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Abstract: Singularity formation of the 3D incompressible Euler equations is known
to be extremely challenging (Majda and Bertozzi in Vorticity and incompressible flow,
Cambridge University Press, Cambridge, vol 27, 2002; Gibbon in Physica D 237(14):1894–
1904, 2008; Kiselev, in: Proceedings of the international congress of mathematicians,
vol 3, 2018; Drivas and Elgindi in EMS Surv Math Sci 10(1):1–100, 2023; Constantin
in Bull Am Math Soc 44(4):603–621, 2007). In Elgindi (Ann Math 194(3):647–727,
2021) (see also Elgindi et al. in Camb J Math 9(4), 2021), Elgindi proved that the 3D
axisymmetric Euler equations with no swirl and C1,α initial velocity develops a finite
time singularity. Inspired by Elgindi’s work, we proved that the 3D axisymmetric Euler
and 2D Boussinesq equations with C1,α initial velocity and boundary develop a stable
asymptotically self-similar (or approximately self-similar) finite time singularity (Chen
and Hou in Commun Math Phys 383(3):1559–1667, 2021) in the same setting as the Hou-
Luo blowup scenario (Luo and Hou in Proc Natl Acad Sci 111(36):12968–12973, 2014;
Luo and Hou in SIAM Multiscale Model Simul 12(4):1722–1776, 2014). On the other
hand, the authors of Vasseur and Vishik (Commun Math Phys 378(1):557–568, 2020)
and Lafleche et al. (Journal de Mathématiques Pures et Appliquées 155:140–154, 2021)
recently showed that blowup solutions to the 3D Euler equations are hydrodynamically
unstable. The instability results obtained in Vasseur and Vishik (2020) and Lafleche et
al. (2021) require some strong regularity assumption on the initial data, which is not sat-
isfied by the C1,α velocity field. In this paper, we generalize the analysis of Elgindi (Ann
Math 194(3):647–727, 2021), Chen and Hou (Commun Math Phys 383(3):1559–1667,
2021), Vasseur and Vishik (2020) and Lafleche et al. (2021) to show that the blowup
solutions of the 3D Euler and 2D Boussinesq equations with C1,α velocity are unstable
under the notion of stability introduced in Vasseur and Vishik (2020) and Lafleche et
al. (2021). These two seemingly contradictory results reflect the difference of the two
approaches in studying the stability of 3D Euler blowup solutions.
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1. Introduction

Whether the 3D incompressible Euler equations can develop a finite time singularity
from smooth initial data with finite energy is one of the most challenging open questions
in nonlinear partial differential equations [20,25,37,45,51]. In [49,50], the authors pro-
vided convincing numerical evidence that the 3D incompressible Euler equations with
smooth initial data and boundary develop a finite time singularity. This work has inspired
a number of subsequent theoretical studies,see e.g. [11,15–18,29,31,43,44]. Inspired by
Elgindi’s seminal work on singularity formation of the 3D axisymmetric Euler equations
with no swirl and C1,α velocity [26], we have proved rigorously that the axisymmetric
Euler and the 2D Boussinesq equations with C1,α initial velocity of finite energy and
boundary develop a stable asymptotically self-similar (or approximately self-similar)
finite time singularity [11]. There has been some important progress on singularity
formation and small-scale creation in incompressible fluids. We refer to [25,45] for ex-
cellent surveys. On the other hand, in two recent papers [46,64], the authors showed
that blow-up solutions to the 3D Euler equations are hydrodynamically unstable. The
instability results obtained in [46,64] require some strong regularity assumption on the
initial data, which is not satisfied by the C1,α velocity. In this paper, we generalize the
analysis of [11,26,27,46,64] to prove that the C1,α blowup solutions of the 3D Euler
and the 2D Boussinesq equations [11,26,27] are unstable under the notion of stability
introduced in [46,64].

These two seemingly contradictory results reflect the difference of the two approaches
in studying the stability of singular solutions to the 3D Euler equations. The stability
analysis in [46,64] is based on the linearized Euler equations around a blowup solution
in the original physical variables. However, the perturbed solution of the linearized Euler
equations is completely different from the perturbed solution of the original 3D Euler
equations using a perturbed initial condition. To demonstrate this point, if the perturbed
initial condition leads to a blowup time T∗ that is smaller than the blowup time T of the
background blowup solution, i.e. T∗ < T , the perturbed solution of the linearized Euler
equations would not be able to capture this effect and will remain regular for t ∈ [T∗, T ).
This seems to be one of the main sources of instability induced by the framework of
studying stability of a singular solution to the 3D Euler equations using the linearized
Euler equations. See more discussion on mechanisms of instability in Sect. 1.2. Note
that the blowup time T∗ depends nonlinearly on the perturbed initial data [11,27].

The nonlinear stability of the asymptotically self-similar (or approximately self-
similar) blowup profile using the dynamic rescaling formulation [11,13,47,54] is very
different from the linear stability performed in [46,64] and mentioned above. The method
based on this formulation first involves a nonlinear transform of the physical equations
by rescaling the solution dynamically in the spatial and the temporal variables, and
then performs linearization around an approximate blowup profile and stability analysis
in the reformulated equations. Since the linearization is performed after we make this
nonlinear transform, the linear stability under this framework captures some nonlinear
behaviors of the original physical equations. This approach allows us to incorporate
the changes of the blowup time, the blowup profile and the blowup exponent (see β

below) by choosing suitable rescaling parameters that come from the scaling symmetry
of (1.1) or (1.5). Note that the dynamic rescaling formulation is closely related to the
modulation technique [42,58], which has also been used to establish nonlinear stability
of the blowup profile of 3D Euler [26,27].

We remark that the authors of [46] also studied the profile instability of a self-
similar blowup solution to the 3D Euler equations in [46]. More specifically, given a
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background self-similar blowup solution u(x, t) = (T − t)αU (t, x
(T−t)β

), the authors
assumed that the perturbed solution of the linearized equation (1.2) takes the same form
v(x, t) = (T − t)αV (t, x

(T−t)β
). Thus, the perturbed solution of the linearized equation

does not capture the change in the blowup time and the dynamic changes of the rescaling
rate of the perturbed profile and the blowup exponent β of the original 3D Euler equations
using a perturbed initial condition.

The 3D incompressible Euler equations read

ut + u · ∇u = −∇ p, ∇ · u = 0, (1.1)

where u is the velocity field and p is the scalar pressure. In [64], the authors studied the
stability of a singular solution u(t) of the 3D Euler equations by analyzing the growth
of the perturbation v(t) using the following linearized Euler equations around u(t):

vt + u · ∇v + v · ∇u + ∇q = 0, ∇ · v = 0. (1.2)

In a subsequent paper [46], the authors generalized their earlier results to the axisym-
metric Euler equations. Recall that a vector field f (x) is axisymmetric [51] if it can be
represented as

f (x) = f r (r, z)er + f ϑ(r, z)eϑ + f z(r, z)ez, (1.3)

where (r, ϑ, z) are the cylindrical coordinates with basis er = (cos ϑ, sin ϑ, 0), eϑ =
(− sin ϑ, cos ϑ, 0), ez = (0, 0, 1). For a solution u with axisymmetric initial data u0, the
axisymmetry property is preserved dynamically by the Euler equations (1.1).

1.1. Main results. We consider singular solutions u to (1.1) in a domain D with the
following symmetry in z

u = ur er + uϑeϑ + uzez, ur , uϑ are even in z, uz is odd in z. (Sym)

Denote by X the set of axisymmetric functions with symmetry given in (Sym),
H1
X (D) = H1(D)∩ X . Let v be the solution of the linearized Euler equations (1.2) with

initial data v0. Following [46], we define the growth factors λp,σ,D(t) and λ
sym
p,σ,D(t) as

follows:

λp,σ,D(t) = sup
v0∈H1(D)∩Y,v0 �=0

||r−σv(t, ·)||L p(D)

||r−σv0||L p(D)

,

λ
sym
p,σ,D(t) = sup

v0∈H1
X (D)∩Y,v0 �=0

||r−σv(t, ·)||L p(D)

||r−σv0||L p(D)

, Y = L p,

σ ≤ σp, Y = H1(D), σ > σp,

(1.4)

where σp = − 2(p−1)
p . The functional spaces, e.g. the weight r−σ and L p norm, in

the above definitions are the same as those in [46]. If σ ≤ σp, we further restrict the
initial data to v0 ∈ L p so that r−σ v(t, ·) ∈ L p(D) for a domain D with bounded r .
See Remark 1.1 for more discussions about the spaces. We note that if one measures
the growth in a norm X stronger than L p, it is not difficult to prove instability. See
Sect. 2.4 for more discussion. We also refer to [46,64] for the motivations of the above
definition of instability. Note that restricting v0 to a smaller class of functions only makes
the growth factor smaller. In particular, we have λ

sym
p,σ (t) ≤ λp,σ (t) since H1

X (D) is a
subclass of axisymmetric functions in H1(D).
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In the first main result, we consider (1.1) in a cylinder D = {(r, z) : r ≤ 1, z ∈ T}
periodic in z (axial direction) with period 2, where r is the radial variable and T =
R/(2Z). This setting is the same as that in [11,49,50]. We prove that the blowup solution
constructed in [11] is linearly unstable under the notion of stability introduced in [46],
even in the symmetry class (Sym).

Theorem 1. There exists α0 > 0 such that for any 0 < α < α0, the 3D axisymmetric
Euler equations (1.1) in the cylinder (r, z) ∈ [0, 1] × T develops a singularity at finite
time T∗ from someC1,α initial datau0 with finite energy.Moreover, there exists R2,α < 1

4 ,
such that the solution u (1.3) satisfies ur , uz, uϑ ∈ L∞([0, T ],C50(�)) for any compact
domain� ⊂ {(r, z) : r ∈ (0, 1), z �= 0}∩ B(1,0)(R2,α) and T < T∗. For any p ∈ [1,∞)

and σ < 2
p , we have

lim
t→T∗

λ
sym
p,σ,D(t) = ∞.

Note that the range of σ is larger than that in [46]. We can prove this range of σ since
the singular solution [11] is supported near (r, z) = (1, 0), which allows us to construct
an unstable solution with fast growth near (r, z) = (1, 0). In such a region, the weight
r−σ in (1.4) is essentially equal to 1.

