parts provided that k − 1 > 0. In this
case, the weight x−k decays faster than x−1. Similar analysis and results also hold
for (c̄lx + aū)ωx in the range of large |x| without assuming c̄lx + aū = Cx for
all x and some C > 0. In order to control the perturbation ω in the far field, we
have to choose a weight ϕ that decays more slowly than x−1 so that the weighted
L2 norm of ω is not too weak for large |x|. As a result, (c̄lx + aū)ωx does not
produce a damping term for large |x| in our weighted L2 estimate after performing
integration by parts. This is one of the subtleties in our analysis.

The above derivations also apply to the case of a = 1, where the approximate
steady state ω̄ and the perturbation ω have finite support [−L,L]. The damping
term near x = 0 is mainly from (c̄lx+ ū)ωx, while the damping term near x = ±L
is mainly from (c̄ω + ūx)ω.

Another subtlety in our analysis is that we do not use a singular weight to derive
a damping term from (c̄lx+ ū)ωx in all cases with different a. In the case of a = 1,
we need to estimate the perturbation near the endpoints x = 0,±L carefully. We
choose a singular weight ϕ of order O((x−L)−2) near x = L in order to obtain a
sharp estimate of u. See more discussions in next Section.

2.2 Estimates of the nonlocal terms
The II term in (2.5) consists of several nonlocal terms that are difficult to con-

trol. To estimate the vortex stretching term (ux+cω)ω̄ in (2.5), we take full advan-
tage of the cancellation between ux and ω, see Lemmas A.3 and A.4. To control
the last term −(au + clx)ω̄x in (2.5), we have to choose appropriate functional
spaces (X,Y ) and develop several functional inequalities ||u||X ≤ CXY ||ω||Y
with a sharp constant CXY . For example, we need to make use of the isometry
property of the Hilbert transform. We remark that an overestimate of the constant
CXY could lead to the failure of the linear stability analysis since the effect of the
advection term can be overestimated. To implement the above ideas in obtaining
the damping term and estimating the nonlocal terms, we need to design the singular
weight very carefully. See (3.6) and (4.6) for some singular weights that are used
in our analysis.

We remark that some weighted Sobolev spaces with singular weights have been
used in [26, 30] for the nonlinear stability analysis of the steady state of (1.3) with
a = 1 on the circle. Singular weights similar to those in Sections 3, 5 and in
the form of linear combination of |x|−k have also been designed independently
in [15, 16] for the stability analysis.

2.3 Energy estimates with computer assistance
In the case of a = 1, we use computer-assisted analysis in the following as-

pects. As we discuss at the beginning of Section 2, we construct the approximate
self-similar profile numerically. We use numerical analysis with rigorous error
control to verify that the residual error is small in the energy norm. The key part
of the stability analysis is to use energy estimates to establish the linear stability.
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In the energy estimates, instead of bounding several coefficients by some abso-
lute constants, which leads to overestimates, we keep track of these coefficients.
Since these coefficients depend on the approximate self-similar profile constructed
numerically, we use numerical computation with rigorous error control to verify
several inequalities that involve these coefficients. See Sections 4.1, 4.3 and 4.4
for more discussions.

There is another computer-assisted approach to establish the stability by track-
ing the spectrum of a given operator and quantifying the spectral gap; see, e.g. [2].
The key difference between this approach and our approach is that we do not use
computation to quantify the spectral gap of the linearized operator L in (2.2). In
fact, the linearized operatorL is not a compact operator due to the Hilbert transform
ux = Hω and the non-compact part of L cannot be treated as a small perturbation.
Thus we cannot approximate the linearized operator by a finite rank operator which
can be estimated using numerical computation. We refer to [20] for an excellent
survey of other computer assisted proofs in PDE.

3 Finite Time Self-Similar Blowup for Small |a|

In this section, we will present the proof of Theorem 1.6. We use this example
to illustrate the main ideas in our method of analysis by carrying stability analysis
around an approximate self-similar profile with a small residual error by using a
dynamic rescaling formulation. In this case, we have an analytic expression for the
approximate steady state ω̄.

3.1 Dynamic rescaling formulation
We will prove Theorem 1.6 by using a dynamic rescaling formulation. Let

ω(x, t), u(x, t) be the solutions of the original equation (1.3), then it is easy to
show that

(3.1) ω̃(x, τ) = Cω(τ)ω(Cl(τ)x, t(τ)), ũ(x, τ) = Cω(τ)Cl(τ)−1u(Cl(τ)x, t(τ))

are the solutions to the dynamic rescaling equations

(3.2) ω̃τ (x, τ) + (cl(τ)x+ aũ)ω̃x(x, τ) = cω(τ)ω̃ + ũxω, ũx = Hω̃,

where
(3.3)

Cω(τ) = exp

(∫ τ

0

cω(s)dτ

)
, Cl(τ) = exp

(∫ τ

0

−cl(s)ds
)
, t(τ) =

∫ τ

0

Cω(τ)dτ .

We have the freedom to choose the time-dependent scaling parameters cl(τ) and
cω(τ) according to some normalization conditions. After we determine the nor-
malization conditions for cl(τ) and cω(τ), the dynamic rescaling equation is com-
pletely determined and the solution of the dynamic rescaling equation is equiv-
alent to that of the original equation using the scaling relationship described in
(3.1)-(3.3), as long as cl(τ) and cω(τ) remain finite. We remark that the dynamic
rescaling formulation was introduced in [29,36] to study the self-similar blowup of
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the nonlinear Schrödinger equations. This formulation is also called the modula-
tion technique in the literature and has been developed by Merle, Raphael, Martel,
Zaag and others. It has been a very effective tool to analyze the formation of sin-
gularities for many problems such as the nonlinear Schrödinger equation [27, 37],
the nonlinear wave equation [39], the nonlinear heat equation [38], the generalized
KdV equation [34], and other dispersive problems.

If there exist C, c > 0 such that for any τ > 0, cω(τ) ≤ −C < 0 and |ω̃| is
bounded from below ||ω̃(·, τ)||L∞ ≥ c for all τ > 0, we then have

Cω(τ) ≤ e−Cτ , t(∞) ≤
∫ ∞

0
e−Cτdτ = C−1 < +∞ ,

and that ||ω(·, t(τ)||L∞ = ||ω(Cl(τ)·, t(τ))||L∞ = Cω(τ)−1||ω̃(x, τ)||L∞ ≥ ceCτ
blows up in finite time T = t(∞). Suppose that ω̃(τ) converges to Ω∞ in some
weighted L2 norm and cl(τ), cω(τ) converge to cl,∞, cω,∞, respectively, as τ →
∞, with (Ω∞, cl,∞, cω,∞) being a steady state of (3.2) and Ω∞ 6= 0 in some
weighted H1 space. Since the steady state equation of (3.2) is the same as the
self-similar equation (1.4), we can use (1.5) to obtain a self-similar singular solu-
tion of (1.3). We refer to Propositions 3.1, 3.2 and Section 3.3 for more details
about the convergence and the regularity of Ω∞ in the case of small |a|. Similar
statements apply to other cases.

To simplify our presentation, we still use t to denote the rescaled time in the
rest of the paper.

3.2 Nonlinear stability of the approximate self-similar profile
Consider the dynamic rescaling equation

(3.4) ωt + (clx+ au)ωx = (cω + ux)ω, ux = Hω.

For a = 0, we have the following analytic steady state obtained in [17]

(3.5) ω̄ =
−x

b2 + x2
, ūx =

b

b2 + x2
, cl = 1, cω = −1 ,

where b = 1/2. The above steady state can also be obtained by using the exact
formula of the solution of (1.3) with a = 0 given in [11] and analyzing the profile
for smooth solution near the blowup time.

We will use the strategy and the general ideas outlined in Section 2 to establish
the linear and nonlinear stability of the approximate self-similar profile.

Choosing an appropriate singular weight function plays a crucial role in the
stability analysis. We will use the following weight functions in our L2 and H1

estimates:

ϕ = − 1

ω̄x3
− 1

b2ω̄x
=

(b2 + x2)2

b2x4
,(3.6)

ψ = x2ϕ = − 1

ω̄x
− x

b2ω̄
=

(b2 + x2)2

b2x2
,(3.7)



12 J. CHEN, T. Y. HOU, AND D. HUANG

where ω̄ is defined in (3.5) and b = 1/2. Note that ϕ � x−4 +1 and ψ � x−2 +x2.
Theorem 1.6 is the consequence of the following two propositions.

Proposition 3.1. Let ω̄, ϕ, ψ be the function and weights defined in (3.5), (3.6) and
(3.7). There exist some absolute constants a0, µ, c > 0, such that if |a| < a0 and
the initial data ω̄ + ω0 of (3.4) (ω0 is the initial perturbation) satisfies that ω0 is
odd, ω0 ∈ H2, ω0,x(0) = 0 and E(0) < c|a|, where

E2(t) , 〈ω2(t), ϕ〉+ µ〈ω2
x(t), ψ〉,

then we have (a) In the dynamic rescaling equation (3.4), the perturbation remains
small for all time: E(t) < c|a| for all t > 0; (b) The physical equation (1.3) with
initial data ω̄ + ω0 develops a singularity in finite time.

Proposition 3.2. There exists some universal constant δ with 0 < δ < a0 such that,
if |a| < δ and the initial perturbation ω0 satisfies the assumptions in Proposition
3.1, then the solution of the dynamic rescaling equation (3.4), (ω̄+ω, c̄l + cl, c̄ω +
cω), converges to (Ω∞, cl,∞, cω,∞) with Ω∞ − ω̄ ∈ L2(ϕ),Ω∞,x − ω̄x ∈ L2(ψ),
cl,∞ > 0, cω,∞ < 0. Moreover, ω̄ + ω converges to Ω∞ in L2(ϕ) exponentially
fast and (Ω∞, cl,∞, cω,∞) is the steady state of (3.4). In particular, the physical
equation (1.3) with initial data ω̄ + ω0 develops a focusing and asymptotically
self-similar singularity in finite time with self-similar profile Ω∞ ∈ H1(R).

In the Appendix, we describe some properties of the Hilbert transform. We will
use these properties to estimate the velocity.

Proof of Proposition 3.1. For any |a| ≤ a0, where a0 > 0 is to be determined, we
consider the following approximate self-similar profile by perturbing cl in (3.5) :

(3.8)
ω̄ =

−x
b2 + x2

, ūx = Hω̄ =
b

b2 + x2
, ū = arctan

x

b
,

c̄l = 1− aūx(0) = 1− 2a, c̄ω = −1 ,

where b = 1/2. We consider the equation for perturbation ω, u around the above
approximate self-similar profile

(3.9) ωt+(c̄lx+aū)ωx = (c̄ω+ūx)ω+(ux+cω)ω̄−(au+clx)ω̄x+N(ω)+F (ω̄) ,

where N and F are the nonlinear terms and the error, respectively, and are defined
below:

(3.10) N(ω) = (cω + ux)ω − (clx+ au)ωx, F (ω̄) = −a(ū− ūx(0)x)ω̄x .

We choose the following normalization condition for cl and cω

(3.11) cl(t) = −aux(t, 0), cω(t) = −ux(t, 0).

Note that ω̄ is smooth and odd, the initial data ω0 + ω̄ ∈ H2 and the evolution of
(3.4) preserves the odd symmetry of the solution. Standard local well-posedness
results imply that ω(t, ·) + ω̄ remains in H2 locally in time, so does ω(t, ·). Using
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the above normalization condition, the original equation (3.4) and the fact that ω, u
are odd, we can derive the evolution equation for ωx(t, 0) as follows
d

dt
(ωx(t, 0) + ω̄x(0)) = [(cω + c̄ω + ux + ūx)(ω̄ + ω)]x

∣∣∣
x=0

− [(c̄lx+ aū+ clx+ au)(ωx + ω̄x)]x

∣∣∣
x=0

= [(cω + c̄ω + ux + ūx)− (c̄l + cl + aūx + aux)](ω̄x + ωx)
∣∣∣
x=0

= [(c̄ω + ūx)− (c̄l + aūx)](ω̄x + ωx)
∣∣∣
x=0

= 0,

where we have used (3.8) and ūx(0) = 2 to obtain the last equality. It follows

(3.12)
d

dt
ωx(t, 0) =

d

dt
(ωx(t, 0) + ω̄x(0)) = 0,

which implies ωx(t, 0) ≡ ω0,x(0).
In the following discussion, our goal is to construct an energy functionalE2(ω) ,

〈ω2, ϕ〉+µ〈ω2
x, ψ〉 for some universal constant µ and show thatE satisfies an ODE

inequality
1

2

d

dt
E2(ω) ≤ CE3 − (1/4− C|a|)E2 + C|a|E,

for some universal constant C. Then we will use a bootstrap argument to establish
nonlinear stability.

Linear Stability. We use ϕ defined in (3.6) for the following weighted L2 es-
timates. Note that ϕ is singular and is of order O(x−4) near x = 0. For an initial
perturbation ω0 ∈ H2 that is odd and satisfies ω0,x(0) = 0, ω(t, ·) preserves these
properties locally in time (see (3.12)). We will choose ω0(x) that has O(|x|−1)
decay as |x| → ∞ (same decay as ω̄). Hence, 〈ω2, ϕ〉 is finite. We perform the
weighted L2 estimate

(3.13)

1

2

d

dt
〈ω2, ϕ〉 = 〈−(c̄lx+ aū)ωx + (c̄ω + ūx)ω, ωϕ〉+ 〈(ux + cω)ω̄, ωϕ〉

− 〈(au+ clx)ω̄x, ωϕ〉+ 〈N(ω), ωϕ〉+ 〈F (ω̄), ωϕ〉
, I + II + III +N1 + F1.

For I , we use integration by parts to obtain

I =
〈 1

2ϕ
((c̄lx+ aū)ϕ)x + (c̄ω + ūx), ω2ϕ

〉
.

Recall c̄l = 1 − 2a (3.8). Using the explicit formula of profile (3.8) and weight
(3.6), we can evaluate the terms in I that do not involve a as follows
(3.14)

1

2ϕ
(xϕ)x + (c̄ω + ūx) =

b2x4

2(b2 + x2)2

(
(b2 + x2)2

b2x3

)
x

+
b

b2 + x2
− 1

=
b2x4

2(b2 + x2)2

(
4
x(b2 + x2)

b2x3
− 3

(b2 + x2)2

b2x4

)
+

b

b2 + x2
− 1 =

2x2 + b

x2 + b2
− 5

2
= −1

2
,
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where we have used b = 1/2. From (3.8) and (3.6), we have

(3.15)

∣∣∣∣∣∣ 1

2ϕ
[(c̄lx− x+ aū)ϕ]x

∣∣∣∣∣∣
L∞

=|a|
∣∣∣∣∣∣ 1

2ϕ
((−2x+ ū)ϕ)x

∣∣∣∣∣∣
L∞

≤ |a|
∣∣∣∣∣∣−2 + ūx

2
+
−2x+ ū

x

xϕx
2ϕ

∣∣∣∣∣∣
L∞

≤|a|(1 + ||ūx||∞)

(
1 +

∣∣∣∣∣∣xϕx
ϕ

∣∣∣∣∣∣
∞

)
. |a|.

Hence, we can estimate I as follows

(3.16) I =
〈 1

2ϕ
((c̄lx+ aū)ϕ)x + (c̄ω + ūx), ω2ϕ

〉
≤ −

(
1

2
− C|a|

)
〈ω2, ϕ〉 ,

for some absolute constant C. Denote ũ , u(x)− ux(0)x. (3.11) implies that

clx+ au = aũ, ũx = ux + cω.

Using the definition of II in (3.13),(A.5) and (A.6), we obtain

(3.17) II = −
〈

(ux − ux(0))ω,
1

x3
+

1

b2x

〉
= − π

2b2
u2
x(0) ≤ 0.

For III , we use the Cauchy–Schwarz inequality to get

(3.18) III = −a〈ũω, ω̄xϕ〉 ≤ |a|
∣∣∣∣∣∣ũ√x−6 + x−4

∣∣∣∣∣∣
2

∣∣∣∣∣∣ω̄x (x−6 + x−4
)−1/2

ϕω
∣∣∣∣∣∣
2
.

For ũ, we use the Hardy inequality (A.8) to obtain

(3.19) 〈ũ2, x−6 + x−4〉 . 〈ũ2
x, x
−4 + x−2〉 . 〈ω2, x−4 + x−2〉 . 〈ω2, ϕ〉 .

Note that (3.8) and (3.6) implies∣∣∣ω̄x (x−6 + x−4
)−1/2

ϕ
∣∣∣ =

∣∣∣ −b2 + x2

(b2 + x2)2
· x3

(x2 + 1)1/2
· b

2 + x2

bx2
ϕ1/2

∣∣∣ . ϕ1/2.

We get

(3.20) III ≤ C|a|〈ω2, ϕ〉.

Combining the estimates (3.16), (3.17) and (3.20), we obtain

(3.21)
1

2

d

dt
〈ω2, ϕ〉 ≤ −(1/2− C|a|)〈ω2, ϕ〉+N1 + F1 .

Weighted H1 estimate. The weighted H1 estimate is similar to the L2 esti-
mate. We use the weight ψ defined in (3.7) and perform the weightedH1 estimates

(3.22)

1

2

d

dt
〈ω2
x, ψ〉 = 〈−((c̄lx+ aū)ωx)x + ((c̄ω + ūx)ω)x, ωxψ〉

+ 〈((ux + cω)ω̄)x, ωxψ〉 − 〈((au+ clx)ω̄x)x, ωxψ〉
+ 〈N(ω)x, ωxψ〉+ 〈F (ω)x, ωxψ〉

, I + II + III +N2 + F2 .
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For I , we obtain by using integration by parts that

I = 〈−(c̄lx+ aū)ωxx + (−c̄l − aūx + c̄ω + ūx)ωx + ūxxω, ωxψ〉

=
〈 1

2ψ
((c̄lx+ aū)ψ)x + (c̄ω − c̄l + (1− a)ūx), ω2

xψ
〉
−
〈1

2
(ūxxψ)x, ω

2
〉
.

Similar to (3.14), we use formula (3.8), (3.7) to evaluate the terms that do not
involve a.

