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STABLE NEARLY SELF-SIMILAR BLOWUP OF THE 2D BOUSSINESQ

AND 3D EULER EQUATIONS WITH SMOOTH DATA I: ANALYSIS

JIAJIE CHEN AND THOMAS Y. HOU

Abstract. Inspired by the numerical evidence of a potential 3D Euler singularity [65, 66],
we prove finite time blowup of the 2D Boussinesq and 3D axisymmetric Euler equations with
smooth initial data of finite energy and boundary. There are several essential difficulties
in proving finite time blowup of the 3D Euler equations with smooth initial data. One
of the essential difficulties is to control a number of nonlocal terms that do not seem to
offer any damping effect. Another essential difficulty is that the strong advection normal

to the boundary introduces a large growth factor for the perturbation if we use weighted
L2 or Hk estimates. We overcome this difficulty by using a combination of a weighted
L∞ norm and a weighted C1/2 norm, and develop sharp functional inequalities using the
symmetry properties of the kernels and some techniques from optimal transport. Moreover we
decompose the linearized operator into a leading order operator plus a finite rank operator.
The leading order operator is designed in such a way that we can obtain sharp stability
estimates. The contribution from the finite rank operator to linear stability can be estimated
by constructing approximate solutions in space-time. This enables us to establish nonlinear
stability of the approximate self-similar profile and prove stable nearly self-similar blowup of
the 2D Boussinesq and 3D Euler equations with smooth initial data and boundary.

1. Introduction

The question whether the 3D incompressible Euler equations can develop a finite time singu-
larity from smooth initial data of finite energy is one of the most outstanding open questions in
the theory of nonlinear partial differential equations and fluid dynamics. The main difficulty is
due to the presence of the vortex stretching term in the vorticity equation:

(1.1) ωt + u · ∇ω = ω · ∇u,

where ω = ∇ × u is the vorticity vector of the fluid, and u is related to ω via the Biot-
Savart law. The velocity gradient ∇u formally has the same scaling as vorticity ω. Thus the
vortex stretching term has a nonlocal quadratic nonlinearity in terms of vorticity. However, the
nonlocal nature of the vortex stretching term can lead to dynamic depletion of the nonlinear
vortex stretching, which could prevent a finite time blowup, see e.g. [25, 34, 57]. The interested
readers may consult the excellent surveys [24, 43, 54, 60, 67] and the references therein.

The blowup analysis presented in this paper is inspired by the computation of Luo-Hou [65,66]
in which they presented some convincing numerical evidence that the 3D axisymmetric Euler
equations with smooth initial data and boundary develop a potential finite time singularity.
Inspired by the recent breakthrough of Elgindi [35] (see also [36]) on the blowup of the axisym-
metric Euler equations without swirl for C1,α initial velocity, we have proved asymptotically
self-similar blowup of the 2D Boussinesq equations and the nearly self-similar blowup of the 3D
axisymmetric Euler equations with C1,α velocity and boundary in [17]. The blowup analysis
presented in [17] takes advantage of the C1,α velocity in an essential way and does not generalize
to prove the Hou-Luo blowup scenario with smooth initial data. The results presented in this
paper provide the first rigorous proof of stable nearly self-similar blowup of the 2D Boussinesq
and 3D Euler equations with smooth data and boundary.

The main results of this paper are stated by the two informal theorems below. The more
precise and stronger statement of Theorem 1 will be given by Theorem 3 in Section 2 and the
precise statement of Theorem 2 will be given Theorem 4 in Section 6.
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Theorem 1. Let θ, u and ω be the density, velocity and vorticity in the 2D Boussinesq equations
(2.3)-(2.5), respectively. There is a family of smooth initial data (θ0, ω0) with θ0 being even and
ω0 being odd, such that the solution of the Boussinesq equations develops a singularity in finite
time T < +∞. The initial velocity field u0 has finite energy. The blowup solution (θ(t), ω(t))
is nearly self-similar in the sense that (θ(t), ω(t)) with suitable dynamic rescaling is close to
an approximate blowup profile (θ̄, ω̄) up to the blowup time. Moreover, the blowup is stable for
initial data (θ0, ω0) close to (θ̄, ω̄) in some weighted L∞ and C1/2 norm.

Theorem 2. Consider the 3D axisymmetric Euler equations in the cylinder r, z ∈ [0, 1] × T.
Let uθ and ωθ be the angular velocity and angular vorticity, respectively. The solution of the
3D Euler equations (2.1)-(2.2) develops a nearly self-similar blowup (in the sense described in
Theorem 1) in finite time for some smooth initial data ωθ0, u

θ
0 supported away from the symmetry

axis r = 0. The initial velocity field has finite energy, uθ0 and ωθ0 are odd and periodic in z. The
blowup is stable for initial data (uθ0, ω

θ
0) that are close to the approximate blowup profile (ūθ, ω̄θ)

after proper rescaling subject to some constraint on the initial support size.

1.1. A novel framework of analysis with computer assistance. One of our main contri-
butions is to introduce a novel framework of analysis that enables us to obtain sharp stability
estimates. In our analysis, we combine sharp functional inequalities, energy estimates, and ap-
proximate space-time solutions constructed numerically with rigorous error control. We follow
the framework in [17, 19, 20] to establish finite time blowup of the 2D Boussinesq and 3D Euler
equations by proving the nonlinear stability of an approximate steady state of the dynamic
rescaling formulation. A very important first step is to construct an approximate steady state
with sufficiently small residual errors. We achieve this by decomposing the solution into a semi-
analytic part capturing the far field behavior of the solution and a numerically computed part
with compact support. The approximate steady state gives an approximate self-similar profile.
See more discussions in Section 7. We remark that there has been some recent exciting devel-
opment of using a physics-informed neural network (PINN) to construct an approximate steady
state of the 2D Boussinesq equations, see [89].

Establishing linear stability of the approximate steady state is the most crucial step in our
blowup analysis. One essential difficulty is that the advection normal to the boundary for smooth
initial data introduces a large growth factor if we use weighted L2 or Hk energy estimates similar
to [17, 19, 20, 35], see more discussions in Section 2. To overcome it, we choose a weighted L∞

norm to extract the maximal amount of damping from the local terms without suffering from
the destabilizing effect due to advection normal to the boundary [55–57]. In order to close the
energy estimates, we use a combination of the weighted L∞ norm and the weighted C1/2 norm.

To estimate the nonlocal terms, we derive sharp C1/2 estimates for ∇u using the symmetry
properties of the kernels and some techniques from optimal transport [87, 88]. We decompose
the Biot-Savart law into two parts. The main part captures the most singular part of the Biot-
Savart law, and we apply the sharp functional inequalities for its C1/2 estimate. The terms
from the second part are more regular. We can approximate them by a finite rank operator and
obtain sharp estimates by constructing space-time solutions with rigorous error control.

We use the 2D Boussinesq equations to give a high level description of the linear stability
analysis using this new framework of analysis. More discussions and motivation will be provided
in Section 2. Let ω̄, θ̄ be an approximate steady state. We denoteW = (ω, θx, θy) and decompose

W = W + W̃ with W = (ω̄, θ̄x, θ̄y). We further denote by L the linearized operator around W

that governs the perturbation W̃ in the dynamic rescaling formulation (see Section 2.5),

(1.2) W̃t = L(W̃ ),

where the coefficients of L depend on the approximate steady state W . We further decompose
the linearized operator L into a leading order operator L0 plus a finite rank perturbation K, i.e
L = L0+K. The leading order operator L0 is constructed in such way that we can obtain sharp
stability estimates using weighted estimates and sharp functional inequalities.

In Part I of our paper, we perform the weighted energy estimates. In our analysis, we

decompose W̃ = W̃1 + W̃2. The first term W̃1 captures the main part of the perturbation,
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which is essentially governed by the leading order operator L0 with a weak coupling to W̃2

through nonlinear interaction. The second term W̃2 captures the contribution from the finite

rank operator. Our stability analysis is performed mainly for W̃1 since W̃2 is driven by W̃1 (see
(1.3) below). We establish nonlinear stability using the stability lemma (see Lemma A.2 and
Section 2.3), which depends on various constants in the estimates. For this purpose, we need
to obtain relatively sharp energy estimates for the leading order operator L0 by subtracting L
from a finite rank operator K. Without subtracting K, we would not be able to obtain linear
and nonlinear stability of the approximate self-similar profile.

The constants in the weighted energy estimates depend on the approximate steady state that
we constructed numerically in Section 7 and the singular weights that we use. The approximate
steady state is represented based on piecewise polynomials. We can obtain rigorous bounds
for its high order derivatives. Such bounds in turn provide rigorous bounds for lower order
derivatives, the pointwise values and various integrals involving the approximate steady state
by using standard numerical analysis. See more discussions for the main ideas below (2.15). In
Part II of our paper [15], we will provide sharp and rigorous upper bounds for these constants and
the residual error of the approximate steady state. In Section 4 of Part II [15], we also estimate
the velocity in the regular case by bounding various integrals with computer assistance. These
sharp estimates of the constants enable us to prove that the inequalities in our stability lemma
hold for our approximate self-similar profile. Thus we can complete the stability analysis of the
approximate self-similar profile and prove the nearly self-similar blowup of the 2D Boussinesq
and 3D Euler equations. See Section 2.3 for more discussions of our blowup analysis.

We use the following toy model to illustrate the main ideas by considering K as a rank-one

operator K(W̃ ) = a(x)P (W̃ ) for some operator P satisfying (i) P (W̃ ) is constant in space; (ii)

‖P (W̃ )‖ ≤ c‖W̃‖. Given initial data W̃0, we decompose (1.2) as follows

(1.3)
∂tW̃1(t) = L0W̃1, W̃1(0) = W̃0,

∂tW̃2(t) = LW̃2 + a(x)P (W̃1(t)), W̃2(0) = 0.

It is easy to see that W̃ = W̃1 + W̃2 solves (1.2) with initial data W̃0. The second part W̃2

is driven by the rank-one forcing term a(x)P (W̃1(t)). Using Duhamel’s principle, the fact that

P (W̃1(t)) is constant in space, we yield

(1.4) W̃2(t) =

∫ t

0

P (W̃1(s))e
L(t−s)a(x)ds.

Since the leading operator L0 has the desired stability property by construction, W̃1(t) =

eL0(t)W̃0 decays in L∞(ϕ) (ϕ is a singular weight) and we can control P (W̃1(s)). By check-
ing the decay of eL(t)a(x) in the energy space for large t, we can obtain the stability estimate of

W̃2. A crucial idea in the estimate of W̃2 is to bridge the energy estimates and numerical PDEs
via an approximate solution in space and time. Note that eL(t)a(x) is equivalent to solving
the linear evolution equation vt = L(v) with initial data v0 = a(x). Due to the rapid decay of
the linearized equation, we solve this initial value problem using a numerical scheme up to a

modest time. The stability property of W̃1 allows us to control the numerical error in computing

eL(t)a(x) and obtain sharp stability estimates for W̃2.
We remark that we have used the approximate steady state in an essential way in establishing

the linear stability of the approximate self-similar blowup profile. Moreover, the stability factor
(or the damping factor λ) that we obtain in Lemma A.1 is quite small. Without obtaining
relatively sharp upper bounds for the constants in the energy estimates that depend on the
approximate self-similar profile, we would not have been able to apply the stability Lemma A.2
to prove nonlinear stability. If we attempt to prove finite time blowup of the 3D Euler equations
around a generic blowup profile Ū without specific information about this blowup profile, the
stability conditions for Ū in Lemma A.2 may not be satisfied. Thus it seems quite difficult to
prove stable blowup without using any computer assistance.
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We note that in obtaining sharp bound on the blow-up rate for the critical nonlinear Schrödinger
equation (see e.g. [72]), the property of the ground state solution has been used in an essential
way. Since we do not have an explicit ground state for the 3D Euler equation, the role of an
approximate steady state with a small residual error that we constructed numerically plays a
role similar to the ground state in the study of blowup of other nonlinear PDEs, including the
nonlinear Schrödinger equation [72] and the Keller-Segel system [23].

To pass from the 2D Boussinesq equations to the 3D axisymmetric Euler equations, we follow
the same ideas presented in our previous work [17] by controlling the support of the solution
to be in a small region close to the boundary and does not intersect the symmetry axis. The
asymptotic scaling properties of the Biot-Savart kernels are exactly the same as those of the
Biot-Savart kernels for the 2D Boussinesq equations up to some asymptotically small terms
after making appropriate changes of variables. We will provide some additional estimates to
control these asymptotically small terms and prove the blowup of the 3D Euler equations.

1.2. Comparison between our method of analysis and the topological argument. Our
method of analysis shares some similarity with the recently developed blowup analysis using a
topological argument, see e.g. [69, 73–75]. In the topological argument, one also constructs a
compact perturbation operator K to the linearized operator L. After subtracting the compact
perturbation operator from the linearized operator, one can establish linear stability of the lead-
ing operator L0 in some Hilbert space. The compact perturbation operator can be approximated
by a finite rank operator. This method has been successfully used to prove blowup of several
nonlinear PDEs with potentially finitely many unstable directions.

The main difference between our method of analysis and the topological argument is in the
way we estimate the finite rank operator K. First of all, in our framework, we do not require
the energy space to be a Hilbert space. The main innovation of our approach is that we develop
a constructive method of analysis to establish stability of the finite rank operator by solving a
finite number of decoupled linear PDEs in space-time with rigorous error control. In comparison,
a typical topological argument may only allow one to establish stability of the leading order
operator L0 at the expenses of creating potentially finitely many unstable directions induced by
the finite rank operator. Moreover, if one attempts to establish stability of the leading order
operator L0 using a high order Sobolev norm Hk, it would be extremely difficult to construct
an approximate self-similar profile with a small residual error in Hk with a large k, e.g. k ≥ 14.
See Section 2.7.1 for more discussion.

1.3. Review of literature. There has been a lot of effort in studying 3D Euler singularities
using various simplified models. Several 1D models, including the Constantin-Lax-Majda (CLM)
model [26], the De Gregorio (DG) model [32,33], the gCLMmodel [79] and the Hou-Li model [56],
have been introduced to study the effect of advection and vortex stretching in the 3D Euler
equations. Singularity formation has been established for the CLM model in [26], for the DG
model with smooth data in [19] and with C1− data in [11], and for the gCLM model with various
parameters in [7, 10, 12, 19, 37, 39, 83]. In [21], the authors proved the blowup of the Hou-Luo
model proposed in [66]. In [20], Chen-Hou-Huang proved the asymptotically self-similar blowup
of the Hou-Luo model by extending the method of analysis established for the finite time blowup
of the De Gregorio model by the same authors in [19]. Inspired by their work on the vortex
sheet singularity [5], Caflisch and Siegel have studied complex singularity for 3D Euler equation,
see [4, 85] and also [80] for the complex singularities for 2D Euler equation.

In [22,47–49,61], the authors proposed several simplified models to study the Hou-Luo blowup
scenario [65,66] and established finite time blowup of these models. In these works, the velocity
is determined by a simplified Biot-Savart law in a form similar to the key lemma in the seminal
work of Kiselev-Sverak [59]. In [38, 40], Elgindi and Jeong proved finite time blowup for the

2D Boussinesq and 3D axisymmetric Euler equations in a domain with a corner using C̊0,α

data. There has been some recent progress in searching for potential Euler and Navier-Stokes
singularity in the interior domain, see [50–53].

There has been some interesting recent results on the potential instability of the Euler blowup
solutions, see [62, 86]. In a recent paper [14], we showed that the blowup solutions of the 2D
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Boussinesq and 3D Euler equations with C1α velocity considered in [17, 35] are also unstable
using the notion of stability introduced in [62,86]. The blowup analysis in [17,35] is based on the
stability of a self-similar blowup profile using the dynamic rescaling formulation. In comparison,
the linear stability in [17,35] is performed by directly linearizing the 3D Euler equations around
a particular blowup solution with a fixed blowup time T in the original physical variables.

The rest of the paper is organized as follows. Sections 2–5 will be devoted to the blowup
analysis for the 2D Boussinesq equations and Section 6 will be devoted to the blowup analysis for
the 3D Euler equations. In Section 2, we provide detailed discussions and some key ingredients in
establishing linear stability of an approximate profile using various simplified models. In Section
3, we develop sharp Hölder estimates using optimal transport. In Section 4, we introduce the
L∞-based finite rank perturbation method. Section 5 is devoted to energy estimates and Section
7 is devoted to the construction of an approximate self-similar profile using the dynamic rescaling
formulation. Some technical estimates and derivations are deferred to the Appendix.

2. Linear stability analysis and the main ideas

In this section, we will outline the main ingredients in our stability analysis. We will mainly
focus on the 2D Boussinesq equations. As in [17, 19, 20], we will use the dynamic rescaling
formulation for the 2D Boussinesq equations in an essential way. The most essential part of
our analysis lies in the linear stability. We need to use a number of techniques to extract the
damping effect from the linearized operator around the approximate steady state of the dynamic
rescaling equations and obtain sharp estimates of various nonlocal terms. Since the damping
coefficients we obtain are relatively small, we need to construct an approximate steady state
with a very small residual error. This is extremely challenging since the solution is supported
on the upper half plane with a slowly decaying tail in the far field.

Passing from linear stability to nonlinear stability is relatively easier by treating the nonlinear
terms and residual error as small perturbations to the linear damping terms. See Section 5.9.
We generalize the analysis of the 2D Boussinesq equations to the 3D Euler by controlling their
differences, which are asymptotically small, see Section 6.

Denote by ωθ, uθ and φθ the angular vorticity, angular velocity, and angular stream function,
respectively. The 3D axisymmetric Euler equations are given below:

(2.1) ∂t(ru
θ) + ur(ruθ)r + uz(ruθ)z = 0, ∂t(

ωθ

r
) + ur(

ωθ

r
)r + uz(

ωθ

r
)z =

1

r4
∂z((ru

θ)2),

where the radial velocity ur and the axial velocity uθ are given by the Biot-Savart law:

(2.2) − (∂rr +
1

r
∂r + ∂zz)φ

θ +
1

r2
φθ = ωθ, ur = −φθz , uz = φθr +

1

r
φθ,

with the no-flow boundary condition φθ(1, z) = 0 on the solid boundary r = 1 and a periodic
boundary condition in z. For 3D Euler blowup that occurs at the boundary r = 1, we know
that the axisymmetric Euler equations have scaling properties asymptotically the same as those
of the 2D Boussinesq equations [67]. Thus, we also study the 2D Boussinesq equations on the
upper half space:

ωt + u · ∇ω = θx,(2.3)

θt + u · ∇θ = 0,(2.4)

where the velocity field u = (u, v)T : R2
+ × [0, T ) → R2

+ is determined via the Biot-Savart law

(2.5) −∆φ = ω, u = −φy, v = φx,

where φ is the stream function with the no-flow boundary condition φ(x, 0) = 0 at y = 0. By

making the change of variables θ̃ , (ruθ)2, ω̃ = ωθ/r, we can see that θ̃ and ω̃ satisfy the 2D
Boussinesq equations up to the leading order for r ≥ r0 > 0.
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2.1. Dynamic rescaling formulation. Following [17,19,20], we consider the dynamic rescal-
ing formulation of the 2D Boussinesq equations. Let ω(x, t), θ(x, t),u(x, t) be the solutions of
(2.3)-(2.5). Then it is easy to show that

(2.6)
ω̃(x, τ) = Cω(τ)ω(Cl(τ)x, t(τ)), θ̃(x, τ) = Cθ(τ)θ(Cl(τ)x, t(τ)),

ũ(x, τ) = Cω(τ)Cl(τ)
−1u(Cl(τ)x, t(τ)),

are the solutions to the dynamic rescaling equations

(2.7) ω̃τ (x, τ) + (cl(τ)x + ũ) · ∇ω̃ = cω(τ)ω̃ + θ̃x, θ̃τ (x, τ) + (cl(τ)x + ũ) · ∇θ̃ = cθθ̃,

where ũ = (ũ, ṽ)T = ∇⊥(−∆)−1ω̃, x = (x, y)T ,

(2.8) Cω(τ) = exp

(∫ τ

0

cω(s)dτ

)
, Cl(τ) = exp

(∫ τ

0

−cl(s)ds
)
, Cθ = exp

(∫ τ

0

cθ(s)dτ

)
,

t(τ) =
∫ τ
0 Cω(τ)dτ and the rescaling parameters cl(τ), cθ(τ), cω(τ) satisfy [17]

(2.9) cθ(τ) = cl(τ) + 2cω(τ).

We have the freedom to choose the time-dependent scaling parameters cl(τ) and cω(τ) accord-
ing to some normalization conditions. These two free scaling parameters are related to the fact
that Boussinesq equations have scaling-invariant property with two parameters. The 3D Euler
equations enjoy the same property. See [17]. After we determine the normalization conditions
for cl(τ) and cω(τ), the dynamic rescaling equation is completely determined and the solution
of the dynamic rescaling equation is equivalent to that of the original equation using the scaling
relationship described in (2.6)-(2.8), as long as cl(τ) and cω(τ) remain finite.

We remark that the dynamic rescaling formulation was introduced in [63, 71] to study the
self-similar blowup of the nonlinear Schrödinger equations. This formulation is also called the
modulation technique in the literature and has been developed by Merle, Raphael, Martel, Zaag
and others. It has been a very effective tool to analyze the formation of singularities for many
problems like the nonlinear Schrödinger equation [58,72], compressible Euler equations [2,3], the
nonlinear wave equation [77], the nonlinear heat equation [76], the generalized KdV equation [68],
and other dispersive problems. Recently, this method has been applied to study singularity
formation in incompressible fluids [17, 35] and related models [10–12, 19].

To simplify our presentation, we still use t to denote the rescaled time in (2.7) and simplify

ω̃, θ̃ as ω, θ

(2.10) ωt + (clx+ u) · ∇ω = θx + cωω, θt + (clx+ u) · ∇θ = cθθ.

Following [20], we impose the following normalization conditions on cω, cl

(2.11) cl = 2
θxx(0)

ωx(0)
, cω =

1

2
cl + ux(0), cθ = cl + 2cω.

For smooth data, these two normalization conditions play the role of enforcing

(2.12) θxx(t, 0) = θxx(0, 0), ωx(t, 0) = ωx(0, 0)

for all time. In fact, we can derive the ODEs of θxx(t, 0) and ωx(t, 0)

d

dt
ωx(t, 0) = (cω − cl − ux(0))ωx(t, 0) + θxx(t, 0),

d

dt
θxx(t, 0) = (cθ − 2(cl + ux(0)))θxx(t, 0),

where we use v|y=0 = 0, vx(t, 0) = 0. Under the conditions (2.11), the right hand sides vanish.

2.2. Main Result. In this section, we state our main result for the 2D Boussinesq equations.
We first introduce some notations and define our energy. Let ψi, ϕi, ψi,g, gi be the singular

weights defined in (C.1), (C.3), (C.4), [ · ]
C

1/2
gi

the Hölder seminorm (2.21) in R
++
2 , and µij , τ1, τ2
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be the parameters chosen in (C.5). We define the energy E on three variables f1, f2, f3 as follows
(2.13)

P1 = max
1≤i≤3

||fiϕi||∞, P2 = τ−1
1 max(||f1ψ1||C1/2

g1

, µ1||f2ψ2||C1/2
g2

, µ2||f3ψ3||C1/2
g3

,
√
2||f1ψ1|x1|−

1
2 ||∞)

P3 = τ2 max(µ4||f1ϕg1||∞, ||f2ϕg,2||∞, ||f3ϕg,3||∞),

P4 , max(µ−1
51 |ux(f1χode)(0)|, µ−1

52 |ux(f2χode)(0)|, µ−1
6 |ux(f1)(0)|, µ−1

62 |ux(f2)(0)|, µ−1
7 |f2,xy(0)|, µ−1

8 |f1,xy(0)|),
E = max(P1, P2, P3, P4),

where ux(f)(0) = − 4
π

∫
R

++
2

y1y2
|y|4 f(y)dy, χode is defined in (5.64).

Theorem 3. Let (θ̄, ω̄, ū, c̄l, c̄ω) be the approximate self-similar profile constructed in Section 7
and E∗ = 5 ·10−6. Assume that even initial data θ0 and odd ω0 of (2.10) satisfy E(ω0− ω̄, θ0,x−
θ̄x, θ0,y − θ̄y) < E∗. We have

||ω − ω̄||L∞ , ||θx − θ̄x||L∞ , ||θy − θ̄y||∞ < 200E∗, |ux(t, 0)− ūx(0)|, |c̄ω − cω| < 100E∗

for all time. In particular, we can choose smooth initial data ω0, θ0 ∈ C∞
c in this class with

finite energy ||u0||L2 < +∞ such that the solution to the physical equations (2.3)-(2.5) with these
initial data blows up in finite time T .

2.3. The main steps in the proof of Theorem 3. We will follow the framework in [17,19,20]
to establish finite time blowup by proving the nonlinear stability of an approximate steady state
to (2.10). We divide the proof of Theorem 3 into proving the following lemmas. The requirement
of smallness of the residual error is incorporated in the conditions (A.11), e.g. the term aij,3,

in Lemma 2.4. We define the C1/2 semi-norm in (2.20), the approximate solution Ŵ2 (4.19),
residual operator R̄i in (2.19), and the energy norm E4 (5.70) in Section 5 for energy estimates.

Lemma 2.1. There exists a nontrivial approximate steady state (ω̄, θ̄, c̄l, c̄ω) to (2.10), (2.11)
with ω̄, θ̄ ∈ C4,1 and residual errors F̄i, i = 1, 2, 3 sufficiently small in some energy norm.

The construction of an approximate self-similar profile in Lemma 2.1 is provided in Section
7, the estimate of residual error is given in Appendix C.4 in Part II [15], and the properties of
(ω̄, θ̄, c̄l, c̄ω) are discussed in Section 2.4.

Lemma 2.2. Let ω be odd in x1. Denote δ(f, x, z) = f(x) − f(z). There exists finite rank

approximations û, ∇̂u for u(ω),∇u(ω) with rank less than 50 such that we have the following
weighted L∞ and directional Hölder estimate for f = u, v, ∂lu, ∂lv, x, z ∈ R

++
2 , i = 1, 2, γi > 0

(2.14)

|ρf (f − f̂)(x)| ≤ Cf,∞(x, ϕ, ψ1, γ)max(||ωϕ||∞, sf max
j=1,2

γj [ωψ1]C1/2
xj

(R+
2 )
),

|δ(ψf (f − f̂), x, z)|
|x− z|1/2 ≤ Cf,i(x, z, ϕ, ψ1, γ)max(||ωϕ||∞, sf max

j=1,2
γj [ωψ1]C1/2

xj
(R+

2 )
),

with x3−i = z3−i, where sf = 0 for f = u, v, sf = 1 for f = ∂lu, ∂lv, the functions C(x), C(x, z)
depend on γ, the weights, and the approximations, the singular weights ϕ = ϕ1, ϕg,1, ϕelli, ψ∂u =
ψ1, ψu are defined in (C.3), (C.4), (C.2), the weight ρ10 for u and the weight for ρij for ∇u with
i+ j = 2 are given in (C.2). In the estimate of f = u, v, we do not need the Hölder semi-norm
and sf = 0. Moreover, C(x), C(x, z) are bounded in any compact domain of R++

2 . We have an
additional estimate for ρ4(u− û) similar to the above with ρ4 (C.2) singular along x1 = 0.

Since the weights ρ10 ∼ |x|−3, ψ1 ∼ |x|−2, ψu are singular near x = 0, without subtracting

the approximation f̂ from f , ρff is not bounded near x = 0. Based on these finite rank
approximations, we can decompose the perturbations.

We also apply similar estimates for the nonlocal error, e.g. u(ε̄) and ε̄ is the error of solving
the Poisson equations. Since we can estimate piecewise bounds of ε̄ following Section 3.6 in Part
II [15], instead of using a global norm, we improve the estimate using localized norms, which
are much smaller than the global norm. See Lemma 2.3 and Section 4.7 in Part II [15].
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Lemma 2.3. There exists m < 50 approximate solutions F̂i to the linearized equations ∂tW =
LW of (2.10) around (ω̄, θ̄, c̄l, c̄ω) in Lemma 2.1 from given initial data F̄i with residual error

F̂i(0)− F̄i, (∂t − L)F̂i(t) small in the energy norm. Furthermore we can decompose the pertur-

bation W = W1 + Ŵ2 with the following properties: (a) Ŵ2 is constructed based on F̂i, and
(4.19); (b) W1 satisfies equations with the leading order linearized operator (L−K)W1 up to the
small residual operator R (4.20), (4.21) for some finite rank operator K, and W1 depends on

Ŵ2 weakly at the linear level via R. The functionals ai(W1), anl,i(W ) in the construction of Ŵ2

and K (4.19) are related to the finite rank approximations in Lemma 2.2.
Moreover, there exists an energy E4(t) for W1,W (see (5.70)) that controls the weighted L∞

and C1/2 seminorm of W1 such that under the bootstrap assumption E4(t) < E∗0 with E∗0 > 0,
using the estimates in Lemma 2.2, we can establish nonlinear energy estimates for E4(t).

If the bounds in Lemma 2.2 are tight, and the residual error in the constructions of (ω̄, θ̄), F̂i
are small enough, we can use Lemma A.2 to obtain nonlinear stability.

Lemma 2.4. For E∗ = 5 · 10−6, the coefficients in the nonlinear energy estimates of E4(t)
satisfy the conditions (A.11), and the statements in Theorem 3 hold true.

We verfiy the inequalities for the stability conditions stated in Lemma 2.4 in Part II [15].

Estimates of nonlocal terms. To establish the nonlinear stability conditions (A.11) in Lemma
2.4, we need to obtain sharp constants in the estimates in Lemma 2.2. The form of the upper
bound is related to the energy (2.13), (5.70). Although the upper bounds in Lemma 2.2 are
equivalent for different γ, we choose γ according to the energy (2.13), (5.70).

The proof of Lemma 2.2 consists of several steps. Given ω ∈ C1/2, we have u ∈ C3/2,∇u ∈
C1/2. Firstly, in Section 3 and Appendix B, we use some methods from optimal transport to
establish sharp C1/2 estimate of ∇u and ∇u with the localized kernels, e.g. ux(x, a, b) defined
in (3.4), which captures the most singular part in the estimates in Lemma 2.2. We remark that
ψf = ψ1 in (2.14) for f = ∇u. We can derive the upper bounds for these sharp C1/2 estimates
of ∇u in terms of some explicit L1 integrals independent of the weights ϕ, ψi. In Section 5 of the
supplementary material II in Part II [16], we will estimate these explicit integrals using integral
formulas, numerical quadrature, and obtain the constants for these bounds rigorously.

We can derive the damping terms from the local terms in L − K and L in Sections 5.3-5.5

without using Lemma 2.2 and F̂i in Lemma 2.3. With the sharp C1/2 estimates, we can establish
the stability conditions (A.11) in the Hölder energy estimate for a fixed x with |x− z| → 0. We
can accomplish this without using the estimates of the more regular part of u,∇u in Lemma 2.2

discussed below and F̂i from Part II [15], which are more regular and vanish in the C1/2 estimate
as |x − z| → 0. See more discussions in Section 2.8.2. This estimate captures the stability of
the leading order terms in terms of regularity and is the cornerstone for the entire nonlinear
stability analysis. We further develop several methods to control the more regular terms.

Other parts of the estimates in Lemma 2.2, e.g. I = ψux(ω) − ux,a,b(ωψ) − ψûx(ω), involve
the velocity with desingularized kernels, which are more regular. In the second step and in

Section 4.3, we construct the finite rank approximation f̂ for f, f = u,∇u so that we have
better estimates of I than the case without approximation.

In the third step, we perform C1/2 estimate of the regular part I. The term I is only Log-
Lipschitz and is similar to J(ω)(s, 0) below with a = 0

J(ω)(s, a) =

∫

a≤maxi |si−yi|
K(s, y)ω(y)dy, |K(s, y)| ≤ C1|s− y|−1, |∂K(s, y)| ≤ C2|s− y|−2.

In the C1/2 estimate of I, for x, z ∈ R
++
2 , we decompose I(s) = IR(s, a) + IS(s, a). The first

part IR(s, a) corresponds to the regular part I with a distance |a| away from the singularity, e.g.
J(f)(s, a). The second part IS(s, a) is a singular part IS(s, a) similar to J(f)(s, 0)− J(f)(s, a).
For IR(a, s), using the norm ||ωϕ||∞, we reduce estimating its piecewise Lipschitz norm to
estimating certain explicit integrals depending on the weight ϕ. See Section 5.2 for more details.
For IS(s), we estimate its piecewise L∞ norm by estimating integrals depending on the weights.



STABLE BLOWUP OF 2D BOUSSINESQ EQUATIONS 9

This allows us to obtain

|∂IR(s, a)| ≤ C1(s) log a
−1||ωϕ||∞, |IS(s, a)| ≤ C2(s)|a|||ωϕ||L∞ ,

|I(x) − I(z)|
|x− z|1/2 ≤ |IR(x) − IR(z)|+ |IS(x)− IS(z)|

|x− z|1/2 ||ωϕ||L∞ ≤
(
C3(x, z) log a

−1|x− z| 12 +
C4(x, z)|a|
|x− z|1/2

)
||ωϕ||L∞ .

To obtain a sharp estimate, we need to choose a ∼ |x − z|. We perform a sequence of
decompositions by choosing different size a and obtain an estimate similar to the above. We
minimize different estimates by selecting a ∼ |x−z|, and obtain the desired C1/2 estimate. Since
different (semi)norms contribute to the upper bounds in Lemma 2.2 with different weights, we
also perform improved estimates of I using a small portion of the Hölder norm and optimize
different estimates. The L∞ estimate is simpler. We refer to Section 5.2 for more details.

Since we reduce the estimate of the regular part I to bounding explicit L1 integrals depending
on the weights, we perform the decompositions and estimate the integrals in Section 4 in Part
II [15] using the scaling symmetries of the kernels, the symmetrization of the integrands, and
numerical analysis, e.g. the Trapezoidal rule with rigorous error control. Note that the C1/2

seminorm in the C1/2 estimate in Lemma 2.2 is mostly used to control the most singular part
in step one, and we estimate them in Section 3. For the regular part in such an estimate, we
can mainly use the norm in (2.14) with sf = 0.

We remark that controlling the zero-order singular integral operator ∇u = ∇∇⊥(−∆)−1ω is
a challenging problem. Singularity formation of a model problem from smooth data

ωt = K(ω)ω, x ∈ R
2,

that captures this difficulty is listed as an open problem in [46] and discussed in [27], where K is
some zero order Calderon-Zygmund operator in 2D. The 2D Boussinesq and 3D Euler equations
contain several more nonlocal terms and are much more complicated.

L∞-based finite rank perturbation and energy estimates. Given an initial datum F̄i(0),

in Section 3 in Part II [15], we first construct a numerical solution F̂i(tk) at discrete time tk
up to a finite time Ti and then extend it to infinite time by setting the solution to zero beyond
Ti. Then we interpolate the solution F̂i(tk) using a cubic polynomial in time so that we have a

solution F̂i(t) for any t > 0, which is piecewise smooth in t. Due to numerical error, the solution

F̂i(t) does not preserve the vanishing order O(|x|2) and the residual error F̂i(0)−F̄i, (∂t−L)̂Fi(t)
does not vanish O(|x|3) near 0. As a result, they are not in the energy space.

To overcome this difficulty, we perform two analytic rank-one corrections to F̂i(t) near 0 to

enforce F̂i(t) = O(|x|2) and make sure that the residual error is in the energy space. We further
decompose the residual error into the local part Rloc,i and nonlocal error. For the local part

error Rloc,i and F̂i, we estimate them in Section 3 in Part II [15] using method from numerical

analysis. Based on these constructions, we construct the approximate solution Ŵ2 and the
residual operator (4.20) and estimate them under the bootstrap assumption, see Section 5.7.
We combine the estimate of the nonlocal error and the nonlinear energy estimate in Section 5.8.

Similarly, for the residual error in Lemma 2.1, we decompose it into the local part F̄loc,i and
the nonlocal part. The estimate of F̄loc,i is established in Appendix C.4 in Part II [15]. The
estimate of the error Rloc,i follows a similar argument. We combine the estimate of nonlocal
error with the energy estimate in Section 5.8.

The method behind Lemma 2.3 is a L∞-based finite rank perturbation, which we will develop
in Section 4. This method allows us to decompose the perturbation and perform energy estimate
on W1 with a linearized operator L − K, which is a finite rank perturbation of the original
linearized operator L. By designing K to approximate the nonlocal terms, we can obtain much
better linear stability estimates for L−K.

The variable Ŵ2 (4.19) plays an auxiliary role only, and we do not perform energy estimate
on it directly. In Section 5, we perform the energy estimates and design the whole energy E4

(5.70). We further bound the upper bounds in Lemma 2.2 using the energy E4. With these
estimates, we can derive the coefficients in the stability conditions (A.11) and Lemma 2.4. The
full inequalities contain the energy estimates of several norms, and are given in Appendix D.
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Using the estimates of the constants in Lemma 2.2, the estimate of F̂i in Lemma 2.3, the
estimate of the local part of the residual error and the residual operator, which are established
in Part II [15], we obtain the concrete values of the inequalities in Appendix D, which only
depend on the weights and the approximate steady state, and further verify that they hold true
with computer assistance in Part II [15]. The codes can be found in [13]. See more discussions
Appendix D.

After we show that the stability conditions (A.11) are satisfied, we obtain nonlinear stability
estimates E4(t) < E∗ for all t > 0 using Lemma A.2, which implies the bounds stated in
Theorem 3. The remaining steps of obtaining finite time blowup from smooth initial data and
finite energy follows [19, 20] and a rescaling argument.

Note that all the nonlocal terms in the linearized equations are not small. Without obtaining
sharp C1/2 estimates, even if we use the energy E4 (5.70), the stability conditions in (A.11) and
Lemma 2.4 fail in the weighted Hölder estimate (see Section 5.4) at some x with |x − z| → 0.
Without the finite rank approximations for the nonlocal terms in Lemma 2.2, 2.3, the stability
conditions for the weighted L∞ estimates also fail.

Rigorous piecewise bounds. In our energy estimates, we need to derive rigorous and tight
piecewise bounds of various quantities involving the approximate steady state, singular weights,
and several explicit functions. One of the main ideas is to use the second order error estimate

(2.15) max
x∈[xl,xu]

|f(x)| ≤ max(|f(xl)|, |f(xu)|) +
h2

8
||fxx||L∞([xl,xu]), h = xu − xl,

to obtain a piecewise sharp bound of f on [xl, xu], see e.g. Appendix C.2 in [15]. If we can obtain
a rough bound for fxx on [a, b], by partitioning [a, b] into small intervals [xil, xiu], evaluating f on
finitely many grid points xil, xiu, and using the above estimates, we can obtain tight bound of f
on [a, b]. Similarly, by estimating ∂kxf and applying the above estimate recursively, we can obtain
a tight bound for ∂ixf with i ≤ k − 1. Note that for a polynomial with degree less than d, we
have ∂kxf ≡ 0, k ≥ d+1. Our approximate steady state is represented by piecewise polynomials
(See Section 7), and we apply these estimates. For several explicit functions, we estimate the
higher order derivatives using induction. Using the Leibniz rule and the triangle inequalities,
we can estimate higher order derivatives for more complicated functions. We further develop
various higher order error estimates (error terms Ckh

k, k = 3, 4, 5) using numerical analysis. See
more details in Appendix in Paper II [15]. To track the round off error in the computation, we
use interval arithmetic [78, 81].

Computer-assisted proof has played an important role in the analysis of several PDE problems,
especially in computing explicit tight bounds of complicated (singular) integrals [9, 29, 45] or
bounding the norms of linear operators [6, 41]. We refer to [44] for an excellent survey on
computer-assisted proofs in establishing rigorous analysis for PDEs and refer to [44, 78, 81] for
related works using the interval arithmetic and computer assistance in analysis of PDEs.

Note that our approach to establish stability analysis with computer assistance is different
from existing computer-assisted approaches, e.g. [8], where the stability is established by quan-
tifying the spectral gap of a given operator numerically. We do not use direct computation to
quantify the spectral gap of the linearized operator since our linearized operator is not compact.

In the remaining of this section, we will use a number of simplified models to illustrate and
motivate the main ideas behind our stability analysis.

Notations and operators. The upper bar notation is reserved for the approximate steady
state, e.g. ω̄, θ̄. We introduce the bilinear operatorBop,i((u,M), G) for (u,M), G = (G1, G2, G3)

(2.16)
Bop,1 = −u · ∇G1 +M11(0)G1, Bop,2 = −u · ∇G2 + 2M11(0)G2 −M11G2 −M21G3,

Bop,3 = −u · ∇G3 + 2M11(0)G3 −M12G2 −M22G3.

If M = ∇u,M11 = ux,M12 = uy,M21 = vx,M22 = vy , then we drop M to simplify the notation
(2.17)

Bop,1(u, G) = −u · ∇G1 + ux(0)G1, Bop,2(u, G) = −u · ∇G2 + 2ux(0)G2 − uxG2 − vxG3,

Bop,3(u, G) = −u · ∇G3 + 2ux(0)G3 − uyG2 − vyG3.
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We introduce the notations for the nonlinear terms

(2.18)
Ni = Bop,i(u, (ω, η, ξ)), N1 = −u · ∇ω + ux(0)ω,

N2 = −u · ∇η − uxη − vxξ + 2ux(0)η, N3 = −u · ∇ξ − uyη − vyξ + 2ux(0)ξ.

Without specification, Ni depends on (ω, η, ξ). Given the approximate steady state ω̄, θ̄, c̄l, c̄ω,
we denote by F i and F̄ω, F̄θ the residual error

(2.19)
F̄ω = −(c̄lx+ ū) · ∇ω̄ + θ̄x + c̄ωω̄, F̄θ = −(c̄lx+ ū) · ∇θ̄ + c̄θ θ̄,

F1 , F̄ω, F2 , ∂xF̄θ, F3 , ∂yF̄θ.

Denote by Cαx , C
α
y the partial Hölder seminorms

(2.20) [ω]Cα
x (D) , sup

x,z∈D,x2=z2

|ω(x)− ω(z)|
|x1 − z1|α

, [ω]Cα
y (D) , sup

x,z∈D,x1=z1

|ω(x)− ω(z)|
|x2 − z2|α

.

Given a weight g(h) : R2 → R+ that is −α-homogeneous , i.e. g(λh1, λh2) = λ−αg(h), e.g.,
g(h) = |h|−α, we define the weighted Hölder seminorm

(2.21) [ω]Cα
g (D) = sup

x,z∈D
|(ω(x)− ω(z))g(x− z)|.

We will mostly use D = R2
++. In this case, we drop D to simplify the notations.

We define 〈f, g〉 the inner product in R2
++

(2.22) 〈f, g〉 =
∫

R
2
++

f(x)g(x)dx.

2.4. Basic properties of the approximate steady state. Following the ideas in [19,20], we
construct the approximate steady state (ω̄, θ̄, c̄ω, c̄l) of the dynamic rescaling equations (2.10),
(2.11) by solving them numerically for a long enough time. In Figure 1, we plot the approximate
steady state ω̄, θ̄x on the grid points. We plot the variable θ̄x rather than θ̄ since θ̄ grows in
the far-field. Given the approximate steady state, we construct the numerical stream function
φ̄N by solving the Poisson equations. Then we can derive the residual (2.19) up to the error in
solving the Poisson equations. In Figure 2, we plot the piecewise rigorous bound of the weighted
L∞(ϕi) norm of F̄i, i = 1, 2. Since ϕ1, ϕ2 are very singular near x = 0 with leading order

|x|−2.4|x1|− 1
2 , c|x|− 5

2 |x1|− 1
2 , the weighted L∞(ϕi) norm of F̄i is relatively large near the origin.

The L∞(ϕi) norms are used in the energy estimate (2.13). We remark that the unweighted
errors of F̄1, F̄2 are very small near the origin, less than 2 · 10−12 since we use a uniform fine
grid near the origin. We defer the details of numerical computation to Section 7. Here, we list
some important properties of the approximate steady state.

Figure 1. Approximate steady state in the near-field. Left figure: profile ω̄;
right figure: θ̄x.
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Figure 2. Weighted residual errors of the approximate steady state. Left
figure: piecewise rigorous L∞(ϕ1) bound of F1 in the ω equation. Right figure:
piecewise rigorous L∞(ϕ2) bound of F2 in the θx equation

.

Exponents. The exponents and the velocity near the origin satisfy

(2.23) c̄l ≈ 3.00649898, c̄ω ≈ −1.02942516, ūx(0) ≈ −2.532674, v̄x(0) = 0.

We remark that the ratio c̄l/c̄ω ≈ −2.9205600 is very close to the one reported by Hou-Luo
[65, 66].
Regularity and representation. The variables ω̄, φ̄ are odd in x and θ̄ is even in x. Denote by
φ the stream function. One should not confuse the stream function φ with singular weights ϕi, ψi,
etc. The approximate steady state (ω̄, θ̄, φ̄) is represented by piecewise fifth order polynomials
ω̄2, θ̄2, φ̄2 supported in [0, D1]

2 with D1 ≈ 1015, semi-analytic parts ω̄1, θ̄1, φ̄1 that capture the
far-field behavior of the solutions, an analytic part φ̄3 that captures φ̄ near x = 0 to reduce the
round-off error, and a small rank-one correction φ̄cor such that ω̄ − (−∆)φ̄ = O(|x|2) near 0

ω̄ = ω̄1 + ω̄2, θ̄ = θ̄1 + θ̄2, φ̄ = φ̄1 + φ̄2 + φ̄3 + φ̄cor.

See (7.2). In particular, we have ω̄, θ̄, φ̄ ∈ C4,1. The solution enjoys the decay rate

ω̄ ∼ rα, θ̄ ∼ r1+2α, α ≈ c̄ω/c̄l.

Anisotropic. The solutions θ̄ and ω̄ are anisotropic in the sense that the y-derivative of the
profile is much smaller than the x-derivative, especially in the near field (x, y) ∈ [0, 1]2:

(2.24) |θ̄y| < c3|θ̄x|, c3 ≈ 0.16, |ω̄y| < c4|ω̄x|, c4 ≈ 0.23.

These anisotropic properties are similar to those for the C1,α singular solution [17].
The advection. The advection in (2.10) satisfies the following important inequalities

c̄lx+ ū(x, y) ≥ c1x, c1 ≈ 0.47, c̄ly + v̄(x, y) ≥ c2y, c2 ≈ 3,

for all x, y ∈ R2
++. For x, y ∈ R2

++ near the origin, we have

c̄lx+ ū(x, y) ≈ 0.47x, cly + v̄(x, y) ≈ 5.54y.

2.5. Linearized equations. Linearizing (2.10) around (ω̄, θ̄, ū, c̄l, c̄ω), we yield

(2.25)
ωt = −(c̄lx+ ū) · ∇ω + θx + c̄ωω − u · ∇ω̄ + cωω̄ + F̄ω +N(ω),

θt = −(c̄lx+ ū) · ∇θ + c̄θθ + cθθ̄ − u · ∇θ̄ + F̄θ +N(θ), u = ∇⊥(−∆)−1ω,

where F̄ω , F̄θ are the residual errors (2.19), and N(ω), N(θ) are the nonlinear terms

N(ω) = −u · ∇ω + cωω = N1, N(θ) = −u · ∇θ + cθθ,
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where we have used the notation N1 (2.18) and the following normalization conditions for the
perturbing cl, cω from (2.11)

(2.26) cω = ux(0), cl ≡ 0, cθ = cl + 2cω.

Since ω,∇θ have similar regularity, we study the system of (ω, θx, θy) and denote

(2.27) η = θx, ξ = θy.

Taking derivatives on the θ equation in (2.25) and using the notations (2.18), (2.19), we obtain

(2.28)
∂tη = −(c̄lx+ ū) · ∇η + (2c̄ω − ūx)η − v̄xξ − ux · ∇θ̄ − u · ∇θ̄x + 2cω θ̄x +N2 + F2,

∂tξ = −(c̄lx+ ū) · ∇ξ + (2c̄ω + ūx)ξ − ūyη − uy · ∇θ̄ − u · ∇θ̄y + 2cωθ̄y +N3 + F3,

where we have used cθ = cl + 2cω. Due to the normalization conditions (2.12) and the odd
symmetries of θx, ω we have the following vanishing conditions near the origin

(2.29) ω = O(|x|2), θx = O(|x|2), θy = O(|x|2).

Analyzing the linear stability of the above system is extremely challenging since it contains
several nonlocal terms, which are not small. Note that numerical evidence of linear stability
of the above system has been reported by Liu [64] (see Section 3.4), who showed that the
eigenvalues of the discretized linearized operator has negative real parts bounded away from 0.

2.6. Main terms of the system. Firstly, we identify the main terms in the system (2.25),(2.28).

2.6.1. Anisotropy in the x, y directions. Since the solutions are anisotropic (2.24) in the near
field, the y-derivatives of the solution, e.g., ω̄y, θ̄y, θ̄xy, are relatively small.

In (2.28), ξ = θy enjoys much better stability estimates than those of η = θx due to the flow
structure: compression along the x-direction and outward flow along the y-direction. Indeed,
since ūx(0) ≈ −2.5 near the origin and c̄ω ≈ −1 (2.23) , we have

(2c̄ω − ūx)η ≈ 0.5η, (2c̄ω + ūx)ξ ≈ −5.5ξ.

These terms contribute to a growing term in the equation of η and a large damping term in the
ξ equation. These anisotropic properties are similar to those for the C1,α singular solution [17].

2.6.2. Weak coupling. Note that v̄x ≈ 0 near 0 (2.23) and v̄(x, 0) = 0 due to the boundary
condition, v̄x is quite small in the near field and near the boundary. Therefore, ξ is weakly
coupled to the equation of η in such a region, which is the most difficult region of the analysis.
See the discussion in Section 2.7.2. This coupling structure between η and ξ is consistent with
that of the C1,α singular solution in [17], where v̄xξ is a lower order term in the η equation.

Using the above analysis and dropping the smaller terms and the ξ equation, we identify the
main terms in the linear part of the system (2.25)

(2.30)
ωt = −(c̄lx+ ū) · ∇ω + η + c̄ωω − uω̄x + cωω̄ +Rω,

∂tη = −(c̄lx+ ū) · ∇η + (2c̄ω − ūx)η − uxθ̄x − uθ̄xx + 2cωθ̄x +Rη,

where Rω ,Rη denote the remaining terms in the equations. The above system is very similar
to that in the Hou-Luo model [20] with similar coefficients ω̄, θ̄ near the boundary.

2.7. The local parts and functional spaces. Following [17,19,20], we will perform weighted
energy estimate in some suitable space X and derive the damping terms in the weighted energy
estimate from the local terms, especially the advection term (c̄lx+ū)·∇f in (2.30). See Section 2
in [19] for an example. The principle of choosing the appropriate energy spaceX is the following.
Firstly, the local part of the linearized equations should be stable in space X . Secondly, we can
estimate the nonlocal terms in X effectively.
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2.7.1. A toy model for the local term. To understand the linear stability, we first focus on the
local terms in the main system (2.30). We drop the nonlocal terms involving u, ux and the
remaining terms in (2.30) and approximate (2.30) near the origin by the following model in R

++
2

(2.31)
ωt + (a1x∂x + a2y∂y)ω = −ω + η,

ηt + (a1x∂x + a2y∂y)η = a3η, a1 = 0.5, a2 = 5.5, a3 = 0.5,

with ω, η being odd in x, where we have used (2.23) to obtain approximations

c̄lx+ ū ≈ (c̄l + ūx(0))x ≈ 0.5x, c̄ly + v̄ ≈ 5.5y, 2c̄ω − ūx(0) ≈ 0.5.

Weighted L∞ space. Since a3 > 0, a3η in (2.31) contributes to a growing term. We consider
weighted L∞ estimates to take advantage of the transport structure. Suppose that ϕ = r−γ , r =
(x2 + y2)1/2. Multiplying the η equation with ϕ and a direct calculation yield

(2.32) ∂t(ηϕ) + (a1x∂x + a2y∂y)(ηϕ) = (a3ϕ+ a1x∂xϕ+ a2y∂yϕ)η , a(γ)ηϕ,

Since x∂xϕ = −γx2r−γ−2, y∂yϕ = −γy2r−γ−2 and a2 ≥ a1, we get

(2.33) a(γ) = a3 +
a1x∂xϕ+ a2y∂y

ϕ
= a3 − γ

a1x
2 + a2y

2

x2 + y2
≤ a3 − a1γ.

Since a1 = 0.5, a2 = 5.5, a3 = 0.5, to obtain a damping factor a(γ) ≤ 0, we can choose
γ ≥ 1. Notice that for the system (2.25), (2.28), ω, η vanish at least quadratically near 0 (2.29).
Therefore, we can choose γ ≥ 2 to derive the damping terms in the η equation.

For the system in (2.31), performing L∞ estimate with weight ϕ = r−γ and γ > 1 on both
equations, we get

(2.34)
d

dt
||ωϕ||∞ ≤ (−1− a1γ)||ωϕ||∞ + ||ηϕ||∞,

d

dt
||ηϕ||∞ ≤ (a3 − a1γ)||ηϕ||∞.

It is easy to further obtain that max(||ωϕ||∞, ||ηϕ||∞) decays exponentially fast.
From (2.33), since a2 is much larger than a1, as the ratio λ = y/x increases, we get a much

larger damping factor

a(γ, λ) = a3 − γ
a1 + a2λ

2

1 + λ2
, a(γ, 0) = a3 − a1γ =

1

2
− 1

2
γ, a(γ,∞) = a3 − γa2 =

1

2
− 11

2
γ .

In [17,19,20,35], the stability analysis is based on some weighted L2 spaces. However, if one
performs weighted L2 estimate of (2.32) with singular weight ϕ = x−αy−β, using integration by
parts, the y-advection contributes

I = −
∫
ηa2y∂yηϕ =

a2(1− β)

2

∫
η2ϕ,

to the energy estimate of
∫
η2ϕ. Since ω(x, 0) 6= 0, η(x, 0) 6= 0, we need to choose β < 1 so that

the energy is well-defined. If β is close to 1, in our later estimates of nonlocal terms, e.g. ux, since
ux(x, 0) 6= 0, we expect an estimate with a large constant: ||uxϕ1/2||2 ≤ C(1− β)−1/2||ωϕ1/2||2.
If 1−β is not small, I is a large growing factor in the energy estimate. This forces one to choose
a very singular weight to extract a damping term for η, e.g. α ≥ 14 if β = 0, a new difficulty
which is absent in [17,19,20,35]. We overcome it by using L∞ type estimates and develop a set
of estimates for the nonlocal terms in some appropriate functional spaces.

A potential L2 based approach is to perform sufficiently high order Hk estimate. Taking a
partial derivative ∂ix∂

j
y plays a role similar to a singular weight x−iy−j . However, to derive a

damping term for ∂kxη in this model, one needs to take k ≥ 14. Due to the mixed derivative
terms ∂ix∂

j
yη, it is not clear if H

k estimates can be closed for (2.32) with k not very large. This
approach can lead to many more terms in the system (2.25), (2.28), e.g. the mixed derivative
terms and ∂ix(uxθ̄x), which can be difficult to control. Moreover, due to the boundary, ∂y does
not commute with the nonlocal operator ∇⊥(−∆)−1 for the velocity. Thus, in the Hk estimates,
it is not clear if we can obtain stability for the leading order operator. Furthermore, constructing
an approximate steady state with a small residual error in Hk with a large k, e.g. k ≥ 14, is
extremely challenging.
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Weighted Hölder estimate. Since ∇u = ∇∇⊥(−∆)−1ω in (2.28) is not bounded from L∞ →
L∞, to close the estimates, we perform weighted Cα estimates. We have a simple identity.

Lemma 2.5. Suppose that f satisfies

(2.35) ∂tf + b(x) · ∇f = c(x)f(x) +R, x ∈ R
2
+.

Given some weights g(x1, x2) even in x1, x2 and ϕ, we denote the operator δ and function F

δ(p)(x, z) = p(x)− p(z), F (x, z, t) = δ(fϕ)(x, z)g(x − z), d(x) = c(x) +
b · ∇ϕ
ϕ

, x, z ∈ R
2
+.

Then we have

(2.36)
∂tF + (b(x) · ∇x + b(z) · ∇z)F = (d(x) +

(b(x) − b(z)) · (∇g)(x − z)

g(x− z)
)F

+(d(x) − d(z))g(x− z)(fϕ)(z) + δ(Rϕ)(x, z)g(x − z) .

The proof follows a direct calculation and is deferred to Appendix A.1. We treat the first
term on the right hand side of (2.36) as a damping term. The term b·∇ϕ

ϕ in d(x) is the damping

term from the singular weight ϕ(x). We apply Lemma 2.5 to the η equation in (2.31). Denote

ϕ2 = |x|−γ2 , g(h) = |h|−α, h ∈ R
2, b(x) = (a1x1, a2x2), F = ((ηϕ2)(x) − (ηϕ2)(z))g(x− z)

for x = (x1, x2), z = (z1, z2) ∈ R2
+. Using the identity (2.33) and definitions of g, b, we get

(2.37)

d(x) = a3 +
b(x) · ∇ϕ2

ϕ2
= a(γ2), hi∂ig = −α h2i

|h|2+α = −α h2i
|h|2 g,

b(x)− b(z) = (a1(x1 − z1), a2(x2 − z2)),

(b(x)− b(z)) · (∇g)(x − z)

g(x− z)
= −αa1(x1 − z1)

2 + a2(x2 − z2)
2

|x− z|2 , e(α, x, z).

Thus, e(α, x, z)F in (2.36) is also a damping term, which comes from the Hölder function g.
Using Lemma 2.5 with R = 0, we yield

∂tF + (b(x)∇x + b(z)∇z)F = (a(γ2)(x) + e(α, x, z))F + (a(γ2)(x) − a(γ2)(z))g(x− z)(ηϕ2)(z).

From definition (2.33), d(x) = a(γ2)(x) is not in C
α. Instead, we estimate I4 = (a(γ2)(x) −

a(γ2)(z))g(x − z)|z|α. Since a(γ2)(x)|x|α, |x|α ∈ Cα, we yield

|I4| = |(a(γ2)(x)|x|α − a(γ2)(z)|z|α)g(|x− z|) + a(γ2)(x)(|z|α − |x|α)g(|x− z|)| ≤ Cα.

Combining the L∞(|x|−γ) estimate of η with γ = γ2 + α and ϕ2|x|−α = |x|−γ2−α = |x|−γ ,
and using a(γ2) ≤ a3 − a1γ2, e(α, x, z) ≤ −a1α (2.33), (2.37), we obtain

d

dt
||F ||L∞(x,z) ≤ (a3 − a1(γ2 + α))||F ||L∞(x,z) + Cα||η|z|−γ ||∞,

and yield the weighted Cα estimate for η. Similarly, we obtain weighted Cα for ω. Since
a1 = a3 = 1

2 , choosing γ2+α = γ > 1 and combining the above estimate and (2.34), we establish
stability estimate for the model (2.32) in a combination of weighted L∞ and Cα spaces.

2.7.2. Anisotropy of the flow and the most difficult scenario. Motivated by the above analysis,

we will design the functional spaces X as a combination of weighted L∞ and C
1/2
g spaces (2.21).

The system (2.25), (2.28) is much more complicated than the model problem (2.31) since it
involves variables coefficients and several nonlocal terms. Similar to [17, 19, 20], we will design
the weights ϕi, ψi as linear combination of different powers |x|−αi to take into account the
behavior in the near field and the far field.

Denote f = (ω, η, ξ). We will perform L∞ estimate for fiϕi and C1/2 estimate for fiψi.

Moreover, we choose the L∞ weight ϕi at least |x|−
1
2 more singular near x = 0 than the Hölder

weight ψi since the damping coefficients similar to a(γ2) in (2.37) is not C1/2. See (C.3), (C.1).
From the above analysis of the model problem, (2.33), and (2.37), we see that the estimate is

anisotropic in x and y. In the near field, from (2.33), if y/x is not small, we get a much larger
damping term. Moreover, the solution (ω̄,∇θ̄) decays in the far-field. Thus the most difficult
region for the analysis is a sector ΣS near the boundary, e.g. (x, y) : |(x, y)| ≤ 2, y/x ≤ 0.1.
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From (2.37), we also get a much larger damping factor if |x2 − z2|/|x1 − z1| is large. This
implies that the Hölder estimate in y direction enjoys much better estimates than those in the x
direction. Therefore, the most difficult part of the Hölder estimate is in the horizontal direction.

2.7.3. Vanishing order of the perturbation. From (2.29), the perturbation ω, η, ξ vanishes quadrat-
ically near x = 0. To obtain larger damping factors, from the model problem (2.31) and (2.33),
we can choose a larger γ. We will decompose the perturbation fi into two parts

fi = fi,1 + fi,2,

where fi,1 captures the main part of f1 and vanishes to the order O(|x|3) near x = 0, and
fi,2 accounts for the contribution from some finite rank operators. For example, if we choose
ω2 = ωxy(0)xyχ(x, y) for some cutoff function χ ∈ C∞

c with χ = 1 near x = 0, then ω1 =
ω−ω2 = O(|x|3) near 0. In this problem, cubic vanishing order is good enough for our stability
analysis. See more discussions in Section 4.2.4 and (4.21).

We will perform energy estimates on fi,1 and use space-time estimates for fi,2.

2.8. Estimate the nonlocal terms ∇u. In the stability analysis, we need to estimate the
nonlocal terms u,∇u in (2.25), (2.28). Although we have standard Cα estimates for the Riesz
transform ∇∇⊥(−∆)−1ω, the constants usually are not given explicitly, and they are not sharp
enough for our purposes.

To obtain sharp Cα estimates for ∇u, e have a crucial observation that we can use techniques
from optimal transport to obtain sharp estimates. This is another reason why we choose a
weighted C1/2 space in the energy estimates. Note that optimal transport has been applied to
establish many sharp functional inequalities and study functional inequalities in details, e.g.,
the reverse Brascamp-Lieb inequality [1], the Sobolev and Gagliardo-Nirenberg inequalities [28],
the isoperimetric inequalities [42]. See also the excellent books [87, 88] for more details.

We focus on ux from uxθ̄x in the main system (2.30). This term is the most difficult nonlocal
term to estimate since other nonlocal terms uω̄x, uθ̄xx in (2.30) are more regular. Note that in
the leading order system for the C1,α singular solution [17], uxθ̄x is also the main nonlocal term.
Other nonlocal terms involving u,∇u contain a small factor α.

Denote by ux(x, a, b) the localized version of ux

(2.38) ux(x, a, b) , − 1

π
P.V.

∫

|x1−y1|≤a,|x2−y2|≤b
K1(x− y)W (y)dy, K1(s) =

s1s2
|s|4 ,

where W is an odd extension of ω in y from R
+
2 to R2 (3.3).

We decompose ux = ux,S+ux,R into the more regular part ux,R and ux,S(x) = ux(x, a, b) that
captures the most singular part of ux in the Biot-Savart law. Using the odd symmetry property
of K1(s) in s1, s2 and some techniques from optimal transport, we establish sharp estimates for
the singular term ux,S in Lemma 3.1 uniformly in a, b. Similarly, we have established a sharp

estimate of ux in the C
1/2
y seminorm and the estimates of uy, vx in the Hölder seminorms. We

estimate the regular part ux,R following the discussion in Section 2.3.

2.8.1. Weighted estimates. In the stability analysis, we need to estimate the weighted Cα norm
of the nonlocal terms. We focus on estimating uxψ. We observe that the commutator

(2.39)

[ux(·, a, b), ψ](ω) , ux(ω)(x, a, b)ψ(x) − ux(ωψ)(x, a, b)

= − 1

π

∫

|x1−y1|≤a,|x2−y2|≤b
K1(x− y)W (y)(ψ(x) − ψ(y))dy

is more regular. Therefore, we have the decomposition

(2.40) ux(ω)(x, a, b)ψ = ux(ωψ)(x, a, b) + [ux(·, a, b), ψ](ω).
For the first term on the right hand side, we can apply the sharp Hölder estimate in Section 3.
Given that ω is in some weighted L∞ space, since K1(x − y)(ψ(x) − ψ(y) has a singularity of
order 1

|x−y| , the second term is log-Lipschitz and is more regular than the first term. Therefore,

we can estimate its C1/2 seminorm by the weighted L∞ norm of ω. In particular, if a and b are
small, we obtain a small factor of order (max(a, b))1/2 in this estimate.
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2.8.2. The singular scenario. To understand if we can obtain linear stability by treating the
nonlocal terms as a small perturbation using the sharp functional inequalities, we consider the
following model by dropping the nonlinear and error terms in (2.25), (2.28)

(2.41)
ωt = −(c̄lx+ ū) · ∇ω + c̄ωω + η,

ηt = −(c̄lx+ ū) · ∇η + (2c̄ω − ūx)η − (ux − ûx)θ̄x − (vx − v̂x)θ̄y.

We also remove the term v̄xξ in the η equation due to the weak coupling discussed in Section
2.6.2, and the more regular nonlocal terms, e.g. u, which are small in the following estimates.
See the discussion around (2.47). Here ûx, v̂x approximate ux, vx near 0:

(2.42) ûx = (ux(0) + Cux(x)K00)χ(x), v̂x = Cvx(x)K00χ.

The above approximation can be obtained by Taylor expansions and satisfies

(2.43) ux − ûx = O(|x|5/2), vx − v̂x = O(|x|5/2),
for ω = O(|x|5/2) near x = 0. These vanishing orders can be justified for ω in our energy class.
The functions Cux(x), Cvx(x) and the rank-one operator K00 are defined in (4.26), (4.25), and χ
is some compactly supported cutoff function with χ = 1 near x = 0. The above approximation
is a simplification of the finite rank approximation of the velocity in Section 4.3.

For initial perturbation ω0, η0 with vanishing order O(|x|3) near x = 0, using (2.43), we can
show that these vanishing conditions can be preserved. See Sections 2.7.3 and 4.2 for more
discussions regarding the vanishing order.

Goal of the estimates and heuristic. In the following weighted Hölder estimates, we consider
the difficult scenario discussed in Section 2.7.2 for x, z with x2 = z2, and the most singular
scenario where x and z are sufficiently close. In this case, using the sharp estimates in Lemmas
3.1 and 3.4, we can establish the linear stability condition (A.3) for (2.41).

In this scenario, we can interpret the following estimates as taking a half derivative D on
(2.45). If D applies to a regular term, which is Lipschitz, we almost get 0. If D acts on the
nonlocal terms, e.g. ux− ûx, since ûx is more regular and [ux]C1/2

x
can be bounded using Lemma

3.1, we treat it as 2.55[ωψ1]C1/2
x

. If D applies to the local term, we use the energy to bound it.

To reduce the technicality from the singular weights ψi (2.44) near 0 and simplify the dis-
cussion, we consider x not too close to 0. For x close to 0, we actually have a large damping
coefficient, see Figure 9. Due to (2.43), ψ1(ux − ûx) ∈ C1/2, and ∇θ̄ = O(|x|) near 0, we have
I = ψ2(ux − ûx)θ̄x = O(|x|) and gain a small factor |x|1/2 for the C1/2 estimate of I with small
|x− z| near 0. Similar estimates apply to (vx − v̂x)θ̄y in (2.41). One can also treat this setting
by first fixing x and then considering z with |x− z| ≪ |x|.

Following the ideas in Section 2.7.2, we design the weights (C.1) for the C1/2 estimate with

(2.44) ψ1 ∼ |x|−2, ψ2 ∼ p1|x|−5/2,

near x = 0 for some parameter p1. Next, we perform the weighted C1/2 estimate. Denote

b̄(x) = (c̄lx+ ū, c̄ly + v̄).

Derivations for the local terms. For a pair (x, z), applying Lemma 2.5, we get

(2.45)

∂tδ(ωψ1)g1 + (b̄(x) · ∇x + b̄(z) · ∇z)(δ(ωψ1)g1) = ē1(x, z)δ(ωψ1)g1 +B1(x, z),

∂tδ(ηψ2)g2 + (b̄(x) · ∇x + b̄(z) · ∇z)(δ(ηψ2)g2) = ē2(x, z)δ(ηψ2)g2 +B2(x, z),

B1(x, z) , δ(ηψ1)g1(x− z) + δ(d̄1)g1(x − z)(ωψ1)(z),

B2(x, z) , −δ((ux − ûx)θ̄xψ2 + (vx − v̂x)θ̄yψ2)g2 + δ(d̄2)g2(x− z)(ηψ2)(z),

where Bi denotes the bad terms, gi = gi(x− z), δf = f(x)− f(z), and
(2.46)

d̄1 = c̄ω +
b̄ · ∇ψ1

ψ1
, d2 = 2c̄ω − ūx +

b̄ · ∇ψ2

ψ2
, ēi(x, z) = d̄i(x) +

(b̄(x)− b̄(z))(∇gi)(x− z)

gi(x− z)
.
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Estimate the nonlocal terms. Suppose that ωϕ1, ηϕ2 ∈ L∞ and δ(ωψ1)g1, δ(ηψ2)g2 ∈ L∞.

To estimate δ2((ux− ûx)θ̄xψ2)g2, we introduce A(x) = θ̄x
ψ2

ψ1
and rewrite the difference as follows

δ((ux − ûx)θ̄xψ2)g2 = δ((ux − ûx)ψ1A(x))g2

= (δ((ux − ûx)ψ1)A(x) + (ux − ûx)(z)ψ1(z)δ(A))g2 , I + II.

The second term II is a regular term since the half derivative acts on the coefficient. Indeed,
since we consider x not too close to 0, the coefficient θ̄x

ψ2

ψ1
is Lipschitz. Since |x−z| is sufficiently

small and (ux − ûx)ψ1 is bounded (2.43), (2.44), in this case, we get |II| ≈ 0.
For x away from 0, the weight ψ is nonsingular and |A(x)| . 1. Recall that the commutator

[ux, ψ1](ω) (2.39) is more regular and ûx (2.42) is regular. Applying the above argument to
estimate the regular term, Lemma 3.1 for ux(ωψ1), and g2(x1 − z1, 0) = |x1 − z1|−1/2, we get

I ≈ δ(ux(ω)ψ1)g2A(x) ≈ δ(ux(ωψ1))g2A(x), |δ(ux(ωψ1))g2A(x)| ≤ 2.55[ωψ1]C1/2
x

|θ̄x
ψ2

ψ1
(x)|.

Similarly, applying Lemma 3.4 with τ = 0.582, we have

δ(vxθ̄yψ2)g2 ≈ δ(vx(ωψ1))|x1 − z1|−1/2θ̄y
ψ2

ψ1
, m, m ≤ 2.53||δ(ωψ1)g1||L∞

∣∣∣θ̄y
ψ2

ψ1
(x)

∣∣∣.

Estimate the regular and remaining terms. For |x− z| sufficiently small, the more regular
term vanishes in this estimate. For example, for uω̄x in (2.25) (not included in (2.45)), we will
approximate u using some finite rank operators û similar to (2.42) and estimate (u − û)ω̄x,
which vanishes |x|7/2 near x = 0. See Sections 4.2 and 4.3. We can control the log-Lipschitz
norm or C4/5 norm of u in some weighted space using ||ωϕ1||L∞ . Thus, for |x| not too close to
0 and |x− z| sufficiently small, we get

(2.47) |δ((u− û)ω̄xψ1)g1| ≈ 0.

The same idea applies to other regular terms in (2.45), e.g. δ(d̄1)g1(x − z)(ωψ1), δ(d̄2)g2(x −
z)(ηψ2). For δ(ηψ1)g1 in the ω equation (2.45), we get

δ(ψ1η)g1 = δ(
ψ1

ψ2
ηψ2)g1 ≈ ψ1

ψ2
(x)δ(ηψ2)|x1 − z1|−1/2 , m1, |m1| ≤ |ψ1

ψ2
(x)|[ηψ2]C1/2

x
.

We remark that, if z1 = x1, all the above approximations become equality since the difference
δ(f)|x− z|−1/2 becomes 0 for f being Cβ , β > 1/2 around x.

Summarize the estimates. For x2 = z2 with |x1 − z1| sufficiently small, the damping terms
ē1, ē2 in (2.45) can be simplified as

ēi(x) = d̄i(x)−
1

2

b̄1(x)− b̄1(z)

x1 − z1
≈ d̄i(x) −

1

2
∂1b̄1(x) = d̄i(x) −

1

2
(c̄l + ūx(x)).

We apply the stability Lemma A.1 and choose weight µ1

(2.48) µ1 = 0.668

to change the weight between δ(ωψ1)g1, δ(ηψ2)g2 in the energy estimate (2.45) so that the
damping term dominates (A.3). When x2 = z2 with |x1 − z1| → 0, the above estimate implies

(2.49)

|B1(x, x)| ≤ S1(x) · µ1[θxψ2]C1/2
x
, µ1|B2(x, x)| ≤ S2(x)||ωψ1||C1/2

g
,

S1 =
∣∣∣ ψ1

µ1ψ2
(x)

∣∣∣, S2 = µ1(2.55|θ̄x|+ 2.53|θ̄y|)
ψ2

ψ1
(x).

From (A.3) and Lemma A.1, if the coefficient of the damping term is larger than that of the
bad term, we can obtain stability. Indeed, for some c1, c2 > 0, we have

(2.50) ēi + Si ≤ −ci,
In Figure 3, we plot the grid point values of S1, S2 (2.49), and −ē1,−ē2 on the boundary y = 0
for x < 5. The estimates away from the boundary and for large x are much better due to the

larger damping from b̄·∇ψi

ψi
and the decay of the profile. See Section 2.7.2.
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Figure 3. Coefficients ē1, ē2 of the damping terms and the estimates of the
bad terms B1, B2

For |x− z| sufficiently small with other ratio |x2− z2|/|x1− z1|, from Section 2.7.2, we obtain

a larger damping term from δb̄·∇gi
gi

(2.46) and better estimates. Using the sharp functional

inequalities in Section 3, we can also verify that the damping terms dominate. The case of
|x−z| not too small is estimated in Section 5. For larger |x−z|, we have better constants in the
Hölder estimates for ∇u from Lemma 3.1-3.3. See more discussions below (5.24) for this case.