In the second main result, we consider the singular solution in R
3 constructed by

Elgindi [26] (see also [27]) and prove a similar instability result for a smaller range of
parameter σ < −1.

Theorem 2. There exists α0 > 0 such that for any 0 < α < α0, the 3D axisymmetric
Euler equations (1.1) inR

3 develops a singularity at finite time T∗ from some C1,α initial
data u0 with finite energy and without swirl. Moreover, the solution u (1.3) satisfies uϑ ≡
0, ur , uz ∈ L∞([0, T ],C50(�)) for any compact domain � ⊂ {(r, z) : r > 0, z �= 0}
and T < T∗. For any p ∈ (2,∞) and σ ∈ (− 2(p−1)

p ,−1), we have

lim
t→T∗

λ
sym
p,σ,R3(t) = ∞.

Note that for p ∈ [1, 2], the interval (− 2(p−1)
p ,−1) is empty.

Remark 1.1. We remark that for general σ, p and solution v to the linearized Euler
equations (1.1) from smooth initial data v0, v may not remain in the weighted space
r−σ v ∈ L p locally in time. For σ ∈ (− 2(p−1)

p , 2
p ), p ≥ 1, which covers the range of

(p, σ ) in Theorem 2 and part of the range in Theorem 1, the existence and uniqueness of
solution to (1.2) in the class C0([0, T ), X), X = {v ∈ H1, vr−σ ∈ L p} is established
in Lemma 4.1 [46], where T is the blowup time of u. In the setting of Theorem 1
with σ ≤ − 2(p−1)

p ≤ 0, since r ≤ 1 in the cylindrical domain, v0 ∈ L p (1.4), and

||vr−σ ||L p � ||v||L p < +∞, v remains in C0([0, T ), X ∩ L p). We assume v0 ∈ H1 in
(1.4) to use the existence and uniqueness result to (1.2) [41,46,64]. Note that to solve the
linearized equations (1.2), the regularity of the data v0 +u can be weaker than Hs, s > 3

2
or C1,α, α > 0, in which we have local well-posedness for 3D Euler (1.1).

Next, we generalize the instability results to the 2D Boussinesq equations in R
+
2

ωt + u · ∇ω = θx , θt + u · ∇θ = 0, (1.5)
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where the velocity field u = (u, v)T : R
2
+ × [0, T ) → R

2
+ is determined via the Biot-

Savart law
−
ψ = ω, u = −ψy, v = ψx , (1.6)

with no flow boundary condition v(x, 0) = 0. Given a singular solution (θ,u), the
linearized equations of (1.5) in the velocity-density formulation around (θ,u) read

∂tη + u · ∇η + v · ∇θ = 0,

∂tv + u · ∇v + v · ∇u + ∇q = −(0, η)T , div v = 0.
(1.7)

Denote w = (η, v) and define

γ
sym
p (T ) = sup

||w0||L p≤1
||w||L p , with ||w||L p ∼ ||η||L p + ||v||L p ,

with the symmetry property that v1(x, y) is odd in x and v2(x, y), η0 are even in x .
Building on the instability result for Boussinesq equations in R

2 [63], we have the
following instability result for the singular solution constructed in [11].

Theorem 3. There exists α0 > 0 such that for 0 < α < α0, the 2DBoussinesq equations
(1.5) in D = R

+
2 develops a singularity at finite time T∗ from some initial data ω0 ∈

Cα
c (R2

+), θ0 ∈ C1,α
c (R2

+). The initial data satisfy that ω0(x, y) is odd in x, θ0(x, y)
is even in x, and u0 has finite energy ||u0||2 < +∞. Moreover, the solution satisfies
(u, θ) ∈ L∞([0, T ],C50(�)) for any T < T∗ and any compact domain � ⊂ {(x, y) :
x �= 0, y > 0}. For any p ∈ (1,∞), we have

lim
t→T∗

γ
sym
p (t) = ∞.

For the same C1,α blowup solution to these equations in Theorems 1–3 , stability of
the asymptotically (or approximately) self-similar blowup profile has been established in
[11,26,27] using the dynamic rescaling formulation [47,54] or the modulation technique
[42,58]. In [11,26,27], a typical example of stability estimates is the following. There
exist B(τ ) → ∞, A(τ ) → ∞, t (τ ) increasing with limτ→∞ t (τ ) < +∞ such that a
rescaled version of the vorticity ω satisfies

ω(x, t (τ )) = A(τ )�(B(τ )x, τ ), ||�(τ) − �̄||X � ||�̄||X ,

for all τ > 0 in some suitable norm X stronger than L∞. See Theorem 6 for a precise
stability statement for a model problem.

Regularity of the singular solution. In [46,64], instability results similar to Theorems
1, 2 are established for singular solutions u satisfying

u ∈ C0([0, T ), Hs(�)) ∩ C1([0, T ), Hs−1(�)), (1.8)

with s > 7
2 , where � is the domain of the equation. See hypothesis (H1) and Theorem

1 in [46]. Using Sobolev embedding, one obtains that u(t) ∈ C0([0, T ),C2(�)). See
more discussions on this regularity assumption in Sect. 1.3. We remark that the singular
solutions u constructed in [11,26,27] and considered in Theorems 1, 2 do not satisfy the
above assumption, and these results are not covered by the proof [46].

The estimates in [11,26,27] imply that for fixed t < T , the angular vorticityωθ(t, r, z)
satisfies

ωθ(t) = ω̄θ (t) + ω̃θ (t), |ω̄θ (t, d + r0, d)| � dα, |ω̃θ (t, sd + r0, d)| � dα+ε,
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for 0 < d � 1 and ε > 0, where (r0, s) = (0, 1) in [26] or (r0, s) = (1,−1) in [11].
As a result, ωθ is not in Cβ, β = α + min( ε

2 , α) < 1
2 , and u is not in C1,β . For the same

reason, the singular solution considered in Theorem 3 does not satisfy the regularity
assumptions in [63].

1.2. Comparison of the stability and instability results. Given that the same blowup so-
lution of the 3D Euler equations can be both linearly unstable under one definition and
nonlinearly stable under a different definition, it is important to have a better understand-
ing how we define stability and how to quantify instability. First of all, we would like to
emphasize that the instability results in Theorems 1–3 measure the absolute instability,
i.e. the growth of the perturbation relative to the initial perturbation. This rapid growth
is not surprising since the background singular solution u blows up and contributes to a
singular forcing term v · ∇u to the linearized equations (1.2), which is the driving force
for instability. If one measures the growth in a norm X stronger than L∞, the insta-
bility result follows directly from the blowup criterion. See Sect. 2.4. This mechanism
of instability can be captured by the following simple linear model with a unbounded
coefficient

∂t u(t, x) = a(t, x)u(t, x),
∫ T

0
a(s, x0)ds = +∞,

for some x0. Such instability is quite common in several nonlinear PDEs. In Sect. 2, we
will use a nonlinear PDE of Riccati type and the inviscid Burgers’ equation to show that
a similar forcing term generates linear instability for these equations.

The mechanism of instability considered in Theorems 1–3 is not due to the violation
of or breaking certain symmetry conditions for the solutions. In fact, the perturbation in
Theorems 1–3 satisfies the same symmetry as the blowup solution, e.g. (Sym). Moreover,
it is not related to an unstable eigenfunction of certain linearized operator. The instability
result in Sect. 2.4 further demonstrates these points. Note that the linearized operatorL(t)
in (1.2) is time-dependent with coefficients blowing up. For nonlinear 3D Euler equations
(1.1), there are different mechanisms of instability due to the scaling symmetries and
time-invariance of the equations. These instabilities can be modulated by performing
suitable time-dependent rescaling. See discussions below Theorem 5.

We believe that it is more reasonable to study the relative stability or instability,
which measures the relative growth of the perturbation compared with the growth of the
background singular solution. More importantly, the nonlinear stability results presented
in [11,26,27] quantify the relative stability: for a small initial perturbation to the blowup
profile, some weighted norm X of the perturbation remains relatively small up to the
blowup time. These estimates and the embedding inequalities imply that the growth of
the perturbation of the vorticity ||ω̃||L∞ remains much smaller than the growth of the
blowup solution ||ω||L∞ up to the blowup time. Moreover, this stability result implies
that for a small initial perturbation, the change of the blowup time T∗ is very small.
Thus, one can perform reliable numerical computations to provide compelling evidence
of finite time blowup [38–40,49,50].

Studying stability of the blowup based on the self-similar variables, dynamic rescaling
formulation, or the modulation technique has been used in many other equations, such as
the nonlinear heat equations [58], the Burgers’ equation [19,60], the complex Ginzburg-
Landau equation [53,62], the nonlinear Schrödinger equation [55], the generalized KdV
equation [52], compressible fluids [3,4], and incompressible fluids [9,11,13,26]. On the
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other hand, there are some instability results of the blowup based on these approaches.
For example, the authors in [19,60] proved that many blowup profiles of the 1D Burg-
ers’ equation have a finite number of unstable directions. See also the blowup of the
nonlinear Schrödinger equation [56], incompressible fluids [32], compressible fluids
[57] with finitely many potential unstable directions, and further numerical investiga-
tion of the instability [2]. The (potential) instability in [19,32,57,60] is due to unstable
eigenfunctions of a linearized operator around the blowup profile in the equations of the
self-similar variables. It is different from that in Theorems 1–3.

After the completion of this work, there has been substantial progress on singularity
formation of 3D Euler equations. In [9,13], we have established finite time blowup of 2D
Boussinesq and 3D Euler equations with boundary from smooth initial data by proving
the nonlinear stability of the blowup profile in the dynamic rescaling equations. This
result also demonstrates that the concepts of stability based on self-similar variables
and that in [46,64] are different. In [32,33], Elgindi-Pasqualotto established blowup
of 2D Boussinesq and 3D Euler equations (with large swirl) with C1,α velocity and
without boundary. In [22], Cordoba-Martinez-Zoroa-Zheng developed a new method
different from the above self-similar approach to establish blowup of Euler equations
with u(t) ∈ C∞(R3\O) ∩ C1,α ∩ L2. In [8], the first author proved that such a blowup
result can also be established by the self-similar approach. By adding an external force
f uniformly bounded in C1,1/2− up to the blowup time, the authors of [21] established
blowup of 3D Euler with smooth velocity.