1

2ψ
(xψ)x + (c̄ω − 1 + ūx) =

b2x2

2(b2 + x2)2

(
(b2 + x2)2

b2x

)
x

− 2 +
b

b2 + x2
= −1

2
,

(ūxxψ)x =

(
− 2bx

(b2 + x2)2
· (b2 + x2)2

b2x2

)
x

=
2

bx2
> 0 .

Similar to (3.15), we use (3.8) and (3.7) to show that the remaining terms in I are
small. We get ∣∣∣∣∣∣ 1

2ψ
((c̄lx− x+ aū)ψ)x − (c̄l − 1)− aūx

∣∣∣∣∣∣
L∞

=|a|
∣∣∣∣∣∣ 1

2ψ
((−2x+ ū)ψ)x + 2− ūx

∣∣∣∣∣∣
l∞
. |a|,

where we have used c̄l − 1 = −2a. Therefore, we can estimate I as follows

(3.23) I ≤ −(
1

2
− C|a|)〈ω2

x, ψ〉,

where C is some absolute constant. For II , we have

(3.24)
II = 〈((ux + cω)ω̄)x, ωxψ〉 = 〈uxxω̄, ωxψ〉+ 〈(ux + cω)ω̄x, ωxψ〉

= −
〈
uxxωx,

1

x
+
x

b2

〉
− 〈ũx, ωxω̄xψ〉 , II1 + II2 ,

where ũ = u− ux(0)x, ũx = ux − ux(0). Note that

uxx = Hωx, ωx(0) = uxx(0) = 0.

Applying (A.5) with (ux, ω) replaced by (uxx, ωx) and (A.7), we obtain

(3.25)
〈
uxxωx,

1

x

〉
= 0, 〈uxxωx, x〉 = 0.

It follows that

(3.26) II1 = −
〈
uxxωx,

1

x

〉
− 1

b2
〈uxxωx, x〉 = 0.

For II2 in (3.24), we use an argument similar to (3.18) to obtain

|II2| . 〈ũ2
x, x
−4 + x−2〉1/2 · 〈(x−4 + x−2)−1(ω̄xψ)2, ω2

x〉1/2.

(3.19) shows that this first term in the RHS is bounded by 〈ω2, ϕ〉1/2. For the
second term, we use the definition (3.8) and (3.7) to obtain∣∣∣(x−4 + x−2)−1(ω̄xψ)2

∣∣∣ =
∣∣∣ x4

x2 + 1

(
−b2 + x2

(b2 + x2)2

)2
(b2 + x2)2

b2x2

∣∣∣ψ . ψ.
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Hence, we have

(3.27) II2 . 〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2.

For III in (3.22), we note that clx+ au = a(u− ux(0)x). Similarly, we have

(3.28) |III| . |a|〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2.

In summary, combining (3.23),(3.24), (3.26), (3.27) and (3.28), we prove that

(3.29)
1

2

d

dt
〈ω2
x, ψ〉 ≤ C〈ω2, ϕ〉1/2〈ω2

x, ψ〉1/2 − (
1

2
− C|a|)〈ω2

x, ψ〉+N2 + F2,

where C is some absolute constant.
Estimate of nonlinear and error terms. We use the following estimate to con-

trol ‖ux‖∞

||ux||∞ ≤ C||ux||1/22 ||uxx||
1/2
2 = C||ω||1/22 ||ωx||

1/2
2 ≤ C〈ω2, ϕ〉1/4〈ω2

x, ψ〉1/4.
Recall the definition of N(ω), F (ω̄) in (3.10). For the nonlinear part N1, N2, we
have

(3.30)
N1 = 〈N(ω), ωϕ〉 . (|a|+ 1)||ux||∞〈ω2, ϕ〉 . ||ux||∞〈ω2, ϕ〉 ,
N2 = 〈N(ω)x, ωxψ〉 . (|a|+ 1)||ux||∞〈ω2

x, ψ〉 . ||ux||∞〈ω2
x, ψ〉,

where we use that |a| < 1 since we only consider small |a| in Theorem 1.6. We
note that F (ω̄) (3.10) satisfies F (ω̄) = O(x3) near 0 and F (ω̄) = O(x−1) for large
x. From (3.6) and (3.7), we have F (ω̄) ∈ L2(ϕ) and (F (ω̄))x ∈ L2(ψ). Then for
the error terms F1, F2, we can use the Cauchy–Schwarz inequality to obtain

(3.31)
|F1| = |〈F (ω̄), ωϕ〉| ≤ 〈F 2(ω̄), ϕ〉1/2〈ω2, ϕ〉1/2 . |a|〈ω2, ϕ〉1/2 ,

|F2| = |〈(F (ω̄))x, ωxψ〉| ≤ 〈(F (ω̄))2
x, ψ〉1/2〈ω2

x, ψ〉1/2 . |a|〈ω2
x, ψ〉1/2.

Nonlinear Stability. Let µ < 1 be some positive parameter to be determined.
We consider the following energy norm

E2(t) , 〈ω2, ϕ〉+ µ〈ω2
x, ψ〉.

Using the previous estimates on ux and the Cauchy–Schwarz inequality, we have

〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2 ≤ µ−1/2E2, ||ux||∞ ≤ C〈ω2, ϕ〉1/4〈ω2

x, ψ〉1/4 ≤ Cµ−1/4E.

Combining (3.21), (3.29), (3.30), (3.31) and the above estimate, we derive
1

2

d

dt
E2(t) ≤ −

(
1

2
− C|a|

)
E2 + Cµ〈ω2, ϕ〉1/2〈ω2

x, ψ〉1/2 + C|a|E + C||ux||∞E2

≤ −
(

1

2
− C|a| − C√µ

)
E2 + C|a|E + Cµ−1/4E3 ,

whereC is some absolute constant. Now we choose µ such thatC
√
µ < 1/4. Note

that µ is also a universal constant. It follows that

(3.32)
1

2

d

dt
E2(t) ≤ −

(
1

4
− C1|a|

)
E2 + C1|a|E + C1E

3 ,
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where C1 is a universal constant. For cω(t) and cl(t), they satisfy the following
estimate

|cω(t)| = |ux(t, 0)| ≤ C2E, |cl(t)| = |aux(0)| ≤ C2E ,

for some absolute constant C2. Hence there exist absolute constants a0, c > 0 with
C1a0 < 1/8, such that for |a| < a0, if E(0) < c|a|, using a bootstrap argument,
we obtain

(3.33) E(t) < c|a|, |cω(t)|, |cl(t)| ≤ C2E(t) < C2c|a|,

for all t > 0. We can further require

a0 < min(
1

8C1
,

1

2C2c
) ,

so that we get |cω(t)|, |cl(t)| < C2c|a| < 1
2 , which implies

(3.34) c̄ω + cω(t) < −1/2, cl(t) + c̄l > 1/2.

As a result, we can choose small initial perturbation ω0 which modifies ω̄ in
the far field so that we have an initial data ω̄ + ω0 with compact support. We can
also require that ω0,x(0) = 0 and E(0) < c|a|. Then the bootstrap result and
c̄ω + cω(τ) < −1/2 < 0 imply the finite time blowup. We conclude the proof of
Proposition 3.1. �

Based on the a-priori estimate, we can further obtain the convergence result.

3.3 Convergence to the self-similar solution
Proof of Proposition 3.2. An important observation is that the approximate self-
similar profile is time-independent. Therefore, we take the time derivative in (3.9)
to obtain

(3.35)
ωtt + (c̄lx+ aū)ωtx = (c̄ω + ūx)ωt + (ux,t + cω,t)ω̄

− (aut + cl,tx)ω̄x +N(ω)t ,

where the error term F (ω̄) vanishes since it depends on the approximate self-
similar profile only. Note that the normalization condition also implies

d

dt
ωx(t, 0) = 0.

Exponential convergence. Note that the linearized operator in (3.35) is exactly
the same as that in the weighted L2 estimate (3.9). Therefore, we obtain

(3.36)
1

2

d

dt
〈ω2
t , ϕ〉 ≤ −(1/2− C|a|)〈ω2

t , ϕ〉+ 〈N(ω)t, ωtϕ〉.

The nonlinear part reads

N(ω)t = (cω,t + ux,t)ω + (cω + ux)ωt − (cl,tx+ aut)ωx − (clx+ au)ωx,t

, I + II + III + IV ,
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where cω,t = −ux,t(0), cl,t = −aux,t(0) according to the (3.11). We are going to
show that

(3.37) |〈N(ω)t, ωtϕ〉| . E(t)〈ω2
t , ϕ〉.

From previous estimates, we can control ||ω||∞, ||ux||∞, ||ux ||L∞ , |cω|, |cl| by
E(t). Using (A.8) with p = 2, 4, x−4 + x−2 . ϕ (see (3.6)) and the L2 isometry
of the Hilbert transform, we have

||(ux − ux(0))(x−4 + x−2)1/2||2 . ||ωϕ1/2||L2 . E(t),

||(ux,t − ux,t(0))(x−4 + x−2)1/2)||2 . ||ωtϕ1/2||L2 .

Moreover, we have∣∣∣ut(x)

x

∣∣∣ =
1

π

∣∣∣ ∫
y>0

log
∣∣∣x+ y

x− y

∣∣∣1
x
ωt(y)dy

∣∣∣
. 〈ω2

t , ϕ〉1/2
〈(

log
∣∣∣x+ y

x− y

∣∣∣1
x

)2

, ϕ−1
〉1/2

. 〈ω2
t , ϕ〉1/2.

Taking x = 0 in the above estimate, we also yield the bound for |ux,t(0)| and thus
that for |cω,t|, |cl,t|. The tail behavior of ϕ (3.6) satisfies

ϕ =
b2

x4
+

2

x2
+

1

b2
= O(x−2) + b−2, ϕ− b−2 =

b2

x4
+

2

x2
< ϕ.

Recall ũ = u − ux(0)x and (3.11). We can estimate different parts of N(ω)t as
follows

|〈I, ωtϕ〉| ≤ |〈(cω,t + ux,t)ω, ωt(ϕ− b−2)〉|+ b−2|〈(cω,t + ux,t)ω, ωt〉|

. 〈ũ2x,t, (x−4 + x−2〉1/2||ω||∞〈ω2
t , ϕ〉1/2 + b−2|cω,t|||ω||2||ωtϕ1/2||2

+ b−2||ux,t||2||ω||∞||ωt||2 . E(t)〈ω2
t , ϕ〉 ,

〈II + IV, ωtϕ〉 =
〈
cω + ux +

((clx+ au)ϕ)x
2ϕ

, ω2
tϕ〉
〉

. ||ux||∞〈ω2
t , ϕ〉 . E(t)〈ω2

t , ϕ〉 ,

〈III, ωtϕ〉 =
〈
cl,t + a

ut
x
, ωxxϕ

1/2ωtϕ
1/2〉

.
∣∣∣∣∣∣cl,t + a

ut
x

∣∣∣∣∣∣
∞
||ωxϕ1/2x||2||ωtϕ1/2||2 . E(t)〈ω2

t , ϕ〉,

where we have used |xϕx/ϕ| . 1 to estimate II + IV and ||ωxϕ1/2x||2 =

||ωxψ1/2||2 . E(t) to obtain the last inequality. In summary, we have proved
(3.37). Consequently, by substituting the above estimates and (3.33) into (3.36),
we obtain

1

2

d

dt
〈ω2
t , ϕ〉 ≤ −(1/2− C|a|)〈ω2

t , ϕ〉+ C3E(t)〈ω2
t , ϕ〉

≤ −(1/2− C|a|)〈ω2
t , ϕ〉+ C3c|a|〈ω2

t , ϕ〉
= −(1/2− C|a| − C3c|a|)〈ω2

t , ϕ〉
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for some universal constant C3. Thus, there exists 0 < δ < a0 such that

Cδ + C3cδ <
1

4
.

Hence, if |a| < δ, we obtain

(3.38)
d

dt
〈ω2
t , ϕ〉 ≤ −(1/2− C|a| − C3c|a|)〈ω2

t , ϕ〉 ≤ −
1

4
〈ω2
t , ϕ〉.

It follows that 〈ω2
t , ϕ〉 converges to 0 exponentially fast as t→∞ and that ω(t) is

a Cauchy sequence in L2(ϕ) as t→∞. It admits a limit ω∞ and we have

(3.39) ||(ω(t)− ω∞)ϕ1/2||2 ≤ e−t/4.

According to the a-priori estimate 〈ωx(t, ·)2, ψ〉 < E2(t) < (ca)2, there is a subse-
quence ω(tn) of ω(t), such that ωx(tn)ψ1/2 converges weakly in L2, and the limit
must be ω∞,xψ1/2. Therefore, we conclude that ω∞ ∈ L2(ϕ) and ω∞,x ∈ L2(ψ).
Using these convergence results, we obtain

(3.40) cl(t) = −aux(t, 0)→ −aHω∞(0), cω = −ux(t, 0)→ −Hω∞(0),

as t→∞. Using the formulas of ω̄ in (3.5), ϕ,ψ in (3.6) and the above result, we
obtain ω∞, ω̄ ∈ H1(R), which implies ω∞ + ω̄ ∈ H1(R).

Convergence to self-similar solution. Finally, we verify that ω∞ + ω̄ with
some cl,∞, cω,∞ is a steady state of (3.4).

We use Ω, U, κl, κω to denote the original solution of (3.4)

Ω = ω + ω̄, U = u+ ū, κl = cl + c̄l, κω = cω + c̄ω.

In particular, we define (Ω∞, U∞) by

Ω∞ = ω∞ + ω̄, U∞,x = H(Ω∞).

Notice that

ωt = Ωt = (κω + Ux)Ω− (κlx+ aU)Ωx , K(t).

Due to the exponential convergence (3.38), we have

(3.41) 〈K(t)2, ϕ〉 → 0 as t→ +∞.

Suppose that {ω(tn, ·)}n≥1 is a subsequence of {ω(t, ·)}t≥0 such that as n →
∞, tn → ∞ and ωx(tn)ψ1/2 converges weakly to ω∞,xψ1/2 in L2. From (3.39),
we obtain that {ω(tn)}n≥1 converges strongly to ω∞ in L2(ϕ). Therefore, Ω(tn)−
Ω∞ converges strongly to 0 in L2(ϕ) and Ωx(tn)ψ1/2 − Ω∞,xψ

1/2 converges
weakly to 0 in L2. From (3.40), we obtain that κl(tn), κω(tn) converge to some
scaling factors cl,∞, cω,∞, respectively.

Using these convergence results, the relation ψ = x2ϕ between two weights
and the standard convergence argument, we obtain that K(tn)ϕ1/2 − K(∞)ϕ1/2
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converges weakly to 0 in L2, i.e.

((κω + Ux)Ω− (κlx+ aU) Ωx)ϕ1/2

−((cω,∞ + U∞,x)Ω∞ − (cl,∞x+ aU∞)Ω∞,x)ϕ1/2 ⇀ 0.

We refer to the arXiv version of this paper [7] for the detailed proof of this result.
Note that (3.41) shows that K(tn)→ 0 in L2(ϕ). We get

(cω,∞ + U∞,x)Ω∞ − (cl,∞x+ aU∞)Ω∞,x = 0

in L2(ϕ). The a-priori estimate (3.34) and the convergence result imply that
cl,∞ > 1/2 > 0, cω,∞ < −1/2 < 0. Therefore, the solution Ω(t) in the dynamic
rescaling equation converges to Ω∞ inL2(ϕ) and (Ω∞, cl,∞, cω,∞) is a steady state
of (3.4), or equivalently, a solution of the self-similar equation (1.4). Using the
rescaling relations (3.1) and (3.3), we obtain that the singularity is asymptotically
self-similar. Since γ = − cl,∞

cω,∞
> 0, the asymptotically self-similar singularity is

focusing. The regularity Ω∞ ∈ H1(R) follows from the result below (3.40). �

Remark 3.3. An argument similar to that of proving convergence to the self-similar
solutions by time-differentiation given above has been developed independently
in [15]. There is a difference between two approaches in the sense that an artificial
time variable was introduced in [15], while we use the dynamic rescaling time
variable.

4 Finite Time Blowup for a = 1 with C∞
c Initial Data

In this section, we will prove Theorem 1.3 regarding the finite time self-similar
blowup of the original De Gregorio model with a = 1. Compared to the De Grego-
rio model with small |a| analyzed in the previous Section, the case of a = 1 is much
more challenging since we do not have a small parameter a in the advection term
uωx. The smallness of |a| has played an important role both in the construction of
analytic approximate self-similar profile (3.8) and the stability analysis, where we
treat the advection term as a small perturbation. We will use the same method of
analysis presented in the previous section except that the approximate steady state
is constructed numerically. Since our approximate steady state is constructed nu-
merically, we also present a general strategy how to obtain rigorous error bounds
for various terms using Interval arithmetic guided by numerical error analysis, see
subsection 4.3.

To begin with, we consider (1.3) with a = 1. The associated dynamic rescaling
equation reads

(4.1) ωt + (clx+ u)ωx = (cω + ux)ω , ux = Hω .

For an odd initial datum ω0 supported in [−L,L], we use the following normaliza-
tion conditions

(4.2) cl = −u(L)

L
, cω = cl.
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We fix L = 10. With the above conditions, we have (clx+ u)
∣∣∣
x=±L

= 0 and

(4.3)
∂tωx(t, 0) = ∂x((ux + cω)ω − (clx+ u)ωx)

∣∣∣
x=0

= (cω + ux(t, 0)− cl − ux(t, 0))ωx(t, 0) = 0.

Thus ωx(t, 0) remains constant and x = ±L is a stationary point of (4.1) and
the support of ω will remain in [−L,L], as long as the solution of the dynamic
rescaling equation remains smooth.

The reader who is not interested in the numerical computation can skip the
following discussion on the numerical computation and go directly to Section 4.1
and later subsections for the description of the approximate profile and the analysis
of linear stability.