Remark 2.6. To obtain the stability condition (2.50), one can choose weights similar to ψ1, ψ2

with other parameters, or other weights. From the derivations in Section 2.7.1, the gap −ci −
(ēi+Si) can be larger for weight |x|γ with smaller γ. In ψ1, ψ2 (C.1), the power with the largest
exponent is |x|1/6, which leads to a smaller gap for x near 0.6. We choose this growing weight
so that we have a stronger control of the perturbation in the far-field, which leads to smaller
constants in the nonlinear estimates and makes it easier to control the nonlinear estimates.

2.8.3. A model problem for localized velocity and energy estimate. We consider the following
model problem to illustrate the ideas of our overall energy estimate and motivate the localization
of velocity (2.38)

(2.51) ωt = −d(x)ω + a(x)ux(ω, ε)(x).

Here ux(ω, ε) denotes the localized velocity ux(ω, a, b) (2.38) with b = a = ε. We assume

(2.52) − d(x) +m|a(x)| ≤ −c1 < 0, −d(x) ≤ −c2 < 0, d(x), |a(x)|, ||d||C1/2 , ||a||C1/2 ≤ c3,

for some constant c1, c2, c3 > 0, where m = max(C1(∞), 12C1(∞) + C2(∞)) ≤ 2.64. The
constants C1(·), C2(·) are defined in Lemmas 3.1, 3.3. From Lemmas 3.1, 3.3, we have

(2.53) [ux(x, a, b)]C1/2 ≤ m[ω]C1/2 ,

uniformly for any a, b. The first condition in (2.52) corresponds to the stability condition (2.50) in
the C1/2 estimate with small |x−y|. In (2.51), we remove the transport terms for simplicity since
in the weighted energy estimate, it contributes to the damping terms (see Sections 2.7.1, 2.8.2)
similar to −d(x)ω. The nonlocal term ux(ω, ε) models other nonlocal terms ∇u in (2.25), (2.28).
We remove the more regular nonlocal terms in (2.25), (2.28), e.g. u, cω, and the nonsingular
part ux,R = ux − ux(ω, ε) , which will be estimated using the methods in Sections 4.1,4.2.

We argue that if ε is small enough, we can establish linear stability. We use C to denote
absolute constants independent of ci, ε. Using the formula of ux(ω, ε) (2.38), we get

(2.54) |ux(ω, ε)(x)| ≤ Cε1/2[ω]C1/2 , |a(x)ux| ≤ Cc3ε
1/2[ω]C1/2 , −d(x) ≤ −c2.

The L∞ estimate of ω is almost closed due to the small parameter ε. Denote δ(f)(x, z) =
f(x)− f(z). In the Hölder estimate, using (2.52), and a direct calculation, we yield

−δ(dω)(x, z)|x− z|1/2 = −d(x) δ(ω)

|x− z|1/2 − d(x) − d(z)

|x− z|1/2 ω(z),
∣∣∣d(x) − d(z)

|x− z|1/2 ω(z)
∣∣∣ ≤ c3||ω||L∞ .
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For a(x)ux(x, ε), using (2.52), (2.53), and the above L∞ estimate on ux, we obtain
∣∣∣δ(aux(ω, ε))|x− z|1/2

∣∣∣ ≤ a(x)
∣∣∣δ(ux(ω, ε))|x− z|1/2

∣∣∣+
∣∣∣a(x)− a(z)

|x− z|1/2
∣∣∣|ux(ω, ε)(z)| ≤ |a(x)|m[ω]C1/2+Cc3ε

1/2[ω]C1/2 .

It follows
(2.55)

∂t
δω

|x− z|1/2 = −d(x) δω

|x − z|1/2 +B(x, z), |B(x, z)| ≤ (|a(x)m| + Cc3ε
1/2)[ω]C1/2 + c3||ω||L∞ .

The first term is a damping term. To apply Lemma A.1 for linear stability, we construct energy
E = max(||ω||L∞ , τ ||ω||C1/2) with τ to be determined. Using the estimates (2.54) and (2.55),
we reduce conditions (A.3) to

(2.56) c2 − Cc3ε
1/2τ−1 ≥ λ, d(x) − |a(x)|m − Cc3ε

1/2 − τc3 ≥ λ,

for some λ > 0. Since d(x) − |a(x)|m ≥ c1, for ε small enough such that

Cc3ε
1/2 <

c2
2
, Cc3ε

1/2 · c3 <
c2c1
2
,

we get d(x)− |a(x)|m − Cc3ε
1/2 ≥ c1

2 . Then we can choose

(2.57) τ =

√
Cε1/2c1
2c2

to achieve the stability condition (2.56) for some λ > 0.

Interpretation of the estimates. Since the L∞ estimate (2.54) is almost closed, we can
formally treat ||ω||L∞ as an a-priori estimate. Then we choose the weight τ ∼ ε1/4 for the
energy [ω]C1/2 so that c3τ ||ω||L∞ (2.55) is small and close the Hölder estimate. In our energy
estimate of (2.25), (2.28), we follow similar ideas and will approximate the regular terms so that
we can establish the L∞ estimate with a small cost of the Hölder norm of ω similar to (2.54),
and then put a small weight to the Hölder norm in the energy for the Hölder estimate.

We will track the constants and choosing the weight, e.g. τ in (2.57), much more carefully so
that we do not need to choose ε to be too small, or approximate the regular terms using finite
rank operators with a very high rank to get a small approximation error in a suitable norm.
This will reduce our computation cost significantly. See Sections 4.1 and 4.2.

3. Sharp Hölder estimate via optimal transport

In this section, we derive the sharp Hölder C1/2 estimate for ∇u using the symmetry proper-
ties of the kernels and some techniques from optimal transport. We note that novel functional
inequalities on similar Biot-Savart laws have played a crucial role in the important works [35,59].
Those estimates enable the authors to control the velocity effectively. The sharp Hölder esti-
mates play a similar role in our work.

The natural approach to obtain the Hölder estimate of ∇u in R
++
2 is to estimate ∇u(x) −

∇u(z) for all pairs x, z ∈ R2
++, which has a dimension of 4. Yet, it is very difficult to obtain

a sharp estimate since the kernel in ∇u(x) − ∇u(z) for arbitrary x, z has a complicated sign
structure and destroys some symmetry properties of the kernels in ∇∇⊥(−∆)−1. Instead, we

will estimate the C
1/2
x and C

1/2
y seminorms (2.20) due to the following important observations.

Firstly, the linearized operators (2.25), (2.28) are anisotropic in x and y. See Section 2.7.2. We
have much larger damping factors along the y direction. Therefore, a sharp Hölder estimate of

∇u in the x direction, i.e. [∇u]
C

1/2
x

is much more important. Secondly, if we estimate the C
1/2
x

or C
1/2
y seminorm (2.20), where we assume x1 = z1 or x2 = z2, we reduce the dimension of

(x, z) from 4 to 3. Moreover, the kernel in ∇u(x) − ∇u(z) enjoys better symmetry properties
and the sign properties are much simpler. These properties allow us to reduce estimating the
2D integral into estimating many 1D integrals. After we estimate [∇u]

C
1/2
x
, [∇u]

C
1/2
y

, using the

triangle inequality, we can obtain the estimate of [∇u]C1/2 .
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The kernels associated with ∇u are given by

(3.1) K1(y) ,
y1y2
|y|4 , K2(y) ,

1

2

y21 − y22
|y|4 , G(y) = −1

2
log |y|,

where 1
πG is the Green function of −∆ in R2. Note that ∂1∂2G = K1, ∂21G = K2.

Denote by Ki,s the symmetrized kernel

(3.2) Ki,s(x, y) , Ki(x− y)−Ki(x1 + y1, x2 − y2)−Ki(x1 − y1, x2 + y2) +Ki(x+ y).

Consider the odd extension of ω in y from R
+
2 to R2

(3.3) W (y) = ω(y) for y2 ≥ 0, W (y) = −ω(y1,−y2) for y2 < 0.

W is odd in both y1 and y2 variables. Clearly, ux can be written as

ux(x) = − 1

π

∫

R2

K1(x− y)W (y)dy = − 1

π

∫

R
++
2

ω(y)K1,s(x, y)dy.

For any a, b1, b2 > 0, we consider the localized velocity

(3.4)

Qa,b1,b2(x) , [x1 − a, x1 + a]× [x2 − b1, x2 + b2],

ux(x, a, b1, b2) , − 1

2π
P.V.

∫

y∈Qa,b1,b2
(x)

2(x1 − y1)(x2 − y2)

|x− y|2 ω(y)dy,

uy(x, a) ,
1

2π
P.V.

∫

y∈Qa,a(x)

(x1 − y1)
2 − (x2 − y2)

2

|x− y|4 ω(y)dy +
ω(x)

2
,

vx(x, a) ,
1

2π
P.V.

∫

y∈Qa,a(x)

(x1 − y1)
2 − (x2 − y2)

2

|x− y|4 ω(y)dy − ω(x)

2
.

If b1 = b2 = b, we simplify ux(x, a, b1, b2) as ux(x, a, b); if b1 = b2 = a, we further simplify
ux(x, a, b1, b2) as ux(x, a).

3.1. Hölder estimates of the velocity. We have the following estimates for ∇u. We will
discuss the ideas in Section 3.2 and the proof in Sections 3.3, 3.4, and Appendix B. We localize
the velocity in (3.4) to obtain improvement of the constant C1(

b
|x−z|) when |x− z| is large.

Lemma 3.1 (Estimate of [ux]C1/2
x

). For any b1, b2 > 0, a ≥ 1
2 |x1 − z1|, x = (x1, x2), z =

(z1, x2) ∈ R
+
2 , and D covering (Qa,b1,b2(x) ∪Qa,b1,b2(z)) ∩ R

+
2 (3.4), we have

|ux(x, a, b1, b2)− ux(z, a, b1, b2)|
|x− z|1/2 ≤ C1

(
b

|x− z|

)
[ω]

C
1/2
x (D)

,

where b = max(b1, b2) and C1(a) is an increasing function given by

C1(b) =
4

π

∣∣∣
∫ b

0

ds2

∫ ∞

f(s2)

|T (s1, s2)− s1|1/2∆(s1, s2)ds1

∣∣∣,

∆(s1, s2) =
(s1 + 1/2)s2

((s1 + 1/2)2 + s22)
2
− (s1 − 1/2)s2

((s1 − 1/2)2 + s22)
2
.

Here, f(s2) is the unique solution in [0,∞) satisfying ∆(f(s2), s2) = 0 and T (s1, s2) is the
unique solution in [0, f(s2)) that solves

∫ s1

T (s1,s2)

∆(s1, s2)ds1 = 0,

for s1 > f(s2). In particular, T (s1, s2) can be obtained explicitly by solving a cubic equation and
C1(b) ≤ 2.55 for any b > 0.

If a < 1
2 |x1 − z1|, the singular region is small. We can simply apply the triangle inequality to

estimate each term. We localize the seminorm to region D since we only use the seminorm to
control w(x) − w(z) for x, z ∈ D. The same reasoning applies to the following lemmas.
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Remark 3.2. The above Lemma can be further generalized to the localized velocity
ω ∗K1(s)1−a1≤s≤a2,−b1≤s2≤b2 , i.e., we do not need a1 = a2 in (3.4). The proof follows from the
same argument. Yet, we will only use the special case a1 = a2 in our later estimates.

The upper bounds in the following Lemmas involve [ω]
C

1/2
x

and [ω]
C

1/2
y

. We will further

bound it using the energy norm.

Lemma 3.3 (Estimate of [ux]C1/2
y

). For any a, b ≥ |x− z|, x = (x1, x2), z = (x1, z2) ∈ R
+
2 , and

D covering (Qa,b(x) ∪Qa,b(z)) ∩ R
+
2 (3.4), we have

|ux(x, a, b)− ux(z, a, b)|
|x− z|1/2 ≤ 1

2
C1(

a

|x− z| )[ω]C1/2
y (D)

+ C2(
a

|x− z|)[ω]C1/2
x (D)

,

where C1(a) is defined in the previous Lemma and C2(a) is given by

C2(a) =

√
2

π

∫ a

0

∫ ∞

0

y
1/2
1

∣∣∣ y1(1/2− y2)

(y21 + (1/2− y2)2)2
+

y1(1/2 + y2)

(y21 + (1/2 + y2)2)2

∣∣∣dy.

In particular, C2(a) ≤ 4.26
π .

Next we estimate the other kernel. We remark that for uy(x, a) and vx(y, a), the estimates
are different due to the local term related to ω (3.4).

Lemma 3.4 (C
1/2
x estimate of uy, vx). For any a ≥ 2|x− z|, x = (x1, x2), z = (z1, x2) ∈ R

+
2 , D

covering (Qa(x) ∪Qa(z)) ∩R
+
2 (3.4), and τ > 0, we have

|vx(x, a)− vx(z, a)|
|x− z|1/2 ≤ 1

π
C1(τ)max([ω]

C
1/2
x (D)

, τ−1[ω]
C

1/2
y (D)

),

|uy(x, a)− uy(z, a)|
|x− z|1/2 ≤ 1

π
C2(τ)max([ω]

C
1/2
x (D)

, τ−1[ω]
C

1/2
y (D)

),

for some constant C1(τ), C2(τ) > 0 with 1
πC1(0.582) ≤ 2.53 and 1

πC2(0.582) ≤ 1.55.

In the proof of the above Lemma, we provide the upper bounds for C1(τ), C2(τ), which can
be computed. Although the estimates are equivalent for different τ , we choose τ according to
the weight g1 in the Hölder seminorm [ωψ1]C1/2

g1

. In practice, we choose τ = g1(0, 1)/g1(1, 0)

which is close to 0.582.
In general, the localized uy is not in C

1/2
y due to the presence of the boundary and the

discontinuity of W cross y = 0. Thus, we consider the estimate without localizing the kernel.

Lemma 3.5 ( C
1/2
y estimate of uy, vx ). For x = (x1, x2), z = (x1, z2) ∈ R

+
2 , D covering

(Qa(x) ∪Qa(z)) ∩ R
+
2 (3.4), and any τ > 0, we have

|vx(x,∞)− vx(z,∞)|
|x− z|1/2 ≤ C3(τ)

π
max([ω]

C
1/2
x (D)

, τ−1[ω]
C

1/2
y (D)

),

|uy(x,∞)− uy(z,∞)|
|x− z|1/2 ≤ C4(τ)

π
max([ω]

C
1/2
x (D)

, τ−1[ω]
C

1/2
y (D)

),

for some constant C3(τ), C4(τ) > 0. We have 1
πC3(0.582) ≤ 2.60, 1πC4(0.582) ≤ 2.61.

3.2. Connection to optimal transport and ideas of the proof. A key observation is that
the Hölder estimate is related to an optimal transport problem. We illustrate the ideas by
proving a sharp Hölder estimate of the Hilbert transform. The Hilbert transform can be seen
as an approximation of ux(ω), which is exact if ω(x, y) is constant in y [21, 65].

We estimate 1
|x−z|1/2 |Hf(x) −Hf(z)| by [f ]C1/2 . Due to translation and scaling symmetry,

we can assume x = 1, z = −1 without loss of generality. Then we need to estimate

(3.5) S = Hf(1)−Hf(−1) =
1

π

∫

R

(
1

1− y
+

1

1 + y
)f(y)dy =

2

π

∫

R

1

1− y2
f(y)dy.

The kernel k(y) = 2
1−y2 is positive on (−1, 1) and negative for |y| > 1, and satisfies

∫
k(y)dy = 0.
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Denote k±(y) = max(±k(y), 0). An estimate of S using [f ]C1/2 is equivalent to estimating the
transportation cost of moving the positive region of k(y) with measure k+(y)dy to its negative
region with measure k−(y)dy with distant function c(x, y) = |x− y|1/2.

For example, if k(y) = δ1(y)+δ2(y)−δ3(y)−δ4(y), where δa(x) is the Dirac function centered
at a, then we get

|
∫
k(y)f(y)dy| = |f(1)+f(2)−f(3)−f(4)| ≤ |f(2)−f(3)|+ |f(1)−f(4)| ≤ (

√
1+

√
3)||f ||C1/2 .

The above estimate can be interpreted as moving the mass from 2 to 3 and 1 to 4 with
cost function |x − y|1/2||f ||C1/2 . Using the language of optimal transport, to obtain sharp
estimate of S (3.5), we are seeking a measurable map T such that T#k+dy = k−dy, where
(T#µ)(A) = µ(T (A)) for a measurable set A, and the following cost

C(T ) =

∫

k(y)≥0

|T (y)− y|1/2k(y)dy||f ||C1/2

is as small as possible. Based on the above discussion, we have the following transportation
lemma, which will be used repeatedly in the Hölder estimate.

Lemma 3.6 (Transportation Lemma). Suppose that there exists c ∈ (a, b) such that f < 0 on

(a, c), f > 0 on (c, b), f |x− c|α ∈ L1
loc with

∫ b
a
f(x)dx = 0. For α ∈ (0, 1), g ∈ Cα(a, b), we have

∣∣∣
∫ b

a

f(x)g(x)dx
∣∣∣ ≤

∫ b

c

|f(x)||x − T (x)|αdx[g]Cα
x
=

∫ c

a

|f(x)||x− T (x)|αdx[g]Cα ,

where T (x) solves
∫ T (x)

x
f(s)ds = 0.

We use the fact that |h|α is concave for α ∈ (0, 1) to design the map T . In our later estimates
of ∇u, we will use the above Lemma with α = 1

2

Proof. Firstly, we want to understand how to construct the map T . Note that for x1 < x2 <
x3 < x4 and α ∈ (0, 1), we have

|
∫
(δx1 + δx2 − δx3 − δx4)g(x)dx| = |g(x1) + g(x2)− g(x3)− g(x4)|

≤min(|x1 − x3|α + |x2 − x4|α, |x1 − x4|α + |x2 − x3|α)[g]Cα
x

=(|x1 − x4|α + |x2 − x3|α)[g]Cα .

The above estimate indicates that to find an optimal map T moving (δx1+δx2)dx to (δx3+δx4)dx
with cost |x − y|α, we should choose T (x1) = x4, T (x2) = x3, which implies that T (x) is
decreasing in x. Due to conservation of mass and the sign properties of f , a natural construction
of T : (a, c) → (c, b) is given by

(3.6)

∫ T (x)

x

f(x)dx = 0,

for x < c, which implies T ′(x)f(T (x)) = f(x) for smooth f . The idea of the above map is to
move the mass in the positive region to its closest negative region that has not been occupied
due to the monotonicity of T . Using a change of variable y = T (x) : (a, c) → (c, b], we get

∫ b

c

f(x)g(x)dx = −
∫ c

a

f(T (x))g(T (x))T ′(x)dx = −
∫ c

a

f(x)g(T (x))dx.

It follows

|
∫ b

a

fg| = |
∫ c

a

f(x)(g(T (x))− g(x))dx| ≤
∫ c

a

|f(x)||T (x) − x|αdx[g]Cα
x
.

Similarly, we can define T : (c, b) → (a, c) by solving
∫ x
T (x)

f(s)ds = 0, which is also equivalent

to (3.6). The first inequality in Lemma 3.6 follows from the same argument. �
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3.2.1. C1/2 estimate of the Hilbert transform. We use the Hilbert transform as an example to
illustrate Lemma 3.6. We apply Lemma 3.6 with f = k(y), g = f(y) to estimate (3.5). For any
y > 0, we construct the transportation map T (y) by solving

0 =

∫ T (x)

x

k(y)dy =

∫ T (x)

x

1

1− y2
dy = 0,

which implies
x+ 1

1− x
=
T + 1

T − 1
, T (x) =

1

x
,

where we have used T (x) > 1 if x < 1 and T (x) < 1 if x > 1 due to the sign of 1
1−y2 . This map

also applies to y < 0. Applying this map to (3.5), we yield

(3.7)

|S| = | 2
π

∫

y>1

k(y)(f(y)− f(T (y)))dy +
2

π

∫

y<−1

k(y)(f(y)− f(T (y)))dy|

≤ 4

π

∫

y>1

|k(y)||y − T (y)|1/2dy[f ]C1/2 =
4

π

∫

y>1

1

|y2 − 1|
|y2 − 1|1/2

|y|1/2 dy[f ]C1/2

= [f ]C1/2

4

π

∫

y>1

1

|y2 − 1|1/2y1/2 dy = C[f ]C1/2 ,
C√
2
≈ 2.37.

Since x, z are arbitrary, we yield [Hf ]C1/2 ≤ C√
2
[f ]C1/2 . The equality achieves if |f(y) −

f( 1y )| = |y− 1
y |1/2[f ]C1/2 for all y > 0 and y < 0. Since the Hilbert transform satisfies H(Hf) =

−f , the sharp constant in [Hf ]C1/2 ≤ C∗[f ]C1/2 satisfies C∗ ≥ 1.
In the following subsections, we prove Lemmas 3.1, 3.3 for ux, which is the main nonlocal

term in (2.30). The proofs of Lemmas 3.4, 3.5 are similar but technical due to the presence of
boundary, which are deferred to Appendix B.

To apply Lemma 3.6 to the Hölder estimate of ∇u, we need two steps. Firstly, we identify
the sign of the kernel K in the integral of ∇u(x) − ∇u(z). Next, we fix a variable in the 2D
integral in one direction, e.g. fix x = a, and then apply Lemma 3.6 to estimate the 1D integral
in the other direction, e.g., on the line {(a, y) : y ∈ R}. One may generalize Lemma 3.6 to
2D and construct the 2D optimal transport map directly. Yet, the domain where the kernel K
is positive or negative is complicated. To avoid this difficulty, we build the 2D transport map
using the 1D Lemma 3.6 repeatedly. The odd symmetry of the kernel K1(s) in s1 enables us to
apply this approach to obtain sharp estimate of ux effectively. See Remark 3.7.

3.3. Estimate of [ux]C1/2
x

. In the C
1/2
x estimate of ux, we have x2 = z2. In the case without

localization of the kernel, using the scaling symmetry and translation invariance, we only need
to estimate the following

(3.8) ux(
1

2
, x2)− ux(−

1

2
, x2) = − 1

π
P.V.

∫

R2

K(s)W (s1, x2 − s2)ds

for any x2, where W is an odd extension of ω from R
+
2 to R2, and K(s) is given by

(3.9) K(s) = K1(s1 +
1

2
, s2)−K1(s1 −

1

2
, s2) =

(s1 +
1
2 )s2

((s1 +
1
2 )

2 + s22)
2
− (s1 − 1

2 )s2

((s1 − 1
2 )

2 + s22)
2
.

Since K(s) is odd in s2, we consider s2 ≥ 0 without loss of generality. We will only use
the Hölder seminorm of W , [W ]

C
1/2
x

, to estimate the above quantity. Note that [W ]
C

1/2
x (R2)

=

[ω]
C

1/2
x (R2

+)
. Without loss of generality, we can assume that x2 = 0.

A direct calculation yields

K(s) =
s2∆1(s1, s2)

((s1 +
1
2 )

2 + s22)
2((s1 − 1

2 )
2 + s22)

2
, ∆1 = s42 − 2s21s

2
2 − 3s41 +

1

2
s21 +

1

2
s22 +

1

16
.

For a fixed s2, ∆1(s1, s2) = 0 implies

(3.10) s1 = f(s2) =
( 1

2 − 2s22 +
√
16s42 + 4s22 + 1

6

)1/2

.
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Moreover, for s1, s2 ≥ 0, it is easy to see that ∆1(s1, s2) ≥ 0 if and only if

(3.11) K(s1, s2) ≥ 0 for s1 ∈ [0, f(s2)], K(s1, s2) ≤ 0 for s1 ≥ f(s2).

See Figure 4 for an illustration of sgn(K(s)).

Figure 4. The black curve illustrates s1 = f(s2) (3.10) (but does not agree
with the exact function), and ± indicates sgn(K(s)) in different regions. The
blue arrows indicate the direction of 1D transportation plan.

Note that the sign changes if s2 ≤ 0 since K is odd in s2. Since K1 is odd in s1, we get∫ ∞

0

K(s1, s2)ds1 =

∫ ∞

0

K1(s1 +
1

2
, s2)−K1(s1 −

1

2
, s2)ds1

=

∫ ∞

1/2

K1(s1, s2)ds1 −
∫ ∞

−1/2

K(s1, s2)ds1 = −
∫ 1/2

−1/2

K1(s1, s2)ds1 = 0.

To estimate the integral in (3.8), we first fix s2 and then apply Lemma 3.6 to estimate
(3.12)

I(s2) =

∫

R

K(s1, s2)W (s1, x2−s2)ds1 = (

∫

R−

+

∫

R+

)K(s1, s2)W (s1, x2−s2)ds1 , I−(s2)+I+(s2).

We do so for the following reason. Near the singularity, from Taylor expansion of (3.10):
s1 = 1

2 +O(s
4
2), the curve Γ = {s : s1 = f(s2)} is close to a straight line in the vertical direction.

See Figure 4 for an illustration. Similar to the idea below (3.6), an effective plan in 2D is to
move the mass in the positive region to its closest possible negative region that has not been
occupied. Thus, we expect that an effective 2D transport plan (x, y) → T (x, y) is orthogonal to
the curve Γ and thus almost parallel to the x direction.

Remark 3.7. The fact that near the singularity s = (± 1
2 , 0), the curve Γ is almost vertical is

due to the odd symmetry of K1(s1, s2) in s1. In fact, from (3.9), for s close to (12 , 0), we have

K(s) ≈ −K1(s1 − 1
2 , s2), whose sign is determined by sgn(s1 − 1

2 ).

Since K(s1, s2) is even in s1, we can estimate I+(s2), I−(s2) in the same way. To apply
Lemma 3.6, we first construct T (·, s2) on [0,∞) by solving

(3.13)

∫ s1

T (s1,s2)

K(t, s2)dt = 0.

We will show later that this equation has a unique solution of T on [0,∞] for s1 > 0. Then
applying Lemma 3.6 to I+(s2) and using [W ]

C
1/2
x

= [ω]
C

1/2
x

, we get

|I+(s2)| ≤ [ω]
C

1/2
x

∣∣∣
∫ ∞

f(s2)

K(s1, s2)|T (s1, s2)− s1|1/2ds1
∣∣∣ ,M(s2).

See the blue arrows in Figure 4 for an illustration of this transportation plan. Since K(s1, s2) is
even in s1, the estimate of I−(s2) in (3.12) is the same: I−(s2) ≤ M(s2). Since K(s) is odd in
s2, from (3.13), we get T (s1,−s2) = T (s1, s2). Therefore, the estimate of I(s1, s2) is the same
as I(s1,−s2): |I(s1, s2)| ≤ 2M(|s2|). Integrating the estimate of I(s) over s2, we yield
∣∣∣− 1

π
P.V.

∫

R2

K(s)W (s1, x2 − s2)ds
∣∣∣ ≤ 4

π
[ω]

C
1/2
x

∣∣∣
∫ ∞

0

ds2

∫ ∞

f(s2)

K(s1, s2)|T (s1, s2)− s1|1/2ds1
∣∣∣,

which along with (3.8) prove Lemma 3.1 in the case of a = b1 = b2 = ∞.
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3.3.1. Formula of T . From (3.9) and xy
(x2+y2)2 = − 1

2∂x
y

x2+y2 , equation (3.13) is equivalent to

s2

( 1

(T + 1
2 )

2 + s22
− 1

(T − 1
2 )

2 + s22

)
= s2

( 1

(s1 +
1
2 )

2 + s22
− 1

(s1 − 1
2 )

2 + s22

)

where we have simplified T (s1, s2) as T . For s2 6= 0, expanding the identity yields

(3.14) 0 = −1− 8Ts1 + 16Ts1(T
2 + Ts1 + s21)− 8s22(1− 4s1T + 2s22).

The above equation is cubic in T , and thus can be solved explicitly. In Appendix B.3, we
show that it has a unique real root and derive its solution formula.

Remark 3.8. In the special case where ω(x, y) is constant in y, we have ux(ω)(x, 0) = Hω(x),
which has been observed in [21, 65]. Thus, the optimal constant in Lemma 3.1 must be larger
than that of the Hilbert transform (3.7). Here, we can obtain upper bound C1(b) ≤ 2.55, which

is very close to that of the Hilbert transform C/
√
2 ≈ 2.37 (3.7), which reflects the effectiveness

of applying 1D transport maps to construct the 2D transport map in this setting.

3.3.2. Localized estimate of ux. Next, we estimate ux(x, a, b1, b2) − ux(z, a, b1, b2) with x2 = z2
using [W ]

C
1/2
x

. The estimate consists of following steps. Firstly, we identify the sign of the kernel

similar to those between (3.8) and (3.10). Secondly, we construct the transportation map along
the x direction and derive the transportation cost. Thirdly, we compare the transportation cost
in the case with kernel localization and the case without kernel localization using the properties
of the transportation maps, and show that the cost with kernel localization is smaller.

Without loss of generality, we assume x1 = 1
2 , z1 = − 1

2 , x2 = 0. Denote

Ia , [−a, a], Ib = [−b1, b2], Q , Ia × Ib, b = max(b1, b2),

Since we assume a ≥ 1
2 |x1 − z1| in Lemma 3.1, we have

(3.15) a ≥ 1/2.

The kernel associated with ux(
1
2 , x2)− ux(− 1

2 , x2) (3.4) becomes

(3.16)

Ka,b(s1, s2) =1s2∈Ib

( (s1 +
1
2 )s2

((s1 +
1
2 )

2 + s22)
2
1s1+ 1

2∈Ia − (s1 − 1
2 )s2

((s1 − 1
2 )

2 + s22)
2
1s1− 1

2∈Ia

)

=((K1(s1 + 1/2, s2)−K1(s1 − 1/2, s2))1s+1/2∈Q

−K1(s1 − 1/2, s2)(1s−1/2∈Q − 1s+1/2∈Q)).

Since a ≥ 1
2 and K1(s) is odd in s1, for fixed s2, we have

∫ ∞

0

Ka,b(s1, s2)ds1 = (

∫ a

1/2

−
∫ a

−1/2

)K1(s)ds1 = −
∫ 1/2

−1/2

K1(s)ds1 = 0,

∫ 0

−∞
Ka,b(s1, s2)ds1 = 0.

Similar to the case without localization, for each s2, we consider the transportation from the
positive part of Ka,b to its negative part. Firstly, we identify the sign of Ka,b. We restrict to
s2 ∈ [−b1, b2] and s2 6= 0 since otherwise Ka,b = 0. We focus on s1, s2 ≥ 0 and the estimate for
s1 < 0 or s2 < 0 is the same. Since a > 1

2 , we always have

(3.17) s1 ± 1/2 > −a, for s1 ≥ 0.

Thus, for s1 ≥ 0, we can neglect the constraint s1 ± 1
2 ≥ −a in the localization in (3.16).

Case 1: a ∈ (1/2, 1]. Clearly, Ka,b(s1, s2) > 0 for s1 < 1
2 since both kernels in (3.16) are

non-negative. For s1 ≥ 1
2 , since a ≤ 1, we get

Ka,b(s1, s2) = −K1(s1 −
1

2
, s2)1s−1/2∈Q ≤ 0.

In this case, we denote sc(s2) =
1
2 .
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Case 2: a ∈ (1, f(s2) +
1
2 ). Recall f(s2) from (3.10). For s1 > a− 1

2 >
1
2 , we get

Ka,b = −K1(s1 −
1

2
, s2)1s−1/2∈Q ≤ 0.

For s1 ≤ a− 1
2 < f(s2), using (3.11) and s1 +

1
2 ≤ a, we obtain

Ka,b = K1(s1 +
1

2
, s2)−K1(s1 −

1

2
, s2) ≥ 0.

We denote sc(s2) = a− 1
2 .

Case 3: a ≥ f(s2) +
1
2 . For s1 < f(s2), using (3.11) and s1 ± 1

2 < a, we get

Ka,b = K1(s1 +
1

2
, s2)−K1(s1 −

1

2
, s2) ≥ 0.

For s1 ≥ f(s2) >
1
2 , since K1(s1 +

1
2 , s2)−K1(s1 − 1

2 , s2) ≤ 0 (3.11) and

1s−1/2∈Q − 1s+1/2∈Q = 1s1−1/2≤a − 1s+1/2≤a ≥ 0,

we get

Ka,b ≤ −K1(s1 − 1/2, s2)(1s−1/2∈Q − 1s+1/2∈Q)) ≤ 0.

We denote sc(s2) = f(s2). In summary, for fixed s2, we define

(3.18)
sc(s2) =

1

2
, if a ∈ (

1

2
, 1], sc(s2) = a− 1

2
, if a ∈ (1, f(s2) +

1

2
),

sc(s2) = f(s2), if a ≥ f(s2) + 1/2,

which satisfies

(3.19) Ka,b(s1, s2) ≥ 0, s1 ∈ [0, sc], Ka,b(s1, s2) ≤ 0, s1 ∈ [sc,∞], sc(s2) ≤ f(s2),

where the last inequality follows from the definition of sc and f(s2) ≥ 1
2 (3.10).

In each case i = 1, 2, 3, we construct the transport map by solving

(3.20)

∫ s1

Ti(s1,s2)

Ka,b(x, s2)dx = 0, Ti ≤ a+
1

2
.

We add the restriction Ti ≤ a + 1
2 since Ka,b(s) = 0 for s1 > a + 1

2 by definition (3.16).
Applying Lemma 3.6 in the s1 direction and using Ka,b(s) = 0 for |s2| ≥ b, we yield

Ii ,
∣∣∣
∫

s1≥0,s2≥0

Ka,b(s1, s2)ω(s1,−s2)ds
∣∣∣ ≤

∫ b

0

∫ sc(s2)

0

|Ka,b(s)||Ti(s)− s1|1/2ds · [ω]C1/2
x
.

3.3.3. Comparison of the cost. Next, we show that the cost can be bounded uniformly by the
cost of the case without localization

(3.21) Ii ≤
∫ b

0

∫ ∞

f(s2)

|K(s)||T (s)− s1|1/2ds · [ω]C1/2
x
,

where T is defined in (3.13). It suffices to prove

(3.22) Ji ,

∫ sc(s2)

0

|Ka,b(s)||Ti(s)− s1|1/2ds ≤
∫ f(s2)

0

|K(s)||T (s)− s1|1/2ds

for any s2. We focus on |s2| ≤ a and s2 6= 0. The intuition behind the above inequality is
that if the mass is localized, we should get “cheaper” transportation cost than the case without
localization since the transportation distance is shorter. To justify these heuristics, we compare
the kernels and will prove

(3.23) |Ka,b(s)| ≤ |K(s)|, s1 ∈ [0, sc(s2)],

and use (3.13) and (3.20) to compare Ti and T

(3.24) s1 ≤ sc(s2) ≤ Ti(s) ≤ T (s), s1 ∈ [0, sc(s2)]

and thus Ti(s)− s1 ≤ T (s)− s1. Clearly, inequality (3.22) follows from (3.23) and (3.24).
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Compare the kernels. From (3.19) and (3.11), since sc(s2) ≤ f(s2), we get Ka,b(s),K(s) ≥ 0
for s1 ∈ [0, sc(s2)]. Hence, for fixed s2 ∈ [−b1, b2], (3.23) is equivalent to

0 ≤ K(s)−Ka,b(s) = K1(s1 +
1

2
, s2)(1 − 1s1+1/2∈Ia)−K1(s1 −

1

2
, s2)(1− 1s1−1/2∈Ia) , I.

From the definition of (3.18) and (3.17), for s1 ∈ [0, sc(s2)], we have

s1 ± 1/2 ≥ −a, s1 − 1/2 ≤ a, 1− 1s1−1/2∈Ia = 0,

which along with K1(s1 +
1
2 , s2) ≥ 0 (3.16) implies (3.23)

I = K1(s1 +
1

2
, s2)(1− 1s1+1/2∈Ia) ≥ 0.

Remark 3.9. In the above derivations, we consider s2 ≥ 0. If s2 ≤ 0, one needs to track the sign
to prove inequality (3.23).

Compare the maps. To prove (3.24), our idea is to use the equations (3.13), (3.20) and the
sign of the kernels Ka,b,K to compare Ti and T .

We fix s2 > 0 in the following derivations. To simplify the notation, we simplify T (s1, s2)
as T (s1) in some places. Since Ti, T (3.13), (3.20) are decreasing and sc(s2) is a fixed point for
Ti(·, s2), for s1 ≤ sc(s2), we get

(3.25) Ti(s1, s2) ≥ Ti(sc(s2), s2) = sc(s2), T (s1, s2) ≥ T (f(s2), s2) = f(s2) ≥ sc(s2).

Moreover, from (3.13), (3.20), we have

(3.26) Ti(Ti(s1)) = s1, T (T (s1)) = s1.

Denote

(3.27) K± = K(s1±
1

2
, s2), K+

a,b = K1(s1+
1

2
, s2)1s1+ 1

2≤a, K−
a,b = K1(s1−

1

2
, s2)1s1− 1

2≤a.

We remark that K− is not non-negative but K+ is positive. By definition, we have

(3.28)
Ka,b = K+

a,b −K−
a,b, K = K+ −K−.

K+(s) ≥ 0, s1, s2 ≥ 0, K−(s) ≥ 0, s1 ≥ 1/2, s2 ≥ 0.

Next, we study each case in the order of 3, 2, 1 to prove (3.24).
Case 3: a ≥ f(s2) +

1
2 . In this case, recall sc(s2) = f(s2) from (3.18).

For s1 ≤ a− 1
2 , we get Ka,b = K (3.16). Hence, equations (3.13) and (3.20) are the same for

s1 ≤ a− 1/2, and we get

(3.29) T3(s1, s2) = T (s1, s2), s1 ∈ [T (a− 1

2
), a− 1

2
].

It follows (3.24) for s1 ∈ [T (a− 1/2), f(s2)]. We recall that from (3.25), a− 1/2 ≥ f(s2) and
T (a− 1/2) = T3(a− 1/2), we have

(3.30) T (a− 1/2) ≤ T (f(s2)) = f(s2) ≤ a− 1/2, T (s1), T3(s1) ≥ a− 1/2, s1 ≤ T (a− 1/2).

Next, we compare T (s1), T3(s1) for s1 < T (a− 1/2) ≤ f(s2). From (3.13),(3.20), and T (a−
1/2) = T3(a− 1/2) ≤ a− 1/2, we have

∫ a−1/2

T (a−1/2)

K(s)ds1 =

∫ a−1/2

T3(a−1/2)

Ka,b(s)ds1 =

∫ a−1/2

T (a−1/2)

Ka,b(s)ds1 = 0.

Moreover, from (3.16) and (3.20), we have

Ka,b(t, s2) = −K−
a,b(t, s2) = −K−(t, s2), t ∈ [a− 1/2, T3(s1)] ⊂ [1− 1/2, a+ 1/2],

Ka,b(t, s2) = K(t, s2), t ≤ T (a− 1/2) ≤ a− 1/2.
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Plugging the above identities in (3.13), (3.20) for s1 ≤ T (a− 1/2), we yield

0 =

∫ T (s1)

s1

K(t, s2)dt =

∫ T (a−1/2)

s1

K(t, s2) +

∫ T

a−1/2

K(t, s2)dt,

0 =

∫ T3(s1)

s1

Ka,b(t, s2)dt =

∫ T (a−1/2)

s1

K(t, s2)−
∫ T3(s1)

a−1/2

K−(t, s2)dt.

Note that K = K+ −K−. Calculating the difference between the two identities yields

0 =

∫ T (s1)

a−1/2

(K+ −K−)ds+

∫ T3(s1)

a−1/2

K− =

∫ T (s1)

a−1/2

K+ds1 +

∫ T3(s1)

T (s1)

K−ds1.

Recall s2 6= 0 and from (3.30), we obtain T3(s1), T (s1) ≥ a − 1/2 ≥ 1/2. From (3.28), we
yield K+ > 0 and K− > 0 for s1 ≥ min(a− 1/2, T3, T ). Since T is decreasing and

T (s1) ≥ T (T (a− 1/2)) = a− 1/2, s1 ≤ T (a− 1/2),

the first integral is non-negative. We prove T (s1) ≥ T3(s1) for s1 ≤ T (a − 1/2), which along
with (3.29) implies (3.24).

The proof in the case 1,2 is completely similar.

Case 2: a ∈ (1, f(s2) +
1
2 ). Recall sc(s2) = a − 1

2 ≤ f(s2) from (3.18) and (3.25). For any

s1 ≤ a− 1
2 ≤ f(s2), using (3.13), (3.20), and an argument similar to that in case 3, we yield

0 =

∫ T2(s1)

s1

Ka,b(t, s2)dt =

∫ a−1/2

s1

K(t, s2)dt−
∫ T2(s1)

a−1/2

K−(t, s2)dt,

0 =

∫ T (s1)

s1

K(t, s2)dt =

∫ a−1/2

s1

K(t, s2)dt+

∫ T (s1)

a−1/2

(K+ −K−)(t, s2)dt,

where we have used Ka,b(t, s2) = −K−(t, s2) for t ≥ a−1/2 (3.16), (3.27) in the second equality.
Comparing the difference between two identities yields

0 =

∫ T (s1)

a−1/2

K+−K−(t, s2)dt+

∫ T2(s1)

a−1/2

K−(t, s2)dt =

∫ T (s1)

a−1/2

K+(t, s2)dt+

∫ T2(s1)

T (s1)

K−(t, s2)dt.

Recall from (3.25) that T (s1), T2(s1) ≥ sc(s2) = a − 1/2 for s1 ≤ a − 1/2. For s2 6= 0
and s1 ≥ min(T, T2, a − 1/2) = a − 1/2 > 1/2, we have K− > 0,K+ > 0 (3.28). We obtain
T (s1) ≥ T2(s1), which implies (3.24).

Case 1: a ∈ (1/2, 1]. In this case, sc(s2) =
1
2 < f(s2). From (3.16), we yield

0 ≤ Ka,b = 1s1+1/2≤aK1(s1 + 1/2, s2)−K1(s1 − 1/2, s2)

≤ K1(s1 + 1/2, s2)−K1(s1 − 1/2, s2) = K, s1 ∈ [0, 1/2],

Ka,b = −K1(s1 − 1/2, s2) = −K−(s1, s2), K−(s1, s2) ≥ 0, s1 ∈ [1/2, a+ 1/2].

For any s1 <
1
2 and s2 6= 0, from (3.25), we get T1(s1) ≥ 1/2, T (s1) ≥ f(s2) > 1/2. Using

(3.13), (3.20) and the above estimates for Ka,b, we yield

0 =

∫ 1/2

s1

Ka,b(t, s2)dt−
∫ T1(s1)

1/2

K−(t, s2)dt =

∫ 1/2

s1

K(t, s2)dt+

∫ T

1/2

(K+ −K−)(t, s2)dt.

It follows

0 =

∫ 1/2

s1

(K −Ka,b)(t, s2)dt+

∫ T

1/2

K+ +

∫ T1

T

K−(t, s2)dt , II1 + II2 + II3 .

From (3.23) and Ka,b,K > 0 on t ∈ [0, sc(s2)] = [0, 1/2], we get II1 ≥ 0. Note that
K−,K+ > 0 for s1 > 1/2 (3.11), (3.19). Since T1, T > 1/2, we must obtain T (s1) ≥ T1(s1),
which implies (3.24).

We have proved (3.24) in all three cases, which implies |T (s)− s1| ≥ |Ti(s)− s1|. Combining
this estimate and (3.23), we prove (3.21) and conclude the proof of Lemma 3.1.
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3.4. Estimate of [ux]C1/2
y

. Recall from Lemma 3.3 that b1 = b2 = b and x1 = z1 in this case.

Without loss of generality, we assume z2 = m + 1/2, x2 = m − 1/2 and x1 = y1 = 0 for some
m ≥ 1/2. We have

ux(z)− ux(x) =
1

π

∫

R2

W (y)
(
Ka,b(y1, y2 − (m− 1/2))−Ka,b(y1, y2 − (m+ 1/2))

)
dy,

where W is the odd extension of ω in R2 (3.3). Note that W is not Hölder in the y-direction

near y2 = 0, we cannot use the same method as that in the estimate of [ux]
1/2
Cx

. On the other

hand, since W ∈ C
1/2
y (R× [m,∞)), we can apply the previous method to obtain

∣∣∣ 1
π

∫

y2≥m
W (y)(Ka,b(y1, y2 − (m− 1/2))−Ka,b(y1, y2 − (m+ 1/2))dy)

∣∣∣ ≤ 1

2
C1(a)||ω||C1/2

y
.

Rotating the coordinate by 90 degree, we obtain the case studied in Section 3.3.
It remains to estimate

I(b) =
1

π

∫

y2≤m
W (y)(Ka,b(y1, y2 − (m− 1/2))−Ka,b(y1, y2 − (m+ 1/2))dy)

=
1

π

∫

y2≤0

W (y1, y2 +m)(Ka,b(y1, y2 + 1/2)−Ka,b(y1, y2 − 1/2)dy).

Since W is not Hölder continuous across y = 0, we use [W ]
C

1/2
x

to control I. Our idea is to

compare the integral I(b) with the case b = ∞, I(∞). To do so, we need a monotonicity Lemma.

Lemma 3.10. Suppose f, fg ∈ L1 and g ≥ 0 is monotone increasing on [0,∞]. For any
0 ≤ k ≤ b ≤ c, we have

∫ b+k

b−k
|f(x− k)|g(x)dx ≤

∫ c−k

b−k
|f(x− k)− f(x+ k)|g(x)dx +

∫ c+k

c−k
|f(x− k)|g(x)dx.

Proof. Denote by R,L the right and the left hand side of the above inequality, respectively. We
have

R− L ≥
∫ c−k

b−k

(
|f(x− k)| − |f(x+ k)|

)
g(x)dx +

∫ c+k

c−k
|f(x− k)|g(x)dx −

∫ b+k

b−k
|f(x− k)|g(x)dx

=

∫ c+k

b+k

|f(x− k)|g(x)dx−
∫ c−k

b−k
|f(x+ k)|g(x)dx =

∫ c

b

|f(x)|(g(x + k)− g(x− k))dx.

Since g is increasing on [0,∞), we prove R ≥ L. �
Now, we are in a position to estimate I. Since Ka,b(y1, y2) is odd in y1, we yield

|I| ≤ 1

π

∫

y2≤0,y1≥0

√
2y1

∣∣∣Ka,b(y1, y2 + 1/2)−Ka,b(y1, y2 − 1/2)
∣∣∣dy · [ω]C1/2

x
.

For a fixed y1 with |y1| ≤ a and b ≥ 1/2, using the definition of Ka,b (3.4), the odd symmetry
Ka,b(y1, y2 + 1/2)−Ka,b(y1, y2 − 1/2 in y2, and Lemma 3.10 with k = 1/2 and c = ∞, we get

∫

y2≤0

|Ka,b(y1, y2 + 1/2)−Ka,b(y1, y2 − 1/2)|dy2

=

∫

y2≥0

|Ka,b(y1, y2 + 1/2)−Ka,b(y1, y2 − 1/2)|dy2

=

∫ b−1/2

0

|K1(y1, y2 + 1/2)−K1(y1, y2 − 1/2)|dy2 +
∫ b+1/2

b−1/2

|K1(y1, y2 − 1/2)|dy2

≤
∫ ∞

0

|K1(y1, y2 + 1/2)−K1(y1, y2 − 1/2)|dy2.

Since Ka,b(y) = 0 for |y1| ≥ a, integrating the above inequality in y1 from 0 to a, we prove

|I| ≤ 1

π

∫ a

0

∫ ∞

0

√
2y1|K1(y1, y2 + 1/2)−K1(y1, y2 − 1/2)|dy · [ω]

C
1/2
x
.
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4. L∞-based finite rank perturbation

In this Section, we provide further details how we decompose the linearized operator into a
leading order operator L0 plus the finite rank perturbation operator K. We then discuss how to
perform the L∞-based finite rank perturbation to the linearized equations introduced in (2.25),
and then apply it to estimate the more regular nonlocal terms in (2.25), (2.28).

4.1. A toy model with a nonlocal term. We use a model problem to illustrate the ideas of
stability analysis of a linearized equation perturbed from a simpler linearized equation. Consider

(4.1) ft = L0f + a(x)P (f) , Lf, P (f) =

∫

R
++
2

fgdx,

in R
++
2 , where a, g are some given time-independent functions. Operator L0 models the local

terms in (2.25), (2.28), and the rank-one operator a(x)P (f) models the nonlocal terms. We
assume that L0 is linearly stable in L∞(ϕ) with some singular weight ϕ, which can be studied
following Section 2.7, and a(x) ∈ L∞(ϕ). We want to understand the long time behavior and
the stability of the above model using the information of L0.

A natural attempt is to use Duhamel’s principle and the semi-group eL0t to represent the
solution to (4.1). However, a(x) is not small and a(x)P (f) cannot be treated as a small per-
turbation. Another attempt is to project f onto some space Y orthogonal to g(x) or a(x) so
that the nonlocal term is 0 in Y . However, the projection is not compatible with our L∞-based
estimates.

4.1.1. Rank-one perturbation. Following the ideas in Section 1.1, we decompose (4.1) as follows

(4.2)
∂tf1(t) = L0f1, f1(0) = f0,

∂tf2(t) = Lf2 + a(x)P (f1(t)), f2(0) = 0,

for initial data f0, and then represent f2 using Duhamel’s principle

(4.3) f2(t) =

∫ t

0

P (f1(s))e
L(t−s)a(x)ds.

If eLta(x) decays in L∞(ϕ) for large t, we can establish L∞(ϕ) stability estimate of L.
Note that by choosing zero initial data for f2 and using the fact that P (f1(s)) is independent

of space, we can solve f2 for an arbitrary forcing coefficient P (f1(s)).
Similar idea appears in the T (1) [30], T (b) [31, 70] theorems in harmonic analysis. Roughly,

it states that for a linear operator T associated with a standard kernel K, proving the L2

boundedness of T reduces to proving T (1) or T (b) ∈ BMO. Here, using energy estimate
to establish the stability of L0 (4.1) is similar to extracting certain properties of T from a
standard kernel. Testing the decay of eLta from some initial data a to obtain its stability is
similar to testing T on 1 or b to obtain the L2 boundedness of T . Our idea also relates to the
Sherman-Morrison formula [84] which connects the invertibility of A ∈ Rn×n and its rank-one
perturbation.

4.1.2. Decay of eLta and constructing approximate solution to f2. Though the operator L and
a(x) (4.1) are given, it is difficult to prove decay of eLta in the weighted norm analytically since
L is nonlocal. The operator L for the Boussinesq system (2.25) is even more complicated.

An alternative approach is to solve (4.1) numerically from initial data a(x) to obtain an
approximate solution ĝ(t, x). Then by showing the error eLta− ĝ(t, x) is small and verifying the
decay of ĝ(t), we obtain the decay estimates of eLta. The difficulty lies in estimating the error
in the weighted norm rigorously. Standard a-priori error estimate provides a bound

|eLta(x) − ĝ(t, x)| ≤ C1(h
m + kn)eC2t,

for some constants C1, C2 depending on a(x) and L, where h is the mesh size, k is the time step
in the computation, and m,n relate to the order of the numerical scheme. However, C1, C2 are
not easy to estimate and can be quite large, and t is not small since we want to obtain decay
estimates of eLta for suitably large t, e.g., t ≥ 10. Thus, the factor eC2t can be very large, and
the above estimate is not practical.
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Instead, we seek a-posteriori error estimate. Firstly, we solve (4.1) numerically and obtain a
numerical solution ĝ(tk, x) at time tk, which is represented by piecewise polynomials and thus
defined globally in x. Then we interpolate the solution ĝ(tk, x) in time t using piecewise cubic
polynomials to obtain solution ĝ(t, x) defined on [0, T ] × R

+
2 . We introduce the residual error

and a residual operator R related to the nonlocal term P (f1(t)) in (4.2)

(4.4)

e(t, x) , (∂t − L)ĝ, e0(x) = ĝ(0)− g0, g0 = a(x)

R(f1, t) = P (f1(t))e0(x) +

∫ t

0

P (f1(s))e(t− s, x)ds.

Since ĝ is defined everywhere in space and time, we can estimate e(t, x) and e0(x). Using the
approximate solution ĝ(t, x) for eLtg0, we construct the approximate solution to f2 (4.3)

(4.5) f̂2(t) =

∫ t

0

P (f1(s))ĝ(t− s)ds.

By definition and (4.4), we have

(∂t − L)f̂2 = P (f1(t))ĝ(0) +

∫ t

0

P (f1(s))(∂t − L)ĝ(t− s)ds

= P (f1(t))(a(x) + e0) +

∫ t

0

P (f1(s))e(t − s, x)ds = P (f1(t))a(x) +R(f1, t).

If the error e(t, x) and e0 are small, we can show that the norm of the residual operator is
small in some suitable functional space

(4.6) ||R(f1, t)||X ≤ ε||f1||X , ε << 1.

Now, we modify the decomposition (4.2) as follows (f = f1 + f̂2)

(4.7)
∂tf1 = L0f1 −R(f1, t), f1(0) = f0,

∂tf̂2 = Lf̂2 + a(x)P (f1(t)) +R(f1, t).

We remark that the solution (4.5) constructed by the numerical solution ĝ solves the second
equation exactly. Now, due to the smallness (4.6), we can apply the stability estimate of L0 and
treat R(f1, t) as perturbation to obtain stability estimate of f1.

Remark 4.1. Using the decomposition (4.2),(4.7), constructing an approximating solution ĝ to
eLta(x), and testing its decay, we replace a difficult nonlocal term in the original problem (4.1)
by a small error term R(f1, t) in (4.7) that can be treated as a small perturbation. Moreover,
we do not need to assume any specific form about the rank-one operator a(x)P (f1(t)).

4.2. Finite rank perturbations to the linearized operators. We generalize the idea in the
previous subsection to the Boussinesq equations. We modify the operator L in (2.25), (2.28) by
a finite rank operator K with rank N by testing L on N suitable functions. Then we perform
linear stability analysis on L − K, which serves as the role of stability estimate of L0 in the
model problem in Section 4.1. These finite rank operators approximate the contributions from
the more regular terms in (2.25), (2.28), e.g., u · ∇ω̄,u · ∇θ̄x, which we neglect in Section 2.8
and can be seen as compact operators of ω in some suitable weighted spaces.

Since we will perform weighted estimates with singular weights near x = 0, we rewrite
(2.25),(2.28) such that each term has the right vanishing order. We introduce the following
notations [17, 20]

(4.8) ũ = u− ux(0)x, ṽ , v − vy(0)y = v + ux(0)y.

Since ωx(0) = 0 (2.29), ωx(0) = −∆φx(0), φ(x, 0) = 0, and φ is odd in x, we yield

φ = O(|x|4), ũ = O(|x|3), ṽ = O(|x|3), ∇ũ = O(|x|2),
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for perturbations regular enough. Recall cω = ux(0) (2.26). Using ũx = ux − ux(0), ũy =
uy, ṽx = vx, ṽy = vy + ux(0),

−u · ∇ω̄ + cωω̄ = −ũ · ∇ω̄ + cω(ω̄ − xω̄x + yω̄y),

−u · ∇θ̄x − ux · θ̄ + 2cωθ̄x = −ũ · ∇θ̄x − ũx · ∇θ̄ + cω(θ̄x − xθ̄xx + yθ̄xy),

−u · ∇θ̄y − uy · ∇θ̄ + 2cωθ̄y = −ũ · ∇θ̄y − ũy · ∇θ̄ + cω(θ̄y − xθ̄xy + yθ̄yy),

and denoting

(4.9) f̄cω,1 = ω̄ − xω̄x + yω̄y, f̄cω,2 = θ̄x − xθ̄xx + yθ̄xy, f̄cω,3 = 3θ̄y − xθ̄xy + yθ̄yy,

we can rewrite (2.25), (2.28) as follows

(4.10)

∂tω = −(c̄lx+ ū) · ∇ω + c̄ωω + η − ũ · ∇ω̄ + cω f̄cω,1 +N1 + F1 , L1 +N1 + F1,

∂tη = −(c̄lx+ ū) · ∇η + (2c̄ω − ūx)η − v̄xξ − ũx · ∇θ̄ − ũ · ∇θ̄x + cω f̄cω,2

+ ∂x(Nθ + F̄θ) , L2 +N2 + F2,

∂tξ = −(c̄lx+ ū) · ∇ξ + (2c̄ω + ūx)ξ − ūyη − ũy · ∇θ̄ − ũ · ∇θ̄y + cω f̄cω,3

+ ∂y(Nθ + F̄θ) , L3 +N3 + F3.

The nonlocal terms cω f̄cω,i, −ũ · ∇f for f = ω̄, θ̄x, θ̄y, and ∇ũR, the nonsingular part of the
integral, are more regular than ω. We will choose finite rank operators to approximate them.

4.2.1. Correction near the origin. We discuss in Section 2.7.3 that to obtain better stability
factors, we choose more singular weights for the stability analysis. We consider the following
corrections

(4.11)

K1i(ω) , cω(ω)f̄cω,i,

NF1(ω, η, ξ) = (cωωxy(0) + ∂xyF1(0))fχ,1, fχ,1 , ∆(xy3χNF /6),

NF2(ω, η, ξ) = (cωηxy(0) + ∂xyF2(0))fχ,2, fχ,2 , xyχNF ,

NF3(ω, η, ξ) = (cωξxx(0) + ∂xxF3(0))fχ,3, fχ,3 ,
x2

2
χNF ,

where χNF is some cutoff function with χNF = 1 + O(|x|4) near x = 0 constructed in (C.9).
The form of fχ,1 allows us to get u(fχ,1) = ∇⊥(−∆)−1(fχ,1) analytically, and we have fχ,1 =
xy + h.o.t. The operator K1i is a correction to the linear part, and NFi is a correction to the
nonlinear term and the residual in (4.10), respectively. After subtracting K1i and NFi from
(4.10), the resulting equations preserve the vanishing conditions ω, η, ξ = O(|x|3).

We can derive the ODE for ωxy(0), θxxy(0) using (2.10)

(4.12)

d

dt
ωxy(0) = (−2cl + cω)ωxy(0)− ω2

x(0) + θxxy(0),

d

dt
θxxy(0) = (−2cl + 2cω − ux(0))θxxy(0)− 2ωx(0)θxx(0).

Since ωx(0), θxx(0) are preserved (2.12), to estimate ωxy(0), θxxy(0), using (4.12), we only need
to control cl, cω, ux(0) rather than some higher order norm of ω, θ, e.g. ||ω||C2 , ||θ||C3 .

4.2.2. Approximation of the velocity. For f = u, v, ux, uy, vx, vy, we will construct in (4.38),

(4.29), (4.37) in Section 4.3 the finite rank approximations
ˆ̂
f for f̃ so that we get smaller

constants C in the weighted estimate of f̃ − ˆ̃f using the energy ||ωϕ||L∞ , ||ωψ1||C1/2
x
, ||ωψ1||C1/2

y
.

We remark that for these operators, we do not have

∂ix∂
j
yû = ̂∂ix∂

j
yu, ∂ix∂

j
y v̂ = ̂∂ix∂

j
yv,

for i+ j = 1. These approximations contribute to the following finite rank operators

(4.13) K21 = − ˆ̃u · ∇ω̄, K22 = − ˆ̃ux · ∇θ̄ − ˆ̃u · ∇̄θx, K23 = − ˆ̃uy · ∇θ̄ − ˆ̃u · ∇θ̄y,
which are designed to capture the contributions from the regular nonlocal terms.
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4.2.3. Decomposition of the system. Denote W1 = (ω1, η1, ξ1),W2 = (ω2, η2, ξ2). Recall the
notations (2.18) and (2.19). Following Section 4.1 and (4.2), we decompose (4.10) as follows

(4.14)

∂tW1,i = (Li −K1i −K2i)W1 +Ni(W1 +W2) + F i −NF (W1 +W2),

∂tW2,i = LiW2 +K1i(W1) +K2i(W1) +NFi(W1 +W2),

W1|t=0 = (ω0, η0, ξ0), W2|t=0 = (0, 0, 0),

with ω0, η0, ξ0 being the initial perturbation with vanishing order O(|x|3). We have

∂t(W1 +W2) = Li(W1 +W2) +Ni(W1 +W2) + F i,

which are the same equations as (4.10). Since W1 +W2 has initial data (ω0, η0, ξ0), W1 +W2

solves (4.10) with the given initial data. Using the definitions (4.11) and a Taylor expansion
near x = 0, we obtain that the vanishing conditions ω1, η1, ξ1 = O(|x|3) are preserved.

Remark 4.2. Although W1,2 + W2,2 = θx,W1,3 + W2,3 = θy, since the finite rank operators
Kij we choose do not satisfy similar partial derivative relations, the solution to (4.14) does not
satisfy ∂yWi,2 = ∂xWi,3 for i = 1 or i = 2.

Let us motivate the decomposition (4.14). At the linear level, we choose finite rank operators
K1i,K2i to approximate Li. Then Li −K1i − K2i,Li serve as the L0,L operators in the model
problem (4.1), respectively. The decomposition of the solutionsW1,W2 is similar to (4.2). Since
we want to perform energy estimate onW1 using more singular weights, we correct the nonlinear
terms and the forcing terms in the first equation in (4.14). Although NFi(W1 +W2) involves
nonlinear factors, e.g. cω(ω1 + ω2)∂xy(ω1 + ω2)(0), since these factors are constant in space, we
can still apply Duhamel’s formula in (4.3) to NFi(W1 +W2), i.e.,

∫ t

0

eL(t−s)
(
cω∂xy(ω1(s) + ω2(s))(0)f̄

)
ds =

∫ t

0

cω∂xy(ω1(s) + ω2(s))(0)e
L(t−s)f̄ds,

and obtain the formula of W2 in (4.14).

Avoiding the loss of derivatives. Note that in the equation of W1 in (4.14), it contains the
nonlinear terms u(W1 +W2) · ∇(W1 +W2). In general, the term u · ∇W2 can lead to loss of
derivatives. Note that W2 in (4.14) is driven by the forcing terms of the following forms

(4.15)
∑

1≤i≤N
ai(W1,W2)(t)fi

for some N , time-dependent scalars (independent of x) ai(W1,W2)(t), and time-independent
functions fi, e.g. cω(W1)f̄cω,i in (4.11). By choosing smoother fi in the approximation, we can
obtain solution W2 smooth enough for our energy estimates and overcome the above difficulty.

4.2.4. Constructing the approximate solution of W2 and modifying the decomposition. Following
the ideas in Section 4.1.2, instead of solving the W2 equations in (4.14) exactly, we solve them
with an error term. Assume that we have the following representations for the operators

(4.16) ~K1j(W1) + ~K2j(W1) =
∑

1≤i≤n1

ai(W1)(t)F ij ,

where ~Ki· = (Ki1,Ki2,Ki3), F̄i(x) = (f̄i,1(x), f̄i,2(x), f̄i,3(x)) : R
2
+ → R × R× R, and ai(W1)(t)

is some linear functional on W1. For example, the formula (4.11) can be written as

a(W1)(t)(f̄cω ,1, f̄cω,2, f̄cω,3), a(W1)(t) = cω(W1) = ux(W1(t))(0),

where we have used (2.26) for cω. Recall the operators NFi and functions fχ,1 from (4.11).
Writing (4.11) as vectors, we have

(4.17)

NF (ω) = (cω∂xyω(0) + ∂xyF1(0))(fχ,1, 0, 0) + (cω∂xyη(0) + ∂xyF2(0))(0, fχ,2, 0)

+ (cω∂xxξ(0) + ∂xxF3(0))(0, 0, fχ,3) ,
∑

1≤i≤3

anl,i(W (t))Fχ,i,
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where
(4.18)
anl,· = (cω∂xyω(0) + ∂xyF1(0), cω∂xyη(0) + ∂xyF2(0), cω∂xxξ(0) + ∂xxF3(0)), Fχ,i = fχ,iei,

and e1, e2, e3 are the standard basis for R3. Denote by F̂i(t, x) and F̂χ,i(t, x) the approximation
of eLtF̄i and eLtF̄χ,i. Following (4.4) and (4.5), and using the idea in (4.15), we construct the
approximate solution to W2 in (4.14) as follows

(4.19) Ŵ2(t) =
∑

i≤n1

∫ t

0

ai(W1(s))F̂i(t− s)ds+
∑

i≤3

∫ t

0

anl,i(W1(s) + Ŵ2(s))F̂χ,i(t− s)ds.

We introduce the residual operator

(4.20)

Rl(W1) ,
n1∑

i=1

(
ai(W1(t))(F̂i(0)− F̄i) +

∫ t

0

ai(W1(s))((∂t − L)F̂i)(t− s)ds
)
,

Rnl(W ) ,
3∑

i=1

(
anl,i(W (t))(F̂χ,i(0)− F̄χ,i) +

∫ t

0

anl,i(W (s))((∂t − L)F̂χ,i)(t− s)ds
)
,

R(W1, Ŵ2) , Rl(W1) +Rnl(W1 + Ŵ2),

where Rl,Rnl denote the linear and the nonlinear parts, respectively. Note that R(W1, Ŵ2)(x)
is a vector in R3.

Remark 4.3. Given W1, F̂i, F̂χ,i, the solution Ŵ2 (4.19) is not completely determined since the

second part depends on Ŵ2. At the linear level, Ŵ2 (4.19) is determined. Since the second part

depends on Ŵ2 nonlinearly, we will show that it is much smaller than the linear part and control
anl,i(W (s)) using a bootstrap condition (5.72). Then we can still use (4.19) to estimate Ŵ2.

Similar to (4.7), using the above operators, we modify the decomposition (4.14) as follows

(4.21)

∂tW1,i = (Li − K1i −K2i)(W1) +Ni(W1 + Ŵ2) + F i −NFi(W1 + Ŵ2)−Ri(W1, Ŵ2),

∂tŴ2,i = LiŴ2 +K1i(W1) +K2i(W1) +NFi(W1 + Ŵ2) +Ri(W1, Ŵ2),

W1|t=0 = (ω0, η0, ξ0), Ŵ2|t=0 = (0, 0, 0),

where R = (R1,R2,R3). The above decomposition is a nonlinear generalization of (4.7). We

solve the Ŵ2 equation using the formula (4.19) exactly. It is easy to see that W1 + Ŵ2 solves

(4.10) from initial data (ω0, η0, ξ0). If the error in (4.20), e.g. F̂i(0) − F̂i, (∂t − L)F̂i, is small,
we expect that the following estimates for R:

||R(W1, Ŵ2)||X ≤ ε(||W1||X + ||W1 + Ŵ2||2X + ε̄)

in some suitable weighted space X with very small ε, ε̄, where the second and the third terms
come from the estimate of anl,i(W1 + Ŵ2) defined in (4.17). Since F i is the residual error of the

profile, for i+ j = 2, ∂ix∂
j
yF(0) is small and contributes to the small factor ε̄. Then, the residual

operator R can be treated as a small perturbation in (4.21). In particular, at the linear level,

Ŵ2 is almost decoupled from the W1 equation.
We construct approximate solution F̂i and F̂χ,i with errors vanishing cubically near x = 0:

(4.22) F̂i(0)− F̄i, (∂t − L)F̂i = O(|x|3), F̂χ,i(0)− F̄χ,i, (∂t − L)F̂χi = O(|x|3).
and estimate the local part of the residual error in weighted functional spaces for the energy
estimate rigorously in Section 3 in Part II [15]. We combine the estimate of nonlocal error with
energy estimate in Section 5.8.

For initial perturbation ω0, η0, ξ0 = O(|x|3), from the definitions (4.11) and the above vanish-
ing order of the error, we obtain that the vanishing conditions ω1, η1, ξ1 = O(|x|3) are preserved.
Thus, we can perform energy estimates on W1 using singular weights of order |x|−3 near x = 0.
See Section 2.7.3 for more discussions on the vanishing order. We will perform the energy
estimates in Section 5.
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Remark 4.4. Since F̂i is the numerical solution to ∂tFi = LFi, the initial data and coefficients of
L are smooth enough, in principle, by choosing a high order numerical scheme with sufficiently
small mesh size and timestep, one can make the error (4.22) to be arbitrarily small. Then the
residual operators in (4.20), (4.21) are sufficiently small compared to the perturbation W1,W .

We present the formula of different initial data F̄i, F̄χ,i for the finite rank perturbation (4.19),

(4.20) in Appendix C.2.1. In Figure 5, we present log ||f̂(t)ρ||∞, ρ = |x|−2 + 1 with discrete
L∞ norm computed over the gird points to illustrate the decay of ||eLtf · ρ||∞. See Section
4.1.1. Over a time period T = 12, the solution in the weighted norm decreases by a factor
about e−10 ≈ 4.5 · 10−5. In Part II [15], we use the method in Section 4.1.2 to estimate the

decay rigorously. The exponential decay of ||f̂(t)ρ||∞ in time is consistent with the numerical
evidence of linear stability reported by Liu [64] (see Section 3.4). By constructing approximate
space-time solution to eLtf , we establish this spectral property rigorously.
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Figure 5. Plot of log ||f̂(ti)ρ||L∞ , f̂ = ω̂, η̂, ξ̂, ρ(x) = |x|−2 + 1 on grid points

over time ti = 0.48i up to T = 12. Red, blue, and black curves represent ω̂, η̂, ξ̂,
respectively. Left: the first mode related to f̄cω,i (4.11). Right: all modes.

.

4.3. Approximating the regular part of the velocity. We want to construct a finite rank
approximation K(ω) of

∫
R2 Kf (x− y)ω(y)dy so that we can estimate

(4.23) |
∫

R2

Kf(x − y)ω(y)dy −K(ω)| ≤ C1(x, γ)max(||ωϕ1||L∞ , sf max
i=1,2

γi[ωψ1]C1/2
xi

),

with sf = 0 for f = u and sf = 1 for f = ∇u and small constant C1(x, γ) for some given
weights and γ, where Kf is the kernel for ∂ix∂

j
y(−∆)−1ω, i + j ≤ 2 and the Hölder seminorms

C
1/2
x , C

1/2
y are defined in (2.20).

SinceKf (z) is smooth away from z = 0, a natural approach is to approximate the nonsingular
part of K(x− y) by interpolating K(x− y) on finite many points xi:

K(x− y)1|x−y|≥ε ≈
∑

1≤i≤n
χi(x)K(xi − y)1|xi−y|≥ε,

where χi is some cutoff function localized to xi. The above right hand sides lead to the finite
rank operator

(4.24) K(ω) =

n∑

i=1

χi(x)

∫
K(xi − y)1|xi−y|≥εω(y)dy.

We will construct the bulk part of the approximation in Section 4.3.2 based on (4.24). Due to
the decay of the coefficients of u,∇u in (4.10), e.g. ∇ω̄ in u ·∇ω̄, ∇θ̄ in ∇u ·∇θ̄, these nonlocal
terms are small for large |x|. Thus, we only need to approximate u,∇u for x in the near field,
especially for x close to the boundary due to the anisotropy of the flow. See Section 2.7.2.
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Regularity of the velocity. For u = ∇⊥(−∆)−1ω, given ω in some weighted L∞(ϕ) space, u is
log-Lipschitz. Thus we can approximate u(x) in Cβ∩L∞ for any β < 1 by interpolating discrete
points u(xi), i = 1, 2, ..., n with n sufficiently large. The Cβ ∩ L∞ norm of the approximation
error can be bounded by c||ωϕ||∞ with a small constant c. Similarly, for ∇u = ∇∇⊥(−∆)−1ω,
given ω in some weighted L∞ space, the nonsingular part of ∇u, K(z)1|z|≥ε ∗ ω, is Lipschitz.

Thus we can approximate it in C1/2 ∩L∞. Since ∇u = ∇∇⊥(−∆)−1ω is not bounded from L∞

to L∞, for the singular part of ∇u, K(z)1|z|≤ε ∗ω, we need to use the Hölder regularity of ω to
control it. These motivate (4.23).

4.3.1. Approximation near 0. Since we will perform weighted energy estimates with singular
weights and the velocity u,∇u do not vanish near x = 0 with high order, we first approximate
u,∇u by its leading order behavior at x = 0.

In our energy estimate, we consider perturbation ω with vanishing order O(|x|2+α) for some
α > 0 near x = 0. Recall −∆ψ = ω and u = ∇⊥ψ. Using Taylor expansion and

0 = ωx(0) = −ψxxx(0)− ψxyy(0), 0 = ωxy(0) = −ψxxxy(0)− ψxyyy(0),

we get

ψ(x, y) = ψxy(0)xy+
1

6
(ψxxxy(0)x

3y+ψxyyy(0)xy
3)+h.o.t. = ψxy(0)xy+

1

6
ψxxxy(0)(x

3y−xy3)+h.o.t.

We can represent ψxxxy(0) as an integral of ω
(4.25)

ψxxxy(0) =
2

π

∫

R
2
++

ω(y)K00(y)dy, K00(y) ,
24y1y2(y

2
1 − y22)

|y|8 , K00(ω) ,
1

π

∫

R
2
++

K00(y)ω(y)dy.

For ω = O(|x|2+α) with a suitable decay, the above integral is well-defined. By definition, we
have ψxxxy(0) = 2K00. We use K00 as a short hand notation for K00(ω). Note that ux(0) =
−ψxy(0). Using the above formulas, near 0, the leading order term for ∇u and u are given by

u = −ψy = ux(0)x− (
1

3
x3 − xy2)K00 + h.o.t., v = ψx = −ux(0)y + (x2y − 1

3
y3)K00 + h.o.t.,

ux = ux(0)− (x2 − y2)K00 + h.o.t., vx = 2xyK00 + h.o.t., uy = −ψyy = 2xyK00 + h.o.t.

By introducing

(4.26)

Cu0 = x, Cv0 = −y, Cux0 = 1, Cuy0 = Cvx0 = 0,

Cu = −(
1

3
x3 − xy2), Cv = x2y − 1

3
y3,

Cux = −(x2 − y2), Cvx = 2xy, Cuy = 2xy,

we can rewrite the above leading order formulas as

(4.27) f(x, y) = ux(0)Cf0(x, y) +K00Cf (x, y) + h.o.t., f = u, v, ux, vx, uy.

For vy, we will use vy = −ux to estimate it. We will localize the above leading order terms
to construct the approximation term near 0 in the next subsection.

4.3.2. Approximation along the boundary. Let χ be the cutoff function constructed in (C.6) and
χ̃ = 1− χ. They satisfy

χ(x) = 0, χ̃(x) = 1, x ≤ 0, χ(x) = 1, χ̃(x) = 0, x ≥ 1.