1.3. Main ideas in the instability analysis. There are several main ideas in proving
the main instability results stated in Theorems 1, 2. One of the main difficulties in
proving Theorems 1, 2 is to relax the regularity assumptions in the arguments [46,
64] by using the properties of the singular solutions in [11,26]. We then construct an
axisymmetric approximate solution to (1.2) and follow the arguments in [46] to prove
the main theorems.

For the 2D Boussinesq equations, we use ideas similar to the 3D Euler equations
to relax the regularity assumption in [63] and then apply the argument in [63] to prove
Theorem 3.

Relaxing the regularity assumption. In [46], the regularity assumption u ∈
C0([0, T ), Hs) ∩ C1([0, T ), Hs−1) with s > 7

2 (1.8) is to ensure

(a) the solvability of the bicharacteristics-amplitude ODE system [35,46,64];
(b) that the poloidal component of the vorticity ωp = ωr er +ωzez satisfies 1

ra ωp ∈ L∞
for some a > 0, which is used in [46] to connect the blowup criteria with the
instability.

To relax the regularity assumption for (a), we make an important observation that the
singular solution u constructed in [11,26] is smooth away from the symmetry axis
and the boundary. The C1,α low regularity is used essentially near the singularity, the
symmetry axis, and the boundary to weaken the advection. The higher-order interior
regularity of the solution u can be propagated by using careful higher-order weighted
energy estimates and the elliptic estimates with weights degenerated near the symmetry
axis and the boundary [11,26]. In particular, in a compact interior domain, the weighted
energy norms are comparable to the standard Sobolev norms, which allows us to establish
higher-order interior regularity of the solution using the embedding inequalities. See
Theorems 7–9.
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Using the higher-order interior regularity, we can solve the bicharacteristics-amplitude
ODE system, which is local in nature, in the interior of the domain and construct smooth
solution to the modified bicharacteristics-amplitude ODE system. See Lemma 3.2 and
Proposition 3.4 .

Remark 1.2. In [11], we proved blowup of the 3D axisymmetric Euler equations with
initial data (uϑ

0 )2, ur0, u
z
0 ∈ C1,α, ωϑ

0 ∈ Cα . Though the velocity ur , uz in the axisym-
metric setting is C1,α , our interpretation that the velocity is C1,α is not correct since uϑ

is not C1,α . This oversight can be fixed easily with minor changes in the construction of
the approximate steady state and the truncation of the approximate steady state. These
changes do not affect the nonlinear stability estimates of the 3D Euler equations, see
[14] and the updated arXiv version of [11].

Blowup quantities. An important step in [46,64] is to show that the growth factor
λp,σ (1.4) controls ||ω||∞, which blows up for a singular solution [1]. The singular
solutions in [11,26] are self-similar or approximately self-similar. There are several
blowup quantities other than ||ω||∞. By comparing some blowup quantities and the
growth factor λp,σ (1.4), we can simplify the proof in [46] and further relax some
constraints. For example, in the proof of Theorem 1, we use the property that ||ωp ||∞ (the
poloidal component) blows up and thus do not need the blowup criterion on ||ωp/ra ||∞
for some a > 0 established in [46]. This relaxes the condition (b).

The singularity considered in [26] develops near the axis r = 0 and has zero swirl
uθ ≡ 0, which implies ωp ≡ 0. Thus we cannot follow the argument in [46] to prove
Theorem 2. Instead, we use the bicharacteristics-amplitude ODE system and the flow
structure near the singularity in [26] to show that the growth λσ,p(t) controls another
blowup quantity.

Axisymmetric velocity. Another important step in proving Theorems 1 and 2 is to
construct an axisymmetric solution to (1.2). We remark that the initial data of (1.2) con-
structed in [46] is not axisymmetric under the canonical notion (1.3) [51], see Remark
3.5 for more discussions. We use the PDE (Eulerian) form of the bicharacteristics-
amplitude ODE system to construct the amplitude b(t, x) and the phase S(t, x) in the
WKB construction of the approximate solution to (1.2). The initial data b(0, x), ξ(0, x)
are axisymmetric flows in the whole domain, which are constructed by extending some
constant initial data b0, ξ0 = ∇S0 ∈ R

3 of the bicharacteristics-amplitude ODE system.
The axisymmetry properties of b(t, x), ξ(t, x) are preserved dynamically by the equa-
tions. We further show that b(t, x) controls the solution to the bicharacteristics-amplitude
ODE system and captures the growth of the vorticity. Based on these functions, we con-
struct the axisymmetric velocity using the formula in [46,64].

Symmetry of the unstable solution. The singular solutions constructed in [11,26] are
symmetric with respect to some axis, e.g., (Sym), and the flow does not cross the sym-
metry axis or the symmetry plane. This allows us to first construct an unstable solution
in the upper half domain following [46], and then extend it naturally to a symmetric
solution to the linearized Euler equations using linear superposition. Therefore, we can
further restrict the perturbation in (1.4) to the natural symmetry class.

The rest of the paper is organized as follows. In Sect. 2, we use several nonlinear PDEs
to demonstrate the difference between the notion of stability introduced in [46,64] and
the stability based on dynamically rescaling formulation. Section 3 is devoted to proving
the main theorems of this paper. Some important properties that we use in proving the
main theorems will be established for the 2D Boussinesq equations in Sect. 4 and for the
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3D Euler equations in Sects. 5, respectively. Some derivations and lemmas are deferred
to the Appendix.

2. Comparison of Stability Versus Instability Through Several Nonlinear PDEs

In this section, we will use several examples to demonstrate that under the notion of
stability introduced in [64], linear instability of a blowup solution is quite common in
several nonlinear equations, even for those nonlinear equations whose blowup solutions
can be shown to be nonlinearly stable using a suitable functional space and the dynamic
rescaling formulation.

2.1. A nonlinear Riccati PDE and the inviscid Burgers’ equation. In the next two sub-
sections, we first study the blowup solutions of the inviscid Burgers’ equation

∂t u + uux = 0, x ∈ R (2.1)

and then a nonlinear PDE of Riccati type

∂t u(t, x) = u2(t, x), x ∈ R. (2.2)

We will show that the blowup solutions to (2.1), (2.2) are unstable in Theorems 4, 5
under the notion of stability introduced in [64]. In Sect. 2.2, we will use (2.2) to illustrate
the importance of studying the stability of the asymptotically (or approximate) self-
similar blowup profile using suitable rescaling and renormalization rather than studying
the stability of the blowup solution itself. Following [64], we define the growth factor

λp(t) = sup
v0 �=0,v0∈L p

||v(t)||L p

||v0||L p
(2.3)

for the solution v to the linearized equations of (2.1) or (2.2) around a singular solution.
It is well-known that the Burgers’ equation (2.1) blows up (develops a shock) in finite

time T∗ for initial data u0 ∈ C∞
c satisfying u0(0) = 0 and that ∂xu0 is minimal at 0 with

∂xu0(0) < 0. Let v be a solution to the linearized equation of (2.1) around the blowup
solution u

vt + ∂x (uv) = vt + uvx + uxv = 0. (2.4)

It has been shown in [64] that the blowup is linearly stable in L1 in the sense that
λp(t) ≤ 1 (2.3) up to the blowup time. However, this stability result does not generalize
to L p with p > 1. In particular, we have the following instability result.

Theorem 4. Suppose that the initial data u0 ∈ C1 of (2.1) satisfies that u0(0) = 0,
∂xu0 is minimal at 0 with ∂xu0(0) < 0. Then the solution u blows up in finite time
T∗ = − 1

u0,x (0)
. Moreover, for any p ∈ (1,∞), we have

lim
t→T∗

λp(t) → ∞.

Since ux in (2.4) blows up, it is not surprising that v(t) can blow up in some L p

norm. Below, we localize v to the region where −ux blows up to show that v can grow
rapidly. On the other hand, the stability of the blowup profile of (2.1) has been studied
in details in [19] using the modulation technique.
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Proof. Fix T < T∗ = − 1
u0,x (0)

= 1
|u0,x (0)| . It is easy to obtain that u(t, 0) = 0 for any

t < T∗. Note that ux (t, 0) satisfies the ODE

∂t ux (t, 0) = −(ux (t, 0))2, u0,x (0) < 0, ux (t, 0) = −|u0,x (0)|
1 − t |u0,x (0)| = − 1

T∗ − t
,

(2.5)
where we have used T∗ = |u0,x (0)|−1 in the last equality. It follows from the blowup
result and ux (t, 0) ≤ u0,x (0) < 0. Since u(t) ∈ C0([0, T ],C1), there exists δ > 0 such
that

ux (t, x) ≥ −1

2
ux (t, 0) > 0, x ∈ [−δ, δ], (2.6)

for any t ≤ T , which implies

u(t, x) ≤ 0, x ∈ [0, δ], u(t, x) ≥ 0, x ∈ [−δ, 0], (2.7)

for any t ≤ T . Consider v0 ∈ C∞, v0 �= 0, supp(v0) ⊂ [−δ, δ]. Due to (2.7), supp(v(t))
remains in [−δ, δ] for t ≤ T . Performing L p estimate on (2.4) and using integration by
parts, we obtain

1

p

d

dt
||v||pL p =

∫
R

−(uv)x · |v|p−2vdx =
∫
R

−ux |v|p − uvx |v|p−2vdx

=
∫
R

−ux |v|p +
1

p
ux |v|pdx .

Since supp(v(t)) ⊂ [−δ, δ], using (2.6), we further obtain

1

p

d

dt
||v||pL p = (1 − 1

p
)

∫
[−δ,δ]

−ux |v|pdx ≥ (1 − 1

p
)
−ux (t, 0)

2

∫
[−δ,δ]

|v|pdx

= (1 − 1

p
)
−ux (t, 0)

2
||v||pL p .