4.1 Construction of the approximate self-similar profile
We approximate the steady state of (4.1) numerically by using the normalization

conditions (4.2). Since ω is supported on [−L,L] and remains odd for all time, we
restrict the computation in the finite domain [0, L] and adopt a uniform discretiza-
tion with grid points xi = ih, i = 0, 1, .., n = 8000, h = L/8000. In what follows,
the subscript i of ωki stands for space discretization, and the superscript k stands for
time discretization. We solve (4.1) numerically using the following discretization
scheme:

(1) Initial guess is chosen as ω0
i = −L−xi

π sin(πxiL ), i = 0, 1, .., n.
(2) The whole function ωk is obtained from grid point values wki using a stan-

dard cubic spline interpolation on [−L,L], with odd extension of wk on
[−L, 0]. We approximate wkx,i at the boundary using a second order ex-
trapolation:

wkx(−L) = wkx(L) = wkx,n =
3ωkn − 4ωkn−1 + ωkn−2

2h
.

The resulting ωk is a piecewise cubic polynomial and ωk ∈ C2,1. The
derivative point values wkx,i are evaluated to be wkx(xi).

(3) The values of uk and ukx at grid points are obtained using the kernel inte-
grals:

uki =
1

π

∫ L

0
ωk(y) log

∣∣∣∣xi − yxi + y

∣∣∣∣ dy, ukx,i =
1

π

∫ L

0

2y

x2
i − y2

ωk(y)dy.

In particular, for each xi, the contributions to the above integrals from
the neighboring intervals [xi−m, xi+m] are integrated explicitly using the
piecewise cubic polynomial expressions of ω; the contributions from the
intervals [0, L]\[xi−m, xi+m] are approximate by using a piecewise 8-point
Legendre-Gauss quadrature, in order to avoid large round-off error. We
choose m = 8. We compute ukxx similarly and will use it later.
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FIGURE 4.1. Approximate self-similar profile

(4) The integration in time is performed by the 4th order Runge-Kutta scheme
with adaptive time stepping. The discrete time step size ∆tk = tk+1 − tk
is given by ∆tk = 1

2
h

maxi |clxi+uki |
, respecting the CFL stability condition

|clx+ uk| h∆tk
≤ 1.

(5) After each time step, we apply a local smoothing on wki to prevent oscilla-
tion:

wki ←−
1

4
wki−1 +

1

2
wki +

1

4
wki+1, i = 1, . . . , n− 1.

Our computation stops when the pointwise residual

F kω,i = (ckω + ukx,i)ω
k
i − (ckl xi + uki )ω

k
x,i

satisfies maxi |F kω,i| ≤ 10−5. Then we use ω̄ = ωk as our approximate self-similar
profile. The corresponding scaling factors are

c̄l = c̄ω = −0.6991

by rounding up to 4 significant digits.
We remark that we observe second order convergence in space and fourth order

convergence in time for the numerical method described above. However, we do
not actually need to do convergence study (by refining the discretization) for our
scheme, as we can measure the accuracy of our approximate self-similar profile
a posteriori. The criterion for a good approximate self-similar profile is that it is
piecewise smooth and has a small residual error in the energy norm.

All the numerical computations and quantitative verifications are performed by
MATLAB (version 2019a) in the double-precision floating-point operation. The
MATLAB codes can be found via the link [6]. To make sure that our computer-
assisted proof is rigorous, we adopt the standard method of interval arithmetic
(see [40, 44]). In particular, we use the MATLAB toolbox INTLAB (version
11 [43]) for the interval computations. Every single real number p in MatLab is
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represented by an interval [pl, pr] that contains p, where pl, pr are precise floating-
point numbers of 16 digits. Every computation of real number summation, mul-
tiplication or division is performed using the interval arithmetic, and the outcome
is hence represented by the resulting interval [Pl, Pr] that strictly contains P . We
then obtain a rigorous upper bound on |P | by rounding up max{|Pl|, |Pr|} to 2
significant digits (or 4 when necessary). We remark that, when encountering a
non-essential ill-conditioned computation, especially a division, we will replace it
by an alternative well-conditioned one. For example, for some function f(x) such
that f(0) = 0, fx(0) < +∞, the evaluation of f(x)

x at x = 0 will be replaced by
the evaluation of fx(0).

Compact support of the approximate profile

The approximate profile ω̄ we obtain actually has compact support. Below
we explain how we obtain a compactly supported approximate self-similar profile.
First let us assume that ω is a solution of the steady state equation (or equivalently
self-similar equation), i.e. setting ωt = 0 in (4.1),

(clx+ u)ωx = (cω + ux)ω, ux = Hω.

Differentiating both sides and then evaluating the resulting equation at x = 0, we
obtain

(cl + ux)ωx|x=0 = (cω + ux)ωx|x=0,

which implies cl = cω, provided that ωx(0) 6= 0. Suppose that we have a finite time
self-similar blowup. Then the scaling factor cω is negative. See the discussion in
Section 3.1. It follows that cl = cω < 0. This also holds true for the approximate
profile: c̄l = c̄ω < 0. Moreover, we have that ū > 0 for x > 0 and grows
sublinearly for large x. The difference between the signs of c̄lx and ū(x) and
their different growth rates for large |x| lead to the following change of sign in the
approximate profile

c̄lx0+ū(x0) = 0, c̄lx+ū(x) > 0 for 0 ≤ x < x0, c̄lx+ū(x) < 0 for x > x0,

for some x0 > 0. We expect that a similar change of sign occurs in the dynamic
variable clx + u and the solution of (4.1) will form a shock. When we solve ω̄
numerically, we can fix the point where the sign of clx + u changes by imposing
(4.2). Moreover, the approximate profile satisfies that c̄ω + ūx(x) is negative for
x > x0 (see Figure 4.1). For x > x0, we expect that the dynamic variable cω +
ux(x) is also negative, which implies that (cω + ux(x))ω in (4.1) is a damping
term. For x > x0, due to the transport term (clx + u)ωx with clx + u(x) < 0
and the damping effect (cω +ux(x))ω, the solution tends to have compact support.
For this reason, in our computation, we have chosen the initial data with compact
support and controlled the support of the solution by imposing (4.2). As a result,
the approximate profile also has compact support.



24 J. CHEN, T. Y. HOU, AND D. HUANG

Regularity of the approximate profile

In the domain [−L,L], since ω̄ is obtained from the cubic spline interpolation,
it has the regularity C2,1[−L,L]. Moreover, since ω̄(x) = 0 for |x| ≥ L, ω̄ is a
Lipschitz function on the real line. We remark that ω̄ is inH1(R) but not inH2(R)
since ω̄x is discontinuous at x = ±L (see Figure 4.1). Multiplying (x2 − L2),
we get a compactly supported and global Lipschitz function (x2 − L2)ω̄x. Hence
we can define the Hilbert transform of ((x2 − L2)ω̄x)x which is in Lp for any
1 ≤ p < +∞.

Applying (A.4) in Lemma A.2, we have

ūxx = Hω̄x, ūxxx(x2 − L2) = H(ω̄xx(x2 − L2)).

Using the regularity of ω̄, we have that ū is at least C3 in (−L,L) and ūxx grows
logarithmically near x = ±L since ω̄x is discontinuous at x = ±L.

Regularity of the perturbation

We will choose an odd initial perturbation ω0 such that ω0 + ω̄ ∈ C∞c and
ω0,x(0) = 0. Standard local well-posedness result shows that ω + ω̄ remains
smooth locally in time. Hence, the regularity of ω and ω̄ are the same before
blowup. Since the odd symmetry of the solution ω + ω̄ is preserved and ω̄ is odd,
this implies that ω is odd. From this property and ωx(0) = 0 (see (4.3)), ω is
of order O(x3) near x = 0. On the other hand, we have ω(±L) = 0 since its
support lies in [−L,L]. In the following derivation, the boundary terms when we
perform integration by parts on ω terms will vanish, which can be justified by these
vanishing conditions. We will use this property without explicitly mentioning it.

In [35], the De Gregorio model (1.3) with a = 1 was solved numerically on R
for t ∈ [0, 1]. The author demonstrated the growth of the solution numerically and
plotted the solutions at several times that have similar profiles, which share some
similar structure with our ω̄.

4.2 Linear stability of the approximate self-similar profile
Linear stability analysis plays a crucial role in establishing the existence and

stability of the self-similar profile. We will establish the linear stability of the
approximate self-similar profile in this subsection.

Linearizing (4.1) around ω̄, ū, c̄l, c̄ω yields

(4.4) ωt+(c̄lx+ū)ωx = (c̄ω+ūx)ω+(ux+cω)ω̄−(u+clx)ω̄x+N(ω)+F (ω̄) ,

where ω, u, cl, cω are the perturbations of the approximate self-similar profile, N
and F are the nonlinear terms and the residual error, respectively

(4.5) N(ω) = (cω +ux)ω− (clx+u)ωx, F (ω̄) = (c̄ω + ūx)ω̄− (c̄lx+ ū)ω̄x.
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Main ideas in our linear stability analysis. Compared to (3.9), (4.4) does not
contain a small parameter a in the nonlocal term (u+ clx)ω̄x, which makes it sub-
stantially harder to establish linear stability. There are three key observations in
our linear stability estimates. First of all, we observe that the uxω̄ term (vortex
stretching) is harmless to the linear stability analysis as we have shown in Sec-
tion 3. We construct the weight function carefully to fully exploit the cancellation
between ux and ω (see Lemma A.3). Secondly, we observe that there is a com-
petition between the advection term uωx and the vortex stretching term uxω. We
expect some cancellation between their perturbation uω̄x and uxω̄. By exploiting
this cancellation, we obtain a sharper estimate of u/x by ω, which improves the
corresponding estimate using the Hardy inequality (A.8). Roughly speaking, for x
close to 0, the term u/x can be bounded by ω/5 in some appropriate norm; sim-
ilarly, for x close to L, the term (u(x) − u(L))/(x − L) can be bounded by ω/3
in some appropriate norm. The small constants, 1/5 and 1/3, are essential for us
to obtain sharp estimates on the non-local term u. If we had used a rough estimate
with constant 1/5 replacing by 1/2, we would have failed to establish linear sta-
bility. Using the first two observations, the estimate of most interactions can be
reduced to the estimate of some boundary terms. In order to obtain a sharp sta-
bility constant, we express these boundary terms as the projection of ω onto some
functions and exploit the cancellation between different projections to obtain the
desired linear stability estimate.

Due to the odd symmetry of u, ω, we just need to focus on the positive real line.
Denote

〈f, g〉 ,
∫ L

0
fgdx, ||f ||p = ||f ||Lp[0,L]

for any 1 ≤ p ≤ ∞. For most integrals we consider, it is the same as the integral
from 0 to +∞ since the support of ω lies in [−L,L]. Define a singular weight
function on [0, L]
(4.6)

ϕ ,

(
− 1

x3
− e

x
− f · 2x
L2 − x2

)
·
(
χ1

(
ω̄ − xω̄x

5

)
+ χ2

(
ω̄ − (x− L)ω̄x

3

))−1

,

where χ1, χ2 ≥ 0 are cutoff functions such that χ1 + χ2 = 1 and

χ1(x) =

{
1 x ∈ [0, 4]

0 x ∈ [6, 10]
, χ1(x) =

exp
(

1
x−4 + 1

x−6

)
1 + exp

(
1

x−4 + 1
x−6

) ∀x ∈ [4, 6].

Note that the denominator in (4.6) is negative in (0, L) and that ϕ > 0 is a singular
weight and is of order O(x−4) near x = 0, O((x− L)−2) near x = L.
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Performing the weighted L2 estimate on (4.4) yields

(4.7)

1

2

d

dt
〈ω2, ϕ〉 =

〈
− (c̄lx+ ū)ωx + (c̄w + ūx)ω, ωϕ

〉
+
〈

(ux + cω), ω̄ωϕ〉

− 〈(clx+ u), ω̄xωϕ
〉

+ 〈N(ω), ωϕ〉+ 〈F (ω̄), ωϕ〉

, D + I +N1 + F1.

For D, we use integration by parts to obtain

(4.8) D =
〈 1

2ϕ
((c̄lx+ ū)ϕ)x + (c̄w + ūx), ω2ϕ

〉
, 〈D(ω̄), ω2ϕ〉.

From (4.6), we know that ϕ(x) = O(x−4) near x = 0 and ϕ(x) = O((x− L)−2)
near x = L. Using these asymptotic properties of ϕ, one can obtain that

D(ω̄)(0) = −(c̄l + ūx(0))/2 < 0, D(ω̄)(L) = (c̄l + ūx(L))/2 < 0.

We can verify rigorously that D(ω̄)(x) is pointwisely negative on [0, L). In partic-
ular, we treat 〈D(ω̄), ω2ϕ〉 as a damping term. See Section 2.1 for the discussions
on the derivation of the damping term.

We estimate the interaction near x = 0 and x = L differently. First we split the
I term into two terms as follows:

(4.9)
I = 〈(ux + cω)ω̄ − (clx+ u)ω̄x, ωϕχ1〉+ 〈(ux + cω)ω̄ − (clx+ u)ω̄x, ωϕχ2〉

, I1 + I2.

We use different decompositions of (ux + cω)ω̄− (clx+ u)ω̄x for x close to 0 and
to L. For x close to 0 (the χ1 part), we use cω = cl to obtain

(ux + cω)ω̄ − (clx+ u)ω̄x = (ux + cω)
(
ω̄ − ω̄xx

5

)
+ xω̄x

(
ux + cω

5
− u+ clx

x

)
= (ux + cω)

(
ω̄ − ω̄xx

5

)
+ xω̄x

(
ux − ux(0)

5
− u− ux(0)x

x
− 4(cω + ux(0))

5

)
.

For x close to L (the χ2 part), using cω = cl = −u(L)/L (4.2), we have

u+ clx = u− u(L) + cl(x− L).

Therefore, we obtain

(ux + cω)ω̄ − (clx+ u)ω̄x = (ux + cω)ω̄ − (x− L)ω̄x ·
u− u(L) + cl(x− L)

x− L

= (ux + cω)

(
ω̄ − ω̄x(x− L)

3

)
+ (x− L)ω̄x

(
ux + cω

3
− u− u(L) + cl(x− L)

x− L

)
= (ux + cω)

(
ω̄ − ω̄x(x− L)

3

)
− 2

3
(x− L)ω̄x(cω + ux(L))

+ (x− L)ω̄x

(
ux − ux(L)

3
− u− u(L)− ux(L)(x− L)

x− L

)
.
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Using (4.9) and the above decompositions near x = 0, we get

(4.10)

I1 =
〈(1

5

ux − ux(0)

x2
− u− ux(0)x

x3

)
, x3ω̄xωϕχ1

〉
+
〈

(cω + ux),

(
ω̄ − 1

5
ω̄xx

)
ωχ1ϕ

〉
− 4

5
(cω + ux(0))〈xω̄x, ωχ1ϕ〉

, I11 + I12 + I13.

Similarly, near x = L, we have
(4.11)

I2 =
〈(1

3

ux − ux(L)

x− L
− u− u(L)− ux(L)(x− L)

(x− L)2

)
, (x− L)2ω̄xωϕχ2

〉
+
〈

(cω + ux),

(
ω̄ − 1

3
ω̄x(x− L)

)
ωϕχ2

〉
− 2

3
(cω + ux(L))〈(x− L)ω̄x, ωϕχ2〉

, I21 + I22 + I23.

The first part: the interior interaction

To handle the first term on the right hand side of (4.10) and (4.11), i.e. I11, I21,
we use the Cauchy–Schwarz inequality to obtain

(4.12)
I11 ≤

∣∣∣∣∣∣ (1

5

ux − ux(0)

x2
− u− ux(0)x

x3

) ∣∣∣∣∣∣
2
||x3ω̄xωϕχ1||2,

I21 ≤
∣∣∣∣∣∣1

3

ux − ux(L)

x− L
− u− u(L)− ux(L)(x− L)

(x− L)2

∣∣∣∣∣∣
2
||(x− L)2ω̄xωϕχ2||2.

Using integration by parts yields
(4.13)∣∣∣∣∣∣ (1

5

ux − ux(0)

x2
− u− ux(0)x

x3

) ∣∣∣∣∣∣2
2

=
1

25

∣∣∣∣∣∣ux − ux(0)

x2

∣∣∣∣∣∣2
2
− 2

5

∫ L

0

(ux − ux(0)) · (u− ux(0)x)

x5
dx+

∣∣∣∣∣∣u− ux(0)x

x3

∣∣∣∣∣∣2
2

=
1

25

∣∣∣∣∣∣ux − ux(0)

x2

∣∣∣∣∣∣2
2
− 1

5

(u− ux(0)x)2

x5

∣∣∣L
0

− 1

5
· 5
∫ L

0

(u− ux(0)x)2

x6
dx+

∣∣∣∣∣∣u− ux(0)x

x3

∣∣∣∣∣∣2
2

=
1

25

∣∣∣∣∣∣ux − ux(0)

x2

∣∣∣∣∣∣2
2
− 1

5L5
(u(L)− ux(0)L)2

=
1

25

∣∣∣∣∣∣ux − ux(0)

x2

∣∣∣∣∣∣2
2
− 1

5L3
(cω + ux(0))2

≤ 1

25

∣∣∣∣∣∣ ω
x2

∣∣∣∣∣∣2
2
− 1

5L3
(cω + ux(0))2,

where we have used cω = cl = −u(L)/L in the second to the last line. To
obtain the last inequality, we have used estimate (A.8) with p = 4, the facts that
the integral in || · ||2 is from 0 to L and that ω is supported in [−L,L]. Denote
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v , u− u(L)− ux(L)(x− L). Obviously, we have

v(L) = vx(L) = 0, v(0) = −u(L) + ux(L)L = L(cω + ux(L)).

Using the above formula and integration by parts, we obtain

(4.14)

∣∣∣∣∣∣1
3

ux − ux(L)

x− L
− u− u(L)− ux(L)(x− L)

(x− L)2

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣1

3

vx
x− L

− v

(x− L)2

∣∣∣∣∣∣2
2

=
1

9

∣∣∣∣∣∣ vx
x− L

∣∣∣∣∣∣2
2
− 2

3

∫ L

0

vvx
(x− L)3

dx+
∣∣∣∣∣∣ v

(x− L)2

∣∣∣∣∣∣2
2

=
1

9

∣∣∣∣∣∣ vx
x− L

∣∣∣∣∣∣2
2
− 1

3

v2

(x− L)3

∣∣∣L
0
− 1

3
· 3
∫ L

0

v2

(x− L)4
dx+

∣∣∣∣∣∣ v

(x− L)2

∣∣∣∣∣∣2
2

=
1

9

∣∣∣∣∣∣ vx
x− L

∣∣∣∣∣∣2
2

+
1

3

v(0)2

(0− L)3
=

1

9

∣∣∣∣∣∣ux − ux(L)

x− L

∣∣∣∣∣∣2
2
− 1

3L
(cω + ux(L))2.

