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Abstract. In this paper, we introduce a three-dimensional numerical method for computing
the wake behind a flat plate advancing perpendicular to the flow. Our numerical method
is inspired by the panel method of J. Katz and A. Plotkin [J. Katz and A. Plotkin, Low-
speed Aerodynamics, 2001] and the 2D vortex blob method of Krasny [R. Krasny, Lectures in

Appl. Math., 28 (1991), pp. 385–402]. The accuracy of the method will be demonstrated by
comparing the 3D computation at the center section of a very high aspect ratio plate with the
corresponding two-dimensional computation. Furthermore, we compare the numerical results
obtained by our 3D numerical method with the corresponding experimental results obtained
recently by Ringuette [M. J. Ringuette, Ph.D. Thesis, 2004] in the towing tank. Our numerical
results are shown to be in excellent agreement with the experimental results up to the so-called
formation time.
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1 Introduction

This work is inspired by our desire to develop a 3D computational method to study the fluid
dynamics of flying animals like birds or fish. Flight has fascinated the human mind since its
early days of development. The gracefulness and the perfection of a bird in the air inspired us to
try to emulate some particular aspects of its superb ability. The fluid dynamics in the flight of a
bird is extremely complex and interesting. In particular, we are interested in understanding the
way that the wake is generated and its effect on the wing. A number of computational methods
have been developed to study fluid dynamics of the motion of a moving surface. However, it is
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still a challenge to develop an accurate and efficient three dimensional computational method
which can be used to simulate the flight of a bird.

There have been many theoretical and computational studies to understand the fluid dynam-
ics instability for flow past a flexible object. Starting with the work of Sir James Gray who was
the head of Cambridge University’s Zoology Department from 1937 to 1961, the theory of ani-
mal locomotion stimulated G. I. Taylor in making two pioneering investigations. One involved
the swimming of snakes and eels, and the other one initiated hydrodynamic studies of flagel-
lar propulsion. However, the main contributions to this domain came later on from Sir James
Lighthill and Professor Theodore Wu. Lighthill laid a theoretical foundation for the swimming
of slender fish, while Wu made an extension of classical oscillating airfoil aerodynamics to a
linear theory of flexible lifting-surface locomotion, to examine the performance of bending wings
of birds in flapping flight and the lunate tails of fast-swimming percomorph and acombroid fishes
and rays in swimming.

Re-emphasizing the importance of Wu’s (scaling of aquatic locomotion- [21]), Lighthill’s
(scaling of aerial locomotion) and Weis-Fogh’s (hovering flight) work in fish and bird locomotion,
we should also review the advances made in the field of wing theory and free-surface numerical
methods. One of the pioneers in the study of a wing in flight was T. Theodorsen with his theory
of instability and the mechanism of flutter [18]. In 1931, Kaden introduced similarity variables
for describing the roll-up of a semi-infinite plane vortex-sheet ( [17], p. 147). During the 1950s,
several authors presented approximate asymptotic solutions in which the spiral vortex generated
behind a sharp edge was replaced by a single point vortex, an example of which was given by [16].
Moore in 1976 [12] studied and verified the stability of a class of vortex sheets roll-up, but could
not verify the stability of the problem as noted by Pullin in 1978 [14]. In the same work of
Pullin, he obtained for the first time regular and well-defined start-up vortex spirals from an
accurate numerical solution of the Birkhoff-Rott equation (inviscid flow) written in similarity
variables. These results were later used by Krasny to validate his method.

In 1991, Krasny [10] generalized Chorin’s vortex blob method [3] and applied it to study
the evolution of the wake forming at the edges of a flat plate advancing perpendicular to the
flow. Moreover, he presented strong numerical evidence suggesting that the vortex blob method
converges past the vortex sheet singularity formation time, as the smoothing parameter tends
to zero. Later on, in 1994, Nitsche and Krasny [13] generalized the vortex blob method to study
the vortex ring formation at the edge of a circular tube. Comparison between the numerical
simulation and the corresponding experiment indicated that the model captured the basic fea-
tures of the ring formation process. Then, in 2001, a very interesting model was presented by
Chamara and Coller [2] for a pair of airfoils with two degrees of freedom: pitching and heaving.
Their study sheds interesting light in finding the optimal configuration of the two-airfoil system
for which the two oscillatory instabilities due to the flutter occur simultaneously.

In the study of animal locomotion, Dickinson et al. designed interesting experiments to
measure the unsteady forces on a robotic fruit fly wing and demonstrated the role of wing rotation
in force generation [6]. In a related effort, Wang in 2000 [20] tried to quantify the vortex dynamics
of a flying insect and identified a minimal two-dimensional model that produces sufficient lift.
Later, in 2004, Wang, Birch and Dickinson [19] compared computational, experimental and
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quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal
stroke plane. In particular, they investigated unsteady effects and compared two-dimensional
computations and three-dimensional experiments in several qualitatively different kinematic
patterns.