Solving the above ODE and using (2.5), we prove

||v(T )||L p ≥ ||v0||L p exp
(1

2
(1 − 1

p
)

∫ T

0
−ux (t, 0)dt

)

= ||v0||L p exp
(

− 1

2
(1 − 1

p
) log(T∗ − T )

)
.

From the definition of λp(t), we yield

λp(T ) ≥ exp
(

− 1

2
(1 − 1

p
) log(T∗ − T )

)
= (T∗ − T )

− 1
2 (1− 1

p )
.

Since p > 1, taking T → T∗, we obtain the desired result. ��
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2.2. The Riccati-type PDE. It is easy to show that if the initial data u0 of (2.2) satisfies
max(u0) > 0, the PDE blows up at finite time T (u0) = 1

max(u0)
. Moreover, the equation

can develop a self-similar blowup

ū(t, x) = 1

1 − t + x2 = 1

1 − t
Ū (

x

(1 − t)1/2 ), Ū = 1

1 + x2 . (2.8)

The linearized equation around the blowup solution ū (2.2) reads

∂tv = 2ūv. (2.9)

Denote Pε

Pε � {u : u = C(Ū + V0), C > 0, |V0| ≤ ε min(1, |x |3)}. (2.10)

We will study the stability of the blowup solution of (2.2) for initial data in Pε. Let us
motivate the class Pε. For initial data u0 close to (2.8), we have u0(x) = u0(0)u1(x)
with u1(0) = 1 and u1 being a perturbation of Ū . Since the solution u first blows up
at arg max u0 and Ū (x) = 1 − x2 + O(x4) near x = 0, we require that V0 vanishes to
higher order O(|x |3) near x = 0 and ε is small so that the maximum of u0 does not shift.

To further study the instability of the blowup profile Ū (2.8) to (2.2), we consider the
following ansatz of the linearized solution (2.9) and the rescaled growth factor �p(t)
similar to that for the 3D Euler equations in [46]

v(t, x) = 1

1 − t
V (

x

(1 − t)β
, t), β = 1

2
, �p(v, t) = ||V (t)||L p

||V0||L p
. (2.11)

Since the blowup exponent 1
1−t is factored out, �p can be seen as measuring the relative

linear instability between V and the background profile Ū (2.8), while λp (2.3) measures
the absolute linear instability. We have the following instability results.

Theorem 5. For any v0 ∈ C0
c with v0(0) > 0 and any p ∈ [1,∞], we have

||v(t)||L p � C(v0, p)(1 − t)−2+ 1
2p , lim

t→1
||v(t)||p = ∞, lim

t→1

||v(t)||L p

||u(t)||L p
= ∞.

As a result, we have λp(t) → ∞,�p(v, t) → ∞ as t → 1.

In the above theorem, we can choose perturbation v0 with u0 = ū + v0 ∈ Pε (2.10).
On the other hand, we can prove stability of the blowup for u0 ∈ Pε in Theorem 6.

The above instability results are not surprising since ū in the forcing term ūv (2.9)
blows up. The problems of using the ansatz (2.11) to study the stability of the blowup
profile Ū (2.8) are the following. For initial data u0 perturbed from ū, we expect that
the blowup time T changes and the blowup exponent β in (2.11) can also change. For
the nonlinear 3D Euler (1.1), if u is a singular solution to (1.1) with ||ω||L p , ||ω||L∞
blowing up at t = T , where ω = ∇ × u, using the temporal and spatial symmetries of
the Euler equations, we can construct the following three solutions

u1(x, t) � λ−1u(λx, t), u2(x, t) � u(x, t − ε), u3(x, t) � λu(x, λt),

ωi � ∇ × ui , ω = ∇ × u,
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to (1.1). Choosing 0 < 1 − λ � 1, |ε| � 1, ui (x, 0) can be arbitrary close to u(x, 0).
Yet, we get

||ω1(x, t) − ω(x, t)||L p ≥ |||ω1(t)||L p − ||ω(t)||L p | = |λ−3/p − 1| · ||ω(t)||L p ,

||ω2(t) − ω(t)||L∞ ≥ ||ω(t)||L∞ − ||ω(t − ε)||L∞ ,

||ω3(t) − ω(t)||L∞ ≥ (1 − λ)||ω(t)||L∞,

which all blow up as t → T−. Thus, to observe certain stability of the blowup solution to
the nonlinear Euler equations, we need to rescale the solution using a different rescaling
rate in the spatial variable. For the model problem, these lead to the following ansatz of
the singular solution u from initial data u0 near ū

u(x, t) = 1

T̃ − t
U

(
μ

x

(T̃ − t)β̃
, t

)
, β̃ ≈ 1

2
, T̃ ≈ 1, μ ≈ 1, U ≈ Ū . (2.12)

However, in (2.11), the parameters T̃ , β̃, μ are all fixed. Moreover, in (2.12), due
to the composition, the parameters β̃, T̃ , μ depend on the initial data and perturbation
nonlinearly. Thus, they cannot be captured by the linearized equation (2.9) around ū.
Without incorporating the perturbation of these parameters, it is not expected to observe
the stability of the profile.

Using the dynamic rescaling formulation, we can obtain the stability of the blowup
of (2.2).

Theorem 6. There exists an absolute constant ε > 0, such that for any u0 ∈ Pε ∩ L∞,
we have

u(x, t (τ ))= 1

T − t (τ )
U

(
T 1/2 x

(T − t (τ ))1/2 , τ
)
, T = 1

C
= 1

u0(0)
, t (τ ) = T (1−e−τ ),

(2.13)
for any τ ∈ [0,∞). Moreover, we have the following stability estimate

||(U (·, τ ) − Ū )(|x |−3 + 1)||L∞ ≤ ||(U0 − Ū )(|x |−3 + 1)||L∞e− τ
4 . (2.14)

The formula (2.13) and estimate (2.14) are consistent with the ansatz (2.12). For
initial data u different from ū (2.8), we have a different blowup time T and we need to
adjust the rescaling rate T 1/2(T − t)−1/2 in the spatial variable. To study the stability of
the blowup profile, we rescale the spatial variable, the temporal variable, and normalize
the amplitude of the solution according to the initial data. These rescaling relations and
renormalization are nonlinear and thus are not captured by the ansatz (2.11) and the
linearized equation (2.9).

To prove Theorem 6, we establish the nonlinear stability of Ū in the dynamic rescaling
equation using weighted L∞ estimates. Since the stability estimates are standard [5,11,
15] and the equation is local and quite simple, we do not present the proof here and refer
it to Section 2.4 in the arXiv version [12] of this paper. Below, we prove Theorem 5.

Proof of Theorem 5. Recall ū = 1
1−t+x2 from (2.8). Using (2.9), we obtain

v(t, x) = v0(x) exp
( ∫ t

0
2

1

1 − s + x2 ds
)
=v0(x) exp(2 log(1+x2)−2 log(1−t + x2))

= v0(x)
(1 + x2)2

(1 − t + x2)2 = ṽ(x)
1

(1 − t)2 (Ū (
x

(1 − t)1/2 ))2, ṽ = v0(x)(1 + x2)2,
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where Ū is given in (2.8). In particular, v blows up with a rate (1 − t)−2, which is
even faster than that of ū. We remark that the exponent 2 in (1 − t)−2 is generic and
does not relate to the coefficient 2 in (2.9) or the formulation of (2.2). We obtain the
same exponent if we consider ut = cu2 for other constant c > 0 instead of (2.2). Since
v0(0) > 0 and v0 ∈ C0

c , there exists c, δ > 0 such that v0(x) ≥ c for |x | ≤ δ. For any
p ∈ [1,∞), we have∫

R

|v|pdx ≥ c
∫

|x |≤δ

(1 − t)−2p(Ū (
x

(1 − t)1/2 ))2pdx

= c(1 − t)−2p+1/2
∫

|y|≤δ(1−t)−1/2
|Ū (y)|2pdy

||v(t)||L p � C(v0, p)(1 − t)−2+ 1
2p .

Recall ū from (2.8). We have ||ū(t)||p = Cp(1 − t)−1+ 1
2p . For p ∈ [1,∞), these

estimates prove Theorem 5 . For p = ∞, the calculation is even simpler and thus is
omitted. ��
Remark 2.1. For v0 ∈ C∞

c with v0(0) > 0, since v(t) blows up faster than ū, it is
expected that the relative instability ||v(t)||X/||ū||X occurs in many norms X , e.g., the
Sobolev norms Wk,p and X = Ck,α . This relative instability is generic for (2.9). Thus,
using the linearized equation (2.9) around a blowup solution ū is not suitable to study
the stability of the profile (2.8).

2.3. 1D models for the 3D Euler equations. In this section, we study the stability of the
model problems for 3D Euler using notion of stability similar to that in [64].

Consider the De Gregorio model [23,24] ((2.15) with a = 1) and the generalized
Constantin–Lax–Majda (gCLM) model [61]

ωt + auωx = uxω, ux (ω) = Hω, x ∈ R or S1, (2.15)

where H is the Hilbert transform and a is a parameter. We consider the following
linearized equation for a singular solution ω̄(t) that develops a finite time singularity at
T∗

∂tω + aūωx + auω̄x = ūxω + ux ω̄, ux = Hω. (2.16)

Clearly, ω = ∂x ω̄ is a solution to (2.16). Following [64], we introduce the growth factor

λp(t) � sup
ω0∈L p,ω0 �=0

||ω(t)||p
||ω0||p , p ∈ (1,∞). (2.17)

For a = 1, in a joint work with Huang [15], we constructed a finite time blowup of
the De Gregorio model ((2.15) with a = 1) from C∞

c initial data. The singular solution
satisfies

ω̄(x, t)=Cω(t)−1�(Cω(t)x, t),Cω(0)=1, lim
t→T∗

Cω(t) = 0,�(x, t)=�̄(x) + �̃(x, t),

where Cω(t) is decreasing, �(·, t) ∈ C∞, �̄ is the approximate self-similar profile, and
�̃(x, t) is a small perturbation. In particular, the estimates in [15] imply

|�̃(x, t)| � |x |3/2, |�̄(x) − Ax | � x2
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for some A �= 0, where the implicit constants are time-independent. Therefore, for some
small δ > 0, we get |�(δ, t)| ≥ A

2 δ > 0 for t ∈ [0, T∗). For any p ∈ [1,∞), we obtain

||∂x ω̄||L p = Cω(t)−1/p||�x (·, t)||p �p Cω(t)−1/p
∫ δ

0
|�x (y, t)|dy

�p Cω(t)−1/p|�(δ, t)|
�p Cω(t)−1/p Aδ.