Using a formula similar to (A.1) yields

(ux − ux(L))(x− L)−1 = H
(
ω(x− L)−1

)
.

We further obtain the following by using the L2 isometry of the Hilbert transform

(4.15)
∫ L

0

(ux − ux(L))2

(x− L)2
dx =

∫
R

ω2

(x− L)2
dx−

∫
x/∈[0,L]

(ux − ux(L))2

(x− L)2
dx.

Note that the Cauchy–Schwarz inequality implies

∫
x/∈[0,L]

(ux − ux(L))2

(x− L)2
dx ≥

∫ 0

−L

(ux − ux(L))2

(x− L)2
dx

≥
(∫ 0

−L
(ux − ux(L))dx

)2(∫ 0

−L
(x− L)2dx

)−1
= (u(0)− u(−L)− ux(L)L)2

(
7

3
L3

)−1
=

3

7

(cω + ux(L))2L2

L3
=

3

7

(cω + ux(L))2

L
.

Combining (4.14), (4.15) and the above inequality, we get

(4.16)

∣∣∣∣∣∣1
3

ux − ux(L)

x− L
− u− u(L)− ux(L)(x− L)

(x− L)2

∣∣∣∣∣∣2
2

=
1

9

∫
R

ω2

(x− L)2
dx− 1

9

∫
x/∈[0,L]

(ux − ux(L))2

(x− L)2
dx− 1

3L
(cω + ux(L))2

≤ 1

9

∫
R

ω2

(x− L)2
dx−

(
1

3L
+

1

21L

)
(cω + ux(L))2.
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Combining (4.12) , (4.13) and (4.16) and using the elementary inequality xy ≤
λx2 + 1

4λy
2, we obtain the estimate for I11, I21,

(4.17)

I11 + I21 ≤ 25a1

∣∣∣∣∣∣ (1

5

ux − ux(0)

x2
− u− ux(0)x

x3

) ∣∣∣∣∣∣2
2

+
1

100a1
||x3ω̄xωϕχ1||22

+ 9a2

∣∣∣∣∣∣1
3

ux − ux(L)

x− L
− u− u(L)− ux(L)(x− L)

(x− L)2

∣∣∣∣∣∣2
2

+
1

36a2
||(x− L)2ω̄xωϕχ2||22

≤ a1
∣∣∣∣∣∣ ω
x2

∣∣∣∣∣∣2
2

+
1

100a1
||x3ω̄xωϕχ1||22 + a2

∫
R

ω2

(x− L)2
dx

+
1

36a2
||(x− L)2ω̄xωϕχ2||22 − a2

(
3

L
+

3

7L

)
(cω + ux(L))2,

where a1, a2 > 0 are some parameters to be chosen later.

The second part
Combining I12, I22 in (4.10), (4.11) respectively, and using the definition of ϕ

(4.6), we obtain

(4.18)

I12 + I22 =
〈

(cω + ux),

{(
ω̄ − 1

5
ω̄xx

)
χ1 +

(
ω̄ − 1

3
ω̄x(x− L)

)
χ2

}
ωϕ
〉

=
〈

(cω + ux)ω,

(
− 1

x3
− e

x
− f · 2x
L2 − x2

)〉
= (cω + ux(0))

〈
ω,− 1

x3
− e

x

〉
+
〈

(ux − ux(0))ω,− 1

x3
− e

x

〉
+
〈

(cω + ux)ω,− f · 2x
L2 − x2

〉
,

where e and f are constants in the definition of ϕ (4.6). Since ω ∈ C2,1 and
ω(0) = ωx(0) = ωxx(0) = 0, we have ω · x−3 ∈ L1 and the above integrals are
well-defined. Using (A.5) and (A.6), we obtain

(4.19)

〈
(ux − ux(0))ω,

1

x3

〉
=

1

2

∫
R

(ux − ux(0))ω

x3
dx = 0,〈

(ux − ux(0))ω,
1

x

〉
=

1

2

∫
R

(ux − ux(0))ω

x
dx =

π

4
u2
x(0).

Note that (cω + ux)ω is odd. The Tricomi identity Lemma A.1 implies

(4.20)

〈
(cω + ux)ω,− 2x

L2 − x2
〉

= −
∫
R+

(cω + ux)ω

(
1

L− x
− 1

L+ x

)
dx

=−
∫
R

(cω + ux)ω

L− x
dx = −πH((cω + ux)ω)(L)

=− πcωHω(L)− πH(uxω)(L) = −πcωux(L)− π

2
(u2x(L)− ω2(L))

=− πcωux(L)− π

2
u2x(L).
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Combining (4.18), (4.19) and (4.20), we obtain

(4.21)
I12 + I22 =(cω + ux(0))

〈
ω,

(
− 1

x3
− e

x

)〉
− πe

4
u2x(0)

− fπcωux(L)− fπ

2
u2x(L).

The remaining part: the boundary interaction
Let a3 , a2( 3

L + 3
7L). The negative term that appears in the last term of (4.17)

can be written as

(4.22) −a2(
3

L
+

3

7L
)(cω + ux(L))2 = −a3(cω + ux(L))2.

Combining (4.22), (4.21), I13, I23 in (4.10) and (4.11), we obtain
(4.23)

I12 + I22 + I13 + I23 − a3(cω + ux(L))2

= (cω + ux(0))
〈
ω,

(
− 1

x3
− e

x

)〉
− eπ

4
u2x(0)− fπcωux(L)− fπ

2
u2x(L)

− 4

5
(cω + ux(0))〈ω, xω̄xχ1ϕ〉 −

2

3
(cω + ux(L))〈ω, (x− L)ω̄xχ2ϕ〉

− a3(cω + ux(L))2

= ux(0)

(〈
ω,

(
− 1

x3
− e

x

)
− 4

5
xω̄xχ1ϕ

〉
− eπ

4
ux(0)

)
+ cω

(〈
ω,

(
− 1

x3
− e

x

)
− 4

5
xω̄xχ1ϕ−

2

3
(x− L)ω̄xχ2ϕ

〉
− fπux(L)− a3cω

)
+ ux(L)

(〈
ω,−2

3
(x− L)ω̄xχ2ϕ

〉
− fπ

2
ux(L)− 2a3cω − a3ux(L)

)
.

Note that

ux(0) = − 2

π

∫ L

0

ω

x
dx, ux(L) =

1

π

∫ L

0

2x

L2 − x2
ωdx,

cω = −u(L)

L
=

1

Lπ

∫ L

0

log

(
L+ x

L− x

)
ω(x)dx.

All the integrals in (4.23) and cω, ux(0), ux(L) are the projection of ω onto some
explicit functions. We use the cancellation of these functions to obtain a sharp
estimate of the right hand side of (4.23). Denote

gcω ,
1

Lπ
log

(
L+ x

L− x

)
, gux(0) , −

2

πx
, gux(L) ,

2x

π(L2 − x2)
,

g1 ,

(
− 1

x3
− e

x

)
− 4

5
xω̄xχ1ϕ−

eπ

4
gux(0),

g2 ,

(
− 1

x3
− e

x

)
− 4

5
xω̄xχ1ϕ−

2

3
(x− L)ω̄xχ2ϕ− fπgux(L) − a3gcω ,

g3 , −
2

3
(x− L)ω̄xχ2ϕ−

(
fπ

2
+ a3

)
gux(L) − 2a3gcω .
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With these notations, we can rewrite (4.23) as follows

(4.24)
ux(0)〈ω, g1〉+ cω〈ω, g2〉+ ux(L)〈ω, g3〉

=〈ω, gux(0)〉〈ω, g1〉+ 〈ω, gcω〉〈ω, g2〉+ 〈ω, gux(L)〉〈ω, g3〉.

For some function R ∈ C([0, L]), R > 0 to be chosen, we introduce

(4.25)

y , (Rϕ)1/2ω, f1 , (Rϕ)−1/2gux(0), f2 , (Rϕ)−1/2g1,

f3 , (Rϕ)−1/2gcω , f4 , (Rϕ)−1/2g2,

f5 , (Rϕ)−1/2gux(L), f6 , (Rϕ)−1/2g3.

Our goal is to find the best constant of the following inequality for any ω ∈ L2(ϕ)

(4.26) 〈f1, y〉〈f2, y〉+ 〈f3, y〉〈f4, y〉+ 〈f5, y〉〈f6, y〉 ≤ Copt||y||22,

which is equivalent to

〈ω, gux(0)〉〈ω, g1〉+ 〈ω, gcω〉〈ω, g2〉+ 〈ω, gux(L)〉〈ω, g3〉 ≤ Copt〈R,ω2ϕ〉,

so that we can estimate (4.24) by 〈R,ω2ϕ〉 with a sharp constant. From the defini-
tion of functions g, f , we have that g3 ∈ span(gcω , gux(0), gux(L), g1, g2) and

(4.27) f6 ∈ span(f1, f2, .., f5) , V, dimV = 5.

Without loss of generality, we assume y ∈ V since ||Py||2 ≤ ||y||2 and 〈y, fi〉 =
〈Py, fi〉, where P is the orthogonal projector onto V . Suppose that {ei}5i=1 is an
orthonormal basis (ONB) in V with respect to the L2 inner product on [0, L]. It can
be obtained via the Gram-Schmidt procedure. Then we have z =

∑5
i=1〈z, ei〉ei

for any z ∈ V . We consider the linear map T : V → R5 defined by (Tz)i =
〈z, ei〉, ∀z ∈ V . It is obvious that T is a linear isometry from (V, 〈·, ·〉L2) to R5

with the Euclidean inner product, i.e. ||Tz||l2 = ||z||L2 . Denote v = Ty, vi =
Tfi ∈ R5 . Using the linear isometry, i.e. 〈fi, y〉 = vT vi and ||y||22 = vT v, we can
reduce (4.26) to∑

1≤i≤3

(vT v2i−1)(vT2iv) = vT (
∑

1≤i≤3

v2i−1v
T
2i)v ≤ CoptvT v.

Denote M ,
∑

1≤i≤3 v2i−1v
T
2i ∈ R5×5. Then the above inequality becomes

vTMv ≤ Coptv
T v. Using the fact that vTMv = vTMT v, we can symmetrize

it to obtain

vT
M +MT

2
v ≤ CoptvT v.

Since (MT +M)/2 is symmetric, the optimal constant Copt is the maximal eigen-
value of (M +MT )/2, i.e.

(4.28) Copt = λmax

(
M +MT

2

)
= λmax(

1

2

∑
1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1)).
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We remark that maximal eigenvalue λmax is independent of the choice of the ONB
of V . For other ONB, the resulting λmax will be λmax(Q(M + MT )QT /2) for
some orthonormal matrix Q ∈ R5×5, which is the same as (4.28). Using (4.23),
(4.24), (4.26) and (4.28), we have proved

(4.29)

I12 + I22 + I13 + I23 − a3(cω + ux(L))2

≤λmax(
1

2

∑
1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1))〈R,ω2ϕ〉,

where vi ∈ R5 is the coefficient of fi (see (4.25)) expanded under an ONB {ei}5i=1

of V = span(f1, f2, .., f5), i.e. the j-th component of vi satisfies vij = 〈fi, ej〉.
We will choose R so that λmax < 1 and then the left hand side can be controlled
by 〈R,ω2ϕ〉.

Summary of the estimates

In summary, we collect all the estimates of Iij , i = 1, 2, j = 1, 2, 3, (4.10),
(4.11), (4.17) and (4.29) to conclude
(4.30)
〈(ux + cω)ω̄ − (clx+ u), ω̄x, ωϕ〉 = I = I1 + I2 =

∑
i=1,2,j=1,2,3

Iij

≤a1

∣∣∣∣∣∣ ω
x2

∣∣∣∣∣∣2
2

+
1

100a1
||x3ω̄xωϕχ1||22 + a2

∫
R

ω2

(x− L)2
dx

+
1

36a2
||(x− L)2ω̄xωϕχ2||22 + λmax(

1

2

∑
1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1))〈R,ω2ϕ〉

,〈A(ω̄), ω2ϕ〉+ λmax(
1

2

∑
1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1))〈R,ω2ϕ〉,

where A(ω̄) is the sum of the four terms in the first inequality and is given by

A(ω̄) =

(
a1
x4

+
a2

(x− L)2
+

a2
(x+ L)2

)
ϕ−1 +

(x3ω̄xχ1)2ϕ

100a1
+

((x− L)2ω̄xχ2)2ϕ

36a2
.

Optimizing the parameters. To optimize the estimate, we choose

(4.31)
e = 0.005, f = 0.004, a1 =

1

6
,

a2 = 1.4f = 0.0056, a3 =
a2
L

(3 +
3

7
) = 0.00192.

After specifying these parameters, the coefficient of the damping term D(ω̄)
(see (4.7)) and the coefficient of the estimate of the interior interaction A(ω̄) are
completely determined. Then we choose

(4.32) R(ω̄) = −D(ω̄)−A(ω̄)− 0.3
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FIGURE 4.2. Left: Coefficients of the damping term D(ω̄) in the L2

estimate, the estimate of the interior interaction A(ω̄) and the remaining
terms R(ω̄). Right: Coefficient of the damping term D2(ω̄) in the H1

estimate.

in (4.25). The numerical values of D(ω̄), A(ω̄) and R(ω̄) on the grid points are
plotted in the first subfigure in Figure 4.2. We can verify rigorously (see the discus-
sion below) that R(ω̄) = −D(ω̄)− A(ω̄)− 0.3 > 0. In particular, the coefficient
of the damping term satisfies D(ω̄) < −0.3 − A(ω̄) and is negative pointwisely.
The corresponding fi in (4.26) are determined. The optimal constant in (4.29) can
be computed :

(4.33) Copt = λmax(
1

2

∑
1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1)) < 1.

Combining 〈D(ω̄), ω2ϕ〉 in (4.7), (4.30) and (4.33), we obtain the linear estimate

(4.34)

1

2

d

dt
〈ω2, ϕ〉 = 〈D(ω̄), ω2ϕ〉+ I +N1 + F1

≤ 〈D(ω̄), ω2ϕ〉+ 〈A(ω̄), ω2ϕ〉+ 〈R(ω̄), ω2ϕ〉+N1 + F1

= − 0.3〈ω2, ϕ〉+N1 + F1.

For those who are not interested in the rigorous verification of the numerical
values, they can skip the following discussion and jump to Section 4.4 for the
weighted H1 estimate.

4.3 Rigorous verification of the numerical values
We will use the following strategy to verify R(ω̄) > 0 (4.32), Copt < 1 (4.33)

and D2(ω̄) < −0.95 (4.39) to be discussed later. These quantities appear in the
weighted Sobolev estimates and are determined by the profile.

(a) Obtaining an explicit approximate self-similar profile. As described in
section 4.1, our approximate self-similar profile ω̄ is expressed in terms of a piece-
wise cubic polynomial over the grid points xi = iL

n , i = 0, · · · , n. The function
values, ω̄(xi), ω̄x(xi), which are used to construct the cubic Hermite spline, are
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computed accurately up to double-precision, and will be represented in the compu-
tations using the interval arithmetic with exact floating-point bounding intervals.
All the following computer-assisted estimates are based on the rigorous interval
arithmetic.

(b) Accurate point values of ū, ūx, ūxx. We have described how to compute
the value of ūx(x) (or ū(x), ūxx(x)) from certain integrals involving ω̄ on [−L,L]
in paragraph (3) in Section 4.1. For any x ∈ [0, L], the integral contribution to
ūx(x) from mesh intervals within m = 8 mesh points distance from x is computed
exactly using analytic integration. In the outer domain that is 8h distance away
from x, the integrand ω̄(y)/(x− y) is not singular and we use a composite 8-point
Legendre-Gauss quadrature. There are two types of errors in this computation.
The first type of error is the round-off error in the computation. The second type
of error is due to the composite Gaussian quadrature that we use to approximate
the integral in the outer domain. Notice that in each interval [ih, (i + 1)h] away
from x, ω̄ is a cubic polynomial and the integrand ω̄(y)/(x − y) is smooth. We
can estimate high order derivatives of the integrand rigorously in these intervals.
With the estimates of the derivatives, we can further establish error estimates of
the Gaussian quadrature. In particular, we prove the following error estimates of
the composite Gaussian quadrature in the computation of ūx, ū, ūxx in the Supple-
mentary material [8, Section 7]

ErrorGQ(ux) < 2 ·10−17, ErrorGQ(u) < 2 ·10−19, ErrorGQ(uxx) < 5 ·10−18.

These two types of errors will be taken into account in the interval representa-
tions of ūx. That is, each ūx(x) will be represented by [būx(x)−εcf , dūx(x)+εef ]
in any computation using the interval arithmetic, where b·cf and d·ef stand for the
rounding down and rounding up to the nearest floating-point value, respectively.
We remark that we will need the values of ūx(x) at finitely many points only. The
same arguments apply to ū(x) and ūxx(x) as well.

(c) Rigorous estimates of integrals. In many of our discussions, we need to
rigorously estimate the integral of some function g(x) on [0, L]. In particular, we
want to obtain c1, c2 such that c1 ≤

∫ L
0 g(x)dx ≤ c2. A straightforward way to do

so is by constructing two sequences of values gup = {gupi }ni=1, g
low = {glowi }ni=1

such that
gupi ≥ max

x∈[xi−1,xi]
g(x) and glowi ≤ min

x∈[xi−1,xi]
g(x).

Then we can bound

h ·
n∑
i=1

glowi ≤
∫ L

0
g(x)dx ≤ h ·

n∑
i=1

gupi .

In most cases, we will construct gup and glow from the grid point values of g and
an estimate of its first derivative. Let gmax = {gmax

i }Ni=1 denote the sequence such
that gmax

i = max{|gupi |, |glowi |}. Then if we already have gmax
x , we can construct
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gup and glow as

gupi = g(xi) + h · (gmax
x )i and glowi = g(xi)− h · (gmax

x )i.