In three dimensions we should point to the work of Brady, Leonard and Pullin in 1998 [1] who
provided a three-dimensional computational method to track the evolution of regularized three-
dimensional vortex sheets through an irrotational, inviscid, constant-density fluid. Also, in 2001,
Lindsay and Krasny [11] developed a fast adaptive Lagrangian particle method for computing
free vortex sheet motion in three dimensional flow. To be able to do all the computations
efficiently, they also included an adaptive treecode algorithm.

In this paper we propose a three-dimensional numerical method for a flat plate advancing
perpendicular to the flow. The three-dimensional approach for the computation of the bound
circulation is inspired from the panel method presented in “Low speed aerodynamics” by J. Katz
and A. Plotkin [9]. This is combined with Krasny’s two-dimensional method to solve for the free
sheet vortex elements. The accuracy of the method will be demonstrated by comparing the 3D
computation at the center section of a very high aspect ratio plate with the corresponding two-
dimensional computation. For a high aspect ratio plate, the three dimensional effect at the center
section of the plate is very small. We found excellent agreement between our 3D computations
and the corresponding 2D ones. We also perform careful computations to compare our results
with a recent physical experiment by Ringuette at Caltech involving a three-dimensional flat
plate advancing perpendicular to the flow [15]. Our numerical results match very well the
experiments by Ringuette in terms of the total circulation along chord-wise sections of the wake
until the so-called formation time. After the formation time, Ringuette observed that vortex
separation occurred and circulation grew slower than the circulation obtained by our numerical
method. This discrepancy could be due to the viscous effect which cannot be modeled accurately
by our inviscid model based in potential flow theory.

The three-dimensional results are important for developing a more complex three dimensional
theory. This could be the first step toward a more in-depth analysis. Currently, our 3D numerical
method still does not capture accurately the true 3D effect near the corners of the plate due to
our simplified approximation of the circulation along the longitudinal and transversal sections
by a two-dimensional model. In our future work, we plan to develop a more accurate 3D theory
that captures the essential 3D nonlinear effects. One way to achieve this is to generalize a recent
theory of Wu [22] to three space dimensions. In Wu’s theory, strong nonlinear effect of the flow
is captured analytically. This provides very accurate approximation to the amount of vorticity
shed at the trailing edge of the plate, which has leading order effect on the overall accuracy of the
computation. We have already performed very thorough computational study of Wu’s method
in [8] for various severe tests. We found that the numerical method based on Wu’s theory can
capture accurately the leading singular effect near the trailing edge, which improves the accuracy
when dealing with some highly nonlinear movements. Generalization of Wu’s theory to three
dimensions is a challenging task. The results obtained in this paper can provide the basis for
our future study along this direction.

The rest of the paper is organized as follows. In Section 2, we will review Krasny’s vortex blob
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method for the two dimensional case and present a numerical experiment for a wing advancing
upward, normal to the flow. In Section 3, we will present our three-dimensional computational
method. We will test our 3D numerical method for a high aspect ratio plate and compare our
results with those obtained by the two-dimensional vortex blob method. We will also perform
some very interesting comparison with the experiments obtained by Ringuette [15]. Section 4 is
devoted to some concluding remarks.

2 Vortex formation at the edges of a free falling 2D plate

In this section, we will review Krasny’s two dimensional vortex blob method which is used
to compute fluid motion of a flat plate advancing normal to the flow. In this case, the flow
generates a vortex sheet roll-up at the edges of the plate. In the next section, we will show
how to generalize Krasny’s method to three space dimensions by borrowing ideas from the panel
method of J. Katz and A. Plotkin [9]. The two dimensional method presented in this section
will be later used to check the accuracy of our three dimensional method for a very high aspect
ratio plate.

2.1 Description of the 2D vortex blob method

In two space dimensions, we can define a vortex sheet by a curve z(Γ, t) in the complex plane,
where Γ is circulation. The velocity distribution along the vortex sheet will be chosen as the
average of the velocity distributions above and below the vortex sheet. Using the Biot-Savart
law, one can derive an evolution equation for the vortex sheet as follows (as known as the
Birkhoff-Rott equation)

∂z

∂t
(Γ, t) =

∫

K(z(Γ, t) − z(Γ̃, t))dΓ̃, K(z) =
1

2πız
, (2.1)

where the Cauchy principal value of the integral is taken, and z̄ stands for the complex conju-
gate. The Biot-Savart kernel K(z) has a simple pole singularity at z = 0. In the vortex blob
method, the singular kernel K in (2.1) is replaced by a regularized one, Kδ, with δ being a small
smoothing parameter. As δ approaches to zero, Kδ(z) approximates K(z) for z 6= 0. For the
two-dimensional vortex sheet problem, Krasny [10] uses the following regularization for Kδ:

Kδ(z) = K(z)
|z|2

|z|2 + δ2
. (2.2)

With such regularization, the integral equation fro z(Γ, t) is no longer singular.