Since ||∂x ω̄0||L p �= 0 and Cω(t) → 0 as t → T∗, we yield λp(t) → ∞ (2.17) as
t → T∗.

On the other hand, nonlinear stability of these blowup solutions in some weighted H1

norms has been established in [15] using the dynamic rescaling formulation [47,54]. The
nonlinear stability in [15] is established by analyzing the stability of the asymptotically
(or approximate) self-similar blowup profile, which is very different from the linear
stability in [64].

Similar discussions on the stability of the blowup solution in the dynamic rescaling
equations and the instability of the blowup solution in the linearized equation apply to
the singular solution of De Gregorio model [6], the gCLM model [5,7,15,28,30], and
the Hou-Luo model [16].

2.4. The 3D Euler equations. Finally, we consider the 3D Euler equations. Suppose that
u(x, t) is a singular solution of the 3D Euler equations that blows up at a finite time
T∗ with ||u||L2 < +∞. We have ∂iu0 �= 0 for all i . If ∂iu0 ≡ 0 for some i , the initial
velocity u0 would have reduced to the two dimensional Euler equations, which could
not blow up in a finite time.

For a domain without boundary, e.g. T
3 or R

3, the linearized equation (1.2) has exact
solutions v = ∂iu for i = 1, 2, 3, which was observed in [64] for the Navier Stokes
equations. Suppose that X is some functional space equipped with a norm that is stronger
than the L∞ norm, e.g. X = L∞,Ck,α, k ≥ 0, α ∈ (0, 1), or X = Hs, s > 3

2 , and
it satisfies ∇u0 ∈ X . Since

∫ t
0 ||∇u(s)||∞ds controls the blowup of the solution, we

obtain

∞ = lim sup
t→T∗

3∑
i=1

||∂iu(t)||L∞

||∂iu0||X � lim sup
t→T∗

3∑
i=1

||∂iu(t)||X
||∂iu0||X � lim sup

t→T∗
sup

v0∈X,v0 �=0

||v(t)||X
||v0||X .

Under the notion of stability introduced in [64], the blowup is linearly unstable in the
norm of X . Yet, this instability result is a direct consequence of the blowup criterion and
does not use further properties of the blowup solution, e.g., the blowup profile and the
blowup exponent.

3. Proof of Main Theorems

In this section, we will prove Theorems 1–3. Our idea is to weaken the regularity as-
sumptions used in the proofs in [46,63] and construct unstable solutions associated with
the singular solutions in [11,26,27] by exploiting the special properties of these singular
solutions.
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Concretely, we first review the construction of the unstable solution to the linearized
equations [46,64] in Sect. 3.1 and the regularity assumptions of the singular solution used
in [46,64]. Then we present the properties that the singular solutions satisfy higher order
regularity in the interior of the domain in Sect. 3.2. We defer their proofs to Sects. 4 and
5, which are based on the arguments and estimates in [11]. In Sect. 3.3, we use the higher
order interior regularity of the solutions and localize the construction to the interior of
the domain to solve the bicharacteristics-amplitude ODEs [46,64]. Using the results in
Sect. 3.3, in Sect. 3.4, we first relax the regularity assumptions in some steps in [46,64].
Then we construct an axisymmetric unstable solution to (1.2) and prove Theorem 1. This
is the most delicate part of the proof and we refer to more discussion at the beginning of
Sect. 3.4. In Sects. 3.5, 3.6, we generalize the arguments in Sect. 3.4 to prove instability
results in Boussinesq equations in Theorem 3 and Euler equations in R

3 in Theorem 2.
Notations. We first introduce some notations to be used in the analysis. We use (r, ϑ, z)
to denote the cylindrical coordinates in R

3. The associated basis is

er = (cos ϑ, sin ϑ, 0), eϑ = (− sin ϑ, cos ϑ, 0), ez = (0, 0, 1). (3.1)

For x with coordinate (xr , xϑ , xz) and A ⊂ R
3, we use x̃, Ã to denote the poloidal

component
x̃ = (xr , xz), Ã = {x̃ : x ∈ A}. (3.2)

The poloidal component of the axisymmetric vorticity ω is defined as follows

ωp � ωr er + ωzez, ω = ωr er + ωϑeϑ + ωzez . (3.3)

In the analysis of the axisymmetric Euler equations, for any 2D domain � of (r, z),
we abuse the notation and use

x ∈ � if x̃ = (xr , xz) ∈ �. (3.4)

For example, x ∈ B(1,0)(δ) means (xr , xz) ∈ B(1,0)(δ), or equivalently, x in the annulus
B(1,0)(δ) × R/(2πZ). We abuse this notation since the flow is axisymmetric and thus
many variables, e.g., ur , uz, uϑ , ωϑ , depend on (r, z) only.

3.1. The WKB expansion and the bicharacteristics-amplitude ODEs. The main idea in
[46,64] is to construct an approximate solution to (1.2) using a WKB expansion

v(t, x) ≈ b(t, x) exp(
i S(t, x)

ε
) (3.5)

for sufficiently small ε, where b(t, x) ∈ R
3 and S is a scalar, and the following

bicharacteristics-amplitude ODE system (3.6)–(3.8) [46,64]

γ̇t = u(t, γt ), γ0 = x0, (3.6)

ξ̇t = −(∇u)T (t, γt )ξt , (3.7)

ḃt = −(∇u)(t, γt )bt + 2
ξ Tt (∇u)(t, γt )bt

|ξt |2 ξt , (3.8)

with initial data (x0, ξ0, b0), where (∇u)i j = ∂ j ui . The regularity assumption u ∈
C0([0, T ], Hs), s > 9/2 in [64] is mainly used to guarantee the solvability of the above
ODEs with smooth dependence on the initial data.
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The ODE system (3.6)–(3.8) has been derived in [35] to define the fluid Lyapunov
exponent and used to study the stability of steady states of the Euler equations [34,
36]. The WKB expansion (3.5) was developed in [65] to study the spectrum of small
oscillations in an ideal incompressible fluid. It has also been used to study the local
stability conditions for the Euler equations [48].

For the sake of completeness, in Appendix 5.7, we begin with the WKB expansion
(3.5) and then explain the use of the bicharacteristics-amplitude ODE system (3.6)–(3.8),
which arise naturally in the construction of the approximate solution. We also explain the
connections among the WKB expansion, the bicharacteristics-amplitude ODE system
(3.6)–(3.8), and the growth of the unstable solution. From the review in Appendix 5.7,
we have a few remarks.

Remark 3.1. (a) From the proof in [64] and the simplified derivations in Appendix 5.7,
the WKB construction and the high frequency (3.5) are mainly used to construct an
approximate solution to (1.2) with a small error in the L p norm but not used to show
the growth of the unstable solution.

(b) The growth of the solution v and the linear instability are coupled with the growth of
the vorticity via the ODE system (3.6)–(3.8) and (A.10).

(c) As we mentioned in Sect. 2.4, for a domain without boundary, ∂iu, i = 1, 2, 3 are
the exact solutions to (1.2) and blow up in a functional space X equipped with a
norm stronger than the L∞ norm. These simple instability results do not use (3.5)
and (3.6)–(3.8).

(d) The argument in [64] has an advantage that several nonlocal terms become local. It
is based on the characteristics and is local in nature. Due to this local property, we
can relax the regularity assumptions in the proof in [64] for the singular solutions in
[11,26] and generalize it to prove Theorems 1–3.

3.2. Properties of the singular solutions. The singular solution to the 2D Boussinesq
equations (1.5)–(1.6) constructed in [11] satisfies the following properties. The Ck norm
in Theorem 7 is defined in (4.15). The reader should not confuse it with the standard Ck

norm.

Theorem 7. Let ω be the vorticity and θ be the density in the 2D Boussinesq equa-
tions described by (1.5)–(1.6). There exists α0 > 0 such that for 0 < α < α0, the
unique local solution of the 2D Boussinesq equations in the upper half plane devel-
ops a focusing asymptotically self-similar singularity in finite time T∗ for some initial
data ω0 ∈ Cα

c (R2
+), θ0 ∈ C1,α

c (R2
+). Moreover, we have limt→T∗ ||∇θ(t)||∞ = ∞,

the velocity field is in C1,α with finite energy. For any T < T∗ and any compact
domain � in the interior of {(x, y) : x �= 0, y > 0}, we have θ0 ∈ C50(�) and
ω,∇θ, 1√

x2+y2
u ∈ L∞([0, T ], C50 ∩ C50(�)),u ∈ L∞([0, T ],C50(�)).

The regularity C50,C50 can be further improved to Ck,Ck with larger k directly by
choosing smaller α0. The first part of the theorem about the blowup has been proved in
[11]. To prove the regularity in the interior of the domain, we generalize the weighted
energy estimates for the perturbation and the estimates of the approximate steady state
in [11] to sufficiently high order. Since the weighted norms used in [11] and the energy
estimates, e.g. Hk (see (4.14)), are comparable to the standard Sobolev norms Hk in
the interior of the domain, we establish the interior regularity using the embedding
inequalities. See Sect. 4 for the proof.
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In [11], the 3D axisymmetric Euler equations are studied in a cylinder D = {(r, z) :
r ∈ [0, 1], z ∈ T}, T = R/(2Z) that is periodic in z. Here, r, z are the cylindrical
coordinates in R

3. The equations are given below:

∂t (ru
ϑ) + ur (ruϑ)r + uz(ruϑ)z = 0, ∂t

ωϑ

r
+ ur (

ωϑ

r
)r + uz(

ωϑ

r
)z = 1

r4 ∂z((ru
ϑ)2),

(3.9)
where ωϑ is the angular vorticity and uϑ is the angular velocity. The radial and the axial
components of the velocity can be recovered from the Biot-Savart law

−(∂rr +
1

r
∂r + ∂zz)ψ̃ +

1

r2 ψ̃ = ωϑ, ur = −ψ̃z, uz = ψ̃r +
1

r
ψ̃ (3.10)

with a no-flow boundary condition on the solid boundary r = 1

ψ̃(1, z) = 0 (3.11)

and a periodic boundary condition in z. For the Euler equations, we have the following
results

Theorem 8. There exists α0 > 0 such that for 0 < α < α0, the unique local solution
of the 3D axisymmetric Euler equations in the cylinder D = {r, z ∈ [0, 1] × T} given
by (3.9)–(3.11) develops a singularity in finite time T∗ for some initial data ωϑ

0 ∈
Cα(D), uϑ

0 ∈ C1,α(D). The initial data ωϑ
0 , uϑ

0 are supported away from the symmetry
axis r = 0 with uϑ

0 ≥ 0, ωϑ
0 is odd in z, uϑ

0 is even in z, and the velocity field u0 in each
period has finite energy.