We can use this method to construct the piecewise upper bounds and lower bounds
for many functions we need. For example, our approximate steady state ω̄ is con-
structed to be piecewise cubic polynomial using the standard cubic spline inter-
polation. Since ω̄xxx is piecewise constant, we have ω̄upxxx and ω̄lowxxx for free from
the grid point values of ω̄. Then we can construct ω̄up/lowxx , ω̄

up/low
x and ω̄up/low

recursively.
Note that for some explicit functions, we can construct the associated sequences

of their piecewise upper bounds and lower bounds more explicitly. For example,
for a monotone function g, gup and glow are just the grid point values.

Moreover, we can construct the piecewise upper bounds and lower bounds for
more complicated functions. For instance, if we have fup/lowa and f

up/low
b for

two functions, then we can construct gup/low for g = fafb using standard interval
arithmetic. In this way, we can estimate the integral of all the functions we need in
our computer-aided arguments.

Sometimes we need to handle the ratio between two functions, which may in-
troduce a removable singularity. For example, in the construction of D(ω̄)up and
D(ω̄)low forD(ω̄) in (4.8), it involves xϕx

ϕ , ūϕxϕ and ϕ is a singular weight of order
x−4 near x = 0. Directly applying interval arithmetic to the ratio near a removable
singularity can lead to large errors. We hence need to treat this issue carefully. For
example, let us explain how to reasonably construct gup/low for a g(x) = f(x)/x
such that f(x) has continuous first derivatives and f(0) = 0. Suppose that we
already have fup/low and fup/lowx . Then for some small number ε > 0, we let

gupi = max

{
fupi
xi−1

,
f lowi
xi−1

,
fupi
xi
,
f lowi
xi

}
for each index i such that xi−1 ≥ ε.

Otherwise, for x ∈ [0, ε), we have

g(x) =
f(x)

x
= fx(ξ(x)) for some ξ(x) ∈ [0, x) ⊂ [0, ε).

Then we choose gupi = maxx∈[0,ε] f
up
x for every index i such that xi ≤ ε. The pa-

rameter ε needs to be chosen carefully. On the one hand, ε should be small enough
so that the bound fx(ξ(x)) ≤ maxx̃∈[L−ε,L] |fx(x̃)| is sharp for x ∈ [L− ε, L]. On
the other, the ratio ε/h must be large enough so that fupi /xi−1, f

low
i /xi−1, f

up
i /xi

and f lowi /xi are close to each other for xi−1 ≥ ε. Other types of removable singu-
larities can be handled in a similar way.

See more detailed discussions in the Supplementary Material [8, Section 1.3].
(d) Estimates of some (weighted) norms of ω̄, ū. Once we have used the pre-

ceding method to obtain ω̄up/lowxxx , ω̄
up/low
xx , ω̄

up/low
x and ω̄up/low from the grid point

values of ω̄, we can further estimate some (weighted) norms of ω̄, e.g. ||ω̄x||L∞ ,
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||ω̄xx||L∞ , rigorously. Moreover, from the discussion of the regularity of ū, ω̄ in
Section (4.1), the norms of ū, such as ||ūx||∞ and ||ūxx||L2 , can be bounded by
some norms of ω̄. See more detailed discussions in the Supplementary Material [8,
Section 1.3].

(e) Rigorous and accurate estimates of certain integrals. Our rigorous es-
timate for integrals in the preceding part (c) is only first order accurate. Yet this
method is not accurate enough if the target integral is supposed to be a very small
number. When we need to obtain a more accurate estimate of the integral of some
function P , we use the composite Trapezoidal rule∫ bh

ah
P (x)dx =

∑
a≤i<b

(P (xi) + P (xi+1))h/2 + error(P ).

The composite Trapezoidal rule uses the values of P on the grid points only, which
can be obtained up to the round off error. The numerical integral error, error(P ),
can be bounded by the L1 norm of its second order derivative, i.e. C||P ′′||L1h2

for some absolute constant C. We use this approach to obtain integral estimates of
some functions involving the residual F (ω̄). For each function P that we integrate,
we prove in the Supplementary Material [8, Section 3] that ||P ′′||L1 can be bounded
by some (weighted) norms of ū, ω̄, e.g. ||ω̄||L∞ , ||ūx||L∞ and || ω̄xxx ||L2 . Since
these norms can be estimated by the method discussed previously, we can establish
rigorous error bound for the integral.

(f) Rigorous estimates of Copt. Denote by Ms the matrix in (4.28)

Ms ,
1

2

3∑
i=1

(v2i−1v
T
2i + v2iv

T
2i−1) =

1

2
V1V

T
2 ,

where V1 , [v1, v2, v3, v4, v5, v6] ∈ R6×6 and V2 , [v2, v1, v4, v3, v6, v5] ∈ R6×6,
and {vi}6i=1 are defined as in Section 4.2. Note that Ms is symmetric, but not
necessarily positive semidefinite. The optimal constant Copt is then the maximal
eigenvalue of Ms. To rigorously estimate Copt, we first bound it by the Schatten
p-norm of Ms:

(4.35) Copt ≤ ‖Ms‖p , Tr[|Ms|p]1/p for all p ≥ 1.

Here |Ms| =
√
MT
s Ms =

√
M2
s . In particular, if p is an even number, we have

|Ms|p = Mp
s . Therefore, we have

Tr[|Ms|p] = 2−p · Tr[(V1V
T

2 )p] = 2−p · Tr[(V T
2 V1)p] , 2−p · Tr[Xp]

where X = V T
2 V1. Note that each entry of X is the inner product between some

vi and vj , i, j = 1, . . . , 6. Recall from (4.27) and its following paragraph that
vi = Tfi, i = 1, 2, .., 6 and that T : V → R5 is a linear isometry. We have

〈fi, fj〉 = 〈Tfi, Tfj〉 = vTi vj .

Therefore, to compute the entries ofX , we only need to compute the pairwise inner
products between f1, . . . , f6 (we do not need to compute the coordinate vectors
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vi explicitly). This is done by interval arithmetic based on the discussion in the
preceding part (c). Therefore each entry Xij of X is represented by a pair of
numbers that we can bound from above and below. Once we have the estimate of
X , we can compute an upper bound of Tr[Xp] stably and rigorously by interval
arithmetic, which then gives a bound on Copt via (4.35). In particular, we choose
p = 4 in our computation, and we can rigorously verify that Copt < 1.

4.4 Weighted H1 estimate
We choose

(4.36) ψ = − 1

ω̄

(
1

x
− x

L2

)
, x ∈ [0, L],

as the weight for the weighted H1 estimate. Note that the weight ψ is nonnegative
for 0 ≤ x ≤ L, and is of order x−2 near x = 0 and O(1) near x = L. We can
perform the weighted H1 estimate as follows

(4.37)

1

2

d

dt
〈ω2
x, ψ〉 = 〈−((c̄lx+ ū)ωx)x + ((c̄ω + ūx)ω)x, ωxψ〉

+ 〈((ux + cω)ω̄)x, ωxψ〉 − 〈((u+ clx)ω̄x)x, ωxψ〉
+ 〈N(ω)x, ωxψ〉+ 〈F (ω̄)x, ωxψ〉

, I + II + III +N2 + F2.

For I , we use c̄l = c̄ω and integration by parts to get

(4.38)

I =
〈
− (c̄lx+ ū)ωxx + ūxxω, ωxψ

〉
=
〈 1

2ψ
((c̄lx+ ū)ψ)x, ω

2
xψ
〉

+ 〈ūxxω, ωxψ〉

, 〈D2(ω̄), ω2
xψ〉+ 〈ūxxω, ωxψ〉.

The first term in I is a damping term. We plot the numerical values ofD2(ω̄) on the
grid points in Figure 4.2. We can verify rigorously that it is bounded from above
by −0.95. Thus we have

(4.39)
I = 〈D2(ω̄), ω2

xψ〉+ 〈ūxxω, ωxψ〉

≤ −0.95〈ω2
x, ψ〉+ 〈ūxxω, ωxψ〉 , −0.95〈ω2

x, ψ〉+ I2,

where I2 = 〈ūxxω, ωxψ〉. For II, III , we note that

II + III = 〈uxxω̄ + (ux + cω)ω̄x − (ux + cl)ω̄x − (clx+ u)ω̄xx, ωxψ〉
= 〈uxxω̄, ωxψ〉 − 〈(clx+ u)ω̄xx, ωxψ〉 , II1 + II2.

Using the definition of ψ, we get

II1 = 〈uxxω̄, ωxψ〉 =
〈
uxxωx,−

1

x
+

x

L2

〉
.
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Since ωx(0) = 0 by the normalization condition and uxx(0) = 0 by the odd
symmetry, we can use the same cancellation as we did in (3.25) to get〈

uxxωx,−
1

x

〉
= 0, 〈uxxωx, x〉 = 0.

Therefore II1 vanishes and we get

(4.40) II + III = II2 = −〈(clx+ u)ω̄xx, ωxψ〉,

which is a cross term. In fact, after performing integration by parts, it becomes
interaction among some lower order terms, i.e. of the order lower than ωx (e.g.
u, ux, ω).

Remark 4.1. So far, we have established all the delicate estimates of the linearized
operator that exploit cancellations of various nonlocal terms. We have obtained
the linear stability at the L2 level and the linear stability estimates for the terms
of the same order as ωx, e.g. uxx, in the weighted H1 estimates after performing
integration by parts. The remaining estimates do not require specific structure of
the equation. Suppose that we have a sequence of approximate steady states ωhi
with hi converging to 0 that enjoy similar estimates and have approximation error
〈F (ωhi)

2, ϕ〉+ 〈F (ωhi)
2
x, ψ〉 of order hβi for some constant β > 0 independent of

hi, where F (ωhi) is defined similarly as that in (4.5). Then we can apply the above
stability analysis to the profile ωh and the argument in Sections 3.2,3.3 to finish the
remaining steps of the proof by choosing a sufficiently small h = hn. Here h plays
a role similar to the small parameter a in these sections. An important observation
is that hn and the required approximation error to close the whole argument can be
estimated effectively. Once we have determined hn, we can construct the approxi-
mate steady state ωhn numerically and verify whether ωhn enjoys similar estimates
and has the desired approximation error a posteriori.

In the following discussion, we first give some rough bounds and show that
the remaining terms can be bounded by the weighted L2 or H1 norm of ω with
constants depending continuously on ω̄. This property implies that similar bounds
will also hold true if we replace the approximate steady state ω̄ by another profile
ω̂, if ω̄ − ω̂ is sufficiently small in some energy norm. We will provide other steps
in the computer-assisted part of the paper later in this section.

The remaining linear terms in the weighted H1 estimate are I2 = 〈ūxxω, ωxψ〉
in (4.39) and II2 in (4.40). Denote ρ = x−2+(x−L)−2. Note that u+clx|x=0,L =

0, cω = cl. Applying integration by parts to the integral ||ux + cl − 1
2(u +

clx)/x||22, ||ux + cl − 1
2(u + clx)/(x − L)||22 and using an argument similar to

those in (4.13), (4.14), we get

||(u+ clx)ρ1/2||22 =

∫ L

0
(u+ clx)2(

1

x2
+

1

(x− L)2
)dx ≤ 8

∫ L

0
(ux + cl)

2dx.
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Using the L2 isometry of the Hilbert transform, the identity
∫ L

0 uxdx = u(L) =
−L · cl and expanding the square, we further obtain

||(u+ clx)ρ1/2||22 ≤ 8||ω||22 + 8(2cl · u(L) + Lc2
l )

≤ 8||ω||22 ≤ 8||ϕ−1||L∞〈ω2, ϕ〉.

Applying the Cauchy–Schwarz inequality, we can estimate I2, II2 as follows

|I2| = |〈ūxxω, ωxψ〉| ≤ ||ūxxψ1/2ϕ−1/2||L∞[0,L]〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2,

|II2| = |〈(clx+ u)ω̄xx, ωxψ|〉 ≤ ||ρ−1/2ω̄xxψ1/2||L∞[0,L]〈(clx+ u)2, ρ〉1/2〈ω2
x, ψ〉1/2.

Hence, combining the above estimates, we yield

(4.41) |I2|+ |II2| ≤ C1(ω̄)〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2,

where

(4.42) C1(ω̄) , ||ūxxψ1/2ϕ−1/2||L∞[0,L] +
√

8||ρ−1/2ω̄xxψ1/2||L∞[0,L]||ϕ−1||
1/2
L∞

and ρ = x−2 + (x−L)−2. From the definitions of ϕ,ψ (4.6), (4.36), the quantities
appeared in C1(ω̄) satisfy that

ϕ−1 = O((x−4 + (x− L)−2)−1),

|ūxxψ1/2ϕ−1/2| = O(|ūxx(x−1 + (L− x)−1)−1|),

|(x−2 + (x− L)−2)−1/2ω̄xxψ
1/2| = O(|(1 + (x− L)−2)−1/2ω̄xx|).

In particular, these quantities are bounded for any x ∈ [0, L] and thus C1(ω̄) is
finite.

Therefore, combining (4.37), (4.39), (4.40) and (4.41), we prove for any ε > 0,

(4.43)
1

2

d

dt
〈ω2
x, ψ〉 ≤ −0.95〈ω2

x, ψ〉+ ε〈ω2
x, ψ〉+ (4ε)−1C1(ω̄)2〈ω2, ϕ〉+N2 + F2,

From (4.34) and (4.43), we can choose ε, µ > 0 and construct the energy E(t)2 =
〈ω2, ϕ〉+ µ〈ω2

x, ψ〉 such that

d

dt
E(t)2 ≤ −C(µ, ε)E(t)2 +N1 + F1 + µ(N2 + F2),

where C(µ, ε) > 0 depends on µ, ε. For example, one can choose ε = 0.65, µ =
0.4εC1(ω̄)−2 to obtain C(µ, ε) = 0.2. We have now completed the weighted L2

and H1 estimates at the linear level.

Nonlinear stability

Recall that N,F are defined in (4.5), N1, F1 in (4.7), and N2, F2 in (4.37).
Since cl = cω, a direct calculation yields ∂xN(ω) = uxxω − (clx+ u)ωxx.
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Using integration by parts similar to that in (4.8) and (4.38), we obtain

N1 + µN2 =
〈 1

2ϕ
((clx+ u)ϕ)x + (cω + ux), ω2ϕ

〉
+ µ

〈 1

2ψ
((clx+ u)ψ)x, ω

2
xψ
〉

+ µ〈uxxω, ωxψ〉.

Recall E(t) = (〈ω2, ϕ〉+ µ〈ω2
x, ψ〉)1/2. We can estimate ux, ω, uxx as follows

||ux||L∞ ≤ 2||ux||1/2L2(R+)
||uxx||1/2L2(R+)

≤ 2||ω||1/22 ||ωx||
1/2
2

≤ 2µ−1/4||ϕ−1||1/4L∞ ||ψ
−1||1/4L∞E(t),

||ω||L∞ ≤ ||ωx||L1 ≤ 〈ω2
x, ψ〉1/2||ψ−1||1/2

L1[0,L]
≤ µ−1/2||ψ−1||1/2

L1[0,L]
E(t),

||uxxx−1||2 ≤ ||ωxx−1||2 ≤ µ−1/2||ψ−1/2x−1||L∞E(t),

where we have used (A.3), ωx(0) = 0 and the L2 isometry of the Hilbert transform
to obtain the last estimate. Recall cl = cω = −u(L)/L (4.2). We have clx +
u|x=0,L = 0, |cl| = |cω| ≤ ||ux||L∞ and

|clx+ u| ≤ min(|x|, |L− x|) · ||cω + ux||L∞[0,L]

≤ 2 min(|x|, |L− x|)||ux||∞.

For any x ∈ [0, L], using the Leibniz rule, we derive∣∣∣ ((clx+ u)ϕ)x
ϕ

∣∣∣+
∣∣∣ ((clx+ u)ψ)x

ψ

∣∣∣
≤2(2 +

∣∣∣∣∣∣(|x| ∧ (L− x))(
|ϕx|
ϕ

+
|ψx|
ψ

)
∣∣∣∣∣∣
L∞

)||ux||L∞ , C2(ω̄)||ux||L∞ .

Combining the above estimates, we prove

(4.44)

N1 + µN2 ≤ (C2(ω̄) + 2)||ux||L∞(〈ω2, ϕ〉+ µ〈ω2
x, ψ〉)

+ µ||xψ1/2||L∞ ||uxxx−1||2||ω||L∞〈ω2
x, ψ〉1/2

≤ C3(ω̄, µ)E(t)3,

where

C3(ω̄, µ) = 2µ−1/4(C2(ω̄) + 2)||ϕ−1||1/4L∞ ||ψ
−1||1/4L∞

+ µ−1/2||xψ1/2||L∞ ||x−1ψ−1/2||L∞ ||ψ−1||1/2
L1[0,L]

.

We remark that the above L∞ norms are taken over [0, L]. From the definition of
ϕ,ψ, it is not difficult to verify that C3(ω̄, µ) < +∞.