We will use the trapezoidal rule to approximate the velocity integral. Let Γ be parameterized
by a Lagrangian variable α. Therefore, the interface position z(Γ, t) is a function of α as well.
We discretize α by a uniform grid with mesh size h, and denote αj = jh with j being integer.
Further, we denote Γj = Γα(αj)h, and z(Γ(αj), t) = zj(t). With these notations, the integral
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equation can be discretized by the trapezoidal rule as follows:

∂zj

∂t
=

∑

k

Kδ(zj − zk)Γk. (2.3)

Furthermore, by discretizing in time using a 4th order Runge-Kutta method or a multi-step
method, one can obtain a fully discrete system for the evolution of zj(t).

In Krasny’s method [10], the plate coincides with the interval −1 6 x 6 1 and it moves
vertically with speed 1/2. The flow contains a bound vortex sheet, which is discretized with
point vortices, and a free vortex sheet, which is discretized with vortex blobs. At every time
step, a new filament is released from both edges of the plate. It follows from equation (2.3), the
velocity at a vortex element centered at (xj , yj) is given by

(
dxj

dt
,
dyj

dt
) =

∑

k 6=j

(−(yj − yk), (xj − xk))Γk

2π((xj − xk)2 + (yj − yk)2 + δ2)
. (2.4)

We remark that δ is set to zero whenever the index k refers to one of the bound point vortices.
Along the bound sheet, since the plate is horizontal, i.e., y is constant, the bound vortex sheet
strength γ(x, t) satisfies a Cauchy singular integral equation of the first kind,

1

2π

∫ 1

−1

γ(x̃, t)dx̃

(x − x̃)
= v(x, t). (2.5)

The reason for using point vortices on the bound sheet is because the resulting linear system
for a general right side may not be invertible if the kernel is smoothed, as Krasny pointed out.
To provide better resolution at the edges, the bound point vortices are not placed uniformly
on the plate, instead they cluster toward the edges according to xj = cos θj , θj = jπ/n and
equation (2.5) is satisfied at the midpoint of each interval. To close the system, we need another
equation. To find this extra equation, we use the fact that the total circulation is conserved in
accordance with Kelvin’s theorem. When supplemented with this additional equation, equations
(2.5) transform into a linear system which is invertible. Upon solving this linear system, we
obtain the strengths γ(xj , t).

Now it comes to the important question: how to generate the first released free vortice from
the edge of the plate. To do this, one needs to take into account the viscous effect. Krasny uses
the Kutta condition to determine the circulation of the first released free vortice near the edge
of the plate:

dΓ

dt
=

1

2
(U2

− − U2
+) = U · γ, (2.6)

where γ ∼ ∆Γ/∆x is calculated by a finite difference formula. Here, U− and U+ are the one-
sided velocities at the edge, U is the average velocity, and γ is the vortex sheet strength at the
edge. The slip velocities satisfy

U− − U+ = γ,
1

2
(U+ + U−) = U. (2.7)
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Further, we need to enforce a separating flow condition to prevent an attached slip flow from
contributing to the shedding process. This condition is enforced by setting U+ = 0 if U+ < 0
and similarly setting U− = 0 if U− < 0. Krasny’s method also uses an adaptive point insertion
technique and an adaptive time step to provide adequate numerical resolution.

Krasny performed numerical experiments to compare his results with the ones obtained by
Pullin in 1978. Pullin used point vortices to represent the vortex sheet with a single point vortex
to represent the inner spiral turns. Moreover, Pullin used conformal mappings to determine the
strength of the bound vortex sheet. Krasny found that the pair of counter-rotating vortices
forming in the recirculating region behind the plate agree very well between the two methods.

2.2 A numerical example

In this subsection, we present a numerical example using Krasny’s vortex blob method to model
the wake behind a two-dimensional plate advancing perpendicular to the flow. More details can
be found in [10].

The implementation of Krasny’s method consists of the following steps: (i) form a linear
system for the circulation at the discrete vortices, (ii) solve the linear system to obtain the
circulation, (iii) determine the velocity of the currently released free filament. The system will
be formed based on the evolution equation (2.1) with a smoothed kernel given by (2.2). The
discretization of this equation is given by (2.4). The unkowns of the linear system are the
circulation of the bound point vortices. Since the problem is symmetric we have a stationary
point in the center of the plate with zero circulation.