Moreover, the singular solution satisfies the following properties.

(a) The poloidal component ωp = ωr er + ωzez blows up limt→T∗ ||ωp(t)||∞ = ∞.
(b) There exists constants 0 < 4R1,α < R2,α < 1

4 such that for any particle within the
support of ωϑ

0 , uϑ
0 , its trajectory up to the blowup time is within B(1,0)(R1,α) ∩ D.

(c) For any compact domain� in {(r, z) : r ∈ (0, 1), z �= 0}∩ B(1,0)(R2,α) and T < T∗,
we have uϑ

0 ∈ C50(�), ωϑ, (uϑ)2, ur , uz, uϑ ∈ L∞([0, T ],C50(�)).

Except for result (c), the above theorem has been mostly proved in [11]. We recall
from Remark 1.2 that the oversight uϑ

0 /∈ C1,α in [11] has been fixed in the updated arXiv
version of [11]. See also Remark 5.5. The parameter R2,α and domain B(1,0)(R2,α) in the
above theorem relate to the localized elliptic estimate. In particular, the cutoff function
to localize the estimate is 1 in B(1,0)(R2,α). One of the main difficulties in the proof is to
show that uϑ is smooth in �. This does not follow from (uϑ)2 ∈ C50(�) since uϑ has
compact support and can degenerate in �. We use the property that ruϑ is transported
along the flow to prove that it is smooth. See Sect. 5 for the proof.

The singular solution constructed in [26,27] enjoys the following properties, which
follow from the estimates in [26,27].

Theorem 9. There exists α0 > 0 such that for 0 < α < α0, the unique local solution
of the axisymmetric Euler equations (3.9)–(3.10) in R

3 without swirl uϑ ≡ 0 develops
a singularity in finite time T∗ for some initial data ωϑ

0 ∈ Cα
c (R3) odd in z with finite

energy ||u0||L2 < +∞. In addition, we have urr (t, 0, 0) > 0 and
∫ T∗

0
urr (t, 0, 0)dt = ∞. (3.12)

For any compact domain� ⊂ {(r, z) : r > 0, z �= 0} and T < T∗, we haveωϑ, ur , uz ∈
L∞([0, T ],C50(�)).
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In the blowup results in Theorem 7 and 8, ∇u also blows up at the singularity point.
Since the blowup of ∇u implies the blowup of the solution, (3.12) can be seen as a
blowup criterion for the singular solution in [26]. A similar one-point blowup criterion
has been established to prove global regularity of the De Gregorio model for a large
class of initial data in [6].

In the remaining part of this Section, we prove Theorems 1–3 using the important
properties of the blowup solution in Theorems 7–9 and the argument in [46,63]. We first
prove Theorem 1.

3.3. Trajectory and the bicharacteristics-amplitude ODE. In this section, we solve the
bicharacteristics-amplitude ODEs (3.6)–(3.8) in the interior of the domain. The main
idea is to restrict the characteristics to the interior of the domain, where the singular
solutions are smooth from Theorem 8–9, and then solve the ODEs using standard ODE
theorems.

Due to the periodicity in z, we consider the domain within one period

D1 � {(r, z) : r ∈ [0, 1], |z| ≤ 1}. (3.13)

We further decompose D1 into the two parts and introduce ϒ

D+
1 � {(r, z) : r ∈ [0, 1], z ∈ [0, 1]}, D−

1 � {(r, z) : r ∈ [0, 1], z ∈ [−1, 0]},
ϒ � {(r, z) : r = 1 or z = 0}.

(3.14)
The set ϒ denotes the boundary of the cylinder D and the symmetry plane z = 0.

Let u be the velocity in Theorem 8. In the cylindrical coordinates (r, ϑ, z)(3.1), we
have u = ur er + uϑeϑ + uzez . Since the singular solutions ωϑ, uz in Theorem 8 are odd
in z and we impose the no flow boundary condition (3.11), we obtain

u(t) · n
∣∣∣
ϒ

= ur (t) · nr + uz(t) · nz = 0, (3.15)

where n is the normal vector of ϒ . Let γ̃t = (rt , zt ) (3.2) be the (r, z) component of γt
in (3.6). Since the flow is axisymmetric, we have

d

dt
rt = ur (rt , zt , t),

d

dt
zt = uz(rt , zt , t),

d

dt
γ̃t = (ur , uz)(γ̃t , t). (3.16)

Thus, the angular coordinate x0,ϑ of the initial data x0 does not affect γ̃t , and γ̃t depends
on x̃0 = (r0, z0) only. Therefore, we have

γ̃t (x̃0) = γ̃t (x0) = (rt , zt ),
˜
γ −1
t (x) = (γ̃t )

−1(x) = (γ̃t )
−1(x̃). (3.17)

We have the following results for the system (3.6)–(3.8).

Lemma 3.2. Let γt be the solution to (3.6) with initial data x0, T∗ be the blowup time,
T < T∗, and D±

1 be the domains defined in (3.14). (a) For any x0 ∈ ϒ and t ∈ [0, T∗), the
trajectory γt remains in ϒ; for any x0 ∈ D±

1 \ϒ and t ∈ [0, T∗), we have γt ∈ D±
1 \ϒ .

For any t ∈ [0, T ], γt is invertible, and γt , γ
−1
t are Lipschitz in time and the initial

value.
Let R1,α, R2,α be the radii in Theorem 8.
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(b) Suppose that x0 ∈ (D±
1 \ϒ)∩supp(ω0). There exists δ(x̃0, T ) ∈ (0, 1

8 ) depending
on x̃0, T and a compact set �2, such that for any t ∈ [0, T ], we have

γ̃t (Bx̃0(δ)) ∪ Bγ̃t (x̃0)(δ) ⊂ �2 ⊂ (D±
1 \ϒ) ∩ B(1,0)(R2,α). (3.18)

As a result, for initial data z0 with z̃0 ∈ Bx̃0(δ) and any b0, ξ0, there exist unique
solutions (γt , bt , ξt ) to (3.6)–(3.8) on t ∈ [0, T ]. For t ∈ [0, T ], the functions (γt , bt , ξt )
are Lipschitz in time and C4 with respect to initial data z0 with z̃0 ∈ Bx̃0(δ) and b0, ξ0,
and γ −1

t (x) is Lipschitz in time and C4 in x with x̃ ∈ γ̃t (Bx̃0(δ)) ∪ Bγ̃t (x̃0)(δ).

In the above Theorem, we have used the notation (3.4). For example, x0 ∈ D±
1 \ϒ

means x̃0 ∈ D±
1 \ϒ . The domain of x with x̃ ∈ Bx̃0(δ) is the annulus (r, z, ϑ) ∈

Bx̃0(δ) × R/(2πZ).
The ideas of the above Lemma are simple. Firstly, for any x0 ∈ D±

1 \ϒ , the trajectory
γt with t ∈ [0, T ] remains in D±

1 \ϒ . Using the Lipschitz property of γ̃t , γ̃
−1
t , we can find

a neighborhood of γ̃t that still remains in D±
1 \ϒ . We further restrict x̃0 sufficiently close

to (1, 0) and use the property that u(x) is smooth for x with x̃ ∈ D±
1 \ϒ ∩ B(1,0)(R2,α)

from Theorem 8 to solve (3.6)–(3.8).

Proof. Recall the notation x̃ = (r, z) from (3.2). Due to u ∈ C0([0, T∗),C1,α) and
the non-penetrated property (3.15), the results in (a) follow directly from the Cauchy-
Lipschitz theorem.

Without loss of generality, we consider the domain D+
1 \ϒ . For any x0 ∈ (D+

1 \ϒ) ∩
supp(ω0), from result (b) in Theorem 8 and (3.17), we know

γ̃t (x̃0) ∈ (D+
1 \ϒ) ∩ B(1,0)(R1,α), t ∈ [0, T ]. (3.19)

Since γ̃t (x̃0) is continuous in t , using compactness, we have dist(γ̃ (x̃0, [0, T ]), ϒ) > 0.
Let Lγ be the Lipschitz constant of γt , γ

−1
t on [0, T ]. Denote

d1 = dist(γ̃ (x̃0, [0, T ]), ϒ), δ1 � 1

2
min(d1, R1,α) > 0, δ = min(

δ1

2(Lγ + 1)
,

1

16
).

For y = γ̃t (x̃), x̃ ∈ Bx̃0(δ), using (3.19), we yield

|y − γ̃t (x̃0)| ≤ Lγ |x̃ − x̃0| ≤ Lγ δ <
δ1

2
, dist(y, ϒ) ≥ dist(γ̃t (x̃0), ϒ) − δ1

2
>

δ1

2
,

|y − (1, 0)| < |γ̃t (x̃0) − (1, 0)| +
δ1

2
≤ 3

2
R1,α.

It follows that y ∈ D+
1 \ϒ ∩ B(1,0)(

3
2 R1,α). We define the compact set

�2 = {x̃ : dist(x̃, ϒ) ≥ 1

4
δ1} ∩ D̄+

1 ∩ B̄(1,0)(2R1,α). (3.20)

Recall from Theorem 8 that R2,α > 4R1,α . The above derivations imply γ̃t (Bx̃0(δ)) ⊂
�2. The proof of Bγ̃t (x̃0)(δ) ⊂ �2 follows from the same argument and is easier. We
obtain (3.18).