Given 0 < x0 < x1 < ... < xn < xn+1 and y0 > 0, we construct the cutoff functions
(4.28)

χ0 = χ̃(
x− x0
x1 − x0

)χ̃(
y − y0
y0

), χi =
(
χ(
x− xi−1

xi − xi−1
)1x≤xi + χ̃(

x− xi
xi+1 − xi

)1x≥xi

)
χ̃(
y − y0
y0

), 1 ≤ i ≤ n.

We impose the cutoff function χ̃(y−y0y0
) so that χi is supported near y = 0. By definition, for

x ≤ xn, y ≤ y0, we have ∑

i≤n
χi(x, y) = 1.
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We want to approximate u,∇u such that the remainders u−uapp vanish near x = 0 with high
order. See Section 4.3.1. To preserve these vanishing orders in the approximations and obtain
smoother approximations, we consider the following approximation, which modifies (4.24)
(4.29)

f̂1(x, y) , Cf0(x, y)ux(0) + f̂10(x, y), f̂10 , Cf (x, y)
(
K00χ0(x, y) +

∑

1≤i≤n

f̂NS(xi, 0)

Cf (xi, 0)
χi(x, y)

)
,

where

(4.30) f̂NS(xi, 0) =

∫

y∈R2,max(|y1−xi,y2|)≥ti
Kf ((xi, 0)− y)ω(y)dy − Cf0(xi, 0)ux(0),

Kf is the kernel for f = u, v, ux, vx, uy, NS is short for nonsingular, and Cf0 and Cf are the
coefficients of the leading order approximations of ∂ix∂

j
yψ near x = 0. See (4.27) and (4.26). We

add the functions Cf (x, y) in (4.29) so that f̂1 has the same vanishing order as that of f .
We construct the above approximations along the boundary for u, ux. For v, vx, uy, since

the associated coefficients are relatively small, e.g. ω̄y in vω̄y and θ̄y in vxθ̄y (4.10), we only
construct the approximation term Cf (x, y)K00χ0(x, y) near 0. Now, by definition, we have

(4.31)
f(xi, 0)− f̂1(xi, 0) = f(xi, 0)− Cf0(xi, 0)ux(0)− f̂NS(xi, 0), 0 ≤ i ≤ n

f(x, y)− f̂1(x, y) = f(x, y)− Cf0(x, y)ux(0)− Cf (x, y)K00, for x ≤ x0, y ≤ y0,

The first identity shows that f̂1 is an interpolation of the non-singular part of Kf ∗ ω, which
is similar to (4.24). Here, we consider a weighted version of (4.24) with weight Cf (x) so that
the approximation has the right vanishing order near x = 0. The second identity shows that

near x = 0, the approximation f̂1 captures the leading order behavior of f near x = 0 (4.27).

Thus, f̂1 can approximate f near the points (0, 0), (xi, 0), 0 ≤ i ≤ n.

4.3.3. Approximation in the far-field. To improve the far-field estimate, instead of using ux(0)
to approximate u, v, ∂u (4.30), we use the truncated version of ux(0)

(4.32) In , − 4

π

∫

max(y1,y2)≥Rn

y1y2
|y|4 ω(y)dy.

The above approximation is similar to the leading order term of the velocity derived in [59]. For
f = ux, the leading order part of the kernel K(s) = − 1

π
s1s2
|s|4 with symmetrization is given by

(4.33)

Ksym(x, y) = K(x− y) +K(x+ y)−K(x1 − y1, x2 + y2)−K(x1 + y1, x2 − y2)

= − 4

π

y1y2
|y|4 + l.o.t.

for max |yi| ≥ Cmax |xi| with large C. For f = u, v, vy, using a similar argument, we obtain the
leading order part of the associated kernel Kf

(4.34) Ksym
f = −Cf0

4

π

y1y2
|y|4 + l.o.t.

for max |yi| ≥ Cmax |xi| with large C, where Cf0 is defined in (4.26). When |y|/|x| is small,
the function − 4

π
y1y2
|y|4 does not approximate Ksym(x, y) well, and thus we truncate it

(4.35)

∫

max |yi|≥Cmax |xi|
−y1y2|y|4 ω(y)dy.

The above operator does not have a finite rank due to the hard cutoff function 1|y|≥C|x|. To
approximate it by a finite rank operators, we approximate 1|y|≥C|x| by a smooth cutoff function

g(x, y) =
∑

i

1|y1|∨|y2|≥Ri
χi(x)

such that χi(x) is localized to the domain with |x| comparable to Ri. Then for x close to Ri,
we obtain g(x, y) ≈ 1|y1|∨|y2|≥Ri

≈ 1|y1|∨|y2|≥|x|.
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More specifically, given R0 < R2 < .. < Rm, we construct cutoff functions as follows
(4.36)

χRi (x, y) = χ̃(
x−Ri

Ri+1 −Ri
)χ̃(

y −Ri
Ri+1 −Ri

)− χ̃(
x−Ri−1

Ri −Ri−1
)χ̃(

y −Ri−1

Ri −Ri−1
), 1 ≤ i ≤ m− 1,

χRm(x, y) = 1− χ̃(
x−Rm−1

Rm −Rm−1
)χ̃(

y −Rm−1

Rm −Rm−1
), SRi = 1− χ̃(

x−Ri−1

Ri −Ri−1
)χ̃(

y −Ri−1

Ri −Ri−1
).

By definition, χRi is supported in the annulus [0, Ri+1]
2\[0, Ri−1]

2, 1 ≤ i ≤ m − 1, χRm = 1 for
max(x, y) ≥ Rm, SRi is supported in R2

++\[0, Ri−1]
2 with SRi = 1 for max(x, y) ≥ Ri. Moreover,

we have
∑
i≤m χ

R
i (x, y) = 1 for max(x, y) ≥ R1. Now, we construct the second approximation

(4.37)

f̂2(x, y) = Cf0(x, y)(1 − χtot(x, y))
( ∑

1≤i≤m
χRi (x, y)(Ii − ux(0))

)
,

χtot(x, y) =
∑

0≤i≤n
χi(x, y),

where χtot(x, y) is the sum of the cutoff functions for the first approximation in Section 4.3.2. For

χtot(x, y) = 0 and x = Ri, y ∈ [0, Ri], from (4.30), we get f̂1 = Cf0(x)ux(0), f̂2 = Cf0(Ii−ux(0)),

f − f̂1 − f̂2 = f − Cf0ux(0)− Cf0(Ii − ux(0)) =

∫
(Kf(x − y)ω(y)dy − Cf0Ii

=

∫

R
2
++

(Ksym
f (x, y) +

4

π
Cf0(x)

y1y2
|y|4 1max(|y1|,|y2|)≥Ri

)ω(y)dy,

where Ksym
f is the symmetrized kernel (4.33). Therefore, for large |x|, the approximation f̂1+ f̂2

can be seen as a smooth interpolation of the main term related to (4.34), (4.35) with C = 1.

Remark 4.5. We remark that the lower order term in (4.33), (4.34) is about |x|/|y| of the
main term, which is not small if |y| and |x| are comparable. As a result, the above finite rank
approximation (4.37) can only approximate part of the integral in f . Nevertheless, it allows us

to obtain a better estimate of f − f̂1 − f̂2 than f , which is sufficient for our purpose.

Combining (4.29), (4.37), we construct the following approximation for f = u,∇u and for

f̃ = f − Cf0ux(0)

(4.38) f̂(ω) , f̂1(ω) + f̂2(ω),
˜̂
f , f̂(ω)− Cf0ux(0) = f̂10(ω) + f̂2(ω),

where the notations ũ, ṽ are introduced in (4.8). Clearly, f̂ , ˆ̃f is a finite rank operator of ω.

4.3.4. Reformulation of the approximations. Recall χi defined in (4.28). We introduce

Sj =
∑

i≤j
χi, χj = Sj − Sj−1.

By definition, we have Sj(x, y) = 1 for x ≤ xj , y ≤ y0 and Sj(x, y) = 0 for x ≥ xj+1. By

rewriting the summation, we can rewrite f̂10 in (4.29) as follows
(4.39)

f̂10 = Cf

(
K00S0 +

∑

1≤i≤n

f̂(xi, 0)

Cf (xi, 0)
(Si − Si−1)

)

= Cf (x, y)
(
S0(K00 −

f̂(x1, 0)

Cf (x1, 0)
) + Sn

f̂(xn, 0)

Cf (xn, 0)
+

∑

1≤i≤n−1

Si

( f̂(xi, 0)

Cf (xi, 0)
− f̂(xi+1, 0)

Cf (xi+1, 0)

))
.

We have dropped the dependence of Cf , Si on x, y to simplify the notations. An advantage of

the above formula is that we exploit the cancellation among K00,
f̂(xi,0)
Cf (xi,0)

.
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Similarly, using χRi = SRi − SRi+1, i ≤ m − 1, SRm = χRm (4.36), we can rewrite the second
approximation (4.37) as follows

(4.40)

f̂2 = Cf0(1− χtot

( ∑

1≤i≤m−1

(SRi − SRi+1)(Ii − ux(0)) + SRm(Im − ux(0))
)

= Cf0(1− χtot)
(
SR1 (I1 − ux(0)) +

∑

2≤i≤m
SRi (Ii − Ii−1)

)
,

where we have dropped the dependence of f̂2, χtot, S
R
i on x, y. An advantage of the above

formula is that we have better estimate of Ii − Ii−1 than Ii − ux(0).

In our estimates of the approximated velocity f − f̂1 − f̂2 in Section 4 of Part II [15] we use

(4.29), (4.37) for f̂i since there are at most two nontrivial summands in each formula for a fixed

x. On the other hand, in the construction of Ŵ2 (4.19), we use the second formula (4.39), (4.40)
and choose the coefficient Cf (x, y)Si, Cf0(1 − χtot)S

R
i as the initial data since the coefficients

of each rank-one term given by Cf (x, y)Si, Cf0(1 − χtot)S
R
i are numerically more regular than

Cf (x, y)χi and Cf0(1−χtot)χRi (Si(x, y) has one slope in x and χi(x, y) has two). Moreover, we
exploit the cancellation among different integrals from different approximation terms. It allows
us to obtain smaller errors in solving the linearized equations.

In our energy estimates for f̂1 in the nonlinear stability analysis, we perform two estimates

based on these two formulas and optimize the estimates. In the estimate of f̂2, we use (4.40).
We list the parameters xi, ti, Ri in the above approximations in Appendix C.2. To obtain

sharp estimate of the constants in (4.23) and u − û,∇u − ∇̂u in the energy estimates, which
are important for us to reduce the number of approximation terms and obtain sharp energy
estimates, we will estimate the integrals with computer assistance. We will discuss them in
details in Section 4 of Part II [15]. We remark that we do not need to construct too many
approximation terms. The total number of approximation terms we choose is less than 50.

5. Energy estimates

Recall the decomposition (4.21) in Section 4.2. In this section, we perform energy estimates
of W1 following the ideas and some derivations in Sections 2.7.1, 2.8.2, 2.8.3. The goal of the
energy estimates is to control several weighted L∞ norms of ω, η, ξ and their weighted Hölder
norms and establish the estimates (A.3) for the coefficients in the estimates. The condition (A.3)
means that the damping term is stronger than the bad terms. Then we can further establish
stability using the stability Lemma A.1.

5.1. The main equation. After choosing a suitable approximation for the velocity u and using
the approach described in Section 4.2, the main equations (4.21) for ω1, η1, ξ1 read

(5.1)

∂tω1 + (c̄lx+ ū) · ∇ω1 = c̄ωω1 + η1 − uA(ω1) · ∇ω̄,
∂tη1 + (c̄lx+ ū) · ∇η1 = (2c̄ω − ūx)η1 − v̄xξ1 − uA · ∇θ̄x − ux,A · ∇θ̄,
∂tξ1 + (c̄lx+ ū) · ∇ξ1 = (2c̄ω − v̄x)ξ1 − ūyη1 − uA · ∇θ̄y − uy,A · ∇θ̄,

where ū = (ū, v̄), and uA(ω1) is the velocity after subtracting the approximation term ˜̂u defined
in (4.29), (4.37), (4.38), (4.13)

(5.2) uA(f) , ũ(f)− ˜̂u(f), ux,A , ũx(f)− ˜̂ux(f), uy,A , ũy(f)− ˜̂uy(f).

Note that we do not have ∂xuA = ux,A since we choose the approximations for u,ux,uy sep-
arately. Similarly, we do not have ∂yη1 = ∂xξ1. We make these finite rank perturbations to
the velocity and the linearized equations by subtracting K2i (4.13) from L in (4.21). We also
remove the cωf̄χ,i terms (4.11) in (4.10) by subtracting K1i from L in (4.21). At this stage, we
have dropped the remaining term Ri, NF (W1 +W2), part of the nonlinear terms Ni, the error
term F i in (4.21) to simplify the presentation.

We adopt the notation from (4.21) and introduce W̄

(5.3) W1,1 = ω1, W1,2 = η1, W1,3 = ξ1, W̄ = (ω̄, θ̄x, θ̄y).
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For initial perturbations that satisfy ω1,0, η1,0, ξ1,0 = O(|x|3), the system (4.21) preserve these
vanishing orders. See more discussions in Section 4.2.4.

We introduce Td(ρ), di(ϕ) to denote the coefficients of the damping terms and b(x) to denote
the coefficient of the advection

(5.4)
b(x) = c̄lx+ ū, Td(ρ) = ρ−1

(
(c̄lx+ ū) · ∇ρ

)
= ρ−1(b · ∇ρ),

d1,L(ρ) = Td(ρ) + c̄ω, d2,L(ρ) = Td(ρ) + 2c̄ω − ūx, d3,L(ρ) = Td(ρ) + 2c̄ω + ūx.

The terms di,L(ρ) appear naturally in the weighted L∞(ρ) estimates of W1,i. See below (5.6).
The subscript L is short for linear.

In the equation of W1,i, we treat the terms other than the local terms of W1,i in (5.1) as bad
terms

(5.5)
B1(W1) , η1 − uA(ω1) · ∇ω̄, B2(W1) , −v̄xξ1 − uA · ∇θ̄x − ux,A · ∇θ̄,
B3(W1) , −ūyη1 − uA · ∇θ̄y − uy,A · ∇θ̄.

With the above notations, we can simplify (5.1) as follows

∂tW1,i + b · ∇W1,i = di,L(1)W1,i +Bi,

where di(1) acts on constant function 1 and Td(1) = 0. The weighted quantity satisfies

(5.6) ∂t(W1,iρ) + b · ∇(W1,iρ) = di,L(ρ)W1,iρ+Biρ.

We choose the following weights for the weighted C1/2 estimate

(5.7)
ψ1 = p11|x|−2 + p12|x|−1/2 + p13|x|−1/6,

ψi = pi1|x|−5/2 + pi2|x|−1 + pi3|x|−1/2 + pi4|x|1/6, i = 2, 3,

where pij are given in (C.1). The above weights can be determined by the analysis of the singular

scenario in Section 2.8.2, where we consider the Hölder estimate for any pair x, z ∈ R
++
2 with

x2 = z2 and |x− z| being sufficiently small.

Remark 5.1. The reader should not confuse the weights ψi with the notation for the stream
function φ = (−∆)−1ω. In this paper, we rarely use the stream function.

From Section 2.8.2, we know that in the scenario when x2 = z2 and |x−z| is sufficiently small,
we have enough damping to obtain the stability estimate. See (2.50) and (A.3) in Lemma A.1.
To estimate the more regular case when |x − z| is not small, we need to control the weighted
L∞ norm of ω1, η1, ξ1. We will follow the ideas in Sections 2.8.3 4.2 to first show that the
weighted L∞ estimates with suitable weights are almost close. We then combine the L∞ and
C1/2 estimates to close the stability estimate. We will show that in the more regular case when
|x− z| is not small, the damping factor in the Hölder estimate, i.e., λ in (A.3), is similar or even
larger than c1, c2 in (2.50). Therefore, from c1, c2 in (2.50), we can get a good estimate of the
stability factor λ∗ ≈ c1, c2 in our overall energy estimates based on (A.3) and Lemma A.1

(5.8) λ∗ ∈ [0.035, 0.08].

5.1.1. Guidelines of choosing the Hölder weights. To choose the parameters in the above weights
(5.7), we first choose different powers so that we can control the solution in the near-field and
the far-field. Then we choose the coefficients pij such that we can obtain the damping terms
from the local parts following the derivations in the weighted Hölder estimates in Section 2.7.1.
Next, we use the estimates in Section 2.8.2 and treat the nonlocal terms as bad terms (5.5).
We further optimize the coefficients so that we can obtain (2.50) with c1, c2 as large as possible.
These ideas are similar to those presented in [20], and we refer to [20] for more discussions.

Next, we determine the weights gi in the Hölder seminorm C
1/2
gi (2.21). For g to be deter-

mined, we use Lemma 3.1-Lemma 3.5 and the triangle inequality

g(x− z)|f(x)− f(z)| ≤ g(x− z)(|f(x1, x2)− f(z1, x2)|+ |f(z1, x2)− f(z1, z2)|)
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for Hölder estimate of ∇u. In general, applying triangle inequality in the Hölder estimate
leads to a larger constant. For example, if [f ]

C
1/2
x

≤ A, [f ]
C

1/2
y

≤ A, a direct estimate yields

[f ]C1/2 ≤
√
2A, which has an extra factor

√
2. One way to avoid this overestimate is to choose

(5.9) g(h1, h2) = (|h1|1/2 + c|h2|1/2)−1.

for some constant c in the weighted Hölder estimate. In the above example, one can choose c = 1
and obtain g(x − z)|f(x) − f(z)| ≤ A for any x, z. However, in the weighted Hölder estimate,
the damping factor from the weight g

dg = g(x− z)−1(b(x)− b(z)) · (∇g)(x − z)

can be unbounded since (∂1g)(0, h2) = ∞, ∂2(h1, 0) = ∞. Alternatively, we modify (5.9) as
follows

(5.10) gi(h) = qi0(h)gi0(1, 0)
−1, gi0(h) = (

√
|h1|+ qi1|h2|+ qi3

√
|h2|+ qi2|h1|)−1,

for some small qi1, qi2. We divide gi0(1, 0) to normalize gi(1, 0) = 1. To exploit the anisotropy
of the flow (see Section 2.7.2), we choose qi3 < 1. The parameters qij are given in (C.1).

We remark that we still have a larger constant when we estimate g(x − z)(∇u(x) − ∇u(z))
for general (x, z) than the case x1 = z1 or x2 = z2. Yet, since we also gain more damping from
the above dg when |x2 − z2|/|x1 − z1| is not too small, we can still show that the damping term
dominates other nonlocal terms.

For η and ξ, we choose g3(h) = g2(h). To determine the parameters gij , we first find x ∈ R
++
2

where we have the least damping in the case when |x − z| is sufficiently small with x2 = z2.
That is, we find x∗ such that the left hand side of (2.50) achieves the maximum at x∗. Then
near x∗, we perform the Hölder estimates with other ratio |z2−x2|/|z1−x1| and keeping |x− z|
small. In this case, similar to the analysis in Section 2.8.2, the more regular terms vanish. We
choose qij so that the damping factor is larger than or close to the one in the case of x2 = z2.

5.2. Ideas of estimating the nonlocal terms. In the energy estimates, we need to per-
form weighted L∞ and Hölder estimates on the velocity uA,uA,x,uA,y (5.2) given that ω1ϕ1 ∈
L∞, ω1ψ1 ∈ C1/2 for some weights ϕ1, ψ1. For f = uA, (∇u)A, it can be written as

I(f)(x) =

∫

R2

Kf (x, y)Ω1(y)dy,

for some kernel Kf , where Ω1 is the odd extension of ω1 in y from R2
+ to R2 (3.3). In the

case without the approximation terms, the formulas of ∇u are given in (3.4). For f = uA, the
kernel involves ∇⊥ log |y| and has a singularity of order |x|−1, which is locally integrable. To
obtain a sharp weighted estimate of uA with some singular weight ρ, since Ω1 is odd in y1, y2,
we symmetrize the kernel and then apply the L∞ estimate

(5.11)

Ksym
f (x, y) = Kf (x, y)−Kf (x,−y1, y2)−Kf (x, y1,−y2) +Kf(x, y),

|ρ(x)I(u)(x)| = ρ(x)
∣∣∣
∫

R
2
++

Ksym
u

ω1(y)dy
∣∣∣ ≤ ρ(x)

∫

R
2
++

|Ksym
u

|ϕ−1
1 (y)dy · ||ω1ϕ1||L∞

, ρ(x)C(u, x)||ω1ϕ1||L∞ ,

where C(u, x) denotes the last integral on the second line. The above estimate is sharp in the
sense that for a fixed x, the equality can be achieved if ωϕ1(y) = Csgn(Ksym(x, y)) for some
constant C. For a given weight ϕ1, the constant C(u, x) is independent of ω1 and is an integral
of some explicit function. We can estimate it effectively for all x using the scaling symmetry of
the kernel and numerical computation with rigorous error estimates.

For f = (∇u)A, the kernel has a singularity of order |x|−2, which is not integrable near the
singularity. We decompose the integral I(f) into the nonsingular part (NS) and the singular
part (S) with singular region R centered around x with radius r(x)

(5.12)

I(f) = INS(f) + IS(f), R(x) = {y : max
i=1,2

|xi − yi| ≤ r(x)}.

INS(f) =

∫

Rc

Kf (x, y)Ω1(y)dy, IS(f) =

∫

R

Kf(x, y)Ω1(y)dy.
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In the weighted L∞ estimate of (∇u)A, we use the above idea and ||ωϕ1||L∞ to estimate INS .
For the singular part, we further decompose it using the identity related to the commutator,
e.g., (2.40). We apply the above L∞ estimate (5.11) to the regular term. The singular term
related to ∇u(ωψ1) is estimated using ||ωψ1||C1/2 . For example, we have the following estimate

∣∣∣
∫

|s1|,|s2|≤τ

s1s2
|s|4 (ωψ1)(x− s)ds

∣∣∣ =
∣∣∣
∫

0≤s1,|s2|≤τ

s1s2
|s|4 ((ωψ1)(x − s)− (ωψ1)(x1 + s1, x2 − s2)ds

∣∣∣

≤Cτ1/2[ωψ1]C1/2
x
,

where C is some constant related to the kernel and is independent of τ . In short, we can estimate
ρI(f) with some singular weight as follows

(5.13) |ρ(x)I(f)(x)| ≤ C1(x)||ωϕ1||L∞ + C2(x)[ωψ1]C1/2
x

+ C3(x)[ωψ1]C1/2
y
,

for some constant Ci(x). For any γj > 0, we can bound the right hand side using the norm in
2.14. In particular, we can bound it using the energy E1 (5.21).

The weighted Hölder estimate is more involved. For (∇u)A, we again decompose it into
the regular part and the singular part. For the singular part, we will use the sharp Hölder
estimates in Lemma 3.1-Lemma 3.5. The nonsingular part is locally Lipschitz. We can estimate
its Lipschitz norm by computing suitable integrals and using ideas similar to the above. The
estimate for uA is easier since it is more regular. We refer the details to Section 4 of Part II [15].

5.2.1. Scaling symmetry and rescaled integral. In the above computation of the integrals, e.g.,
(5.11), there are two singularities. Firstly, the weight ρ(x) is singular near 0, which can amplify
the error in the computation of the integral

∫
R

+
2
|Ksym

u (x, y)ρ(y)−1|dy significantly. Secondly,

the kernel Ku(x, y),K∇u are singular near y = x. If there are only a few x, one can design a
mesh that is adapted to the singularity y = x and then apply the standard quadrature rule.
However, it is very difficult to apply this method to compute the integrals for all x. A crucial
observation is that the kernel K(x, y) enjoys scaling symmetry, which enables us to restrict the
singularity x in a finite domain away from 0 by choosing suitable rescaling.

Denote fλ(x) , f(λx). We consider the kernels about ∇u, which are singular of order
2 and satisfy K(λx, λy) = λ−2K(x, y). For λ to be chosen, applying a change of variables
y = λŷ, x = λx̂, we get

ρ(x)

∫

R
++
2

Ksym(x, y)ω(y)dy = ρ(λx̂)

∫

R
++
2

Ksym(λx̂, λŷ)ω(λŷ)λ2dŷ = ρλ(x̂)

∫

R
++
2

Ksym(x̂, ŷ)ωλ(ŷ)dŷ.

Now, applying the L∞ estimates, we obtain

|ρ(x)
∫

R
++
2

Ksym(x, y)ω(y)dy| ≤ ||ωλϕ1,λ||L∞ρλ(x̂)

∫

R
++
2

|Ksym(x̂, ŷ)|ϕ1,λ(ŷ)
−1dŷ.

Note that ||ωλϕλ||L∞ = ||ωϕ||L∞ . Hence, to establish the estimate, it suffices to compute the
rescaled integral. The advantage of the above integral compared to the one without rescaling
is that the integral is singular at the rescaled point x̂, which can be restricted to some finite
domain by choosing suitable rescaling parameter λ. As a result, we can design an adaptive mesh
which is dense in the O(1) region to compute the integrals and we do not need to re-mesh in
the computation of integrals with different x̂. In addition, x̂ can be chosen to be away from 0,
e.g. |x̂| ≍ 1, so that ρλ(x̂) is not singular in x̂. For example, we can write |x|−2 = λ−2|x̂|−2 by
choosing λ = |x|/|x̂| with |x̂| ≍ 1. The above rescaling argument enables us to overcome the
difficulties caused by the singularities in our computation. We refer more details to Section 4 of
Part II [15].

5.3. Weighted L∞ estimate with decaying weights. We first perform weighted L∞ esti-
mate with decaying weights ϕi below to obtain more damping in the energy estimates. See the
weighted L∞ estimate in the model problem in Section 2.7.1 for more motivations. We choose
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the following weights

(5.14)
ϕ1 = (p41|x|−2.4 + p42|x|−1/2)|x1|−1/2 + p43|x|−1/6, ϕ4 = ψ1|x1|−1/2,

ϕi−3 = (pi1|x|−5/2 + pi2|x|−3/2 + pi3|x|−1/6)|x1|−1/2 + pi4|x|−1/4 + pi5|x|1/7, i = 5, 6,

with parameters pij given in (C.3). We apply ψ1, ϕ1 for ω, ψ2, ϕ2 for η, and ψ3, ϕ3 for ξ. We
will use ϕ4 in Section 5.3.4 for an additional weighted L∞ estimate of ω1. We will discuss the
ideas of choosing ϕi in Section 5.3.3.

Using the weights ϕ1, ψ1, we can estimate the constants in the weighted estimate of uA, (∇u)A
Cij,k in (5.11), (5.13) following the ideas in Section 5.2

(5.15) |ρijfij(x)| ≤ Cij,1(x)||ωϕ1||∞ + Cij,2(x)[ωψ1]C1/2
x

+ Cij,3(x)[ωψ1]C1/2
y
,

where f01 = uA, f10 = vA, f11 = ux,A, etc. We use these indexes since u = −∂yφ, v = ∂xφ, ux =
−∂x∂yφ etc, where φ is the stream function. We add the weight ρij to capture the vanishing
order near 0 and decays of uA,∇uA

(5.16) ρ10 = ρ01 = |x|−3 + |x|−7/6, ρij = ψ1, i+ j = 2.

For (∇u)A, we choose ρij = ψ1, i+ j = 2, since we need to estimate (∇u)Aψ1 using the Hölder
norm of ω1ψ1 and ∇u and ω1 are of the same order. To control uA, we do not need to use the
Hölder seminorm and have

(5.17) Cij,2(x) = Cij,3(x) = 0, i+ j = 1.

Note that ϕi contains the singular term |x1|−1/2 (5.14) and ω̄x, θ̄xx do not vanish on x1 = 0.
To bound uAω̄xϕ1, uAθ̄xxϕ2 in the energy estimate of (5.1), we use the odd symmetry of uA in
x1and uA(0, x2) = 0 to absorb the singularity. Since uA is 1 order more regular than ω, we can
develop estimate |uA| . |x1| · | log |x||||ωϕ1||∞. In particular, we estimate ρ4uA using ||ωϕ1||∞
with ρ4 (C.2) capturing |x1|−1/2. This estimate is covered in Lemma 2.2, and we perform the
estimate in Appendix B.4 in Part II [15]. We optimize this estimate and (5.15) for uA. As a
result, the constant C01(x) bounding uAρ10 = uAρ4 · ρ10ρ4 vanishes along x1 = 0.

5.3.1. Piecewise upper bounds. We discretize a very large domain [0, D]2 in R
++
2 using the same

mesh y in Section 7 for computing the profiles. Using the method in Section 4 in Part II [15], we
can obtain piecewise bounds of uA, (∇u)A and ρ10uA, ρ20(∇u)A in each grid [yi, yi+1]×[yj, yj+1].
In particular, Cij,1, Cij,2, Cij,3 in the upper bound (5.14) are piecewise constants. We track these
bounds using n × n matrices. The estimate in the far-field x /∈ [0, D]2 is much easier since the
coefficients of the nonlocal terms in (5.1) have fast decay and are very small. The same ideas
apply to all other estimates.

Operators and functions. To simplify the notations, we introduce some operators and func-
tions. We define

(5.18)
Tu(f)(x) = C01,1|fx|+ C10,1|fy|, C(ux, i) , C11,i|θ̄x|+ C20,i|θ̄y|,
C(uy, i) , C02,i|θ̄x|+ C11,i|θ̄y|, C(f, a) , C(f, 1)a1 + C(f, 2)a2 + C(f, 3)a3,

for µ ∈ R3 and f = ux or f = uy. We will use Tu for the estimate of uA · ∇f , C(ux, i) for
uA,x · ∇θ̄, and C(uy , i) for uA,y · ∇θ̄. Note that C(f, µ) is linear in µ.

Following (5.6), we derive the weighted L∞ estimates for W1,i = ω1, η1, ξ1 (5.3) in (5.1)

(5.19) ∂t(W1,iϕi) + (c̄lx+ ū) · ∇(W1,iϕi) = di,L(ϕi)W1,iϕi +Bi(x)ϕi,

where we have used the operators (5.4) di(·) to denote the coefficient of the damping terms, and
Bi(x) are the bad terms defined in (5.5). We estimate Bi(x) directly using the above pointwise
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estimates for the nonlocal terms

(5.20)

|B1(x)| ≤
ϕ1

ϕ2
||η1ϕ2||∞ +

ϕ1

ρ10
Tu(ω̄)||ω1ϕ1||∞,

|B2(x)| ≤
ϕ2

ϕ3
|v̄x|||ξ1ϕ3||∞ +

ϕ2

ρ10
Tu(θ̄x)||ω1ϕ1||∞

+
ϕ2

ψ1
(C(ux, 1)||ω1ϕ1||∞ + C(ux, 2)[ω1ψ1]C1/2

x
+ C(ux, 3)[ω1ψ1]C1/2

y
),

|B3(x)| ≤
ϕ3

ϕ2
|ūy|||η1ϕ2||∞ +

ϕ3

ρ10
Tu(θ̄y)||ω1ϕ1||∞

+
ϕ3

ψ1
(C(uy , 1)||ω1ϕ1||∞ + C(uy , 2)[ω1ψ1]C1/2

x
+ C(uy , 3)[ω1ψ1]C1/2

y
).

5.3.2. Weights between the L∞ norm and the Hölder norm. We cannot close the L∞ estimate
since the estimate of ∇uA involves [ω1ψ1]C1/2

xi

. To close our weighted L∞ and Hölder estimate

using Lemma A.1, we need to choose weights µi among different norms such that (A.3) holds.
Recall the weighted Hölder seminorm from (2.21). We introduce the first energy

(5.21) E1(t) = max(max
i

||W1,iϕi||∞, τ−1
1 max([ω1ψ1]C1/2

g1

,
√
2||ωϕ4||∞)), ϕ4 = ψ1|x1|−1/2.

Note that the Hölder seminorm [ · ]C
g
1/2
1

is only defined in R
++
2 . We add the extra L∞ norm

||ωψ1|x1|−1/2||∞ to control [ω]
C

1/2
x (R+

2 )
. See more discussions in Section 5.3.3. Since g1(h1, 0) =

|h1|−
1
2 , g1(0, h2) = g1(0, 1)|h2|−

1
2 (5.10), using (5.25) and the estimate in Section 5.3.3, we obtain

E1(t) ≥ τ−1
1 max([ω1ψ1]C1/2

g1

,
√
2||ωψ1|x1|−

1
2 ||L∞) ≥ τ−1

1 [ω1ψ1]C1/2
x (R+

2 )
, τ−1

1 g1(0, 1)[ω1ψ1]C1/2
y
.

Using E1(t) and the notation (5.18), we can simplify the estimate (5.15) for ∇uA as follows
(5.22)
|ρijfij | ≤ (C(fij , 1) + C(fij , 2)τ1 + C(fij , 3)τ1g1(0, 1)

−1)E1 = E1 · C(fij , (1, τ1, τ1g1(0, 1)−1)).

The above estimate relates to (2.14) in Lemma 2.2. Similarly, the bound in Bi can be
simplified as follows

C(f, 2)[ω1ψ1]C1/2
x

+ C(f, 3)[ω1ψ1]C1/2
y

) ≤ τ1C(f, (0, 1, g1(0, 1)
−1))E1(t), f = ux,uy ,

where C(f, µ) is defined in (5.18). The constraint (A.3) for the η equation becomes

(5.23)
(
− d2,L(ϕ2)−

ϕ2

ϕ3
|v̄x| −

ϕ2

ρ10
Tu(θ̄x)−

ϕ2

ψ1
C(ux, 1)

)
− τ1

ϕ2

ψ1
C(ux, (0, 1, g1(0, 1)

−1)) ≥ λ.

Similarly, we have another constraint for τ1 from the estimate of ξ1. We want to obtain an
overall stability factor λ∗ (5.8) and thus choose λ ≈ λ̄∗. We choose the largest τ1 such that the
inequality (5.23) and a similar inequality for ξ1 hold. The idea to choose large τ1 (or small τ−1

1 )
is similar to that in (2.57) for the model problem, where the weight τ for the Hölder norm is
small. We choose the largest τ1 so that in the Hölder estimate for τ−1

1 ω1ψ1, we have the small

factor τ−1
1 associated with the weighted L∞ norm maxi ||W1,iϕi||∞ in (A.3). In our estimate,

we can choose

(5.24) τ1 = 5.

Although τ1 is not very large, it is enough for us to show that the estimate of the more regular
case in the Hölder estimate, i.e. |x−z| is not very small, is similar to or even better than that in
the singular case when |x− z| is small. There are three reasons. Firstly, we get the above small
factor τ−1

1 when we estimate the more regular terms using the weighted L∞ norm. Secondly,
as |x − z| increases, due to our localized estimates in Lemmas 3.1-3.4, the constants in the
estimates of the nonlocal terms decrease. Thirdly, for |x− z| not too small, the Hölder estimate
of nonlocal terms (∇u)A using (5.22) and triangle inequality can provide estimates better than
Lemmas 3.1-3.4. Note that from (5.23), choosing a larger τ1 requires better estimates on the
nonlocal terms, e.g., smaller C(ux, i). For this reason, we need to approximate the nonlocal
terms u with finite rank operators with a higher rank, which increases the computation cost.
Due to this consideration, we choose a moderate τ1.
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In Figure 6, we plot the rigorous piecewise lower bounds of the damping terms, e.g. −d2(ϕ2)
(5.23), the estimates of the bad terms, i.e. the sum of the terms with negative sign (5.23),
and the rigorous piecewise lower bound of the remaining damping factors (the left hand side of
(5.23)) along the boundary. The ξ1 variable enjoys a much better estimates near the boundary,
so we do not plot it.

We choose the approximation terms û, ∇̂u for u,∇u along the boundary in Section 4.3 such

that the weighted estimates of u− û,∇u−∇̂u are small. Near the center of the approximation
terms, xi in (4.29), we have better estimates of the bad terms. In Figure 6, the points xi are
near the local minimum of the blue dashed curve. Since the coefficients of the nonlocal terms
(5.1), e.g., ω̄x, θ̄x, decay for large x, in addition to the approximations near boundary (4.29), we
only construct 7 approximation terms (4.37), (4.28) in a much larger domain [0, 200]2, and we
do not need to construct approximations for large x.

We choose ϕ1 slightly weaker than ϕ2 near the origin (5.14) such that ϕ1/ϕ2||η1ϕ2||∞ is
small, and we can obtain large stability factors for both ω and η, which are larger than 0.7. This
allows us to control a larger weighted residual error near the origin.

In Figure 7, we plot rigorous piecewise lower bounds of the stability factors, e.g., the left
hand side of (5.23), in L∞(ϕi) estimates of ω1, η1 in the near-field. Due to the anisotropy of
the flow, the damping terms and the stability factors are larger if the angle y/x is large. See
Section 2.7.2. These plots help us visualize the estimates.

To justify the inequalities (5.23), we follow the methods in [19,20] and derive piecewise bounds
of different functions based on the estimates of the approximate steady state and the weights in
Appendix C and Appendix A.1 of Part II [15].
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Figure 6. Weighted L∞ estimates with slowly decay weights. Left figure:
estimates near 0, x ∈ [0, 1.8]; Right figure: estimates in a larger domain, x ∈
[0, 35]. The red curves shows the coefficient of the damping term −d1(ϕ1), and
the estimate of B1; the blue curves are for −d2(ϕ2), B2 in the estimates of η1.
The green and the black curves are the stability factors in the estimate of ω1

and η1.

5.3.3. Order of choosing the parameters. We have discussed how to choose the Hölder estimate
in Section 5.1.1. For ϕi, we first choose the weight ϕ1 for ω1 consisting of different powers to take
into account the vanishing order of ω1 near 0 and its decay in the far field. We add the power
|x1|−1/2 in ϕ1, ϕ2, ϕ3 (5.14) since we need to control ||ω1|x1|−1/2ψ1||∞ for the Hölder estimate.
See Section 5.3.4. In the L∞ estimate of ω1|x1|−1/2ψ1, we need to control η1|x1|−1/2ψ1 and
other weighted quantities with weights singular at x1 = 0. Thus, we add the weight |x1|−1/2

in ϕi. We adjust the parameters in ϕ1 so that we have a good damping factor d1(x) from the
local term for ω1. Then we can estimate the nonlocal terms and the constants (5.15). Once we
obtain the estimates for ∇uA,uA, we choose the exponents of different powers in ϕ2 and adjust
the parameters so that we have better stability factors in the weighted L∞ estimate and choose
a larger τ1 (5.23). Since the equations of ξ1 and η1 are similar, we choose the same combination
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Figure 7. Weighted L∞ estimates in the near-field. Left: stability factors in
the estimate of ω1. Right: stability factor in the estimate of η1.

of powers in ϕ2 and ϕ3 (5.14). Moreover, since ξ1 is weakly coupled with ω1 and η1 (see Section
2.6.2) and enjoys much better stability estimate (2c̄ω + ūx ≈ −5.5 near x = 0 in (5.1)), we
determine the parameters in ϕ3 after we obtain ϕ1, ϕ2.

5.3.4. Weighted L∞ estimate related to the Hölder norm. To simplify our energy estimate, using
the symmetry of W1,i in the x, we will only perform Hölder estimates in R2

++, which control

Ix =
(W1,iψi)(x1, x2)− (W1,iψi)(z1, x2)

|x1 − z1|1/2
, Iy =

(W1,iψi)(x1, x2)− (W1,iψi)(x1, z2)

|x2 − z2|1/2
,

for (x1, x2), (z1, x2), (x1, z2) ∈ R2
++. Due to the symmetry in the x direction, we have |Iy(x1, x2, z2)| =

|Iy(−x1, x2, z2)| and can control [ω]
C

1/2
y (R2

+)
. To control the weighted Hölder norm of ∇u(ω1) in

R2
++, we need to control [ω1ψ1]C1/2

xi
(R2

+)
since ∇u is nonlocal. Yet, the above estimate does not

directly control Ix(x1, x2, z1) with x1z1 < 0 or [ω1ψ1]C1/2
x (R2

+)
. In fact, it is easy to obtain that

[f ]
C

1/2
x (R2

+)
≤

√
2[f ]

C
1/2
x (R2

++)

for an odd function f , which leads to an extra factor
√
2. Instead, to further control Ix(ω) with

x1 < 0 < z1, since F , ω1ψ1 is odd and |x1 − z1| = |x1|+ |z1|, we have

(5.25)

|F (−x1, x2) + F (z1, x2)|
|x1 − z1|1/2

≤ max
(2|F (−x1, x2)|

|2x1|1/2
,
2|F (z1, x2)|
|2z1|1/2

) |x1|1/2 + |z1|1/2
(2|x1|+ 2|z1|)1/2

≤ max
(2|F (−x1, x2)|

|2x1|1/2
,
2|F (z1, x2)|
|2z1|1/2

)
,

where we have used the Cauchy-Schwarz inequality in the last inequality. Therefore, it suffices
to control ||ωψ1|x1|−1/2||L∞ .

In view of (5.25) and [ω]
C

1/2
g1

≥ [ω]
C

1/2
x (R2

++)
(5.21), we include the norm τ−1

1

√
2||ωϕ4||∞

with a specific weight τ−1
1

√
2 in E1 (5.21) so that E1(t) ≥ τ−1

1 [ω]
C

1/2
x (R+

2 )
. We perform L∞(ϕ4)

estimate of ω1 using the estimates of nonlocal terms and derivations in (5.20) and Section 5.3

∂t(ω1ϕ4) + (c̄lx+ ū+ u) · ∇(ω1ϕ4) = −d4,L(x)(ω1ϕ4) +B1(x)ϕ4,

d4,L(x) , d1,L(ϕ4) = Td(ϕ4) + c̄ω, |B1(x)ϕ4| ≤
ϕ4

ϕ2
||η1ϕ2||∞ +

ϕ4

ρ10
Tu(ω̄)||ω1ϕ1||∞,

where the operator Td, d1,L(·) is defined in (5.4), and Tu(ω̄) is defined in (5.18). The condition

(A.3) for ||ωϕ4||∞ with weight τ−1
1

√
2 becomes

(5.26) − d4,L −
√
2

τ1
(
ϕ4

ϕ2
+
ϕ4

ρ10
Tu(ω̄)) ≥ λ,
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for some λ > 0. From (C.1), (C.3), we have ϕ4/ϕ2 = |x1|−1/2ψ1/ϕ2 . 1. Here, we have a much
larger damping factor compared to that in the weighted L∞(ϕi) estimate, e.g. (5.23), since we

have a smaller parameter
√
2
τ1

for the bad term.

5.4. Weighted Hölder estimates. Recall the weights ψi for ω1, η1, ξ1 (C.1) and gi(h) (5.10)
in the weighted C1/2 estimates, the notation W1,i (5.3), and the simplified equation (5.6). The
goal of the weighted Hölder estimate is to control ||W1,iψi||C1/2

gi

, where [ · ]
C

1/2
gi

is defined in

(2.21), which along with the weighted L∞ estimate, we can control the second energy

(5.27)
E2(t) , max(E1(t), τ

−1
1 max([W1,1ψ1]C1/2

g1

, µ1[W1,2ψ2]C1/2
g2

, µ2[W1,3ψ3]C1/2
g3

),

µh = τ−1
1 (1, µ1, µ2),

for the weights µ1, µ2 determined by analyzing the most singular scenario in Section 2.8.2 (2.48).
They are given in (C.5). The energy E1 is defined in (5.21). In fact, these two factors can be
absorbed in the definition of ψ2, ψ3. We have normalized the coefficient of the most singular
power in ψ1 to be 1.

Following the derivations in the weighted Hölder estimates in Section 2.7.1 and using (5.6)
and Lemma 2.5, we derive the following for W1,iψi and any x, z ∈ R2

++

(5.28)
∂tHi + (b(x) · ∇x + b(z) · ∇z)Hi =

(
(di(ψi)W1,iψi)(x) − (di,L(ψi)W1,iψi)(z)

)
gi(x− z)

+ dg,iHi +
(
(Biψi)(x) − (Biψi)(z)

)
gi(x− z) , I1 + I2 + I3 , Ri,

where b(x) is the coefficient of the advection (5.4), dgi is the damping factor from gi in the
Hölder estimate, and Ji, Hi are given below

(5.29) Ji ,W1,iψi, Hi(x, z) = (Ji(x) − Ji(z))gi(x− z), dg,i ,
(b(x)− b(z)) · (∇gi)(x − z)

gi(x− z)
.

The factor Bi is the bad term defined in (5.5), and di,L is defined in (5.4)
(5.30)

d1,L(ψ1) = Td(ψ1) + c̄ω, d2,L(ψ2) = Td(ψ2) + 2c̄ω − ūx, d3,L(ψ3) = Td(ψ3) + 2c̄ω + ūx.

We note that the second term I2 in (5.28) is already a damping term. See Section 2.7.1 and
discussion below Lemma 2.5. To further simplify the notation, we introduce

(5.31) ai(x) = di,L(ψi)(x).

5.4.1. Basic Hölder estimates. For the Hölder estimate of a variable |f(x) − f(z)|g(x − z), we

will mostly use its C
1/2
x , C

1/2
y estimates and then apply the triangle inequality. We discuss some

basic estimates. We use the following notations

(5.32) δi(f, x, z) ,
|f(x)− f(z)|
|x− z|1/2 , zi > xi, z3−i = x3−i, δ(f)(x, z) , f(x)− f(z).

By abusing the notations of δi, we denote by δi(f, g, x, z) a basic C1/2 estimate for product

(5.33) δi(f, g, x, z) = min
(a,b)=(x,z),(z,x)

δi(f, x, z)|g(a)|+ δi(g, x, z)|f(b)|, x3−i = z3−i.

If g = 1, we get δi(f, g, x, z) = δi(f, x, z). Using the triangle inequality, we get

(5.34)
δ(fg)(x, z) = δ(f)(x, z)g(a) + δ(g)(x, z)f(b), (a, b) = (x, z), (z, x),

δi(fg, x, z) ≤ δi(f, g, x, z), x3−i = z3−i.

Given the piecewise C
1/2
x , C

1/2
y estimates of f , we use the following method for the piecewise

Hölder estimate of f with Hölder weight g and two points (x, z), h = z − x

(5.35)
|(f(z)− f(x))ρ(h)| = |(f(z)− f(w) + f(w) − f(x))ρ(h)|

≤(δ1(f, w, x)|h1|1/2 + δ2(f, z, w)|h2|1/2)ρ(h), w = (z1, x2), ρ(h) = g(h), or ρ ≡ 1.

The function |hi|1/2g(h) is 0-homogeneous and we apply the method in Section D.2 to estimate
it. For w̃ = (x1, z2), we derive another estimate. We optimize two estimates for |δ(f)(x, z)|g(x−
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Figure 8. Left, right figures correspond to the locations of (x, z) in cases (1)
s ≥ 0, (2) s < 0, s = (z1 − x1)(z2 − x2). The red line and blue line represent
two choices of the Ckx , C

k
y , k = 1

2 or 1 estimates used to estimate f(x)− f(z).

z). In Figure 8, we illustrate the locations of x, z and the C
1/2
xi ((δi(f, p, q))) estimates and the

triangle inequality used to estimate δ(f, x, z)g(h). We introduce δ� to denote this estimate and
similar estimate for product

(5.36)

δ�(f, g, x, z, s) , min(δ1(f, g, x, (z1, x2))|s1|1/2 + δ2(f, g, (z1, x2), z)|s2|1/2,
δ2(f, g, x, (x1, z2))|s2|1/2 + δ1(f, g, (x1, z2), z)|s1|1/2),

δ�(f, x, z, s) , δ�(f, 1, x, z, s),

where δi(f, g, x, z) is defined in (5.33), and we simplify the notation if g = 1. We use the notation

� since it mimics Figure 8 and indicates that we use C
1/2
x , C

1/2
y estimates to obtain the C1/2

estimate. By definition, we get

(5.37) |δ(f)(x, z)| ≤ δ�(f, x, z, h), δ(fg)(x, z) ≤ δ�(f, g, x, z, h).

Note that δi(f, x, z), δi(f, g, x, z), δ�(f, x, z, s), δ�(f, g, x, z, s) are symmetric in x, z. We in-
troduce an extra variable s to reduce bounding δ�(f, x, z, x− z)g(x− z) to estimating δi(f, x, z)
and |xj − zj |1/2gi(x − z) separately, and δ�(f, x, z, s)gi(s) is 0-homogeneous in s. See Section
5.4.5. We drop the dependence of δ, δ�, δi on x, z when there is no confusion. Using the above

basic estimates, we only need to estimate its C
1/2
xi seminorm for most terms.

5.4.2. Estimate the explicit coefficients. In the Hölder estimates, we need to estimate (p̄q)(x)−
(p̄q)(z))g(x − z) for some coefficient p̄, perturbation q, e.g. q = ω1, η1, and some weight g, e.g.
g = gi. The coefficient p̄ depends on the weights ψi, ϕi and the approximate steady state only.
In particular, p̄ is quite smooth in a local region. Note that the approximate steady state, the
singular weights and their derivatives can be estimated effectively using the method in Appendix

C and Appendix A.1 of Part II [15]. We estimate the piecewise C
1/2
x and C

1/2
y seminorms of p̄(x)

using the method in Appendix E.6, E.7 of Part II [15], and then use (5.36), (5.37) to estimate
g(x− z)δ(p̄). For example, given x, z, we have

|p̄(x) − p̄(z)| ≤ δi(p̄, x, z)|xi − zi|1/2 = Ai(x, z)|xi − zi|1/2, x3−i = z3−i ,

for some constants Ai depending on the weights and the approximate steady state. We discretize
the domain R2

++ using the same mesh y0 < y1 < .., yn in our computation for the profile
in Section 7 and estimate these constants for x ∈ Q1, z ∈ Q2 for different grids uniformly.
Therefore, we can track the piecewise bounds A1(x1, x2, z1, x2)(z2 = x2) for x1, x2, z1 in each
cube Ii × Ij × Ii+k, Ii = [yi, yi+1], 0 ≤ k ≤ m − 1 using n × n ×m matrices. We have another
estimate in (5.36), (5.37) by choosing another path from x to z and we optimize two estimates.
We restrict z1 within m grids from x1 since for z1 far-apart from x1, |z1 − x1| is not small, we
can apply the triangle inequality to obtain the piecewise Hölder estimate.

In general, such an estimate has some overestimates. Yet, since the problem is anisotropic in
the x and y directions, in the worst case scenario where |x2 − z2| is much smaller than |x1 − z1|,
this simple estimate is effective. See also Section 5.1.1.

Although the weights ψi, ϕi are singular near x = 0, from the estimates in the most singular
scenario in Section 2.8.2 (see Figure 3), we have better estimates near x = 0. Thus, the more
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challenging part of our estimates comes from the region where x is away from 0, e.g. x around
0.5. In such a case, we can simply treat the weights ψi, ϕi as smooth functions.

Now, using (5.32), we obtain

(5.38) P , δ(p̄q)g(x− z) = (p̄(x)δ(q) + δ(p̄)q(z))g(x− z) , P1 + P2.

The second term is more regular. We can use the weighted L∞ norm of q to control it. For the
first term, we bound it using the weighted Hölder seminorm. Below, we discuss different cases.
In all cases, the estimate of P2 is much smaller than that of P1 when |x− z| is small. Moreover,
we have another decomposition in (5.34). We optimize these two estimates using (5.36), (5.37).

5.4.3. Estimate of I1. Recall I1 from (5.28). Note that Hi = δ(Ji)gi(x − z) is the energy we
want to control. We have

(5.39)
I1 = δ(aiJi)gi(x− z) = (ai(x)δ(Ji) + δ(ai)Ji(z))gi(x− z)

= ai(x)Hi + δ(ai)gi(x− z)Ji(z) , I11 + I12.

The first term is a damping term. We can control Ji(x) using the weighted L∞ norm in the
energy E1 (5.21)

|Ji(z)| = |(W1,iψi)(z)| ≤ ||W1,iϕi||∞
ψi(z)

ϕi(z)
≤ E1

ψi(z)

ϕi(z)
.

Since ai is a given function with an explicit expression, we follow Section 5.4.2 and estimate
δ(ai)gi(x − z) using the method in Appendix E of Part II [15] and (5.36),(5.37). In particular,
when |x− z| is small, δ(ai)gi(x− z) is very small. It follows

(5.40) |I12| ≤ |δ(ai)gi(x − z)|ψi(z)
ϕi(z)

E1.

Similarly, we can also define Ĩ11 = ai(z)Hi and Ĩ12 = δ(ai)gi(x− z)Ji(x) and obtain

(5.41) I1 = Ĩ11 + Ĩ12, Ĩ11 = ai(z)Hi, |Ĩ12| ≤ |δ(ai)gi(x− z)|ψi(x)
ϕi(x)

E1.

We choose one of the above estimates according to the relative size of the following terms

(5.42) m1 = ai(x) + µ−1
h,i |δ(ai)gi(x− z)|ψi(z)

ϕi(z)
, m2 = ai(z) + µ−1

h,i|δ(ai)gi(x− z)|ψi(x)
ϕi(x)

,

where µh is the weight of the Hölder seminorm in (5.27). We use the decomposition (5.39) and
its estimates if m1 is smaller. We choose (5.41) if m2 is smaller. We use this optimization to
maximize the left hand side of (A.3) (the sign is different) and obtain a better stability factor,
since the estimate of I1 contributes exactly −min(m1,m2) to the left hand side of (A.3). We
will use similar optimizations several times to get better stability factors, see, e.g. (5.33),(5.36).
Following the discussions and ideas in Section 5.4.2, we can track the piecewise bounds of the

above functions and estimates, e.g. ai, τ
−1
1 |δ(ai)gi(x− z)|ψi(z)

ϕi(z)
.

Remark 5.2. Since ψi (C.1) is singular, ai(x) = di,L (5.30), (5.4) is not C1/2 near x = 0. Yet,

since we choose ψi, ϕi with ψi/ϕi . |x|1/2 (C.1), (C.3), the extra power |x|1/2 compensates the
low regularity of ai and we still have δ(a, x, z)|x − z|−1/2|x|1/2 ∈ L∞. In Section 8.4 of the
supplementary material I [18] (contained in this paper), we perform an improved estimates near
0 and bound the explicit functions min(m1,m2) (5.41) from above. Since the bad terms (5.5)
are very small near x = 0 due to the vanishing coefficients, e.g. θ̄x, this technical difficulty only
has a tiny effect on the stability estimate . See Figure 9. We optimize the improved estimate
with the previous one.

5.4.4. Estimate of I3. Recall I3 from (5.28) and Bi from (5.5). The term Bi involves both the
local term and nonlocal terms. We treat them as bad terms and estimate them separately.



STABLE BLOWUP OF 2D BOUSSINESQ EQUATIONS 51

Estimate of the local part. We focus on η1 in B1. Other terms −v̄xξ1 in B2, −ūyη1 in B3

(5.5) can be estimated similarly. Note that the weights are different for ω1, η1. We rewrite the
difference as follows

δ(η1ψ1)g1(x−z) = δ(η1ψ2
ψ1

ψ2
)g1(x−z) =

(
δ(η1ψ2)

ψ1

ψ2
(x)+(η1ψ2)(z)δ(

ψ1

ψ2
)
)
g1(x−z) , P1+P2.

The term P2 is more regular. We follow Section 5.4.2 and use (5.34)-(5.37) to estimate

δ(ψ1

ψ2
)g1(x− z). Using the weighted L∞ norm of η1 and the energy E2 (5.27), we obtain

(5.43) |P2| ≤ ||η1ϕ2||∞
ψ2(z)

ϕ2(z)

∣∣∣δ�(
ψ1

ψ2
, h)g1(x− z)

∣∣∣ ≤ E2
ψ2(z)

ϕ2(z)

∣∣∣δ�(
ψ1

ψ2
, h)g1(h)

∣∣∣, h = x− z.

Following Section 5.4.2, we can track the piecewise bound of the coefficient in the above upper
bound. For P1, we have

(5.44)

|P1| ≤
ψ1

ψ2
(x)

g1(x− z)

g2(x− z)
|δ(η1ψ2)g2(x− z)| ≤ ψ1

ψ2
(x)

∣∣∣g1(x− z)

g2(x− z)

∣∣∣||η1ψ2||C1/2
g2

≤ ψ1

ψ2
(x)

∣∣∣g1(x− z)

g2(x− z)

∣∣∣E2τ1µ
−1
2 ,

where we have used the energy E2 (5.27) in the last inequality. We note that in the estimate of
τ−1[ω1ψ1]C1/2

g2

, we have the term τ−1
1 P1. The weight τ−1

1 cancels τ1 in the above upper bound.

Using another decomposition in (5.34), we get another estimate and we optimize them.
Note that g1 and g2 are equivalent to |h|−1/2 and homogeneous of order −1/2. The quantity∣∣∣ g1(x−z)g2(x−z)

∣∣∣ only depends on the ratio between x1 − z1, x2 − z2. We also track this ratio.

For large |x− z|, we have a trivial estimate

(5.45) |δ(η1ψ1)g1(x− z)| ≤ ||η1ϕ2||∞(
ψ1

ϕ2
(x)+

ψ1

ϕ2
(z))g1(x− z) ≤ E2(

ψ1

ϕ2
(x)+

ψ1

ϕ2
(z))g1(x− z).

Estimate of other local terms. Recall W1 = (ω1, η1, ξ1) from (5.3) and the weights µh, ψi
(C.1) in the energy E2 (5.27). For x1 ≤ z1 and fW1,iψi with f ∈ C1/2, using the energy

||W1,iϕi||∞, µh,i[W1,iψi]C1/2
gi

≤ E2 (5.70), (5.34), (5.37), we perform its C1/2 estimate as follows

(5.46)

|µh,jgj(h)δ(fW1,iψi, x, z)| ≤ µh,jgj(h)(|δ(f)W1,iψi(z)|+ |f(x)δ(W1,iψi)|)

≤ µh,jgj(h)

µh,igi(h)
|f(x)|E2 + µh,jgj(h)δ�(f, x, z, h)

ψi
ϕi

(z)E2, h = x− z.

If i = j, the first term reduces to |f(x)|E2. We only pick one decomposition in (5.34) with the
coefficient of δ(W1,iψi) evaluating at x, i.e. f(x), to simplify the estimates. Note that x1 ≤ z1.
We apply (5.46) to v̄xξ1ψ2, ūyηψ3 in (5.5), (5.28) with i = 2, 3 and in the nonlinear estimates in
Section 5.9.

Estimate of the nonlocal part. To control the nonlocal terms in Bi, we use the sharp C
1/2
x

and C
1/2
y estimates in Section 3 for the most singular part and the estimates in Section 4 of

Part II [15] for the more regular part. We focus on the estimate of −ux,Aθ̄x in B2 (5.5), which
contributes to the largest part in the estimate. Using (5.33), (5.36),(5.37), we get

(5.47) |δ(ux,Aθ̄xψ2)| ≤ δ�(ux,Aψ1,
ψ2

ψ1
θ̄x, h), P4 =

ψ2

ψ1
θ̄x,

and it suffices to estimate δi(ux,Aψ1), δi(
ψ2

ψ1
θ̄x) and the L∞ bounds of ux,Aψ1, P4. For ux,A(p), p =

x, z, we use the estimate in Section 5.3. The term P4 is more regular. It has vanishing order
|x|1/2 near x = 0 and is in C1/2. We follow Section 5.4.2 to estimate it. In particular, we have

(5.48) |(ux,Aψ1)(p) · δi(P4)| ≤ Ci(x, z, p)E1, p = x, z, i = 1, 2, x3−i = z3−i,

for some functions C1(x, z, p), C2(x, z, p), p = x, z depending on the weights and the approximate
profile. See Section 5.3.1. Again, we can obtain piecewise upper bound of these functions.
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For ux,Aψ1, applying the C
1/2
x and C

1/2
y estimates in Section 3, Section 4 of Part II [15], we

obtain

(5.49) δi(ux,Aψ1) ≤ C2+i(x, z)max(τ1||ω1ϕ1||∞, [ω1ψ1]C1/2
g1

) ≤ C2+i(x, z)τ1E2, x3−i = z3−i,

for some constants C3, C4 depending on the weights. We remark that the constants C3, C4 are
very close to the constants provided by the sharp Hölder estimates in Section 3 when |x− z| is
small. In the estimate of τ−1

1 µ1[η1ψ1]C1/2
g2

in the energy (5.27), the weight τ−1
1 cancels τ1 in the

above upper bound. See (A.3). Again, we can obtain these piecewise upper bounds and track
them carefully. See Section 5.3.1. Plugging the above estimates and the piecewise L∞ estimate
of P4 in (5.47) and using (5.37), (5.34), we yield the estimate for ux,Aθ̄xψ2.

When |x− z| is not small, we can apply the triangle inequality and the L∞ estimate of ux,A
in Section 5.3 to obtain another bound. In practice, we only need to apply the above Hölder
estimate when |x− z| is small, e.g. x, z are within 40 mesh grids designed in Section 7. Beyond
such a range, the L∞ estimate already provides a better estimate.

5.4.5. Summarize the estimates. Similarly, we can obtain the linear estimates for other terms
in (5.28) and present them in (D.11) with the modification in Section 5.8 to track the nonlocal
error. At this moment, the reader can treat ūN = ū in (D.11). In particular, for the right hand
sides in (5.28), when x, z are close, we obtain the following estimates

Ri = (dg,i(x, z) + ai(px,z))Hi + B̃i, B̃i = Î12 + δ(Biψi)gi(x − z),

where (p, Î12) = (x, I12) or (z, Ĩ12) depending on the size of m1,m2 in (5.42), and B̃i combines

the term Î12 (5.39) or (5.41) and I3. We can estimate it as follows

(5.50) |B̃i| ≤ Ci(x, z, h)E2, h = x− z,

where the coefficients Ci(x, z, h) depend on the weights and the approximate steady state and

are 0-homogeneous in h. For example, it involve gi(h)|hj |1/2 via gj(h)δ� (5.37) in (5.47), g1(h)g2(h)

in (5.44). We can obtain piecewise upper bounds of the coefficients Ci(x, z, h) in the above
estimates and (D.11) following the discussions in Sections 5.3.1, 5.4.2 and 5.4.3, and track their
dependence on x, z using matrices, and h using 0-homogeneous functions. In this case, the linear
stability condition (A.3) becomes

(5.51) − dg,i(x, z)− ai(px,z)− µh,iCi(x, z, h) > λ, µh = τ−1
1 (1, µ1, µ2),

uniformly in x, z for some λ > 0. where µh is the weight of the Hölder seminorm in (5.27).

Checking the stability conditions. According to Lemma A.1, to obtain linear stability, we
need to check the conditions (A.3) or (5.51). We use the following method to check such a
condition. We discretize a large domain [0, D]2 into small grid cells Qij = Ii× Ij using the same
mesh y0 < y1 < .. < yn as that in Section 7.

Firstly, we fix the locations of x, z to some grid cells: x ∈ Qij , z ∈ Qkl, and can derive the
piecewise bounds Ci(x, z, h) in x, z. The bound (5.45) using the triangle inequality (and (D.14)
similarly) involves g1(x− z) and is not homogeneous in x− z. We bound it using monotonicity
of g. See Section D.2. We still need to control functions in Ci(x, z, h) (5.50), (D.11) involving
h = x− z . Since these functions are 0−homogeneous in h, we only need to further consider the
ratio between r1 = x1 − z1, r2 = x2 − z2. Similar considerations apply to the damping factors
dg,i (5.28),

dg,i ≤ C1(x, z)F1(x − z) + C2(x, z)F2(x− z) = C1(x, z)f1(x− z) + C2(x, z)f2(x− z),

for some 0−homogeneous functions f1, f2 and piecewise constant bounds C1, C2, see Section
8.4.2 in the Supplementary Material I [18] (contained in this paper). We consider four different
cases depending on the sign of r1/r2 and the size between |r1|, |r2|. We focus on the r1/r2 > 0
and r2 ≤ r1 to illustrate the ideas. In such a case, we can normalize r1 = 1 and 0 ≤ r2 ≤ 1.
Now the problem reduces to checking the inequality in 1D. Since these functions have monotone
properties, e.g. gi(1, r2) is decreasing in r2, these inequalities can be checked by partitioning
r2 ∈ [0, 1] into smaller intervals r2 ∈ [bi, bi+1], 0 = b0 < b1 < ... < bN = 1. For x ∈ Q1, z ∈ Q2,
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we can bound the ratio |z2−x2|/|x1− z1| using the piecewise upper and lower bounds for xi, zj .
Thus, for r2/r1 out of such a range, we do not need to check (5.51) for such a case, or we just
mark it as correct.

Note that when |x−z| is far away, we will have a much better estimate due to the improvement
from the sharp Hölder estimates in Lemmas 3.1-3.4. In practice, for x ∈ Qi1,i2z ∈ Qj1,j2 with
max(|i1 − j1|, |i2 − j2|) ≥ 15, we already have much better stability factors.

In Figure 9, we plot the piecewise rigorous estimates along the boundary with r2/r1 = 0.
Here, we consider x ∈ Ii × I0, z ∈ Ij × I0, j − i = 2, where Ii = [yi, yi+1] is a small interval.
This corresponds to the case where we have the smallest damping. Other cases with small j − i
are similar and the estimate is better. The estimate of the bad terms in the η1 equation is very
close to the one in the most singular scenario based on the sharp inequalities. In some cases, we
have better estimates since |x−z| is far away and the improvement of constants for the localized
velocity from Lemmas 3.1-3.3. For larger ratio |r2/r1|, we have larger stability factors than the
case of |r2/r1| being very small due to the anisotropy of the flow. See Section 2.7.2.
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Figure 9. Weighted Hölder estimates. Left figure: estimates near 0, x ∈
[0, 1.8]; Right figure: estimates in a larger domain, x ∈ [0, 30]. The red curves
show the coefficient of the damping term for δ(W1,1ψ1)g1(x−z) and the estimate
of the bad terms; the blue curves are for the Hölder estimate of W1,2ψ2. The
green curve is the same as the bound that we estimated in the most singular
scenario based on the sharp inequalities. The magenta and the black curves are
the stability factors in the Hölder estimate for ω1, η1. The stability factors are
larger than 0.08.

In Figure 10, we consider x ∈ Ii × I0, z ∈ Ij × I0 with j − i = 10. The stability factor for η1
shown by the black curve becomes much larger and is larger than 0.3.
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Figure 10. Weighted Hölder estimates with larger |x− z|
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5.5. Weighted L∞ estimates with growing weights. To close the nonlinear estimate in
(4.10), (4.21), we need to control ||ω||∞, ||∇θ||∞, ||W1,i||∞, ||∇u||L∞ . Since ϕ1 (5.21) decays for
large |x| (see (5.14)), the energy E2 (5.27) does not control ||W1,i||∞. Thus, we further perform
weighted L∞(ϕg,i) estimates with the following weights 1 . ϕgi stronger than ϕi in the far-field

(5.52)
ϕg1 = ϕ1 + p71|x|1/16, ϕg2 = ϕ2 + p81|x|1/4 + p82|x|1/3+αg,n ,

ϕg3 = ϕ3 + p91|x|1/4 + p92|x|αg,n , αg,n = 1/3 + 10−3.

Since we have established weighted L∞ and C1/2 stability estimates at the linear level, which
can be treated as a-priori bounds, the following estimate is relatively simple. The subscript “g”
is short for “grow”. For ϕg1, ϕg2, ϕg3, the main growing terms are |x|1/16, |x|1/4, and are used to
close the nonlinear weighted L∞ estimate. The last terms in ϕg2, ϕg3 have a larger growth rate
but with much smaller coefficients, p92 << p91, p82 << p81, and are used to close the nonlinear
C1/2 estimate. See (5.97).

To choose pij , we first check that the damping coefficients in the weighted L∞(ϕgi) estimate
(5.53)
dgi(x) = di,L(ϕgi), dg1(x) = Td(ϕg1) + c̄ω, dg2(x) = Td(ϕg2) + 2c̄ω − ūx, dg3(x) = Td(ϕg3) + 2c̄ω + ūx,

are negative and bounded by some di with di < 0, where Td is defined in (5.4). For |x| large
enough, since ū has sublinear growth and u is small, the leading order terms of dgi are given by

dg1 = c̄lα1 + c̄ω + l.o.t., dg2 = c̄lα2 + 2c̄ω + l.o.t., dg3 = c̄lα3 + 2c̄ω + l.o.t,

with c̄l ≈ 3, c̄ω ≈ 1, where αi is the exponent of the last power in ϕgi (5.52). In particular, the

main terms are negative. We can choose p71 = 1 and first determine the power p81|x|1/4, p91|x|1/4
in ϕg2, ϕg3 by setting p82 = p92 = 0 and to obtain a damping factor dgi < 0 not too close to 0.
Then we choose the last power p82|x|αg,n , p92|x|αg,n with much smaller parameters p82, p92, and
we still have dgi < 0, i = 2, 3 not too close to 0. The parameters are given in (C.4).

For some weight parameters τ2, µ4 to be determined, we consider a new energy

(5.54) E3(t) = max
(
E2(t), τ2 max(µ2||ω1ϕg1||∞, ||η1ϕg,2||∞, ||ξ1ϕg,3||∞)

)
,

where E2(t) is defined in (5.27). To control ||∇uA||L∞ , we further use ||ω1ϕg1||∞ and the Hölder
norm of ω1ψ1 to derive another estimate of uA,∇uA

(5.55) |ρijfij(x)| ≤ Cgij,1(x)||ωϕg1||∞ + Cgij,2(x)[ωψ1]C1/2
x

+ Cgij,3(x)[ωψ1]C1/2
y
,

where g is short for “grow”, f01 = uA, f10 = vA, etc similar to those in (5.15). Similar to
(5.17), we do not need the Hölder norm to control uA: Cgij,2(x) = Cgij,3(x) = 0, i + j = 1.
Since ϕg,i is growing, for large |x|, the above estimate is better than (5.22), and we can obtain
||fij ||L∞ . max(||ωϕg1||∞, [ωψ1]C1/2) from (5.55) with constant depending on the weights.

We optimize the estimates (5.55), (5.22) and use the energy E3 ≥ E1 to obtain

(5.56)

|ρijfij(x)| ≤ Cgij(τ2µ4)(x)E3(t)

Cgij(κ)(x) = min(Cgij,1(x)κ
−1 + Cgij,2(x)τ1 + Cgij,3(x)τ1g1(0, 1)

−1,

C(fij , [1, τ1, τ1g1(0, 1)
−1])).

Since τ1 has been chosen, Cgij depends on κ only. Performing weighted L∞(ϕgi) estimate yields

∂t(µg,iW1,iϕgi) + (c̄lx+ ū+ u) · ∇(µg,iW1,iϕgi) = −dgi(x)(µg,iW1,iϕgi) + µg,iBgi(x),

with νg = (τ2µ4, τ2, τ2) and damping terms di (5.53).
Using the energy E3 we can obtain pointwise bounds for ω1, η1, ξ1, e.g.

τ2µ4|ϕg1η| ≤ τ2µ4ϕg1(ϕ
−1
2 ||η1ϕ2||∞ ∧ τ−1

2 ϕ−1
g2 ||τ2ηϕg2||∞) ≤ µ4ϕg1(τ2ϕ

−1
2 ∧ ϕ−1

g2 )E3(t),

where a ∧ b = min(a, b). To simplify the notation, we introduce Tu,g similar to Tu in (5.18)

Tu,g(f, τ) = Cg01(τ)|fx|+ Cg01(τ)|fy |
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to control uA · ∇f . Applying the above pointwise bounds and (5.56) for uA,∇uA, we yield
(5.57)
κi|Bgi(x)| ≤ κiAgi(x)E3(t), i = 1, 2, 3,

τ2µ4Ag1 = µ4ϕg1(τ2ϕ
−1
2 ∧ ϕ−1

g2 ) + τ2µ4
ϕg1
ρ01

Tu,g(ω̄, τ2µ4),

τ2Ag2 = ϕg2|v̄x|(τ2ϕ−1
3 ∧ ϕ−1

g3 ) + τ2
ϕg2
ρ10

Tu,g(θ̄x, τ2µ4) + τ2
ϕg2
ψ1

(Cg11(τ2µ4)|θ̄x|+ Cg20(τ2µ4)|θ̄y |),

τ2Ag3 = ϕg3|ūy|(τ2ϕ−1
2 ∧ ϕ−1

g2 ) + τ2
ϕg3
ρ10

Tu,g(θ̄y, τ2µ4) + τ2
ϕg3
ψ1

(Cg02(τ2µ4)|θ̄x|+ Cg11(τ2µ4)|θ̄y|).

Now, the inequality (A.3) for |W1,iϕgi||∞ with weights (τ2µ4, τ2, τ2) reads

(5.58) −dg1(x)−µ4τ2Ag1 ≥ λ, −dg2(x)−τ2Ag2 ≥ λ, −dg3(x)−τ2Ag3 ≥ λ, dgi(x) = di,L(ϕgi),

for some λ > 0. We have chosen pij and the weights are fixed. Since the coefficients∇ω̄,∇θ̄,∇2θ̄,∇ū

decay and the second bound in (5.56) is independent of τ2, µ4, using the asymptotics of the
weights, one can obtain that the above estimates go to 0 as τ2 → 0 uniformly for µ4 ≤ 1, e.g.

ϕg2|v̄x|(τ2ϕ−1
3 ∧ ϕ−1

g3 ) → 0, τ2
ϕg2
ρ10

Tu,g(θ̄x, τ2µ4) → 0.

Thus, we can choose a small τ2 to first achieve the second and third stability condition in
(5.58) with λ similar to that in (5.23). Similarly, for a fixed τ2, as µ4 → 0, we get τ2µ4Ag1 → 0.
We can choose a small µ4 to achieve the first condition in (5.58). Note that we do not simply
set µ4 = 1 since it will force us to choose a smaller τ2 to satisfy all three conditions, which
lead to a weaker energy E3 (5.54) and larger constants in later nonlinear estimates. We adjust
τ2, µ4 under constraint (5.58) to obtain τ2, τ2µ4 not too small. The parameters τ2, µ4 are given
in (C.5). We remark that the choices of weights ϕgi and τ2, µ4 mainly affect the contants in
the nonlinear estimates in the far-field, e.g. |x| ≥ 104, since the weight ϕi (5.14) in the energy
(5.21), (5.54) is stronger than µg,iϕgi for |x| not very large. We can afford larger constants due
to much larger damping coefficients in the far-field.