To estimate the error term, we use the Cauchy–Schwarz inequality

F1 + µF2 = 〈F (ω̄), ωϕ〉+ µ〈F (ω̄)x, ωxψ〉

≤ (〈F (ω̄)2, ϕ〉+ µ〈F (ω̄)2
x, ψ〉)1/2E(t) , error(ω̄)E(t),
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Guideline for the remaining computer assisted steps. Recall the definition
of ϕ,ψ in (4.6) and (4.36). From the weighted L2 and H1 estimates, and the
estimates of the nonlinear terms, we see that the coefficients and constants, e.g.
D(ω̄) in (4.8), C1(ω̄) in (4.42) and C3(ω̄, µ) in (4.44), depend continuously on ω̄.
Hence, for two different approximate steady states ωh1 , ωh2 computed using differ-
ent mesh h2 < h1, if ωh1 − ωh2 is small in some norm, e.g. some weighted L2 or
H1 norm, we expect that all of these estimates hold true for these two profiles with
very similar coefficients and constants. At the same time, the residual error of the
profile computed using the finer mesh error(ωh2) can be much smaller than that
of the coarse mesh error(ωh1). In particular, if the numerical solution ωh exhibits
convergence in a suitable norm as we refine the mesh size h, then we can obtain a
sequence of approximate steady states that enjoy similar estimates with decreasing
residual error(ωh). See also the Remark 4.1. From our numerical computation,
we did observe such convergence of ωh computed using several meshes with de-
creasing mesh size h. Using the estimates that we have established, we can obtain
nonlinear estimate for each profile ω̄ similar to (3.32)

1

2

d

dt
E2(t) ≤ −K1(ω̄)E2(t) +K2(ω̄)E3(t) + error(ω̄)E(t),

where E(t)2 = 〈ω2, ϕ〉 + µ(ω̄)〈ω2
x, ψ〉 and the positive constants K1(ω̄), K2(ω̄),

µ(ω̄) depend continuously on ω̄. From this inequality, we can estimate the size of
error(ω̄) that is required to close the bootstrap argument. A sufficient condition is
that there exists y > 0 such that −K1(ω̄)y2 + K2(ω̄)y3 + error(ω̄)y < 0, which
is equivalent to

(4.45) 4 · error(ω̄) ·K2(ω̄) < K1(ω̄)2.

Hence, we obtain a good estimate on error(ω̄) that is required to close the whole
estimate.

In practice, we first compute an approximate steady state ω̄h using a relatively
coarse mesh, e.g. mesh size h = L/1000 or L/2000 (correspond to 1000 or 2000
grid points). Then we can perform all the weighted L2, H1 estimates and deter-
mine the weights ϕ,ψ, the decomposition in the estimates and all the parameters in
(4.31) to obtain the linear stability, and perform the nonlinear estimates. After we
obtain these estimates, we can determine an upper bound of error(ω̄) using (4.45)
and choose a finer mesh with mesh size h2 to construct a profile ω̄h2 with a residual
error less than this upper bound. After we extend all the corresponding estimates
to the profile ω̄h2 , we found that the corresponding constants and coefficients in the
estimates are almost the same as those that we have obtained using ω̄h constructed
by a coarser mesh. Therefore, we can perform analysis on ω̄h2 and close the whole
argument.

In the Supplementary material [8, Sections 2,4], we will provide much sharper
estimates of the cross terms (4.41), (4.43) and the nonlinear terms (4.44). These
sharper estimates provide an estimate of the upper bound of error(ω̄) in (4.45)
that is not too small. This enables us to choose a modest mesh to construct an



42 J. CHEN, T. Y. HOU, AND D. HUANG

approximate profile with a residual error less than this upper bound. In particular,
we choose h = 2.5 · 10−5 and the computational cost of ω̄h is affordable even
for a personal laptop computer. The rigorous estimate for the residual error of this
profile in the energy norm is established in the Supplementary material [8, Section
3]. More specifically, we can prove the following estimate, which improves the
estimate given by (4.43) significantly.

Lemma 4.2. The weighted H1 estimate satisfies
1

2

d

dt
〈ω2
x, ψ〉 = I + II2 +N2 + F2 ≤ −0.25〈ω2

x, ψ〉+ 7.5〈ω2, ϕ〉+N2 + F2,

where I, II2 combine the damping and the cross terms and are defined in (4.39),
(4.40), respectively.

These refinements are not necessary if one can construct an approximate profile
with a much smaller residual error using a more powerful computer with probably
10 − 100 times more grid points. With these refined estimates and the rigorous
estimate of the residual error of ω̄h, we choose µ = 0.02 and bootstrap assumption
E(t) = 〈ω2, ϕ〉 + µ〈ω2

x, ψ〉 < 5 · 10−4 to complete the final bootstrap argument.
We refer the reader to the Supplementary material [8, Section 5] for the detailed
estimates in the bootstrap argument.

The remaining steps are the same as those in the proof of Theorem 1.6. Recall
the weights ϕ (4.6) and ψ (4.36) in the weighted L2 and H1 estimates and the
regularity of the approximate profile ω̄ in Section 4.1. Note that ϕ is of order
O(x−4) near x = 0 and O((x−L)−2) near x = L, and ψ is of order O(x−2) near
x = 0 and O(1) near x = L. We can choose a small and odd initial perturbation
ω supported in [−L,L] with vanishing ωx(0) = 0 such that ω restricted to [0, L]
satisfies ω ∈ L2(ϕ), ωx ∈ L2(ψ) and ω + ω̄ ∈ C∞c . The bootstrap result implies
that for all time t > 0, the solution ω(t) + ω̄, cl + c̄l = cω(t) + c̄ω remain close
to ω̄, c̄ω(c̄ω < −0.69), respectively. Moreover, in the Supplementary Material [8,
Section 6], we have established the following estimate

1

2

d

dt
〈ω2
t , ϕ〉 ≤ −0.15〈ω2

t , ϕ〉.

Using this estimate and a convergence argument similar to that in Section 3.3, we
prove that the solution eventually converges to the self-similar profile ω∞ with
scaling factors cl,∞ = cω,∞ < 0. Since γ = − cl,∞

cω,∞
= −1 < 0, the asymptotically

self-similar singularity is expanding. Thus we obtain an expanding and asymptoti-
cally self-similar blowup of the original De Gregorio model with scaling exponent
γ = −1 in finite time.

5 Finite Time Blowup for Cα Initial Data

In [17], Elgindi and Jeong obtained the Cα self-similar solution ωα of the
Constantin-Lax-Majda equation

clxωx = (cω + ux)ω
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for all α ∈ (0, 1], which reads

(5.1)

wα = −
2 sin

(
απ
2

)
sgn(x)|x|α

1 + 2 cos
(
απ
2

)
|x|α + |x|2α

,

uα,x =
2(1 + cos

(
απ
2

)
|x|α)

1 + 2 cos
(
απ
2

)
|x|α + |x|2α

, cl =
1

α
, cω = −1,

where cl, cω are the scaling parameters.
In this section, we will use the above solutions to construct approximate self-

similar solutions analytically and use the same method of analysis presented in
Section 3 to prove finite time asymptotically self-similar singularity for Cα initial
data with small α on both the real line and on the circle. We will focus on solution
of (1.3) with odd symmetry that is preserved during the evolution. In particular,
we will construct odd approximate steady state and analyze the stability of odd
perturbation around the approximate steady state.

5.1 Finite time blowup on R with Cα
c initial data

In this section, we prove Theorem 1.7. Throughout the proof, we impose |aα| <
1 and α < 1

4 . We choose the following weights in the stability analysis

(5.2) ϕα = − 1

sgn(x)ωα

1 + 2 cos
(
απ
2

)
|x|α + |x|2α

|x|1+2α
, ψα =

1

α2
ϕαx

2.

We choose these weights so that the estimates of 〈ω2, ϕα〉 and 〈ω2
x, ψα〉 are com-

parable in the energy estimates.

Normalization Conditions and Approximate Steady State
The self-similar equation of DG model with parameter a reads

(5.3) (clx+ au)ωx = (cω + ux)ω .

For any a > 0, α ∈ (0, 1), we construct Cα approximate self-similar profile of
(5.3) below

(5.4) ωα, uα, c̄l,α =
1

α
− auα,x(0) =

1

α
− 2a, c̄ω = −1.

The only difference between the above solution and the Cα self similar solutions
of CLM (5.1) is the cl term. The above solution satisfies (5.3) up to an error

(5.5) Fα(ωα) = −(c̄lx−
1

α
x+ auα)ωα,x = −a(uα − uα,x(0)x)ωα,x.

Linearizing the dynamic rescaling equation (2.1) around the approximate self-
similar profile in (5.4), we obtain the following equation for the perturbation ω, u,
cl, cω:

(5.6)
ωt + (c̄l,αx+ auα)ωx =(c̄ω + uα,x)ω + (ux + cω)ωα

− (au+ clx)ωα,x +N(ω) + Fα(ωα) ,
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where the error term Fα(ωα) is given in (5.5) and the nonlinear part is given by

N(ω) = (cω + ux)ω − (clx+ au)ωx.

We choose the following normalization conditions for cl(t), cω(t)

(5.7) cl(t) = −aux(t, 0), cω(t) = −ux(t, 0).

Using (5.4) and uα,x(0) = 2, we can rewrite the above conditions as

(5.8) cl(t)+c̄l =
1

α
−a(ux(t, 0)+uα,x(0)), cω+c̄ω = 1−(ux(t, 0)+uα,x(0)).

Estimate of the velocity, the self-similar solution and the error
We introduce the notation

(5.9) ũ , u− ux(0)x, ũx = ux − ux(0) ,

and use the weighs defined in (5.2) to perform the L2, H1 estimates.
We first state some useful properties of theCα approximate self-similar solution

that we will use in our stability analysis.

Lemma 5.1. For α ∈ (0, 1], we have the following estimates for the self-similar
solutions defined in (5.1). (a) Uniform estimates on the damping effect

(5.10)

1

2ϕα

(
1

α
xϕα

)
x

+ (c̄ω + uα,x) = −1/2 ,

1

2ψα

(
1

α
xψα

)
x

+ (c̄ω + uα,x)− 1

α
= −1/2 ,

(uα,xxψα)x
2ψα

x2 =
4α2|x|α(|x|α + cos

(
απ
2

)
)

(1 + 2 cos
(
απ
2

)
|x|α + |x|2α)2

≥ 0 .

(b) Vorticity and velocity estimates:∣∣∣∣∣∣xwα,x
wα

∣∣∣∣∣∣
∞
. α,

∣∣∣∣∣∣x2wα,xx
wα

∣∣∣∣∣∣
∞
. α,

∣∣∣∣∣∣x2ωα,xx + xωα,x
ωα

∣∣∣∣∣∣
∞
. α2,(5.11) ∣∣∣uα

x
− uα,x(0)

∣∣∣ . |x|α ∧ 1,
∣∣∣uα
x
− uα,x

∣∣∣ . α(|x|α ∧ 1) .(5.12)

(c) Asymptotic estimates of ϕα, ψα:

(5.13)

ϕα �
1

α
(|x|−1−3α + |x|−1+α) ,

ψα =
1

α2
x2ϕα �

1

α3
(|x|1−3α + |x|1+α) ,∣∣∣∣∣∣xψα,x

ψα
− 1
∣∣∣∣∣∣
∞
. α,

∣∣∣∣∣∣xϕα,x
ϕα

+ 1
∣∣∣∣∣∣
∞
. α ,

where A � B means that A ≤ CB and B ≤ CA for some universal constant C.
(d) The smallness of the weighted L2 and H1 errors:

〈Fα(ωα)2, ϕα〉 . a2α2, 〈(Fα(ωα))2
x, ψα〉 . a2α2,(5.14)

〈(|x|α ∧ 1)2ω2
α,x, ψα〉 . 1.(5.15)
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These estimates can be established by using the explicit formulas of ωα, uα,
c̄l,α, c̄ω, ϕα, ψα, Fα(ωα) given in (5.1), (5.2), (5.4) and (5.5), which are elementary.
Therefore, we will not present the estimates here and refer the reader to the arXiv
version of this paper [7] for the details.

Remark 5.2. We will use (5.10) to derive the damping terms in the weighted L2

and H1 estimates. Using (5.11), we gain a small factor α from the derivatives of
ωα. This enables us to show that the perturbation term uωα,x is small. Estimates
(5.13) shows that xψα,x/ψα, xϕα,x/ϕα are close to 1 and −1, respectively, which
allows us to estimate ϕα,x, ψα,x effectively.

Lemma 5.3 (L∞ estimate).

||ux||∞ . 〈ω2, ϕα〉1/4〈ω2
x, ψα〉1/4,(5.16) ∣∣∣ũx − ũ

x

∣∣∣ . α〈ω2
x, ψα〉1/2|xα| ∧ 1 . α〈ω2

x, ψα〉1/2,(5.17)

|ω(x)| . α〈ω2
x, ψα〉1/2|xα| ∧ 1,(5.18)

where ũ = u− ux(0)x.

The proofs of these estimates are standard so we only sketch the main ideas and
refer to the arXiv version of this paper [7] for the details. The weights ψα, ϕα can
be simplified by applying (5.13). Estimate (5.16) follows from the interpolation
between the weighted L2 norm of ux and uxx and by using the weighted estimates
of the Hilbert transform in Lemma A.4. To prove (5.17), we can first rewrite ũx −
ũ
x as an integral of ωx with some kernel. Then the estimate can be established
by the Cauchy–Schwarz inequality and estimating the integrals of some explicit
functions. Estimate (5.18) is proved by estimating ω(x) by the L1 norm of ωx and
the Cauchy–Schwarz inequality.

Estimate (5.17) shows that we can gain a small factor α from ũx − ũ
x = ux −

u/x.
We use a strategy similar to that in the proof of Theorem 1.6 to prove Theo-

rem 1.7. The key step is establishing linear stability by taking advantage of the
following:

(a) the stretching effect c̄l,αxωx and the damping term (c̄ω + ux,α)ω ;
(b) the cancellation (A.11), (A.5) involving the vortex stretching term uxωα;
(c) the smallness of the advection term auωα,x (see (5.11)) by choosing |aα| to

be sufficiently small .
To control the velocity u, we need to use Lemma A.4 in the Appendix, which

states some nice properties of the Hilbert transform for a Hölder continuous func-
tion.
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Linear Estimate

We first perform the weighted L2 estimate with respect to (5.6). We proceed as
follows

(5.19)

1

2

d

dt
〈ω2, ϕα〉 = 〈−(c̄l,αx+ auα)ωx + (c̄ω + uα,x)ω, ωϕα〉

+ 〈(ux + cω)ωα, ωϕα〉 − 〈(au+ clx)ωα,x, ωϕα〉
+ 〈N(ω), ωϕα〉+ 〈Fα(ωα), ωϕα〉

, I + II + III +N + F.

For I , we use integration by parts, (5.10) and c̄l,α = 1
α − auα,x(0) to get

(5.20)
I =

〈 1

2ϕα
((c̄l,αx+ auα)ϕα)x + (c̄ω + uα,x), ω2ϕα

〉
= −1

2
〈ω2, ϕα〉+ a

〈 1

2ϕα
((uα − uα,x(0)x)ϕα)x, ω

2ϕα

〉
.

For the second term, we use (5.12) and (5.13) to yield∣∣∣ 1

2ϕα
((uα − uα,x(0)x)ϕα)x

∣∣∣ =
∣∣∣1
2

(uα,x − uα,x(0)) +
uα − uα,x(0)x

x

xϕα,x
2ϕα

∣∣∣
=
∣∣∣1
2

(uα,x −
uα
x

) +
uα − uα,x(0)x

x

(
xϕα,x
2ϕα

+
1

2

) ∣∣∣ . α+ 1 · α . α .

Combining (5.20) with the above estimate, we derive

(5.21) I ≤ −1

2
〈ω2, ϕα〉+ C|a|α〈ω2, ϕα〉 = −

(
1

2
− C|a|α

)
〈ω2, ϕα〉,

where C > 0 is some universal constant.
Recall the definitions of ϕα in (5.2), cl = −aux(0), cω = −ux(0) in (5.7)

and ũ, ũx in (5.9). We have clx + au = aũ, cω + ux = ũx. For II , we use the
cancellation (A.11) and (A.5) to get

(5.22)

II = 〈ũxωα, ωϕα〉

= −
〈
ũxω · sgn(x), |x|−1−2α + 2 cos

(απ
2

)
||x|−1−α + |x|−1

〉
≤ −〈ũxω · sgn(x), |x|−1〉 = −π

2
u2x(0) ≤ 0.

For III , we have

|III| = |〈(au+ clx)ωα,x, ωϕα〉| =
∣∣∣a〈 ũ

x

ωα,xx

ωα
, ω

1 + 2 cos
(
απ
2

)
|x|α + |x|2α

|x|1+2α

〉∣∣∣
. |a|

〈∣∣∣ ũ
x

∣∣∣∣∣∣ωα,xx
ωα

∣∣∣, |ω|(|x|−1−2α + |x|−1)
〉
.
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Using the estimate for ωα (5.11) and the Hardy inequality (A.12), we obtain

(5.23)

|III| . |a|α
〈∣∣∣ ũ
x

∣∣∣, |ω|(|x|−1−2α + |x|−1)〉

. |a|α〈ũ2, |x|−3−3α〉1/2〈ω2, |x|−1−α〉1/2

+ |a|α〈ũ2, |x|−3−α〉1/2〈ω2, |x|−1+α〉1/2

. |a|αα−1〈ω2, |x|−1−3α〉1/2〈ω2, |x|−1−α〉1/2

+ |a|αα−1〈ω2, |x|−1−α〉1/2〈ω2, |x|−1+α〉1/2

. |a|α〈ω2, ϕα〉,

where we have used (5.13) to obtain the last inequality.
Plugging (5.21), (5.22) and (5.23) in (5.19), we establish

(5.24)
1

2

d

dt
〈ω2, ϕα〉 ≤ −

(
1

2
− C|a|α

)
〈ω2, ϕα〉+ 〈N(ω), ωϕα〉+ 〈Fα(ωα), ωϕα〉.

Weighted H1 Estimate

Recall the definition of the weight ψα in (5.2). We now perform the weighted
H1 estimate with respect to (5.6)

1

2

d

dt
〈ω2
x, ψα〉 = 〈−((c̄l,αx+ auα)ωx)x + ((c̄ω + uα,x)ω)x, ωxψα〉

+ 〈((ux + cω)ωα)x, ωxψα〉 − 〈((au+ clx)ωα,x)x, ωxψα〉
+ 〈N(ω)x.ωxψα〉+ 〈Fα(ωα)x, ωxψα〉

, I + II + III +N2 + F2.