Now, we consider (3.6)–(3.8) for initial data z0 with z̃0 ∈ Bx̃0(δ) and b0, ξ0. Since
�2 is a compact set in (D+

1 \ϒ) ∩ B(1,0)(R2,α), from Theorem 8, we have ur , uz, uϑ ∈
L∞([0, T ],C50(�2)). Since γ̃t (Bx̃0(δ)), Bx̃0(δ) ⊂ �2 and u(x) is smooth for x with
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x̃ ∈ �2, using the Cauchy-Lipschitz theorem, there exist unique solutions (γt , bt , ξt ) to
(3.6)–(3.8) on t ∈ [0, T ], and γt , bt , ξt are Lipschitz in time and C4 with respect to the
initial data.

Next, we consider the backward equation. Denote δ2 = δ
Lγ +1 . Fix t ≤ T . For any

s ∈ [0, t], from (3.17) and (3.18), we get

γ̃ −1
s γ̃t (Bx̃0(δ2)) = γ̃t−s(Bx̃0(δ2)) ⊂ �2, γ̃ −1

s Bγ̃t (x̃0)(δ2) ⊂ Bγ̃t−s (x̃0)(Lγ δ2)

⊂ Bγ̃t−s (x̃0)(δ) ⊂ �2.

From Theorem 8 and ur , uz, uϑ ∈ L∞([0, T ],C50(�2)), we can solve (3.6) backward
on [0, t] for initial data xt with x̃t ∈ γ̃t (Bx̃0(δ2))∪Bγ̃t (x̃0)(δ2) ⊂ �2, and γ −1

t is Lipschitz
in time and C4 in the initial data.

Finally, due to the inclusion

γ̃t (Bx̃0(δ2)) ∪ (Bγ̃t (x̃0)(δ2)) ⊂ γ̃t (Bx̃0(δ)) ∪ (Bγ̃t (x̃0)(δ)) ⊂ �2, t ∈ [0, T ],
we prove result (b) for �2 defined in (3.20) and δ = δ2. ��

3.4. Relaxation of βσ (t). In this section, we construct the axisymmetric unstable solu-
tion to (1.2) and prove Theorem 1. We first relax the regularity assumptions in some
steps in [46,64] in Propositions 3.3, 3.4. Then we discuss the properties of axisymmetric
solutions and construct them in Sects. 3.4.1–3.4.4 using the ODE system (3.6)–(3.8).
We localize the construction to the interior domain so that we can use Theorem 8. We
show that the solution is unstable in Sect. 3.4.5. Various technicalities arise due to the
localization. To grasp the main ideas of the constructions, the reader can skip some
technical steps related to localization, such as (3.30), (3.36), and (3.44).

Recall the definition of βσ (t) from [46]

βσ (t) = sup
(x0,b0,ξ̃0)∈D1×R3×S1,b0·ξ0=0,|b0|=rσ

0

|r−σ
t bt (x0, ξ̃0, b0)|, (3.21)

where D1 is the domain for the Euler equations (3.13). Here, the notation ξ0 = ξ̃0 ∈ S1

means that the initial data ξ0 satisfies ξ0 · eϑ(x0) = 0 and (ξ0 · er(x0))
2 + (ξ0 · ez)2 = 1,

where er(x0), eϑ(x0), ez are the basis (3.1) associated with x0. Since ξ0 · eϑ(x0) = 0, it
relates to the notation (3.2).

We focus on the case σ = 0 and relax the domain D1 (3.13) to (D1\ϒ) ∩ supp(ω0)

β(t) = sup
(x0,b0,ξ̃0)∈(D1\ϒ)∩supp(ω0)×R3×S1,b0·ξ0=0,|b0|=1

|bt (x0, ξ̃0, b0)|, (3.22)

where ω0 is the vorticity of the singular solution in Theorem 8. From Lemma 3.2, for
any t < T∗, x0 ∈ D1\ϒ, b0 ∈ R

3, ξ̃0 ∈ S1, bt (x0, ξ̃0, b0) is well defined.
We have the following result, which modifies Proposition 2 in [46].

Proposition 3.3. Assume that u is the singular solution in Theorem 8,ω is the associated
vorticity, and ωp is the poloidal component (3.3). For any t ∈ (0, T∗), we have

||ωp(t, ·)||∞ ≤ ||ωin
p ||∞β(t)2.
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Proof. We assume ||ωp(t)||∞ > 0. Otherwise, the result is trivial. Since ω(t) ∈ Cα and
|ω| is even in z, using continuity and symmetry, we get

||ωp(t, ·)||∞ = sup
x∈D+

1 ∩supp(ω(t))
|ωp(t, x)| = sup

x∈(D+
1 \ϒ)∩supp(ω(t))

|ωp(t, x)|.

Now, for each (t, xt ) ∈ (0, T∗) × (D+
1 \ϒ) with |ω(t, xt )| > 0, we can solve (3.6)

backward on [0, t] with initial data γt = xt . Since xt ∈ D+
1 \ϒ and |ω(t, xt )| > 0, using

(1.1) and a simple energy estimate along the trajectory implies |ω(0, x0)| > 0. Thus,
we get x0 ∈ supp(ω0). From Lemma 3.2, we further obtain x0 ∈ (D+

1 \ϒ) ∩ supp(ω0).
Then we can solve (3.6)–(3.8) with initial data x0 and any b0, ξ0 and solve (3.6)–(3.8)
backward with initial data xt and any bt , ξt .

We relax the definition of β(t) since it suffices to consider x0 ∈ (D+
1 \ϒ)∩supp(ω0) ⊂

(D1\ϒ) ∩ supp(ω0) instead of all x0 ∈ D1. The rest of the proof follows the same
argument in [46]. ��

Next, we show that for the singular solution in Theorem 8, Proposition 3 in [46]
remains true. Recall the definition of λ

sym
p,σ from (1.4). We drop the domain D to simplify

the notation.

Proposition 3.4. Let t ∈ (0, T∗), p ∈ [1,∞). Assume that u is the singular solution in
Theorem 8. Then we have β(T ) �σ λ

sym
p,σ (T ) for any σ ∈ R.

One of the difficulties in the proof is to construct an axisymmetric solution to (1.2).

Remark 3.5. The approximate solution and the initial data vinε,δ to (1.2) constructed in
[46]

vε,δ = εcurl
(b × ξ

|ξ |2 ϕei S/ε
)

= iϕbei S/ε + εc(x)ei S/ε � A + B, c(x) = curl(
b × ξ

|ξ |2 ϕ)

(3.23)
are not axisymmetric, where b(t, x), ξ(t, x) ∈ R

3, S, ϕ are scalar functions, and ε is a
small parameter. See equation (21) in [46]. To illustrate this point, we study the initial
data more carefully. According to the construction in the proof of Proposition 3 in [46],
for t = 0, we have b(0, x) ≡ b0, ξ(0, x) ≡ ξ0 for some

|b0| = 1, |ξ0| = 1, b0 · ξ0 = 0. (3.24)

In particular, b, ξ are constant vectors. Moreover, ϕ, S are independent of the angular
variable ϑ [46], i.e. ϕ(x) = ϕ(r, z), S(x) = S(r, z). Hence, we get

c(x) = ∇ϕ × b0 × ξ0

|ξ0|2 = ∇ϕ × s0, s0 � b0 × ξ0

|ξ0|2 , ∂ϑ A = 0. (3.25)

Suppose that vε,δ is axisymmetric (1.3). Then vε,δ · η does not depend on ϑ for η =
er , eϑ , ez (3.1). Using these properties, (3.25), and ∂ϑer = eϑ , ∂ϑeϑ = −er , we get

0 = ∂ϑ(vε,δ · er ) = ∂ϑ((A + B) · er ) = A · eϑ + ∂ϑ(B · er )
= A · eϑ + εei S/ε∂ϑc(x) · er − B · eϑ .

Since the second and the third term have size O(ε) and ε is taken to ε → 0 in [46], for
sufficiently small ε, A · eϑ and ∂ϑ(B · er ) must be 0. Similarly, we get A · er = 0, ∂ϑ(B ·
ez) = 0. Since the direction of A is given by b0, it follows that b0 = (0, 0, b0,z) =
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b0,zez . Note that ϕ(x) = ϕ(r, z) and ∇ϕ = ∂rϕ(r, z)er + ∂zϕ(r, z)ez . From (3.25) and
∂ϑ(B · ez) = 0, we get

c(x) · ez = (∂rϕer × s0 + ∂zϕez × s0) · ez = ∂rϕ · (er × s0) · ez,
0 = ∂ϑ(B · ez) = εei S/ε∂ϑ(c(x) · ez) = εei S/ε∂rϕ · (∂ϑer × s0) · ez

= εei S/ε∂rϕ · (eϑ × s0) · ez .
Since b0 = b0,3ez , we get s0 · ez = 0, eϑ · ez = 0, which implies that eϑ × s0 and ez are
parallel. Then the above identity implies eϑ × s0 = 0. Since s0 is a constant vector and
ϑ is arbitrary, we further obtain s0 = 0, which contradicts (3.24) and (3.25).

The proof of Proposition 3.4 consists of several steps. Firstly, given x0, b0, ξ0, we
construct axisymmetric flows ξ(t, x), b(t, x) and function S(t, x) using the PDE form of
(3.6)–(3.8) such that ξ(0, x0) = ξ0, b(0, x0) = b0,∇S = ξ . Since the singular solution
u in Theorem 8 is only C1,α , these functions ξ, b, S are not smooth enough to apply the
argument in [46] to prove Proposition 3.4. Our key observation is that the solution (3.23)
leading to the instability [46] is constructed locally along the trajectory of x0. Thus, we
can apply Lemma 3.2 and Theorem 8 to localize u and obtain a much smoother localized
velocity u · χ . Then we can obtain smooth b, ξ, S and an axisymmetric velocity field
given by (3.23). Finally, we show that b(T, x) can control β(T ) using the axisymmetric
property of b. The remaining proof follows the argument in [46].

Before we present the proof, we need a simple Lemma for axisymmetric flows.