In our implementation we take N +1 = 81 points on a plate with radius R = 1 which moves
upward with a velocity U0 = 1/2. The plate reaches this velocity after an acceleration that takes
t = 0.01. During this acceleration the time-steps are smaller than dt = 0.01 but they increase
linearly. When the velocity becomes constant (at U0 = 1/2), the time step becomes constant as
well, with dt = 0.01. We choose this approach to make the transition from velocity zero to the
steady state velocity smoother. In the computation, the blob is chosen to be δ = 0.2 and the
grid points for the bound vortex distribution along the wing have a cosine distribution so that
we have more points and therefore a better resolution at the edges of the plate. The boundary
condition requires that there be no normal flow through the plate. This means that we need
to match the normal velocity from (2.4) with the advancing velocity of the plate. This will be
done at the midpoint of each subinterval [zj , zj+1], which gives N equations. However we need
to compute the circulation at every bound point, which has a total of N +1 unknowns. We need
one more equation. This extra equation can be obtained by the fact that we have a stationary
point in the center of the plate with zero circulation. Hence, we have a linear system with N +1
equations and N + 1 unknowns which will be solved by inverting the matrix in Matlab with the
inv function. This provides the circulation on the plate.

The sheet strength value at the edge of the plate γe, will be computed by a finite difference
formula applied to the bound circulation γ ∼ ∆Γ/∆x. The edge strength will allow us to
compute the circulation and the velocity of the newly shed vortex. For that we will use (2.6).
First, we compute the averaged slip velocities U at both edges of the plate. This will be done
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Figure 1: Krasny’s method for a wing advancing upward, normal to the flow, with adaptive speed

U0 ≈ 0.5, blob δ = 0.2, variable time-step dt ≈ 0.01. Plot after 400 time steps having N = 80 bound

vortex points.

using relation (2.4). Then we compute the slip velocities above and below the edge U+ and
U− using (2.7). If either U+ or U− is negative, we set it to zero to prevent attached slip flow.
With the updated U+ and U− we recompute U , which will be now the tangential velocity of the
currently released vortex filament, and compute the circulation of this free filament from (2.6).

Remark 2.1. In (2.6), dΓ/dt represents the time variation of the total circulation of the free
sheet. Moreover, the newly shed vortex filament is released tangentially to the plate, i.e. in the
x-direction, with the computed tangential velocity U .

The numerical computation for Fig. 1 is performed with the data described above and a blob
size δ = 0.2. The plot is obtained after 400 time-steps. We can see a very nice roll-up which
agrees very well with the results obtained by Krasny [10] and Pullin [14].

3 Three-dimensional model

In this section, we will present a three-dimensional computational method to study the vortex
motion behind a wing advancing upward. Our three dimensional model is motivated by a panel-
method and Krasny’s vortex-blob method for two space dimensions. We will first describe our
3D method for a square flat plate. Later on, we will apply our 3D method to a rectangular plate
with very high-aspect ratio. In this case, the three dimensional effect is relatively small near the
center section of the plate. We then compare the numerical results obtained by our 3D method
with those obtained by the corresponding 2D method and find very good agreement. We also
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compare our numerical results with some recently performed physical experiment in a towing
tank. The agreements are excellent before the formation time.

We now describe our 3D numerical method. First, we would like to form a linear system
using the Biot-Savart law by imposing the normal flow conditions on the plate, and to determine
the circulation of the plate filaments by solving this system. We apply a rectangular mesh over
the plate and use more mesh points near the corners and edges to give a better resolution. The
mesh will form some panels on the wing and we will apply the no-through flow condition in the
center of each one. After computing the bound circulation for the panels, we will compute the
circulation for each filament on the plate, and then apply the two-dimensional method along all
the longitudinal and transversal sections. The two-dimensional method will be used to compute
the circulation of the currently shed vortex filament. Note that the filament is shed at every
time step along the mesh lines. The circulation of all the other free filaments will be preserved in
time. Thus we have all the quantities to compute the velocities of all the free filaments. We then
move these filaments to the updated locations and go to the next time step. We will describe
the algorithm in some details in the next subsection.

We should point out that the above procedure does not capture all the three dimensional
effect of the Euler equations. By using a two-dimensional method to compute the circulation
along all the longitudinal and transversal sections, we make certain approximation of the 3D
Euler equations. The approximation is relatively poor near the corners of the plate. On the
other hand, certain essential 3D effect is captured by our model using the panel method to be
described below. As you will see in our numerical experiments, our 3D numerical method gives
a reasonably good approximation to the fully 3D physical experiments for a plate advancing
upward to the flow, despite the approximation we make in the model.

3.1 Velocity for the bound sheet

Next we will compute the velocity field induced by each vortex panel. It is known that the
velocity induced by a vortex filament of strength Γ and a length of dl is given by the law of Biot
and Savart

~dV =
Γ(~dl × ~r)

4πr3
. (3.1)

From Fig. 2 the magnitude of the induced velocity is

dV =
Γ sin θdl

4πr2
. (3.2)

Since we are interested in the flow field induced by a straight segment, let us use the above
equations to calculate this effect. Let AB be such a segment, with the vorticity vector directed
from A to B. Let C be a point in space whose normal distance to line AB is rp. Since

r =
rp

sin θ
and dl = rp(csc

2 θ)dθ, (3.3)

we can integrate between A and B to find the magnitude of the induced velocity

V =
Γ

4πrp

∫ θ2

θ1

sin θdθ =
Γ

4πrp
(cos θ1 − cos θ2). (3.4)
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θ1

~r1

A

dl θ
r

~r2

C

rp

θ2~r0

ΓB

Figure 2: Velocity induced by vortex segment ~AB at location C.