The estimate of each term in I, II, III is very similar to that in the weighted
L2 estimates in last section and the weighted H1 estimates in Section 3.2 so we
only sketch the estimates. Note that I only involves the local terms. We can first
apply integration by parts and then use the second and the third identities in (5.10)
to obtain the damping term similar to (5.21). For II , we have

II = −〈uxxωα, ωxψα〉+ 〈ũxωα,x, ωxψα〉 , II1 + II2,

where ũ = u + cωx = u − ux(0)x (see (5.9)). To estimate II1, we use the
nonlocal cancellation (A.11), (A.5) with (ux, ω) replaced by (xuxx, xωx) to obtain
an estimate similar to (5.22), which has a favorable sign. For II2 and III , they
involve the derivative of ωα, which gives a small factor α. We can use Lemmas
5.1, 5.3 to estimate the profiles and the weights, and use Lemma A.4 to estimate ũ
and ũx. We present the estimate of a typical term below. Consider the following
decomposition for III

III = −〈((au+ clx)ωα,x)x, ωxψα〉 = −a〈ũxωα,x + ũωα,xx, ωxψα〉

= −a
〈

(ũx −
ũ

x
)ωα,x, ωxψα

〉
− a
〈 ũ
x

(ωα,x + xωα,xx), ωxψα

〉
, III1 + III2.



48 J. CHEN, T. Y. HOU, AND D. HUANG

The advantage of the above decomposition of is that we gain a small factor α by
applying (5.17) to ũx− ũ

x and the third estimate in (5.11) to (ωα,x+xωα,xx). Using
(5.17), the Cauchy–Schwarz inequality and (5.15), we get

III1 ≤ |a|α〈ω2
x, ψα〉1/2 · 〈(|x|α ∧ 1)|ωα,x|, |ωx|ψα〉

. |a|α〈ω2
x, ψα〉 · 〈(|x|α ∧ 1)2ω2

α,x, ψα〉1/2 . |a|α〈ω2
x, ψα〉.

Similarly, other terms in II2, III2 can be bounded by |a|α〈ω2
x, ψα〉 or the in-

terpolation between 〈ω2
x, ψα〉 and 〈ω2, ϕα〉. We refer to the arXiv version of this

paper [7] for the detailed estimates. In particular, we obtain

(5.25)
1

2

d

dt
〈ω2
x, ψα〉 ≤ −

(
1

2
− C|a|α

)
〈ω2
x, ψα〉+ C〈ω2, ϕα〉1/2〈ω2

x, ψα〉1/2

+ 〈N(ω)x, ωxψα〉+ 〈Fα(ωα)x, ωxψα〉,
for some universal constant C.

In the following two subsections, we aim to control the nonlinear and error
terms

〈N(ω), ωϕα〉, 〈Fα(ωα), ωϕα〉, 〈N(ω)x, ωxψα〉, 〈Fα(ωα)x, ωxψα〉

in (5.24) and (5.25).

Estimates of nonlinear terms
Recall from (5.7) and (5.9) that

clx+ au = a(u− ux(0)x) = aũ, cω + ux = ux − ux(0) = ũx.

For the nonlinear terms in (5.24) and (5.25), we use integration by parts to obtain

〈N(ω), ωϕα〉 = 〈(cω + ux)ω − (clx+ au)ωx, ωϕα〉 =
〈
ũx +

(aũϕα)x
2ϕα

, ω2ϕα

〉
= 〈ũx, ω2ϕα〉+

a

2

〈(
ũx +

ũ

x

xϕα,x
ϕα

)
, ω2ϕα

〉
, I1 + I2,

〈N(ω)x, ωxψα〉 = 〈((cω + ux)ω − (clx+ au)ωx)x, ωxψα〉

= 〈uxxω + ũxωx, ωxψα〉 − a
〈
ũxωx + ũωxx, ωxψα

〉
= 〈ũxωx, ωxψα〉+ 〈uxxω, ωxψα〉+ a

〈
− ũx +

(ũψα)x
2ψα

, ω2
xψα

〉
, II1 + II2 + II3.

For each term Ii, IIj , we use Lemma 5.3 to control the L∞ norm of ω, ũ/x, ũx
or ũx − ũ/x, and use 〈ω2, ϕα〉, 〈ω2

x, ψα〉 to control other terms. We present the
estimate of II3 that has a large coefficient a and is more complicated. Other terms
can be estimated similarly. For II3, we notice that

−ũx +
(ũψα)x

2ψα
= −1

2
ũx +

1

2

ũ

x

ψα,xx

ψα
= −1

2

(
ũx −

ũ

x

)
+

1

2

ũ

x

(
ψα,xx

ψα
− 1

)
.
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Then we use the L∞ estimate (5.17) to control ũx − ũ/x, (5.16) to control
ũ/x = u/x− ux(0) and (5.13) to estimate the terms involving ψα. This gives

(5.26)

II3 =
a

2

〈
−
(
ũx −

ũ

x

)
+
ũ

x

(
ψα,xx

ψα
− 1

)
, ω2

xψα

〉
. |a|

(∣∣∣∣∣∣ũx − ũ

x

∣∣∣∣∣∣
L∞

+ ||ux||∞
∣∣∣∣∣∣ψα,xx

ψα
− 1
∣∣∣∣∣∣
L∞

)
〈ω2
x, ψα〉

. (|a|α〈ω2
x, ψα〉1/2 + |a|α〈ω2, ϕα〉1/4〈ω2

x, ψα〉1/4)〈ω2
x, ψα〉

. (〈ω2, ϕα〉+ 〈ω2
x, ψα〉)3/2,

where we have used |aα| < 1. Similarly, we have

(5.27) I1, I2, II1, II2 . (〈ω2, ϕα〉+ 〈ω2
x, ψα〉)3/2.

Combining (5.26) and (5.27), we obtain the following estimates for the nonlinear
terms

(5.28)
〈N(ω), ωϕα〉 = I1 + I2 . (〈ω2, ϕα〉+ 〈ω2

x, ψα〉)3/2,

〈N(ω)x, ωxψα〉 = II1 + II2 + II3 . (〈ω2, ϕα〉+ 〈ω2
x, ψα〉)3/2.

Estimates of the error terms
Recall the error terms in the weighted L2, H1 estimates in (5.24) and (5.25) are

given by
〈Fα(ωα), ωϕα〉, 〈(Fα(ωα))x, ωxψα〉.

Using the Cauchy–Schwarz inequality and the error estimate (5.14), we obtain

(5.29)
〈Fα(ωα), ωϕα〉 ≤ 〈Fα(ωα)2, ϕα〉1/2〈ω2, ϕα〉1/2 . |a|α〈ω2, ϕα〉1/2,

〈(Fα(ωα))x, ωxψα〉 ≤ 〈(Fα(ωα))2x, ψα〉1/2〈ω2
x, ψα〉1/2 . |a|α〈ω2

x, ψα〉1/2.

Nonlinear stability and convergence to self-similar solution
Now, we combine the weighted L2, H1 estimates (5.24), (5.25), the estimates

of nonlinear terms (5.28) and error terms (5.29). Using these estimates and an
argument similar to that in the analysis of nonlinear stability in Section 3.2 , we
can choose an absolute constant 0 < µ such that the following energy

E2(t) , 〈ω2, ϕα〉+ µ〈ω2
x, ψα〉

satisfies the differential inequality

(5.30)
1

2

d

dt
E2(t) ≤ −

(
3

8
− C|a|α

)
E2(t) + C|a|αE(t) + CE3(t),

where C > 0 is an absolute constant. From (5.13), we have

|ux(0)| .
∫
|ωx(y)|| log(y)|dy . (

∫
ω2
xψα)1/2(

∫
ψ−1α | log y|2)1/2

.E(t)

(
α3

∫
| log y|2(|y|1+α + |y|1−3α)−1dy

)1/2

. E(t)(α3α−1)1/2 . αE(t).
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The normalization condition (5.7) implies

(5.31) |cω(t)| = |ux(t, 0)| ≤ C3αE(t), |cl(t)| = |aux(0)| ≤ C3|a|αE(t),

for some absolute constant C3 > 0.
The remaining steps are essentially the same as those in the proof of Theorem

1.6 in Sections 3.2, 3.3 for the De Gregorio model in the case of small |a| so we
omit the details here. We refer to the arXiv version of this paper [7] for the details
and conclude the proof of Theorem 1.7.

5.2 Finite Time Blowup on Circle
In this subsection, we consider the De Gregorio model on S1

(5.32)
ωt + auωx = uxω x ∈ [−π/2, π/2] ,

ux = Hcω ,

where ω, u are π-periodic and Hc is the Hilbert transform on the circle

(5.33) ux = Hcω =
1

π

∫ π/2

−π/2
ω(y) cot(x− y)dy.

Our goal is to prove Theorem 1.8. The proof is based on the comparison of
the Hilbert transform on the real line and on S1, and on the control of the support
of the vorticity ω. If the asymptotically self-similar blowup on R from compactly
supported initial data is focusing, we can show that the support of the solution at
the blow-up time remains finite. Moreover, we show that the difference between
the velocities generated by different Hilbert transforms in the support of ω can be
arbitrarily small by choosing initial data with small support. Therefore, the blowup
mechanism of (1.3) on the real line applies to (1.3) on the circle.

We focus on the Cα case, i.e. case (2) in Theorem 1.8. The proof of the other
case for small |a| is similar and simpler.

Dynamical Rescaling

We consider the following dynamic rescaling of (5.32)

Ω(x, τ) = Cω(τ)ω(Cl(τ)x, t(τ)), Ux(x, τ) = Cω(τ)ux(Cl(τ)x, t(τ)).

Denote by S(τ) the size of support of Ω(·, t(τ)), i.e. supp(Ω) = [−S(τ), S(τ)].
This is equivalent to assuming that the size of supp(ω) is Cl(τ)S(τ). We will
choose Cl(0)S(0) to be small and show that Cl(τ)S(τ) remains small up to the
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blowup time. We have

(5.34)

Ux(x, τ) = Cω(τ)ux(Clx, t(τ))

=
1

π
Cω(τ)

∫ π/2

−π/2
ω(y, t(τ)) cot(Cl(τ)x− y)dy

=
1

π
Cω(τ)

∫ Cl(τ)S(τ)

−Cl(τ)S(τ)

ω(y, t(τ)) cot(Cl(τ)x− y)dy

=
Cω(τ)

π

∫ S(τ)

−S(τ)
ω(Cly, t(τ)) cot(Cl(τ)x− Cl(τ)y)Cl(τ)dy

=
1

π

∫ S(τ)

−S(τ)
Ω(y, τ) cot(Cl(τ)x− Cl(τ)y)Cl(τ)dy , HτΩ(x).

We introduce the time-dependent Hilbert transform Hτ . The corresponding U is
given by

(5.35)
U(x, τ) =

∫ x

0

Ux(y, τ)dy =
1

π

∫ S(τ)

−S(τ)
Ω(y) log | sin(Cl(τ)x− Cl(τ)y)|dy

=
1

π

∫ S(τ)

0

Ω(y) log
∣∣∣ sin(Cl(τ)x− Cl(τ)y)

sin(Cl(τ)x+ Cl(τ)y)

∣∣∣dy.
With this notation, we can formulate the dynamic rescaling equation below

(5.36)
Ωτ + (clx+ aU)Ωx = (cω + Ux)Ω,

Ux = HτΩ.

To simplify our notations, we still denote Ω, U, τ in the dynamic rescaling space
by ω, u, t i.e.

(Ω, U, τ)→ (ω, u, t).

The bootstrap assumption

We make the following bootstrap assumption.
(a) Support of ω in the physical space : For all t > 0 we have

(5.37) Cl(t)S(t) <
π

4
.

(b) Boundedness of the solution: Let ϕα, ψα be the weights in (5.2). We assume

(5.38)

〈ω2, |y|−1−α + |y|−1+α〉+ 〈ω2
x, |y|1−α + |y|1+α〉

<10〈ω2
α, |y|−1−α + |y|−1+α〉+ 10〈ω2

α,x, |y|1−α + |y|1+α〉+ α−2 + 1,

|cω(t) + 1| < 1

2
, |cl(t)−

1

α
| < 1

2α
,

where cl, cω, ω is the solution of (5.36). We remark that we do not require smallness
of ω, ωx in the assumption.
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Control of the support

We choose the same weights ϕα, ψα as in (5.2) for later energy estimate. The
evolution of the support of Ω in (5.36), i.e. S(t), is given by

(5.39)
d

dt
S(t) = cl(t)S(t) + aU(S(t), t).

Firstly, we show that U has a sublinear growth if 〈ω2, ϕα〉 is bounded. Using (5.35)
and the Cauchy–Schwarz inequality, we get
(5.40)

|U(S(t)| . 〈ω2, |y|−1+α〉1/2
(∫ S(t)

0

|y|1−α
(

log
∣∣∣ sin(Cl(t)S(t)− Cl(t)y)

sin(Cl(t)S(t) + Cl(t)y)

∣∣∣)2

dy

)1/2

.

Since 0 < y < S(t) and (|y|+ S(t))Cl(t) < π/2 (5.37), we can use

2

π
x ≤ sin(x) ≤ x, x ∈ [0, π/2]

to obtain for any y ∈ [0, S(t)](
log
∣∣∣sin(Cl(t)S(t)− Cl(t)y)

sin(Cl(t)S(t) + Cl(t)y)

∣∣∣)2

. 1 +

(
log
∣∣∣Cl(t)(S(t)− y)

Cl(t)(S(t) + y)

∣∣∣)2

= 1 +

(
log
∣∣∣S(t)− y
S(t) + y

∣∣∣)2

.

Substituting the above estimate in the integral in (5.40), we obtain

|U(S(t)| . 〈ω2, |y|−1+α〉1/2
(∫ S(t)

0

|y|1−α
(

1 +

(
log
∣∣∣S(t)− y
S(t) + y

∣∣∣)2
)
dy

)1/2

. 〈ω2, |y|−1+α〉1/2
(
|S(t)|2−α

∫ 1

0

|z|1−α
(

1 +

(
log
∣∣∣1− z
1 + z

∣∣∣)2
)
dz

)1/2

,

where we have used the change of variable y = S(t)z to get the second inequality.
Using the above estimate and (5.38), we obtain

|U(S(t)| . 〈ω2, |y|−1+α〉1/2S(t)1−α/2 .α S(t)1−α/2.

Substituting the above estimate in (5.39), we yield

(5.41)
d

dt
S(t) ≤ cl(t)S(t) + C(a, α)S(t)1−α/2,

where the constant C(a, α) only depends on a, α. Recall

Cl(t) = Cl(0) exp

(
−
∫ t

0
cl(s)ds

)
.
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Denote P (t) , Cl(t)S(t). Estimate (5.41) implies the following differential in-
equality

(5.42)
d

dt
P (t) =

d

dt
(Cl(t)S(t)) ≤ C(a, α)Cl(t)

α/2(Cl(t)S(t))1−α/2

= C(a, α)Cl(t)
α/2P (t)1−α/2.

Using the bootstrap assumption cl(t) > 1
2α (5.38), we have Cl(t) ≤ Cl(0)e−

t
2α .

From this estimate and (5.42), we further obtain

d

dt
P (t)α/2 ≤ C(a, α)Cl(t)

α/2 ≤ C(a, α)Cl(0)α/2 exp

(
− t

4

)
,

which implies

P (t)α/2 ≤ P (0)α/2 + C(a, α)Cl(0)α/2
∫ t

0
exp

(
−s

4

)
ds

< P (0)α/2 + C(a, α)Cl(0)α/2,

whereC(a, α) only depends on a, α and may vary from line to line. Recall P (0) =
Cl(0)S(0). As a result of the above estimate, we obtain
(5.43)

P (t)α/2 ≤ (1 + C(a, α)S(0)−α/2)P (0)α/2 ⇒ P (t) ≤ C(a, α, S(0))P (0),

where the constant C(a, α, S(0)) depends on a, α and S(0).

Comparison between different Hilbert transforms
Lemma 5.4 (Comparison of Hilbert transforms). With the bootstrap assumptions
(5.37) and (5.38), for |x| ≤ S(t), the difference between Ht (5.34) on the circle
and the Hilbert transform on the real line H can be controlled by

(5.44)
|(Htω)(x)−Hω(x)| .α Cl(t)S(t) ,

|x(Htωx)(x)− x(Hωx)(x)| .α Cl(t)S(t) .

Remark 5.5. We only care about x in the support of Ω since for x outside the
support of Ω, U(x) does not enter the equation (5.36).

Proof. It suffices to consider x ∈ [0, S(t)] due to the symmetry. We only prove the
second inequality in (5.44) and the first one can be proved similarly. Firstly, from
(5.34), we have

(5.45)

|x(Htωx)(x)− x(Hωx)(x)|

=
∣∣∣x
π

∫ S(t)

−S(t)
ωx(y, t)

(
cot(Cl(t)x− Cl(t)y)Cl(t)−

1

x− y

)
dy
∣∣∣.

The bootstrap assumption (5.37) shows that |Cl(x − y)| ≤ π
2 for |x|, |y| ≤ S(t).

Using the elementary inequality
∣∣∣1z − cot z

∣∣∣ . min(|z|, 1) . 1, ∀|z| . π
2 , we
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obtain ∣∣∣ cot(Cl(t)x− Cl(t)y)Cl(t)−
1

x− y

∣∣∣
=Cl(t)

∣∣∣ cot(Cl(t)x− Cl(t)y)− 1

Cl(t)(x− y)

∣∣∣ . Cl(t).
Using the Cauchy–Schwarz inequality, we can estimate (5.45) as follows

|x(Htωx)(x)− x(Hωx)(x)| . Cl(t)|x|
∫ S(t)

−S(t)
|ωx(y, t)|dy

≤Cl(t)|x|〈ω2
x, |y|1−α + |y|1+α〉1/2

(∫
R

1

|y|1+α + |y|1−α
dy

)1/2

.

Using |x| ≤ S(t) and (5.38), we obtain

|x(Htωx)(x)− x(Hωx)(x)| .α Cl(t)S(t).

This completes the proof of the lemma. �

Finite time blowup

Recall that for compactly supported solution ω(x, τ) with support size S(τ) <
+∞ in the dynamic rescaling equation (5.36), it corresponds to a solution ωphy at
time t(τ) in the physical space (5.32) via

ωphy(x, t(τ)) = Cω(τ)−1ω(Cl(τ)−1x, τ),

Cl(τ) = Cl(0) exp

(
−
∫ τ

0
cl(s)ds

)
, t(τ) =

∫ τ

0
exp

(∫ s

0
cω(r)dr

)
ds.