5.6. Estimate of some linear functionals. In the previous sections, we have performed
the weighted L∞ and C1/2 estimates on W1,i for the main equations (5.1) and established the
stability estimates provided that (5.23), (5.58), (5.26), (5.51) hold. To close the energy estimates
of (4.21), we need to further estimate the residual operators R (4.20). The error part related to

the approximate solution constructed numerically, e.g. F̂i(0) − F̄i, will be estimated in Section
3 of Part II [15]. To control R, we need to control the functional ai(W ) and anl,i(W ).

For the linear functional ai(W ), we have two types. The first type is cω(ω1) from K1i(ω1)

(4.11). The second type is from Ki2(ω1) (4.13) for the approximation of ũ, ∇̃u (4.37), (4.29),

(4.38). For anl,i defined in (4.18), we need to control cω(W1 + Ŵ2) and ∂2(W1 + Ŵ2)(0). For
the second type of term, it is given by the integral

∫

R
2
++

ω1(y)p(y)dy

for some function p(y) that has a fast decay, e.g. it has a decay rate |y|−4. We have two

equivalent formulas (4.29), (4.39) (4.37), (4.40) for approximating ũ, ∇̃u. Then we estimate it
directly using the norms ||ωϕ1||∞, ||ωϕg1||∞ in the energy and pointwise estimate (5.59).

Next, we estimate cω(ω1), cω(ω1 + ω̂2), ∂
2(W1 + Ŵ2)(0). With the estimates of these terms,

since the coefficients in (4.29), (4.39) (4.37), (4.40), e.g. Cf (x)χi, CfSi, are given smooth func-
tions with the appropriate vanishing order near x = 0, we can estimate their derivatives and

weighted norms following Appendix E of Part II [15] and then obtain the estimate of û, ∇̂u

(4.38).
From the definition of the energy (5.21), (5.54), we have the pointwise control

(5.59)
|W1,i(x)| ≤ ϕ−1

Mi(x)E3(t), W1,1 = ω1, Wi,2 = η1, Wi,3 = ξ1,

ϕM1(x) , max(ϕ1(x), τ2µ4ϕg1(x)), ϕMi(x) , max(ϕi(x), τ2ϕgi(x)), i = 2, 3.
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Recall the inner product (2.22). Controlling the normalization factor (2.26)

(5.60) cω(ω) = ux(0) = − 4

π

∫

R
++
2

y1y2
|y|4 ω(y)dy = − 4

π
〈ω, f∗〉, f∗(y) =

y1y2
|y|4 .

effectively is nontrivial since the integrand y1y2
|y|4 decays slowly (it is not in L1) and our weight

for ω1 is very weak in the far-field. See (5.52) and (5.54). If we use the pointwise estimate
(5.59) directly to bound the integral, we get |cω(ω1)| ≤ C1E3 with C1 about 170− 300, which
contributes directly to the main nonlinear terms. See the discussion around (5.94). Although
this estimate only enters the energy estimates via the residual operators and nonlinear terms,
a larger constant forces us to obtain a smaller residual error in the computation to close the
estimates. To ease the computation burden, we seek a more effective estimate based on the ODE
of cω(ω1). For the same reason, we also derive a sharper estimate of cω(ω) in Section 5.6.2.

5.6.1. Controlling of cω(ω1). Following [17,20], we perform the estimates based on the ODE of
cω. Using the main equations (5.1) and (4.21) we can derive the evolution of 〈ω1, f∗〉, 〈η1, f∗〉

(5.61)

d

dt
〈ω1, f∗〉 = c̄ω〈ω1, f∗〉+ 〈η1, f∗〉+ 〈Γ1, f∗〉,

d

dt
〈η1, f∗〉 = 2c̄ω〈η1, f∗〉+ 〈Γ2, f∗〉,

〈Γ1, f∗〉 , 〈Γ1,M +N1 + F1 −NF1 −R1, f∗〉, Γ1,M = −(c̄lx+ ū) · ∇ω1 − uA · ∇ω̄,
〈Γ2, f∗〉 , 〈Γ2,M +N2 + F̄2 −NF2 −R2, f∗〉, Γ2,M = −(c̄lx+ ū) · ∇η1 +B2(W1),

where 〈·, ·〉 (2.22) is the standard inner product on R2
++, B2(W1) denotes the bad term (5.5),

and Ni, F̄i, NFi,Ri are the nonlinear terms (2.18), residual error (2.19), rank-one correction
(4.11), and residual operator (4.20). The transport term u · ∇W1,i in (5.1) is contained in Ni

(2.18). We derive the ODE of 〈η1, ϕ∗〉 to control it in the first equation. The main terms for Γi
are given by Γi,M from the main linearized equations (5.1). Using integration by parts, we get

(5.62) −
∫
(c̄ly + ū) · ∇g(y)f∗(y)dy =

∫
g(y)∇ · ((c̄ly + ū)f∗(y))dy =

∫
g(y)ū · ∇f∗(y)dy,

where we have used ∇· (yf∗(y)) = 0, which is an algebraic property of f∗ (5.60), and ∇· (ūf∗) =
ū · ∇f∗.

The first terms on the right hand side are damping terms since c̄ω ≈ −1. The advantage of
the above ODE system is that the integrands in the linear part, e.g. g(y)ū · ∇f∗, have faster
decay than g(y)ϕ∗ since ū grows sublinearly O(|x|γ) with γ ≈ 2

3 . For the nonlocal terms in
(5.61) and B2 (5.5) involving uA,∇uA, we apply the estimates (5.56). For the local terms in
(5.61) B2 (5.5) other than 〈ω1, f∗〉, 〈η1, f∗〉, we use (5.59) to estimate them.

For the nonlinear and error terms (5.61), we treat them as perturbation and estimate them
using integration by parts and pointwise estimate similar to those for 〈uA · ∇ω̄, f∗〉 and (5.62).

Improvement. We can further improve the above estimate by decomposing

(5.63) 〈ω1, f∗〉 = 〈ω1, χodef∗〉+ 〈ω1, (1−χode)f∗〉, 〈η1, f∗〉 = 〈η1, χodef∗〉+ 〈η1, (1−χode)f∗〉,
where χode is a smooth cutoff function supported away from the origin. We derive the ODEs for
〈ω1, χodef∗〉, 〈η1, χodef∗〉 similar to (5.61), and perform energy estimates on these terms. The
main difference is the advection term. Instead of having (5.62), we yield

−
∫
(c̄ly + ū) · ∇g(y)(f∗χode)(y)dy =

∫
g(y)∇ · ((c̄ly + ū)f∗χode)dy.

Out of the support of 1 − χode, we get χode = 1 and yield the same integrand as (5.62). For
〈ω1, (1 − χode)f∗〉 with integrand supported near 0, we estimate it directly using the pointwise
estimate (5.59). We perform the above decomposition since the estimate via the ODE system
is only more effective than the pointwise estimate (5.59) to the control the far-field part of the
integral

∫
ω1f∗ since the integrand in the ODE system has faster decay. We choose

(5.64) χode(x, y) = 1− χe((x− ν31)/ν31)χe((y − ν32)/ν32), ν31 = 80, ν32 = 1200,
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where χe is the cutoff function defined in (C.6). Following the estimates discussed above and
using (5.54), we can control the main part as follows

(5.65) |〈Γi,M , f∗χode〉| ≤ µ5i,1E3(t), i = 1, 2,

for some constant µ51,i. At this step, if we neglect the remaining parts 〈Γi − Γi,M , f∗〉 from the
residual error and nonlinear terms which are much smaller, according to (A.3), we can choose
small µ52 and then µ51

(5.66) µ52µ52,1 < |2c̄ω|, µ51(µ51,1 + µ−1
52 ) < |c̄ω|, Enew = max(E3, µ51m1, µ52m2),

and obtain linear stability for Enew . The factor µ51,1 + µ−1
52 comes from 〈η1 + Γ1,M , f∗〉 ≤

(µ51,1+µ
−1
52 )Enew . To close the nonlinear estimates (A.11), due to the remaining terms, we will

choose a slightly smaller weights. The weights are mostly determined by the above estimates.

5.6.2. Controlling cω(ω). Recall that W1 + Ŵ2 = (ω, η, ξ) is the solution to (4.10) and cω(ω) =

cω(W1) + cω(Ŵ2). We use similar ideas to estimate cω(ω) by deriving the ODEs of cω(ω1)

and cω(Ŵ2) separately. We have derived the ODE of cω(ω1) in (5.61). For cω(Ŵ2), since

bi(s) , ai(W1(s), Ŵ2(s)) depending on (W1, Ŵ2) in (4.19) is spatial-independent, we use the
formula (4.19) and linearity to get

(5.67) cω(Ŵ2) = ux(Ŵ2)(0) =
∑

i≤n1+3

∫ t∧Ti

0

bi(t− s)cω(F̂i)(s)ds ,
∑

i≤n1+3

Ii, bi = ai(W1, Ŵ2).

We add the constraint s ≤ Ti in the integral since the term cω(F̂i)(t) we constructed is supported

in [0, Ti]. See Section 3.5 of Part II [15]. We label the first approximation term as a1(s)F̂1 =

cω(W1(s))f̄cω,i chosen in (4.11). To simplify the notation, we denote bn1+iF̂n1+i = anl,iF̂χ,i(t−
s), i = 1, 2, 3. For each term Ii, taking derivatives and using ∂tbi(t − s) = −∂sbi(t − s) and
integration by parts, we yield

d

dt
Ii = 1t<Tibi(t− t ∧ Ti)cω(F̂i(t ∧ Ti)) +

∫ t∧Ti

0

−∂sbi(t− s)cω(F̂i(s))ds

= 1t<Tibi(t− t ∧ Ti)cω(F̂i(t ∧ Ti)) +
∫ t∧Ti

0

bi(t− s)∂scω(F̂i(s))ds

− bi(t− t ∧ Ti)cω(F̂i(t ∧ Ti)) + bi(t)cω(F̂i(0))

= bi(t)cω(F̂i(0)) + 1t≥Tibi(t− Ti)cω(F̂i(Ti)) +

∫ t∧Ti

0

bi(t− s)∂scω(F̂i(s))ds

, bi(t)cω(F̂i(0)) + Ib,i.

The term Ib,i is treated as a bad term. For i = 1, the term b1(t)cω(F̂1(0)) with cω(F̂1(0)) ≈ −2.5
provides an additional damping term for b1(t) = cω(W1(t)), which is the main reason why we

combine the estimate of cω(W1) and cω(Ŵ2). Denote

λ̄cω = cω(F̂1(0)) + c̄ω, Bcω,1 =
4

π
〈Γ1, f∗〉.

Since cω(g) = − 4
π 〈g, f∗〉 (5.60), multiplying (5.61) by − 4

π and then combining it with the

above derivations for cω(Ŵ2), we get

d

dt
(cω(W1) + cω(Ŵ2)) = c̄ωcω(W1) +Bcω,1 −

4

π
〈η1, f∗〉+ cω(F̂1(0))b1(t) +

∑

i≥2

cω(F̂i(0))bi(t) +
∑

i≥1

Ib,i.
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Since b1(t) = cω(W1(t)), we can combine the two terms of cω(W1). Adding λ̄cωcω(Ŵ2) and

subtracting it on the RHS using (5.67), and then using ω =W1 + Ŵ2, we yield

(5.68)

d

dt
cω(ω) = λ̄cωcω(ω) +Bcω,1 −

4

π
〈η1, f∗〉+

∑

i≥2

cω(F̂i(0))bi(t)

+
∑

i≥1

1t≥Tibi(t− Ti)cω(F̂i(Ti)) +

∫ t∧Ti

0

bi(t− s)(∂scω(F̂i(s))− λ̄cωcω(F̂i(s)))ds.

We estimate Bcω,1 using the method in Section 5.6.1, and bi(s) using the bootstrap bounds
(5.78). For 4

π 〈η1, f∗〉, we use the ODE (5.61) and the method in Section 5.6.1. The approximate

terms cω(F̂i(Ti)), ∂scω(F̂i(s)) − λ̄cωcω(F̂i(s)) are piecewise cubic polynomials constructed nu-
merically, which we can estimate using the method in Section 5.7. We have estimated cω(W1) in
Section 5.6.1 at the linear level. Using the above estimates and following the discussion around
(5.66), at the linear level, we can determine the weights for cω(ω) and 〈η1, f∗〉 in the energy.

If we estimate cω(W1), cω(Ŵ2) separately, we need to add a much smaller weight for cω(ω) in
the energy, which leads to a constant about three times larger for the nonlinear estimates.

5.6.3. Controlling ωxy(0), ηxy(0), ξxx(0). To control ωxy(0), ηxy(0), ξxx(0), we first note that
ηxy(0) = ξxx(0) = θxxy(0) since the solution to (4.10) satisfies η = θx, ξ = θy (2.27).

Recall the ODEs for the full solution ωxy(0), θxxy(0) in (4.12). Linearizing it around the
approximate steady state and using the normalization conditions (2.26), (2.29), we yield the
equations for the perturbations

(5.69)

d

dt
ωxy(0) = (−2c̄l + c̄ω)ωxy(0) + θxxy(0) + cωω̄xy(0) + cωωxy(0) + ∂̄xyF1(0),

d

dt
θxxy(0) = (−2c̄l + 2c̄ω − ūx(0))θxxy(0) + cω θ̄xxy(0) + cωθxxy(0) + ∂̄xyF2(0),

where F̄i is defined in (2.19). Note that the matrix involving ωxy(0), θxxy(0) has negative
eigenvalues. We can first estimate θxxy(0) and then ωxy(0). Using the above ODEs, at the
linear level, we can determine the weights for θxxy(0), ωxy(0) in the energy.

To handle the nonlinear and error terms in (5.61), the ODE of cω, and (5.69) later, we choose
the weights of the functionals in Sections 5.6.1, 5.6.2 in the energy slightly smaller than those
determined by the linear estimates, and define the final energy E4(t)

(5.70)
E4(t) , max

(
E3(t), µ

−1
51 |cω(ω1χode)|, µ−1

52 |cω(η1χode)|, µ−1
6 |cω(ω)|, µ−1

62 |cω(η1)|,

µ−1
7 |θxxy(0)|, µ−1

8 |ωxy(0)|
)
, µ6 = 61, µ7 = 9.5, µ8 = 4.5,

where the energy E3 is defined in (5.54), χode is defined in (5.64), µij are given in (C.5),
and we have used the notation (5.60) to simplify the functionals estimated in Section 5.6.1.
See also (5.21), (5.27). We remark that the variables cω(ω1χ), cω(η1χ), cω(η1) and parameters
µ51, µ52, µ62 are intermediate parameters and are used only in the ODEs in Sections 5.6.1, 5.6.2
along with (5.63) to control

(5.71) |cω(ω1)| < µ5E4, |cω(ω)| < µ6E4, µ5 = 76.

To estimate the nonlinear mode anl,i(W1 + Ŵ2) for (4.11), we impose the bootstrap bound

(5.72) |cωωxy(0) + ∂xyF̄1(0)| < 5µ6 · E∗, |cωθxxy(0) + ∂xyF̄2(0)| < 10µ6 · E∗,

where E∗ will be chosen in (5.101). Under the bootstrap assumptions E4(t) < E∗, we will verify
the stronger estimate

(5.73)
|cωωxy(0) + ∂xyF̄1(0)| < µ8µ6E∗ + |∂xyF̄1(0)| < 5µ6E∗,

|cωθxxy(0) + ∂xyF̄2(0)| < µ7µ6E∗ + |∂xyF̄2(0)| < 10µ6E∗.
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5.7. Estimate Ŵ2 and the residual operator. Using the method in Section 3 in part II,
for intial data Ḡi(0) = F̄i(0), F̄χ,i given in Appendix C.2.1 and the spatial independent factors
bi(s) = ai(W1(s)), anl,i(W (s)) in (4.20), (4.19), we construct an approximate space-time solution

F̂i, Ŵ2 and its associate approximate stream function φ̂N ) and error ε̂
(5.74)

Ŵ2 =
∑

i≤n

∫
bi(t−s)Ĝi(s)ds, φ̂N =

∑

i≤n

∫
bi(t−s)φ̂Ni (s)ds, ε̂ =

∑

i≤n

∫
bi(t−s)(Ĝi+∆φ̂Ni )(s)ds,

with residual error in the j-th equation given by
(5.75)

Rj(t) = Rloc,0,j(t) +Rε̄
j −D2

jRε̄
j(0)fj,2 +Rε̂

j −D2
jRε̂

j(0)fj2, D2 = (∂xy, ∂xy, ∂xx),

Rloc,0,j =
∑

i≤n

∫ t

0

ci(t− s)Rnum,i,j(s)ds, Rε̄
j = Bop,j(u(ε̄), Ŵ2), Rε̂

j = Bop,j(u(ε̂), W̄ ),

where W̄ , χi2 are given in (5.3), (C.9), and ε̄ = ω̄ − (−∆)φ̄N is given in (5.80), Rnum,i =

O(|x|3) depends on the numerical solution φ̂Ni , Ĝi locally, and we have absorbed the initial error

Ĝi − Ḡi(0) (see (4.20)) in Rnum. Moreover, in Part II, we have estimated

(5.76)

∫ ∞

0

|∂ix∂jyfl(s)|ds, fl = F̂k,l, φ̂
N
i , Ĝi, Ĝi +∆φNi , Rnum,l.

For later estimates, we add and subtract fχ,j in Rε̄
j in (5.75)

(5.77) Rj(t) = Rloc,0,j(t)+D
2
jRε̄

j(0)(fχ,2−fj,2)+
(
Rε̄
j−D2

jRε̄
j(0)fχ,2

)
+
(
Rε̂
j−D2

jRε̂
j(0)fj2

)
.

We can control the spatial-independent factor bi(s) using the energy estimate |bi(s)| < ciE4(s)
discussed in Section 5.6. Since we will use a bootstrap argument to show that E4(s) < E∗ for
all time s, under such an assumption we have

(5.78) |bi(s)| ≤ ciE4(t)

for some threshold E∗ to be determined. Then we can control the local terms, e.g.
(5.79)

|∂ix∂jyRloc,j(t)| ≤
∑

i≤n
sup
s<t

|bi(s)|
∫ t

0

|∂ix∂jyRnum,l(s)|ds ≤ E4(t) ·
∑

i≤n
|ci|

∫ ∞

0

|∂ix∂jyRnum,l(s)|ds,

uniformly in t using monotonicity. The error and similar quantities are integrable in time since
the approximate solution Ĝi(s) and residual error R̂num,i can be decomposed into Ai(t)+Bi(t)
with Ai(t) compactly supported in time, and Bi(t) decays exponentially fast in t. See Section
3.5 of Part II [15] for more discussions. Moreover, we completely decouple the numerical solution

R̂i and the time-depend factor bi(t).

Remark 5.3. Using linearity and the triangle inequality, we can assemble the estimates for

R from the estimates of each mode
∫ t
0 bi(s)R̂i(t − s)ds. In practice, this means that we can

implement the above estimate for each individual mode completely in parallel.

Although we estimate ∂α1 ∂
β
2G, ∂

α
1 ∂

β
2R (5.74), (5.75) by applying triangle inequality and com-

bining the estimates of different modes (5.79), such an estimate does not lead to a constant of
O(n) since different solutions are large in different regions. In fact, when we construct approx-
imations for the velocity in Section 4.3, we apply some partition of unity. The coefficients of
different approximations are large in different regions. These coefficients are the initial condi-
tions for the approximate solution (4.19) (see Appendix C.2.1). We can exploit these properties
in the above estimates for R, G (5.79) and do not obtain a large constant.

5.8. Estimate of the nonlocal error and modified decomposition. To construct the
approximate steady state for the velocity, since ū = ∇⊥φ̄, φ̄ = (−∆)−1ω̄ depend on ω̄ nonlocally,
we solve −∆φ̄ = ω̄ numerically to obtain the numerical stream function φ̄N (see Section 7),
which has an error. In the residual operator, we have a similar error (5.74). To estimate these
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errors effectively, we combine the estimates of nonlocal error and u(ω) in the energy estimate.
Other errors depend on the numerical bases locally, e.g. piecewise polynomials and semi-analytic
functions, which we can estimate using standard numerical analysis and the methods in Section
3.6 in Part II [15]. Denote

(5.80) ε̄ = ω̄ − (−∆)φ̄N , ūN = u(−∆φ̄N ) = ∇⊥φ̄N , c̄Nω = ūNx (0) +
c̄l
2
.

We introduce c̄Nω since c̄ω chosen in (2.11) depends on ux(ω̄)(0). The solution φ̄
N we constructed

only satisfies ε̄ = O(|x|2). Recall the finite rank approximation û, ∇̂u (4.38). To apply the
functional inequalities to u(ε̄), we correct ε̄ near 0. Similar consideration applies to ε̂ (5.74).
For an error ε = ε̄ or ε̂, and some cutoff function χε = 1 +O(|x|4) near 0, we decompose

(5.81)
ε = ε1 + ε2, ε2 = εxy(0)∆(

x3y

2
χε), u(ε2) = ∇⊥(−∆)−1ε2 =

1

2
εxy(0)∇⊥(x3yχε),

u(ε) = u(ε1) + u(ε2) = uA(ε1) + û(ε1) + u(ε2), ux(ε)(0) = ux(ε1)(0),

where ux(ε2)(0) = −εxy(0)/2 · ∂y(x3yχε)|x,y=0 = 0. We perform a similar decomposition for
∇u(ε). We choose χε in the above form such that ε2 = χxy(0)xy + O(|x|4) and we can obtain
u(χε) explicitly. We choose χε̄ for ε̄ and χε̂ for ε̂ in (C.9) and they have different parameters.
We obtain weighted L∞ estimate of uA(ε1) and C

1/2 estimate of ψ1(∇u)A(ε1), ψuuA(ε1) with
ε1 = ε̄1, ε̂1 using the functional inequalities in Lemma 2.2 with norms ||ωϕelli||∞, [ωψ1]C1/2

xi

(C.2), (C.1).
Let ω be the perturbation without decomposition. Recall u(f) = uA(f) + û(f) = uA(f) +

ux(f)(0)(x,−y)+ ˜̂u(f) from (4.8), (4.38), (5.2). We combine these errors and perturbations and
perform the following decompositions

(5.82)
U = (U, V ) = u(ω + ε̄), UA = uA(ω1 + ε̄1 + ε̂1), U = UA + Ux(0)(x,−y) +Uapp,

Uapp = ˜̂u(ω1 + ε̄1 + ε̂1) + u(ε̄2 + ε̂2) + ũ(−∆φ̂N ).

We do not put u((−∆)φ̂N ) in UA, and use UA to denote the variable we estimate using Lemma
2.2. Similarly, we decompose ∇U and define (∇U)A, (∇U)app. The term Uapp is more regular,

and will be used later in Section 5.9 for nonlinear estimate. The terms û(ε1), ˜̂u(ε1),u(ε2), ε = ε̄, ε̂
only depend on ε via εxy(0) and finite many integrals (< 50) (4.38) with smooth coefficients.
We estimate the piecewise bounds of ε following Section 3.6 in Part II [15], then estimate these

integrals and piecewise C3 bounds of these terms. We estimate ˜̂u(ω1) following Section 5.6 and

u(φ̂N ) = ∇⊥φ̂N using (5.76), (5.79). We factor out Ux(0)(x,−y) in (5.82) since our estimate
for such a term is larger than others. See Section 5.9.1. Since we have piecewise bounds of ε̂ by
Cε(x)E4 (5.76), (5.79), (5.78) and of ε̄ by Cε̄(x) with very small Cε̄(x), when we combine the
estimates of ω, ε, ε̂, the upper bounds of U are given by, e.g.

(5.83) |UA(x)| ≤ C(x)E1 + Cε(x)E4 + Cε̄(x).

To verify nonlinear stability (A.11), we further bound E1, E4 by the bootstrap threshold E∗
(5.101). Then the above upper bound become a concrete value. In practice, we track this value
to combine the estimate of u(ω),u(ε̄),u(ε̂).

From (2.11), (2.12) and the above decomposition, we have

(5.84) ū , u(ω̄) = ūN + u(ε̄), u(ω + ω̄) = ūN +U, c̄ω + cω(ω) = c̄Nω + Ux(0).

Next, we use the above decomposition and (5.75),(5.77) to rewrite the decomposition (4.21).

Modified nonlinear terms. Firstly, we combine the nonlocal error from I − D2
i I(0)fχ,i for

I = Bop,i(u(ε̄), Ŵ2) from the residual operator (5.75),(5.77), (4.21), the terms involving u(ε̄) in
the linearized equations of (5.1), (5.5)

(5.85)

− u(ε̄) · ∇ω1 + cω(ω̄)ω1 = Bop,1(u(ε̄),W1),

− u(ε̄) · ∇η1 + 2cω(ω̄)η1 − ux(ε̄)η1 − vx(ε̄)ξ1 = Bop,2(u(ε̄),W1),

− u(ε̄) · ∇ξ1 + 2cω(ω̄)ξ1 − uy(ε̄)η1 − vy(ε̄)ξ1 = Bop,3(u(ε̄),W1),
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which has vanishing order O(|x|3) and thus D2
iBop,i(u(ε̄),W1)(0) = 0, and the nonlinear term

Ni (2.18) with the nonlinear rank-one correction (4.11) in (4.21), we yield

(5.86)

Ii = Bop,i(u(ε̄), Ŵ2) + Bop,i(u(ε̄),W1) + Bop,i(u(ω), (ω, η, ξ))
= Bop,i(u(ε̄) + u(ω), (ω, η, ξ)) = Bop,i(U, (ω, η, ξ)),

Ñi = Ii −D2
i Ii(0)fχ,i = Bop,i(U,W1) + Bop,i(U, Ŵ2)− Ux(0)D

2
i (W1,i + Ŵ2,i)(0)fχ,i,

where we have usedW1+Ŵ2 = (ω, η, ξ), D2 = (∂xy, ∂xy, ∂
2
x), the fact that Bopi (2.17) is bilinear,

and U = Ux(0)(x,−y) +O(|x|2), ω, η, ξ = O(|x|2) to obtain

D2
iBop,i(U, (ω, η, ξ))(0) = Ux(0)Vi, V = (∂xyω(0), ∂xyη(0), ∂xxξ(0)).

We remark that the full solution η = θx, ξ = θy satisfies ηy = ξx.

Modified residual error. We decompose residual error (2.19) and the remaining part in (5.77)
(see also (5.75)) into the essentially local part and nonlocl part. Recall the general bilinear
operator (2.16) Bop(uA, (∇u)A, G). We decomposed ū = u(ω̄) = (ū − uA(ε̄1)) + uA(ε̄1) (5.81)
and modify (2.19), (4.21) by replacing ū by ūN − uA(ε̄1)

(5.87)

F̄loc,i = IIi −D2
i IIi(0)fχ,i = IIi −D2

i F̄i(0)fχ,i,
IIi = F̄i − Bop,i((uA(ε̄1), (∇u)A(ε̄1)), W̄ ),

II1 = −(c̄lx+ ū− uA(ε̄1)) · ∇ω̄ + θ̄x + c̄ωω̄,

II2 = −(c̄lx+ ū− uA(ε̄1)) · ∇θ̄x + 2c̄ωθ̄x − (ūx − ux,A(ε̄1))θ̄x − (v̄x − vx,A(ε̄1))θ̄y ,

II3 = −(c̄lx+ ū− uA(ε̄1)) · ∇θ̄y + 2c̄ωθ̄y − (ūy − uy,A(ε̄1))θ̄x − (v̄y − vy,A(ε̄1))θ̄y.

From our construction in Section 4.3, we have uA = O(|x|3), (∇u)A = 0. Thus we have
D2
i IIi(0) = D2

i F̄i(0). From (5.81), (5.84) and the discussion below, the above error F̄loc,i es-
sentially depends on the numerical construction locally. Similarly, we decompose the remaining
part of the residual error in (5.75) as follows

(5.88)
Rloc,i = Rloc,0,i +D2

i Bop,i(u(ε̄), Ŵ2)(0)(χi2 − fχ,i)

+ Bop,i(u(ε̂), W̄ )−D2
iBop,i(u(ε̂), W̄ )(0)fi2 − Bop,i(uA(ε̂1), (∇u)A(ε̂1), W̄ ).

The remaining part Bop,i(u(ε̂), W̄ )− Bop,i(uA(ε̂1), (∇u)A(ε̂1), W̄ ). is essentially local.

Modified bad terms. Recall UA from (5.82). We combine the terms uA(ε̂1) (5.88), uA(ε̄1)
(5.87) and the bad terms (5.5) with ū replaced by ūN

(5.89)

Bmodi,i(x) = Bi(x)− Bop,i(u(ω̄),W1) + Bop,i(uA(ε̄), (∇u)A(ε̄), W̄ )

+ Bop,i(uA(ε̂), (∇u)A(ε̂), W̄ ),

Bmodi,1(x) , η1 −UA · ∇ω̄, Bmodi,2(x) , −v̄Nx ξ1 −UA · ∇θ̄x −Ux,A · ∇θ̄,
Bmodi,3(x) , −ūNy η1 −UA · ∇θ̄y −Uy,A · ∇θ̄.

We replace ū by ūN since we put the difference u(ε̄) to (5.86).
Using the above decompositions, we modify the linearized equations of (4.21), (5.1) as follows

(5.90)

∂tω1 + (c̄lx+ ūN ) · ∇ω1 = c̄Nω ω1 +Bmodi,1 + Ñ1 + F̄loc,1 −Rloc,1,

∂tη1 + (c̄lx+ ūN ) · ∇η1 = (2c̄Nω − ūNx )η1 +Bmodi,2 + Ñ2 + F̄loc,2 −Rloc,2,

∂tξ1 + (c̄lx+ ūN ) · ∇ξ1 = (2c̄Nω − v̄Nx )ξ1 +Bmodi,3 + Ñ3 + F̄loc,3 −Rloc,3.

The linear energy estimates in Sections 5.3-5.6 can be rederived directly for (5.90) in terms of
ūN , c̄Nω , and we obtain (D.4), (D.8), (D.11). Note that we also modify the damping coefficients
di,L (5.4) to dnumi,L (D.3).

Remark 5.4. The errors ε̂1, ε̄1 (5.81) are much smaller than ω1 at the bootstrap threshold
E∗ (5.101) in the region where we have small damping factor. We combine the estimates of
error terms (5.81) and the perturbation to simplify the nonlocal error estimate significantly. For
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readability, the reader can simply treat ε̂1, ε̄1 as 0 and ūN = ū = u(ω̄),U = u(ω),UA = uA(ω1).
We do not apply standard estimates for the operator ∇⊥(−∆)−1ε,∇∇⊥(−∆)−1(ε) to obtain
the error bounds of u(ε),∇u(ε) from those of ε since such error estimates are not small enough
to close the estimate, and we need weighted estimates for the error.

Using (5.79) and the methods in Section 3.6 and following the estimate in Appendix C.4 of
Part II [15], we can control the local part of the residual operator Rloc,i (5.88). In Figure 11, we
plot the rigorous piecewise L∞(ϕi) bound Ckl for Rloc,i ≤ CklE4 in [yk, yk+1] × [yl, yl+1]] with
adaptive mesh yk in Section 7.

In the near-field |x| ≤ 104 < y550, we have Rloc,1ϕ1 ≤ 0.008E4,Rloc,2ϕ2 ≤ 0.009E4. We
have |Rloc,3|ϕ3 ≤ 0.002E4 for x in the mesh. The near-field region with a large weighted error
is about [0, y100]

2 with y100 ≈ 0.4863. In such a region, the error is much smaller than the
remaining damping part in the weighted L∞(ϕi) estimate. See Figure 6. In the far-field region
with a large weighted error (R1φ1 ≤ 0.016E4,R2φ2 ≤ 0.009E4), we have |x| ≥ 104 and have a
large damping coefficient. We can further reduce the error in the far-field by performing error
estimates with a finer mesh and use a larger computational domain. The estimate from the
nonlinear modes Rnl (4.20) is very small compared to the above bounds, and we have bounded
it under the bootstrap assumption E4 < E∗ = 5 · 10−6, which will be discussed in Section 5.9.

Figure 11. Weighted estimate of the local residual operator under adaptive
mesh. Left: piecewise rigorous bound for Rloc,1ϕ1 in the ω equation. Right:
piecewise rigorous bound for Rloc,2ϕ2 in the η equation.

Using the piecewise weighted L∞ and C1 bound of Rloc,i and the method in Appendix E of

Part II [15], we derive the piecewise C
1/2
xi estimate of Rloc,iψi. We combine the Hölder estimate

of Rloc,iψi with the energy estimate in Section 5.4. Such an estimate is very small compared to
the least damping coefficients (near x = (0.5, 0) see Figure 9) since the estimates of Rloc,i are

much smaller near x = (0.5, 0), and we have a small factor τ−1
1 for Rloc,iψi from the weight τ1

in E2 (5.27) in the weighted Hölder energy estimate.

5.9. Nonlinear estimates. Using the energy E4 (5.70), we can control the L∞ norm of

W1,i,∇U, Ŵ2 following Sections 5.6, 5.7 and close the nonlinear estimates. To establish nonlin-
ear stability, we need to check the condition (A.11). The nonlinear estimates to be established
are similar to the following

d

dt
E4 ≤ −λE4 + CE2

4 + ε.

Here, −λE2
4 with λ > 0 comes from linear stability, CE2

4 with some constant C(ω̄, θ̄, ψ, ϕ) > 0
controls the nonlinear terms, and ε is the weighted norm of the residual error of the approximate
steady state. To close the bootstrap argument E4(t) < E∗ with some threshold E∗ > 0, a
sufficient condition is that ε < ε∗ = λ2/(4C), which provides an upper bound on the required
accuracy of the approximate steady state. Condition (A.11) provides similar constraints on
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the error ε̄(x) for different x. A significant difference between this step and the previous linear
stability estimate is that we have a small parameter ε. As long as ε is sufficiently small, thanks to
the linear damping term −λE4, we can afford a large constant C(ω̄, θ̄, ψ, ϕ) in the estimate of the
nonlinear terms and close the nonlinear estimates. We discuss the construction of approximate
steady state with small error ε in Section 7. We refer more discussion of this philosophy to [19,20].
Thus, the nonlinear stability estimate of W1 = (ω1, η1, ξ1) in (4.21) is much simpler.

We perform energy estimate on (5.90) modifying the decomposition in (4.21). In the estimate
of the weighted quantity W1,iρ, we have

(5.91) ρ(U · ∇W1,i) = U · ∇(W1,iρ) + ρ−1(U · ∇ρ)(ω1ρ), Td,N (ρ) , ρ−1(U · ∇ρ).
From Lemma A.2, we do not need to estimate the first advection term. See (5.6) and (5.4).

Using the above computation, the decomposition (5.82) U = Ũ+ Ux(0)(x,−y) and rewriting

2Ux(0)η1−Uxη1−Vxξ1 = Ux(0)η1−Ũxη1−Ṽxξ1, 2Ux(0)ξ1−Uyη1−Vyξ1 = 3Ux(0)ξ1−Ũyη1−Ṽyξ1
in Bop,i(U,W1) (5.86), (2.17), we need to estimate the following nonlinear terms
(5.92)

Ñ1(ρ1) =(U · ∇ρ1) · ω1 + Ux(0)ω1ρ1 + Bop,3(U, Ŵ2)ρ1 − Ux(0)ωxy(0)fχ,1ρ1,

Ñ2(ρ2) =(U · ∇ρ2) · η1 + (Ux(0)η1 − Ũxη1 − Ṽxξ1)ρ2 + Bop,2(U, Ŵ2)ρ2 − Ux(0)ηxy(0)fχ,2ρ2,

Ñ3(ρ3) =(U · ∇ρ3) · ξ1 + (3Ux(0)ξ1 − Ũyη1 − Ṽyξ1)ρ3 + Bop,3(U, Ŵ2)ρ3 − Ux(0)ξxx(0)fχ,3ρ3.

Recall from the discussion in Section 4.2.4 that ω = ω1 + ω̂2 and ω1 = O(|x|3) near 0. We

have ωxy(0) = ∂xyω̂20. Using (2.17), (5.82), we further decompose the nonlinear terms of U, Ŵ2

(5.93)

Bop,i(U, Ŵ2)− Ux(0)D
2
i Ŵ2,i(0)fχ,i = Bop,i(Ũ, Ŵ2) + IIi,

IIi = Bop,i(Ux(0)(x,−y), Ŵ2)− Ux(0)D
2
i Ŵ2,i(0)fχ,i = Ux(0)Ŵ2,i,M ,

Ŵ2,·,M = (ω̂2, η̂2, ξ̂2), ω̂2,M , ω̂2 − x∂xω̂2 + y∂yω̂2 − ω̂2,xy(0)fχ,1,

η̂2,M , η̂2 − x∂xη̂2 + y∂yη̂2 − η̂2,xy(0)fχ,2, ξ̂2,M , 3ξ̂2 − x∂xξ̂2 + y∂y ξ̂2 − ξ̂2,xx(0)fχ,3.

Note that in Bop,i(Ũ, Ŵ2) in (2.17), the term Ũx(0) = 0 vanishes.
Using the above derivations and (5.90), for C·(x) = (c̄Nω , 2c̄

N
ω − ūNx , 2c̄

N
ω + ūNx ), we get

∂t(W1,iρi) + (c̄lx+ ūN +U) · ∇(W1,iρi) = Ci(x)W1,iρi+Bmodi,iρi+ Ñi(ρi) + (F̄loc,i+Rloc,i)ρi.

5.9.1. The main nonlinear term. Recall that we have large constants in the estimate of cω(ω), cω(W1)

(5.94) |cω(ω)| = |ux(ω)(0)| ≤ µ6E4, |cω(ω1)| = |ux(ω1)(0)| ≤ µ5E4,

using the energy E4 (5.70). Compared to cω(ω), at the bootstrap threshold E4 = E∗ (5.101),
the error |ux(ε̄)| < 10−2E∗ is much smaller and we have Ux(0) ≈ cω. From (5.78) and Section

5.7,we need to pay a large constant c1 = µ5 in our estimate of ω̂2. Then for Ux(0)Ŵ2,i,M in
(5.93), we have a large constant µ5µ6, with µ5µ6 ≈ 4700. In comparison, for ω1, using E4 (5.70),
we have ω1ϕ1 ≤ E4 with constant 1. Similarly, the velocity with approximation UA ≈ uA(ω1)
(5.2), (5.82) also has size of order 1.

Note that we also have a large constant µ2
6 in the estimate of nonlinear terms for Bop,i(Ũ, Ŵ2)

from (5.78) since Ũ contains u(ω̂2). Since Ũ = O(|x|3), Ŵ2 = O(|x|2), these nonlinear terms
have a higher vanishing order O(|x|4) near x = 0. Since ω̂2 decays and the weights are singular

near 0, our estimates of these nonlinear term are smaller than Ux(0)Ŵ2,i,M (5.93), and thus the
latter is the main nonlinear term in (5.92), (5.93).

5.9.2. L∞ estimates. Using (5.82), (4.8), we decompose Ũ

(5.95)
Ũ = UA +Uapp,

Bop,i(Ũ, Ŵ2) = Bop,i(UA, (∇U)A, Ŵ2) + Bop,i(Uapp, (∇U)app, Ŵ2). , I1 + I2.

We estimate C3 bounds of the Ŵ2 terms in (5.93), (5.92) using (5.79), (5.76) and following

Section 3.7 of Part II [15]. Then we can estimate Ŵ2,M,i (5.93) and apply the same estimate for
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the nonlocal terms (uA, W̄ ) (5.1),(4.10) in Section 5.3 to I1. From the discussion below (5.82),
we can estimate piecewise C3 bounds for Uapp. Then we obtain the estimate for I2. Since for
W1,i = O(|x|β) with W1 = (ω1, η1, ξ1) near x = 0 with β ∈ [5/2, 3], each term involving W1,i in
(5.92) vanishes O(|x|β) near x = 0, and we can estimate their weighted L∞(ϕ1) norm using the

energy. Moreover, we have piecewise L∞ bound for ∇U, ∇̃U. See the discussion around (5.82).
We estimate the nonlinear terms from the transport term (5.91) in L∞(ρ) estimate of W1,i

for (c,W1,i, ρ) = (1,W1,i, ϕi), (µg,i,W1,i, ϕg,i), (
√
2τ−1

1 ,W1,1, ϕ4) (5.21) as follows

(5.96) c| (U · ∇ρ)
ρ

W1,iρ| ≤ (|U
x

x∂xρ

ρ
|+ |V

y

y∂yρ

ρ
)||cW1,iρ||∞ ≤ (|U

x

x∂xρi
ρi

|+ |V
y

y∂yρi
ρi

)E4,

and estimate piecewise L∞ bounds for U/x, V/y, ∂xjρi/ρi.

Remark 5.5. In the nonlinear estimates, we optimize two estimates of uA(ω1) using the functional
inequalities based on ||ω1ϕ1||∞ in Section 5.3 and ||ω1ϕg,1||∞ in Section 5.5 such that ∇uA ∈
L∞. Similarly, we apply two functional inequalities to uA(ε1), ε1 = ε̄1, ε̂1 in Section 5.8 using
||ε1ϕelli||∞, ||ε1ϕg,1||∞ so that ∇U ∈ L∞.

5.9.3. Hölder estimate of typical terms.
Nonlinear terms involving U,W1,i. We focus on a typical term Ũxη1 in (5.92). Using the

C1/2 estimate of ψ1UA by the energy, C1/2 esttimate of ψ−1
1 ,Uapp (see below (5.82)), and (5.36),

we have C1/2 estimate Ũ. Then we estimate δ(Ũx · η1ψ2) using (5.46). For x, z in the far-field,
we need another decomposition and estimate since ψ−1

1 (C.1) in this estimate is not bounded.

We can still estimate δ(Ũapp,x · η1ψ2) using (5.46). For Ux,Aη1ψ2, we use (5.32), (5.34) to get

δ(Ux,Aη1ψ2) = δ(Ux,Aψ1 · η1
ψ2

ψ1
) = δ(Ux,Aψ1)

η1ψ2

ψ1
+ (Ux,Aψ1)(z)δ(η1

ψ2

ψ1
) = I1 + I2.

To bound I1, using the energy E4, we can bound C1/2 of Ux,Aψ1 and η1ψ2

ψ1
in L∞

(5.97) |η1ψ2/ψ1| ≤ ||η1ϕg,2||∞ψ2/(ψ1ϕg,2).

To ensure ψ2/ψ1/ϕg2 ∈ L∞, by comparing the far-field behavior, ψ2(x) ∼ |x|1/6, ψ1 ∼ |x|−1/6,

we need ϕg2 & |x|1/3 and thus we choose αg,n = 1
3 + 10−8 in (5.52). For I2 we use

|I2| ≤ (Ux,Aψ1)(z)(ψ
−1(z)|δ(η1ψ2)|+ δ(ψ−1)|η1ψ2|(x)).

Since Ux,A ∈ L∞, we can bound both terms using the energy E4.
The estimate of nonlinear term Td,N (5.91) from the transport term is similar. To estimate

Td,N(ψi)(W1,iψi), we use the energy E4 and apply (5.46). We only need to control Td,N (ψi).
Using (5.82), we perform the decomposition
(5.98)

Td,N (ψi) =
U · ∇ψi
ψi

= Ux(0)
(x∂xψi − y∂yψi)

ψi
+

UA · ∇ψi
ψi

+
Uapp · ∇ψi

ψi
, Tcω + TuA + TuR.

For TuA, since we have piecewise C1/2 estimates of UAψu, C
3 estimate of Uapp with Uapp =

O(|x|3), we decompose it as follows

(5.99) TuA = (UAψu) ·
∂xψi
ψiψu

+ (VAψu) ·
∂yψi
ψiψu

, TuR =
Uapp

|x|2 · |x|2∇ψi
ψi

,

and then estimate each product f1 ·f2 using (5.36), (5.37). The explicit function Tcω is not C1/2

near 0, but we can bound δ(Tcω , x, z)g(x − z)|p|1/2 for p = x, z. See Remark 5.2 and Section
8.5.2 in the supplementary material I [18].

Nonlinear terms involving Ũ, Ŵ2. We estimate a typical nonlinear terms P6UA · ∇Ŵ2,iψi
(2.17), (5.92) in I1 (5.95). Using (5.36)-(5.37), we get

|δ(P6)| ≤ δ�(UAψu, ∂xŴ2,i
ψi
ψu
, h) + δ�(VAψu, ∂yŴ2,i

ψi
ψu
, h).
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Near 0, ∇Ŵ2,i
ψi

ψu
has a vanishing order O(|x|), and we can estimate its C1 bound. We bound

δi(UAψu) using the energy. For I2, since Ŵ2,i = O(|x|2),Uapp = O(|x|3) and we have their C3

bounds. From (2.16), we get

Bop,i(UA, (∇U)A, Ŵ2) = O(|x|4),
and we can estimate the C1 bound of Bop,iψi and then its C1/2 bound using (5.36)-(5.37). The
main terms (5.93) have a vanishing order O(|x|3), and we can estimate their C3 bounds. Since

ψi . |x|−5/2, we can estimate C1/2 bound of ψiŴ2,i,M . In Section 8.9 of the supplementary

material I [18], we discuss the piecewise C1/2 estimates of f(x)/|x|5/2 for f ∈ C3 with f =
O(|x|3).

The estimate of other nonlinear terms are similar and relatively straightforward based on
(5.34)-(5.36). We refer more details to Section 8.5 in the supplementary material I [18]. Note
that the estimate of the main term (5.93) is simple,and we can afford a much larger constant in
the estimates of terms other than the main terms (5.93).

Other nonlinear estimates. The term Ux(0)ω1, Ux(0)η1 in (5.92) in the ODEs of cω(fq) (5.61)
with cutoff q = χode (5.64) and q = 1 (5.68) contribute to Ux(0)〈ω1, f∗q〉, f = ω1, η1, which can
be bounded by the energy E4 (5.71), (5.70) directly

(5.100)

4

π
|Ux(0)||〈ω1, f∗q〉| = |Ux(0)cω(ω1q)| ≤ γ1|Ux(0)|E4,

|Ux(0)| ·
4

π
|〈η1, f∗q〉| = |Ux(0)cω(η1q)| ≤ γ2|Ux(0)|E4,

where (q, γ1, γ2) = (χode, µ5,1, µ5,2), (1, µ5, µ62). The estimates of other nonlinear terms in these
ODEs follow Section 5.9.2 and the argument in Section 5.6, e.g. integration by parts.

For the energy estimates beyond our computational domain [0, D]2, D ≥ 1015, we estimate
the asymptotics of the profile (7.2) in Appendix C.3 and the nonlocal terms in Section 4.5 in
Part II [15]. Since the coefficients of the nonlocal terms decay, e.g. ∇ω̄,∇θ̄, the equations (5.1),
(4.21) are essentially local in the far-field. We have much larger damping factors and can afford
much larger constants in the estimate of nonlocal terms. We refer the far-field estimates to
Sections 8.6, 8.7 in the supplementary material I [18].

In Figure 12, we plot the rigorous piecewise bounds Ckl for the full nonlinear terms |J | ≤
CklE

2
4 in mesh [yk, yk+1] × [yl, yl+1] covering regions [0, 1015]2, in the ω equation, and sim-

ilar terms for η, ξ equations. The largest terms for these three equations are bounded by
8300, 8300, 5000, respectively. For x very small and y very large (adaptive mesh y2,n > 106

for n ≥ 600), we have a jump in the estimate, especially in the ξ-equation. It is due to the piece-
wise estimate of ϕ3/ϕ2 (see (C.3)) in the estimate of nonlinear term |uyη1ϕ3| ≤ |uy ϕ3

ϕ2
|||η1ϕ2||∞.

Both weights involve |x1|−1/2 singular along x1 = 0. We can refine the estimate to get a smoother
bound. Yet, since we have a large damping factor ≥ 1 in that region (very far-field), we can
afford a constant that is even 20 times larger (−E∗ + 20 · 5000E2

∗ ≤ −0.5E∗) and do not need
to refine the estimate.

Figure 12. Weighted L∞(ϕi) estimate of the nonlinear terms.
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Estimate of the residual error of the profile. For the residual error F̄loc,i in (5.87) modified
from (4.21), (2.19), it is essentially local and its estimate follows standard numerical analysis.
We estimate them following Sections 3.6 of Part II [15] with some details in Appendix C.4 of
Part II [15]. We have plotted rigorous piecewise bounds for the local part F̄loc,iϕi, i = 1, 2 in
Figure 2. Note that the weighted residual error away from the first few grids and in the bulk
region is very small (≤ 5 · 10−8) relative to the bootstrap threshold E∗ (5.101).

Estimate in the region with small stability factor. In the linear weighted L∞(ϕi) estimate,
we have a minimum stability factor about 0.04. We have a small stability factor below 0.08 only
in the bulk region DB = [0, 1000]2\[0, 1]2. Since it is away from 0, the singular weight ϕi
becomes much smaller and both the estimate of nonlinear terms and the residual error becomes
much smaller in DB. See Figures 2, 12. Similar discussion applies to the Hölder estimate.

Remark 5.6. An advantage of the stability condition (A.11) is that it depends on the estimate
locally. Thus, we do not need to compare the minimum damping coefficients with the L∞ bound
of the nonlinear terms and error terms or

min
x,z

aii(x, z, t)E∗ −max
x,z

∑

j 6=i
(|aij |E∗ + |aij,2|E2

∗ + |aij,3(x, z, t)|) > ε0,

for some ε0 > 0, which is a much tighter constraint for stability.

We remark that we have large damping factors in the far-field since the coefficients for the
nonlocal terms in the linearized equations (4.10), (5.1) decay. Thus, it is much easier to obtain
the stability condition (A.11) for large x.

5.9.4. Nonlinear stability and finite time blowup. To close the nonlinear estimates, for the boot-
strap argument in Lemma A.2, we choose the threshold

(5.101) E∗ = 5 · 10−6.

We choose the bootstrap threshold guided by the quadratic inequality on E∗ (A.2) for x (or x, z)
in the region with small damping coefficients. Under this bootstrap threshold, the largest part of
the nonlinear terms in the weighted L∞(ϕ1) estimates are bounded by (0.0415, 0.0415, 0.025)E4

(see Figure 12), and we can close the nonlinear estimates. See Figures 14, 15 for the stability
conditions of L∞(ϕi), L

∞(ϕgi) estimates.
Using Lemma A.2, we can obtain that if the initial perturbation satisfies

E4(ω1(0), η1(0), ξ1(0)) < E∗,

then we have

E4(ω1(t), η1(t), ξ1(t)) < E∗,

for all time t > 0. With the estimates of W1, we can control Ŵ2 using the estimates in Sections
5.6, 5.7. In particular, we can obtain

(5.102) ||W1,i + Ŵ2,i||∞ < 200E∗, |cω(ω)| < 100E∗.

The bounds for W1,i, cω(ω) follows from the definition of the energy (5.21), (5.54), (5.70). From
the definitions of the weights ϕi, ϕg,i, µg,i (C.3), (C.4), (C.5), it is easy to see that |W1,i| ≤
µ−1
g,iϕ

−1
g,iE4 < 100E∗. We verify |Ŵ2,i| < 100E4 and collect this inequality in (D.17). Recall the

normalization condition (2.26). We also have |ux(0)| = |cω| < 100E∗.
Moreover, since we choose 0 initial condition for Ŵ2, we have W1 = (ω, η, ξ) = (ω, θx, θy) at

the initial time. Therefore, we prove the estimates in Theorem 3 . Passing from the stability
analysis to finite time blowup follows the standard rescaling argument [17, 19, 20].

6. Finite time blowup of 3D axisymmetric Euler equations with solid boundary

In this section, we prove the finite blowup of the axisymmetric Euler equations with smooth
initial data and boundary. We will follow the same proof strategy as in our previous work [17].
We first review the setup of the problem. In Section 6.1, we reformulate the 3D Euler equations
using the dynamic rescaling formulation and discuss the connection between the 3D Euler and 2D
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Boussinesq; see e.g. [67]. In Section 6.2, we establish the localized elliptic estimates. In Section
6.4, we will construct initial data and control the support of the solution under some bootstrap
assumptions. With these estimates, the rest of the proof follows essentially the nonlinear stability
analysis of the 2D Boussinesq equations and we will sketch the part of the analysis that is different
from the 2D Boussinesq equations.

Notations. In this section, we use x1, x2, x3 to denote the Cartesian coordinates in R3, and

(6.1) r =
√
x21 + x22, z = x3, ϑ = arctan(x2/x1)

to denote the cylindrical coordinates. Let u be the axi-symmetric velocity and ω = ∇× u be
the vorticity vector. In the cylindrical coordinates, we have the following representation

u(r, z) = ur(r, z)er + uθ(r, z)eθ + uz(r, z)ez, ω = ωr(r, z)er + ωθ(r, z)eθ + ωz(r, z)ez,

where er, eθ and ez are the standard orthonormal vectors defining the cylindrical coordinates,

er = (
x1
r
,
x2
r
, 0)T , eθ = (

x2
r
,−x1

r
, 0)T , ez = (0, 0, 1)T .

We study the 3D axisymmetric Euler equations in a cylinder D = {(r, z) : r ∈ [0, 1], z ∈
T},T = R/(2Z) that is periodic in z. The 3D axisymmetric Euler equations are given below:

(6.2) ∂t(ru
θ) + ur(ruθ)r + uz(ruθ)z = 0, ∂t(

ωθ

r
) + ur(

ωθ

r
)r + uz(

ωθ

r
)z =

1

r4
∂z((ru

θ)2).

The radial and axial components of the velocity can be recovered from the Biot-Savart law

(6.3) − (∂rr +
1

r
∂r + ∂zz)φ̃+

1

r2
φ̃ = ωθ, ur = −φ̃z, uz = φ̃r +

1

r
φ̃

with a no-flow boundary condition on the solid boundary r = 1

(6.4) φ̃(1, z) = 0

and a periodic boundary condition in z.
We consider solution ωθ with odd symmetry in z, which is preserved by the equations dy-

namically. Then φ̃ is also odd in z. Moreover, since φ̃ is 2-periodic in z, we obtain

(6.5) φ̃(r, 2k − 1) = 0. for all k ∈ Z

This setup of the problem is essentially the same as that in [65, 66].
Due to the periodicity in z direction, it suffices to consider the equations in the first period

D1 = {(r, z) : r ∈ [0, 1], |z| ≤ 1}. We have the following pointwise estimate on φ̃ from [17], which

will be used to estimate φ̃ away from the supp(ωθ) in Section 6.2.

Lemma 6.1. Let φ̃ be a solution of (6.3)-(6.4), and ωθ ∈ Cα(D1) for some α > 0 be odd in z
with supp(ωθ) ∩D1 ⊂ {(r, z) : (r − 1)2 + z2 < 1/4}. For 1

4 < r ≤ 1, |z| ≤ 1, we have

|φ̃(r, z)| .
∫

D1

|ωθ(r1, z1)|
(
1 + | log((r − r1)

2 + (z − z1)
2)|

)
r1dr1dz1.

If the initial data uθ of (6.2)-(6.4) is non-negative, uθ remains non-negative before the blowup,
if it exists. Then, uθ can be uniquely determined by (uθ)2. We introduce the following variables

(6.6) θ̃ , (ruθ)2, ω̃ = ωθ/r.

We reformulate (6.2)-(6.4) as

(6.7)
∂tθ̃ + urθ̃r + uz θ̃z = 0, ∂tω̃ + urω̃r + uzω̃z =

1

r4
θ̃z,

−(∂2r +
1

r
∂r + ∂2z −

1

r2
)φ̃ = rω̃, φ̃(1, z) = 0, ur = −φ̃z , uz =

1

r
φ̃+ φ̃r .
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6.1. Dynamic rescaling formulation. We introduce new coordinates (x, y) centered at r =
1, z = 0 and its related polar coordinates

(6.8) x = Cl(τ)
−1z, y = (1− r)Cl(τ)

−1,

where Cl(τ) is defined below (6.11). By definition, we have

(6.9) z = Cl(τ)x, r = 1− Cl(τ)y.

We consider the following dynamic rescaling formulation centered at r = 1, z = 0

(6.10)

θ(x, y, τ) = Cθ(τ)θ̃(1− Cl(τ)y, Cl(τ)x, t(τ)),

ω(x, y, τ) = Cω(τ)ω̃(1− Cl(τ)y, Cl(τ)x, t(τ)),

φ(x, y, τ) = Cω(τ)Cl(τ)
−2φ̃(1− Cl(τ)y, Cl(τ)x, t(τ)),

where Cl(τ), Cθ(τ), Cω(τ), t(τ) are given by Cθ = C−1
l (0)C2

ω(0) exp
(∫ τ

0
cθ(s)dτ

)
,

(6.11)

Cω(τ) = Cω(0) exp

(∫ τ

0

cω(s)dτ

)
, Cl(τ) = Cl(0) exp

(∫ τ

0

−cl(s)ds
)
, t(τ) =

∫ τ

0

Cω(τ)dτ,

and the rescaling parameters cl(τ), cθ(τ), cω(τ) satisfy cθ(τ) = cl(τ) + 2cω(τ). We remark that
Cθ(τ) is determined by Cl, Cω via Cθ = C2

ωC
−1
l . We have this relation due to the same reason

as that of (2.9). We choose (r, z) = (1, 0) as the center of the above transform since the singular
solution is concentrated near this point. Since we rescale the cylinder D1 = {(r, z) : r ≤ 1, |z| ≤
1}, from (6.8), the domain for (x, y) is

(6.12) D̃1 , {(x, y) : |x| ≤ C−1
l , y ∈ [0, C−1

l ]}.
We have a minus sign for ∂y

∂yθ = −CθCl(τ)θ̃r , ∂yω = −CωCl(τ)ω̃r , ∂yφ = −CωCl(τ)−1φ̃r.

Let (θ̃, ω̃) be a solution of (6.7). It is easy to show that ω, θ satisfy

θt + clx · ∇θ + (−ur)θy + uzθx = cθθ, ωt + clx · ∇ω + (−ur)ωy + uzωx = cωω +
1

r4
θx.

The Biot-Savart law in (6.7) depends on the rescaling parameter Cl, τ

−(∂xx + ∂yy)φ+
1

r
Cl∂yφ+

1

r2
C2
l φ = rω, ur(r, x) = −φx, uz(r, x) =

1

r
Cl(τ)φ − φy ,

where r = 1− Cl(τ)y (6.9). We introduce u = uz, v = −ur. Then, we can further simplify

(6.13)
θt + (clx+ u · ∇)θ = cθθ, ωt + (clx+ u · ∇)ω = θx +

1− r4

r4
θx,

− (∂xx + ∂yy)φ+
1

r
Cl∂yφ+

1

r2
C2
l φ = rω, u(x, y) = −φy +

1

r
Clφ, v = φx,

with boundary condition φ(x, 0) ≡ 0. If Cl is extremely small, we expect that the above
equations are essentially the same as the dynamic rescaling formulation (2.10) of the Boussinesq
equations. We look for solutions of (6.13) with the following symmetry

ω(x, y) = −ω(−x, y), θ(x, y) = θ(−x, y).
Obviously, the equations preserve these symmetry properties and thus it suffices to solve (6.13)
on x, y ≥ 0 with boundary condition φ(x, 0) = φ(y, 0) = 0 for the elliptic equation.

We now state a more precise version of Theorem 2 below.

Theorem 4. Let (θ̄0, ω̄0, ū, c̄l, c̄ω) be the approximate self-similar profile constructed in Section
6.4.2 and E∗ = 5 · 10−6. Assume that even initial data θ0 and odd ω0 of (6.13) compactly
supported with size S(0) to be defined in Definition 6.2 satisfy

E(ω0 − ω̄0, θ0,x − θ̄0,x, θ0,y − θ̄0,y) < E∗,
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where E is defined in (2.13). For E∗ = 5 · 10−6, there exists a constant C(S(0)) depending on
S(0) such that if the initial rescaling factor Cl(0) (6.11) satisfies Cl(0) < C(S(0)), we have

||ω − ω̄0||L∞ , ||θx − θ̄0,x||L∞ , ||θy − θ̄0,y||∞ < 200E∗, |ux(t, 0)− ūx(0)|, |c̄ω − cω| < 100E∗

for all time. In particular, we can choose smooth initial data ω0, θ0 ∈ C∞
c in this class with

finite energy ||u0||L2 < +∞ such that the solution to the physical equations (2.3)-(2.5) with these
initial data blows up in finite time T .

We need to choose a small rescaling factor Cl(0) so that the solution in the physical space is
confined in the cylinder, which is not scaling invariant.

6.2. The elliptic estimates. In this subsection, we follow the ideas in [17] to estimate the
elliptic equation with time-dependent coefficients in (6.13). We first estimate φ away from
supp(ω). Then we localize the elliptic equation and perform weighted L∞ and Hölder estimate.
We will show that within the support of ω, θ, the estimates for the velocity are the same as those
in the 2D Boussinesq equations up to a lower order term, which can be made arbitrary small.
Throughout this Section, we assume that ω(x, y) is odd in x.

Definition 6.2. We define the size of support of (θ, ω) of (6.13)

S(τ) = max(essinf{ρ : θ(x, y, τ) = 0, ω(x, y, τ) = 0 for x2 + y2 ≥ ρ2}, 1).
We take the maximum in the definition so that S(τ) ≥ 1, which simplifies some later estimates.

After rescaling the spatial variable, the support of (θ̃, ω̃) of (6.7) satisfies

supp θ̃(t(τ)), supp ω̃(t(τ)) ⊂ {(r, z) : ((r − 1)2 + z2)1/2 ≤ Cl(τ)S(τ)}.
We will construct initial data of (6.13) with compact support S(0) < +∞ and follow [17] to
prove that Cl(τ)S(τ) remains sufficiently small for all τ > 0.

Remark 6.3. There are several small parameters Cl(τ), Cl(τ)S(τ) in the following estimates. We
will choose Cl(0) to be very small at the final step of the proof. This allows us to prove that
Cl(τ), Cl(τ)S(τ) are very small. One can essentially regard Cl(τ) ≈ 0. Recall the relation (6.9)
about r. In the support of the solution, we have r = 1 − Clρ sin(β) ≈ 1. We treat the error
terms in these approximations as small perturbations.

The elliptic equation in (6.13) contains the first order term 1
rCl∂yψ, which leads to a few

technical difficulties in the elliptic estimate. To overcome it, we multiply the equation with an
integrating factor r1/2. Using ∂yr

1/2 = −Clr−1/2/2, ∂yyr
1/2 = − 1

4C
2
l r

−3/2,

∂yy(φr
1/2) = r1/2∂yyφ+ 2∂yφ∂yr

1/2 + φ∂yyr
1/2 = r1/2∂yyφ− Cl

r1/2
∂yφ− 1

4
C2
l r

−3/2φ,

we can rewrite (6.13) as follows

−∆(φr1/2) +
aC2

l

r2
φr1/2 = ωr3/2, a =

3

4
.

Note that within the support of ω, θ, r, r−1 are smooth. Once we obtain the estimate of φr1/2,
we can recover the estimate of φ. We rewrite the above equation as follows

(6.14) −∆φ1 = Ω1 −
aC2

l

r2
φ1, Ω1 = ωr3/2, φ1 = φr1/2.

Our goal is to show that φ1 and φ enjoy estimates similar to those for (−∆2D)
−1ω, then we

can generalize the analysis for 2D Boussinesq to 3D Euler equations.

6.2.1. Estimate of φ away from the support. To localize the elliptic equations, we first estimate
φ away from the support of the solution. Based on Lemma 6.1, we have the following estimate.

Lemma 6.4. Suppose that the assumptions in Lemma 6.1 hold true. Let S(τ) be the support
size of ω(τ), θ(τ). Assume Cl(τ)S(τ) <

1
4 . For any |x| > 2S and β ∈ [0, 1), the solution to

(6.13) satisfies

|φ(x)| . ||ω(1 + |x|β)||L∞(1 + | log(Cl|x|)|)S2−β .
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Since x is away from the support, the proof follows from the rescaling relation (6.10) and the
estimate in Lemma 6.1 by putting ω(y)(1 + |y|β) in L∞. We defer the proof to Appendix C.3.

6.2.2. Localize the elliptic equation. We will take advantage of the fact that Cl(τ)S(τ) can be
extremely small and localize the elliptic equation. Firstly, we assume that Cl(τ)S(τ) <

1
4 . Recall

the relation (6.9) about r. Within the support, we have r = 1− Cly ≥ 3
4 , r

−1 . 1.

Let χ(·) : R+
2 → [0, 1] be a smooth cutoff function even in x1, such that χ(x) = 1 for |x| ≤ 1,

χ(x) = 0 for |x| ≥ 2. It is easy to verify that

(6.15) |∇kχ(x/R)| . R−k1R≤|x|≤2R,

for 1 ≤ k ≤ 5. Next, we choose several radii and define the related cutoff function

(6.16) Ri = 4−iC−1
l , χi(x) , χ(x/Ri), i ≤ 5.

By definition, we have χi = 1 in the support of χi+1. Multiplying (6.14) with χi, we obtain
the equation of φ1χi

(6.17) −∆(φ1χi) = Ω1χi − Z1,i − Z2,i, Z1,i , 2∇φ1 · ∇χi + φ1∆χi, Z2,i ,
aC2

l

r2
φ1χi,

with boundary condition

(φ1χi)(0, y) = 0, (φ1χi)(x, 0) = 0.

After we localize the elliptic equation, (6.17) can be seen as an elliptic equation in R
+
2 with

compactly supported source term. Since the solution φ1χi decays for large |x|, it agrees with
the solution defined by the Green function log(|x− y|) in the upper half space:
(6.18)

((−∆)−1f)(x) = − 1

2π

∫

R
+
2

(log |x−y|−log |(x1−y1, x2+y2)|)f(y)dy = − 1

2π

∫

R2

log |x−y|F (y)dy.

where F is the odd extension of f from R
+
2 to R2. Similar formula also holds for ∇(−∆)−1f

(6.19) ∂i(−∆)−1f = − 1

2π

∫

R2

xi − yi
|x− y|2F (y)dy.

Ideas of the estimates. We will assume that Ω1 is in a suitable weighted L∞ and Hölder
space. Our goal is to show that the terms on the right hand side of (6.17) except for Ωχi are
very small in such a space. Then we can obtain the estimate for φ1χi by inverting −∆, which
is similar to that of (−∆)−1(Ω1χi). We will also require that the support satisfies

(6.20) S(τ) < Ri, or ClS < 4−i, i ≤ 5

so that Ω1χi = Ω1. We will choose ClS to be sufficiently small.
We need to estimate the L∞ norm of ∇φ1 and its Hölder norm. We will first estimate ∇φ1

for |x| ≤ R2, and then ∇2φ1 for |x| ≤ R3. Once we obtain the estimates of ∇φ1,∇2φ1, due to
the small parameters on the right hand side of (6.17) and the decay of the solution, we establish
the desired estimate. We need several weighted estimates of the Laplacian in R

+
2 .

Lemma 6.5. Suppose that −∆φ = ω in R
+
2 , ω is odd, and φ satisfies the Dirichlet boundary

condition. For α > 0 and β ∈ (0, 1), we have

|∇φ| .α,β |x| ∧ |x|1−β ||ω(|x|−α + |x|β)||L∞ .

For α ∈ (0, 2), we have

|∇(φ− φxy(0)x1x2)| .α,β |x|1+α||ω(|x|−α + |x|β)||L∞ ,

|φ− φxy(0)x1x2| .α,β |x|2+α||ω(|x|−α + |x|β)||L∞ .

For α ∈ (2, 3], we have

|∇(φ− φxy(0)x1x2)| .α,β |x|3||ω(|x|−α + |x|β)||L∞ ,

|φ− φxy(0)x1x2| .α,β |x|4||ω(|x|−α + |x|β)||L∞ .
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We will mostly use α = 1, 2, 2.9, β = 1
16 relates to the weight ϕ1, ϕg,1 for ω1 in the 2D

Boussinesq equations (C.3), (C.4). We prove the first estimate below and defer the proof of the
second and third to Appendix C.3, which are similar.

Proof. In the following proof, the implicit constant in . can depend on α, β. We drop it to
simplify the notations. Denote by M = ||ω(|x|−α + |x|β)||∞. Clearly, we have

(6.21)

|ω| ≤ min(|x|α, |x|−β)M,

∂iφ = Ci

∫
Ki(x− y)W (y)dy, Ki(z) =

zi
|z|2 ,

where W is the odd extension of ω from R
+
2 to R2. Then W is odd in both x and y. Without

loss of generality, we consider i = 2. For a fixed x, we partition the integral into three regions:

Q1 = {y : |y| ≥ 2|x|}, Q2 = {y : |y − x| ≤ |x|/2}, Q3 = (Q1 ∪Q2)
c.

In Q1, symmetrizing the kernel, we need to estimate

I1 ,

∫

Q1

K2(x− y)W (y)dy =

∫

Q1,y1≥0

(K2(x1 − y1, x2 − y2)−K2(x1 + y1, x2 − y2))W (y)dy.

Since K2(z) is odd in z2 and even in z1, |∇K2(z)| . |z|−2, for |y| ≥ 2|x|, we get

|K2(x1−y1, x2−y2)−K2(x1+y1, x2−y2)| = |K2(y1−x1, x2−y2)−K2(x1+y1, x2−y2)| .
|x1|
|y|2 .

Using (6.21), we get

|I1| .M |x1|
∫

|y|≥2|x|
|y|−2 min(|y|α, |y|−β)dy .M |x1|min(1, |x|−β) .M min(|x|, |x|1−β).

In Q2, since |x − y| ≤ |x|/2, we have |y| ≍ |x|, and min(|x|α, |x|−β) ≍ min(|y|α, |y|−β). It
follows
∣∣∣
∫

Q2

|K2(x− y)W (y)
∣∣∣ ≤M

∫

|x−y|≤|x|/2
|x− y|−1min(|y|α, |y|−β)dy .M min(|x|α, |x|−β)|x|.

In Q3, we have |x|/2 ≤ |x− y| ≤ 3|x|, |y| ≤ 2|x|. Using this estimate and (6.21), we obtain

|
∫

Q3

K(x− y)W (y)dy| .M

∫

Q3

|x− y|−1 min(|y|α, |y|−β)dy .M |x|−1

∫

|y|≤2|x|
min(|y|α, |y|−β)dy

.M |x|−1 min(|x|2+α, |x|2−β) .M min(|x|1+α, |x|1−β).
Combining the above estimates, we prove the first estimate in Lemma 6.5. �

6.2.3. Estimate of ∇φ1. We have the following estimate of ∇φ1 in |x| ≤ R2.

Proposition 6.6. Let φ1 be the solution in (6.14) and α > 0, β ∈ (0, 1). There exists some
absolute constant ν1(α, β) <

1
32 such that if Cl(τ)(1 + S(τ)) < ν1, we have

max
|x|≤2R2

|∇φ1|(|x|−1 + |x|−1+β) . ||Ω1(|x|−α + |x|β)||∞.

For 8S ≤ |x| ≤ R1/2 away from the support of ω, we have an improved estimate

(6.22) |∇φ1| . ||Ω1(|x|−α + |x|β)||∞
(S3−β

|x|2 + |x|1−β(ClS)2−β
)
.

In the following estimate, since r is sufficiently close to 1 within the support of ω, we can
simply treat Ω1 = ωr3/2 and ω as the same.

Proof. We choose i = 1 in (6.17). Denote

B1 , max
|x|≤2R2

|∇φ1(|x|−1 + |x|−1+β)|, M1 , ||Ω1(|x|−α + |x|β)||∞.
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Inverting −∆ and then apply ∇, we obtain

(6.23)

∇(φ1χ1) = ∇(−∆)−1(Ω1χ1)−∇(−∆)−1Z1,1 −∇(−∆)−1Z2,1 , I1 + I2 + I3,

Z1,1 = 2∇φ1 · ∇χ1 + φ1∆χi, Z2,1 =
aC2

l

r2
φ1χi.

Our goal is to prove the following estimate

(6.24) B1 ≤ Cα,β(M1 + (ClS)
2 ·B1).

Then as long as ClS is small, we can obtain the bound for B1.
For I1, I3, applying Lemma 6.5, we get

|I1| ≤ min(|x|, |x|1−β)M1, |I3| ≤ min(|x|, |x|1−β)||Z2,1(|x|−1 + |x|β)||∞, Z2,1 =
aC2

l

r2
φ1χ1.

It suffices to bound the norm of Z2,1. For |x| ≤ 2S < R2 (6.20), using the definition of B1,
φ(0) = 0, and integration, we get

|φ1| . B1 min(|x|2, |x|2−β),
which along with r−1 . 1 within the support of χ1 yields

|Z2,1|(|x|−1 + |x|β) . B1C
2
l min(|x|2, |x|2−β)(|x|−1 + |x|β) . B1C

2
l (|x|2 + |x|) . B1C

2
l S

2,

For |x| ≥ 2S > 2, using Lemma 6.4, we yield

|Z2,1(|x|−1 + |x|β)| . C2
l (1 + | log(Cl|x|)|)S2−β |x|β1|x|≤2R1

||ω(1 + |x|−β)||∞.
By definition, we have ClR1 ∈ [0, 1/4] (6.16). Within the support of ω, |ωr3/2| = |Ω1| and ω

are equivalent. Hence, we obtain (1 + | logClx|)|Clx|β . 1 and

(6.25) |Z2,1(|x|−1 + |x|β)| . (ClS)
2−β||Ω1(1 + |x|β)||∞.

Next, we estimate I2. Since R2 ≤ R1

4 , for |x| ≤ 2R2 and y ∈ supp(Z1,1), we have 2|x| ≤ |y|.
We estimate a typical term in Z1,1. To use the formula (6.18), (6.19), we extend φ1, χ1 naturally

from R
+
2 to R2 as an odd, and even function, respectively. For i, j ∈ {1, 2}, using integration by

parts, we get

J , ∂i(−∆)−1(∂jφ1∂jχ1) = C

∫

R2

xi − yi
|x− y|2 (∂jφ1∂jχ1) = −C

∫

R2

∂j(
xi − yi
|x− y|2 ∂jχ1)φ1 , J1 + J2,

J1 , −C
∫

R2

∂j
xi − yi
|x− y|2 ∂jχ1φ1, J2 , −C

∫

R2

xi − yi
|x− y|2 ∂

2
jχ1φ1.