Now let ~r0, ~r1 and ~r2 designate the vectors ~AB, ~AC and ~BC, respectively, as shown in Fig. 2.
Then we have

rp =
|~r1 × ~r2|

r0
, cos θ1 =

~r0 · ~r1

r0r1
, cos θ2 =

~r0 · ~r2

r0r2
,

where for a vector ~r, we denote by r its magnitude. Substituting these expressions into equation
(3.4) and noting that the direction of the induced velocity is given by the unit vector

~r1 × ~r2

|~r1 × ~r2|
,

we get

~V =
Γ

4π

~r1 × ~r2

|~r1 × ~r2|2

[

~r0 ·

(

~r1

r1
−

~r2

r2

)]

. (3.5)

Now in order to implement this, we write the components of the induced velocity V = (u, v, w)











u = K · (r1 × r2)x

v = K · (r1 × r2)y , K = Γ
4π|r1×r2|2

(

r0·r1

r1
− r0·r2

r2

)

w = K · (r1 × r2)z

(3.6)

where
{

r0 · r1 = (x2 − x1)(xp − x1) + (y2 − y1)(yp − y1) + (z2 − z1)(zp − z1),
r0 · r2 = (x2 − x1)(xp − x2) + (y2 − y1)(yp − y2) + (z2 − z1)(zp − z2),

(3.7)

and |r1 × r2|
2 = (r1 × r2)

2
x + (r1 × r2)

2
y + (r1 × r2)

2
z,

{

r1 =
√

(xp − x1)2 + (yp − y1)2 + (zp − z1)2,

r2 =
√

(xp − x2)2 + (yp − y2)2 + (zp − z2)2,
(3.8)
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Γij Γi,j+1

Γi+1,j+1Γi+1,j

Γf1

Γf2

Figure 3: Computing the filament circulations from the panel circulations.

and






(r1 × r2)x = (yp − y1)(zp − z2) − (zp − z1)(yp − y2),
(r1 × r2)y = −(xp − x1)(zp − z2) + (zp − z1)(xp − x2),
(r1 × r2)z = (xp − x1)(yp − y2) − (yp − y1)(xp − x2).

(3.9)

We will consider a 2 by 2 square plate and a N by N grid on top of it, with N odd so that a vortex
point will be placed in the center of the plate. By imposing the no-through flow conditions in
the center of the mesh panels we will get (N − 1)2 linear equations using formula (3.5). To each
panel we assign a circulation Γi,j , meaning that all filaments bordering that panel will have the
same circulation Γi,j . At time t = 0+, before anything is shed into the free sheet, the linear
system will look like this

a11Γ1,1 + a12Γ1,2 + a13Γ1,3 + ... + a1,(N−1)2Γ(N−1),(N−1) = U0

a21Γ1,1 + a22Γ1,2 + a23Γ1,3 + ... + a2,(N−1)2Γ(N−1),(N−1) = U0

... (3.10)

a(N−1)2,1Γ1,1 + a(N−1)2,2Γ1,2 + ... + a(N−1)2,(N−1)2Γ(N−1),(N−1) = U0,

where the left hand side of each equation represents the sum of the velocities induced on a
given panel by the (n − 1)2 panel circulations. Whenever we compute the velocity induced by
a panel on a certain point (center of panels), we implicitly consider the contribution from each
segment filament bordering the panel so that every such segment will give two contributions.
One segment filament will enter the calculations from both panels it belongs to, having opposite
oriented circulations in the two panels. Hence, in our 3D numerical method, the circulation
of each filament is the difference of the circulations of the panels that the filament borders.
Specially, after solving the linear system for the circulation of each panel, we will compute the
circulation of each filament as the difference of circulations of the panels which have the filament
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as a common interface, see Fig. 3. We get

Γf1 = Γi,j+1 − Γij , and Γf2 = Γi+1,j − Γij . (3.11)

Note that the velocity induced by a filament is taken into consideration two times, one time
for every panel it belongs to. These filament circulations are the ones that we will be using in
the next subsection to analyze the two dimensional flow along each longitudinal and transversal
plate section.

3.2 Velocity for the free sheet

We found a very simple and elegant way to solve for the free sheet. At this point we know how
to solve for all the quantities on the bound sheet. We also know the circulation along all the
chord-wise and span-wise sections. From now on, we will switch to the two-dimensional method
and apply it for all these sections with the given steady-state bound circulation, imported from
the three-dimensional model. As in Section 2.2, we will compute for every such two-dimensional
slice the sheet strength value at the edge γe, which will give us the slip velocities U at both
edges. Furthermore, we will compute the slip velocities above and below the edge and impose the
non-attached slip flow condition. With the updated slip velocities we will recompute U , which
is now the velocity of the currently released vortex filament, and recompute the circulation of
this free vortex from (2.6).