See the discussion in Section 3.1. By abusing the notation, we still use t as the time
variable in the dynamic rescaling equation. We can rewrite (5.36) as follows

(5.46)

ωt + (clx+ au)ωx = (cω + ux)ω + ((Htω)(x)− (Hω)(x))ω

+ a((Iω)(x)− (Itω)(x))xωx

ux = Hω

where u = x(Iω)(x) and the operator Itω, Iω are

(Itω)(x) =
1

x

∫ x

0
(Htω)(y)dy, (Iω)(x) =

1

x

∫ x

0
(Hω)(y)dy,

i.e. 1/x times the velocity generated by different Hilbert transforms. We choose
the following normalization condition

(5.47) cl(t) =
1

α
− a(Htω(t, ·))(0), cω(t) = 1− (Htω(t, ·))(0).

The difference between (5.8) and the above condition is the Hilbert transform,
which can be bounded by (5.44).
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For the difference of the Hilbert transform in (5.46), we use (5.44) to obtain
the pointwise estimate of Htω −Hω and x(Htω −Hω)x. Similarly, we have the
pointwise estimate of Iω(x)− Itω(x) for all |x| ≤ S(t)
(5.48)
|(Iω)(x)− (Itω)(x)| ≤ sup

|y|≤|x|
|(Htω)(x)−Hω(x)| .α Cl(t)S(t) ,

|x(Iω − Itω)x(x)| ≤ |(x(Iω − Itω))x|+ |(Iω − Itω)(x)|
= |((Htω)(x)−Hω(x)|+ |(Iω − Itω)(x)| .α Cl(t)S(t).

The proof of Theorem 1.8 for the Cα case is essentially the same as that of
Theorem 1.6 and Theorem 1.7 so we only give a sketch. We construct compactly
supported approximate steady state ω̄c by truncating the approximate steady state
ωα in (5.4). This truncation allows us to have compactly supported perturbation
ω − ω̄c if the initial data ω has compact support and then apply the comparison
Lemma 5.4. The associated profiles for the velocity and c̄l, c̄ω are

(5.49) ūx = Htω̄c, c̄l =
1

α
− aūx(0), c̄ω = 1− ūx(0).

We remark that the above profiles are time dependent due to the transformHt. Yet,
they are close to the counterparts with Ht replaced by the Hilbert transform H on
R and we can treat them as almost time independent. The above choices of c̄ω, c̄l
are consistent with those in (5.47) and (5.8) for the Cα case on R. We can truncate
ωα in the far field so that ω̄c is sufficiently close to ωα in the sense that

(5.50)
|Hω̄c(0)−Hωα(0)| < α1010−10,

〈(ω̄c − ωα)2, ϕα〉+ 〈(ω̄c,x − ωα,x)2, ψα〉 < α1010−10,

where ϕα, ψα are the weights used in the analysis of the Cα case in (5.2).
Denote by S̄ the size of support of ω̄c. We remark that ūx(0) and c̄l, c̄ω given

above are close to 2, 1
α − 2a,−1, respectively, since we have

(5.51) ūx(0) = Htω̄(0) = (Ht(ω̄c(0))−Hω̄c(0)) + (Hω̄c(0)−Hωα(0)) + 2,

where we have used Hωα(0) = 2 (see (5.1)). The second term is small according
to (5.50) and the first term can be made arbitrarily small by choosing Cl(0) to be
sufficiently small later.

For compactly supported initial data ω ∈ Cα with support size S(0) > S̄, all
the nonlinear stability analysis in the proof of Theorem 1.7 can be derived for the
perturbation ω − ω̄c in almost the same way with two minor differences. Firstly,
the resulting estimates have slightly larger constants due to the small difference
between ωα and ω̄c, which is of order α due to (5.50). Secondly, they contain ad-
ditional terms depending on the difference between two Hilbert transforms, which
can be bounded using (5.48).
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Therefore, under the bootstrap assumption (5.37) and (5.38), we can derive the
following estimates similar to (5.30), (5.31)

(5.52)

1

2

d

dt
E2(t) ≤ −

(
3

8
− C|a|α

)
E2(t) + C|a|αE(t)

+ CE3(t) + C4(a, α)Cl(t)S(t)E2(t),

|cω(t)− c̄ω| ≤ C3αE(t) + C4(a, α)Cl(t)S(t),

|cl(t)− c̄l| ≤ C3|a|αE(t) + C4(a, α)Cl(t)S(t),

|Ht(ω̄c(0))−Hω̄c(0)| < C4(a, α)Cl(t)S(t),

where

(5.53) E2(t) = 〈(ω(t)− ω̄c)2, ϕα〉+ µ〈(ωx(t)− ω̄c,x)2, ψα〉
for some absolute constant 0 < µ < 1 and the constant C4(a, α) depends on a, α.
Using the control of the support (5.43), we have

(5.54) Cl(t)S(t) = P (t) ≤ C(a, α, S(0))P (0) = C(a, α, S(0))Cl(0)S(0).

Consider a function

(5.55) f(x) = −(
3

8
− C|a|α)x2 +

1

8
x2 + C|a|αx+ Cx3.

Clearly, if |a|α < C1 for some sufficiently small constant C1, there exists an
absolute constant C2 such that f(C2|a|α) < 0. We can further require that C1 be
so small that

(5.56) C2|a|α < C2C1 <
µ

100
, (C3 + 1)C2|a|α < (C3 + 1)C2C1 <

1

100
.

Note that Cl(0) is independent of the initial data ω(0, ·) in the dynamic rescal-
ing space and only depends on how we rescale ω(0, ·) to get the data in the physical
space. We first choose compactly supported ω(0, ·) with S̄ ≤ S(0) < +∞ that
satisfies E(0) < C2|a|α, where S̄ is the size of support of ω̄c. Then we choose
Cl(0) sufficiently small such that

(C(a, α, S(0)) + C4(a, α)C(a, α, S(0)) + 1)Cl(0)S(0) <
1

16
.

Under the bootstrap assumption (5.37) and (5.38), we plug the above inequality
in (5.54) and (5.52) to get

(C4(a, α) + 1)Cl(t)S(t) ≤ (C4(a, α) + 1)C(a, α, S(0))Cl(0)S(0) <
1

16
<
π

4
,

1

2

d

dt
E2(t) ≤ −

(
3

8
− C|a|α

)
E2(t) + C|a|αE(t) + CE3(t) +

1

16
E2(t).

From the definitions of f in (5.55), C2 and f(C2|a|α) < 0, we know that the
additional bootstrap assumption E(t) < C2|a|α can be continued. Finally, we
verify that E(t) < C2|a|α implies the bootstrap assumptions (5.37), (5.38) so that
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all of these assumptions can be continued. From (5.56), we haveE(t) < C2|a|α <
min( µ

100 ,
1

100). Denote

ρ1(x) , |x|−1−α + |x|−1+α, ρ2(x) , |x|1−α + |x|1+α.

Using the triangle inequality and ρ1(x) ≤ ϕα, ρ2(x) ≤ ψα (see (5.2)), we get

〈ω2, ρ1〉+ 〈ω2
x, ρ2〉 ≤ 5(〈ω2

α, ρ1〉+ 〈ω2
α,x, ρ2〉) + 5(〈(ωα − ω̄c)2, ϕα〉

+ 〈(ωα,x − ω̄c,x)2, ψα〉)
+ 5(〈(ω − ω̄c)2, ϕα〉+ 〈(ωx − ω̄c,x)2, ψα〉)
, J1 + J2 + J3.

Using (5.50), (5.53) and E(t) < min(µ,1)
100 , we have J2 <

1
10 , J3 <

1
10 . Hence, we

prove the first inequality in (5.38). From (5.49) and (5.51), we have

c̄ω + 1 = 2− ūx(0) = −(Ht(ω̄c(0))−Hω̄c(0))− (Hω̄c(0)−Hωα(0)).

Using the triangle inequality and (5.51), we obtain

|cω + 1| ≤ |c̄ω − cω|+ |Ht(ω̄c(0))−Hω̄c(0)|+ |Hω̄c(0)−Hωα(0)|.

The estimate of each term on the right hand side follows from (5.50), (5.52) and the
estimates of E(t), S(t)Cl(t) established above. Similarly, we can estimate cl − 1

α .
These estimates imply the second inequality in (5.38).

The remaining steps to obtain finite time blowup are exactly the same as those
in the proof of Theorem 1.6 and we conclude the proof of Theorem 1.8 for the Cα

case. For the case of small |a|, the proof is completely similar and we omit the
proof here.

6 Finite Time Blowup for Negative a with C∞ initial data

For the sake of completeness, we state the finite time blowup result of (1.3) for
negative a with smooth initial data.

Theorem 6.1. Let ω ∈ C∞(S1) be an odd function such that ux(0) = Hω(0) > 0.
Then (1.3) with a < 0 develops a singularity in finite time.

The real line case was proved in the work of Castro and Córdoba [1]. We
consider π periodic solution and use the Hilbert transform given in (5.33).

Proof. Taking the Hilbert transform on (1.3) yields

(ux)t =
1

2
(u2
x − ω2)− aH(uωx).

Note that ω(0) = 0. Choosing x = 0 gives

(6.1)
d

dt
ux(t, 0) =

1

2
ux(t, 0)2 − aH(uωx)(t, 0).
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Next we show that H(uωx)(t, 0) ≤ 0. Since ω is odd, π-periodic and smooth
locally in time , it admits a decomposition

ω(t, x) =
∑
n≥1

an(t) sin(2nx), ωx =
∑
n≥1

2nan(t) cos(2nx),

for some an(t) decays sufficiently fast as n→ +∞. It is easy to show that

u(t, x) = −
∑
n≥1

an
2n

sin(2nx).

Next, we compute u/ sin(x), ωx cosx. Using telescoping, we get

sin(2nx)

sin(x)
=
∑

1≤k≤n
2 cos((2k − 1)x),

cos(2nx) cosx =
cos(2n− 1)x+ cos(2n+ 1)x

2
.

It follows that
u

sinx
= −

∑
n≥1

an
2n

∑
1≤k≤n

2 cos((2k − 1)x) = −
∑
k≥1

cos((2k − 1)x)
∑
n≥k

an
n
,

ωx cosx =
∑
n≥1

2nan
cos(2n− 1)x+ cos(2n+ 1)x

2

=
∑
n≥1

cos((2n− 1)x)(nan + (n− 1)an−1),

where a0 = 0 and we have used summation by parts to get the last two identi-
ties, which are valid since an decays sufficiently fast. Using the orthogonality of
{cos((2n− 1)x)}n≥1 on L2(−π/2, π/2), we derive

H(uωx)(t, 0) = − 1

π

∫ π/2

−π/2

u

sinx
ωx cos(x)dx =

1

2

∑
k≥1

(
∑
n≥k

an
n

)(kak + (k − 1)ak−1).

Denote Sk ,
∑

n≥k
an
n for k ≥ 1 and S0 = 0. Since an decays sufficiently fast,

so does Sn. We then have ak = k(Sk − Sk+1) and

kak + (k − 1)ak−1 = k2(Sk − Sk+1) + (k − 1)2(Sk−1 − Sk).
We can reduce H(uωx)(t, 0) to

H(uωx)(t, 0) =
1

2

∑
k≥1

Sk(k
2(Sk − Sk+1) + (k − 1)2(Sk−1 − Sk))

=
1

2

∑
k≥1

S2
k(2k − 1)− 1

2

∑
k≥1

SkSk+1k
2 +

1

2

∑
k≥1

SkSk−1(k − 1)2

=
1

2

∑
k≥1

S2
k(2k − 1) ≥ 0.
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Consequently, for a < 0, (6.1) implies

d

dt
ux(t, 0) ≥ 1

2
u2
x(t, 0).

Since ux(0, 0) > 0, it follows that the solution must develop a finite time singular-
ity. �

Appendix: Properties of the Hilbert transform

Throughout this section, without specification, we assume that ω is smooth and
decays sufficiently fast. The general case can be obtained easily by approximation.
The following identity is very well known whose proof can be found in, e.g. [17].

Lemma A.1 (The Tricomi identity). We have

H(ωHω) =
1

2
((Hω)2 − ω2).

The Hilbert transform has a nice property that it almost commutes with the
power x−1, x.

Lemma A.2. Suppose that ux = Hω. Then we have

(A.1)
ux − ux(0)

x
= H

(ω
x

)
, (Hω)(x) = (Hω)(0) + xH

(ω
x

)
.

Similarly, we have

(A.2) uxx = Hωx, xuxx = H(xωx).

Suppose that in addition ω is odd. Then we further have

(A.3) x2uxx = H(x2ωx), xux = H(xω),
uxx
x

= H

(
ωx − ωx(0)

x

)
.

If ω is odd and a piecewise cubic polynomial supported on [−L,L] with ω(L) =
ω(−L) = 0 (ω′, ω′′ may not be continuous at x = ±L), then we have

(A.4) uxxx(x2 − L2) = H(ωxx(x2 − L2)).

Proof. The identity (A.1) is very well known. Identities (A.2), (A.3) can be proved
by using (A.1). The odd assumption in (A.3) implies H(x2ωx)(0) = H(xω)(0) =
H(ωx)(0) = 0. We refer to the arXiv version of this paper [7] for the details. Here,
we establish (A.4) using (A.1)-(A.3).

From the assumption of ω, we know ω ∈ H1(R). We can apply (A.3) to yield

x2uxx = H(x2ωx), L2uxx = L2H(ωx),

which implies (x2 − L2)uxx = H(ωx(x2 − L2)). Since ω is a piecewise cubic
polynomial on [−L,L] and is continuous globally, we further have that ωx(x2 −
L2) is globally Lipschitz and it is in H1(R). By the L2 isometry of the Hilbert
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transform, we get uxx(x2 − L2) ∈ H1(R). Using the fact that the derivative
commutes with the Hilbert transform, we yield

∂xH(ωx(x2 − L2)) = H(∂x(ωx(x2 − L2))),

which implies

uxxx(x2 − L2) + 2uxxx = H(ωxx(x2 − L2) + 2xωx).

Using the linearity of the Hilbert transform and uxxx = H(xωx)(A.2), we con-
clude the proof of (A.4). �

The cancellation in the following Lemma is crucial in our linear stability anal-
ysis.

Lemma A.3. Suppose ux = Hω. (a) We have∫
R

(ux − ux(0))ω

x
dx =

π

2
(u2
x(0) + ω2(0)) ≥ 0.(A.5)

Furthermore, if ω is odd (so is uxx due to the symmetry of Hilbert transform), we
have ∫

R

(ux − ux(0))ω

x3
dx =

π

2
(ω2
x(0)− u2

xx(0)) =
π

2
ω2
x(0) ≥ 0.(A.6)

In particular, the right hand side of (A.5) vanishes if ux(0) = ω(x) = 0.
(b) We have

(A.7)
∫
R
uxxωxxdx = 0.

(c) The Hardy inequality: Suppose that ω is odd and ωx(0) = 0. For p = 2, 4,
we have
(A.8)∫
R

(u− ux(0)x)2

|x|p+2
dx ≤

(
2

p+ 1

)2 ∫
R

(ux − ux(0))2

|x|p
dx =

(
2

p+ 1

)2 ∫
R

ω2

|x|p
dx.

Proof of (A.5). Note that ux = Hω, ux(0) = − 1
π

∫
ω
xdx. Using Lemma A.1, we

get∫
R

(ux − ux(0))ω

x
dx =

∫
R

ω ·Hω
x

dx− ux(0)

∫
R

ω

x
dx

= −πH(ω ·Hω)(0) + πux(0) · ux(0)

=
π

2
(ω2(0)− u2

x(0)) + πu2
x(0) =

π

2
(ω2(0) + u2

x(0)).

If ω(0) = 0, the above estimates are reduced to π
2u

2
x(0). �
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The odd assumption of ω in (A.6) implies H(ωx )(0) = 0. Identities (A.6),
(A.7) can be proved by using an argument similar to the above estimates and the
identities in Lemmas A.1, A.2. We refer to the arXiv version of this paper [7] for
the details.

Proof of (A.8). The first inequality in (A.8) is the standard Hardy inequality [21].
Since ω is odd and ωx(0) = 0, ω/x, ω/x2 ∈ L2(R). From (A.3), we have

ux − ux(0)

x
= H

(ω
x

)
, H

( ω
x2

)
=

1

x

(
H
(ω
x

)
−H

(ω
x

)
(0)
)
.

Since ω is odd, we obtain H(ωx ) = 0. Hence, we can simplify the second equality
as follows

H
( ω
x2

)
=

1

x
H
(ω
x

)
=

1

x

ux − ux(0)

x
=
ux − ux(0)

x2
.

Applying theL2 isometry property of the Hilbert transformH toH(ωx ), H( ω
x2

),
we establish the equality in (A.8). �

The following Lemma is an analogy of Lemma A.3 for Hölder continuous func-
tions. (A.9),(A.10) and (A.11) are from Córdoba & Córdoba [12].

Lemma A.4 (Weighted estimate for Cα functions). Suppose that ux = Hω and ω
is odd in (A.9), (A.11) and (A.12). (a) For β ∈ (0, 2), we have∫

R

(ux − ux(0))2

|x|1+β
dx ≤ 1

tan2 βπ
4 ∧ cot2 βπ4

∫
R

ω2

|x|1+β
dx

.
1

(β ∧ (2− β))2

∫
R

ω2

|x|1+β
dx,(A.9) ∫

R

u2x
|x|1−β

dx ≤ 1

tan2 βπ
4 ∧ cot2 βπ4

∫
R

ω2

|x|1−β
dx

.
1

(β ∧ (2− β))2

∫
R

ω2

|x|1−β
dx,(A.10)

provided that the right hand side is finite, where a ∧ b = min(a, b). Note that we
do not need to assume that ω is odd in (A.10).

(b) For β ∈ (0, 2), we have

(A.11)
∫
R

(ux − ux(0))ω

sgn(x)|x|1+β
dx ≥ 0.

(c) 1D Hardy inequality [21]: For β ∈ (0, 1), we have

(A.12)
∫
R

(u− ux(0)x)2

|x|3+β
dx ≤

(
2

β + 2

)2 ∫
R

(ux − ux(0))2

|x|β+1
dx .

1

β2

∫
R

ω2

|x|β+1
.

The first inequality in (A.12) is the Hardy inequality [21] and the second in-
equality in (A.12) follows from (A.9).
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