Since the singularity x is away from the support of the integrand, the singular integral kernel
is smooth. We estimate the first term with i = 2, j = 1. Estimates of other cases and the
second term are similar. Denote K(z) = z1z2

|z|4 . Using the fact that ∂1χ1φ1 is even in y1 and

symmetrizing the kernel in y1, we get

J1 = C

∫
K(x−y)∂1χ1φ1(y)dy = C

∫

y1≥0

(K(x1−y1, x2−y2)+K(x1+y1, x2−y2))∂1χ1φ1(y)dy,

where we have used that ∂1χ1φ1 are even in y1. Since K(z) is odd in z1 and |y| ≥ 2|x| for y in
the support of the integrand, we get

|K(x1 − y1, x2 − y2) +K(x1 + y1, x2 − y2)| = |K(y1 + x1, x2 − y2)−K(y1 − x1, x2 − y2)| .
2x1
|y|3 .

Using Lemma 6.4, (6.15), and (6.16), we get

|∂1χ1φ1| .
1

R1
S2−β1R1≤|y|≤2R1

M1.

It follows

|J1| .
|x|S2−β

R1
M1

∫
1R1≤|y|≤2R1

|y|−3dy .
|x|S2−β

R2
1

M1.
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Using a similar symmetrization argument, the fact that x is away from the singularity of the
kernel when |x| ≤ 2R2, and |x| ≤ R1, R1 ≍ C−1

l (6.16), we obtain

(6.26) |∇(−∆)−1Z1,1| .
|x|S2−β

R2
1

M1 . |x|C2
l S

2−βM1 . min(|x|, |x|1−β)(ClS)2−βM1.

Combining the above estimate and using ClS ≤ 1, we obtain

|∇φ1| .α,β min(|x|, |x|1−β)(M1 + (ClS)
2−βB1).

Using (6.23), and taking the maximum of x over |x| ≤ 2R2, we prove (6.24), which further
implies the desired result.

Improved estimate. For 8S ≤ |x| ≤ R1/2, we refine the estimate of I1 and I3. In I1, for
y in the support of Ω1, we have |x| ≥ 2|y|. For K(z) = zi

|z|2 , using the same symmetrization
argument, we get

|
∫

R2

K(x− y)Ω1dy| =
∣∣∣
∫

y1≥0

(K(x1 − y1, x2 − y2)−K(x1 + y1, x2 − y2))Ω1dy
∣∣∣

.

∫

y1≥0

2y1
|x|2 |Ω1(y)|dy . |x|−2M1

∫

|y|≤S
|y|min(|y|α, |y|−β)dy .M1|x|−2S3−β.

The term ∇(−∆)−1Z1,1 is already estimated in (6.26). For Z2,1 and I3 (6.23), we improve
the estimate of ||Z2,1(|x|−α + |x|β)||∞. For |x| ≥ 2S, we have the estimate (6.25). For |x| ≤ 2S,
using the first estimate in Proposition 6.6 we just proved and using ∇φ1 to bound φ1, we obtain

|Z2,1|(|x|−α+|x|β) . C2
l min(|x|2, |x|2−β)(|x|−α+|x|β)M1 . C2

l (|x|2−α+|x|2)M1 . (ClS)
2−βM1.

Combining the estimates in two cases, we get

||Z2,1|(|x|−α + |x|β)||∞ . (ClS)
2−βM1.

Applying Lemma 6.5 again, we obtain

|∇⊥(−∆)−1Z2,1| . |x|1−β(ClS)2−βM1.

Combining the above estimates and (6.26), we prove (6.22). �

6.2.4. Estimate of ∇2φ1. Based on the estimate in Proposition 6.6 for ∇φ1, we further estimate
∇2φ1 for |x| ≤ R3.

Proposition 6.7. Let φ1 be the solution in (6.14), β ∈ (0, 1), and α ∈ (0, 1]. There exists some
absolute constant ν2(α, β) <

1
32 such that if Cl(τ)(1 + S(τ)) < ν2, we have

|∇2(φ1χ3)−∇2(−∆)−1Ω1| .α,β Cβl ||Ω1(|x|−α + |x|β)||∞.
In particular, we have

(6.27) ∂xy(φ1) = ∂xyφ(0), |∂xyφ1(0)− ∂xy(−∆)−1Ω1(0)| .α,β Cβl ||Ω1(|x|−α + |x|β)||∞.
For Ω1 being the perturbation, we will further bound ∇2(−∆)−1Ω1 using the energy defined

in the Boussinesq equation (5.70).

Proof. We consider (6.17) with i = 2. Denote

M1 = ||Ω1(|x|−α + |x|β)||∞.
Using (6.17), we have

∇2(φ1χ2) = ∇2(−∆)−1Ω1 −∇2(−∆)−1Z1,2 −∇2(−∆)−1Z2,2 , I1 + I2 + I3,

where we have used Ω1χi = Ω1 by requiring ClS small. We only need to estimate I2, I3. The
estimate of I2 is similar to that in the proof of Proposition 6.6. We consider the typical term

J = ∂12(−∆)−1(∂1φ1∂1χ2).

For |x| ≤ R3, it is away from the support of ∂1φ1∂1χ2. Denote K(z) = z1z2
|z|4 . We have

J = C

∫
K(x− y)(∂1φ1∂1χ2)(y)dy.
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Using Proposition 6.6 and (6.15), we get
(6.28)

|∂1φ1∂1χ2| . R−1
2 1R2≤|y|≤2R2

|∂1φ1| .M1R
−1
2 R1−β

2 1R2≤|y|≤2R2
.M1R

−β
2 1R2≤|y|≤2R2

.

Since |x| ≤ R3 ≤ R2/4 ≤ |y|/4 and |K(x− y)| . |y − x|−2 . |y|−2, we get

|J | .M1R
−β
2

∫

R2≤|y|≤2R2

|K(x− y)|dy .M1R
−β
2

∫

R2≤|y|≤2R2

|y|−2dy .M1R
−β
2 .

Similarly, we can obtain

|I2| .M1R
−β
2 .M1C

β
l ,

where we have used (6.16) to obtain the last inequality.

For I3, we estimate ∂12(−∆)−1Z2,2. Recall Z2,2 =
aC2

l

r φ1χ2 from (6.17). Other derivatives
are similar. By definition, we have

∂12(−∆)−1Z2,2 = C

∫
K(x− y)Z2,2(y)dy.

For a fixed x, we partition the region of the integral into three parts

Q1 = {y : |y| ≥ 2|x|}, Q2 = {y : |y − x| ≤ |x|/2}, Q3 = (Q1 ∪Q2)
c.

Applying Proposition 6.6, using (6.15) and |∂ir−1| . Cl when |r| ≥ 1
2 , for |x| ≤ 2R2, we

obtain

|∂iZ2,2| . C2
l (|∂ir−1φ1χ2|+ |∂iφ1χ2|+ |φ1∂iχ2|)

.M1C
2
l 1|x|≤2R2

(Cl|x|2 ∧ |x|2−β + |x| ∧ |x|1−β + (|x|2 ∧ |x|2−β)R−1
2 ) .M1C

2
l R

1−β
2 . C1+β

l M1.

We also have the pointwise estimate

(6.29) |Z2,2| . C2
l |φ1χ2| . C2

l min(|x|2, |x|2−β)1|x|.R2
M1 .M1C

β
l .

Using the above pointwise estimate, for |x| ≤ R3, we can obtain

|
∫

Q1

K(x− y)Z2,2(y)dy| .M1

∫

2|x|.|y|.R2

|y|−2C2
l min(|y|2, |y|2−β)dy . C2

l R
2−β
2 M1 .M1C

β
l ,

|
∫

|x−y|≤|x|/2
K(x− y)Z2,2(y)dy| . max

|x−y|≤|x|/2
|∇Z2,2(y)|

∫

|x−y|≤|x|/2
|x− y|−1dy . C1+β

l M1|x| .M1C
β
l ,

Since Q3 ⊂ {y : |x|/2 ≤ |x− y| ≤ 3|x|}, we get

|
∫

Q3

K(x− y)Z2,2(y)dy| . |x|−2|
∫

Q3

Z2,2(y)dy| . |x|−2M1C
β
l

∫

|y|≤4|x|
dy .M1C

β
l .

Combining the above estimates, we prove the desired result.
To obtain (6.27), we simply use r = 1 when x = y = 0 and

∂xy(φ1) = ∂xy(φr
1/2)(0) = ∂xyφ(0).

�

6.2.5. Weighted L∞ and Hölder estimate. Based on Propositions 6.6 and Proposition 6.7, we
show that Z1,i, Z2,i in (6.17) are small in the energy norm. Recall the weights ϕ1, ϕg,1, ψ1 and
g1 from (C.1), (C.3), (C.4). Denote

(6.30) ||Ω||X , max(||Ωϕ1||L∞ , ||Ωϕg,1||L∞ , ||Ωψ1||C1/2
g1

).

The energy (5.70), (5.54) also includes the norm ||Ω1ψ1|x1|−1/2||L∞ , which can be bounded by
||Ωψ1||C1/2

g1

up to some absolute constant. Thus, we do not include it in the above norm.

Recall that ϕ1,g ∼ c|x|1/16 for large |x|. We will fix

(6.31) β =
1

16

in the following estimate.
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We want to show that the Z term in (6.17) is small in X . However, Z2,4 only vanishes to
order O(|x|2) near x = 0 and is not in the space X since space X involves singular weights
of order |x|−γ with γ ∈ (2, 3]. We need to subtract a rank one correction near x = 0. In the
following estimates, the sizes of Z1,i, Z2,i are very small. The reader can mainly pay attention
to the vanishing order of these terms near x = 0.

Proposition 6.8. Let φ1 be the solution to (6.17). Suppose that Ω1 ∈ X and ClS < ν2, where
ν2 is the constant in Proposition 6.7. For |x| ≤ 2, α, β > 0, α < 2, we have

|∇(φ1 − x1x2∂xyφ1(0))| .α,β |x|1+α||Ω1|x|−α + |x|β ||L∞ ,

|φ1 − x1x2∂xyφ1(0)| .α,β |x|2+α||Ω1|x|−α + |x|β ||L∞ .

If Ω1 ∈ X , the vanishing order can be further improved. The weight ϕ1 (C.3) is singular of
order |x|−2.9 near x = 0,

Proof. Using (6.17) with i = 4, we get

φ1χ4 = (−∆)−1(Ω1 − Z1,4 − Z2,4).

Using Lemma 6.5, we only need to prove that

||(Ω1 − Z1,4 − Z2,4)(|x|−α + |x|β)||∞ . ||Ω1(|x|−α + |x|β)||∞.

Since χ1 = 1 in the support of χ4, the estimate of Z1,4, Z2,4 follows directly from Proposition
6.6 and its proof. We only consider a typical term. For ∂1φ1∂1χ4 in Z1,4, using Proposition 6.6,
we get

|∂1φ1∂1χ4|(|x|−α + |x|β) . ||Ω1(|x|−α + |x|β)||∞ min(|x|, |x|1−β)R−1
4 1|x|≍R4

(|x|−α + |x|β)
. ||Ω1(|x|−α + |x|β)||∞.

We need to require α < 2 since Z2,4 in (6.14) only vanishes to order |x|2 near x = 0. �
We are in a position to show that the Z term in (6.17) with a correction is small in space X .

Proposition 6.9. Suppose that Ω1 ∈ X and ClS < ν2, where ν2 is the constant in Proposition
6.7. We have

(6.32)
||Z||X . ClSM, ||∇Z||L∞ . ClM, Z , Z1,4 + Z2,4 − ∂xyZ2,4(0)(−∆κ),

M , ||Ω1(|x|−1 + |x|β)||∞ + ||χ3∇2(−∆)−1Ω1||∞.

where κ = −xy3

2 χ and χ is some cutoff function supported near x = 0, e.g. (6.15).

We will apply Proposition 6.9 to Ω1 = ωr3/2 with ω ∈ X or ω = ω̄χ(x/ν) with 1 < ν < R4,
where ω̄ is the approximate steady state for the 2D Boussinesq equation. In both cases, we can
further bound the right hand side as follows

(6.33)
||Ω1(|x|−1 + |x|β)||∞ + ||χ3∇2(−∆)−1Ω1||∞ . ||Ω1||X ,
||ω̄χνr3/2(|x|−1 + |x|β)||∞ + ||χ3∇2(−∆)−1(ω̄χν)||∞ . 1.

Estimates of∇2(−∆)−1Ω1 in both inequalities follow from standard interpolation inequalities.

Proof. Let φ1 be the solution of (6.17). Now, using Proposition 6.7, for |x| ≤ R3, we yield

|∇2φ1(x)| .M.

where M is defined in (6.32), and the norm of Ω1 in Propositions 6.6, 6.7 with β = 1
16 can be

bounded by M .
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Estimate of Z1,4. Firstly, we estimate Z1,4 (6.17). For |x| ≍ R4, from (6.16), we have ClR4 ≍ 1.
Using Lemma 6.4 for φ1 and (6.22) in Proposition 6.6 for ∇φ1, we obtain

|φ(x)| . S2−βM, |∇φ(x)| . |x|1−βM(ClS)
2−β,

where we have used S . |x|, Cl|x| ≍ ClR4 ≍ 1 to simplify the upper bound in (6.22). Using the
above estimate and R−1

4 ≍ Cl, we obtain the pointwise estimate

|Z1,4| . 1|x|≍R4
(R−1

4 |∇φ1|+R−2
4 |φ1|) .M1|x|≍R4

(R−1
4 |x|1−β(ClS)2−β + S2−βR−2

4 )

. Cβl (ClS)
2−βM1|x|≍R4.

Using (6.15) for ∇kχ4, Lemma 6.4, and Propositions 6.6, 6.7 for ∇kφ1, we obtain

|∇Z1,4| . 1|x|≍R4
(|∇2φ1| · |∇χ4|+ |∇φ1| · |∇2χ4|+ |φ1| · |∇3χ4|)

. 1|x|≍R4
M(R−3

4 |x|2−β +R−2
4 |x|1−β +R−1

4 ) . 1|x|≍R4
MR−1

4 . 1|x|≍R4
MCl.

Note that the weights ϕ1, ϕg,1 (C.3), (C.4) involve |x1|−1/2 which is singular along x1 = 0.
For any power γ ∈ [−3, β], we have

|Z1,4|x|γ | . Cβl |x|γ(ClS)2−β1|x|≍R4
M . (ClS)

2−β1|x|≍R4
M.

For any power γ ∈ [−5/2, 0) and x1 ≤ 1, we have

|Z1,4|x|γ |x1|−1/2| . max
|z|≤1

|∇Z1,4(z, x2)| · |x|γ . R−1+γ
4 M . ClM.

To estimate the Hölder norm of Z1,4ψ1, following similar estimates, we obtain

|Z1,4ψ1| . (ClS)
2−βM, |∇(Z1,4ψ1)| . (Cl + (ClS)

2−β)M.

We can obtain better estimates due to the decay of ψ1(x) for large x, see (C.1). But we do
not need this extra smallness. Using the above estimates and embedding inequalities, we obtain

|Z1,4ϕ1| . |Z1,4ϕg,1| . (Cl + (ClS)
2−β)M, ||Z1,4ψ||C1/2

gi

. (Cl + (ClS)
2−β)M,

which along with the above estimate for ∇Z1,4 establish the estimates for Z1,4 in (6.32).

Estimate of Z2,4. Recall

Z2,4 =
aC2

l

r
φ1χ4.

Clearly, we have ∂xyZ1,4(0) = aC2
l ∂xyφ1(0). We perform the following decomposition

Z2,4 − ∂xyZ2,4(0)(−∆κ) =
aC2

l

r
(φ1 − ∂xyφ1(0)(−∆κ)) + ∂xyφ1(0)

aC2
l

r
(1− r)(−∆κ) , I + II.

From the definition of κ in Proposition 6.9, for |x| ≤ 1, we have

−∆κ = x1x2, (1− r) = Clx2.

Thus II = O(x1x
2
2) near x = 0. Using Proposition 6.6 for |∇2φ1| . lim supx→0 |∇φ1|x|−1|,

Proposition 6.7 for ∂xyφ(0) and the fact that II is supported near x = 0, we get

||II||X . C3
lM, |∇II| . C3

lM.

Applying Propositions 6.6 and 6.8 with α = 1 and we obtain

(6.34) |∇I| . C2
l min(|x|2, |x|1−β)M, |I| . C2

l x1 min(|x|2, |x|1−β)M,

where to obtain the second bound C2
l x1|x|1−β , we have used Proposition 6.6 and integrated the

estimate for ∂1φ in x1 to estimate φ1. Note that if the derivative acts on r
−1, we get |∇r−1| . Cl

and then use Cl|x| . 1 to remove a growing power |x|. Since Cl|x| . 1 in the support of I,
combining the estimate of ∇I,∇II, we obtain the estimate of ∇(I + II) in (6.32).

For large |x| ≥ 8S, the correction vanishes (−∆κ) = 0. Using Lemma 6.4 and the improved
estimate (6.22), for 8S ≤ |x| ≤ R1/2 . C−1

l , we have |x|1−β(ClS)2−β . ClS
2−β . S1−β and

|φ1| . (1 + | log(ClS)|)S2−βM, |∇(φ1/r)| . |∇φ1|+ Cl|φ1| . S1−βM,
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where we have used ClS
2−β(1 + | log |ClS||) . S1−β to absorb the logarithm factor. It follows

(6.35)
|I| . C2

l (1 + | log(ClS)|)S2−βM . (ClS)
1−β(1 + | log(ClS)|)C1+β

l SM . C1+β
l SM,

|∇I| . C2
l S

1−βM . ClM,

for |x| ∈ [8S,R1/2]. Therefore, for any γ1 ∈ [−3, β], combining the above estimates and (6.34)
and using |x| ≤ R1 . C−1

l within the support of I, we have

(6.36) |x|γ |I| . ClSM.

Next, we bound |I||x|γ2 |x1|−1/2 for γ2 ∈ [−5/2, 0]. If |x1| ≥ 1, it follows from the above
bound. If |x1| ≤ 1, using (6.34), we obtain

|x|γ2 |x1|−1/2|I| . |x|γ2C2
l |x1|1/2 min(|x|2, |x|1−β)M . C2

l min(1, |x|1−β)M . C1+β
l M.

The above estimates imply

||Iϕ1||∞ . ||Iϕg,1||∞ . (Cl + ClS)M . ClS||Ω1||X , ||Iψ1||∞ . ClSM.

Since ψ1 . |x|−2 + 1, |∇ψ1| . |x|−3 + |x|−1, for I, using (6.34),(6.36), we get

|∇(Iψ1)| . |∇I|ψ1 + |I∇ψ1| . C2
l min(|x|2, |x|1−β)(|x|−2 + 1)||Ω1||X + ClSM

. (C2
l (1 + |x|1−β) + ClS)M . ClSM, |Iψ1| . ClSM.

In the last inequality for ∇(Iψ1), we have used C1−β
l |x|1−β . 1 within the support of I and

Cl ≪ 1 < S. Using embedding inequalities, we obtain the Hölder estimate of Iψ1. We conclude

||Z2,4 − ∂xyZ1,4(0)(−∆)κ||X . ||I||X + ||II||X . ClSM.

Since ClS . 1, Cl . 1, combining the estimate of Z1,4, Z2,4, we complete the proof. �

6.3. Main terms for the stream function and velocity. Based on Proposition 6.9, we
rewrite (6.17) with i = 4 as follows

−∆(φ1χ4 + aC2
l φxy(0)κ) = Ω1χ4 − Z1,4 − (Z2,4 − ∂xyZ2,4(0)(−∆κ)),

where we have used (6.27) and

∂xyZ2,4(0) = aC2
l ∂xyφ1(0) = aC2

l ∂xyφ(0).

Recall the definitions of φ1,Ω1 from (6.17), and κ from Proposition 6.9. We introduce

(6.37)
Ψ = φr1/2χ4 + aC2

l φxy(0)κ, Ω = ωr3/2χ4 − Z1,4 − (Z2,4 − ∂xyZ2,4(0)(−∆κ)),

Ψ2 = −aC2
l φxy(0)κ.

Then we obtain

(6.38) −∆Ψ = Ω, φr1/2χ4 = Ψ+Ψ2.

Within the support of ω, we have r−1 . 1 and |r− 1| . ClS. Using Proposition 6.9, we have

(6.39) ||(Ω− ω)ρ||∞ . CClS||ω||X , ||Ω− ω||X . ClS||ω||X .

for weight ρ with ||fρ||L∞ . ||f ||X , e.g. ρ = ϕ1, ϕg,1, |x1|− 1
2ψ. Thus, Ω and ω enjoy almost the

same estimates.
From Propositions 6.7, 6.9, the term φxy(0) satisfies

(6.40) |φxy(0)| . ||Ω1||X . ||Ω||X , Ψxy(0) = φxy(0).

Therefore, the term aC2
l φxy(0)κ is very small and vanishes to the order |x|4 near x = 0.
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6.3.1. Main terms for the velocity. Recall u, v from (6.13). Since we will only use the estimate
of the velocity within the support of the solution, where χi = 1, in the following derivation, we
drop the cutoff functions χi to simplify the notation. Firstly, from (6.38), we yield

φr1/2 = Ψ+Ψ2.

The term Ψ2 is smooth with vanishing order |x|4, compactly supported, and small. We treat
it as a lower order term and do not expand its derivation below. The velocity depends on the
derivatives of φ. Using ∂xr = 0, ∂yr = −Cl defined in (6.9) (please do not confuse r with√
x2 + y2 here), we rewrite ∇φ as follows

(6.41)
φy = (r1/2φr−1/2)y = (Ψr−1/2)y + (Ψ2r

−1/2)y = Ψyr
−1/2 +

Cl
2r3/2

Ψ+ (Ψ2r
−1/2)y ,

φx = r−1/2Ψx + r−1/2Ψ2,x.

Then using (6.13), we can rewrite u, v as follows
(6.42)

u = −φy +
1

r
Clφ = −Ψyr

−1/2 − Cl
2r3/2

Ψ+
1

r3/2
ClΨ− (Ψ2r

−1/2)y −
1

r3/2
ClΨ2 , uM + uR

where the main term and the remainder are given by

(6.43) uM = −Ψy, uR = −Ψy(r
−1/2 − 1) +

Cl
2r3/2

Ψ− (Ψ2r
−1/2)y −

1

r3/2
ClΨ2.

An important observation is that the first and the second terms in uR cancel each other near
the origin. To see this, we have

(6.44) r−1/2 − 1 =
1− r1/2

r1/2
=

1− r

r1/2(1 + r1/2)
=

Cly

r1/2(1 + r1/2)
.

It follows
(6.45)

−Ψy(r
−1/2 − 1) +

Cl
2r3/2

Ψ

=− (Ψy −Ψxy(0)x)(r
−1/2 − 1) +

Cl
2r3/2

(Ψ −Ψxy(0)xy) + Ψxy(0)(−x(r−1/2 − 1) +
Clxy

2r3/2
),

=− (Ψy −Ψxy(0)x)(r
−1/2 − 1) +

Cl
2r3/2

(Ψ −Ψxy(0)xy) + Ψxy(0)
Clxy(1 + r1/2 − 2r)

2r3/2(1 + r1/2)
.

The last term vanishes to the order O(|x|3) near x = 0. We treat uR as the remainder since it
vanishes to the order O(|x|3) near x = 0 and contain the small factor Cl. Within the support
of the solution, we get Cl|x| ≤ ClS, which is small.

For v in (6.13), using (6.41) we have

(6.46)
v = φx = Ψx + (r−1/2 − 1)Ψx + r−1/2Ψ2,x , vM + vR,

vM = Ψx, vR = (r−1/2 − 1)Ψx + r−1/2Ψ2,x.

We treat vR as the remainder since it contains the small factor Cl and vanishes to the order
|x|2 near x = 0. Within the support, vR has size of order ClS. We remark that the vanishing
order of vR is less than that of uR (O(|x|3)). On the other hand, in (6.13), the coefficients of v,
e,g. θy, ωy, have higher vanishing order than those of u, e.g. θx, ωx, near x = 0. The remainder
terms uR, vR with coefficients have enough vanishing order near 0 for our weighted estimates.

6.3.2. Main terms for the velocity of the approximate steady state. Following [17], we will con-
struct the approximate steady state (6.55) for the 3D Euler (6.13) by truncating the approximate
steady state (ω̄, θ̄) for the 2D Boussinesq. We need to show that the associated velocity (6.13) is
close to that in the 2D Boussinesq equation. For ν sufficiently large and to be chosen, we define

ω̄ν = χ(x/ν)ω̄,

where χ is the cutoff function chosen above (6.15).
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To avoid confusion ,we denote φ̄2D = (−∆)−1ω̄. Using (6.37), (6.38) with ω = ω̄ν constructed
above, and then subtracting (6.37) by −∆φ̄2D = ω̄, we yield

(−∆)(φr1/2χ4 + aC2
l φxy(0)κ− φ̄2D) = ω̄χνr

3/2χ4 − ω̄ − Z1,4 − (Z2,4 − ∂xyZ2,4(0)(−∆)κ).

Applying Propositions 6.9, (6.33) with Ω1 = ω̄ν , we have the following estimates for the Z terms

||Z1,4 + (Z2,4 − ∂xyZ2,4(0)(−∆)κ)||X . ClS.

Note that the source term of the elliptic equation only vanishes to the order |x|2 near x = 0:

ω̄χνr
3/2χ4 − ω̄ = ω̄(r3/2 − 1) = −3

2
Clω̄x(0)xy +O(|x|3).

We add a correction 3
2Clω̄x(0)(−∆κ) with −∆κ = xy + l.o.t. to the above elliptic equation

(−∆)
(
φr1/2χ4 + (aC2

l φxy(0) + ω̄x(0)
3

2
Cl)κ− φ̄2D

)
= Ων,R,

where

(6.47)

Ων,R , ω̄χνχ4(r
3/2 − 1) +

3

2
Clω̄x(0)(−∆κ) + ω̄(χ4χν − 1)

− Z1,4 − (Z2,4 − ∂xyZ2,4(0)(−∆)κ),

Ψ̄ = φr1/2χ4 + (aC2
l φxy(0) + ω̄x(0)

3

2
Cl)κ, Ψ̄2 = −(aC2

l φxy(0) + ω̄x(0)
3

2
Cl)κ.

Then the source term Ων,R vanishes near x = 0 to the order |x|3. We yield

(6.48) −∆(Ψ̄ − φ̄2D) = Ων,R, −∆Ψ̄ = Ων,R + ω̄.

Since ω̄ ∈ C1 and |ω̄| . min(|x1|, |x|−1/6), |∇ω̄| . min(1, |x|−7/6), using Proposition 6.9 and
(6.33), we obtain

(6.49) ||Ων,R||X . ||ω̄(χ4χν − 1)||X + ClS, ||Ων,R||C1 . ||ω̄(χ4χν − 1)||C1 + ClS.

By choosing ν sufficiently large and ClS to be small, we can obtain that Ψ̄ − φ̄2D is very
small. Similar to (6.43) and (6.46), based on Ψ̄, Ψ̄2 in (6.47) and

φr1/2 = Ψ̄ + Ψ̄2,

we decompose the velocity in (6.13) associated with ω̄ν as follows

(6.50) ū = −Ψ̄y + ūR, v̄ = Ψ̄x + v̄R,

for |x| ≤ R4. The formulas of ūR, v̄R are similar to those in (6.43), (6.46) with Ψ,Ψ2 replaced
by Ψ̄, Ψ̄2. The remaining terms vanish near 0 with order ūR = O(|x|3), v̄R = O(|x|2).

Since ||f ||Lp . ||fϕg,1||∞ . ||f ||X for p > 100, using embedding (6.75), (6.48), (6.49), we get

(6.51)
||∇2(Ψ̄ − φ̄2D)||L∞ + ||∇2(Ψ̄ − φ̄2D)||C1/2 . ||Ων,R||X + ||Ων,R||C1

. ||ω̄(χ4χν − 1)||C1 + ||ω̄(χ4χν − 1)||X + ClS

For the remaining terms ūR = (ūR, v̄R), for |x| ≤ 2S, using |r − 1|, Cl|x| . ClS, the elliptic
equation for Ψ̄ (6.48), and embeding inequalities, we get

(6.52) ||∇2Ψ̄||L∞ + ||∇2Ψ̄||C1/2 . 1, sup
|x|≤2S

|∇ūR(x)| + sup
|x|,|z|≤2S

|∇ūR(x)−∇ūR(z)|
|x− z|1/2 . ClS.

6.3.3. Estimate of the velocity. We need several weighted estimate of (−∆)−1Ω for the main
terms in the velocity. We will have some small parameters to absorb the implicit constants.

Lemma 6.10. Suppose that Ω ∈ X (6.30) is odd and −∆Ψ = Ω. We have

(6.53)
∣∣∣∇2

(
Ψ−Ψxy(0)xy −

1

6
∂1112Ψ(0)(x31x2 − x1x

3
2)
)∣∣∣ . |x|2.5||Ω||X ,

for |x| ≤ 1 and
∣∣∣∇2(Ψ−Ψxy(0)xy)

∣∣∣ . min(|x|2, 1)||Ω||X , |Ψxy(0)|, |∂1112Ψ(0)| . ||Ωϕg,1||∞.
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The formula of ∂1112Ψ(0) can be written as an integral of Ω and is given in (4.25). Note that
in Section 4 of Part II [15], we develop the sharp version of the above estimates with better
constants. In Appendix C.3.3, we present the proof, which also helps to illustrate the ideas for
Section 4 of Part II [15].

In Section 3, Section 4 of Part II [15], for u = ∇⊥(−∆)−1ω with ω ∈ X , we develop weighted

estimate for ux − ûx, uy − ûy, vx − v̂x with approximations ∇̂u constructed in Section 4.3. In
particular, we obtain

|x− z|−1/2|(f − f̂)ψ1(x) − (f − f̂)ψ1(z)| . ||ωψ1||C1/2
g1

+ ||ωϕ1||∞ . ||ω||X , f = ux, uy, vx.

for x, z with x1 = z1 or x2 = z2 and |x| ≤ |z| ≤ (1 + µ)|x| for some µ ∈ (0, 1). The estimate
up to some absolute constant can be established following the decomposition and argument in
Section 4 of Part II [15] and using the asymptotics of the weights ϕ1, ψ1 (C.1), (C.3). When
|z| > (1+µ)|x|, the estimate follows from the above Lemma, the triangle inequality, |x|−1/2ψ1 .
ϕ1, ||Ωϕ1||∞ . ||Ω||X . Since near x = 0, f − f̂ agree with the left hand side of (6.53) (see (4.26)
and (4.29)), we obtain

||(f − f̂)ψ1||C1/2 . ||ω||X .
Note that the approximations in (4.29), (4.37) except Cf0(x)(−∂12(−∆)−1ω)(0), Cf (x)K00χ0

are supported away from 0 with smooth coefficients. Moreover, the functionals in (4.29), (4.37),

e.g. f̂NS(xi, 0),K00, can be bounded by ||ω||X . Using triangle inequality, we yield

||
(
f − Cf0(x)(−∂12(−∆)−1ω)(0)− Cf (x)K00χ0

)
ψ1||C1/2 . ||ω||X ,

where χ0 is defined in Section 4.3.2, χ0 = 1 near 0, and supported near 0. In summary, we have

Lemma 6.11. Suppose that Ω ∈ X (6.30) is odd and −∆Ψ = Ω. We have

||ψ1

(
∂ij(Ψ−Ψxy(0)x1x2)− χ0∂1112Ψ(0)∂ijG(x)

)
||C1/2 . ||Ω||X , G(x) ,

1

6
(x31x2 − x1x

3
2).

Using the above estimates for ∇2(−∆)−1Ω, we can obtain the estimate for ∇(−∆)−1Ω(x) by
integration from 0 to x, which is more regular.

6.4. Nonlinear stability. In Section 6.4.1, we impose the bootstrap assumption on the support
size. In Section 6.4.2, we construct the approximate steady state and impose the normalization
conditions, which are small perturbations to those in the 2D Boussinesq. Then we generalize
the nonlinear stability analysis of the 2D Boussinesq equations to prove Theorem 4.

6.4.1. Bootstrap assumption on the support size. We fix the exponents α = 1 or α = 2.9, β =
1
16 in Propositions 6.6, 6.7, 6.9. These exponents are related to the singular weights we use.
Then the constants ν1, ν2 in these propositions are determined. We impose the first bootstrap
assumption: for t ≥ 0, we have

(6.54) Cl(t)(1 + max(S(t), S(0))) < min(ν2, 4
−6).

Under the above Bootstrap assumption, the support of ω, θ in D1 does not touch the symmetry
axis and z = ±1, the cutoff functions (6.16) satisfy χi = 1, i ≤ 5 for x in the support, and
the assumptions in Propositions 6.6, 6.7, 6.9. We will choose Cl(0) at the final step, which
guarantees the smallness in (6.54).

6.4.2. Approximate steady state and the normalization condition. Since the rescaled domain D̃1

(6.12) is bounded, we construct the approximate steady state with bounded support. We localize
the approximate steady state ω̄, θ̄ for the 2D Boussinesq constructed in Section 7 to construct
the approximate steady state for (6.13)

(6.55) ω̄0 , χν ω̄, θ̄0 , χν(1 + θ̄),

where ν ≥ 1, χν(x) = χ1(|x|/ν) is some cutoff function, and χ1(y) : R → [0, 1] is even in y,
χ1 = 1 for |y| ≤ 1, and χ1(y) = 0 for |y| ≥ 2. We can choose χ1 = χ̃2

1 for another smooth

cutoff function χ̃1 such that χ
1/2
1 = χ̃1 is smooth. Clearly, from Definition 6.2, the support size
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of ω̄0, θ̄0 is 2ν. We truncate 1 + θ̄ rather than θ̄ so that 1 + θ̄ & 1 and (1 + θ̄)1/2 has the same
regularity as θ̄. This idea follows [17].

Denote β = arctan y
x , ρ =

√
x2 + y2. Recall the formula in the polar coordinate:

(6.56) ∂xg = (cosβ∂r −
sinβ

r
∂β)g, ∂yg = (sinβ∂r +

cosβ

r
∂β)g.

We have

(6.57) ∂xθ̄0 = χν θ̄x +
1

ν
cosβχ′

1(|x|/ν)(1 + θ̄), ∂y θ̄0 = χν θ̄y +
1

ν
sinβχ′

1(|x|/ν)(1 + θ̄).

To show that ω̄ − ω̄0, θ̄ − θ̄0 is small, from (7.2) we have ω̄, θ̄ ∈ C4,1, and for k ≤ 3

(6.58) |ω̄| . min(|x1|, |x|−1/4), |∇kω̄| . min(1, |x|−1/4−k), |∇k+1θ̄| . min(1, |x|−3/5−k).

To distinguish the notations between the 3D Euler and the 2D Boussinesq equations, we write

(6.59) φ̄2D = (−∆)−1ω̄, ū2D = ∇⊥φ̄2D

for the 2D Boussinesq. Let φ̄ and ū be the stream function and velocity in (6.13) associated
with ω̄0. We have the leading order terms for u (6.50). See more discussions in Section 6.3.2.

We need to adjust the time-dependent normalization condition for cω(t), cl(t). We impose
the following conditions

(6.60) c̄l = 2
θ̄xx(0)

ω̄x(0)
, c̄ω(t) =

1

2
c̄l + ūx(0), c̄θ(t) = c̄l + 2c̄ω(t)

for the approximate steady state ω̄0, θ̄0, and

(6.61) cl(t) = 0, cω(t) = ux(t, 0)

for the perturbations, where u(t, 0) is the velocity in (6.13) and is different from −∂y(−∆)−1ω.
The above conditions are the same as (2.11) and (2.26), and play the same role of enforcing
(2.12). As a result, the perturbation ω,∇θ satisfies the vanishing condition (2.29)

ω = O(|x|2), ∇θ = O(|x|2)

near x = 0. Since ∇θ̄0 = ∇θ̄, ω̄0 = ω̄ near x = 0, the factor c̄l is the same as that for the 2D
Boussinesq.

We remark that c̄ω(t) is time-dependent since it depends on ūx(0) and the elliptic equation in
(6.13) depends on the rescaling factor Cl. From the estimate in Proposition (6.7), ūx(0) is very
close to −∂xy(−∆)−1ω̄0. For ν sufficiently large, comparing the above conditions and (2.11), c̄ω
is very close to c̄ω,2D (2.23) used for the 2D Boussinesq equations in Section 2. From (6.60) and
(2.11), we yield

(6.62) c̄ω − c̄ω,2D = ūx(0)− ūx,2D(0).

Remark 6.12. We will choose ν to be very large relatively to 1. Therefore, we treat ω̄0 ≈ ω̄, θ̄0 ≈
θ̄. Due to these small factors and using (6.47) and (6.50), we can treat ū ≈ ū2D. From Remark
6.3 and the bootstrap assumption (6.54), we also have Cl ≈ 0, ClS ≈ 0, r ≈ 1. We treat the
error terms in these approximations as perturbation.

6.4.3. Linearized equations. The equations (6.13) are slightly different from (2.10) for the Boussi-
nesq systems. Denote

η = θx, ξ = θy.
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Linearizing (6.13) around the approximate steady state (ω̄0, θ̄0, c̄l, c̄ω) (6.55), (6.60), we obtain
the equations for the perturbation (ω, η, ξ), which are similar to (2.25), (2.28)

(6.63)

∂tω = −(c̄lx+ ū) · ∇ω +
1

r4
η + c̄ωω − u · ∇ω̄0 + cωω̄0 + F̄1 +N1

, L1(ω, η, ξ) + F̄1 +N1,

∂tη = −(c̄lx+ ū) · ∇η + (2c̄ω − ūx)η − v̄xξ − ∂x(u · ∇θ̄0) + 2cω θ̄0,x +N2 + F2

, L2(ω, η, ξ) + F̄2 +N2,

∂tξ = −(c̄lx+ ū) · ∇ξ + (2c̄ω − v̄y)ξ − ūyη − ∂y(u · ∇θ̄0) + 2cωθ̄0,y +N3 + F3,

, L3(ω, η, ξ) +N3 + F3,

where

F̄1 = −(c̄lx+ ū) · ∇ω̄0 +
1

r4
θ̄0,x + c̄ωω̄0,

and we adopt similar notations Ni, F̄i for other nonlinear terms and the error terms from (2.18),
(2.19). The ω equation is different from the corresponding equation in (2.25) since we have 1

r4 θx
in (6.13). The ξ equation is also different from the corresponding equation in (2.28) since we
do not have the same incompressible conditions ūx + v̄y = 0, ux + vy = 0. We remark that the
velocity u,∇u in the above system are determined by the elliptic equation in (6.13).

To generalize the analysis of the 2D Boussinesq equations to the 3D Euler equations, we
derive the different terms, which are all of lower orders. In the following derivations, we use

f2D to denote the quantity f used in the 2D Boussinesq. For example, ū2D denote
the approximate steady state for the velocity for 2D Boussinesq (6.59). It satisfies ū2D =
∇⊥(−∆)−1ω̄. We introduce the norm Xi related to the energy (5.70)

(6.64) ||f ||Xi , ||fϕi||∞ + ||fϕg,i||∞ + ||fψi||C1/2
gi

.

Lower order terms in the linearized and nonlinear operator. Using (6.43), we get

(6.65)

Li = LM,i + LR,i,
LM,1 = −(c̄lx+ ū) · ∇ω + η −∇⊥Ψ · ∇ω̄0 +Ψxy(0)ω̄0 + c̄ωω,

LM,2 = −(c̄lx+ ū) · ∇η + (2c̄ω − ūx)η − v̄xξ − ∂x(∇⊥Ψ · ∇θ̄0) + 2Ψxy(0)θ̄0,x,

LM,3 = −(c̄lx+ ū) · ∇ξ + (2c̄ω − v̄y)ξ − ūyη − ∂y(∇⊥Ψ · ∇θ̄0) + 2Ψxy(0)θ̄0,y,

LR,1 = (
1

r4
− 1)η − uR · ∇ω̄0, LR,2 = −∂x(uR · ∇θ̄0), LR,3 = −∂y(uR · ∇θ̄0).

Note that from (6.40) and (6.43), we have

(6.66) uR = O(|x|3), uR,x(0) = 0, Ψxy(0) = φxy(0) = ux(0) = cω.

We will estimate LR,i in Section 6.4.4 and show that it can be bounded by (ClS +Cβl )E4(t),
where E4(t) is the energy norm (5.70) for the 2D Boussinesq.

For the nonlinear terms Ni, we decompose the velocity u into uM and uR similarly. We only
focus on N2 since other terms are decomposed similarly. Using (6.43), (6.46), we have

(6.67)
N2 = NM,2 +NR,2, NM,2 = −u · ∇η − uM,xη − vM,xξ + 2uM,x(0)η,

NR,2 = −uR,xη − vR,xξ.

where we have used uR,x(0) = 0, uM,x(0) = ux,0 = cω (6.66). The lower order terms NR,2 have
vanishing order O(|x|4) near x = 0, and its estimate follows the estimates of uR,x in Section
6.4.4, and the nonlinear terms in Section 5.9. We do not decompose the transport term since
we need to apply the weighted L∞ and C1/2 estimate. In the weighted estimate, it leads to the
nonlinear term di(ρ)W1,iρ in (5.6). The estimate of the lower order terms in di(ρ)W1,iρ follows
the estimate of NR,2.
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Lower order terms in the residual error. Denote

δf = f − f2D, δū = ū− ū2D, δc̄ω = c̄ω − c̄ω,2D.

For the residual error, using (6.50) and (2.19), we obtain
(6.68)

F̄i = F̄M,i + F̄R,i,

F̄M,1 = −(c̄lx+ ū2D) · ∇ω̄0 + c̄ω,2Dω̄0, F̄R,1 = −δū · ∇ω̄0 + δc̄ω · ω̄0 +
1− r4

r4
θ̄0,x,

F̄M,i+1 = ∂i

(
− (c̄lx+ ū2D) · ∇θ̄0 + (c̄l + 2c̄ω,2D)θ̄0

)
, F̄R,i = ∂i

(
− δū · ∇θ̄0 + 2δc̄ω · θ̄0

)
.

Note that the profiles ω̄,∇θ̄ decay and we choose the weights (C.4), (C.3), such that

|ω̄ϕg,1| . |x|−γ1 , |∇θ̄ϕg,2| . |x|−γ2

for some γ2 > 0, e.g. γ2 = 1
8 . Since F̄M,i agrees with the residual error F̄i (2.19) for the 2D

Boussinesq for |x| ≤ ν, where ν is the size of the cutoff function in (6.55), we have

(6.69) ||F̄M,i − F̄i,2D||Xi . ν−γ

for some γ > 0, e.g. γ = 1
8 . The Hölder estimate of the tail is even smaller since ψ1 and

||x|k∇kF̄i,2D|, ||x|k∇kF̄M,i|, k = 0, 1 decay, which can be derived using the regularity and asymp-
totics of the profile (7.2).

The error term F̄R,i does not vanish to the order |x|3 near 0. We use correction D2
i F̄R,i(0) ·

fχ,i, D
2 = (∂xy, ∂xy, ∂xx) similar to (4.11) and then incorporate it in the correction (4.11).

6.4.4. Estimate the lower order terms in the linearized operator. In this section, under the boot-
strap assumption (6.54), we estimate LR,i and show that

(6.70) ||LR,iϕi||∞ + ||LR,iϕg,i||∞ + ||LR,iψg,i||C1/2
gi

+ ||LR,1|x1|−1/2ψ1||∞ . (ClS + Cβl )E4(t),

for i = 1, 2, 3. For ω ∈ X , by definition of E4 and (6.39), we have

||Ω||X . E4(t).

The estimate of (r−4 − 1)η follows from |r−4 − 1| . Clx2 . ClS and the bound for η. Other
terms in LR,i are nonlocal, involving uR, vR. We estimate a typical term ∂xuRθ̄0,x.

Estimate of Ψ2. Recall the formulas of uR from (6.43) and Ψ,Ψ2 from (6.37). The estimates
of the terms involving Ψ2 are simple since

Ψ2 = −αC2
l φxy(0)κ.

Recall the definition of κ from Proposition 6.9. Using (6.40), we yield

(6.71) |∇kΨ2| . C2
l |x|4−kE4.

For |x| ≤ 2, we have

|∇θ̄0| . |x1|, |∇2θ̄0| . 1.

We consider a typical term related to Ψ2 in ∂xuRθ̄0,x, e.g. ∂xyΨ2r
−1/2θ̄0,x (6.43). We can

bound it by

|∂xyΨ2r
−1/2θ̄0,xϕ2| . C2

l |x|2|x1||x|−5/2|x1|−1/21|x|≤2E4 . C2
l E4.

Note that for |x| ≤ 1, we have χ = 1, κ = −xy3

2 (see Proposition 6.9),

∂xyΨ2r
−1/2θ̄0,xψ2 = CC2

l r
−1/2y2θ̄0,xψ2,

for some absolute constant C, ψ2 ∼ c|x|−5/2 near x = 0, and f = r−1/2y2θ̄0,xψ2 vanishes to the

order of |x|1/2 near x = 0. For |x| > 1/2, f is smooth and is supported near x = 0. Hence, we
obtain that f is in C1/2 and

||∂xyΨ2r
−1/2θ̄0,xψ2||C1/2

g2

. C2
l E4.
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The estimates of other terms related to Ψ2 or Ψ̄2 (6.50) in the residual error, nonlinear terms,
or linear parts related to Ψ2 follow similar estimates since Ψ2, Ψ̄2 = O(|x|4) near x = 0 and
contain the small factor C2

l . We treat them as lower order terms.

Estimate of Ψ− Ψxy(0)xy. Next, we estimate other terms in uR related to Ψ. Recall the de-
composition (6.45). The third term in (6.45) follows an estimate similar to that of Ψ2 performed
above. The first two terms vanish to a higher order near x = 0. We estimate a typical term in
∂xuRθ̄0,x related to Ψ:

(6.72) I , ∂x(Ψy −Ψxy(0)x)(r
−1/2 − 1)θ̄0,x = (Ψxy −Ψxy(0))(r

−1/2 − 1)θ̄0,x.

Note that |r−1/2 − 1| . Cl|x2| . ClS within the support of the solution. The weighted L∞

estimate is simple and follows from Lemma 6.10. For example, using θ̄0,x . min(|x1|, |x|−3/5),
we have

|Iϕ2| . |Iϕg,2| . 1|x|≤SCl|x2|min(|x|2, 1)min(|x1|, |x|−3/5)ϕg,2||Ω||X . ClSE4,

where the weights ϕ2, ϕg,2 are defined in (C.4), (C.3)with ϕg,2 . |x| 12 + |x1|−
1
2 (|x|−1/6+ |x|−5/2).

For the Hölder estimate, we use Lemma 6.11. Recall G(x) defined in Lemma 6.11. Firstly,
we rewrite I as follows

I = (Ψxy−Ψxy(0)−χ0∂xyG(x)Ψxxxy(0))(r
−1/2−1)θ̄0,x+χ0Ψxxxy(0)∂xyG(x)(r

−1/2−1)θ̄0,x , I1+I2.

Denote

Ψxy,A , Ψxy −Ψxy(0)− χ0∂xyG(x)Ψxxxy(0).

The estimate of I2 is simple since the coefficient vanishes to O(|x|4) and we obtain a small
factor: |r−1/2 − 1| . Cly . ClS within the support of the solution. In particular, we have

||I2ψ2||C1/2 . ClS|Ψxxxy(0)| . ClS ·E4.

For I1, we first rewrite I1ψ2 as follows

I1ψ2 = (Ψxy,Aψ1)
ψ2

ψ1
(r−1/2 − 1)θ̄0,x.

From Lemmas 6.10, 6.11, we have Ψxy,Aψ1 ∈ L∞ ∩ C1/2. The coefficient ψ2

ψ1
(r−1/2 − 1)θ̄0,x

vanishes to the order |x|3/2 near x = 0. Since

|ψ2

ψ1
(r−1/2 − 1)θ̄0,x| . ClS, |∇(

ψ2

ψ1
(r−1/2 − 1)θ̄0,x)| . ClS,

we obtain the Hölder estimate for I1ψ2. The estimates of other terms in uR are similar. We
establish (6.70).

6.4.5. Estimates of the lower order terms in the residual error. In this section, we estimate the
lower order terms in the residual error (6.68) and show that

(6.73) ||F̄R,i − cifχ,i||Xi . ClS + Cβl + ||Ων,R||X ,
where the norm Xi, fχ,i, Ων,R are defined in (6.64), (4.11), (6.47), respectively, and ci = ∂xyF̄R,i
for i = 1, 2 and c3 = ∂xxF̄R,3(0). Using (6.49), we can further bound Ων,R as follows

||Ων,R||X . ||ω̄(χ4χν − 1)||X + ClS = ||ω̄(χν − 1)||X + ClS,

where we have used νCl ≤ ClS ≤ 4−5 in the last inequality to simplify χ4χν = χν , which can
be done by choosing Cl sufficiently small later.

We focus on the case i = 2, i.e. the estimate of F̄R,2 − c2fχ,2. Firstly, from (6.62), we have

δc̄ω = c̄ω − c̄ω,2D = ūx(0)− ūx,2D(0) = δūx(0).

Note that ūx(0) + v̄y(0) = 0 for the velocity (6.50). A direct computation yields

c1 = ∂xyF̄R,1(0) = δc̄ωω̄xy(0) + 4Clθ̄xx(0), c2 = δc̄ω θ̄xxy(0), c3 = δc̄ω θ̄xxy(0).
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We can rewrite FR,i (6.68) as follows
I = ∂x(−δū · ∇θ̄0 + 2δūx(0)θ̄0)− c2fχ,2

= −(δū− δūx(0)x)θ̄0,xx − ∂x(δū− δūx(0)x)θ̄0,x − (δv̄ − δv̄y(0)y)θ̄0,xy

− ∂x(δv̄ − δv̄y(0)y)θ̄0,y + δūx(0)(θ̄0,x − xθ̄0,xx + yθ̄0,xy − θ̄xxy(0)fχ,2)

, I1 + I2 + I3 + I4 + I5.

For I5, the coefficient is C2 and has sufficiently fast decay. Moreover, using (6.47), (6.48),
(6.50), and Proposition 6.7, we have

|δc̄ω| = |δūx(0)| . ||Ων,R||X .
Thus, we can obtain

||I5||X2 . ||Ων,R||X .
The estimates of Ij , 1 ≤ j ≤ 4 are similar. We focus on the typical terms in I2

(6.74) I2 = −∂x(δū− δūx(0)x)θ̄0,x.

Recall Ψ̄ from (6.47) and φ̄2D = (−∆)−1ω̄. Denote

Ψ̃ = Ψ̄− φ̄2D.

Recall the formula of ū from (6.50). We have

δū− δūx(0)x = −
(
∂y(Ψ̄− φ̄2D)− ∂xy(Ψ̄− φ̄2D)(0)x

)
+ ūR = −(∂yΨ̃− ∂xyΨ̃(0)x) + ūR.

The formula of the remainder ūR is given by (6.43) with Ψ,Ψ2 replaced by Ψ̄, Ψ̄2. From (6.47),
we have

−∆Ψ̃ = Ων,R, Ων,R ∈ X.

Then the estimate of

∂x(∂yΨ̃− ∂xyΨ̃(0)x)θ̄0,x

in I2 follows from the estimate of Ψ − Ψxy(0)xy at the end of Section 6.4.4. In particular, we
can obtain

||∂x(∂yΨ̃− ∂xyΨ̃(0)x)θ̄0,x||X2 . ||Ων,R||X .
Other terms in Ij , 1 ≤ j ≤ 4 related to Ψ̃ can be estimated similarly.
For the term in I2 (6.74) related to ūR, we have several terms due to the formula (6.43),

(6.45). The term involving Ψ̄2 is simple and its estimate follows from the estimate of Ψ2 in
Section 6.4.4. For other terms, we estimate a typical term

J = ∂x(Ψ̄y − Ψ̄xy(0)x) · (r−1/2 − 1)θ̄0,x.

Since Ψ̄ is close to φ̄2D, we use the decomposition Φ̄ = Φ̃ + φ̄2D and

J = ∂x(Ψ̃y − Ψ̃xy(0)x) · (r−1/2 − 1)θ̄0,x + ∂x(φ̄2D,y − φ̄2D,xy(0)x) · (r−1/2 − 1)θ̄0,x , J1 + J2.

The term J1 follows from the above estimate. For J2, we note that φ̄2D satisfies the elliptic
equation −∆φ̄2D = ω̄. From the construction of ω̄ in Section 7, we have ω̄ ∈ C2 with decays
(6.58). To control φ̄, we use embedding inequalities

(6.75) ||∇2(−∆)ω||L∞ .α,p ||ω||Cα + ||ω||Lp , α ∈ (0, 1), p ∈ (1,∞).

which can be proved by decomposing the domain of the singular integral into the region near
the singularity and away from the singularity, and estimating them by the Cα norm of ω and
the Lp norm of ω separately. In particular, from −∆φ̄2D,x = ω̄x,−∆φ̄2D = ω̄, we obtain

|∇2φ̄2D,x| . 1, |∇2φ̄2D| . 1.

Using φ̄2D,yyy = ω̄y − φ̄2D,xxy and the above estimate, we yield |φ̄2D,yyy| . 1, and thus

|∇3φ̄2D| . 1. Now, using the estimate of φ̄, |θ̄0,x| . min(|x1|, |x|−3/5) , and the smallness of

|r−1/2 − 1| (6.44) within the support of the solution, we yield

|J2| . Cl|x|min(|x|, 1)min(|x|−3/5, |x1|)1|x|≤S,
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which vanishes to the order |x1| · |x|2 near x = 0. It follows the weighted L∞ estimate

|J2ϕ2| . ClS, |J2ϕg,2| . ClS, |J2ψ2| . ClSmin(|x|1/2, 1).
Recall the weight ψ2 ≍ |x|5/2 + |x|1/6 from (C.1). We have

|∇(J2ψ2)| . ClS(|x|−1/2 + 1).

Combining the L∞ and C1 estimates of J2ψ2, we obtain the C1/2 estimate of J2ψ2. Other
terms follow similar estimates. We prove (6.73).

6.4.6. Modified finite rank perturbation. Due to the difference of the operators between the 3D
Euler (6.63) and the 2D Boussinesq (4.10), we modify the decomposition (4.21) and nonlinear
perturbation NFi as follows

(6.76)

∂tW1,i = (Li −K1i −K2i)(W1) + (Li − L2D,i)Ŵ2 +Ni(W1 + Ŵ2) + F i

−NFi(W1, Ŵ2)−Ri(W1, Ŵ2),

∂tŴ2,i = L2D,iŴ2 +K1i(W1) +K2i(W1) +NFi(W1, Ŵ2) +Ri(W1, Ŵ2),

NFi = (cωD
2
i (W1 + Ŵ2)(0) +D2

i (F i(0) + (Li − L2D,i)Ŵ2)(0))fχ,i

where D2 = (∂xy, ∂xy, ∂xx). Since the stream function Ψ in (6.65) is obtained from a modified
source term Ω (6.37), we also modify the finite rank operator K2i (4.13), (4.29), (4.37)

K2i(W1) , K2D,2i(Ω).

Note that we can still represent Ki(W1) as follows

(6.77) K2j(W1(t)) =
∑

i

ai(Ω(t))f̄ij , j = 1, 2, 3

for some functions f̄i, and ai(Ω(t)) independent of space similar to (4.16). Thus, we can apply

the same constructions of Ŵ2 and R in Section 4.2.4, and use the same approximate space-time
solution F̂i, F̂χ,i in (4.19), (4.20). Due to (6.39), the linear modes ai(Ω(t)) and ai(ω(t)) satisfy
almost the same estimate up to ClS||ω||X . To control the nonlinear mode anl,i in (4.19), (4.20),
we modify the bootstrap condition (5.72)

(6.78) |cωD2
i (W1 + Ŵ2)(0) +D2

i (F i(0) + (Li − L2D,i)Ŵ2)(0)| < ciµ6E∗, c1 = 5, c2 = 10.

6.4.7. Comparison between the operators. In this section, we show that the difference between
the main parts of the operators in (6.65), (6.67), (6.76) and the operators in (4.10), (4.21) are
small. We have estimated the lower order operators in Section 6.4.4, 6.4.5. Here, we only focus
on the main terms. We will choose Cl very small at the end such that ν << C−1

l . From (6.16),
we get χ4χν = χν . Recall that we perform energy estimate on W1 with energy E4 (5.70).

There are three differences between LM,i in (6.65), (6.76) and Li,2D in (4.10),(4.21). Firstly,
we use ū in the transport term instead of ū2D = ∇⊥φ̄2D. We estimate the difference ū− ū2D

using (6.51), (6.52), (6.48), (6.50), and bound ω̄(χ4χν − 1) = ω̄(χν − 1) using the decay (6.58)

(6.79) ||ω̄(χ4χν − 1)||X + ||ω̄(χ4χν − 1)||C1 . ν−γ

for some γ > 0, e.g. γ = 1
8 . Thus, this difference in the linear stability analysis is bounded by

C(ClS + ν−γ)E4,

where E4 is the energy (5.70) for the perturbation
The second difference is that we use the truncated profile θ̄0, ω̄0 in (6.65) rather than the

(θ̄, ω̄) in (4.10). We estimate it using the decay of the profiles (6.58), the asymptotics of the
weights, and the elliptic estimates in Lemmas 6.10, 6.11. For example, in LM,1−L1,2D, we have

(6.80) |∂yΨ∂x(ω̄ − ω̄0)ϕg,1| . |x1||x|−5/4(|x|1/16 + |x1|−1/2)1|x|≥ν . |x|−1/8.

This difference in the linear stability analysis bounded by

Cν−γE4

for some γ > 0, e.g. γ = 1
8 .
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Thirdly, the main term in the velocity uM = ∇⊥Ψ depends on the modified stream function
Ψ obtained from Ω (6.37), (6.38) rather than ω. The same argument applies to K2i (6.77). Due
to the equivalence (6.39), this leads to a difference in the linear stability analysis bounded by

CClSE4.

We also refer to Section 6.4.4 for the estimate of the lower order part uR, which is small.
The nonlinear terms in (2.18), (6.67) all involve the nonlocal terms determined by u. Recall

that in the energy estimate of the 2D Boussinesq, we treat the nonlocal term u2D as a bad
term. Using the estimate of the lower order part uR in Section 6.4.4 and the above argument
to estimate uM , we have a difference in the nonlinear stability bounded by

(CClS + Cβl )E
2
4 .

Difference between operators for Ŵ2. Comparing (4.21) and (6.76), we have extra terms

I = (Li − L2D,i)Ŵ2 −D2
i (Li − L2D,i)Ŵ2(0)fχ,i.

Due to the correction, I vanishes O(|x|3) near 0. In Section 3 of Part II [15], for each ap-

proximate space-time solution f = F̂i, F̂χ,i, we represent it as f(t, x) = f1(t, x) + a(t)f2(x) for
f1(t, ·), f2(x) ∈ C4,1 with compactly supported both in space [−D,D] × [0, D], D ≤ 1020 and

time, and a(t) decays exponentially fast. Under the bootstrap assumption (6.76), Ŵ2(t) satisfies

C4,1 estimate uniform in time ||Ŵ2(t)||C4,1 . E4(W1). For both the local terms and nonlocal
terms in I, e.g.

Ja −D2
i Ja(0)fχ,i, Jloc = ū · ∇Ŵ2,i − ū2D · ∇Ŵ2,i = δū · ∇Ŵ2,i,

Jnloc = u(ω̂2) · ∇ω̄0 − u2D(ω̂2) · ∇ω̄ = δu(ω̂2) · ω̄0 − u2D(ω̂2) · ∇(ω̄ − ω̄0)

for a = loc, nloc, we apply the same estimates as those of the lower order part of residual error

in Section 6.4.5 by replacing (ω̄0, θ̄0,x, θ̄0,y) by Ŵ2,i. To estimate δu(ω̂2), we apply (6.48), (6.49),
(6.50). Since ω̂2 has compact support in [−D,D]2 and ν,R4 will be chosen to sufficiently large,
instead of (6.49), we have ω̂2(χ4χν − 1) = 0 and

||Ω(ω̂2)ν,R||X + ||Ω(ω̂2)ν,R||C1 . ClS · E4(W1),

where we define Ω(ω̂2) following (6.37), (6.38). For the error due to cutoff ω̄0 − ω̄, we use the
decay (6.58) and estimate similar to (6.80). In summary, we have smallness from the difference
between two nonlocal operators u − u2D or the decay of the profile in the estimate of this
difference, and can bound it by

C(ClS + ν−γ + Cβl )E4.

6.5. Nonlinear stability and finite time blowup. For initial perturbation ω, η, ξ in the
energy class E4 (5.70) with E4(ω, η, ξ) < E∗, under the bootstrap assumption (6.54), we can
perform nonlinear energy estimates similar to those for the 2D Boussinesq equations in Section
5. Combining the estimate (6.69), the estimates in Section 6.4.4, 6.4.5, and the discussion in
Section (6.4.7), we can bound the additonal terms due to the difference between two energy
estimates, including weighted L∞ and weighted Hölder estimate, and the differences between
the nonlinear modes (5.72), (6.78) (the coefficients of in NFi (4.11), (6.76)) by

|J | ≤ C(ClS + ν−γ + Cβl + ||Ων,R||X)(1 + E4 + E2
4 ) ≤ C1,∗(ClS + ν−γ + Cβl )(1 + E4 + E2

4)

for C1,∗ independent of Cl, S, ν, where γ = 1
16 , and we further bound ||Ων,R||X using (6.49),

(6.79). Recall cω, c̄ω from (6.60), (6.61). From the energy estimate and the definition of E4

(5.70), we have

(6.81) |cω + c̄ω − c̄ω,2D| ≤ 100E4 + C2,∗(ν
−γ + ClS + Cβl ).

Note that the energy estimates for the 2D Boussinesq equations satisfy the nonlinear stability
conditions (A.11) with some ε0 > 0, and the second inequalities in (5.73) are strict with some
gap ε1 > 0. Now, we choose ν > ν∗ with ν∗ large enough and a small δ such that

(6.82) (C1,∗ + C2,∗)(ν
−γ
∗ + δ + δβ)(1 + E∗ + E2

∗) < min(ε0/4, ε1/4, 10
−4).
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We impose a stronger bootstrap assumption than (6.54)

(6.83) Cl(t)(1 + S(t)) < min(δ, ν2, 4
−6).

Under the above bootstrap assumption, (6.78), and the energy assumption for the W1 part
of the solution (see (4.21))

(6.84) E4(t) < E∗,

using the nonlinear stability estimate for the 2D Boussiesq equations, (5.73), and (6.82), we
can continue the bootstrap assumption for the energy inequality and (6.78). Moreover, using
|ω| . |x|−γE4 from the L∞(ϕg,1) estimate and (6.81), we have

|u+ ū| . |x|1−γ/2, c̄l > 2, c̄ω + cω < −1

2
,

which means that the whole velocity grows sublinearly and the blowup is focusing (c̄l > 2).
Following the argument in [17], under the bootstrap assumption, we can control the support

Cl(t)(1 + S(t)) ≤ C(S(0))Cl(0),

for some constant C depending on S(0). Thus, for any S(0) < +∞, by choosing Cl(0) sufficiently
small, the assumption (6.83) is also satisfied, and the bootstrap assumption can be continued.

Passing from nonlinear stability to finite time blowup with smooth data ωθ, uθ compactly
supported near (r, z) = (1, 0) follows the argument in [17]. We conclude the proof of Theorems
4, 2.

7. Construction of an approximate steady state

Following our previous works with Huang on the De Gregorio model [19] and the Hou-Luo
model [20], we construct the approximate steady state to the dynamic rescaling equations (2.10)
with the normalization conditions (2.11) by solving (2.10) numerically for a long enough time.
The residual error is estimated a-posteriori and incorporated in the energy estimate as a small
error term. It is extremely challenging to obtain an approximate steady state with a sufficiently
small residual error in the weighted energy space (5.70), e.g. of order 10−7, since the weight
is singular of order |x|−β , β ≥ 2.9 near 0 and the solution is supported on the whole R2

+ with

a slowly decaying tail in the far-field, e.g., ω(t, x) ∼ |x|−1/3 for large x. See (7.1). If we solve
(2.10) in a very large domain to capture the far-field behavior of the solution, we have to deal
with the relatively large round-off errors in the computation. To overcome these difficulties, we
follow [20] to use a combination of numerical computation and a semi-analytic construction.

7.1. Far-field asymptotics. Let (r, β) be the polar coordinate in R
+
2 : r = (x2 + y2)1/2, β =

arctan(y/x). It has be observed in [20] that the approximate steady state (2.10) enjoys the
following asymptotics

(7.1) ω(r, β) ∼ g1(β)r
α, θ(r, β) ∼ g2(β)r

1+2α, α =
cω
cl
< 0, α ≈ −1

3
,

in the far-field for some angular profiles g1(β), g2(β), under the mild assumption that ω decays
for large |x|, cl > 0, and cω < 0. These conditions are satisfied by the blowup solutions [65, 66].

In fact, if ω decays for large |x|, the velocity u = ∇⊥(−∆)−1ω has a sublinear growth: u(x)r →
0 as r → ∞. Note that x ·∇ = r∂r. Passing to the polar coordinate (r, β), r = |x|, β = arctan x2

x1

and dropping the lower order terms, we yield

clr∂rω(r, β) = cωω + θx + l.o.t., clr∂rθ(r, β) = (2cω + cl)θ + l.o.t..

Assume that ω(r, b) = rkg1(β), θ(r, β) = rlg2(β). Using the above equations and matching the
power, we obtain the asymptotic relation (7.1). Thus, we represent the approximate steady
state as follows

(7.2) ω̄ = ω̄1 + ω̄2, θ̄ = θ̄1 + θ̄2, ω̄1 = χ(r)rα ḡ1(β), θ̄1 = χ(r)r1+2α ḡ2(β),

where χ(r) is the radial cut-off function defined in (C.8). The crucial first part is constructed
semi-analytically, and it captures the far-field asymptotic behavior of the approximate steady
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state. The second part has a much faster decaying rate, and we construct it using numerical
computation with a piecewise sixth order B-spline.

7.2. Angular profiles and the representation. Due to symmetry in x, we compute (2.10) in
a domain [0, L]2 with L ≈ 1013 with stream function supported in a larger domain about Dlg =
[0, L2]

2, L2 ≈ 1015. We partition [0, L2] using adaptive mesh 0 = y0 < y1 < .. < yN−1 = L2.
See Appendix C.1 in Part II [15] for construction of yi. Since θ(t, x, y) vanishes quadratically
on x = 0, instead of using θ in our computation, we consider ζ(t, x, y) = 1

xθ(t, x, y). Then ζ is
odd in x, and its equation can be derived by dividing the θ equation by x.

In the case without semi-analytic part, we represent the numerical solution (ω, ρ) using a
piecewise 6th order B-spline in x and y, e.g.

(7.3) ω(t, x, y) =
∑

i,j

ai,jBi(x)Bj(y)

where Bi(x) is the B-spline basis (see Appendix C.1 of part 2 [15]). For ψ, we represent it using
a piecewise B-spline with additional weight ρp(y) vanishing on the boundary y = 0 to enforce the
no-flow boundary condition ψ(x, 0) = 0. See more details about the representation in Appendix
C.1 of Part II [15]. Note that similar representations based on piecewise B-splines have been
used in [65]. Given the grid point values of ω, we obtain the coefficients of the variable ω by
solving the linear equations (7.3) for (x, y) on the grid and using suitable extrapolation in the
far-field. After we obtain the coefficients ai,j , we compute the derivatives of ω using the basis
functions

∂ix∂
j
yω(t, x, y) =

∑

i,j

ai,j∂
i
xBi(x)∂

j
yBj(y).

Similar consideration applies to ζ. We solve the Poisson equations

(7.4) −∆φ = ω

using B-spline based finite element method. After we obtain the B-spline coefficients for φ, we
compute its derivatives by taking derivatives on the basis functions. We refer more details of
representation to Appendix C.1 in Part II [15].

In the temporal variable, we use a second order Runge-Kutta method to update the PDE.
To construct the decomposition in (7.2), firstly, we obtain the exponent α1 and construct

the angular profile and the semi-analytic part ω̄1, θ̄1 in (7.2). Then, using ω̄1, θ̄1, we refine the
construction ω̄2, θ̄2 in (7.2).

7.2.1. Fitting the angular profile and the exponent. We need to find the angular profiles in the
semi-analytic parts in (7.2). Firstly, we solve (2.10) numerically using the above method without
the semi-analytic part, i.e. ω̄1 = 0, θ̄1 = 0, to obtain an approximate steady state (ω̄, ζ̄), θ̄ = xζ̄.
Using the ansatz in (7.2) and fitting the angular part of the far-field of r−ᾱ1ω1, r

−1−2ᾱ1 θ̄ =
r−2ᾱ1 cosβ · ζ̄ with exponent ᾱ1 = c̄ω

c̄l
(7.1), we find the following approximate profiles

g10(β) =
a11β̃(1 + a15β̃

2)

(β̃2 + a12)2/3 + a13β̃2 + a14
, β̃ =

π

2
−β, g20(β) =

a21 cos
2 β(1 + a25 sinβ)

(cos2 β + a22)2/3 + a23 + a24 cos2 β
,

for some parameters aij . We have the factor π
2 − β since ω is odd in x and g10(β) is odd with

respect to β = π/2. Similarly, we add the factor cos2 β in g20(β) since θ(x, 0) = 0 and θx(x, 0) is
odd in x. After we find the above analytic formulas, we further approximate the above profiles
by piecewise 8th order B-splines (see Appendix C.1 of Part II [15]) Bi with k = 8

g1(β) =
∑

1≤i≤n
b1iBi(x), g2(β) = cosβ ·

∑

1≤i≤n
b2iBi(x),

for some coefficients bji. We factor out cosβ in g2(β) such that both B-splines are odd with
respect to β = π/2. We further use the B-spline to represent the angular profiles for the following
reason. To verify that the approximate steady state (ω̄, θ̄) has a small residual error, we need to
estimate the high order derivatives of ω̄, θ̄, e.g. 6-th order. However, the high order derivatives
of the above analytic forms are very complicated, and are difficult to estimate. On the other
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hand, we have a systematic approach to estimate piecewise polynomials. Once we obtain gi(β),
we construct the semi-analytic part

(7.5) ω̄10 = χ(r)rᾱ1g1(β), θ̄10 = χ(r)r1+2ᾱ1g2(β), ζ̄10 = θ̄10x
−1.

To compute the semi-analytic part of the stream function, we follow the ideas outlined in [20].
Given the asymptotic behavior of ω̄ in (7.5), the far-field asymptotic behavior of φ = (−∆)−1ω̄10

is r2+ᾱ1f(β) for some profile f(β). We construct f(β) by solving

−∆(r2+ᾱ1f(β)) = rᾱ1g1(β)

with boundary condition f(0) = f(π/2) = 0 due to the Dirichlet boundary condition φ(x, 0) = 0
and the odd symmetry for the solution ω. In the polar coordinate, the above equation is
equivalent to

(7.6) (−∂2β − (2 + ᾱ1)
2)f(β) = g1(β), f(0) = f(π/2) = 0.

We represent f(β) using a weighted 8th order B-spline and solve the above elliptic equations
using the finite element method. Then, we construct the semi-analytic part for φ as follows

(7.7) φ̄10 = χ(r)r2+ᾱ1f(β).

7.2.2. Refinement. We use the semi-analytic profile (7.5) to capture the far-field contribution of
ω̄, ζ̄. Note that in this step, we do not update the angular profile nor the exponent in (7.5).

Given the grid point values of ω(t, x, y), we first update the constant c(t) such that c(t)ω̄10

best approximate ω(t, x, y) in the far-field. Then we represent ω2(t, x, y) = ω(t, x, y) − c(t)ω̄10

using the B-spline (7.3). In other words, we interpolate the grid point values using the represen-
tation c(t)ω̄10 + ω2(t, x, y), where ω2 is a piecewise polynomial in the compact domain. Similar
consideration applies to ζ. To update the stream functions φ, we use c(t)φ̄10 to capture the
far-field of φ and then construct the near-field part by solving

(7.8) −∆(φ2 + c(t)φ̄10) = ω2 + c(t)ω̄10, or −∆φ2 = ω2 + c(t)(ω̄10 +∆φ̄10).

Then the stream function is represented as φ2 + c(t)φ̄10.
Let us motivate the above decomposition to construct the stream function over (7.4). If we

use (7.4), the source term ω has a slow decay rα1 ≈ r−1/3. Since the domain is very large, we
have to use an adaptive mesh to discretize the domain, which leads to a poor condition number of
the stiffness matrix in (7.4). Thus, solving (7.4) can have a significant round-off error. In (7.4),
since the semi-analytic part c(t)ω̄10 captures the asymptotic behavior of ω(t, x, y), ω2 is much
smaller than ω in the far-field. By definition of ω̄10, φ̄10 (7.5)-(7.7), the far-field of ω̄10 +∆φ̄10
is about εr−1/3 with a small constant ε. Hence, the far-field of the source term in (7.8) is much
smaller than ω(t, x), which enables us to overcome the significant round-off error. We remark
that similar technique has been used in the Hou-Luo model [20] to overcome the significant
round-off errors. The above decomposition is a generalization of the method in [20] to 2D. We
refer to [20] for the more motivations and the difficulties caused by the round-off error.

After we obtain the stream function, we can update the PDE using the second order Runge-
Kutta method. We stop the computation at time t∗ if the residual error on the grid points is
about the round-off error. Then we finalize the semi-analytic part in (7.2) as

(7.9)
ω̄1 = c̄1ω̄10 = χ(r)rα(c̄1g1(β)), θ̄1 = c̄2θ̄10 = χ(r)r1+2α1 (c̄2g2(β)),

φ̄1 = c̄1φ̄10 = χ(r)r2+ᾱ1 (c̄1f(β)) , χ(r)r2+ᾱ1 f̄(β),

where c̄1ω̄10, c̄2ζ̄10 best approximate ω(t∗, x, y), ζ(t∗, x, y) in the far-field, respectively. We con-
struct ω̄2, θ̄2 = xζ̄2 in (7.2) by interpolating the grid point values of ω− ω̄1, θ− θ̄1 and applying
a low-pass filter to the solution to reduce the round off error.