Having all the information about the first free vortex element we can now move it according
to U . Going to the next time step, we will solve the corresponding section’s two-dimensional
linear system. However, from now on the contributions from the previously released free vortices
will enter the system. Their circulation will be known since it is preserved in time, and therefore,
as discussed in Subsection 2.1, we can write the system as

AΓ̃ = b̃, (3.12)

where A is the matrix of coefficients from the two-dimensional model, Γ̃ is the new bound
circulation to be computed, and b̃ is the known vector, including the circulation induced by the
free vortex elements. We can look at this system as a perturbed system from its original state.
Consider b̃ = b + δb, where b is the vector from time step one consisting only of the imposed
normal velocities. We add to this normal velocity some perturbation δb which is in fact the
velocity induced by the free vortices. Then, we can also write Γ̃ = Γ + δΓ, where Γ is the
wake-less bound circulation imported from the three-dimensional model. Hence we get

A(Γ + δΓ) = b + δb. (3.13)

But A, Γ and b solve the initial linear system at time t = 0 so AΓ = b and therefore (3.13)
becomes

A · δΓ = δb. (3.14)

Solving this system we get δΓ and hence the new bound circulation Γ + δΓ. All the other quan-
tities: the edge strength, the slip velocities and the velocities of the free vortices, are computed
at every time step from the two-dimensional model, using the known bound circulation.
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(a) (b)

Figure 4: (a) three-dimensional high aspect ratio wing and section being considered; (b) Plot of steady-

state circulation as given by Eq. (3.5).

3.3 A 3D computation for a very high aspect ratio plate

To check the accuracy of our three-dimensional method, we apply our 3D numerical method for
a very high aspect ratio plate, and compare our results with the corresponding computations ob-
tained by the two-dimensional method. For a very high aspect-ratio plate, the three-dimensional
effect in the center section should be very small. We expect the center section to behave very
similar to the two-dimensional plate we studied in Section 2.2. We analyze a three-dimensional
plate of length 62 and width 2. The mesh consists of 31x31 points and they are placed according
to some cosine distribution so that we have more points in the corners and therefore better
accuracy. We will compare the steady-state circulation (no wake influence) of the center section
of this plate with the two-dimensional model which has a length of 2 and a mesh of 31 points
as well. The wings will advance upward with a speed U = 1.

Fig. 4(a) shows the wing and the section we are considering and Fig. 4(b) shows what
the steady-state panel circulation looks like on the wing. To get similar results to the two-
dimensional case we have to use Eq. (3.11) and compute the circulation of the filaments on the
section being considered. Plotting this on top of the two-dimensional circulation (see Fig. 5(a))
we get results so close they are almost indistinguishable. The norm of their difference is very
small, around 2.4842 · 10−4. This difference is still larger than the computer precision, showing
the presence of the three-dimensional effect.

Fig. 5(b) shows the circulation in the section which is closest to the edge of the wing in a
chord-wise section. We can notice that even though the shape looks similar, the absolute value
of the circulation of the filaments is lower than in the center section, being about half of the
latter. Fig. 5(c) shows the circulation along the center section in a span-wise plane, and this is
quite different than the other two. The circulation being very small for the main part of this
section shows that the edge effects become very small as we go further from the plate’s edges. In
fact it says that only about 22% of the plate near every edge will feel the finite-wing effect. The
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(a) (b)

(c) (d)

Figure 5: (a)&(b) chord-wise sections; (c)&(d) span-wise sections; (a) Superposition of circulation ob-

tained in the two-dimensional case and the one obtained in the three-dimensional center chord-wise sec-

tion; (b) Circulation obtained in the three-dimensional case, on an edge chord-wise section; (c) Circulation

for the three-dimensional case on the central span-wise section; (d) Circulation for the three-dimensional

case on an edge span-wise section.

last plot, Fig. 5(d), gives the circulation on the plate for a section near the edge in a span-wise
plane. Note that this is significantly smaller than the circulation for the corresponding center
section, being about 6 times smaller. In conclusion, our model proves to be very accurate when
compared with the two-dimensional one. Figs. 5(b), 5(c) and 5(d) show how important the
three-dimensional effect is in the motion of the plate, especially at the edges. They also show
that the finite-plate effect tends to reduce the vorticity in the near-edge cross sections compared
to the center ones.
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3.4 Numerical results vs. experiment for a rectangular wing

In this section we compare our 3D numerical method with physical experiments performed in a
towing tank. Before we present the comparison of our numerical results with the experimental
results, we consider some wings with aspect ratios (AR) found in various birds and insects.
Aspect ratio here will be defined as b2/S, where b is the span of a single wing, instead of the
conventional definition, which is the distance between both wing tips; S is the single-wing plan-
form (top-view) area. Flying insects have AR’s between about 2.75 and almost 6 [6, 7] while
hummingbirds have AR’s of around 4 [5]; a soaring bird, such as albatross, has an AR of about
9 [5]. A finite aspect-ratio wing, compared to one of infinite span, experiences aerodynamic
effects due to the tip, which increase relatively as the aspect ratio decreases. Therefore for low
aspect ratio wings the influence of the tip is very significant.