In Appendix C of Part II [15], we estimate the derivatives of the approximate steady state
rigorously, which will be used to verify the residual error.
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7.2.3. A multi-level representation. To design the B-spline in the representation (7.2) of the
second part of the solution, we use adaptive mesh. Near the origin, the mesh size is small,
e.g. h ≤ 1

256 in our computation. In the computation of high order derivatives, e.g. ∇4ω̄, the
round-off error may not be relatively small. To construct the approximate steady state and the
approximate solution to the linearized equations in Section 3 of Part II [15], we only need to
use lower order derivatives ∇ω,∇η,∇ξ,∇2φ,∇θ, and the round-off error is neglible. However,
to verify the smallness of the weighted norm of the error, e.g. F̄i (2.19), since we use a weight
ϕ singular about order |x|−3 near the origin, we need to estimate the piecewise C3 bounds for
the error and evaluate ∇3F̄i,∇4ω,∇4η,∇4ξ,∇5θ on some grid points based on the estimates
in Appendix E of Part II [15]. To obtain rigorous bound, we use interval arithmetic. For each
operation, e.g. a ∈ [al, au], b ∈ [bl, bu], the interval bound for ab is obtained by considering the
worse case. If we use interval arithmetic with a lower order precision, e.g. the double precision
which has a machine error about 10−16, the size of the interval bounding ∇3F̄i can be much
larger than the actual round off error. One natural way to overcome this problem is using higher
order precision, e.g. interval arithmetic with quadruple precision.

To save the computational cost, we refine the B-spline representation of the solution f so
that ∇kf has a much smaller round off error. Note that the round off error of ∇kf is about
Cεh−k, where C is the size of the B-spline coefficient for f , ε is the machine precision, and h is
the mesh near 0. To reduce it, we either reduce C or increase h. We use a multi-level B-spline
representation f = f1 + f2 + ...+ fn. In the coarse level, we use a larger mesh size for f1 near
0, e.g. h1 = 24hn, hn = 1

256 and hn is the mesh size for the finest level near 0. Since the profile

f̄ is quite smooth, we use the first level representation f1 to interpolate f̄ and the round off
error for ∇kf1 is very small since h1 is much larger. In the next level, we use smaller mesh, e.g.
h2 = 6hn, and use f2 to interpolate f̄ − f̄1. Since f̄ − f̄1 is much smaller than f̄ , the coefficients
for the B-spline f2 are small and the round off error is small. The same procedure and ideas
apply to other levels. We choose the supporting points of the B-splines f1, .., fn−1 from the grid
points for fn, so that the overall representation f = f1+f2+ ..,+fn is still piecewise polynomials
on the mesh for fn. Then we can estimate the piecewise derivatives of f using the method in
Appendix B.5.2 in in Part II [15].

For the B-spline part of the stream function φ̄2, near x = 0, since φ̄2 = ∂xyφ̄2(0)xy+O(|x|3),
we approximate it using an analytic profile

(7.10) φ̄3 = aχφ,2D, χφ,2D = −xyχφ(x)χφ(y),
where a is chosen to approximate −∂xyφ̄2(0) = −∂xyφ̄, and χφ is some cutoff function with
χφ(x) = 1 + O(|x|2) near 0 and is constructed in (C.10). We add the negative sign to nor-
malize ux((−∆)χφ,2D)(0) = −∂xy(−∆)−1(−∆)χφ,2D(0) = −∂xyχφ,2D(0) = 1. In solving the
approximate steady state, in the n− th step, a is determined by the ∂xyφn−1(0) in the previous
step. Then we use the multi-level B-spline representation φ2 = φ2,1 + ... + φ2,n by solving a
modification of (7.8)

−∆φ2 = ω2 + c(t)(ω̄10 +∆φ̄10) + ∆φ3 , S.

The approximation term allows us to obtain smaller spline coefficients for φ2 and reduce the
round off error. To obtain the top-level B-spline φ2,1 on the coarse mesh y(1), we first restrict S

on the mesh y(1) and interpolate S(y
(1)
i , y

(1)
j ) using the single level B-spline S(1) with supporting

points on y(1). Then we use the B-spline based finite element method to solve −∆φ2,1 = S(1).
We evaluate ∆φ2,1 on the fine mesh and further solve φ2,2, φ2,3... recursively from the remaining
source part S +∆φ2,1.

After we obtain the above stream function, we further add a rank-one corretion φ̄cor near 0

φ̄N = φ̄1 + φ̄2 + φ̄3 + φ̄cor, φ̄cor = −c · xy
2

2
κ∗(x)κ∗(y), c = ∂x(ω̄ +∆(φ̄1 + φ̄2 + φ̄3))(0),

where κ∗(x) = 1+O(|x|4) is defined in (C.10) and φ̄cor satisfies ∂x(−∆)φ̄cor(0) = c. By choosing
the above c, we get that the error of solving the Poisson equations satisfies ε̄ = ω̄ + ∆φ̄N =
O(|x|2). We note that |c| < 10−10 is very small. Since the stream function φ̄ = (−∆)−1ω̄ depends
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on ω̄ nonlocally, we cannot construct it exactly and use φ̄N to approximate it numerically, where
N is short for numerics. The nonlocal error ε̄ is decomposed and estimated in Section 5.8.

Appendix A. Some Lemmas for stability estimates

We use the following Lemma for the linear stability analysis.

Lemma A.1. Suppose that fi(x, z, t) : R
2
++ × R2

++ × [0, T ] → R, 1 ≤ i ≤ n, satisfies

(A.1) ∂tfi + vi(x, z) · ∇x,zfi = −aii(x, z, t)fi +Bi(x, z, t),

where vi(x, z, t) are some vector fields Lipschitz in x, z with vi|x1=0 = 0, vi|z1=0 = 0, and Bi
satisfies the following estimate

(A.2) |Bi(x, z, t)| ≤
∑

j 6=i
|aij(x, z, t)| · ||fj ||L∞ .

If there exists some constants M,λ, µi > 0 such that for all (x, z), we have

(A.3) aii(x, z, t)−
∑

j 6=i
|aij |µiµ−1

j ≥ λ,
∑

j 6=i
µiµ

−1
j |aij | ≤M.

Then for E(t) = maxi(µi||fi(t)||∞), which is Lipschitz, and 0 ≤ t0 < t ≤ T , we have

E(t) ≤ e−λ(t−t0)E0, E0 = E(t0).

The condition (A.2) means that the damping term is stronger than the bad terms, which
further leads to the stability. We apply f(x, z, t) = ((Siψi)(x)−(Siψi)(z))gi(x, z) in the weighted
Hölder estimate, and fi(x, z, t) = (Siϕi)(x) in the weighted L∞ estimate, S1 = ω, S2 = η, S3 = ξ.
In the weighted L∞ estimate, we do not need the extra variable z and fi is constant in z. For
the Boussinesq equations (5.1), we choose

b(x, t) = c̄lx+ ū(x) + u(ω)(x, t), vi(x, t) = b(x, t), or vi(x, z, t) = (b(x, t), b(z, t)).

We will also perform energy estimates on some scalars ai(t) and choose fi(x, z, t) = ai(t) in
the above Lemma. In this case, advection term is 0, and aii, aij , Bi only depend on t.

Proof. For simplicity, we assume that the condition (A.3) holds for µi = 1. Otherwise, we can
estimate the variables µifi and introduce ãij = aijµiµ

−1
j . Then the equations and estimates

(A.1), (A.2) become

∂iµifi + vi(x, z) · ∇x,z(µifi) = −aii(µifi) + µiBi(x, z, t)

µi|Bi(x, z, t)| ≤
∑

j 6=i
µiµ

−1
j aij(x, z, t) · µj ||fj ||L∞ =

∑

j 6=i
ãij(x, z, t) · µj ||fj ||L∞ .

The condition (A.3) for aij becomes the condition for ãij with equal weights. Thus, it suffices
to consider the case µi = 1, i = 1, 2, .., n.

Formally, we can perform L∞ estimate on (A.1) and then evaluate (A.1) at the maximizer to
obtain the desired result. To justify it rigorously, we use the characteristics, Duhamel’s principle,
and a bootstrap argument. We define the characteristics associated with vi

(A.4)
d

dt
(Xi(t), Zi(t)) = vi(Xi, Zi, t), Xi(0) = x0, Zi(0) = z0, Fi(t) = fi(Xi(t), Zi(t), t)

To simplify the notation, we drop x0, z0. Denote

(A.5) Ai(t) = aii(Xi(t), Zi(t)), Ci(t) ,
∑

j 6=i
|aij(Xi(t), Zi(t), t)|.

It suffices to prove that for small ε > 0, we have

(A.6) E(t) ≤ (1 + c(M)ε)e−λε(t−t0)E0, λε = λ− ε, c(M) =
2

M
,

where M is the upper bound in (A.3). Then taking ε→ 0 completes the proof.
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We want to use a bootstrap argument to prove (A.6). Firstly, since E(0) = E0 and E(t) is
Lipschitz, the above condition holds for t ∈ [t0, t0 + T1] with some T1 > 0. Now, we want to
show that under (A.6), we can obtain

(A.7) E(t) ≤ (1 + c(M)ε/2)e−λε(t−t0)E0.

By definition, along the characteristics, we get

d

dt
Fi(t) = −Ai(t)Fi(t) +Bi(Xi(t), Zi(t), t),

Using the estimates (A.2) and definition (A.5), we yield

|Bi(Xi(t), Zi(t), t)| ≤
∑

j 6=i
|aij |E(t) ≤ Ci(t)E(t).

Using Duhamel’s principle and the above estimate, we obtain

(A.8)

Fi(t) = e
∫

t
t0

−Ai(s)dsFi(t0) +

∫ t

t0

Bi(Xi(s), Zi(s), s)e
∫

t
s
−Ai(τ)dτds

|Fi(t)| ≤ e
∫

t
t0

−Ai(s)dsFi(t0) +

∫ t

t0

Ci(s)E(s)e
∫

t
s
−Ai(τ)dτds , I + II.

For the second term, using the bootstrap assumptions (A.6), we yield

|II| ≤
∫ t

t0

Ci(s)(1 + c(M)ε)e−λε(s−t0)E0e
−λε(t−s)−

∫ t
s
(Ai(s)−λε)ds

Using Ci(s) ≤M,Ci(s) ≤ Ai(s)− λ (A.3) and the definition of c(M) (A.6), we get

Ci(s)

Ci(s) + ε
≤ M

M + ε
≤ 1 + ε/M

1 + 2ε/M
=

1 + c(M)ε/2

1 + c(M)ε
, Ci(s) + ε ≤ Ai(s)− λ+ ε = Ai(s)− λε,

which implies

Ci(s)(1 + c(M)ε) ≤ (Ci(s) + ε)(1 + c(M)ε/2) ≤ (Ai(s)− λε)(1 + c(M)ε/2).

Note that we choose c(M) in (A.6) small enough such that the above inequality holds. Hence,
we can simplify the bound of II as follows

|II| ≤ (1 + c(M)ε/2)e−λε(t−t0)E0

∫ t

t0

(Ai(s)− λε)e
−

∫
t
s
(Ai(τ)−λε)dτds

= (1 + c(M)ε/2)e−λε(t−t0)E0(1 − e
−

∫ t
t0

(Ai(τ)−λε)dτ ).

The estimate of I is trivial. Since |Fi(0)| ≤ E0, we have

|I| = |Fi(t0)|e−λε(t−t0)e−
∫ t
t0

(Ai(τ)−λε)dτ ≤ E0e
−λε(t−t0)e−

∫ t
t0

(Ai(τ)−λε)dτ ,

which along with the estimate of II yields

|Fi(t)| ≤ |I|+ |II| ≤ (1 + c(M)ε/2)e−λε(t−t0)E0.

Since the above estimate holds for any initial data x0, z0 and i, taking the supremum, we
prove (A.7). Then the standard bootstrap argument implies the desired estimate (A.6). �

We can generalize the previous linear stability Lemma to the nonlinear stability estimates.

Lemma A.2. Suppose that fi(x, z, t) : R
2
++ × R2

++ × [0, T ] → R, 1 ≤ i ≤ n, satisfies

(A.9) ∂tfi + vi(x, z) · ∇x,zfi = −aii(x, z, t)fi +Bi(x, z, t) +Ni(x, z, t) + ε̄i,

where vi(x, z, t) are some vector fields Lipschitz in x, z with vi|x1=0 = 0, vi|z1=0 = 0. For some
µi > 0, we define the energy

E(t) = max
1≤i≤n

(µi||fi||L∞).

Suppose that Bi, Ni and ε̄i satisfy the following estimate
(A.10)

µi(|Bi(x, z, t)|+ |Ni(x, z, t)|+ |ēi|) ≤
∑

j 6=i
(|aij(x, z, t)|E(t) + |aij,2(x, z, t)|E2(t) + |aij,3(x, z, t)|).
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If there exists some E∗, ε0,M > 0 such that

(A.11)

aii(x, z, t)E∗ −
∑

j 6=i
(|aij |E∗ + |aij,2|E2

∗ + |aij,3(x, z, t)|) > ε0,

∑

j 6=i
(|aij |E∗ + |aij,2|E2

∗ + |aij,3(x, z, t)|) < M,

for all x, z and t ∈ [0, T ]. Then for E(0) < E∗, we have E(t) < E∗ for t ∈ [0, T ].

The second inequality in (A.11) is only qualitative. Note that the factor aij (A.10) for linear
terms is different from that in (A.2). We have combine the weight µj with aij , j 6= i in (A.10).

Proof. The proof is very similar to that of Lemma A.1. We fix E(0). Without loss of generality,
we assume µi = 1. Otherwise, we rewrite the (A.9) in terms of µifi. It suffices to prove that
under the bootstrap assumption

(A.12) E(t) < E∗,

on [0, T1], there exists ε that depends on E(0), ε0,M,E∗, such that we can obtain

(A.13) E(t) ≤ (1 − ε)E∗, t ∈ [0, T1].

Since E(0) < E∗ and E(t) is Lipschitz, we know that the bootstrap assumption holds for
some short time T1.

We adopt most notations from the proof of Lemma A.1 but use

Ci(t) ,
∑

j 6=i
(|aij(Xi(t), Zi(t), t)|E(t) + |aij,2(Xi(t), Zi(t), t)|E2(t) + |aij,3(Xi(t), Zi(t), t)|).

Using these notations, derivations and estimates similar to those in the proof of Lemma A.1,
we obtain

|Fi(t)| ≤ e−
∫

t
0
−Ai(s)dsFi(0) +

∫ t

0

Ci(s)e
−

∫
t
s
Ai(τ)dτds.

Using the bootstrap assumption and (A.11), we obtain

Ci(s) < min(M,Ai(t)E∗ − ε0) < (1− δ)Ai(t)E∗,

for some small δ depending on ε0,M,E∗. Note that if Ai(t)E∗ < 2M , we pick δ such that
Ai(t)E∗ − ε0 < (1− δ)Ai(t)E∗. If Ai(t)E∗ > 2M , we require δ < 1/2. Now, we obtain

|Fi(t)| ≤ e−
∫

t
0
−Ai(s)ds|Fi(0)|+

∫ t

0

(Ai(s)E∗ − ε0)e
−

∫
t
s
Ai(τ)dτds

≤ e−
∫

t
0
−Ai(s)ds|Fi(0)|+ (1− δ)

∫ t

0

Ai(s)E∗e
−

∫
t
s
Ai(τ)dτds

= e−
∫

t
0
−Ai(s)ds|Fi(0)|+ (1− δ)E∗(1 − e−

∫
t
0
−Ai(s)ds)

≤ max(|Fi(0)|, (1− δ)E∗) ≤ max(|E(0)|, (1 − δ)E∗).

Taking the supremum over the initial data of the trajectory and i, we get

E(t) ≤ max(|E(0)|, (1 − δ)E∗).

Since we fix E(0) and E(0) < E∗, we can pick small δ to obtain

E(0) < (1− δ)E∗, E(t) < (1− δ)E∗,

which is (A.13). Using the bootstrap argument, we complete the proof. �
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A.1. Proof of Lemma 2.5. We prove Lemma 2.5 related to the Hölder estimates.

Proof. Using (2.35), we first derive the equation for fϕ

∂t(fϕ) + b(x) · ∇(fϕ) = c(x)fϕ+ (b · ∇ϕ)f +Rϕ = d(x)fϕ +Rϕ,
where d(x) = c(x) + b·∇ϕ

ϕ is defined in Lemma 2.5. For x, z ∈ R
+
2 , we derive the equation of

δ(fϕ)(x, z) = fϕ(x) − fϕ(z):

∂tδ(x, z, t) + b(x) · ∇x(fϕ)(x) − b(z) · ∇z(fϕ)(z) = (dfϕ)(x) − (dηϕ)(z) + δ(Rψ).
Since

∇x(fϕ)(x) = ∇x((fϕ)(x) − (fϕ)(z)) = ∇xδ(fϕ), ∇z(fϕ)(z) = −∇z(δ(fϕ)),

dfϕ(x) − dfϕ(z) = d(x)(fϕ(x) − fϕ(z)) + (d(x) − d(z))fϕ(z) = d(x)δ(fϕ)(x, z) + (d(x) − d(z))fϕ(z),

we obtain

(A.14) ∂tδ(fϕ)+(b(x) ·∇x+b(z) ·∇z)δ(fϕ) = d(x)δ(fϕ)(x, z)+(d(x)−d(z))(fϕ)(z)+δ(Rϕ).
Since g(h) is even in h1, h2, ∂ig is odd in hi and we have

(b(x) · ∇x + b(z) · ∇z)(δ(fϕ)g(x − z))

=g(x− z) · (b(x) · ∇x + b(z) · ∇z)δ(fϕ) + δ(fϕ) · (b(x) · ∇x + b(z) · ∇z)g(x− z)

=g(x− z) · (b(x) · ∇x + b(z) · ∇z)δ(fϕ) + δ(fϕ) · (b(x) − b(z)) · (∇g)(x− z).

We further multiply both sides of (A.14) by g(x− z) and use F (x, z, t) = δ(fϕ)(x, z)g(x− z)
and the above identity to yield

∂tF+(b(x)·∇x+b(z)·∇z)F = (d(x)+
(b(x) − b(z)) · (∇g)(x − z)

g(x− z)
)F+((d(x)−d(z))(fϕ)(z)+δ(Rϕ))g(x−z),

which concludes the proof of (2.36). �

Appendix B. Proof of Sharp Hölder estimates

In this Appendix, we prove the sharp Hölder estimates in Section 3 and derive the explicit
upper bounds given by some explicit integrals. We have proved Lemmas 3.1, 3.3 in Section 3.
In Appendix B.3, we provide some explicit formulas for the functions and the transportation
maps for these upper bounds. In Section 5 of the supplementary material II in Part II [16],
we will estimate these explicit integrals using some integral formulas and numerical quadrature
with computer assistance, and obtain rigorous upper bounds. The codes can be found in [13].

B.1. C
1/2
x estimates of vx and uy. We follow the ideas and argument in Section 3.2 to estimate

the Hölder seminorm of uy, vx. Recall the kernel K2 = 1
2
y21−y22
|y|4 for uy, vx. Firstly, we need the

following Lemma for the principle value of the integral.

Lemma B.1. Suppose that f ∈ L∞, is Hölder continuous near 0. For 0 < a, b < ∞ and
Q = [0, a]× [0, b], [0, a]× [−b, 0], [−a, 0]× [0, b], or [−a, 0]× [−b, 0], we have

P.V.

∫

Q

K2(y)f(y)dy = lim
ε→0

∫

Q∩|y1|≥ε
K2(y)f(y)dy −

π

8
f(0) = lim

ε→0

∫

Q∩|y2|≥ε
K2(y)f(y)dy +

π

8
f(0).

In the strip |y1| ≤ ε, K2(y) < 0 if |y2| > ε. It contributes to −π
8 f(0) in the first identity. In

the strip |y2| ≤ ε, K2(y) > 0 if |y1| > ε. It contributes to π
8 f(0) in the second identity.

Proof. Since K2 is even in y1, y2, we focus on Q = [0, a] × [0, b] without loss of generality. By
definition, we have

P.V.

∫

Q

K2(y)f(y)dy = lim
ε→0

(

∫ a

ε

∫ b

0

+

∫ ε

0

∫ b

ε

)K2(y)f(y)dy , lim
ε→0

(Iε + IIε)

We just need to compute IIε. Since f is Hölder continuous near 0, we get

lim
ε→0

∫ ε

0

∫ b

ε

K2(y)(f(y)− f(0))dy = 0.
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The first identity follows from

lim
ε→0

∫ ε

0

∫ b

ε

K2(y)f(0)dy = f(0) lim
ε→0

∫ ε

0

1

2

y2
y22 + y21

∣∣∣
b

ε
dy1

=
f(0)

2
lim
ε→0

∫ ε

0

(
b

b2 + y21
− ε

ε2 + y21

)
dy1 = −π

8
f(0).

The second identity follows from the same argument. �
Next, we perform the sharp Hölder estimates for uy, vx. Without loss of generality, we assume

z1 = −1, x1 = 1 and z2 = x2 > 0. Due to the boundary, we do not have translation symmetry
of the kernel K2(y) in y2 and cannot assume x2 = 0. We are going to estimate

(B.1) vx(z)−vx(x) =
1

π
(

∫
(K2,B(y1+1, y2)−K2,B(y1−1, y2))W (y1, x2−y2)dy−

1

2
(ω(z)−ω(x)),

where K2,B(y) = K2(y)1|y1|≤B,|y2|≤B is the localized version of K2 over [−B,B]2, and W is the

odd extension of ω from R2
+ to R2 (3.3). Denote

(B.2) A = min(B, x2), K+ , K2,B(y1+1, y2), K− , K2,B(y1−1, y2), ∆(y) = K+−K−.

We focus on B ≥ 4. It is easy to see that ∆ is odd in y1. Since the transportation cost
in the y direction is cheaper (we will choose τ < 1 in Lemma 3.4 to capture the property that
[ω]

C
1/2
y

enjoys better energy estimate than [ω]
C

1/2
x

), we shall use the Y -transportation as much as

possible to obtain a sharp estimate. Due to the presence of the boundary and the discontinuity
of W across the boundary, we partition the domain into the inner part and the outer part

Ωin , {y2 ∈ [−A,A]}, Ωout , {y2 /∈ [−A,A]}.
Then we have ω(·, x2 − ·) ∈ C1/2(Ωin). We add the parameter A in these domains due to the
localization of the kernel. Define

(B.3) ∆1D(y1) =

∫ A

−A
∆(y1, y2)dy2.

Remark that for a fixed y1, ∆(y1, y2) may not have a fixed sign over y2.
Denote the vertical line (vl) and the horizontal line (hl)

vly1 , {(y1, y2) : y2 ∈ R}, hlx2 , {(y1, x2) : y1 ∈ R}.
The estimates consist of three steps. In the first two steps, we estimate the integral in Ωin. In

the first step, we fix y1 and consider the 1D transportation problem on the vertical line vly1 by
moving the positive part of ∆ to its negative part. If |y1| ≤ 9, we move the remaining part with
total mass ∆1D to the horizontal line hlx2 . In this step, the estimate is bounded by C[ω]

C
1/2
y

.

See the blue arrows and the bluw line in the left figure in Figure 13 for an illustration of the
moving direction on vly1 .

In the second step, we study the transportation problem on hlx2 . We also move the remaining
part with total mass ∆1D(y1) for |y1| ≥ 9 in the first step horizontally. The estimate will be
bounded by C[ω]

C
1/2
x

for some constant C. In the third step, we estimate the integral in the

outer domain Ωout. The estimate will be bounded by C[ω]
C

1/2
y

for some constant C.

We focus on |y2 − x2| ≤ B since otherwise ∆ = 0. We assume x2 > 0. The case x2 = 0 can
be obtained by taking limit x2 → 0.

B.1.1. Sign of ∆ and ∆1D. Due to the odd symmetry of ∆(y1, y2) in y1, we focus on y1 ≥ 0.
Solving K2(y1 + 1, y2)−K2(y1 − 1, y2) = 0, we get y2 = sc(y1) (B.56). It is easy to show that

(B.4)
K2(y1 + 1, y2)−K2(y1 − 1, y2) ≥ 0, |y2| ≥ sc(y1),

K2(y1 + 1, y2)−K2(y1 − 1, y2) ≤ 0, |y2| ≤ sc(y1).

See the left subplot in Figure 13 for an illustration of sign of ∆(y) in different regions. The
black curve represents y2 = sc(y1). For |y1| ≤ B − 1, we get

(B.5) ∆(y) = K2(y1 + 1, y2)−K2(y1 − 1, y2) , ∆all(y).
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Figure 13. Illustration of the sign of the kernel ∆(y) and transportation plan.
The sign of ∆(y) in different regions is indicated by ±. The blue arrows indicate

the direction of 1D transportation plan. Left for C
1/2
x estimate: The black

curve and the red curve represent y2 = ±sc(y1), y2 = ±T (y1, A) for y1 ≥ 0,

respectively. Right for C
1/2
y estimate: The black curve is for y2 = ±sc(y1), or

equivalently y1 = h−c (|y2|) (two left black curves) and y1 = h+c (y2) (two right
black curves). The red curve represents y1 = T (m, |y2|). Note that these curves
do not agree with the actual functions.

The sign of ∆(y1, ·) is given above. For |y1| ∈ [B − 1, B + 1], we have

(B.6) ∆(y) = −K2(y1 − 1, y2) = −1

2

(y1 − 1)2 − y22
((y1 − 1)2 + y22)

2
.

Since B − 1 ≥ 1, it satisfies

(B.7) ∆(y) ≥ 0, |y2| ≥ sc(y1) , |y1|+ 1, ∆(y) ≤ 0, |y2| ≤ sc(y1) = |y1|+ 1.

For y1 ≥ B + 1, we have ∆(y) = 0. Next, we compute ∆1D defined in (B.3). Since ∆ is
singular at y = (±1, 0) and B > 2, the singularity is in J1

(B.8) J1 , [−9, 9], J+
1 , J1 ∩ R+.

In the inner part, we have
(B.9)

Sin ,

∫

Ωin

∆(y1, y2)W (y1, x2 − y2)dy = (

∫

y1∈J1

+

∫

y1 /∈J1

)∆(y1, y2)W (y1, x2 − y2)dy , S1 + S2.

By definition, we yield
(B.10)

S1 =

∫

y1∈J1

∫ A

−A
∆(y1, y2)(W (y1, x2 − y2)−W (y1, x2))dy +

∫

y1∈J1

∫ A

−A
∆(y1, y2)W (y1, x2)dy , S11 + S12.

For S11, since |W (y1, x2 − y2) −W (y1, x2)| . y
1/2
2 , the integrand is locally integrable. We

will estimate S11 and S2 in Section B.1.2.
We should pay attention to the principle value in the singular integral in S12 near the singu-

larity (±1, 0). Since ∆(y) = K2(y1 + 1, y2) −K2(y1 − 1, y2) near y1 = 1, applying Lemma B.1
four times to −K2(y1 − 1, y2), which leads to 4 · (−1) · (−π

8 )W (1, x2) =
π
2W (1, x2), we yield

(B.11)

S+
12 ,

∫

y1∈J+
1

∆(y1, y2)W (y1, x2)dy

=
π

2
W (1, x2) + lim

ε→0

∫

y1∈J+
1 \[1−ε,1+ε]

∆(y1, y2)W (y1, x2)dy.
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Recall the definition of ∆ from (3.1), (B.5), (B.6). Denote

(B.12) gb(y) =
b

y2 + b2
, ∆1D(y1) =

A

(y1 + 1)2 +A2
1|y1+1|≤B − A

(y1 − 1)2 +A2
1|y1−1|≤B.

Recall ∆ and A ≤ B from (B.2). For y1 /∈ [1 − ε, 1 + ε], |y2| ≤ A, we have K2,B(y1, y2) =
K2(y)1|y1|≤B,K2(y) =

1
2∂y2

y2
|y|2 and

∫ A

−A
∆(y1, y2)dy2 =

1

2

( y2
(y1 + 1)2 + y22

1|y1+1|≤B − y2
(y1 − 1)2 + y22

1|y1−1|≤B
)∣∣∣
A

−A

= gA(y1 + 1)1|y1+1|≤B − gA(y1 − 1)1|y1−1|≤B = ∆1D(y1).

Plugging the above computation to the P.V. integral yields

S+
12 =

∫

J+
1

∆1D(y1)W (y1, x2)dy1 +
π

2
ω(1, x2).

The computation of the integral over R− is similar due to symmetry. We yield

(B.13) S12 =

∫

J1

∆1D(y1)W (y1, x2)dy1 +
π

2
(ω(1, x2)− ω(−1, x2)).

B.1.2. First step. We are in a position to estimate S2 (B.9) and S11 (B.10). Recall the sign of
∆ from (B.4), (B.7)

∆(y) ≥ 0, |y2| ≥ sc(y1), ∆(y) ≤ 0, |y2| ≤ sc(y1).

Since ∆ is even in y2 in Ωin and odd in y1, we focus on the first quadrant.
For a fixed y1 ≥ 0, we transport the positive part of ∆ to its negative part on the line vly1 in

the first quadrant. We construct the transportation map T (y) > 0 by solving
∫ y2

T (y)

∆(y1, s2)ds2 = 0.

For y1 ≤ B − 1, ∆ = K2(y1 + 1, y2)−K2(y1 − 1, y2). The map T can be obtained from the
cubic equation (B.60). For y1 ∈ [B − 1, B + 1], ∆ = −K2(y1 − 1, y2) and we get

(B.14) 0 =

∫ y2

T (y)

K2(y1 − 1, s2)ds2 =
1

2

s2
(y1 − 1)2 + s22

∣∣∣
y2

T
, T (y) =

(y1 − 1)2

y2
.

Denote

W̃ (y) =W (y1, x2 − y2)−W (y1, x2).

Using the above map, the estimates below,

(B.15)
|W̃ (y1, y2)− W̃ (y1, T (y))| = |W (y1, y2)−W (y1, T (y))| ≤ |y2 − T (y)|1/2[ω]

C
1/2
y
,

|W̃ (y1, y2)| ≤ |y2|1/2[ω]C1/2
y
,

and applying Lemma 3.6 to the integral on [T (y1, A), A], we yield

(B.16)

∣∣∣
∫ A

0

∆(y)W̃ (y)dy2

∣∣∣ =
∣∣∣(
∫ A

T (y1,A)

+

∫ T (y1,A)

0

)∆(y)W̃ (y)dy2

∣∣∣

≤
(∫ A

sc(y1)

|∆(y)||y2 − T (y)|1/2dy2 +
∫ T (y1,A)

0

|∆(y)||y2|1/2dy2
)
[ω]

C
1/2
y
.

See the blue arrows in the left subplot in Figure 13 for an illustration of this transportation
plan.

Due to the symmetry of ∆ in y1, y2, we can estimate S11 (B.10) as follows

(B.17) S11 ≤ 4

∫

y1∈J+
1

( ∫ A

sc(y1)

|y2 −T (y)|1/2|∆(y)|dy2 +
∫ T (y1,A)

0

|y2|1/2|∆(y)|dy2
)
dy1[ω]C1/2

y
,

where J1 is defined in (B.8) and the factor 4 is due to the fact that we have 4 quadrants.
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The estimate of S2 (B.9) is similar except that we do not further transport the remaining
negative part of ∆ to the location (y1, x2)

(B.18) S2 =

∫

y1 /∈J1

(

∫

T (y1,A)≤|y2|≤A
+

∫

|y2|≤T (y1,A)

)∆(y)W (y1, x2 − y2)dy , I + II.

For I, we obtain
(B.19)

|I| ≤ 2

∫

y1 /∈J1

∫ A

sc(y1)

|T (y)−y2|1/2|∆(y)|dy[ω]
C

1/2
y

= 4

∫

y1 /∈J1,y1≥0

∫ A

sc(y1)

|T (y)−y2|1/2|∆(y)|dy[ω]
C

1/2
y

For II, we use the odd symmetry of ∆(y1, y2) in y1 to get
(B.20)

|II| ≤
∣∣∣
∫

y1 /∈J1,y1≥0

∫

|y2|≤T (y1,A)

∆(y)(W (y)−W (−y1, y2))
∣∣∣

≤
∫

y1 /∈J1,y1≥0

∫

|y2|≤T (y1,A)

√
2y1|∆(y)|dy[ω]

C
1/2
x

=

∫

y1 /∈J1,y1≥0

√
2y1|∆1D(y1)|dy1[ω]C1/2

x
,

where we have used
∫ A
T (y1,A)

∆(y)dy2 = 0, ∆(y) ≤ 0 for |y2| ≤ T (y1, A) ≤ sc(y1) (B.4), (B.7),

and

(B.21)

∫

|y2|≤T (y1,A)

|∆(y)|dy2 =

∫

|y2|≤T (y1,A)

−∆(y)dy2 =

∫

|y2|≤A
−∆(y)dy2 = −∆1D(y1).

B.1.3. Second step: Estimate S12. We combine the estimate of S12 (B.13) and the local part of
vx, e.g. −π

2 (ω(z)− ω(x) (B.1). For vx, since ω(z)− ω(x) = −ω(1, x2) + ω(−1, x2), we obtain

(B.22) I , S12 −
π

2
(ω(z)− ω(x)) =

∫

J1

∆1D(y1)W (y1, x2) + π(ω(1, x2)− ω(−1, x2)).

Recall the definition of ∆1D(y1) (B.12). Clearly, ∆1D is odd and ∆1D < 0 for y1 > 0. Note
that for k ∈ [0, 9], we have

(B.23) P (k) ,

∫ 9

k

∆1Ddy1 ≥
∫

R+

∆1Ddy1 = −
∫ 1

−1

A

y21 +A2
dy1 = −2 arctan(

1

A
) ≥ −π.

We transport all the negative part of ∆1D on [1/9, 9] to 1. Similarly, we transport all the
positive part of ∆1D on (−9,−1/9] to (−1). For y1 ∈ [−1/9, 0] ∪ [0, 1/9], we move y1 to −y1.
We do not move these parts to ±1 since

√
2|y1| +

√
2 ≤ 2|y1 − 1|1/2 for y1 ≤ 1/9. Denote

J2 = [1/9, 9] ⊂ J1. We derive the following estimate
(B.24)

|I| =
∣∣∣
∫

J2∩R+

∆1D(y1)(W (y1, x2)−W (1, x2))dy1 +

∫

(−J2)∩R−

∆1D(y1)(W (y1, x2)−W (−1, x2))dy1

+

∫ 1/9

0

∆1D(y1)(W (y1, x2)−W (−y1, x2)) + (π + P (
1

9
))(W (1, x2)−W (−1, x2))

∣∣∣

≤
(
2

∫ 9

1/9

|∆1D|y1 − 1|1/2dy1 +
∫ 1/9

0

|∆1D|
√

2y1dy1 + (π + P (
1

9
))
√
2
)
[ω]

C
1/2
x
, J2 = [1/9, 9]

where we have used the symmetry of ∆1D to get the factor 2.

Remark B.2. The reason why we do not further transport the negative part in II in S2 (B.18)
to (y1, x2) is the following. The integral in S2, S12 that remains to estimate is similar to

M =

∫
(−δz + δ(1,x2) + δ(−z1,z2) − δ(−1,x2))f(y)dy, f(y) =W (y1, x2 − y2)

for some z1 ≥ 9, |z2| ≤ T (z1, A). If we do so, we will obtain the following estimate

M ≤ |f(z)− f(z1, x2) + f(z1, x2)− f(1, x2)|+ |f(−z1, z2)− f(−z1, x2) + f(−z1, x2)− f(−1, x2)|
≤ 2|z2 − x2|1/2[f ]C1/2

y
+ 2|z1 − 1|1/2[f ]

C
1/2
x

,M1.
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We have another simple estimate without using [f ]
C

1/2
y

M ≤ |f(z)− f(−z1, z2)|+ |f(1, x2)− f(−1, x2)| ≤ [f ]
C

1/2
x

(|2z1|1/2 +
√
2) ,M2.

For z1 ≥ 9 or z1 ∈ [0, 1/9], we get 2|z1 − 1|1/2 ≥
√
2+

√
2z1 with equality for z1 = 9, 1/9. Thus,

both the x and y-transportation costs in the first estimate are larger. We use the second estimate
in the above estimates of S12, S2. This estimate also motivatives the choice of J1 (B.13).

B.1.4. Third step. It remains to estimate the integral in the outer part. IfB < x2, since ∆(y1, y2)
is localized to |y2| ≤ B = A, the contribution from outer part |y2| > B is 0. If B > x2 = A,
using the odd symmetry of W (y) in y2 (3.3) and the even symmetry of ∆ in y2, we yields

Sout =

∫

Ωout

∆(y)W (y1, x2 − y2)dy =

∫

R

dy1(

∫ B

x2

+

∫ −x2

−B
)∆(y)W (y1, x2 − y2)dy2

= −
∫

R

dy1

∫ B

x2

∆(y)ω(y1, y2 − x2)dy2 +

∫

R

dy1

∫ B

x2

∆(y)ω(y1, x2 + y2)dy2.

It follows

(B.25) |Sout| ≤
∫

R

∫ B

x2

|∆(y)|·|ω(y1, x2+y2)−ω(y1, y2−x2)
∣∣∣dy ≤

√
2x2

∫

R

∫ B

x2

|∆(y)|dy[ω]
C

1/2
y
.

B.1.5. C
1/2
x Estimate of uy. The estimates of uy in step 1 and 2 are similar to that of vx except

that we do not transport the remaining negative part of ∆(y1, y2) with |y2| ≤ T (y1, A) to (y1, x2)
for any y1 > 0. See Remark B.3. The estimate of the outer part in the third step is the same
as that of vx in Section B.1.4.

Denote Jε = [−1−ε,−1+ε]∪ [1−ε, 1+ε]. Note that ∆ = K2(y1+1, y2)−K2(y1−1, y2) has
singularities at (±1, 0). Applying Lemma B.1 four times to K2(y1 + 1, y2) and −K2(y1 − 1, y2),
respectively, we can rewrite Sin (B.9) as follows

(B.26)

Sin ,

∫

R

∫ A

−A
∆(y)W (y1, x2 − y2)dy

=
π

2
(ω(1, x2)− ω(−1, x2)) + lim

ε→0

∫

Jc
ε

dy1

∫ A

−A
∆(y)W (y1, x2 − y2)dy2 , I + lim

ε→0
IIε.

For y1 /∈ Jε, we perform a decomposition
(B.27)

f(y1) ,

∫ A

−A
∆(y)W (y1, x2 − y2)dy2 = (

∫

T (y1,A)<|y2|≤A
+

∫

|y2|≤T (y1,A)

)∆(y)W (y1, x2 − y2)dy2

, f1(y1) + f2(y1).

For f1(y1), we estimate it using Lemma 3.6

(B.28) |f1(y1)| ≤ 2

∫ A

sc(y1)

|∆(y)||y2 − T (y)|1/2dy[ω]
C

1/2
y

The part f2(y1) denotes the purely negative part. If T (y1, A) < A, we get T (y1, A) < sc(y1) <
A,∆(y) < 0, and (B.21). Using this estimate and the fact that ∆ is odd in y1, we get

(B.29)

|f2(y1) + f2(−y1)| =
∣∣∣
∫

|y2|≤T (y1,A)

∆(y)(W (y1, x2 − y2)−W (−y1, x2 − y2))dy2

∣∣∣

≤
∫

|y2|≤T (y1,A)

√
2y1|∆(y)|dy2[ω]C/12

x
= |∆1D(y1)|

√
2y1[ω]C1/2

x
.

Integrating (B.28), (B.29) over y1 /∈ Jε, we establish

|IIε| ≤ 4

∫

Jc
ε∩R+

∫ A

sc(y1)

|∆(y)||y2 − T |1/2dy[ω]
C

1/2
y

+

∫

Jc
ε∩R+

|∆1D(y1)|
√

2y1[ω]C1/2
x
.
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Near the singularity (1, 0) of ∆(y), |y2 − T |1/2 . |y2|1/2 + |y1 − 1|1/2. Thus, the integrand in
the first integral is locally integrable. Plugging the the above estimate in (B.26), we derive

(B.30)

|Sin − π

2
(ω(1, x2)− ω(−1, x2))| ≤ lim sup

ε→0
|I − π

2
(ω(1, x2)− ω(−1, x2))|+ IIε

≤4

∫

R+

∫ A

sc(y1)

|∆(y)||y2 − T |1/2dy[ω]
C

1/2
y

+

∫

R+

|∆1D(y1)|
√

2y1[ω]C1/2
x
.

Recall the definition of localized uy (3.4). The term π
2 (ω(1, x2)−ω(−1, x2)) in Sin cancel the

local term π
2 (ω(z)− ω(x)) in uy(z)− uy(x). Combining the above estimate and the estimate of

Sout in (B.25), we prove the estimate of uy.

Remark B.3. We do not further transport the remaining negative part ∆(y1, y2) for |y2| ≤
T (y1, A) to (y1, x2) on the line hlx2 since the remaining integrals in S2, Sin are similar to

∫
(δy − δ(−y1,y2))W (z1, x2 − z2)dy, |y2| ≤ T (|y1|, A),

which has an optimal bound |2y1|1/2[ω]C1/2
x

. We apply this estimate in (B.29).

B.1.6. Modification near the singularity. Near the singularity s∗ = (1, 0), the integrand in the
estimate in S11 (B.10), (B.17) is singular of order |x|−3/2 and quite complicated. To ease our
computation of the integral in Part II, we use a simpler estimate in y ∈ [1−δ, 1+δ]× [0, A], δ < 1
close to s∗. Since B ≥ 3, we have y1 ≤ B− 1, y1 ≤ 9, ∆(s) = ∆all(s) (B.5), and −K2(y1− 1, y2)
is the main term. Instead of using (B.16), we separate two kernels and estimate

S+
11,δ = I+(δ)− I−(δ), I± ,

∫ 1+δ

1−δ

∫ A

0

K2(y1 ± 1, y2)W̃ (y)dy.

For I+, the integrand is away from the singularity. Using (B.15), we get

(B.31) |I+(δ)| ≤
∫ 1+δ

1−δ

∫ A

0

|K2(y1 + 1, y2)|y1/22 dy[ω]
C

1/2
y

, Sin,y,δ,+ · [ω]
C

1/2
y
.

In Part II, using an estimate similar to (B.16), we obtain

(B.32) |I−(δ)| ≤
(
2

∫

[0,δ]×[0,A]\Q+
aδ

|K2(y)|y1/22 dy + 2a
1/2
δ CK2

)
[ω]

C
1/2
y

, Sin,y,δ,− · [ω]
C

1/2
y
,

where

(B.33)

aδ = min(A, δ), Qa , [−a, a]× [0, a], Q+
a , [0, a]2, CK2 , CK2,up + CK2,low,

CK2,up ,

∫ 1

0

∫ 1

y1

|K2(y)|
y21
y2

− y2|1/2dy, CK2,low ,

∫ 1

0

∫ y21

0

|K2(y)||y2|1/2dy2.

We apply a similar modification in the estimate of [uy]C1/2
x

(B.28)-(B.30) in the region y ∈
[1− δ, 1 + ε]× [−A,A]. Using

∫ A
T (y1,A) ∆(y)dy2 = 0, we modify the decomposition (B.27)

∫ A

−A
∆(y)W (y1, x2 − y2)dy2 =

∫ A

−A

(
∆(y)(W (y1, x2 − y2)−W (y1, x2))

)
dy2

+

∫

|y|≤T (y1,A)

∆(y)W (y1, x2)dy2 , f̃1(y1) + f̃2(y1), IIi,δ ,

∫ 1+δ

1−δ
f̃i(y1)dy1.

We apply the above estimates of S+
11,δ to II1,δ. For f̃2(y2), using |W (y1, x2) −W (−y1, x2)| ≤√

2y1[ω]C1/2
x

, we obtain the same estimate as in (B.29).

Note that the above modification only leads to a tiny change of order ε1/2 to the estimate,
and we choose ε = 2−14. We refer the estimate to Section 5 in the supplementary material
II [16] (contained in [15]) in Part II.



102 JIAJIE CHEN AND THOMAS Y. HOU

Summary of the estimates of [vx]C1/2
x
, [uy]C1/2

x
. For [vx]C1/2

x
, combining (B.9), (B.17), (B.19),

(B.20), (B.25), (B.24), (B.31), (B.32), we establish

(B.34)

1√
2
|vx(−1, x2)− vx(1, x2)| ≤

1

π
√
2

(
(Sin,x + S1D)[ω]C1/2

x
+ (Sin,y + Sout)[ω]C1/2

y

)
,

Sin,x =

∫

y1 /∈J1,y1≥0

√
2y1|∆1D(y1)|dy1, Sout =

√
2x2

∫

R

∫ B

x2

|∆(y)|dy,

Sin,y = 4

∫

J+
1 \[1−δ,1+δ]

(∫ A

sc(y1)

|y2 − T (y)| 12 |∆(y)|dy2 +
∫ T (y1,A)

0

|y2|
1
2 |∆(y)|dy2

)
dy1

+ 4(Sin,y,δ,+ + Sin,y,δ,−) + 4

∫

y1 /∈J1,y1≥0

∫ A

sc(y1)

|T (y)− y2|
1
2 |∆(y)|dy,

S1D = 2

∫ 9

1
9

|∆1D|y1 − 1|1/2dy1 +
∫ 1

9

0

|∆1D|
√
2y1dy1 + (π + P (

1

9
))
√
2,

where P (·) is defined in (B.23), and the factor 1√
2
comes from 1

|x−z| =
1√
2
in this case.

For uy, combining (B.30) and (B.25), we yield

(B.35)

1√
2
|uy(−1, x2)− uy(1, x2)| ≤

1

π
√
2

(
S̃1D[ω]C1/2

x
+ Sup + Sout)[ω]C1/2

y

)
,

Sup = 4

∫

y1∈R+\[1−δ,1+δ]

∫ A

sc(y1)

|T (y)− y2|
1
2 |∆(y)|dy2dy1 + 4(Sin,y,δ,+ + Sin,y,δ,−),

S̃1D =

∫

R+

|∆1D(y1)|
√
2y1dy1.

The above upper bounds depend on (A,B), A = min(x2, B), A > 0, B ≥ 2: C1(x2, B)[ω]
C

1/2
x

+

C2(x2, B)[ω]
C

1/2
y

. For any τ > 0, we further bound it by

C1(x2, B)[ω]
C

1/2
x

+ C2(x2, B)[ω]
C

1/2
y

≤ (C1(x2, B) + C2(x2, B)τ)max([ω]
C

1/2
x
, τ−1[ω]

C
1/2
y

).

We partition the domain of these parameters and use monotonicity of the integrals in A,B to
obtain the uniform bound. We refer the details to Section 5 in the supplementary material of
Part II [16].

B.2. C
1/2
y estimate of vx. SinceW is not continuous across the boundary y2 = 0, the localized

vx or uy is not in C
1/2
y . Therefore, we study the estimate without localization. Without loss of

generality, we assume z2 = m+ 1, x2 = m− 1, x1 = z1 = 0 with m > 1. The case m = 1 can be
obtained by taking limit. The difference vx(z)− vx(x) or uy(z)− uy(x) is given by

I ,
1

π

∫
K2(y1, 1 + y2)−K2(y1, y2 − 1)W (y1,m− y2)dy + s(ω(z)− ω(x)),

where s = 1
2 for uy and s = − 1

2 for vx. Denote

(B.36) η(y1, y2) =W (y2, y1), ηm(y1, y2) = η(m− y1, y2).

By definition, η is odd in y1, discontinuous across y1 = m, and satisfies

(B.37) [η]
C

1/2
x (Ω)

= [ω]
C

1/2
y
, [η]

C
1/2
y (Ω)

= [ω]
C

1/2
x
,

for Ω = {y : y1 ≥ 0} or Ω = {y : y1 ≤ 0} .
Swapping the dummy variables y1, y2 and then using K2(y1, y2) = −K2(y2, y1), ηm(y) =

η(m− y1, y2) =W (y2,m− y1), we yield

(B.38)

I = − 1

π

∫
(K2(y1 + 1, y2)−K2(y1 − 1, y2))η(m− y1, y2)dy + s(ω(z)− ω(x))

= − 1

π

∫
∆(y)ηm(y)dy + s(ηm(−1, 0)− ηm(1, 0)), s = −1

2
for vx, s =

1

2
for uy.
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We perform the above reformulation so that we can adopt the analysis of

(B.39) ∆(y) = K2(y1 + 1, y2)−K2(y1 − 1, y2)

in (B.4) and Section B.1. Since η is discontinuous across y1 = 0, which relates to y1 = m in the
integral in (B.38), and the singularity of ∆ is at y = (±1, 0), we decompose the integral into the
inner region, the middle region, and the outer region

(B.40)

Ωin , {y : |y1| ≤ 1}, Ωmid , {y : |y1| ∈ [1,m]}, Ωout , {y : |y1| > m},

Sα ,

∫

Ωα

∆(y)ηm(y)dy, α ∈ {in,mid, out}.

See the right figure in Figure 13 for different regions in {y1 ≥ 0}. In each region, ηm is Hölder
continuous. Since we can obtain a smaller factor from [ω]

C
1/2
y

than [ω]
C

1/2
x

, and we have the

relation (B.37), to obtain a sharp estimate of (B.38), we should use the X transportation as
much as possible.

Firstly, we analyze the sign of ∆(y). Since ∆ is odd in y1 and even in y2, we can focus on
y1, y2 ≥ 0. For a fixed y2, we have

(B.41)
∆(y) < 0, y1 < h−c (y2) ≤ 1, ∆(y) > 0, y1 ∈ (h−c (y2), 1), y2 ≤ yc , 3−1/2,

∆(y) < 0, y1 > h+c (y2) ≥ 1, ∆(y) > 0, y1 ∈ (1, h+c (y2)),

where h±c (y2) solves ∆(h±c (y2), y2) = 0 and is given explicitly in (B.56). The factor yc = 3−1/2

comes from solving ∆(0, yc) = 0. See the right figure in Figure 13 for sgn(∆(y)) in different
regions. Denote Qε = [1 − ε, 1 + ε]× [−ε, ε] and Qi is the four quadrants with center at (1, 0),

e.g. Q1 = {y1 ≥ 1, y2 ≥ 0}. For the P.V. integral, since the kernel
y21−y22
|y|4 has mean 0 in each

quadrant R± × R±, it is not difficult to show that

lim
ε→0

∫

Qc
ε

∆(y)η(m− y1, y2)1y1≥0dy =
4∑

i=1

lim
εi→0

∫

Qc
ε∩Qi

∆(y)η(m− y1, y2)1y1≥0dy.

Thus, we can estimate the P.V. integral separately in each Qi.

B.2.1. Inner region Ωin. In Ωin, we have |y1| ≤ 1. Denote yc = 3−1/2. Note that ∆ = K2(y1 +
1, y2)−K2(y1 − 1, y2) is singular at (1, 0). Applying Lemma B.1 to −K2(y1 − 1, y2) yields

(B.42)

∫ 1

0

∫ yc

0

∆(y)ηm(y)dy = lim
ε→0

∫ 1

0

∫ yc

ε

∆(y)ηm(y)dy − π

8
ηm(1, 0) , lim

ε→0
Iε −

π

8
ηm(1, 0).

Let T1(y) ≥ 0 be the map that solves
∫ T1(y)

y1

∆(s, y2)ds = 0, y1 ∈ [0, h−c (y2)].

The formula is given in (B.61). Using the sign inequality (B.41) and applying Lemma 3.6 in the
y1 direction, we yield

∣∣∣
∫ yc

ε

dy2

∫ T1(0,y2)

0

∆(y)ηm(y)dy1

∣∣∣ ≤
∫ yc

ε

dy2

∫ h−

c (y2)

0

|∆(y)||y1 − T1(y)|1/2dy1[η]C1/2
x

, Iin,++.

See the blue arrows in Ωin in the right figure of Figure 13 for an illustration of this trans-
portation estimate. Using the symmetry of ∆ in y1, y2, we generalize the above estimate of the
integral in the region {y : ε ≤ |y2| ≤ yc, |y1| ≤ T1(0, |y2|)}, which is bounded by 4Iin,++.

The remaining part of the integral in Ωin is in the following region

(B.43)
Rin,ε , {|y1| ≤ 1, |y2| ≥ yc} ∪ {T1(0, |y2|) ≤ y1 ≤ 1, ε ≤ |y2| ≤ yc},
R+
in,ε = Rin,ε ∩ [0, 1]× R, R++

in,ε = Rin,ε ∩ [0, 1]× R
+.

Since ∆ > 0 in R
+
in,ε, we use the odd symmetry of ∆ in y1 and even symmetry in y2 to obtain

∣∣∣
∫

Rin,ε

∆(y)ηm(y)dy
∣∣∣ =

∣∣∣
∫

R+
in,ε

∆(y)(ηm(y1, y2)− ηm(−y1, y2))dy
∣∣∣ ≤ 2

∫

R++
in,ε

|∆(y)|
√

2y1dy[η]C1/2
x
,
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where we have the factor 2 since the estimates in y2 ≥ 0 and y2 ≤ 0 are the same.
Plugging the above estimate in (B.42) and using the symmetry of ∆ in y1, y2, we derive

(B.44)∣∣∣
∫

Ωin

∆(y)ηm(y) +
π

4
(ηm(1, 0)− ηm(−1, 0))

∣∣∣

≤
(
4

∫ yc

0

dy2

∫ h−

c (y2)

0

|∆(y)||y1 − T1(y)|1/2dy1 + 2

∫

R++
in,0

|∆(y)|
√

2y1dy
)
[η]

C
1/2
x

, Cin[η]C1/2
x
.

B.2.2. Estimate in Ωmid. We develop two estimates for the integral (B.40)

Smid ,

∫

Ωmid

∆(y)ηm(y)dy.

First estimate. The first estimate is similar to that in Section B.2.1. Notice that the singu-
larities of ∆ (B.39) are (±1, 0). We first rewrite Smid as follows using Lemma B.1 twice with
Q1,± = (±[1,m])× [0, 1] and Q2,± = (±[1,m])× [−1, 0]

(B.45) Smid = lim
ε→0

∫

Ωmid∩|y2|≥ε
∆(y)ηm(y)dy − π

4
(ηm(1, 0)− ηm(−1, 0)).

To estimate the integral, we first study the sign of ∆(y). For y1 ∈ [1,m], we have

∆(y) > 0, |y2| > sc(m),

where sc is given in (B.56). For |y2| < sc(m), the sign of ∆(y) is given in (B.41). Denote

(B.46)
Rmid , {|y1| ∈ [1,m], |y2| ≥ sc(m)} ∪ {|y2| < sc(m), 1 ≤ |y1| ≤ T (m, |y2|)},
R+
mid , Rout ∩ {y1 ≥ 0}, R++

mid , Rmid ∩ R
++
2 .

In Ωmid\Rmid, using sgn(∆) (B.41) and applying Lemma 3.6 in the y1 direction, we yield

∣∣∣
∫ sc(m)

ε

dy2

∫ m

T (m,y2)

∆(y)ηm(y)dy1

∣∣∣ ≤
∫ sc(m)

ε

dy2

∫ m

h+
c (y2)

|∆(y)||y1 − T1(y)|1/2dy1 , Imid,++

where T1 is given in (B.61). See the blue arrows in Ωmid in Figure 13 for an illustration
of this transportation estimate. We generalize the above estimate of integral in the region
{y : ε ≤ |y2| ≤ sc(m), T (m, |y2|) ≤ |y1| ≤ m} using symmetry of ∆, which is bounded by 4Imid.

For the integral in Rout, ∆(y) is positive if y1 > 0. We use the odd symmetry of ∆ in y1 and

|ηm(y1, y2)− ηm(−y1, y2)| ≤
√
2y1[η]C1/2

x
.

In particular, we obtain an estimate similar to (B.44)

(B.47)

|Smid +
π

4
(ηm(1, 0)− ηm(−1, 0))| ≤

(
4

∫ sc(m)

0

dy2

∫ m

h+
c (y2)

|∆(y)||y1 − T1(y)|1/2dy1

+ 2

∫

R++
mid

|∆(y)|
√

2y1dy
)
[η]

C
1/2
x

, Cmid,1(m)[η]
C

1/2
x
.

Second estimate. In the second estimate, instead of using transportation in the y1 direction,
we use transportation in the y2 direction. This estimate will be very useful for vx. We also
combine the estimate of Smid, Sout (B.40). Recall Ωin ∪ Ωout = {|y1| ≥ 1}. Firstly, applying
Lemma B.1 twice to K2(y1 + 1, y2) and −K2(y1 − 1, y2), respectively, we yield

(B.48) Smid + Sout =
π

4
(ηm(1, 0)− ηm(−1, 0)) + lim

ε→0

∫

|y1|≥1+ε

∆(y)ηm(y)dy , I + lim
ε→0

IIε.

We remark that the above decomposition and the sign of (ηm(1, 0)− ηm(−1, 0)) are different
from those in (B.45) since we take the limit in different variables. The above integral is similar
to (B.9) and is simpler since we do not localized the kernel ∆. We apply the same argument as
that in Section B.1.1, B.1.2. Recall that ∆ satisfies the sign condition (B.5). Note that

(B.49)

∫ ∞

0

∆(y1, y2)dy2 =
y2

y22 + (y1 + 1)2
− y2
y22 + (y1 − 1)2

∣∣∣
∞

0
= 0,
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and ∆ is even in y2 and odd in y1. Though ηm(y) has a jump across y1 = m due to the boundary

(B.36), ηm ∈ C1/2(Ωin), C
1/2(Ωout). In particular, for a fixed y1, ηm(y1, ·) ∈ C

1/2
y2 . For δ > 0,

applying Lemma 3.6 in the y2 direction, we obtain

(B.50) IIδ ≤4

∫ ∞

1+δ

dy1

∫ ∞

sc(y1)

|∆(y)||y2 − T (y)|1/2dy2[η]C1/2
y

, Cmid,2(δ)[η]C1/2
y
,

where sc(y1) and T are the same as those in Section B.1.1, B.1.2 and are given in (B.56), (B.60).
We have a factor 4 since the same estimate applies to integral in each quadrant, ±[1+δ,∞]×R±.

Recall the discussion in Section B.1.6. For m > 1 close to 1, to ease the computation, we seek

a simpler estimate. Using the transport map T (y) =
y21
y2

(B.14) for K2(y) in the y2-direction and

Lemma 3.6, we have
(B.51)
∣∣∣ lim
ε→0

∫

[a,b]\[−ε,ε]
dy1

∫ ∞

0

K2(y)f(y)dy
∣∣∣ ≤

∫ b

a

|K2(y)||
y21
y2

− y2|1/2dy[f ]C1/2
y

, IK2,∞(a, b)[f ]
C

1/2
y
,

for a < b. Clearly, IK2,∞(a, b) = IK2,∞(−b,−a) for 0 < a < b. Recall ∆(y) = K2(y1 + 1, y2)−
K2(y1 − 1, y2) (B.5). Using a change of variable (y1 ± 1, y2) → y and (B.51), we get

| lim
ε→0

∫

[a,b]\[−ε,ε]

∫

R

K2(y1 ± 1, y2)ηm(y)dy| ≤ 2IK2,∞(a± 1, b± 1)[η]
C

1/2
y
.

For ε→ 0, choosing [a, b] = [ε+1, δ+1], [−1− δ,−1− ε], we estimate the remaining part of the
integral in y1 ∈ [a, b] as follows

(B.52)
|Smid −

π

4
(ηm(1, 0)− ηm(−1, 0))|+ Sout ≤ lim

ε→0
|IIε| ≤ Cout(1, δ)[η]C1/2

y
,

Cout(1, δ) , 4(IK2,∞(0, δ) + IK2,∞(2, 2 + δ)) + Cmid,2(δ).

When we combine different estimates to estimate [vx]C1/2
y

, the factor −π
4 (ηm(1) − ηm(−1))

allows us to cancel the local term −π
2ω in vx (3.4). The factor π

4 (ηm(1)− ηm(−1)) in (B.47) has
the opposite sign and does not offer such cancellation.

B.2.3. Estimate in the outer region. Recall the integral (B.40) in the outer region

Sout ,

∫

Ωout

∆(y)ηm(y)dy.

In Ωout, we have ηm ∈ C
1/2
y ([m,∞) × R) and ηm ∈ C

1/2
y ((−∞,−m] × R). For δ > 0 and

δm = max(m, δ + 1), following the second estimate of Smid in Section B.2.2, applying estimates
(B.50) to |y1| ≥ δm, and (B.51) to the region |y1| ∈ [m± 1, δm ± 1], we yield

(B.53)
|Sout| ≤ Cmid,2(δm − 1) + 4(IK2,∞(m+ 1, δm + 1) + IK2,∞(m− 1, δm − 1))

, Cout(m, δ), δm = max(m, δ + 1).

We have a factor 4 since the same estimate applies to the region ±[m,∞] × R±. The above
notation Cout(m, δ) is consistent with Cout(1, δ) in (B.52), where δm = 1 + δ.

B.2.4. Modification near the singularity. Similar to Section B.1.6, near the singularity (1, 0), for
|y2| ≤ δ, we modify the estimate of (B.42), (B.47) by separating two kernels (B.5)

Sin,δ , lim
ε→0

∫

ε≤|y2|≤δ,|y1|≤1

∆(y)ηm(y)dy, Smid,1,δ , lim
ε→0

∫

ε≤|y2|≤δ,1≤|y1|≤m
∆(y)ηm(y)dy.
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In Section 5 in the supplementary material II [16] (contained in [15]) in Part II,, we establish

|Sin,δ| ≤
{∫ 1

0

√
2y

1/2
1 δ

(y1 + 1)2 + δ2
dy1 + 2

(√
2
1

2
arctan(δ) + 2δ1/2(fs(

√
1/δ)− fs(1) + CK2,up)

)}
[η]

C
1/2
x

, Cin,δ[η]C1/2
x
,

|Smid,1,δ| ≤
{∫

|y2|≤δ

∫ m

1

K2(y1 + 1, y2)|2y1|1/2dy1

+ 2
(√

2m
1

2
arctan(

δ

m− 1
) + 2ε1/2(fs(

√
(m− 1)/δ)− fs(1) + CK2,up)

)}
[η]

C
1/2
x

, Cmid,1,δ[η]C1/2
x
,

where CK2,up is defined in (B.33), and fs is given by

fs(t) ,

∫ t

0

s2

1 + s4
ds =

1

2

∫ t1/2

0

1

1 + s2
s1/2ds.

We obtain modified estimates of (B.44), (B.47) with bounds Cα replaced by C̃α, α = in,mid
(B.54)

C̃in(δ) , 4

∫ yc

δ

dy2

∫ h−

c (y2)

0

|∆(y)||y1 − T1(y)|1/2dy1 + 2

∫

R++
in,δ

|∆(y)|
√

2y1dy + Cin,δ,

C̃mid,1(δ) , 4

∫ sc(m)

δ

dy2

∫ m

h+
c (y2)

|∆(y)||y1 − T1(y)|1/2dy1 + 2

∫

R++
mid,|y2|≥δ

|∆(y)|
√
2y1dy + Cmid,1,δ.

For m > 1 very close to 1, we have an additional estimate for Smid (B.47)

(B.55)

|Smid +
π

4
(ηm(1, 0)− ηm(−1, 0))| = | lim

ε→0

∫

|y2|≥ε,|y1|∈[1,m]

∆(y)ηm(y)dy| ≤ Cmid,3[η]
C

1
2
x

,

Cmid,3 ,
π

4

√
2m+

1

4
(m− 1)2

√
2m+ 2

(√
2m

π

8
+ 2(m− 1)1/2CK2,up

)
.

The above modifications and the refinements in (B.52), (B.53) are very tiny and of order
δ1/2, |m − 1|1/2. We choose a small δ, e.g. δ = 2−14, and use them to ease the computation of
the integral near (1, 0). If δ = 0, we recover the previous estimates.

B.2.5. Summarize the estimates. Recall from (B.38)

vx(z)− vx(x) = − 1

π

∫
∆(y)ηmdy −

1

2
(ηm(−1, 0)− ηm(1, 0))

= − 1

π

(
Sin + Smid + Sout −

π

2
(ηm(1, 0)− ηm(−1, 0))

)
,

uy(z)− uy(x) = − 1

π

(
Sin + Smid + Sout +

π

2
(ηm(1, 0)− ηm(−1, 0))

)
.

Note that |(ηm(1, 0)−ηm(−1, 0))| ≤
√
2[η]

C
1/2
x

. Using the relation (B.37) [η]
C

1/2
x

= [ω]
C

1/2
y
, [η]

C
1/2
y

=

[ω]
C

1/2
x

, and applying (B.44), (B.47), (B.53), (B.55), (B.54) to uy, we prove

|uy(z)− uy(x)|√
2

≤ 1

π
√
2

(
(C̃in(δ) + min(C̃mid,1(δ), Cmid,3))[η]C1/2

x
+ Cout(m, δ)[η]C1/2

y

)

≤ 1

π
√
2

(
(C̃in(δ) + min(C̃mid,1(δ), Cmid,3))[ω]C1/2

y
+ Cout(m, δ)[ω]C1/2

x

)
,

for δ > 0. Applying (B.44), (B.52) to vx, we prove

|vx(z)− vx(x)|√
2

≤ 1

π
√
2

(
C̃in(δ)[η]C1/2

x
+ Cout(1, δ)[η]C1/2

y
+
π

2

√
2[η]

C
1/2
x

)

≤ 1

π
√
2

(
C̃in(δ)[ω]C1/2

y
+ Cout(1, δ)[ω]C1/2

x
+
π

2

√
2[ω]

C
1/2
y

)
,

for δ > 0, where the factor 1√
2
comes from |x− z|−1/2 = 2−1/2.
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B.3. Functions and transportation maps. We present the formulas of the transportation
maps and the functions related to the sign of the kernels in the sharp Hölder estimate. Recall

K1 =
y1y2
|y|4 , K2 =

1

2

y21 − y22
|y|4 .

B.3.1. Sign functions. Solving K1(y1 + 1/2, y2)−K1(y1 − 1/2, y2) = 0 for y1 ≥ 0, we yield

y1 =
(1/2− 2y22 +

√
16y42 + 4y22 + 1

6

)1/2

.

See also (3.10). Solving K2(y1 + 1, y2)−K2(y1 − 1, y2) = 0 for y2 ≥ 0, we yield

(B.56)
y1 = h±c (y2) ,

(
y22 + 1± 2y2

√
y22 + 1

)1/2

,

y2 = sc(y1) ,
(−(y21 + 1) + 2(y41 − y21 + 1)1/2

3

)1/2

.

B.3.2. Transportation maps.
Map for ux. For a fixed s2 6= 0 and s1 > 0, solving

∫ s1

T (s)

(K1(s1 + 1/2, s2)−K1(s1 − 1/2, s2))ds1 = 0,

yields the equation of the transportation map in x direction

(B.57) T 3 + T 2s1 + T (s21 −
1

2
+ 2s22)−

(4s22 + 1)2

16s1
= 0.

We rewrite the above equation as an equation for Z = T + s1
3

0 = Z3 +Z(
2

3
s21 −

1

2
+ 2s22))−

((4s22 + 1)2

16s1
+

7

27
s31 +

s1
3
(2s22 −

1

2
)
)
, Z3 + p(s1, s2)Z + q(s1, s2),

The discriminant is given by

(B.58) ∆Z(s1, s2) = −(27q(s1, s2)
2 + 4p(s1, s2)

3).

Note that

−q ≥ 7

27
s31 −

s1
6

+
1

16s1
≥ (2

√
7

27
· 1

16
− 1

6
)s1 ≥ 0,

and −q, p are increasing in |s2|. We yield

−∆Z(s1, s2) ≥ −DZ(s1, 0) =
(1− 4s21)

2(27− 56s21 + 48s41)

256s21
≥ 0.

When s 6= (12 , 0), the above inequality is strict, and we have a unique real root. Using the
solution formula for a cubic equation, we obtain the formula for the real root

(B.59) Z = r1 −
p

3r1
, r1 =

(−q +
√
q2 + 4

27p
3

2

)1/3

, T = Z − s1
3
.

Map for [uy]C1/2
x

. For a fixed y1 ≥ 0, solving
∫ y2

T (y)

(K2(y1 + 1, y2)−K2(y1 − 1, y2))dy2 = 0,

yields the equation of the transportation map in y direction

(B.60) T 3 + T 2y2 + T (y22 + 2 + 2y21)−
(y21 − 1)2

y2
= 0.

We rewrite the above equation as an equation for W = T + y2
3

0 =W 3 +W (
2y22
3

+ 2+ 2y21)−
( (y21 − 1)2

y2
+
y32
27

+
y2
3
(
2y22
3

+ 2+ 2y1)
)
,W 3 + p2(y)W + q2(y),
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Since p2 > 0, using the discriminant (B.58), we obtain −∆W (y) > 0. Thus the cubic equation
of T or W has a unique real root that can be obtained by the formula similar to (B.59).

Map for [uy]C1/2
y

. For a fixed y1, y2 ≥ 0, solving

∫ T1(y)

y1

∆(s, y2)ds = 0

with T ≥ 0 yields the equation of the transportation map in x direction

1− T 2 − y21 + T 2y21 − 2y22 − T 2y22 − y21y
2
2 − 3y42 = 0,

or equivalently

(B.61) T 2 =
y21 + 2y22 + y21y

2
2 + 3y42 − 1

y21 − y22 − 1
.

We apply the above map to the following two regions separately

y1 ∈ [0, 1], y1 ≤ h−c (y2), y1 ∈ [1,∞], y1 ≥ h+c (y2).

Appendix C. Weights and parameters

C.1. Parameters for the weights. In our energy estimates and the estimates of the nonlocal
terms, we need various weights. Below, we present the parameters for the weights. In practice,
we use the double floating point values of these parameters which can differ from the values below
by the machine precision, e.g.10−16. For the Hölder estimates, we use the following weights

(C.1)

ψ1 = |x|−2 + 0.5|x|−1 + 0.2|x|−1/6,

ψ2 = p2,1|x|−5/2 + p2,2|x|−1 + p2,3|x|−1/2 + p2,4|x|1/6,
ψ3 = ψ2, ~p2,· = (0.46, 0.245, 0.3, 0.112),

gi(h) = gi0(h)gi0(1, 0)
−1, gi0(h) = (

√
h1 + qi1h2 + qi3

√
h2 + qi2h1)

−1,

~q1, = (0.12, 0.01, 0.25), ~q2, = (0.14, 0.005, 0.27), ~q3, = ~q2,.

To estimate the weighted L∞ norm of the error of solving the Poisson equation, the weighted
L∞ norm of uA,∇uA, and the Hölder estimate of ψuuA, ψdu(∇u)A, we use

(C.2)

ϕelli = |x1|−1/2(|x|−2 + 0.6|x|−1/2) + 0.3|x|−1/6, ψdu = ψ1, ψu = |x|5/2 + 0.2|x|−7/6,

ρ10 = ρ01 = |x|−3 + |x|−7/6, ρij = ψ1, i+ j = 2,

ρ3 = |x|−1 + |x|−1/6, ρ4 = |x1|−1/2(|x|−2.5 + 0.6|x|−1/2) + 0.3|x|−1/6,

where ψ1 is given above. The weight ϕelli is similar to ϕ1 except that we choose a less singular
power for the first term. We use ρ3 to capture the vanishing order of ∂i∇Uapp ∼ |x|−1 near
x = 0 (5.82) and estimate ρ3∂i(∇U)app. The weight ρ4 singular along x1 = 0 is used for another
estimate of uAρ4 using energy ||ωϕ1||∞. See Appendix B.4 in Part II [15].

For the weighted L∞ estimates with decaying weights, we use the following weights

(C.3)

ϕ1 = x−1/2(|x|−2.4 + 0.6|x|−1/2) + 0.3|x|−1/6,

ϕ2 = x−1/2(p5,1|x|−5/2 + p5,2|x|−3/2 + p5,3|x|−1/6) + p5,4|x|−1/4 + p5,5|x|1/7,
ϕ3 = x−1/2(p6,1|x|−5/2 + p6,2|x|−3/2 + p6,3|x|−1/6) + p6,4|x|−1/4 + p6,5|x|1/7,
p5,· = (0.42, 0.144, 0.198, 0.172, 0.0383) · µ0, µ0 = 0.917,

p6,· = (2.5 · p5,1, 2 · p5,2, 3.8 · p5,3, 1.71 · p5,4, 2.39 · p5,5).

We write the parameter p6,i as the form of aip5,i since we first determine p5,i· for the weight ϕ2

of η and then determine the parameter p6,i for weights ϕ3 relatively to ϕ2.
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For the weighted L∞ estimates with the growing weights, we use the following weights
(C.4)

ϕg1 = ϕ1 + p7,1|x|1/16, ϕg2 = ϕ2 + p8,1|x|1/4 + p8,2|x|αn , ϕg3 = ϕ3 + p9,1|x|1/4 + p9,2|x|αn ,

p7,1 = 1, p8,1 = 0.07, p8,2 = 0.002, p9,1 = 0.154, p9,2 = p8,2p9,1/p8,1, αg,n = 1/3 + 10−8.

We choose p9,2 in a way that p9,· are proportional to p8,·

Parameters in the energy. We choose the following parameters in our energy (5.21), (5.27),
(5.70)

(C.5)
τ1 = 5, µ1 = 0.668, µ2 = 2µ1 = 1.336, µ4 = 0.065, τ2 = 0.23,

µ5 = 76, µ51 = 61, µ52 = 15, µ6 = 61, µ62 = 35.88, µ7 = 9.5, µ8 = 4.5.

C.1.1. Parameters for the cutoff functions. Recall the following cutoff functions constructed and
estimated in Appendix D.2 in Part II [15]

(C.6) χe(x) =
(
1+exp(

1

x
+

1

x− 1
)
)−1

, κ(x; ν1, ν2) = κ1(
x

ν1
)(1−χe(

x

ν2
)), κ1(x) =

1

1 + x4
,

where e is short for exponential. We will mostly use the cutoff function κ∗

(C.7) κ∗(x) = κ(x, 1/3, 3/2).

We construct the radial cutoff functions for the far-field approximations of ω and ψ as follows

(C.8)

χ(r) = χ1(1− χ2) + χ2, χ1(r) = χrati(
x− a1

l
1/2
1

), χrati(x) =
x7

(1 + x2)7/2
,

χ2(r) = χe(
x− a2
9a2

), a1 = 10, l1 = 50000, a2 = 105,

For the cutoff functions in χj,2, χNF in (4.11), χε̄, χε̂ in (5.81), and χj,2 in (5.75), we choose

(C.9)

χε̄(x, y) = κ(x; νε̄,1, νε̄,2)κ(y; νε̄,1, νε̄,2), νε̄,1 = 1/192, νε̄,2 = 3/2,

χε̂(x, y) = κ∗(x)κ∗(y), χNF (x, y) = κ(x; 2, 10)κ(y; 2, 10),

χ12 = −∆φ2, φ2 = −xy
3

6
κ∗(x)κ∗(y), χ22 = xyκ∗(x)κ∗(y), χ32 =

x2

2
κ∗(x)κ∗(y),

fχ,1 = ∆(
xy3

6
χNF (x, y)), fχ,2 = xyχNF (x, y), fχ,3 =

x2

2
χNF (x, y),

χode(x, y) = 1− χe((x− ν31)/ν31)χe((y − ν32)/ν32), ν31 = 80, ν32 = 1200.

For the cutoff function in (7.10), we choose

(C.10) χφ = κ2(
x

ν4,1
)(1 − χe(

x

ν4,2
)), κ2(x) =

1

1 + x2
, ν4,1 = 2, ν4,2 = 128.

C.2. Parameters for approximating the velocity. We choose the following parameters
xi, ti, i ≥ 1 in the first approximation of velocity u, ux in (4.28), (4.29), (4.38) in Section 4.3,

ux : x = (1, 2, 3, 4, 6, 8, 11, 16, 22, 32, 48) · 64hx, t = (16, 16, 20, 24, 32, 40, 56, 72, 96, 128, 256)h,

u : x = (1, 2, 4, 8, 12, 16, 22, 32, 64) · 64hx, t = (8, 8, 24, 40, 56, 72, 96, 128, 256)h,

hx = 13 · 2−12, h = 13 · 2−11.

For the parameters y0, x0 in K00χ0 (4.29), we choose

y0 = 256hx, ux : x0 = 32hx, u : x0 = 16hx, uy, vx, v : x0 = 128hx,

Remark that we choose the same y0 for all cases in the cutoff function χ̃(y−y0y0
) (4.28). For

u, v, ux, we choose the following parameters Ri in the second approximation (4.37)

(C.11) R = (8, 16, 32, 64, 128, 256, 512, 1024) · 64hx.
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C.2.1. Initial conditions for the linearized equations. Recall the formula (4.19) and the approxi-
mation terms (4.11) near the origin, (4.13) for the finite rank perturbation. We use the formulas
(4.39), (4.40) to approximate the velocity. Denote by nux , nu the number of the terms in (4.39)
for f = ux and f = u, respectively, and nR = m the number of terms in (4.40). See Appendix
C.2. We label the rank-one term as follows

a1(W1)F̄1(0) = cω(W1)f̄cω , anlin+i(s)F̄nlin+i = anl,i(W )F̄χ,i, nlin = nR + nu + nux + 2,

for i = 1, 2, 3, where nlin is the number of total rank for approximating the linearized operator,
and anl,i(W )F̄χ,i approximates the nonlinear and error terms (4.17).

We denote by ai(W1)F̄i(0) the rank-one term generated by the approximation (4.40) for
i = 2, 3, .., nR + 1, by the approximation term K00 of v, vx, uy for i = nR + 2 (see the discussion
above (4.29)), by (4.39) with f = ux for i = nR + 3, .., nR + nux + 2, and by (4.39) with f = u
for i = nR + nux + 3, .., nR + nux + nu + 2 = nlin. For example, for i = 2, we have

a2(W1) = (I1 − ux(0))(W1), F̄2(0) = (ˆ̃u · ∇ω̄, ˆ̃ux · ∇θ̄ + ˆ̃u · ∇̄θx, ˆ̃uy · ∇θ̄ + ˆ̃u · ∇θ̄y),
ˆ̃f = Cf0(1− χtot)S

R
1 , f = u, v, ux, uy, vx, vy ,

where I1 − ux(0) is the integral in (4.40). Note that we have changed the sign in (4.13), which

does not change the estimate of the solution, e.g. |F̂i(t)| and error |(∂t − L)Fi|.
Note that ηxy(0) = ξxx(0) = θxxy(0) (2.27), ∂xyF̄2(0) = ∂xxyFθ̄(0) = ∂xxF̄3(0) (2.19), we

get anl,2(W ) = anl,3(W ). Thus, we can combine (0, anl,2(W )F̄χ,2, 0), (0, 0, anl,3(W )F̄χ,3) as a
rank-one term anl,2(W )(0, F̄χ,2, F̄χ,3), and construct the approximate space time solution from
initial data (0, F̄χ,2, F̄χ,3).
C.3. Estimate of the stream function in 3D Euler.

C.3.1. Proof of Lemma 6.4.

Proof. Recall r = 1 − Cly in (6.9) and ω̃(r, z) = ωθ(r, z)/r in (6.6). Since the support size
satisfies Cl(τ)S(τ) < 1/4, within the support of ωθ(r, z), we have r ≥ 1/2. Hence, |ω̃| ≍ |ωθ|
and |rωθ(r, z)| . |ω̃(r, z)|. We can apply Lemma 6.1 and (6.10) to get

|φ(x, y)| . CωC
−2
l

∫
|ω̃(r1, z1)|

(
1 + | log((r1 − (1− Cly))

2 + (z1 − Clx)
2)|

)
dr1dz1

= Cω

∫
|ω̃(1− Cly1, Clx1)|

(
1 + | log(C2

l ((y1 − y)2 + (x1 − x)2)|
)
dy1dx1,

where we have used Lemma 6.1 and r1 ≤ 1 in the first inequality, and used change of variables
r1 = 1 − Cly1, z1 = Clx1 in the second identity. Since Cω |ω̃(1 − Cly1, Clx1)| = |ω(x1, y1)| and
|(x, y)| > 2S, within the support of ω, we get |(x, y)− (x1, y1)|2 ≍ |(x, y)|2. It follows

|φ(x, y)| .
(
1 + | log(C2

l |(x, y)|2)|
) ∫

|ω(z)|dz . (1 + | log(Cl|(x, y)|)|)||ω(1 + |z|)β||∞
∫

|z|≤S
(1 + |z|)−βdz

. ||ω(1 + |z|)β||∞S2−β(1 + | log(Cl|(x, y)|)|).
This proves the desired result. �

Next, we prove the estimates in Lemmas 6.5, 6.10. Denote by Ks(x, y) the symmetrized

kernel of K (3.2). For G = log |y|,K1 = y1y2
|y|4 ,K2 =

y21−y22
2|y|4 , we have the following symmetrized

estimate for |y| ≥ 2|x|, which are proved in Part II [15] using ideas similar to Taylor expansion
(C.12)

|∇(Gs(x, y)−
8y1y2x1x2

|y|4 | . |x|3
|y|4 , |y| ≥ 2|x|, |K1,s(x, y)−

4y1y2
|y|4 | ≤ 6|x|2

Den2(x, y)
,

|∂x1K1,s(x, y)| ≤
12x1

Den2(x, y)
, |K1,s(x, y)−

4y1y2
|y|4 − 2(x21 − x22)∂

2
y1K1(y)| ≤

10
√
2|x|4

Den3(x, y)
,

where Den is defined below and satisfies Den(x, y) ≍ |y|2 for |y| ≥ 2|x|
Den(x, y) =

∑

i=1,2

min
|zi|≤xi

|yi − zi|2 =
∑

i=1,2

(max(yi − xi, 0))
2.
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Similarly, we can obtain the following estimates for K2,s

(C.13)

|K2,s| ≤
12x1x2

Den2 , |∂xiK2,s(x, y)| ≤
12x3−i

Den2 ,
∣∣∣K2,s − 4x1x2 ·

12y1y2(y
2
1 − y22)

|y|8
∣∣∣ ≤ 40x1x2|x|2

Den3 ,

C.3.2. Proof of other estimates in Lemma 6.5. In this subsection, we prove the second and the
third estimate in Lemma 6.5. Using the Green function, we have

φ = − 1

2π

∫
log |x− y|W (y)dy, φxy(0) = − 4

π

∫

R
++
2

y1y2
|y|4 W (y)dy,

where W is the odd extension of ω from R
+
2 to R2. We only need to prove the estimate for the

derivatives. The estimate for φ can be obtained by integration from 0 to |x|. Without loss of
generality, we estimate ∂1(φ− x1x2∂12φ(0)).

Similar to the proof of the first estimate in Lemma 6.5, we use the partition

(C.14) Q1 = {y : |y| ≥ 2|x|}, Q2 = {y : |y − x| ≤ |x|/2}, Q3 = (Q1 ∪Q2)
c.

Denote M = ||ω(|x|−α + |x|β)||∞. We have

|ω| ≤M min(|x|α, |x|−β).
In Q1, we combine the estimate of φ and −ψxy(0)xy. Symmetrizing the kernel, we get

φ− φxy(0)xy = − 1

2π

∫

R
++
2

K(x, y)W (y)dy,

K(x, y) = log |x− y|+ log |x+ y| − log |(x1 − y1, x2 + y2)| − log |(x1 + y1, x2 − y2)| −
8y1y2x1x2

|y|4 .

For α < 2, applying (C.12) |∂x1K(x, y)| . |x|3
|y|4 for |y| ≥ 2|x|, we obtain

(C.15)

∣∣∣
∫

Q1

∂x1K(x, y)W (y)dy
∣∣∣ .M |x|3

∫

|y|≥2|x|
|y|−4 min(|y|α, |y|−β)dy

=M |x|3 min(|x|−2+α, |x|−2−β) =M min(|x|1+α, |x|1−β).
Note that if α = 2, the integral for small y,

∫
2|x|≤|y|≤1

|y|−2dy, leads to a log factor.

In Q2, Q3, we estimate two integrals separately. For φ in Q2, we have |x − y| ≤ |x|/2 and
|x| ≍ |y| in |x− y| ≤ |x|/2. Thus, we get

∫

|x−y|≤|x|/2
|∂x1 log |x− y|W (y)|dy .M min(|x|α, |x|−β)

∫

|x−y|≤|x|/2
|x− y|−1dy

.M min(|x|α, |x|−β)|x|,
In Q3, we get |x|/2 ≤ |x− y| ≤ 3|x|, |y| ≤ 2|x|. It follows

∫

Q3

|∂x1 log |x− y|W (y)|dy .M |x|−1

∫

|y|≤2|x|
min(|y|α, |y|−β)dy

.M |x|−1 min(|x|2+α, |x|2−β) .M min(|x|1+α, |x|1−β).
For φxy(0)x1x2, we have

∫

|y|≤2|x|

∣∣∣∂x1

x1x2y1y2
|y|4 W (y)

∣∣∣dy .M |x|
∫

|y|≤2|x|
|y|−2 min(|y|α, |y|−β) =M |x|min(|x|α, |x|−β).

Combining the above estimates, we prove the second estimate in Lemma 6.5.
For the last estimate in Lemma 6.5, if α ∈ (2, 3], the integrand in (C.15) is integrable near

|x| = 0. We yield

|
∫

Q1

∂x1K(x, y)W (y)dy| .M |x|3.

For other terms, since α > 2, β > 0, the desired estimate follows from

min(|x|1+α, |x|1−β) . |x|3.
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C.3.3. Proof of Lemma 6.10. Firstly, we consider the second estimate in Lemma 6.10. The
bound by ||Ω||X follows from embedding. We focus on the bound by |x|2||Ω||X and assume that
|x| ≤ 1. We consider the estimate for ∂12Ψ−Ψ12(0). Firstly, we have

∂12Ψ =
1

π

∫
K(x− y)Ω(y)dy,K(z) =

z1z2
|z|4 , ∂12Ψ(0) =

4

π

∫

R
++
2

K(y)W (y)dy,

where we extend Ω from R
+
2 to R2 by natural odd extension. From (C.1)-(C.4), we get

(C.16) max(ϕ1, ϕg,1) & |x|−α, |x|β , α = 2.9, β = 1/16, ψ1 ≍ |x|−2, for |x| . 1.

Following the standard partition (C.14), the symmetrization argument similar to that in the
proof of Lemma 6.5 or Section C.3.2, and the estimate (C.12), we obtain

(C.17)
∣∣∣
∫

|y|≥2|x|
K(x− y)W (y)− 4

∫

|y|≥2|x|,R++
2

K(y)W (y)dy
∣∣∣ . |x|2||Ω||X .

For |y| ≤ 2|x|, we have
∫

|y|≤2|x|
K(y)Ω(y)dy .

∫

|y|.2|x|
min(|y|α, |y|−β)|y|−2dy||Ω||X . |x|α||Ω||X . |x|2||Ω||X

In region Q3 ⊂ {y : |x− y| ≍ |x|}, we have

|
∫

Q3

K(x− y)Ω(y)dy| . |x|−2

∫

|y|≤3|x|
|Ω(y)|dy . |x|−2

∫

|y|≤3|x|
min(|y|α, |y|−β)dy||Ω||X

. ||Ω||X min(|x|α, |x|−β).
In the singular region Q2 = {y : |x− y| ≤ |x|/2}, for any |s|, |t| ≤ |x|/2, and |x| ≤ 1, we have

Ω(x+ s)− Ω(x + t) = (Ωψ1ψ
−1
1 )(x + s)− (Ωψ1ψ

−1
1 )(x + t)

≤|Ωψ1(x+ s)− Ωψ1(x+ t)|ψ−1
1 (x+ s) + |ψ−1

1 (x+ s)− ψ−1
1 (x+ t)| · |Ωψ1(x+ t)| , I1 + I2.

Since |∇ψ−1(x)| . |x|, for |s|, |t| . |x|/2, we get

|ψ−1
1 (x + s)− ψ−1

1 (x + t)| . |x||s− t|.
Using the above estimate for the weight ψ1Ω . ψ1

ϕ1
||Ωϕ1||∞ . ψ1

ϕ1
||Ω||X , we yield

|I1| . ||Ω||X |x|2|s− t|1/2, I2 . |s− t||x| ·ψ1(x+ t)/ϕ1(x+ t) . |s− t||x| · |x|α−2 = |s− t||x|α−1.

Using the symmetry of the kernel that K(s) is odd in s1, s2 , we get

|
∫

|x−y|≤|x|/2
K(x− y)W (y)dy| =

∫

|s|≤|x|/2,s1≥0

K(s)
(
W (x+ s)−W (x+ (−s1, s2))

)
ds|

.|x|2
∫

|s|≤|x|/2
|s|−3/2ds+ |x|α−1

∫

|s|≤|x|/2
|s|−1ds . |x|5/2 + |x|α . |x|2.

For small |x|, we can improve the above estimate by optimizing the window a(x) for the singular
region |x− y| ≤ a(x). We complete the estimate of the second inequality in Lemma 6.10.

Next, we consider the first estimate in Lemma 6.10. For Ω ∈ X , using (4.25), we have

∂1112Ψ(0) =
4

π

∫

R
++
2

∂11K(y)Ω(y)dy, ∂11K(y) =
12y1y2(y

2
1 − y22)

|y|8 .

The proof is completely similar. We use the above partiton of the domains. In Q1, we use
the symmetrizing estimates (C.12), (C.13) to yield
∣∣∣
∫

|y|≥2|x|
K(x− y)W (y)dy −

∫

|y|≥2|x|,R++
2

(4K(y) + 2(x21 − x22)∂11K(y))W (y)dy
∣∣∣ . |x|5/2||Ω||X .

In Q2, Q3, we estimate the integrals separately, and use the above estimates and

|x|2
∫

|y|.|x|

∣∣∣24y1y2(y
2
1 − y22)

|y|8
∣∣∣Ω(y)dy . |x|2

∫

|y|.|x|
|y|−4 min(|y|α, |y|−β)dy||Ω||X . min(|x|α, |x|−β).
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Using the pointwise estimate (C.16) and the integral formulas of ∂12Ψ(0), ∂1112Ψ(0), we get

|∂12Ψ(0)|+ |∂1112Ψ(0)| . ||Wϕg,1||L∞ . ||W ||X .

Appendix D. Inequalities for nonlinear stability

D.1. Inequalities for nonlinear stability. In this Section, we present all the inequalities for
nonlinear stability in Lemma A.2 with the final energy E4 (5.70). We have performed energy
estimates in Section 5. The estimates of other nonlinear terms in the Hölder estimates are
similar, and we refer them to Section 8.5 in the supplementary material I [18].

We verify these inequalities for nonlinear stability with computer assistance, and the codes
can be found in [13]. The codes are implemented in MatLab with package INTLAB [82] for
interval arithmetic. The estimates of the constants in Lemma 2.2, and the constructions and
estimates of the approximate space-time solutions in Lemma 2.3 are performed in parallel using
the Caltech High Performance Computing1. Other computer-assisted estimates and main part of
the verifications are done in Mac Pro (Rack,2019) with 2.5GHz 28-core Intel Xeon W processor
and 768GB (6x128GB) of DDR4 ECC memory.

Variables and Notations. RecallW1 from (5.3), U, Ũ,UA from (5.82), the energies Ei (5.21),
(5.27), (5.54), (5.70), the weights ρ10 = ρ01, ρij = ψ1, i + j = 2 (C.2) for the L∞ estimates of
uA, (∇u)A, and ψu, ψ1 (C.2) for the Hölder estimate of ψuuA, ψ1(∇u)A. The notation fA(ω) =

f̃(ω)− ˜̂
f(ω) is introduced in (5.2), where

˜̂
f is the finite rank approximation of f(ω) (4.38). Note

that in general ∇(UA) 6= (∇U)A. The weights ψi, ϕi, ϕg,i are defined in (C.1), (C.3), (C.4).
Below, we use T to denote some functions related to the transport terms. We introduce T

to bound b · ∇f

(D.1) T (b, f)(x) , |b1| · |fx|+ |b2| · |fy| =
1

ρ10
(|b1ρ10| · |fx|+ |b2ρ10| · |fy|).

For b = uA = (uA, vA), ρ10T (uA, f) agrees with Tu(f) defined in Section 5.3. If b = U and

f = ρ is weight, we estimate piecewise L∞ norm of U/x, V/y, xi∂iρ
ρ and denote

(D.2) Twg(U, ρ)(x) , |U
x
| · |x∂xρ

ρ
|+ |V

y
| · |y∂yρ

ρ
|,

where wg is short for weight and we use it to emphasize that the second component is a weight.
We derive piecewise weighted estimate ρijuij for a singular weight ρij associated with uij and

unweighted estimate uij . Then, we apply two estimates to bound ρuij

ρuij = (ρ/ρij) · (ρijuij)
where uij denotes u, v, ux, vx, uy for (i, j) = (0, 1), (1, 0), (1, 1), (2, 0), (0, 2) and ρ10, ρ20 are given
in (C.2). The above two bounds are slightly different since maxx∈Q |f−1(x)| ·maxx∈Q |f(x)| 6= 1.
The second bound is useful near x = 0 since both terms are regular. Note that we further
establish weighted estimate for ρ4uA using ||ωϕ||∞.

Recall that we have modified the decomposition of linear and nonlinear terms in (5.90) and
discussions therein to simplify the nonlocal error estimates. Below, the estimates are based
on the decompositions in (5.90) and ūN , c̄Nω etc. We modify (5.4) below and num is short for
numerics

(D.3)
T num
d (ρ) = ρ−1

(
(c̄lx+ ūN ) · ∇ρ

)
, dnum1,L (ρ) = T num

d (ρ) + c̄Nω ,

dnum2,L (ρ) = T num
d (ρ) + 2c̄Nω − ūNx , dnum3,L (ρ) = T num

d (ρ) + 2c̄Nω + ūNx .

In the linear L∞(ϕ) estimates in Section 5.3, and L∞(ϕ4) estimate in Section 5.3.4, we only
use the energy E1 (5.21). In the linear Hölder estimate in Section 5.4, we only use E2 (5.27). In
the L∞(ϕg,i) estimates in Section 5.5, we only use E3 (5.54). In the remaining energy estimates
for functionals and nonlinear terms in Sections 5.7-5.9, we use the full energy E4 (5.70).

1See more details for Caltech HPC Resources https://www.hpc.caltech.edu/resources

https://www.hpc.caltech.edu/resources


114 JIAJIE CHEN AND THOMAS Y. HOU

D.1.1. Weighted L∞ estimate. In Sections 5.3, 5.5 and Section 5.9, we establish the following
weighted L∞ estimates for (5.90).

Weighted L∞(ϕi) estimate. We establish the following linear weighted L∞(ϕi) estimates for
the bad terms Bmodi,i (5.89) in Section 5.3

(D.4)

L1(ϕ1) ≤
ϕ1

ϕ2
E1 + ϕ1T (UA, ω̄),

L2(ϕ2) ≤
ϕ2

ϕ3
|v̄Nx |E1 + ϕ2T (UA, θ̄x) +

ϕ2

ρ20
(|Ux,Aρ20θ̄x|+ |Vx,Aρ20θ̄y|),

L3(ϕ3) ≤
ϕ3

ϕ2
|ūNy |E1 + ϕ3T (UA, θ̄y) +

ϕ3

ρ20
(|Uy,Aρ20θ̄x|+ |Ux,Aρ20θ̄y|),

where ψ1 = ρij , i+j = 2. Here, we keep UA, (∇U)A terms in the above estimates to simplify the
notations. The terms involving uA(ω1), (∇u)A(ω1) can be bounded by C(u, a)E1, C(∇u, a)E1

with some weight a introduced in (5.18) in Section 5.3. See discussion between (5.82) and (5.83)
for the estimate of UA, (∇U)A. For (5.92) and the error (5.87), (5.88), we have nonlinear energy
estimates

(D.5)

NFi(ϕi) ≤ Twg(U, ϕi)E4 +Nnloc,i(ϕi) +NŴ2,i
(ϕi) + |F̄loc,iϕi|+ |Rloc,iϕi|,

Nnloc,1(ϕ1) ≤ |Ux(0)|E4, NŴ2,1
(ϕ1) ≤ ϕ1T (Ũ, ω̂2) + |Ux(0)| · |Ŵ2,1,Mϕ1|,

Nnloc,2(ϕ2) ≤
(
|Ux(0)|+ |Ũx|+

ϕ2

ϕ3
|Ṽx|

)
E4,

NŴ2,2
(ϕ2) ≤ ϕ2T (Ũ , η̂2) + |Ux(0)| · |Ŵ2,2,Mϕ2|+

ϕ2

ρ20
(|Ũxρ20| · |η̂2|+ |Ṽxρ20| · |ξ̂2|),

Nnloc,3(ϕ3) ≤
(
3|Ux(0)|+ |Ũy|

ϕ3

ϕ2
+ |Ũx|

)
E4,

NŴ2,3
(ϕ3) ≤ ϕ3T (Ũ , ξ̂2) + |Ux(0)| · |Ŵ2,3,Mϕ3|+

ϕ3

ρ20
(|Ũyρ20| · |η̂2|+ |Ũxρ20| · |ξ̂2|),

where we have used (D.2) to simplify (5.96), and Ŵ2,·,M = (ω̂2,M , η̂2,M , ξ̂2,M ) are defined in
(5.93). The notation Li(ϕi),NF(ϕi) are only used to indicate the weighted L∞(ϕi) estimate

of linear and nonlinear terms. We have used Vy,A = −Ux,A, Ṽy = −Ũx. In (D.4), (D.5), we do
not multiply the terms related to Tu(·) and (∇U)A by E4 since we will further bound it using
|uA(ω1)| ≤ C(x)E1, |(∇u(ω1))A| ≤ C(x)E1, E1 ≤ E4 ≤ E∗. Under the bootstrap assumption,
we can combine the estimate of uA and the error part in UA (5.82) in (5.83). The same reasoning

applies to the Ŵ2, U terms. See Sections 5.8 and 5.7.
Substituting the estimates of UA,U, Ŵ2 (see also (5.83)), bounding E4 by E∗ = 5 · 10−6

in (D.4), (D.5), and applying Lemma A.2, we obtain the nonlinear stability conditions for the
L∞(ϕ1) estimates

(D.6) − dnumi,L (ϕi)E∗ − Li(ϕi)−NFi(ϕi) ≥ λ, ∀x ∈ R
++
2 , λ > 0.

We do the same substitution in the following stability conditions.

L∞(ϕ4) estimate. Recall ϕ4 = ψ1|x1|−
1
2 , the weight

√
2
τ1

in E4 (5.21). We have established

L∞(ϕ4) linear estimates in Section 5.3.4 and nonlinear estimates similar to NF1(ϕ1) (D.5)

√
2

τ1
L1(ϕ4) ≤

√
2

τ1
(
ϕ4

ϕ2
E1 + ϕ4T (UA, ω̄)),

√
2

τ1
NF1(ϕ4) ≤

(
Twg(U, ϕ4) + |Ux(0)|

)
E1 +

√
2

τ1
· ϕ4

ϕ1

(
NŴ2,1

(ϕ1) + |F̄loc,1ϕ1|+ |Rloc,1ϕ1|
)
.

We do not multiply Twg(U, ϕ4)E4 by
√
2
τ1

. See (5.96). Since we have weighted L∞(ϕ1)

estimates of similar terms fϕ1 in (D.4), (D.5), e.g. T (UA, ω̄)ϕ1, F̄loc,1ϕ1,Rloc,1ϕ1, NŴ2,1
, we

can use such estimates and estimate ϕ4

ϕ1
to bound fϕ4. Similar to (D.6), the stability conditions
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read

(D.7) − dnumi,L (ϕ4)E∗ −
√
2

τ1
(L1(ϕ4) +NF1(ϕ4)) ≥ λ, ∀x ∈ R

++
2 , λ > 0.

L∞(ϕg,i) estimate. In the L∞(ϕg,i) estimate, we estimate µg,i||W1,iϕg,i||L∞ . Recall µg =
τ2(µ4, 1, 1) from (5.54), (C.5). We have established linear stability estimate in Section 5.5
(D.8)

µg,1L1(ϕg,1) ≤ µg,1

(
ϕg1(ϕ

−1
2 ∧ µ−1

g,2ϕ
−1
g2 )E3 + ϕg1T (UA, ω̄)

)
, µg = τ2(µ4, 1, 1),

µg,2L2(ϕg,2) ≤ µg,2

(
ϕg2|v̄Nx |(ϕ−1

3 ∧ µ−1
g,3ϕ

−1
g3 )E3 + ϕg2T (UA, θ̄x) +

ϕg2
ψ1

(|Ux,Aψ1| · |θ̄x|+ |Vx,Aψ1| · |θ̄y|)
)
,

µg,3L3(ϕg,3) ≤ µg,3

(
ϕg3|ūNy |(ϕ−1

2 ∧ µ−1
g,2ϕ

−1
g2 )E3 + ϕg3T (UA, θ̄y) +

ϕg3
ψ1

(|Uy,Aψ1| · |θ̄x|+ |Ux,Aψ1| · |θ̄y|)
)
.

We have used µg,i to rewrite the parameters in the L∞(ϕg,i) estimate in Section 5.5 equiva-
lently, so that the form of estimates is more symmetric in the parameters. We also use ψ1 = ρ20
and keep uij,A in the estimates, which can be bounded by Cgij(x) defined in Section 5.5. Denote

Wi,g,j = min(
ϕg,j
ϕi

,
ϕg,j

µg,iϕg,i
) = ϕg,j(ϕ

−1
i ∧ (µg,iϕg,i)

−1).

Using |W1,iϕi|, µg,i|W1,iϕg,i| ≤ E3, we have |W1,iϕg,j | ≤ Wi,g,jE3, which motivates the above
notation. Note that µg,iWi,g,i ≤ 1. We can simplify some terms in the above estimate using

Wi,g,j , e.g. ϕg1(ϕ
−1
2 ∧ µ−1

g,2ϕ
−1
g2 ). We have the following nonlinear estimates similar to (D.5)

(D.9)

µg,iNFi(ϕg,i) ≤ Twg(U, ϕg,i)E4 + µg,iNnloc,i(ϕg,i) +
µg,iϕg,i
ϕi

(NŴ2,i
(ϕi) + |F̄loc,iϕi|+ |Rloc,iϕi|),

µg,1Nnloc,1(ϕg,1) ≤ |Ux(0)|E4, µg,2Nnloc,2(ϕg,2) ≤ µg,2

(
(|Ux(0)|+ |Ũx|)W2,g,2 + |Ṽx|W3,g,2

)
E4,

µg,3Nnloc,3(ϕg,3) ≤ µg,3

(
|Ũy|W2,g,3 + (3|Ux(0)|+ |Ũx|)W3,g,3

)
E4.

Note that the terms Twg(U, ϕg,i)E4 do not multiply by µg,i. See (5.96). We use the weighted
L∞(ϕ1) estimates of similar terms fϕi in (D.4), (D.5), e.g. T (UA, ω̄)ϕi, F̄loc,iϕi,Rloc,iϕi, and
further estimate

ϕg,i

ϕi
to bound fϕg,i = (fϕi) · ϕg,i

ϕi
. The stability conditions read

(D.10) − dnumi,L (ϕg,i)E∗ − µg,iLi(ϕg,i)− µg,iNFi(ϕg,i) ≥ λ, ∀x ∈ R
++
2 , λ > 0.

D.1.2. Weighted Hölder estimates. For x, z ∈ R
++
2 , we assume x1 ≤ z1 and have the following

linear Hölder estimate from Section 5.4. To simplify the notations, we drop the dependence of
x, z in δ. Denote h = x− z.
(D.11)
µh,igi(h)δ(Li) = (dnumi,L (px,z) + dnumg,i ) · µh,igi(h)δ(W1,iψi) + δdamp,i(qx,z) + µh,igi(h)δ(Bmodi,i),

|δdamp,i(qx,z)| ≤ µh,i|δ(di,L, x, z)|gi(h)
ψi
ϕi

(qx,z)E2, |µh,igi(h)δ(Bmodi,i)| ≤ µh,igi(h)Lnloc,i + Lloc,i,

|Lnloc,1| ≤ δ�(UAψu · ω̄x
ψ1

ψu
+ VAψu · ω̄y

ψ1

ψu
, h),

|Lnloc,2| ≤ δ�(UAψu · θ̄xx
ψ2

ψu
+ VAψu · θ̄xy

ψ2

ψu
+ Ux,Aψ1 · θ̄x

ψ2

ψ1
+ Vx,Aψ1 · θ̄y

ψ2

ψ1
, h),

|Lnloc,3| ≤ δ�(UAψu · θ̄xy
ψ2

ψu
+ VAψu · θ̄yy

ψ2

ψu
+ Uy,Aψ1 · θ̄x

ψ2

ψ1
− Ux,Aψ1 · θ̄y

ψ2

ψ1
, h),

|Lloc,1| ≤ min
(
µh,1g1(x− z)(

ψ1

ϕ2
(x) +

ψ1

ϕ2
(z)), min

(p,q)=(x,z),(z,x)
(µh,1δ�(

ψ1

ψ2
, h)

ψ2

ϕ2
(p)g1(h) +

µh,1
µh,2

g1(h)

g2(h)

ψ1

ψ2
(q))

)
E2

|Lloc,2| ≤
(
µh,2g2(h)δ�(v̄

N
x , h)

ψ2

ϕ3
(z) +

µh,2
µh,3

|v̄Nx (x)|
)
E2,

|Lloc,3| ≤
(
µh,3g3(h)δ�(ū

N
y , h)

ψ2

ϕ2
(z) +

µh,3
µh,2

|ūNy (x)|
)
E2, µh = τ−1

1 (1, µ1, µ2),
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where µh, τ1, µi are given in (5.27), (C.5), δ� is defined in (5.36), dnumg,i is the damping term

(5.29) from the Hölder weight gi with b(x) (5.4) replaced by bN = c̄lx + ūN , Lnloc,i is the
estimate of the nonlocal terms involving UA, (∇U)A (5.89), and Lloc,i estimate the local terms

(D.12) µh,1g1δ((ψ1/ψ2) · η1ψ2), µh,2g2δ(v̄
N
x · ξ1ψ2), µh,3g2(h)δ(ū

N
y · η1ψ2).

For Lloc,2, Lloc,3, we use (5.46) with (f, i, j) = (v̄Nx , 3, 2) and (ūNy , 2, 3). Note that we assume
x1 ≤ z1. For the damping terms, the choice of (px,z, qx,z) = (x, z) or (z, x) depends on the
locations of x, z, and we have two estimates of such terms. Instead of expanding the estimates
again, we refer it to Section 5.4.3. We have an improved estimate for the damping coefficients
δdamp,i(qx,z), which are explicit functions, in Section 8.4 in the supplementary material I [18].
See remark 5.2. We optimize this improved estimate and the above estimate.

We have used ψ2 = ψ3, g2 = g3, vy,A = −ux,A and µh,· (5.70) to rewrite the parameters in the
estimate in Section 5.4 equivalently. In (D.11), for the terms δ�(uAψu · f1 + vAψ1 · f2 + ..., s)
with some functions f1, f2, we bound it using (5.36) and

δi(
∑

m

pmqm, x, z) ≤
∑

m

δi(pmqm, x, z) ≤
∑

m

δi(pm, qm, x, z), x3−i = z3−i.

For example, we have

δi(UAψu · ω̄x
ψ1

ψu
+ VAψu · ω̄y

ψ1

ψu
, x, z) ≤ δi(UAψu, ω̄x

ψ1

ψu
, x, z) + δi(VAψu, ω̄y

ψ1

ψu
, x, z)

and then apply (5.36) and (5.37) to bound δ�(·, x, z). For each term, e.g. UAψu, ω̄x
ψ1

ψu
, we can

obtain its piecewise C
1/2
xi and L∞ estimate. It simplifies the notations and estimates. We apply

the same convention for other terms and the terms below.
In Sections 5.9, 5.9.3 (see also Section 8.5 in the supplementary material I [18]), we establish

the nonlinear estimates for (5.90), (5.89) (see also (5.46))
(D.13)

µh,igi(h)|δ(NFi(ψi))| ≤ NTi +NW1,i +NŴ2,i
+ µh,igi(h)|δ(Bop,j(UA, Ŵ2))|

+ µh,igi(h)δ�(F̄loc,iψi +Rloc,iψi, h),

NTi ≤
{
|TuA(ψi)(x) + TuR(ψi)(x)|+ µh,igi(h)δ�(TuA(ψi) + TuR(ψi), h)

ψi
ϕi

(z)

+ max
p=x,z

|Tcω (p)|+ µh,igi(h)min
(
|δ(Tcω (ψi), x, z)|min(|x|, |z|) 1

2 max
p=x,z

ψi(p)

ϕi(p)|p| 12
, δ�(Tcω (ψi), h) max

p=x,z

ψi(p)

ϕi(p)

)}
E4,

|NW1,1| ≤ |Ux(0)|E4,

|NW1,2| ≤
(
|Ux(0)|+ µh,2g2(h)δ�(Ũx, h)

ψ2

ϕ2
(z) + |Ũx(x)| + µh,2g2(h)δ�(Ṽx, h)

ψ2

ϕ3
(z) +

µh,2
µh,3

|Ṽx(x)|
)
E4,

|NW1,3| ≤
(
3|Ux(0)|+ µh,3g3(h)δ�(Ũy, h)

ψ2

ϕ2
(z) +

µh,3
µh,2

|Ũy(x)|+ µh,3g3(h)δ�(Ũx, h)
ψ2

ϕ3
(z) + |Ũx(x)|

)
E4,

|δ(ψ1Bop,1(UA, Ŵ2))| ≤ δ�(UAψu ·
ψ1∂xŴ2,1

ψu
+ VAψu ·

ψ1∂yŴ2,1

ψu
, h),

|δ(ψ2Bop,2(UA, Ŵ2))| ≤ δ�(UAψu ·
ψ2∂xŴ2,2

ψu
+ VAψu ·

ψ2∂yŴ2,2

ψu
+ Ux,Aψ1 · η̂2

ψ2

ψ1
+ Vx,Aψ1 · ξ̂2

ψ2

ψ1
, h),

|δ(ψ2Bop,3(UA, Ŵ2))| ≤ δ�(UAψu ·
ψ2∂xŴ2,3

ψu
+ VAψu ·

ψ2∂yŴ2,3

ψu
+ Uy,Aψ1 · η̂2

ψ2

ψ1
− Ux,Aψ1 · ξ̂2

ψ2

ψ1
, h),

|NŴ2,i
| ≤ µh,igi(h)(|Ux(0)|δ�(Ŵ2,i,Mψ1, h) + δ�(Bop,j((Uapp, (∇U)app), Ŵ2), h)),

where we have used ψ2 = ψ3, g2 = g3, NTi denotes the estimate of the nonlinear transport
part TuA, TuR, Tcω (5.91), NW1,i for terms involving W1 other than the transport part in (5.92),

Bop,j(UA, Ŵ2) is short for Bop,j(UA, (∇U)j , Ŵ2) (2.16), NŴ2,i
for (Uapp, Ŵ2) in (5.95) and the

term Ŵ2,i,M (5.93). The term δ(Tcω , x, z)gi(h)min(|x|, |z|)1/2 is further estimated in Section
8.5.2. See Section 5.9.3 and Remark 5.2 for motivations.
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For |x− z| not small, using the weighted L∞(ϕi) estimates of the linear terms Li(ϕi)) (D.4)

and nonlinear terms (D.5), and bounding ψi

ϕi
, we have a simple L∞ estimate

(D.14)

|µh,igi(x− z)δ(Bmodi,i)| ≤ µh,igi(x− z)
(ψi
ϕi

|Li(ϕi)|(x) +
ψi
ϕi

|Li(ϕi)|(z)
)
,

|δ(NFi(ψi)| ≤
∑

y=x,z

ψi
ϕi

(y)(Twg(U, ψi)E4 +Nnloc,i(ϕi) +NŴ2,i
(ϕi) + |F̄loc,iϕi|+ |Rloc,iϕi|)(y),

|Twg(U, ψi)| ≤ |Tcw|+ |TuA|+ |TuR|, |W1,iψi| ≤ ψi/ϕiE4,

where we replace the transport part Twg(U, ϕi) (D.5) by Twg(U, ψi) since we use weight ψi
(5.92). For the local terms (D.12), we optimize the C1/2 estimate of Lloc,i in (D.11), and the

L∞ estimate in (D.4) with weight ψi

ϕi
similar to the above.

Combining the above estimates, we obtain the the stability conditions for the weighted Hölder
estimate
(D.15)

− (dnumi,L (px,z) + dg,i,U)E∗ − µh,igi(h)
(
|δ(di,L, x, z)|

ψi
ϕi

(qx,z) + Lnloc,i + δ(Niψi)
)
− Lloc,i ≥ λ

for some λ > 0, uniformly for any x, z ∈ R
++
2 , x1 ≤ z1, where (px,z, qx,z) = (x, z) or (z, x)

depends on the locations of x, z. See Section 5.4.3 and remark 5.2, and Section 8.4. Here, dg,i,U
is the nonlinear damping factors (5.29),(5.4) by adding U

dg,i,U , (bU (x)− bU (z)) · (∇gi)(x− z)g−1
i (x− z), bU = c̄lx+ ūN +U.

To verify the above inequalities, we follow Section 5.4.5.

D.1.3. ODEs for cω and ωxy(0), θxxy(0). Recall the estimate (5.59) and f∗ (5.60)

cω(p) = − 4

π

∫

R
++
2

f∗(y)p(y)dy = − 4

π
〈p, f∗〉, f∗(y) =

y1y2
|y|4 , ϕM,i = max(ϕi, µg,iϕg,i), |W1,i| ≤ ϕ−1

M,iE4.

For (5.61) and q = 1, χode (C.9), following Section 5.6.1, we have the following linear estimates

|〈Γ1,M , qf∗〉| ≤ 〈|∇ · ((c̄lx+ ūN )f∗q)|, ϕ−1
M,1〉E4 + 〈|UAω̄x + VAω̄y|, f∗q〉,

|〈Γ2,M , qf∗〉| ≤ 〈|∇ · ((c̄lx+ ūN )f∗q)− ūNx f∗q|, ϕ−1
M,2〉E4 + 〈|UAθ̄xx + VAθ̄xy|, f∗q〉

+ (〈|Ux,A||θ̄x|+ |Vx,A||θ̄y|, f∗q〉+ 〈|v̄Nx |, ϕ−1
M,3f∗q〉,

and nonlinear estimates

N(cω(ω1q)) ,
4

π
〈Ñ1 + F̄loc,1 −Rloc,1, f∗q〉 ≤ γ1|Ux(0)|E4 +

4

π

〈
|F̄loc,1|+ |Rloc,1|+NŴ2,1

, f∗q
〉

+
4

π

〈
|U∂x(f∗q) + V ∂y(f∗q)|, ϕ−1

M,i

〉
E4,

N(cω(η1q)) ,
4

π
|〈Ñ2 + F̄loc,2 −Rloc,2, f∗q〉| ≤

4

π

〈
|F̄loc,1|+ |Rloc,1|+NŴ2,1

+ |Ũx|ϕ−1
M,2 + |Vx|ϕ−1

M,3, f∗q
〉

+ γ2|Ux(0)|E4 +
4

π

〈
|U∂x(f∗q) + V ∂y(f∗q)|, ϕ−1

M,i

〉
E4,

where γ = (µ51, µ52) for q = χode (C.9), and γ = (µ5, µ62) for q = 1. We can use the weighted
L∞(ϕi) estimate for F̄ ,R, NŴ2

from (D.5). For q = 1, qf∗ is singular near 0. For u = U, ūN ,
we decompose

uf∗,x+vf∗,y = (
u

x
+
v

y
)(xf∗,x+yf∗,y)+(

u

x
− v

y
)(xf∗,x−yf∗,y) = 2(

u

x
+
v

y
)f∗+(

u

x
− v

y
)
4xy(x2 − y2)

|(x, y)|6

In the first term, we exploit the cancellation near 0

u/x+ v/y = ũ/x+ ṽ/y, ũ = u− ux(0)x, ṽ = v + ux(0),
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which vanishes O(|x|) near 0. Then we apply the piecewise bounds of U, ūN to estimate the
integrals. Moreover, from (5.62), if q ≡ 1 or q = χode = 1, we can simplify the integrand

∇ · (xf∗(x)) = 0, ∇ · ((c̄lx+ ūN )qf∗) = ūN · ∇f∗, q = 1.

Recall χode from (C.9), the damping terms in the ODEs c̄Nω 〈ω1, f∗q〉, 2c̄Nω 〈η1, f∗q〉 (5.61) and
Section 5.6. The stability conditions for cω(ω1χode), cω(η1χode), cω(η1) reads

(D.16)

− c̄Nω E∗ − µ−1
51 (

4

π
|〈Γ1,M , χodef∗〉|+N(cω(ω1χode)) + µ52E∗) > 0,

− 2c̄Nω E∗ − µ−1
52 (

4

π
|〈Γ2,M , χodef∗〉|+N(cω(η1χode)) > 0,

− 2c̄Nω E∗ − µ−1
62 (

4

π
|〈Γ2,M , f∗〉|+N(cω(η1)) > 0.

For the estimate of cω(ω) (5.68), using the estimate in Section 5.6 and the above estimates, we
obtain the stability conditions,

−λ̄cωE∗ − µ−1
6

( 4

π
|〈Γ1,M , f∗〉|+N(cω(ω1)) + µ62E∗ +NŴ2,ode

)
> 0,

where NŴ2,ode
bounds

NŴ2,ode
≤

∑

i≥2

|cω(F̂i(0))ai(W1, Ŵ2)(t)|+
∑

i≥1

|ai(W1(t− Ti), Ŵ2(t− Ti)) · cω(F̂i(Ti))|

+

∫ t∧Ti

0

|ai(W1(t− s), Ŵ2(t− s))| · |∂scω(F̂i(s)) − λ̄cωcω(F̂i(s))|ds,

and we have used 1t≥Ti ≤ 1 (5.68). Under the bootstrap assumptions, all the terms bi =

ai(W1, Ŵ2) can be bounded by ciE4 for some constant ci (5.78). See Section 5.6. For linear
modes, ai only depends on W1.

For ωxy(0), θxxy(0) in (5.69), since |cω(ω)| < µ6E4, |ωxy(0) < µ8E4, θxxy(0) < µ6E4| (5.70),
the stability conditions read

(2c̄l − c̄ω)E∗ − µ−1
8 ((µ7 + µ6|ω̄xy(0)|)E∗ + µ6µ8E

2
∗ + |∂xyF̄1(0)|) > 0,

(3c̄l/2− c̄ω)E∗ − µ−1
7 (µ6|θ̄xxy(0)|E∗ + µ6µ7E

2
∗ + |∂xyF̄2(0)|) > 0.

where we have used 2c̄l− 2c̄ω + ūx(0) =
3
2 c̄l− c̄ω (2.11). We check the stronger condition (5.73)

µ8µ6E∗ + |∂xyF̄1(0)| < 5µ6E∗, µ7µ6E∗ + |∂xyF̄2(0)| < 10µ6E∗.

To obtain (5.102), under the bootstrap assumption, we verify

(D.17) |Ŵ2,i| < 100E4 < 100E∗.

Plots of the nonlinear weighted L∞ estimate. In Figure 14, we plot the rigorous piecewise
lower bounds of min(LHSi/E∗, 0.1) in a region covering D = [0, 1015]2, where LHSi denotes
the left hand side (LHS) of (D.6) in the i-th equation. We normalize LHSi by 1/E∗ and take
the minimum with a threshold to highlight the region with small linear damping factors.

In Figure 15, we plot min(LHSi/E∗, ci) with c = (0.4, 0.1, 0.4) with LHS being the left hand
side of (D.10). All of these bounds are positive. We only use 7 approximation terms for the
velocity in [0, 200]2 away from the boundary (see (4.37), (4.28)). Thus the stability factor is
weaker for x not very large and in the bulk. We can get a better stability factor by using few
more approximations. As we can close the full estimates, we do not need such an improvement.

The weighted L∞(ϕ4) estimate has a much larger stability factor ≥ 1.5E∗, and thus we do
not plot it. Beyond D, we have much larger damping factors and use the L∞ estimate in Section
8.6 in the supplementary material I [18].

We cannot visualize the Hölder estimate conditions (D.15) and refer them to the codes [13].
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Figure 14. Estimates of nonlinear L∞(ϕi) stability conditions.

Figure 15. Estimates of nonlinear L∞(ϕg,i) stability conditions.

D.2. Estimate the Hölder weights. The Hölder weights g = gi (C.1) are −1/2 homogeneous.
In our energy estimates, we estimate several 0−homogeneous quantities related to g for hi ≥ 0

f(h) = h
1/2
k g(h), hk

(∂jg)

g
(h), |h| (∂jg)

g
(h), k, j = 1, 2,

gi1(h)

gi2(h)
, 1 ≤ i1, i2 ≤ 3.

Since f(h) = f(h1

h2
, 1) for h2 6= 0 and f(h) = f(1, h2

h1
), h1 6= q0, we can estimate it by

partitioning (h1, h2) ∈ [0, 1] × {1}, {1} × [0, 1] and using the monotonicities of g, ∂jg. From
g = gi (C.1), we have

g(s) =
1

A1(s)1/2 +A2(s)1/2
, ∂ig = −1

2

a1iA
−1/2
1 + a2iA

−1/2
2

(A
1/2
1 +A

1/2
2 )2

,
∂ig

g
= −1

2

a1iA
−1/2
1 + a2iA

−1/2
2

A
1/2
1 +A

1/2
2

.

for Ai = ai1s1 + ai2s2 with aij > 0. Clearly, g is decreasing in |si|. For s1, s2 > 0, since

Ai is increasing in s1, s2, ∂ig,
∂ig
g are negative and increasing in s1, s2. It follows that |∂igg | is

decreasing in s1, s2.
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[74] Frank Merle, Pierre Raphaël, Igor Rodnianski, and Jeremie Szeftel. On the implosion of a compressible fluid

i: smooth self-similar inviscid profile. Ann. of Math. (2), 196(2):567–778, 2022.
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SUPPLEMENTARY MATERIAL FOR “STABLE NEARLY SELF-SIMILAR

BLOWUP OF THE 2D BOUSSINESQ AND 3D EULER EQUATIONS WITH

SMOOTH DATA I: ANALYSIS”

JIAJIE CHEN AND THOMAS Y. HOU

Abstract. In Part I [3], we have established linear energy estimates and nonlinear L∞

energy estimate and estimated typical terms in the nonlinear Hölder energy estimate. In this
supplementary material, we estimate each nonlinear terms in C1/2 estimate, and estimate
the piecewise bounds of the damping terms near 0, which is not straightforward due to their
low regularities and the singular weights near 0. Moreover, we perform the energy estimate
in the very far-field using the asymptotics of the estimates.

8. Estimates of nonlinear and error terms and piecewise bounds

Firstly, we recall some notations from [1, 3]. Recall from [3] the following variables

(8.1) W1,1 = ω1, W1,2 = η1, W1,3 = ξ1, Ŵ2,1 = ω̂2, Ŵ2,2 = η̂2, Ŵ2,3 = ξ̂2, W̄ = (ω̄, θ̄x, θ̄y),

and the full energy E4 for W1,W satisfying

(8.2)
E4(t) ≥ max

(
max
i

||W1,iϕi||∞,
√
2τ−1

1 ||ω1|x1|−1/2ψ1||∞,max
i
µh,i[W1,iψi]C1/2

gi

,

max
i
µg,i||W1,iϕg,i||∞, µ−1

6 |cω(ω)|
)
, µh = τ−1

1 (1, µ1, µ2), µg = τ2(µ4, 1, 1),

where the parameters τi, µij are given in (A.3), and the weights ψ, ϕ are chosen in Appendix
C.1 in [3]. We use ψ to denote radial weights, and ϕ to denote mixed weights in Appendix C.1
in [3]. We do not write the full E4 since some norms are not used in the supplementary material.
Under the bootstrap assumption, for µ5 is given in (A.3), we get

(8.3) |cω(ω1)| < µ5E4.

Denote the mesh for computing the approximate steady state (see Appendix C.1 in Part
II [1]) and various domain

(8.4)
y1 < y2 < .. < yN , Qij = [yi, yi+1]× [yj , yj+1], N = 748, N1 = 707,

N2 = 730 < N, R1 = 5000, R2 = yN2 , Ωnear , [0, yN1]
2.

We have yN > 1015.
We decompose the weightedL∞ estimate into the region [0, yN ]

2 and the far-field ([0, yN−1]
2)c.

We decompose the Hölder estimate with x, z into the five parts. In case (a.1)-(a.3), we assume
that x ∈ Qi,j , z ∈ Qp,q.

(a.1) x or z in the near-field and the bulk Ωnear with |x− z| ≤ R1. Since Ωnear is the union
of Qij ,max(i, j) ≤ N1 − 1, we check the stability inequality for max(min(i, p),min(j, q)) <
N1, |i − p|, |j − q| ≤ nR1 , where nR1 satisfies ynR1

> R1. For max(|i − p|, |j − q|) > nR1 , since
the spacing of mesh yi+1 − yi is increasing, we get

|x− z| ≥ dis(Qij , Qpq) ≥ ynR1
> R1.

(a.2) x or z in [1, yN−2]
2\Ωnear with |i−p|, |j−q| ≤ 1. We check the stability for |i−p|, |j−q| ≤

1 similar to the case of (a.1).
(a.3) x, z ∈ [1, yN ]

2\[1, yN1−2]
2 with |i − p|, |j − q| ≥ 2. In this case, x, z are in the far-field

and not very close, the Hölder estimate follows from the weighted L∞ estimate.
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(b) x, z in the far-field with |z|∞, |x|∞ ≥ yN2 > 1012 and any |x − z| ≥ 0. We use the
asymptotic estimates.

(c) x ∈ Ωnear and z ∈ R
++
2 with |x− z| ≥ R1. In this case, x and z are far apart, the Hölder

estimate follows from the weighted L∞ estimate and triangle inequality.
Since yi+1 − yi > R1 for i ≥ 700, cases (a.1), (a.2), (a.3), (c) cover the estimate for x or z in

[1, yN−2]
2. The remaining case x, z /∈ [1, yN−2]

2 is covered by case (b).
The most important case for the Hölder estimate is case (a.1) and has been discussed in

Section 5 in [3], and we have outlined the method for the verification. Estimates in cases
(a.2),(a.3),(b), (c) are relatively easy since the bad term in the estimates are very small due to
large |x− z|, or the decay of the coefficients of the nonlocal terms in the far-field. Similarly, the
L∞ stability estimate in the far-field is simple since we have large damping factors.

Organization. The remaining sections are organized as follows. In Section 8.1, we recall the
modified decompositions of linear and nonlinear terms from Section 5.8 in [3]. In Sections 8.2-
8.5, we estimate the piecewise bounds for the damping terms near 0 and estimate the modified
nonlinear terms. In Sections 8.6, 8.7, we discuss the energy estimate for x outside the computa-
tional domain, e.g. |x| > 1012, using the asymptotics of the coefficients in the energy estimates.
In Section 8.8, we discuss the C1/2 estimate with large |x− z| related to case (c).

8.1. Decompositions of the nonlinear and nonlocal error terms. In this section, we
recall the nonlocal error terms and the modified linearization equations from Section 5.8 in [3].
Then we will estimate the nonlinear terms with more details in Section 8.5.

8.1.1. Decomposition and estimates of the velocity. Recall that uA(f) is the velocity after sub-

tracting the approximation term ˜̂u defined in Section 5 [3]

uA(f) , ũ(f)− ˜̂u(f) = u− û, ux,A , ũx(f)− ˜̂ux(f), uy,A , ũy(f)− ˜̂uy(f),

and the notation ũ = u− ux(0)x, ṽ = v + ux(0)y.
Firstly, we recall the following decomposition of error from Section 5.8 in [3]. Denote by

φ̄N , φ̂N the stream function constructed numerically for the Poisson equation −∆φ̄ = ω̄,−∆φ̂ =
ω̂2, ū

N , ûN the associated velocity, and ε̄, ε̂ the errors

(8.5)
ūN = u(−∆φ̄N ) = ∇⊥φ̄N , ε̄ = ω̄ − (−∆)φ̄N ,

ε̂ = ω̂ − (−∆)φ̂N , u(ω̄) = ūN + u(ε̄), u(ω̂2) = u(−(−∆)φ̂N ) + u(ε̂).

The error ε only vanishes O(|x|2) and we perform a correction near 0. For ε = ε̄ or ε̂ and
some cutoff function χε = 1 +O(|x|4) near 0, we decompose

(8.6)
ε = ε1 + ε2, ε2 = εxy(0)∆(

x3y

2
χε), u(ε2) = ∇⊥(−∆)−1ε2 =

1

2
εxy(0)∇⊥(x3yχε),

u(ε) = u(ε1) + u(ε2) = uA(ε1) + û(ε1) + u(ε2), ux(ε)(0) = ux(ε1)(0),

where ux(ε2)(0) = −εxy(0)/2 · ∂y(x3yχε)|x,y=0 = 0. We perform a similar decomposition for
∇u(ε). We choose χε in the above form such that ε2 = χxy(0)xy + O(|x|4) and we can obtain
u(χε) explicitly. We choose χε̄ for ε̄ and χε̂ for ε̂ in (A.2) and they have different parameters.

Let ω be the perturbation without decomposition. We combine these errors and perturbations
and perform the following decompositions

(8.7)
U = (U, V ) = u(ω + ε̄), UA = uA(ω1 + ε̄1 + ε̂1), U = UA + Ux(0)(x,−y) +Uapp,

Uapp = ˜̂u(ω1 + ε̄1 + ε̂1) + u(ε̄2 + ε̂2) + ũ(−∆φ̂N ).

Similarly, we decompose ∇U and define (∇U)A, (∇U)app.
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Estimates of the velocity. We use the method in Section 4 in [1] to establish the same type
of weighted L∞ and C1/2 estimates for uA(ε̂1),uA(ε̄1) as those for uA(ω1), i.e. the weighted
L∞ estimate for uA,∇uA, and the Hölder estimate for ψuuA, ψdu(∇u)A. For the perturba-
tion uA(ω1), we use the norm ||ω1ϕ1||∞, ||ω1ϕg,1||∞, [ω1ψ1]C1/2

xi

and estimate various quantities

involving the velocity, e.g.

|uij,A(x)| ≤ Cij,1(x, ρ)||ω1ρ||∞ + Cij,2(x, ρ)[ω1ψ||C1/2
x

+ Cij,3(x, ρ)[ω1ψ||C1/2
y
, ρ = ϕ1, ϕg,1.

For the error uA(f), f = ε̄1, ε̂1, we use the norm ||fϕelli||∞, [fψ1]C1/2
xi

. We will combine the

estimate of the nonlocal error term and the perturbation in the energy estimate in Section 8.1.3.

The terms ũ((−∆)φ̂N ) = ∇⊥φN+ φ̂Nxy(0)(x,−y) vanishes like O(|x|3) near 0, and we estimate

its C3 bounds folllowing Section 8.1.2. The terms I1 = ˜̂u(ω1 + ε̄1 + ε̂1), I2 = u(ε̄2 + ε̂2) consist
of finite rank operators on ω1, ε̄1, ε̄2, ε̂1, ε̂2 with smooth coefficients. Moreover, by definition,

I1, I2, ũ((−∆)φ̂N ) = O(|x|3), (∇u)app = O(|x|2) near x = 0. We establish their piecewise C3

estimate near the origin and C1 estimate away from the origin, and combine the estimates of
these terms together. See nonlinear estimates in Section 5.6 in [3]. This allows us to estimate
the C3 bounds of Uapp and Uapp = O(|x|3). Similarly, we estimate (∇U)app. We factor out the
term ux(0)x in the above decomposition since the constant in our estimates for such a term is
larger than others, and control it using the energy E4. Using these Ck estimates of Uapp, we

can further obtain its C1/2 estimate.
We can further estimate the C1/2 norm of U,∇U, Ũ,∇Ũ. For example, we use

Ũx = (Ux,Aψ1)ψ
−1
1 + Ux,app,

and the C1/2 estimates of Ux,Aψ1, ψ
−1
1 , Ux,app to obtain the C1/2 estimate of Ũx. Similarly, using

the C1 estimates of ψ−1
1 , ψ−1

u ,Uapp and the C1/2 estimate of UAψu,Ux,Aψ1, we can obtain the

C1/2 estimate of Ũ, ∇̃U. See Section 8.2 for basic Hölder estimates of a product.

8.1.2. Estimate of local and nonlocal terms. Recall from Sections 3, 3.7 in Part II [1] that

we represent Ŵ2, φ̂
N using Duhamel’s principle and piecewise fifth order polynomials and an

analytic basis. For variables that depend locally on Ŵ2 (8.1) and φ̂N , under the bootstrap

assumptionE4(t) < E∗, we can estimate piecewise Ck, k ≤ 4 bounds of∇⊥φ̂N , Ŵ2, Ŵ2−(−∆)φ̂N

following Section 5.7 [3] using the energy E4, e.g.

|∇kŴ2,i(x)| ≤ Ck,i(x)E4.

8.1.3. Decomposition of the nonlinear and error terms. We introduce the bilinear operator Bop,i
for (u,M), G = (G1, G2, G3)

(8.8)
Bop,1 = −u · ∇G1 +M11(0)G1, Bop,2 = −u · ∇G2 + 2M11(0)G2 −M11G2 −M21G3,

Bop,3 = −u · ∇G3 + 2M11(0)G3 −M12G2 −M22G3.

If M = ∇u,M11 = ux,M12 = uy,M21 = vx,M22 = vy , then we drop M to simplify the notation
(8.9)

Bop,1(u, G) = −u · ∇G1 + ux(0)G1, Bop,2(u, G) = −u · ∇G2 + 2ux(0)G2 − uxG2 − vxG3,

Bop,3(u, G) = −u · ∇G3 + 2ux(0)G3 − uyG2 − vyG3.

We abuse the notation to write

(8.10) Bop,i(uA, G) = Bi((uA, (∇u)A), G), Bop,i(uapp, G) = Bi((uapp, (∇u)app), G).

In Bop,i(uA, G),Bop,i(uapp, G), we just replace ∇u in (8.9) by (∇u)A, (∇u)app. Note that uA
does not satisfy the differential relation among uA and (∇u)A. We apply the operator Bop,i to
u, ũ,uA,uapp.

Recall W1 from (8.1) and the following modified linearized equations from Section 5.8 in [3]
(8.11)

∂t(W1,iρi) + (c̄lx+ ūN +U) · ∇(W1,iρi) = Ci(x)W1,iρi + Ñi(ρi) + (Bmodi,i + F̄loc,i +Rloc,i)ρi,

C·(x) = (c̄Nω , 2c̄
N
ω − ūNx , 2c̄

N
ω + ūNx ),
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where (ω̄, θ̄) is the approximate steady state, ūN is given in (8.6), and c̄l, c̄ω are determined by

(8.12) c̄l = 2
θ̄xx(0)

ω̄x(0)
, c̄Nω =

1

2
c̄l + ūNx (0).

Here Bmodi,i denotes the linear bad terms

(8.13)
Bmodi,1(x) , η1 −UA · ∇ω̄, Bmodi,2(x) , −v̄Nx ξ1 −UA · ∇θ̄x −Ux,A · ∇θ̄,
Bmodi,3(x) , −ūNy η1 −UA · ∇θ̄y −Uy,A · ∇θ̄,

and Ñi denote the modified nonlinear terms in the estimate of W1,iρi

(8.14)

Ñ1(ρ1) =(U · ∇ρ1) · ω1 + Ux(0)ω1ρ1 + Bop,3(Ũ, Ŵ2)ρ1 + Ux(0)Ŵ2,1,M ,

Ñ2(ρ2) =(U · ∇ρ2) · η1 + (Ux(0)η1 − Ũxη1 − Ṽxξ1)ρ2 + Bop,2(Ũ, Ŵ2)ρ2 + Ux(0)Ŵ2,2,M ,

Ñ3(ρ3) =(U · ∇ρ3) · ξ1 + (3Ux(0)ξ1 − Ũyη1 − Ṽyξ1)ρ3 + Bop,3(Ũ, Ŵ2)ρ3 + Ux(0)Ŵ2,3,M

where Bop,i is given in (8.9), Ŵ2,i,M is given by

(8.15)
Ŵ2,·,M = (ω̂2, η̂2, ξ̂2), ω̂2,M , ω̂2 − x∂xω̂2 + y∂yω̂2 − ω̂2,xy(0)fχ,1,

η̂2,M , η̂2 − x∂xη̂2 + y∂yη̂2 − η̂2,xy(0)fχ,2, ξ̂2,M , 3ξ̂2 − x∂xξ̂2 + y∂y ξ̂2 − ξ̂2,xx(0)fχ,3,

with fχ,i defined in (A.2). The terms F̄loc,i,Rloc,i are the essential local part of the residual
error and residual operators. Since we have estimated F̄loc,i,Rloc,i in Part I [3] and Part II [1],
we do not present their formulas and refer them to Section 5.8 in [3].

We introduce notations for the damping terms Td(ρ), di(ϕ), the advection b(x), and the
damping factor dgi in the Hölder estimate derived in Section 5.1 [3]

(8.16)

b(x) = c̄lx+ ūN +U, dg,i ,
(b(x)− b(z)) · (∇gi)(x− z)

gi(x− z)
, Td,N (ρ) = ρ−1(U · ∇ρ),

Td(ρ) = ρ−1
(
(c̄lx+ ūN +U) · ∇ρ

)
= ρ−1(b · ∇ρ) = Td,L + Td,N ,

Td,L(ρ) = ρ−1((c̄lx+ ūN ) · ∇ρ), dloc,1 = c̄Nω , dloc,2 = 2c̄Nω − ūNx , dloc,3 = 2c̄Nω + ūNx ,

di(ρ) , Td(ρ) + dloc,i, di,L(ρ) , Td,L(ρ) + dloc,i, di(ρ) = di,L(ρ) + Td,N(ρ).
The subscripts d, L are short for damping, linear. Denote by Bad,i(ρi) all the bad terms in

the weighted estimates

(8.17) Bad,i(ρi) , Bmodi,i · ρi +NFi(ρi), NFi(ρi) , Ñi(ρi) + F̄loc,iρi −Rloc,iρi.

8.2. Basic Hölder estimates. We use the following notations for the Hölder estimate

(8.18)
δi(f, x, z) ,

|f(x)− f(z)|
|x− z|1/2 , ∆i(f, x, z) ,

f(z)− f(x)

zi − xi
, zi > xi, z3−i = x3−i,

δ(f)(x, z) , f(x) − f(z).

By definition, we have δi(f, x, z) = δi(f, z, x),∆i(f, x, z) = ∆i(f, z, x). By abusing the notations
of δi, we denote by δi(f, g, x, z) a basic C1/2 estimate for product

(8.19) δi(f, g, x, z) = min
(p,q)=(x,z),(z,x)

δi(f, x, z)|g(p)|+ δi(g, x, z)|f(q)|, x3−i = z3−i.

Clearly, if g = 1, we get δi(f, g, x, z) = δi(f, x, z). We have the following basic estimates

(8.20)
δ(fg)(x, z) = δ(f)(x, z)g(p) + δ(g)(x, z)f(q),

δi(fg, x, z) ≤ δi(f, g, x, z), x3−i = z3−i.

Given the piecewise C
1/2
x , C

1/2
y estimates of f , we use the following method for the piecewise

Hölder estimate of f with Hölder weight g and two points (x, z)

(8.21)
|(f(z)− f(x))g(h)| = |(f(z)− f(w) + f(w)− f(x))g(h)|

≤(δ1(f, w, x)|h1|1/2 + δ2(f, z, w)|h2|1/2)g(h), h = z − x, w = (z1, x2).
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Figure 1. Left, right figures correspond to the locations of (x, z) in cases (1)
s ≥ 0, (2) s < 0, s = (z1 − x1)(z2 − x2). The red line and blue line represents
two choices of the Ckx , C

k
y , k = 1

2 or 1 estimates used to estimate f(x)− f(z).

The function |hi|1/2g(h) is 0-homogeneous and we apply the method in Section 8.6.1 to
estimate it. For w̃ = (x1, z2), we derive another estimate. We optimize two estimates for

|δ(f)(x, z)|g(x − z). In Figure 1, we illustrate the locations of x, z and the C
1/2
xi ((δi(f, p, q)))

estimates and the triangle inequality used to estimate δ(f, x, z)g(h). We introduce δ� to denote
this estimate and similar estimate for the product

(8.22)

δ�(f, x, z, s) , min(δ1(f, x, (z1, x2))s
1/2
1 + δ2(f, (z1, x2), z)s

1/2
2 ,

δ2(f, x, (x1, z2))s
1/2
2 + δ1(f, (x1, z2), z)s

1/2
1 ),

δ�(f, g, x, z, s) , min(δ1(f, g, x, (z1, x2))s
1/2
1 + δ2(f, g, (z1, x2), z)s

1/2
2 ,

δ2(f, g, x, (x1, z2))s
1/2
2 + δ1(f, g, (x1, z2), z)s

1/2
1 ),

where δi(f, g, x, z) is defined in (8.19). We use the notation � since it mimics Figure 1 and

indicates that we use C
1/2
x , C

1/2
y estimates to obtain the C1/2 estimate. By definition, we get

(8.23) |δ(f, x, z)| ≤ δ�(f, x, z, x− z), δ(f, g, x, z) ≤ δ�(f, g, x, z, x− z).

Note that δi(f, x, z), δi(f, g, x, z), δ�(f, x, z, s), δ�(f, g, x, z, s) are symmetric in x, z. We in-
troduce an extra variable s to reduce bounding δ�(f, x, z, x− z)g(x− z) to estimating δi(f, x, z)
and |xj − zj |1/2gi(x− z) separately, and δ�(f, x, z, s)gi(s) is 0-homogeneous in s.

Hölder estimate of W1,i terms. For x1 ≤ z1 and fW1,iψi with f ∈ C1/2, using the energy

||W1,iϕi||∞, µh,i[W1,iψi]C1/2
gi

≤ E4 (8.2), (8.20), (8.23), we perform its C1/2 estimate as follows

(8.24)

|µh,jgj(h)δ(fW1,iψi, x, z)| ≤ µh,jgj(h)(|δ(f)W1,iψi(z)|+ |f(x)δ(W1,iψi)|)

≤ µh,jgj(h)

µh,igi(h)
|f(x)|E4 + µh,jgj(h)δ�(f, x, z, h)

ψi
ϕi

(z)E4, h = x− z.

If i = j, the first term reduces to |f(x)|E4. We only pick one decomposition in (8.20) with the
coefficient of δ(W1,iψi) evaluating at x, i.e. f(x), to simplify the estimates. Note that x1 ≤ z1.

8.3. Additional estimates of weights. Before we perform the L∞ and C1/2 estimate, we
need several asymptotic estimates of the weight, and the estimates of the ratio among weights.
The reader who is not interested in rigorous verification can skip to Section 8.5 for the estimates
of nonlinear terms and error terms.

8.3.1. Asymptotics of the weights. Consider a radial weights ρ(x) = ρ(r) =
∑

i≤n pir
ai , with

pi > 0 and ai is increasing with i. Firstly, we have

∂ir
α = α

xi
r
rα−1, ∂i∂jr

α = α∂j(xir
α−2) = (α(α− 2)

xi
r

xj
r

+ αδij)r
α−2 , Ci,j(β, α)r

α−2 ,
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where β = arctan(x2/x1), and Ci,j(β, α) is obtained by simplifying x1/r = cosβ, x2/r = sinβ.
For r ≥ r∗, since rai−an ≤ rai−an∗ , it is easy to obtain
(8.25)

pnr
an ≤ ρ(x) ≤ ran(

∑

i≤n
pir

ai−an
∗ ), |∂xiρ(x)| = |

∑

i≤n
piaixir

ai−2| ≤ xi
r
ran−1(

∑

l≤n
|plal|ral−an∗ ),

|∂i1∂j2ρ(r)| ≤ ran−2
∑

l≤n
|pl||Ci,j(β, al)|ral−an∗ , ρij,u(β)r

an−2, i+ j = 2.

We can bound the angular function ρij,u(β) by partitioning β ∈ [0, π/2]. In particular, we obtain

(8.26) |∂ix1
∂jx2

ρ| ≤ ρij,u(β)r
an−i−j cosβi sinβj , i+ j ≤ 1,

for some constants ρij,l, ρij,u depending on r∗, ai, pi.
For two radial weights f, g and α, applying the above estimates and

(8.27) |∂i(
f

g
rα)| ≤ |αxi

r
rα−1 f

g
|+ rα(|∂if

g
|+ |f∂ig

g2
|),

we can derive the asymptotics of rα fg and its derivatives. Note that we can extract the common

angular factor xi

r in the above estimate. Similarly, using the triangle inequality (8.26)-(8.25),
we can obtain the asymptotics of

(8.28) |∂iρ/ρ| ≤ C(ρ, i)(β)r−1, |∂j(∂iρ/ρ)| ≤ C(ρ, i, j)(β)r−2.

8.3.2. Piecewise bounds of the ratio of two weights. We have estimated the piecewise bounds for
the radial weights ρ(r) and the mixed weight in Appendix A.2, A.3 in Part II [1]. Denote

(8.29) ϕ = x−1/2P (r) +Q(r), P (r) =
∑

i≤np

pir
ai , Q(r) =

∑

i≤nq

qir
bi , ρ(r) =

∑

i≤ns

sir
ci ,

with pi, qi, si > 0 and ai, bi, ci are increasing with i. In all of our choices of mixed weights, P (r)
is more singular than Q near r = 0 and decays faster than Q for large R, i.e. a1 < b1, anp < bnq .
In the energy estimates, we need several piecewise bounds of the ratio of these weights in
[xl, xu] × [yl, yu]. Since these weights are singular near (0, 0) and along x = 0, we need to
factorize out these singularities. Due to symmetry, we focus on x ≥ 0 and use r = (x2 + y2)1/2.
Consider the following decomposition for a radial weight and the mixed weight

(8.30)

Pm =
∑

i≤np

pir
ai−a1 , P = ra1Pm, ϕ = x−1/2ϕm,h = x−1/2ra1ϕm,

ϕm,h , P + x1/2Q, ϕm = ra1ϕm,h = Pm + ra1x1/2Q(r).

Since ra1Q(r) is not singular, ϕm is not singular, and ϕm,h is only singular along x = 0. Using
the piecewise bounds for the radial weights P, Pm, r

a1Q(r), we can obtain the piecewise bounds
for the above modified weights.

We introduce Dr = r∂r . Using Drρm =
∑
sl(cl − c1)r

cl−c1 , we get
(8.31)

xi∂iρ = xi
∑

slclxir
cl−2 =

x2i
r2

∑
slclr

cl ,
xi∂iρ

ρ
=
x2i
r2

(c1+

∑
sl(cl − c1)r

cl−c1
∑
slrcl−c1

) =
x2i
r2

(c1+
Drρm
ρm

).

Since ci is increasing with i, the leading power in Drρm is rc2−c1 , which vanishes near r = 0.
For all radial weights we use, c2 − c1 > 1 and thus xi∂iρ/ρ ∈ C1 locally, and we can estimate
its piecewise derivatives. We will use (8.31) in Section 8.4.3.

For (x, y) ∈ [xl, xu]× [yl, yu] ⊂ R
++
2 , we have the following simple estimates

(8.32)
x2l

x2l + y2u
≤ x2

r2
≤ x2u
x2u + y2l

,
y2l

x2u + y2l
≤ y2

r2
≤ y2u
y2u + x2l

.



SUPPLEMENTARY MATERIAL FOR NUMERICS 7

Ratio between mixed weights. Let ϕi = x−1/2Pi(r) +Qi(r) be two mixed weights with the
leading power rαi for Pi(r). For α1 ≥ α2, we use (8.30), the decompositions

ϕ1

ϕ2
=
ϕ1,m,h

ϕ2,m,h
= rα1−α2

ϕ1,m

ϕ2,m
,

and piecewise bounds of each part to obtain three estimates and then optimize them. We use
the second identity to overcome the singularity on x = 0 and the third near r = 0.

Similarly, for two radial weights with leading power rαi , we estimate P1/P2 using the following
decompositions (8.30)

P1/P2 = rα1−α2P1,m/P2,m.

Ratio between the radial and the mixed weight. Let ρ, ϕ be a radial weight and a mixed
weight (8.29). We use the following decomposition to estimate ρ/ϕ, ρ/(ϕx1/2), ρ/(ϕr1/2)

(8.33)
ρ

ϕ
= rc1−a1

ρmx
1/2

ϕm
,

ρ

ϕx1/2
=

ρ

ϕm,h
= rc1−a1

ρm
ϕm

,
ρ/r1/2

ϕ
= rc1−a1

ρm
ϕm

(
x

r
)1/2.