In this subsection, we compare our numerical results obtained by solving our 3D numerical
method with the experiments performed by Ringuette [15] in the GALCIT towing tank at
California Institute of Technology. Given the aspect ratios found in insects and hummingbirds
mentioned above, he made some experiments with flat plates of rectangular platforms, having
AR = 2 and AR = 6. Next, we will compare these experiments with the result obtained with
our numerical method.

One thing the reader should be aware of is the presence of vortex separation in Ringuette’s
work. He argues that the circulation of the vortex ring does not grow indefinitely. Therefore,
the experiments will show separation which happens at a time called “formation number”. For-
mation number is the non-dimensional time at which a vortex achieves its maximum circulation
before pinch-off. Pinch-off occurs when a vortex is no longer being fed by the shear-layer that
generated it and the two become distinct entities in terms of vorticity. This separation was
found in the experiment, however we can not observe this from our numerical experiment. Of
course, if we wanted to mimic the experiment even better we could artificially detach the leading
edge vortex (LEV) in our numerical method and let another one begin forming.

Aspect Ratio 2

For a wing of aspect ratio 2, the effects due to the tip are more prevalent than the case
with AR = 6. It can be seen from Fig. 6 that the vortices near both chord-wise and span-wise
center sections have more roll-ups than the ones near the corresponding edges. This is in perfect
agreement with what we found in the previous subsection, where we showed (see Fig. 5) that
there is more circulation near the bound center sections than near the edges. This will imply that
less circulation is shed in the free sheet near the edges, making the vortices weaker. Also from
the same plots (see Fig. 5) we expect the vortices to be stronger along the chord wise sections
compared to those released along span-wise sections since the corresponding total circulation is
bigger.

In both numerical and experimental setup a plate with chord c = 5 and aspect ratio AR = 2
is used (for the experiment the measuring unit was centimeter). The plate velocity is U0 = 6
and for the numerical method we choose a time step of dt = 0.003 and a blob δ = 0.2. Our
numerical bound sheet is represented by a 31x31 point mesh.
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Figure 6: Wake shape for AR = 2.

Figure 7: Circulation vs. formation time from (a) Ringuette’s experiment and (b) numerical method, for

AR = 2, triangles - 50% span, circles - 75% span, diamonds - 90% span.

In Fig. 7 we make a comparison between the experiment (plot (a)) and our numerical method
(plot (b)). We plot here the total circulation of a chord-wise section in the wake versus the
formation time. The formation time is a non-dimensional time defined as tform = U0 · t/c, where
c is the chord length. The plots are for three different chord-wise sections: triangles denote the
circulation at 50% of span, circles at 75% of span and diamonds at 90% of span. It can be seen
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that the plots look very similar until the pinch-off occurs. After that, the circulation from the
experiment would not grow as fast anymore and trail after the numerical results. This can be
seen even better in Fig. 8.

Plots (a) and (b) show the total circulation at 50% span from experiment and numerical
method, respectively. We can see that the plots are identical until about formation time tform =
3, i.e., until the plate has traveled three chord lengths. Accordingly, plots (c) and (d) show the
circulation at 75% span while (e) and (f) show the circulation at 90% span. On the right is
always the experimental result. We can see that for the 75% span case the similarity goes up to
tform = 2 while in the 90% span case up to tform = 1.5. On the left, we also have the shapes of
the corresponding sections taken from the experiment at given formation times.

Aspect Ratio 6

For a wing of aspect ratio 6, the effects due to the tip are less significant than in the AR = 2
case. It can be seen from Fig. 9 that the vortices near both chord-wise and span-wise center
sections have more roll-ups than the ones near the corresponding edges. This is, again, in perfect
agreement with what we found in the previous subsection, where it was showed (see Fig. 5) that
there is more circulation near the bound center sections than near the edges. This implies that
less circulation is shed in the free sheet near the edges, making the vortices weaker. However, in
this case this can be seen better along span-wise sections due to the higher aspect ratio plate.
Also, from the same plots (see Fig. 5) we expect the vortices to be stronger along the chord
wise sections compared to those released along span-wise sections since the corresponding total
circulation is bigger. This is obviously more pronounced here than in the AR = 2 case.

In both numerical and experimental setup, a plate with chord c = 5 and aspect ratio AR = 6
is used (for the experiment the measuring unit was centimeter). The plate velocity is U0 = 6,
and, for the numerical method, we choose a time step of dt = 0.003 and a blob δ = 0.2. Our
numerical bound sheet is represented by a 31x31 point mesh.

In Fig. 10 we make a comparison between the experiment (plot (a)) and our numerical
method (plot (b)). We plot here again the total circulation of a chord-wise section in the wake
versus the formation time. The plots are for three different chord-wise sections: triangles denote
the circulation at 50% of span, circles at 75% of span and diamonds at 90% of span. It can be
seen that the plots look very similar until the pinch-off occurs. After that, the circulation from
the experiment would not grow as fast anymore and trail after the numerical results. This can
be seen even better in Fig. 11.

Plots 10(a) and 10(b) show the total circulation at 50% span from experiment and numerical
method, respectively. We can see that the plots are in very good agreement all the way up to
formation time tform = 4.5, i.e., until the plate has traveled four and a half chord lengths.
Accordingly, plots 10 (c) and 10(d) show the circulation at 75% span, while 10(e) and 10(f)
show the circulation at 90% span. On the right is always the experimental result. We can see
that for the 75% case the similarity goes up to tform = 3 while in the 90% case up to tform = 2.
On the left, we also have the shapes of the corresponding sections taken from the experiment at
given formation times. The plot of the circulation of the leading edge vortex is also included in
some of these plots (x’s and/or crosses). One can see that after a while the circulation of this



223 Hou, Stredie and Wu / Commun. Comput. Phys., 1 (2006), pp. 207-228

Figure 8: Total circulation versus formation time for AR = 2. Left column - Ringuette’s experiment

results, right column - our numerical results. (a)&(b) 50% span, (c)&(d) 75% span, (e)&(f) 90% span.
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Figure 9: Wake shape for AR = 6.

Figure 10: Circulation vs. formation time from (a) Ringuette’s experiment and (b) numerical method,

for AR = 6, triangles - 50% span, circles - 75% span, diamonds - 90% span.

LEV will trail the total circulation, implying separation.

3.5 Numerical results for a three-dimensional square wing

In this subsection, we present our numerical results for a square plate when AR = 1. In this
case, the finite-wing effects are the strongest. Unfortunately we could not find an experiment to
match the square plate model. Based on the previous comparisons for AR > 1, we are confident
our results are qualitatively correct.

For the numerical simulations, we choose a square plate of length 2 represented by a 31x31
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Figure 11: Total circulation versus formation time for AR = 6. Left column - Ringuette’s experiment

results, right column - our numerical results. (a)&(b) 50% span, (c)&(d) 75% span, (e)&(f) 90% span.



Hou, Stredie and Wu / Commun. Comput. Phys., 1 (2006), pp. 207-228 226

(a) (b)

Figure 12: Wake shape in the case of a square plate. (a) has twice as many vortices as (b).

Figure 13: Circulation vs. formation time - numerical results, for AR = 1, triangles - 50% span, circles -

75% span, diamonds - 90% span.

point mesh. The plate is moving upward with velocity U0 = 1 and data are collected every
dt = 0.01 time step. The blob again is chosen to be δ = 0.2, and the code is stopped after 400
time steps. This is equivalent to a formation time of 4.

In Fig. 12(a)&(b), we plot a quarter of the wake since the wake is symmetrical. From this
plots we can see very well how the increased circulation shed in the wake near the center sections
makes the vortices stronger, with more roll-ups, while the vortices near the edges are weaker
with fewer roll-ups. Due to the lack of circulation, the edge vortices are more elongated because
the normal velocity is dominant. Plots (a) and (b) are similar, with the only difference that in
plot (b) we have half as many vortices as in (a) for a better visualization.
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Fig. 13 contains a plot similar to the ones we have already seen in AR = 2 and AR = 6 cases:
total circulation versus formation time. This time though, due to the more powerful finite-wing
effects, the separation between the three curves (M’s - 50% span, ◦’s - 75% span and ¦’s - 90%
span) is even more accentuated.

4 Concluding remarks

The main objective of this paper was motivated by our desire to develop an effective three dimen-
sional method for the study of the wake behind a flying wing. The three-dimensional method
presented here is just a first step in this direction. The current method shows some very nice
behavior compared with the experiment and demonstrates how efficient a direct generalization of
the two-dimensional theory could be when some three-dimensional considerations are taken into
account. The three-dimensional numerical method we presented here could provide the basis for
a further investigation of a possible generalization of Wu’s method to three dimensions [22]. The
current model still gives relatively poor approximations near the corners of the plate, where the
three dimensional effects are the strongest. Also, it cannot capture the helical patterns observed
near the corners by Ringuette’s experiments. If we can generalize Wu’s theory to three space
dimensions, we can incorporate this three dimensional theory into our numerical method. Then
we can capture the high order nonlinear 3D effects accurately by our numerical method, which
will provide an effective model to simulate accurately the motion of a moving surface.
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