The factor x/r is estimated using (8.32).
We remark that to obtain sharp piecewise bounds of the ratio, we can evaluate the ratio on

fine grids, and then use the derivative bounds of the radio and apply the estimate (A.8).

8.3.3. Ratio among radial weights. In the Hölder estimate in Section 8.5.1, we need to estimate
∂iP
PQ for radial weights P,Q (8.29). Using the piecewise bounds of P, P−1, Q−1, (A.7), and

following Appendix E.6 in Part II [1], we can obtain piecewise C1, C1/2 estimates of ∂iP
PQ . We

need more careful estimates near r = 0. Consider the decomposition (8.29),(8.30) for P,Q. We
get

(8.34)

∂iP

PQ
= (

∂iPm
Pm

+
∂ir

a1

ra1
)
r−b1

Qm
= xi

∑
2≤j≤np

(aj − a1)pjr
aj−a1−2−b1

PmQm
+
a1xi
r2

· r
−b1

Qm

, I · xi + II/Qm.

Since I is the ratio among three radial weights non-singular near r = 0, we can estimate their
C1 bounds. Using (A.7), we further obtain the estimate of Ixi.

For II, since b1 ≤ −2, a direct calculation yields

|II| ≤ |a1|xui r−b1−2
u , |∂xjII| ≤ |a1|(δij + |b1 + 2|xi

r

xj
r
)r−b1−2.

Applying (8.32) for xj/r and r−b1−2 ≤ r−b1−2
u , we obtain the C1 estimates for II. Using the

C1 estimates of Q−1
m , II and (A.7) and following Appendix E.6 in Part II [1], we obtain the C1

and C1/2 estimates of II/Qm. Combining two parts, we obtain the refined estimate near r = 0.

In Section 8.5.1, we need to estimate S = x1∂1P−x2∂2P
P for a radial weight P . For r away from

0, the estimates follow from the previous method. Near r = 0, using the above computation, we
get

S = (x21−x22)(
∑

2≤j≤np
(aj − a1)pjr

aj−a1−2

Pm
+
a1
r2

) =
x21 − x22
r2

(
P̃m
Pm

+a1), P̃m =
∑

2≤j≤np

(aj−a1)pjraj−a1 .

Note that P̃m, Pm are radial weights and non-singular near r = 0, we can estimate their C1

bounds and the C1 bounds of P̃m

Pm
+a1. Denote f(x) =

x2
2

r2 . We have
x2
1−x2

2

r2 = 1−2f(x), f(x) =
2x2

2

r2

and this singular factor is not C1/2. We estimate δi(f, x, z)|w|1/2 for w = x, z, i = 1, 2 in Section
8.9.2. Combining these estimates, we can estimate

(8.35) δi(S, x, z)|w|1/2, w = x, z, i = 1, 2, S = (x∂xP − y∂yP )P
−1.

8.4. Piecewise estimates of the damping coefficients di. Recall the damping terms di, dg,i
from (8.16). In this section, we derive the piecewise upper bounds of di, dg,i. The technicalities
mainly come from the weights that are singular near 0. The reader who is not interested in
rigorous verification can skip to Section 8.5 for the estimates of nonlinear terms and error terms.
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8.4.1. Piecewise bounds of di from the singular weights. Let Ω = [xl, xu] × [yl, yu] ⊂ R
++
2 . We

estimate the upper bound of the following in Ω

Td,L(ϕ) = ((c̄lx+ ūN ) · ∇ϕ)/ϕ, ϕ = |x|−1/2P (r) +Q(r),

where P,Q are radial weights. We assume that ϕ has the form (8.29). Using the piecewise
bounds of ∂ix∂

j
yP, ∂

i
x∂

j
yQ,

|∂ixx−1/2| ≤ | (2i− 1)!!

2i
x
−1/2−i
l |,

and (A.7), we obtain piecewise bounds for ϕ. We have several estimates for T (ϕ).
(1) We evaluate Td,L(ϕ) on the grid point (xα, yβ), α, β = l, u and estimate ∂2i Td,L(ϕ) using

the piecewise bounds for ūN , ϕ, ϕ−1 and (A.7). Then we use (A.8) to estimate Td,L(ϕ).
(2) We estimate the upper bound of the numerator (c̄lx+ ūN ) ·∇ϕ using its grid point values,

derivative bounds, and (A.8). Then we estimate Td,L(ϕ) using this upper bound, the piecewise
bounds for ϕ, and (A.6) for the ratio f/g.

Since the weight ϕ is singular along x = 0 and near (x, y) = 0, we need more careful estimates.
We introduce Bu,i below and rewrite Td,L(ϕ) as follows

(8.36) Bu,1 = c̄l +
ūN

x
, Bu,2 = c̄l +

v̄N

y
, Td,L(ϕ) = Bu,1

x∂xϕ

ϕ
+Bu,2

y∂yϕ

ϕ
= I1 + I2.

For ϕ (8.29), using r∂r = x∂x + y∂y, we have
(8.37)

x∂xϕ = −1

2
x−1/2P + x1/2∂xP + x∂xQ, yk∂yϕ = x−1/2yk∂yP + yk∂yQ, k ≥ 0,

x · ∇ϕ = −1

2
x−1/2P + x−1/2r∂rP + r∂rQ,

x∂xϕ

ϕ
=

−P/2 + x∂xP + x3/2∂xQ

P + x1/2Q
,
y∂yϕ

ϕ
=
yPy + x1/2yQy
P + x1/2Q

.

To overcome the singularity |x|−1/2, we rewrite I1 as follows

I1 = Bu,1I3, I3 =
x∂xϕ

ϕ
=

−P/2 + x∂xP

P + x1/2Q
+

x∂xQ

x−1/2P +Q
=

−P/2 + x∂xP

P + x1/2Q
+

x3/2∂xQ

P + x1/2Q
.

We estimate the upper and lower bounds of B1/(P + x1/2Q) and B1/(x
−1/2P +Q), which are

positive, the upper bound of −P/2 + x∂xP, x∂xQ, x
3/2∂xQ, and then apply (A.6). We use the

third identity of I3 to remove the singular weight |x|−1/2, and the second identity to control I3
for large r and x close to 0. If we use the third identity for such an estimate, since Q decays

slower than P , the upper bound is (x3/2∂xQ)u
P , which grows to ∞. The same argument applies

to estimate the upper and lower bounds of x∂xϕ/ϕ. For x close to 0 and large r, we use the
second identity of I3 for an improved estimate. We optimize the estimates based on these two
identities. The estimates of I2 (8.36), y∂yϕ/ϕ are similar and easier.

To overcome the singularity near (x, y) = 0, we have an additional estimate. Using the

decomposition (8.30) for ϕ = rα(x−1/2Pm + r−αQ) , rαϕ̃, we get

∂ϕ

ϕ
=
∂ϕ̃

ϕ̃
+
∂rα

rα
,

Dϕ

ϕ
=
Dϕ̃

ϕ̃
+
Drα

rα
,

x∂xr
α

rα
= α

x2

r2
,
y∂yr

α

rα
= α

y2

r2
, D = x∂x, y∂y.

We rewrite Td,L(ϕ) as follows

Td,L(ϕ) =
(c̄lx+ ūN ) · ∇(rαϕ̃)

rαϕ̃
=

(c̄lx+ ūN ) · ∇ϕ̃
ϕ̃

+ α
Bu,1x

2 + Bu,2y
2

r2
, J1 + J2,

where we have used Bu,i from (8.36). The first part in the above formula of Dϕ/ϕ or Td,L is
only singular along x = 0 and we apply the above estimates again. For J2, our weights satisfy
α < 0. Let Bu,i,l be the uniform lower bounds of Bu,i in Ω. Since α < 0, we yield

J2 ≤ αf, f(x, y) =
Bu,1,lx

2 +Bu,2,ly
2

r2
.

If Bu,1,l < Bu,2,l, f is increasing in y and decreasing in x, and we get f(x, y) ≥ f(xu, yl). If
Bu,1,l ≥ Bu,2,l, we get f(x, y) ≥ f(xl, yu) similarly.
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Estimate of di for radial weights. We apply the above arguments to derive the piecewise
upper and lower bounds for Td,L, di (8.16) with a radial weight ρ, which is simpler. We apply
the above method (1) to estimate the piecewise bounds for ∂jTd,L(ρ), ∂jdi,L. We will use these
estimates in the weighted Hölder estimate.

Estimate of di for ϕ4. In our nonlinear L∞(ϕ4) estimate , we need to estimate J = |Uφ4,x

φ4
|+

|V φ4,y

φ4
| for ϕ4 = x

−1/2
1 ψ1, ψ1 = |x|−2 + 0.6|x|−1 + 0.3|x|−1/6 =

∑
pir

ai . Using (8.37) with

(P,Q) = (ψ1, 0) we get

|J | = | − 1

2

U

x
|+ |Uψ1,x

ψ1
|+ |V ψ1,y

ψ1
| ≤ 1

2
|U
x
|+max(|U

x
|, |V
y
|)(|xψ1,x

ψ1
|+ |yψ1,y

ψ1
|).

Since ai < 0, for (x, y) ∈ R
++
2 , we get ψ1,x, ψ1,y < 0, which along with (8.31) gives

0 ≤ J2 = |xψ1,x

ψ1
|+ |yψ1,y

ψ1
| = −xψ1,x

ψ1
− yψ1,y

ψ1
= −x

2
1 + x22
r2

∑
piair

ai

∑
pirai

= −
∑
piair

ai

∑
pirai

≤ max
i

|ai|.

Similarly, using (8.37), we get

(c̄lx+ ūN ) · ∇ϕ4

ϕ4
= −1

2
(c̄l +

ūN

x
) +

(c̄lx+ ūN ) · ∇ψ1

ψ1
.

The second term can be estimated using the above method.

8.4.2. Piecewise bounds of dg,i from the Hölder weights. In this section, we estimate the damping

term (8.16) dg,i. Using (8.54), we only need to estimate (ūN+U)(x)−(ūN+U)(z))·(∇g)(x−z)
g(x−z) .

Recall the notation ∆i(f) from (8.18). We have two estimates. In the first estimate, we
estimate piecewise upper and lower bounds of the Lipschitz constant in x

C(f, 1, l)i,k,j ≤
f(z)− f(x)

z1 − x1
= D1(f, x, z) ≤ C(f, 1, u)i,k,j , x2 = z2, x1 ≤ z1 x ∈ Qij , z ∈ Qkj

for f = ūN +U, v̄N +V using the piecewise bounds of ∇ūN +∇U and the method in Appendix
E.7 in Part II [1]. The second index in Qij , Qkj is the same since x2 = z2. Similarly, we estimate
the piecewise bounds for the Lipschitz constant in y. Since we treat U as a perturbation, we get

∂iū
N − |∂iU | ≤ ∂i(ū

N + U) ≤ ∂iū
N + |∂iU |,

and similar estimate for v̄N + V . We assume x1 ≤ z1 without loss of generality. Denote

r = z − x, w = (z1, x2), s = sgn(r1, r2).

We have two cases for the configuration of x, z: r1r2 ≥ 0 and r1r2 < 0, Note that (∂ig)(h) is
odd in h1 and even in h2. We write J1 = (u(z)− u(x))(∂1g)(z − x)/g(z − x) as follows

J1 = (u(w)− u(x) + u(z)− u(w))
(∂1g)(z − x)

g(z − x)
=
u(w)− u(x)

z1 − x1
r1

(∂1g)(z − x)

g(z − x)
+
u(z)− u(w)

z2 − x2
r2

(∂1g)(z − x)

g(z − x)
.

Since r1 ≥ 0 and r1∂1g(r1, r2) = |r1|∂1g(|r1|, |r2|), r2(∂1g)(r1, r2) = |r2|s∂1g(|r1|, |r2|), we get

J1 = ∆1(u, x, w)|r1|
(∂1g)(|r1|, |r2|)
g(|r1|, |r2|)

+ ∆2(u,w, z)|r2|s
(∂1g)(|r1|, |r2|)
g(|r1|, |r2|)

.

The function |r1| (∂1g)(|r1|,|r2|)g(|r1|,|r2|) is 0−homogeneous, and we use the method in Section 8.6.1 to

estimate it by partitioning the range of |r1|/|r2|, |r2|/|r1|. Similarly, we have

J2 =
(v(z)− v(x))(∂2g)(z − x)

g(z − x)
= ∆1(v, x, w)s|r1 |

∂2g(|r1|, |r2|)
g(|r1|, |r2|)

+ ∆2(v, w, z)|r2|
∂2g(|r1|, |r2|)
g(|r1|, |r2|)

.

Using the estimates of |r1| (∂1g)(|r1|,|r2|)g(|r1|,|r2|) in Section 8.6.1, piecewise bounds of ∆i(f, x, z), we

obtain piecewise estimates of dg,i. See the red path (w = (z1, x2) in Figure 1 for an illustration

of using C
1/2
x , C

1/2
y estimates of f to estimate δ(f, x, z).

Note that we can also choose w = (x1, z2) and derive another decomposition

f(z)− f(x) = f(z)− f(w) + f(w)− f(x) = ∆1(f, z, w)r1 +∆2(f, w, x)r2,
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for f = ūN + U, v̄N + V . Using this decomposition and the above argument, we derive another
estimate of J1 + J2. We optimize both estimates to bound dg,i from above.

8.4.3. Piecewise Hölder estimates of the damping terms. In this section, we estimate the piece-
wise bounds δj(di,LW1,iψi, x, z) (8.18) for x ∈ Qij , z ∈ Qpq. We have

(8.38)

δ(di,LW1,iψi, x, z)gi(x − z) = di,L(p)δ(W1,iψi, x, z)gi(x− z) + I,

I = (W1,iψi)(q)δ(di,L, x, z)gi(x − z), |I| ≤ ||W1,iϕi||∞|δ(di,L, x, z)gi(x − z)|ψi(q)
ϕi(q)

,

where (p, q) = (x, z) or (z, x). The first term is the damping term, and we need to estimate the
weighted difference in |I|.

For x, z away from 0, we use the piecewise C1 bounds of di,L established in Section 8.4.1, and
the method in Appendix E.6 in Part II [1] to estimate δj(di,L, x, z). For |x − z| not small, we
have another estimate of δj(di,L, x, z) using the piecewise upper and lower bounds of di,L.

The main difficulty is the estimate near x = 0 since di,L /∈ C1/2 near r = 0. We use

ψi/ϕi . r1/2 near r = 0 to compensate the low regularity of di,L near 0. We focus on the
estimate of Td,L in di,L (8.16). The remaining parts dloc,i in di,L, i.e. Bu,4 below, are locally C1

and their estimates follow from the previous methods.
Recall Bu,1, Bu,2 from (8.36) and we further introduce Bu,3, Bu,4

Bu,1 = c̄l + ūN/x, Bu,2 = c̄l + v̄N/y, Bu,3 = v̄N/y − ūN/x = Bu,2 −Bu,1,

di,L(ρ) = Td,L(ρ) +Bu,4, Bu,4 = c̄Nω (i = 1), 2c̄Nω − ūNx (i = 2), 2c̄Nω + ūNx (i = 3).

Suppose that ρ has the representation (8.29). Using the decompositions (8.36), (8.31), we get
(8.39)

Td,L(ρ) = Bu,1
x∂xρ

ρ
+Bu,2

y∂yρ

ρ
=

(
Bu,1

x2

r2
+Bu,2

y2

r2

)
(c1 +

Drρm
ρm

) =
(
Bu,1 +Bu,3

y2

r2

)
(c1 +Rρ),

, TR(ρ) + TS(ρ)
y2

r2
, TR = Bu,1(c1 +Rρ), TS = Bu,3(c1 +Rρ), Rρ ,

Drρm
ρm

.

The functions TR, TS , Rρ are locally Lipschitz, and we derive their piecewise bounds below.
From the discussion around (8.31), we can estimate the piecewise C1 bounds of ρm, Drρm.

Using (A.7), we can estimate the derivatives of Rρ and the piecewise bounds δi(Rρ, x, z). Using
ūN(0, y) = 0, the piecewise estimates in Section 8.9.1, and

∂xBu,1 = ∂x
ūN

x
=
ūNx x− ūN

x2
=

1

x2

∫ x

0

ūNxx(z, y)zdz, ∂yBu,1 =
ūNy
x
,

we obtain piecewise C1 estimates of Bu,1. The same argument applies to the estimates of B2.
Using these C1 bounds, the Leibniz rule (A.7), the method in Appendix E.6 in Part II [1], we
obtain the piecewise C1 and the Hölder estimate of the regular part TR, TS .

Weighted estimate of the singular part. The difficult term is TS y
2

r2 , which is not C1/2

near r = 0. We estimate δi(TS y
2

r2 , x, z) with ψi(x)/ϕi(x) . r1/2 (8.38). The factor B3c1y
2/r2

captures the anisotropic structure of the advection in x, y directions near r = 0 . See Section
2.7.2 [3]. In Qij (8.4) near (0, 0), the ratio y2/r2 can vary a lot. Thus, we introduce the angle
β below to control this factor and establish the following estimate

(8.40)

δ1(TR + TSf, x, z)|w|1/2 ≤ C11(x, z) + C12(x, z) sin
2(β), x1 ≤ z1, x2 = z2,

δ2(TR + TSf, x, z)|w|1/2 ≤ C21(x, z) + C22(x, z) sin
3/2(β), x1 = z1, x2 ≤ z2,

β = max(arctan(x2/x1), arctan(z2/z1)), f(x, y) = y2/r2,

for w = x and w = z. We have estimated TR, TS in the above. For x ∈ Qk1l1 , z ∈ Qk2l2 , we
can estimate the piecewise bounds for Cij(x, z). For f(z), we use (8.32) to obtain its piecewise

bound. We defer the estimate δi(f, x, z)|w|1/2 to Section 8.9.2. Using

δi(TSf, x, z)|w|1/2 ≤ δi(TS , x, z)f(z)|w|1/2 + δi(f, x, z)TS(x)|w|1/2,
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Figure 2. Left, mid, right figure correspond to the locations of (x, z) in cases

(1.a), (1.b), (2). The red line represents the triangle inequalities and C
1/2
xi

estimate used to estimate |δ(di,L, x, z)|.

the piecewise estimates of δi(f, x, z)|w|1/2 in (8.65), (8.67), we obtain the estimate of δi(TSf, x, z)|w|1/2
depending on β in (8.40). Using the estimate in Section 8.9.2, we also obtain the estimate of
δi(f, x, z)|w|1/2, δ1(TR + TSf, x, z)|w|1/2 independent of β. Using (8.40) and (8.39), we get

(8.41) Td,L(ρ) = TR + TS(sinβ)2.
Near r = 0, we have TS ≈ Bu,1c1, Bu,1 ≈ 5, c1 = −2,−5/2 (8.39) in our estimates and thus
Bu,3c1, TS < 0. Although the upper bound (8.40) becomes larger for larger β, we gain a larger
damping factor from Td,L (8.38), which dominates the upper bounds obtained in (8.40).

Improved estimate of the damping terms near 0. We combine (8.39), (8.40), and (8.41)
to obtain an improved estimate for δ(di,L, x, z)W1,igi(x − z) (8.38) with any x, z ∈ R

++
2 , z 6= x

near 0. We assume x1 ≤ z1. There are two cases: (1) z2 ≥ x2, (2) z2 ≤ x2. Denote

λx =
x2
|x| , λz =

z2
|z| , λ = max(λx, λz).

For β ∈ [βi, βi+1], we get λ ∈ [sin(βi), sinβi+1] and then derive the upper bound of (8.41),
(8.40). We choose p = x or p = z in (8.38) such that λp = λ. From (8.41), this choice provides
a larger damping term Td,L(ρ). Then we choose q = {x, z}\p. Denote

h1 = |x1 − z1|, h2 = |x2 − z2|, Ri =
ψi
ϕi
.

Recall the notations δ, δi from (8.18).
Case (2): z2 ≤ x2. Since

y2
|y| is increasing in y2 (8.32), we have λz ≤ x2

|(z1,x2)| ≤
x2

|x| = λx. Thus,

we get (p, q) = (x, z), λ = λx. Denote w = (z1, x2). We estimate

|δ(di,L, x, z)|gi(h)Ri(z) ≤ (|δ(di,L, x, w)|+ |δ(di,L, z, w)|)gi(h)Ri(z)
≤(δ1(di,L, x, w)|z|1/2 · Ri(z)|z|−1/2 · h1/21 + δ2(di,L, z, w)|z|1/2 · Ri(z)|z|−1/2 · h1/22 )gi(h).

Since |z| ≤ |(z1, x2)| = |w|, we use (8.40) to bound

δ1(di,L, x, w)|z|1/2 ≤ δ1(di,L, x, w)|w|1/2, δ2(di,L, z, w)|z|1/2.

Using Ri(y) ∼ |y1|1/2|x|ai , a = (0.9, 0, 0) near 0, we obtain piecewise bounds for Ri(z)|z1|−1/2,

Ri(z)|z|−1/2. To estimate h
1/2
j gi, we follow Section 8.6.1.

For (1) x2 ≤ z2, we have two cases (1.a) λx < λz and (1.b) λz < λx. In both cases, we choose
w = (z1, x2). In Figure 2, we illustrate the locations of (x, z) and the triangle inequalities used
to bound |δ(di,L, x, z) in different cases.
Case (1.a): x2 ≤ z2, λx < λz. We get (p, q) = (z, x). Since |x| ≤ |w| ≤ |z|, we yield

|δ(di,L, x, z)|gi(h)Ri(x) ≤ (|δ(di,L, x, w)|+ |δ(di,L, z, w)|)gi(h)Ri(x)
≤(δ1(di,L, x, w)|x|1/2 · h1/21 + δ2(di,L, w, z)|w|1/2 · h1/22 )gi(h) · Ri(x)|x|−1/2.

We use (8.40) to estimate δ1(di,L, x, w)|x|1/2, δ2(di,L, w, z)|w|1/2 and estimateRi(x)|x|− 1
2 , hjgi(h)

similarly.
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Case (1.b): x2 ≤ z2, λx > λz. We get (p, q) = (x, z) and

|δ(di,L, x, z)|gi(h)Ri(z) ≤ (|δ(di,L, x, w)|+ |δ(di,L, w, z)|)gi(h)Ri(z)
≤(δ1(di,L, x, w)|z1|1/2 · Ri|z1|−1/2 · h1/21 + δ2(di,L, w, z)|z|1/2 · Ri(z)|z|−1/2 · h1/22 )gi(h).

We estimate Ri(z)|z|− 1
2 , Ri(z)|z1|− 1

2 , hjgi(h) similarly. Since |z1| ≤ |w|, we use (8.40) to bound

δ1(di,L, x, w)|z1|1/2 ≤ δ1(di,L, x, w)|w|1/2, δ2(di,L, w, z)|z|1/2.

Four parameters. In summary, in the improved estimate near 0, we introduce four parameters
x, z, λ = (λx, λz), hi = |xi − zi| and derive the bound

(8.42)

di,L(p) ≤ C31(x, z) + C32(x, z)λ
2,

δ(di,L, x, z)gi(x− z)|W1,iψi(q)| ≤
∑

l

Cl(x, z)h
al1
1 h

1/2−al1
2 gi(h)λ

al3E4.

For each x, z ∈ Qi1j1 , Qi2j2 , we first derive the piecewise bounds for Cl(x, z). By partitioning
λ = sin(β) ∈ [0, 1] (or β ∈ [0, π/2]) into small intervals and using monotonicity in λ, we estimate
λa. The function in h is 0-homogeneous, which can be estimated following Section 8.6.1.

8.5. Estimate of nonlinear terms. We estimate the nonlinear terms in (8.11). The estimate
of each term follows from direct L∞ or C1/2 estimates (8.19) (8.22). The main technicality
comes from the singular weights near r = 0 or x = 0. We have discussed the Ck estimates of
Ŵ2 in Section 8.1.2.

8.5.1. Weighted Hölder estimate. In the Hölder estimate, we use radial weights ρi = ψi and
estimate µh,i[W1,iψi]C1/2

gi

in the energy E4 (8.2).

8.5.2. Piecewise estimates of the damping terms. The main technical term is the coefficient
Td,N(ψi) from the first term Td,N (ψi)(W1,iψi) in (8.14). See (8.16) for Td,N . Since we have

piecewise C1/2 estimates of W1,iψi using the energy, we only need to control Td,N (ψi) in order
to estimate Td,N(ψi)(W1,iψi). Using (8.7), we perform the decomposition

Td,N(ψi) =
U · ∇ψi
ψi

= Ux(0)
(x∂xψi − y∂yψi)

ψi
+

UA(ω1) · ∇ψi
ψi

+
Uapp · ∇ψi

ψi
, Tcω +TuA+TuR.

For TuA, since we have piecewise C1/2 estimates of UAψu, we decompose it as follows

(8.43) TuA = (UAψu)
∂xψi
ψiψu

+ (VAψu)
∂yψi
ψiψu

, TuR =
Uapp

|x|2 · |x|2∇ψi
ψi

.

Since ψi, ψu are radial weights, we can estimate piecewise derivatives of ψi, ψ
−1
i , ψ−1

u following
Appendix A.2 in Part II [1]. See also Sections 8.3.2, 8.3.3 for the estimates of the ratio among
the weights. Using these estimates, (A.7) and following Appendix E.6 in Part II [1], we can
obtain piecewise C1, C1/2 estimates of

(8.44)
∂jψi
ψi

,
x∂xψi − y∂yψi

ψi
,

∂jψi
ψiψu

, |x|2 ∂jψi
ψi

.

The second ratio is estimated in Section 8.3.3. Using these estimates, (A.8), and evaluating these
functions on a fine mesh, we can refine the estimate. We use the estimates in (8.34) in Section
8.3.3 with (P,Q) = (ψi, ψu), (ψi, |x|−2) to refine the estimate of (∂jψi)(ψiψu)

−1, |x|2(∂jψi)ψ−1
i

near r = 0. We remark that the C1 estimates of these two terms are not singular near r = 0,
while the C1 estimates of the first two terms can be singular.

Using the C1/2 estimates of
∂jψi

ψiψu
and of uAψu, vAψu from the functional inequalities, (8.20),

we obtain the C1/2 estimate of Td,N . For Tu,R, we can estimate

|x|−kUapp, k = 2, 3, |x|−2∂iUapp,

and yield the C1 estimates of
Uapp

|x|2 , which along with the C1 estimates of |x|2 ∂jψi

ψi
imply

the C1, C1/2 estimates of TuR. We have another estimate of TuR using the C1 bounds of
Uapp, ∂jψi/ψi (8.44). We optimize these two estimates for TuR.
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Figure 3. Left, right figures correspond to the locations of (x, z) in cases (1),

(2). The red line and blue line represents the C
1/2
xi estimate used to estimate

|δ(di,L, x, z)|. In case (1), we have two estimates.

Using the above (weighted) C1/2 estimates for TuA, TuR, and (8.24), we get

(8.45)
µh,igi(x− z)δ(TuA(ψi) + TuR(ψi)(W1,iψi), x, z)

≤
(
|TuA(x) + TuR(x)| + µh,igi(x − z)δ�(TuA + TuR, x, z, x− z)(ψi/ϕi)(z)

)
E4.

For Tcω away from r = 0, we use the C1 estimate of Tcω (8.44). Near r = 0, we use the
estimates in (8.35) and Section 8.3.3 to estimate δi(Tcω , x, z)min(|x|, |z|)1/2. We have

(8.46)

µh,i|δ(TcωW1,iψi, x, z)gi(x− z)| ≤ µh,i|δ(W1,iψi, x, z)gi(x − z)| max
p=x,z

|Tcω(p)|+ µh,iI

≤ E4 max
p=x,z

|Tcω(p)|+ µh,iI,

I ≤ |δ(Tcω , x, z)gi(x− z)|min(|W1,iψi(x)|, |W1,iψi(z)|)

≤ |δ(Tcω , x, z)|gi(x− z)min(|x|, |z|)1/2 max
p=x,z

ψi(p)

ϕi(p)|p|1/2
E4.

The ratio ψi

ϕi|x|1/2 is estimated in (8.33). The weighted Hölder estimate of Tcω is similar to that

in Section 8.4.3. Denote hi = |xi − zi|. We assume that x1 ≤ z1 and consider two cases (1)
x2 ≤ z2 and (2) x2 ≥ z2. Denote M = min(|x|, |z|)1/2. Recall δ, δi from (8.18).

In case (1) of x2 ≤ z2, for w = (z1, x2), we have |x| ≤ |w| ≤ |z|, and
II , |δ(Tcω , x, z)|gi(x− z)M1/2 ≤ |δ(Tcω , x, w) + δ(Tcω , w, z)|gi(x− z)M1/2

≤ (δ1(Tcω , x, w)|x|1/2h1/21 + δ2(Tcω , w, z)|w|1/2h1/22 )gi(h),

and we then estimate h
1/2
j gi(h) following the methods in Section 8.6.1. We can also choose

w = (x1, z2) and obtain another estimate.
In case (2) x2 ≥ z2, we choose w = (z1, x2). Then we have |x|, |z| ≤ |w| and

II ≤ |δ(Tcω , x, w)+δ(Tcω , z, w)|gi(h)M1/2 ≤ (δ1(Tcω , x, w)|x|1/2h1/21 +δ2(Tcω , z, w)|z|1/2h1/22 )gi(h).

In the above estimates of II, we further use the estimate of δj(Tcω , p, q)min(|p|, |q|) 1
2 . In

Figure 3, we illustrate the C
1
2
xi estimate and the triangle inequalities used to bound |δ(Tcω , x, z)|

in various cases.

8.5.3. Other nonlinear terms. The estimates of other nonlinear terms are simple. We follow
Sections 8.1.1, 8.1.2 for the L∞ and C1/2 estimates of ∇U,U (8.7) and the Ck estimates of Ŵ2.

Nonlinear terms involving W1. We estimate nonlinear terms in (8.14) involving ω1, η1, ξ1
other than Td,NW1,iρi. We write down the decomposition of each term below as A · B and
estimate δ(f, x, z) for each f = A,B,

(8.47)
Ux(0) · ω1ψ1, (Ux(0)η1 − Ũxη1 − Ṽxξ1)ψ2 = Ux(0) · η1ψ2 − Ũx · (η1ψ2)− Ṽx · (ξ1ψ2),

(3Ux(0)ξ1 − Ũyη1 − Ṽyξ1)ψ2 = 3Ux(0) · (ξ1ψ2)− Ũy · (η1ψ2)− Ṽy · (ξ1ψ2).

Since each term involves W1,iψi, we can estimate it using (8.24).
Note that we use the same weight ψ2 = ψ3 for η1, ξ1 in the Hölder estimate.
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It remains to estimate the Bop,j(U, Ŵ2) in (8.14). We estimate three terms separately.

Nonlinear terms Bop,j(UA, Ŵ2). We estimate Bop,j(UA, Ŵ2)ψi (8.14). Similar to (8.47), we

write down the decomposition of each term in Bop,j(UA, Ŵ2)ψi (8.9), (8.10) below as A ·B and
estimate δi(f, x, z) for each f = A,B and then use (8.20), (8.23) to estimate the AB. For the

advection term of Ŵ2,i (8.14), (8.10), we use

−UA · ∇Ŵ2,iψi = −(UAψu) · (
∂xŴ2,iψi

ψu
)− (VAψu) · (

∂yŴ2,iψi
ψu

), i = 1, 2, 3.

Near 0, ∇Ŵ2,i
ψi

ψu
has a vanishing order O(|x|), and we can estimate its C1 bound.

For other nonlinear terms in Bj(UA, Ŵ2), j = 2, 3 involving (∇U)A, we use

(−(∂iU)Aη̂2 − (∂iV )Aξ̂2)ψ2 = −((∂iU)Aψ1) · (
η̂2ψ2

ψ1
)− ((∂iV )Aψ1) · (

ξ̂2ψ2

ψ1
), i = 1, 2.

We use i = 1 for B2 and i = 2 for B3. The above estimate is similar to the linear Hölder estimate
in Section 5 [3] and we treat Ŵ2 similar to ω̄, θ̄x, θ̄y.

Remaining nonlinear terms of Ŵ2. The remaining nonlinear terms of Ŵ2 in (8.14) are

I1 = Ux(0)Ŵ2,j,M , I2 = Bj(Uapp, Ŵ2).

With the second order correction near x = 0, I1 vanishes like O(|x|3). By definition, we have

Ŵ2,i = O(|x|2), Uapp = O(|x|3).
It follows that I2 vanishes to the order O(|x|4) near |x| = 0. For I1, we estimate C1/2 of Fiψi
by optimizing the estimate of C1/2 estimate of (Fi|x|αi) · ψm,i and Fiψi, where ψi = |x|αiψm,i
(8.31). Near r = 0, we estimate the C1/2 semi-norm of Fi|x|p, p = −2,−5/2 carefully using the
method in Section 8.9.3 to overcome the singularity near r = 0.

For I2, I2ψi = O(|x|a), a ≥ 3
2 near r = 0, we obtain piecewise C1 estimates of I2ψi. We

estimate a typical term T = ∂ix∂
j
y(Uapp∂xη̂2ψ2) in Bop,2(Uapp, Ŵ2)ψ2 (8.14) as follows. Away

from 0, we estimate T using (A.7), the estimate of Uapp, η̂2 and the triangle inequality. Near
r = 0, we have three terms

D(Uapp) · ∂xη̂2 · ψ2 +Uapp ·D∂xη̂2 ·ψ2 + Uapp∂xη̂2 ·Dψ2 = J1 + J2 + J3, D = ∂ix∂
j
y, i+ j ≤ 1.

For J1, since Uapp = O(|x|3), η̂2 = O(|x|2), we extract these vanishing orders and estimate

(DUapp) · (∂xη̂2/|x|) · (ψ2|x|3).
The estimate of J2 is similar. For J3, we use (8.31) for ψ2 = ψm,2|x|α2 . We obtain

J3 = (Uapp∂xη̂2)|x|α2−1)
Dψ

|x|α2−1
,

Dψ2

|x|α2−1
= Dψm,2|x|+ α2ψm,2

xi1x
j
2

|x| , i+ j = 1.

With the above C1/2 estimates, we can estimate δ�(Ik, x, z, x− z), k = 1, 2 (8.22).

8.6. L∞ stability analysis in the far-field. Recall parameters Ni, N from (8.4). For |x|∞ ≥
yN2 , the piecewise polynomial part in the approximate steady states is 0. We have

(8.48) ω̄(x) = ω̄1 = ḡ1(β)r
ᾱ1 , θ̄(x) = θ̄1 = ḡ2(β)r

1+2ᾱ1 , r = (x21+x
2
2)

1/2, β = arctan(x2/x1).

To perform energy estimate in the far-field, we need to estimate the asymptotic behavior of
∂ix∂

j
yf(r, β). Using the formulas of derivatives,

∂xg = (cosβ∂r −
sinβ

r
∂β)g, ∂yg = (sinβ∂r +

cosβ

r
∂β)g,

the triangle inequality, (8.48), and the piecewise bounds of ∂iβ ḡj(β) established using the method

in Appendix C.2, C.3 in Part II [1], we obtain
(8.49)
|∂ix∂jyω̄| ≤ ω̄ag,ij(β)r

ᾱ1−i−j , |∂ix∂jy θ̄| ≤ θ̄ag,ij(β)r
1+2ᾱ1−i−j , |∂ix∂jyφ̄| ≤ φ̄ag,ij(β)r

2+ᾱ1−i−j ,
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for |x|∞ ≥ yN2 , and some piecewise constants ω̄ag,ij(β), θ̄ag,ij(β), φ̄ag,ij(β).
We perform the weighted L∞(ϕi) in the far field |x|∞ ≥ yN−1. We can decompose the weights

ϕi as follows and have the following estimate uniformly for |x| ≥ yN−1 from (8.25)

(8.50) ϕi = |x|−1/2P1,i + P2,i, |Pj,i(x)| ≤ cj,ir
αj,i , j = 1, 2, i = 1, 2, 3,

for some radial weights Pj,i, cj,i, with P1,i decaying faster than P2,i. We estimate the nonlocal
terms, the local terms in (8.11), (8.14), and the damping terms di (8.16) in order.

We use the C1/2 and L∞ estimate of uA, (∇u)A established in Section 7 in the supplementary
material for Part II [2].

Estimate of f/|x|α. Since the weight involves the power |x|−1/2 singular along x = 0, we need
to estimate the asymptotic behavior of f/|x|1/2 for f = uA, ω̄y,∇θ̄, θ̄xy. We estimate uA/|x|1/2rγ
for suitable power γ at the end of Section 7.3.1 in the supplementary material of Part II [2]. For
other functions f depending on the profile, if f(0, y) = 0, or equivalently f(r, π/2) = 0, we can
estimate f/|x|α = f/(r cosβ)α for α ∈ [0, 1]. Firstly, using the polar representation (8.48) and
the method in Appendix C.3 in Part II [1], we can estimate ∂βf .

Using the piecewise derivative bounds discussed in Appendix E.7 in Part II [1] and

(8.51)

f(r, β)

π/2− β
= −

∫ π/2

β

∂β(f, τ)dτ, x = r cosβ, cosβ = (π/2− β) sin ξ, ξ ∈ [β, π/2],

f(r, β)

|x|α = r−α
f(r, β)
π
2 − β

(
π

2
− β)1−α(

π/2− β

cosβ
)α = r−α

f(r, β)
π
2 − β

(
π

2
− β)1−α(sin ξ)α,

we can obtain the piecewise bounds of f(r,β)
π/2−β and f(r, β)/|x|α.

Suppose that f(0, y) = 0, |f(r, β)|rb ≤ C1, |∂xfrb+1| ≤ C2 for all max(x, y) ≥ R and b+1 ≤ 0.
Using |fx(z, y)| ≤ C2r

−b−1 for z ∈ [0, x], we have another simple estimate for f/x1/2

| f

x1/2
| = | 1

x1/2

∫ x

0

fx(z, y)dz| ≤ C2r
−(b+1)x1/2 = C2r

−b−1/2(cosβ)1/2 ≤ C2r
−bR−1/2(cosβ)1/2, β ∈ [

π

4
,
π

2
],

| f

x1/2
| ≤ min(C1(cosβ)

−1/2r−b−1/2, C1r
−bR−1/2) ≤ min(C1(cosβ)

−1/2R−1/2, C1R
−1/2)r−b, β ∈ [0,

π

4
],

where we have used x = max(x, y) ≥ R in the second case. The above estimates also provide a
uniform estimate for f/x1/2rb+1/2.

Estimate of the nonlocal terms. We focus on the typical terms ux,Aθ̄x, uAθ̄xx in the η1
equation. Using (8.49), (8.50), and the estimate in the paragraph above (8.51), we have

|θ̄x|x1|−1/2P1,i| ≤ C1(β)r
2ᾱ1+α1,i−1/2, |θ̄xP2,i| ≤ C2(β)r

2ᾱ1+α2,i , |θ̄xxPj,i| ≤ C2+j(β)r
2ᾱ1−1+αj,i ,

for some piecewise constant functions Ci(β). Then we apply the estimates in Section 7.3.1 in the
supplementary material of Part II [2] to estimate ux,Ar

α with α = 2ᾱ1+α1,i−1/2, 2ᾱ1+α2,i, and

uA|x1|−1/2r2ᾱ1−1+α1,i , uAr
2ᾱ1−1+α2,i . The estimates of other nonlocal terms, e.g. UA, (∇U)A

(8.7) (8.11) are similar. We remark that the far field estimate of these nonlocal terms are
bounded. For example, for the weights ϕi and large |x|, we have

ϕ1 ∼ |x|−1/6, |ux,A| . log |x||x|1/6, 2ᾱ1 + α2,i = 2ᾱ1 +
1

7
≈ −2/3 + 1/7,

and the estimate for ux,Ar
2ᾱ1+1/7 decays for large |x|. Similar reasoning applies to other powers.

Estimate of local terms. The estimate of the local terms in (8.11), e.g. η1 in the ω1 equation,
is trivial. We just need to bound η1ϕ1 ≤ ||η1ϕ2||∞|ϕ1/ϕ2| and the ratio ϕ1/ϕ2. Since ϕ2 decays
slower, ϕ1/ϕ2 is bounded. More generally, to bound P = |x|−1/2P1 + P2, Q = |x|−1/2Q1 + Q2

with Pi, Qi radial weights and Pi . Qi, we use

(8.52) P/Q ≤ max(P1/Q1, P2/Q2),

and the estimate in (8.25). The estimates of v̄Nx η1, ū
N
y ξ1 in (8.11) follow the above estimate and

(8.49) for v̄Nx . We also treat −ūNx η1, ūNx ξ1 from the damping terms d2η1, d3ξ1 as a perturbation
using the same method.
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Estimate of the damping terms. It remains to estimate (c̄lx+ū
N)∇ϕi

ϕi
W1,iϕi from di (8.16).

We defer the estimate of terms involving U to the nonlinear estimates. The main part is given
by the c̄lx term since ūN grows sublinearly for large |x|.

Since r∂rP, r∂rQ are radial weights, using (8.37), (8.52), we obtain

(8.53)

x · ∇ϕ
ϕ

≤ x−1/2r∂rP + r∂rQ

x−1/2P +Q
≤ max(

r∂rP

P
,
r∂rQ

Q
), |∂yϕ

ϕ
| ≤ max(|∂yP

P
|, |∂yQ

Q
|),

|x∂xϕ
ϕ

| ≤ max(
|1/2 · x−1/2P + x1/2∂xP |

x−1/2P
,
|x∂xQ|
Q

) ≤ max(1/2 +
|x∂xP |
P

,
|x∂xQ|
Q

).

For radial weight P (x) =
∑

i≤n pir
ai = ran

∑
i≤n pir

ai−an , ranPm,n(x) with ai increasing in

i, since ai − an ≤ 0, Pm,n(r) is decreasing in r, we have

r∂rP

P
=
r∂rr

an

ran
+
r∂rPm
Pm

= an +
r∂rPm,n
Pm,n

≤ an.

The second term has faster decay, and an is the main term. Using (8.49), (8.50), we can derive

the asymptotic estimates of ū
N

x and v̄N , and then estimate ū
N ·∇ϕi

ϕi
as follows

| ū
N · ∇ϕi
ϕi

| ≤ | ū
N

x
||x∂xϕi

ϕi
|+ |v̄N ||∂yϕi

ϕi
|.

We do not estimate
y∂yϕi

ϕi
since ϕi is not singular on y = 0. Note that the c̄Nω term in di (8.16)

is a damping term. We keep the following terms as damping terms in this estimate

((c̄lx · ∇ϕi)/ϕi + cic̄
N
ω )W1,iϕi, c = (1, 2, 2),

whose coefficient does not decay for large |x|. We further bound c̄lx·∇ϕi

ϕi
from above using the

first estimate in (8.53).

8.6.1. Estimate the Hölder weights. The Hölder weights g = gi is −1/2 homogeneous. Taking
derivative on λ, we yield

(x · ∇xgi)(λx1, λx2) = ∂λgi(λx1, λx2) = ∂λ(λ
−1/2gi(x1, x2)) = −1

2
λ−3/2gi(x1, x2).

Choosing λ = 1, we yield the following useful identity for the damping term dg,i (8.16)

(8.54) x · ∇gi(x) = −1

2
gi(x).

In our energy estimates, we estimate several 0−homogeneous quantities related to g for hi ≥ 0

f(h) = h
1/2
k g(h), hk

(∂jg)

g
(h), |h| (∂jg)

g
(h), k, j = 1, 2,

gi1(h)

gi2(h)
, 1 ≤ i1, i2 ≤ 3.

Since f(h) = f(h1

h2
, 1) for h2 6= 0 and f(h) = f(1, h2

h1
), h1 6= q0, we can estimate it by

partitioning (h1, h2) ∈ [0, 1]×{1}, {1}× [0, 1] and using the monotonicity of g, ∂jg. From g = gi
(A.4), we have

g(s) =
1

A1(s)1/2 +A2(s)1/2
, ∂ig = −1

2

a1iA
−1/2
1 + a2iA

−1/2
2

(A
1/2
1 +A

1/2
2 )2

,
∂ig

g
= −1

2

a1iA
−1/2
1 + a2iA

−1/2
2

A
1/2
1 +A

1/2
2

,

for Ai = ai1s1 + ai2s2 with aij > 0. Clearly, g is decreasing in |si|. For s1, s2 > 0, since

Ai is increasing in s1, s2, ∂ig,
∂ig
g are negative and increasing in s1, s2. It follows that |∂igg | is

decreasing in s1, s2.
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8.7. C1/2 stability analysis in the far-field. We use the C1/2 estimate of uA,∇uA established
in Section 7 in the supplementary material of Part II [2].

For the C1/2 estimate of a typical terms in (8.11) in the far-field, e.g. uAω̄xψ1, we perform
the following decomposition

(8.55) uAω̄xψ1 = uAψu · (ω̄xψ1/ψu).

We need the asymptotic L∞ and C1/2 estimates of uAψu and ω̄x
ψ1

ψu
. More generally, we need

to estimate the asymptotic behavior of uAψu, (∇u)Aψ1 and weighted profile S̄ fg for two weights

f, g.
From Section 7 in the supplementary material of Part II [2], for |z| ≥ |x|∞ ≥ R2, we have the

C
1/2
xi and L∞ estimates of uA(x),∇uA(x) uniformly for λ = |x|∞/xc2

(8.56)

δi((∂
i
x∂

j
yφ)Aψu, x, z) ≤ Cuh,ij , i + j = 1, δi((∂

i
x∂

j
yφ)Aψ1, x, z) ≤ Cuh,ij , i+ j = 2,

|∂ix∂jyφ)Aψu(x)|
|x|1/2 ≤ Cu,ij , i+ j = 1,

|∂ix∂jyφ)Aψ1(x)|
|x|1/2 ≤ Cu,ij , i+ j = 2,

for some constant Cuh,ij , Cu,ij . Here, we use (∂
i
x∂

j
yφ)A to denote uA, (∇u)A, e.g. −(∂yφ)A = uA.

This notation is consistent with the relation between the velocity and the stream function
u = −∂yφ.

8.7.1. Hölder estimates of a product. Firstly, we estimate [AB]
C

1/2
xi

with

|∂ix∂jyA(r, β)| ≤ aijr
α−i−j , |∂ix∂jyB(r, β)| ≤ bijr

β−i−j , i+ j ≤ 1,

for all |x| ≥ R. Using the Leibniz rule, for i+ j ≤ 1, we get

C = AB, |∂ix∂jyC| ≤ cijr
α+β−i−j , cij =

∑

i1≤i,j1≤j
ai1j1bi−i1,j−j1 ,

for |x| ≥ R. In the C
1/2
xi estimate, for R ≤ |x| ≤ |y| and α+ β ≤ 0, we have

|C(x) − C(y)| ≤ 2c00|x|α+β , |C(x) − C(y)| ≤ |∂iC(ξ)||x − y| ≤ c10|x|α+β−1|x− y|

for some |ξ| ≥ |x|. It follows

(8.57)
|C(x) − C(y)|
|x− y|1/2 ≤ min(

c002|x|α+β
|x− y|1/2 , c10|x|

α+β−1|x− y|1/2) ≤
√
2c00c10|x|α+β−1/2.

The C
1/2
x2 estimate is similar. Using (8.49), (8.26), (8.27), and the above estimates, we can

estimate the asymptotic behavior of the L∞ and C
1/2
xi semi-norm of weighted profile, e.g. ω̄x

ψ1

ψ2

(8.55).
Next, we estimate δi(uAF, x, y) or δi((∇u)AF, x, y) with

|δi(F, x, y)| ≤ fir
αi , |F (x)| ≤ f0r

α0 , |x|, |y| ≥ r, α0 ≤ 0, α1 + 1/2, α2 + 1/2 ≤ 0.

Recall the estimate of (8.56). We focus on ux,AF . The estimates of other terms are similar.
For |x|, |y| ≥ R, using |a(x)b(x)− a(y)b(y)| ≤ |(a(x)− a(y))b(x)|+ |a(y)(b(x)− b(y))|, we obtain

|δi(ux,AF, x, y)| ≤ |δi(ux,A, x, y)F (z)|+ |ux,A(x)δi(F, x, y)| ≤ Cuh,11f0|x|α0 + Cu,11|x|1/2fi|x|αi

≤ Cuh,11f0R
α0 + Cu,11fiR

αi+1/2, i = 1, 2.

Using the above estimate, we can estimate (8.55) and other nonlocal terms in (8.11) in the
weighted Hölder estimate in the far-field, e.g. ux,Aθ̄xψ2, uAθ̄xxψ2.
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8.7.2. Estimates of the local terms. The Hölder estimate of the local terms, e.g. v̄Nx ξ1 in the η1
equation, is simple. See (8.24). We have

|δi(v̄Nx ξ1ψ2, x, y)| ≤ |v̄Nx δi(ξ1ψ2, x, y)|+ |δi(v̄Nx , x, y)ξ1ψ2|,

and use (8.57) to estimate δi(v̄
N
x , x, y), the energy to control δi(ξ1ψ2, x, y), ξ1ψ2. Note that to

bound ξ1ψ2, we use ϕ3 ≥ pnr
an for some pn, an, where r

an is slowest decay power in ϕ3, and

|ξ1ψ2| ≤ ||ξ1ϕ3||∞
ψ2

ϕ3
≤ E4

ψ2

pnran
.

The ratio of the weight is further estimated using (8.27).

8.7.3. Estimates of the damping terms. It remains to estimate the damping terms dg,i and di
(8.16). Since ūN decays for large |x|, using (8.49) and (8.54), for |x|, |z| ≥ R, we bound dg,i
from above as follows

dg,i,lin , − c̄l
2
+

(ūN (x)− ūN (z)) · ∇gi(x− z)

gi(x− z)
≤ − c̄l

2
+Rᾱ1

(
||φ̄ag,11||∞|x1 − z1|

+ ||φ̄ag,02||∞|x2 − z2|)
|∂1gi(x− z)|
gi(x− z)

+ ||φ̄ag,20||∞|x1 − z1|+ ||φ̄ag,1||∞|x2 − z2|)
|∂1gi(x− z)|
gi(x− z)

)
.

Similarly, using the estimate for ∇U, we can bound dg,i,non = δ(U,x,z)·∇gi
gi

. Then, we estimate

dg,i = dg,i,lin + dg,i,nlin from above. Since hk
∂lgi(h)
gi(h)

is 0−homogeneous, we follow Section 8.6.1

to estimate it.
For di (8.16), let an,i be the last power in the radial weight ψi. We decompose ψi = ran,iψm,i,

where ψm,i(x) ≍ 1 for large |x|. Since ∂jψi

ψi
=

∂jr
an,i

ran,i +
∂jψm,i

ψm,i
, we decompose di as follows

di =
c̄lx · ∇|x|an,i

|x|an,i
+
c̄lx · ∇ψm,i

ψm,i
+

ūN · ∇ψi
ψi

+
U · ∇ψi
ψi

= an,ic̄l + Ii,2 + Ii,3 +Ni.

The last term Ni is nonlinear. Since we have C1 bounds for U, we derive the C1 asymptotic
bounds for U and ∇ψi

ψi
and use the product rule to bound Ni. Since x · ∇ψm,i = r∂rψm,i, ψm,i

is a radial weight and the last power in ψm,i is 1, Ii,2 is the ratio between two radial weights
with a denominator decaying faster. We use (8.27) and (8.57) to control Ii,2. We use (8.28) and
(8.49) to estimate ūN · ∇ψi/ψi and its derivatives.

Note that in di, i = 2, 3, we also have the local terms ūNx or −v̄Ny . Since it has the same decay
as Ii,3, we combine it with Ii,3 and apply (8.57) for the Hölder estimate. Then, we use (8.49),
the above estimates for I2, I3, and the estimate in Section 8.7.2 to estimate

(I1,2 + I1,3)ω1ψ1, (I2,2 + I2,3 − ūNx )η1ψ2, (I3,2 + I3,3 − v̄Ny )η1ψ2.

We treat the above terms as perturbation. The main damping term in diW1,iψi is given by

(8.58) di,MW1,i, di,M , c̄lan,i + cic̄
N
ω , c = [1, 2, 2].

8.8. Hölder estimates with large distance. We derive the piecewise bounds of the bad
terms Bad,iψi (8.17) and the damping factor di,L(ψi) (8.16) in the mesh Qi,j (8.4) in the C1/2

estimate of W1,iψi. For the Hölder estimate with large |x− z|, we further estimate

B̃ad,i , |Bad,i(ψi)|+ |(di(ψi)− di,M (ψi))W1,i|, max
x∈[0,yN ]2

|B̃iψi| ≤ Ci,1E4,

where E4 is the energy and di,M is defined in (8.58). Since these terms decay in the far field,
for |z − x| large, they are very small and can be treated as a small perturbation. Using these
estimates and the triangle inequality, for |x−z| ≥ R1 with x ∈ Ωnear, z ∈ [0, yN ]

2, we can bound

(8.59) (B̃ad,i(x) + B̃ad,i(z))gi(x− z) ≤ (|B̃ad,i(x)| + |B̃ad,i(z)|)R−1/2
1 |x− z|1/2gi(x− z).
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Beyond the mesh [0, yN ]
2, from Section 8.7, we can estimate B̃i(z)

|z|1/2] uniformly for |z| ≥ yN .

Since x ∈ Ωnear = [0, yN1]
2, we get |z − x| ≥ |z|(1− |x|/|z|) ≥ yN(1 −

√
2yN1/yN) and

(8.60)

(B̃ad,i(x) + B̃ad,i(z))gi(x − z) ≤ (
B̃ad,i(x)

|z|1/2 +
B̃ad,i(z)

|z|1/2 )
|z|1/2

|x− z|1/2 |x− z|1/2gi(x− z)

≤ (
B̃ad,i(x)

y
1/2
N

+
B̃ad,i(z)

|z|1/2 )
|yN |1/2

(yN −
√
2yN1)

1/2
|x− z|1/2gi(x− z).

Since |h|1/2gi(h) is 0−homogeneous, we follow Section 8.6.1 to estimate it.
It remains to estimate the damping factor di,g from the weight gi. We use (8.54) and treat

(ūN (x) − ūN (z)) · ∇g(x− z)/g(x− z) as perturbation. We estimate the Lipschitz norm of ūN

for |x− z| ≥ R1. Denote f = ūN or v̄N . Supose |x|∞ ≤ |z|∞. Clearly, we have

|z|∞ ≥ max
i

(|x|i, |z|i) ≥ max(|z1 − x1|, |z2 − x2|) ≥ |x− z|/
√
2 ≥ R1/

√
2.

If |x|∞ ≥ R1

2
√
2
, we bound the Lipschitz norm by ∇f(z), |z|∞ ≥ R1

2
√
2
. If |x|∞ < R1

2
√
2
, we get

|x| ≤
√
2|x|∞ ≤ R1

2
≤ |x− z|

2
, |z| ≥ |x− z| − |x| ≥ |x− z|

2
,
|f(x)− f(z)|

|x− z| ≤ |f(x)|
R1

+
|f(z)|
2|z| .

By bounding f(x) in [0, R1/(2
√
2)], and f(z)/|z| outside [0, R1/

√
2]2, we obtain the Lipschitz

bound. Since ∇ūN and ūN (x)/|x| decay for large |x|, the above bounds are very small for large
R1. Denote hi = xi − zi, f = (uN + U, vN + V ) With these estimates, we estimate

| (f(x)− f(z)) · ∇gi
gi

| ≤ |(f1(x)− f1(z)|
|h| · |h|

∣∣∣∂1gi
gi

(h)
∣∣∣+ |(f2(x)− f2(z)|

|h| · |h|
∣∣∣∂2gi
gi

(h)
∣∣∣.

Since |h|∂jgi(h)gi(h)
is 0−homogeneous, we follow Section 8.6.1 to estimate it. We treat the above

terms as perturbations and we keep the following terms as damping terms

(di,M − c̄l/2)δ(W1,iψi)gi(x− z), (di,M − c̄l/2) < 0.

The Hölder estimate in case (a.3). For x, z ∈ [0, yN ]
2\[0, yN1−2]

2 with x, z at least 1 grid

apart, the Hölder estimate is similar since x, z are in the very far-field and B̃i(x) is small. In

this case, we use |x− z| ≥ mini≥1 yi+1 − yi = y2 and follow (8.59) to estimate the bad terms B̃i.
Note that we do not need to use (8.60).

8.9. Piecewise bounds. In this section, we assume that the points, e.g. x, y, z, are in R
++
2 .

8.9.1. Piecewise bound of integral with power. Given mesh 0 = y1 < .. < yn and the upper and
lower bounds of in Ii = [yi, yi+1], we estimate

Ik(f) =
1

xk

∫ x

0

f(s)sk−1dz, k = 1, 2.

We consider the lower bound, and the upper bound is similar. For x ∈ Ii = [xi, xi+1], we get

Ik(f) =
1

xk
(

∫ xi

0

+

∫ x

xi

)f(s)sk−1ds ≥ 1

kxk
(
∑

j≤i−1

fl,j(x
k
j+1 − xkj ) + (xk − xki )fl,i).

Denote Sk,i =
∑

j≤i−1 fl,j(x
k
j+1 − xkj ). Since x

k ∈ [xki , x
k
i+1], we yield

(8.61) Ik(f) ≥
1

k
fl,i +

1

kxk
(Sk,i − xki fl,i) ≥

1

k
fl,i +

1

k
min(

Sk,i − xki fl,i

xki
,
Sk,i − xki fl,i

xki+1

).

Using a similar argument, for f(0) = 0 and x ∈ [xk, xk+1], we estimate f(x)/x as follows
(8.62)
f

x
=

1

x
(f(xk)+

∫ x

xk

fx(z)dz) ≥
1

x
(f(xk)+(x−xk)fx,l,k) ≥ min(

f(xk)

xk
,
f(xk) + (xk+1 − xk)fx,l,k

xk+1
),

where fx,l,k is the lower bound of fx in [xk, xk+1].
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To estimate 2D functions, we first denote by gui,j, g
l
i,j the upper and lower bound of f in a

grid cell Qij = [xi, xi+1]× [yj , yj+1]. Then for f(0, y) = 0 with constant power and (x, y) ∈ Qij ,

using the Mean-Value Theorem and Ax+B
x ≥ A+min(B/xi, B/xi+1), we have

(8.63)
f(x, y)

x
≥ 1

x
(f(xi, y)+f

l
x,ij(x−xi)) ≥ min(

1

xi
f(xi, y),

1

xi+1
(f(xi, y)+f

l
x,ij(xi+1−xi))).

For f(xi, y), we further bound it from below using

f(xi, y) ≥ min(f(xi, yj), f(xi, yj+1))− (yj+1 − yj)
2||fyy||L∞(Qij)/8.

In the first interval x ∈ [x1, x2] with x1 = 0, we simply use

f(x, y)/x ≥ f lx,1j = min
(x,y)∈Q1j

fx(x, y).

The estimates of the upper bound of f(x,y)x and the bounds of f(x,y)y with f(x, 0) = 0 are similar.

8.9.2. Hölder estimate of the fractional power. We estimate δi(f, x, z), f = x22/(x
2
1+x

2
2). Denote

(8.64) sinβ = max(x2|x|−1, z2|z|−1).

C
1/2
x estimate of f . In this case, since x2 = z2, we write (x1, x2) = (x, y), (z1, z2) = (z, y), x ≤

z. Then sinβ = y/(x2 + y2)1/2. We have

| y2

x2 + y2
− y2

z2 + y2
| |w|1/2
|x− z|1/2 =

y2(x + z)|z − x|1/2
(x2 + y2)(y2 + z2)

|w|1/2 ,MM2,

M =
y2|w|1/2

(x2 + y2)(y2 + z2)1/4
, M2 =

(x+ z)|x− z|1/2
(y2 + z2)3/4

.

For w = (x, y) or (z, y), we estimate M using (8.32). Moreover, since |w| ≤ |(y, z)|, we get

(8.65) M ≤ y2/(x2 + y2) ≤ (sinβ)2, δ1(f, x, z)|w|1/2 ≤M2(sinβ)
2.

Suppose that a ∈ [al, au] for a = x, y, z. To estimate the upper bound of M2, we write
(x+ z)|z − x|1/2 = |z2 − x2|1/2|x+ z|1/2 and have

M2 = (
z2 − x2

z2 + y2
)1/2(

x

(y2 + z2)1/2
+

z

(y2 + z2)1/2
)1/2 , A1/2(B + C)1/2.

To estimate A, we use the fact that A is increasing in z2, and decreasing in x2, y2. For C, we
use (8.32). For B, since x ≤ z, using (8.32), we get

B ≤ x

(y2 + x2)1/2
≤ xu

(y2l + x2u)
1/2

, B ≤ xu
(y2l + z2l )

1/2
,

and optimize two estimates. We have another estimate for M2. Denote λ = x/z ∈ [0, 1]. Using
Young’s inequality
(8.66)

(1− λ)(1 + λ)2 =
1

2
(2− 2λ)(1 + λ)2 ≤ 1

2
(
(2− 2λ) + 2(1 + λ)

3
)3 =

1

2
(
4

3
)3 =

32

27
, c = (

32

27
)1/2,

for λ ∈ [0, 1], we get

M2 =
z3/2

(y2 + z2)3/4
· (x+ z)(z − x)1/2

z3/2
=

z3/2

(y2 + z2)3/4
(1 + λ)(1 − λ)1/2 ≤ c

z3/2

(y2 + z2)3/4
,

and estimate the factor using (8.32).
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C
1/2
y estimate. In this case, we get x1 = z1. Since f(x2, x1) = 1−f(x1, x2), |(a2, a1)| = |(a1, a2)|

|f(x1, x2)− f(z1, z2)||x− z|−1/2|w|1/2 = |f(x2, x1)− f(z2, z1)| · |x− z|−1/2|w|1/2,
the estimate of δ2(f, x, z) follows from the above C

1/2
x estimate. Note that we need to swap the

variables x1, x2. To bound δ2(f, x, z) using sinβ (8.64), we first assume x2 ≤ z2. Then we get
sinβ = z2

(x2
1+z

2
2)

1/2 . Since z1 = x1 and |w| ≤ |z|, we have

(8.67)

I =
∣∣∣ x22
x21 + x22

− z22
x21 + z22

∣∣∣ |w|1/2
|x− z|1/2 =

x21
x21 + x22

(z2 − x2)
1/2(z2 + x2)

x21 + z22
|w|1/2

≤ x21
x21 + x22

(
z2
|z|)

3/2 (z2 − x2)
1/2(z2 + x2)

z
3/2
2

=
x21

x21 + x22
(sin β)3/2(1− λ)1/2(1 + λ), λ =

x2
z2
.

We estimate
x2
1

x2
1+x

2
2
using (8.32), and (1 − λ)1/2(λ + 1) using the monotonicity of 1 − λ, 1 + λ,

piecewise bounds of λ ≤ 1, and (8.66).

8.9.3. Piecewise Hölder estimates of power. We estimate δi(f, x, y) for f(x) = |x|p, p = 1/2, 1.

Since f(x1, x2) = f(x2, x1), we consider C
1/2
x estimate. The C

1/2
y estimate can be obtained by

swapping the variables x1, x2. Without loss of generality, we assume y1 ≥ x1, x2 = y2. For each
variable a = x1, x2, y1, we assume a ∈ [al, au].

Using |y|2 − |x|2 = y21 − x21 = (y1 − x1)(y1 + x1) and a direct computation yields
(8.68)
|y|1/2 − |x|1/2
|x− y|1/2 =

|y|2 − |x|2
(|y|+ |x|)(|y|1/2 + |x|1/2)|y − x|1/2 =MM1, M ,

y1 + x1
|x|+ |y| , M1 =

|y1 − x1|1/2
|x|1/2 + |y|1/2 ,

|y| − |x|
|x− y|1/2 =

|y|2 − |x|2
|x− y|1/2(|x|+ |y|) =

|y1 − x1|1/2(x1 + y1)

|x|+ |y| = |y1 − x1|1/2M ≤ (yu1 − xl1)
1/2M.

Clearly, M(x1, y1, x2) is decreasing in x2. A direct computation yields

∂x1M =
|x|+ |y| − (x1 + y1)

x1

|x|
(|x|+ |y|)2 ≥ |x|+ |y| − (x1 + y1)

(|x|+ |y|)2 ≥ 0.

Similarly, ∂y1M ≥ 0. We get M(x1, y1, x2) ≤M(xu1 , y
u
1 , x

l
2).

Since y1 ≥ x1, for M1, we write M1 = (1−x1/y1)
1/2

(|x|/y1)1/2+(|y|/y1)1/2 . Since |y|/y1 is decreasing in y1

(8.32), M1 is increasing in y1. Clearly, M1(x1, y1, x2) is decreasing in x2, and decreasing in x1.
We get M1 ≤M1(x

l
1, y

u
1 , x

l
2).

For p ≥ 2 and b ≥ a, using the convexity of tp−1 for p− 1 ≥ 1 and Jensen’s inequality, we get

bp − ap = p

∫ b

a

tp−1dt ≤ p
b− a

2
(bp−1 + ap−1).

Using the above estimates, we get

|y|p − |x|p
|y − x|1/2 ≤ |y| − |x|

|y − x|1/2 · p
2
(|x|p−1 + |y|p−1).

We have estimated |y|−|x|
|y−x|1/2 in the above. Clearly, |x|, |y| are increasing in x1, x2, y1.

8.9.4. Piecewise Hölder estimates of weighted functions. Given F depending on the profile
ω̄, θ̄, ūN and radial weights f, g with leading power ra, rb, respectively, we estimate δi(Ff/g, x, z)
piecewisely. Using the decomposition (8.31), we get

F (x)f(r)/g(r) = F (x)fm(r)/gm(r)ra−b.

Using the C1 estimates of f, g, F, fm, gm, the Leibniz rule (A.7), and (8.20), we obtain
C1/2, L∞ estimates of Ff/g, Ffm/gm. Since the weights fm, gm are C1 in our applications
(see the discussions around (8.31)), the C1, C1/2 estimates of Ffm/gm are not singular. For
weights f, g singular near r = 0, we use the second identity and estimate the singular part ra−b.
If a− b = 0, 1/2, 1 or a− b ≥ 2, we use the C1/2 estimates in Section 8.9.3.
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Below, we discuss three special cases Ffm/gm|x|−1/2, F/|x|p, p = 5/2, 2 with F (0, y) = 0.

Estimate of Ffm/gm/|x|1/2. For F odd in x, near r = 0, we have F (x)fm/gmr
a−b ≈ xr−1/2,

which is C1/2. We perform C1/2 estimate on F (x)r−1/2, which along with the C1/2 estimate of

fm/gm and (8.20) give the desired estimate. Suppose that |x| ≤ |y| with x2 = y2 for the C
1/2
x1

estimate and x1 = y1 for the C
1/2
x2 estimate. A direct calculation yields

| F (y)
|y|1/2 − F (x)

|x|1/2 |
|xi − yi|1/2

≤ |F (y)− F (x)|
|y|1/2|xi − yi|1/2

+ |F (x)| ||x|
−1/2 − |y|−1/2|
|xi − yi|1/2

=
|F (y)− F (x)|

|xi − yi|
M

1/2
3 +

∣∣∣F (x)
x1

∣∣∣M4M5,

M3 =
|xi − yi|

|y| , M4 ,
x1

|x|1/2|y|1/2 , M5 ,
||y|1/2 − |x|1/2|
|xi − yi|1/2

, T1 =
|F (y)− F (x)|

|xi − yi|
, T2 =

F (x)

x1
.

Since F ∈ C1, we can estimate |F (y)−F (x)|
|xi−yi| piecewisely using the method in Appendix E.7

in Part II [1]. We use the estimate for M5 in Section 8.9.3 and the method in Section 8.9.1 to
estimate F (x)/x1 piecewisely. ForM3 with i = 1, since y1−x1 ≥ 0, x2 = y2, M3 is decreasing in

x1, x2. Since M3 = 1−x1/y1
(1+(y2/y1)2)1/2

, M3 is increasing in y1. Thus M3(x, y) ≤ M3(x
l
1, x

l
2, y

u
1 , x

l
2).

The estimate for M3 with i = 2 is similar M3(x, y) ≤M3(x
l
1, x

l
2, x

l
1, y

u
2 ).

In the C
1/2
x1 estimate, we get x2 = y2. For M4, using (8.32) and |y| ≥ |x|, we have two

estimates

M4 ≤ x1
|x| ≤

xu1
|(xu1 , xl2)|

, M4 = (
x1
|x| )

1/2(
x1
|y| )

1/2 ≤ (
xu1

|(xu1 , xl2)|
)1/2(

xu1
|(yl1, xl2)|

)1/2.

Near r = 0, we have a further improvement. Denote x1/y1 = λ ∈ [0, 1]. Since x1 ≤ y1 ≤
|y|, |x| ≤ |y|, from the above estimate and MM1 (8.68), we bound the upper bound as follows

M5 =
|y|1/2 − |x|1/2
|x− y|1/2 ≤MM1 ≤M1 ≤ (y1 − x1)

1/2

x
1/2
1 + y

1/2
1

=
(1− λ)1/2

1 + λ1/2
, M3 ≤ y1 − x1

y1
= 1− λ,

T1M
1/2
3 + T2M4M5 ≤ T1(1− λ)1/2 + T2

x
1/2
1

y
1/2
1

M5 ≤ (1− λ)1/2(T1 +
T2λ

1/2

1 + λ1/2
) ≤ (1 − λl)

1/2(T u1 +
λ
1/2
u T u2

1 + λ
1/2
l

).

We partition λ ∈ [0, 1] and use the above estimate to obtain an uniform upper bound for
λ ∈ [0, 1].

In the C
1/2
x2 estimate, we get x1 = y1 andM4 = ( x1

|x|)
1/2( y1|y| )

1/2, which can be estimated using

(8.32). We also have a direct estimate for F (x)/x1M4 using the piecewise bound of F (x)

|F (x)/x1M4| ≤ |F (x)||(xl1, xl2)|−1/2|(yl1, yl2)|−1/2.

We bound M5 using previous method and then obtain the bound for F (x)/x1M4M5.

Estimate of F/|x|p, p = 2, 5/2. The power rp, p = 5/2, 2 is the leading power in the Hölder
weight ψi. In this case, our function satisfies F = O(r3) near r = 0 and we have piecewise C3

bounds of F . To estimate the C1/2 norm of F/r5/2, using the above estimate with g = F/r2, we
only need to estimate the Lipschitz norm of g, and the L∞ norm of g/x and F/r5/2. Using the
Taylor expansion and the method in Appendix E.5 in Part II [1], we can control F/r5/2, F/r2/x1.
To estimate the C1 bound, we use

∂x(F/r
2) =

Fx
r2

− 2Fx

r4
, ∂y(F/r

2) =
∂yF

r2
− 2Fy

r4
,

and estimate two terms separately using the method in Appendix E.5 in Part II [1].

Appendix A. Parameters, explicit functions, and basic estimates

A.1. Parameters and some functions. Recall the following cutoff functions constructed and
estimated in Appendix D.2 in Part II [1]

(A.1) κ(x; ν1, ν2) = κ1(
x

ν1
)(1−χe(

x

ν2
)), κ1(x) =

1

1 + x4
, χe(x) =

(
1+exp(

1

x
+

1

x− 1
)
)−1

.
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For the cutoff functions in (8.6) in Section (8.1.1), and χj,2, fχ,j , we choose

(A.2)

χε̄(x, y) = κ(x; νε̄,1, νε̄,2)κ(y; νε̄,1, νε̄,2), νε̄,1 = 1/192, νε̄,2 = 3/2,

χε̂(x, y) = κ∗(x)κ∗(y), κ∗(x) = κ(x, 1/3, 3/2), χNF (x, y) = κ(x; 2, 10)κ(y; 2, 10),

fχ,1 = ∆(
xy3

6
χNF (x, y)), fχ,2 = xyχNF (x, y), fχ,3 =

x2

2
χNF (x, y).

We use the following parameters for the energy (8.2)

(A.3)

τ1 = 5, µ1 = 0.668, µ2 = 1.336, µ4 = 0.065, τ2 = 0.23,

µ5 = 76, µ51 = 61, µ52 = 15, µ6 = 61, µ62 = 35.88,

µ7 = 9.5, µ8 = 4.5, E∗ = 5 · 10−6, µh = τ−1
1 (1, µ1, µ2), µg = τ2(µ4, 1, 1).

Recall from Appendix C.1 in Part I [3] the following Hölder weight

(A.4)
gi(h) = gi0(h)gi0(1, 0)

−1, gi0(h) = (
√
h1 + qi1h2 + qi3

√
h2 + qi2h1)

−1,

~q1, = (0.12, 0.01, 0.25), ~q2, = (0.14, 0.005, 0.27), ~q3, = ~q2,.

A.2. Basic piecewise estimates. Denote by fl, fu the lower and upper bound of f . We have

(A.5)
(f − g)l = fl − gu, (f − g)u = fu − gl, (f + g)γ = fγ + gγ ,

(fg)l = min(flgl, fugl, flgu, fugu), (fg)u = max(flgl, fugl, flgu, fugu),

where γ = l, u. If g ≥ 0, we can simplify the formula for the product

(A.6)
(fg)l = min(flgl, flgu), (fg)u = max(fugl, fugu),

(f/g)l = min(fl/gl, fl/gu), (f/g)u = max(fu/gl, fu/gu).

Given the piecewise bounds of the derivatives of f, g, using the Leibniz rule

(A.7) ∂ix∂
j
y(fg) =

∑

k≤i,l≤j

(
i

k

)
∂kx∂

l
yf · ∂i−kx ∂j−ly g,

and (A.5), (A.6), we can estimate the piecewise bounds of ∂ix∂
j
y(fg).

We have the following simple linear error estimates (see, e.g. Appendix C.2 in Part II [1])

(A.8)

max
x∈[xl,xu]

|f(x)| ≤ max(|f(xl)|, |f(xu)|) + h2||fxx||L∞(I)/8, h = xu − xl,

min
α,β=l,u

f(xα, yβ)− erri ≤ f(x) ≤ max
α,β=l,u

f(xα, yβ) + erri, i = 1, 2,

err1 = (||fx||L∞(Q)h1 + ||fy||L∞(Q)h2)/2, err2 = (||fxx||L∞(Q)h
2
1 + ||fyy||L∞(Q)h

2
2)/8.
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