Lemma 3.6. Suppose that A(x), B(x) are axisymmetric flows (1.3), andC(x) = C(r, z)
is independent of ϑ . Then A×B, C(x)A,∇× A, ∂r A, ∂z A, ∂ϑ A are axisymmetric flows,
and A · B is independent of ϑ .

Proof. Since er , eϑ , ez (3.1) are orthonormal basis, a simple calculation implies that
A × B,C(r, z)A are axisymmetric and that A · B is independent of ϑ . The property
that the curl operator does not change axisymmetry is standard. For example, if the
velocity u is axisymmetric, the vorticity ω = ∇ × u is also axisymmetric. The same
reasoning and calculation apply to ∇ × A. Since ∂rη = 0, ∂zη = 0 for η = er , eϑ , ez
and ∂ϑ A = Ar (r, z)eϑ − Aϑ(r, z)er for A = Arer + Aϑeϑ + Azez , we conclude that
∂r A, ∂z A, ∂ϑ A are axisymmetric. ��
Proof of Proposition 3.4. Recall the poloidal component (3.2),(3.17)

x̃ = (r, z), γ̃t = (rt , zt ), Ã = {ã : a ∈ A}. (3.26)

We fix T < T∗. Suppose that β(T ) > 0. Otherwise, the proof is trivial. Using the
definition of (3.22) and result (b) in Theorem 8, for any η > 0, we can choose (x0, ξ0, b0)

such that

x0 ∈ (D1\ϒ) ∩ supp(ω0) ⊂ B(1,0)(1/4), r0 �= 0, ξ0 = ξ̃0, ξ0 · b0 = 0, (3.27)

and
0 < β(T ) ≤ (1 + η)|bT (x0, ξ̃0, b0)|. (3.28)

We have r0 �= 0 since x0 ∈ B(1,0)(1/4) implies r0 ≥ 3
4 . Denote

ϑ0 = x0,ϑ . (3.29)
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Without loss of generality, we assume x0 ∈ D+
1 . From Lemma 3.2, there exists δ > 0

and a compact set �2 such that (3.6)–(3.8) have a unique solution (γt , bt , ξt ) on [0, T ]
for initial data x with x̃ ∈ Bx̃0(δ), b0, ξ0 and

γ̃t (Bx̃0(δ)) ∪ Bγ̃t (x̃0)(δ) ⊂ �2 ⊂ D+
1 \ϒ ∩ B(1,0)(R2,α), t ∈ [0, T ]. (3.30)

��

3.4.1. Construction of axisymmetric functions Our goal is to construct smooth (at least
C4) axisymmetric flows ξ(t, x), b(t, x) satisfying (1.3) and function S(t, x) such that

ξ(0, x̃, ϑ0) = ξ0, b(0, x̃, ϑ0) = b0, ξ(t, x) · b(t, x) ≡ 0, (3.31)

ξ(t, γt (x̃, ϑ0)) = ξt (x̃, ϑ0, ξ0), b(t, γt (x̃, ϑ0)) = bt (x̃, ϑ0, ξ0, b0), (3.32)

∇S(t, x) = ξ(t, x), ∂θ S(t, x) = ξ · eθ = 0, (3.33)

for any x̃ ∈ Bx̃0(δ), t ∈ [0, T ], where ϑ0 = x0,ϑ (3.29) and (x̃, ϑ0) means (r, ϑ0, z)
in the cylindrical coordinates. Thus, b(t, x), ξ(t, x) can be seen as the axisymmetric
extensions of the solutions ξt , bt to the ODE (3.6)–(3.8) with initial data (x̃, ϑ0), ξ0, b0.
We construct initial data as follows

ξ(0, x) = ξ r0 er + ξ z0ez, b(0, x) = br0er + bϑ
0 eϑ + bz0ez, (3.34)

where er(x0) = (cos ϑ0, sin ϑ0, 0), eϑ(x0) = (− sin ϑ0, cos ϑ0, 0), and

ξ r0 = ξ0 · er(x0), ξ z0 = ξ0 · ez, br0 = b0 · er(x0), bϑ
0 = b0 · eϑ(x0), bz0 = b0 · ez .

The initial data ξ(0, x), b(0, x) are axisymmetric and only depend on xϑ (3.1). From
Lemma 3.6, |ξ(0, x)|, |b(0, x)|, ξ(0, x) · b(0, x) are independent of ϑ . Using (3.27) and
(3.34), we have

ξ(0, x̃, ϑ0) = ξ0, b(0, x̃, ϑ0) = b0, |ξ(0, x)| = 1, |b(0, x)| = 1,

ξ(0, x) · b(0, x) = ξ0 · b0 = 0. (3.35)

Localization of the velocity We want to construct ξ(t, x), b(t, x) using (3.7)–(3.8) with
the above initial data. Yet, the singular solution u is only C1,α and the resulting solutions
ξ, b are not smooth enough. To fix this problem, we localize the velocity. From (3.30),
using compactness, we can find a smooth cutoff function χT (r, z) such that

χT (x̃) = 1, x̃ ∈ �2, �2 ⊂ supp(χT ) = �3 ⊂ D+
1 \ϒ ∩ B(1,0)(R2,α), (3.36)

where �3 is another compact domain. Now, we modify the velocity u as follows

uT (t, x) � u(t, x)χT (r, z). (3.37)

From Lemma 3.6 and Theorem 8, uT is axisymmetric and uT ∈ L∞([0, T ],C50(D))

is smooth in the whole domain.
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Constructions of b, ξ, S Consider the PDE (Eulerian) formulations of (3.7)–(3.8) with
the modified velocity uT

∂tξ + uT · ∇ξ = −(∇uT )T ξ, ∂t b + uT · ∇b = −(∇uT )b +
2ξ T (∇uT )b

|ξ |2 ξ

(3.38)
and initial data ξ(0, ·), b(0, ·). We will show that the evolution preserves the axisymmetry
of ξ, b. For any axisymmetric functions g, f , using ∂ϑer = eϑ , ∂r eϑ = −er , we have

g · ∇ f = (gr∂r +
gϑ

r
∂ϑ + gz∂z) f =

∑
α=α,ϑ,z

(gr∂r + gz∂z) f
α · eα +

gϑ

r
( f r eϑ − f ϑer ),

which is axisymmetric. Therefore, we obtain

uT · ∇ξ, (∇uT )ξ = ξ · ∇uT , uT · ∇b, (∇uT )b

are axisymmetric. Lemma 3.6 implies that ξ · (∇uT )b, |ξ |2 = ξ · ξ are independent of

ϑ . Thus ξT (∇uT )b
|ξ |2 ξ is axisymmetric. Using the identity

−(∇uT )T ξ = (∇uT − (∇uT )T )ξ − (∇uT )ξ = (∇ × uT ) × ξ − (∇uT )ξ

and Lemma 3.6 again, we conclude that −(∇uT )T ξ is axisymmetric. Therefore, the
equations (3.38) preserves axisymmetry. From (3.38), it is easy to see that

∂t (ξ · b) + uT · ∇(ξ · b) = 0.

Recall the initial data (3.34). From (3.35), we have ξ(0, x) · b(0, x) ≡ 0. The above
transport equation implies that ξ(t, x) · b(t, x) = 0 in (3.31).

Next, we prove the identities in (3.32). First, for initial data x with x̃ ∈ Bx̃0(δ), due
to (3.30) and uT = u in �2 (3.36), (3.37), the flow maps on [0, T ] generated by uT and
u are identical. Hence, we obtain

u(t, γt (x)) = uT (t, γt (x)), (∇u)(t, γt (x)) = (∇u)(t, γt (x)).

Using (3.38) and the flow map γt (3.6), we have

d

dt
ξ(t, γt (x)) = −(∇u)T ξ(t, γt (x)),

d

dt
b(t, γt (x)) = −(∇u)b(t, γt (x)) +

2ξ T (∇u)b

|ξ |2 ξ(t, γt (x))

where ∇u is evaluated at (t, γt (x)). Thus, ξ(t, γt (x)) and b(t, γt (x)) satisfy the same
ODE (3.7)–(3.8) for ξt , bt . According to Lemma 3.2 and the discussion below (3.29),
we can solve these ODEs for initial data x with x̃ ∈ Bx̃0(δ). Using (3.35), we get

ξ(0, γ0(x̃, ϑ0)) = ξ0 = ξt (x̃, ϑ0, ξ0)|t=0, b(0, γ0(x̃, ϑ0)) = b0 = bt (x̃, ϑ0, ξ0)|t=0.

Using the uniqueness of ODEs, we obtain (3.32).
To construct S, following [46,64] we solve the transport equation with the modified

velocity uT
∂t S + uT · ∇S = 0, S(0, x) = rξ r0 + zξ z0 . (3.39)
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The equation for ∇S reads

∂t (∇S) + uT · ∇(∇S) = −(∇uT )T (∇S), (∇S)(0, x) = ξ r0 er + ξ z0ez = ξ(0, x).

Comparing the above equations with (3.38), we yield ∇S(t, x) = ξ(t, x) for any x and
t ∈ [0, T ].

Next, we consider ∂ϑ S. Since ∇S = ξ and uT are axisymmetric, using Lemma 3.6,
we get

∂ϑ(uT · ∇S) = ∂ϑ(uT · ξ) = 0.

Using (3.39) and (∂ϑ S)(0, x) = 0, we yield

∂t∂ϑ S = 0, ∂ϑ S(t, x) ≡ 0.

This proves (3.33).
Since uT ∈ L∞([0, T ],C50(D)), ξ(t, x), b(t, x), S(t, x) are smooth and at least C4

in x .

3.4.2. Control of b(T, x) We will show that b(T, x) can control β(T ) via (3.28).
Recall the poloidal notation (3.26). Let xT = γT (x0) and Lγ ≥ 1 be the Lipschitz

constant of γt , γ
−1
t on [0, T ] × D1. From (3.28) and (3.32), we get

0 < |bT (x0, b0, ξ0)| = |b(T, xT )|.
Using the continuity of b(T, ·), there exists small δ2 with

δ2 ∈ (0,
δ

4(Lγ + 1)3 ) (3.40)

such that

(1 − η)|bT (x0, b0, ξ0)| = (1 − η)|b(T, xT )| ≤ ∞x̃∈Bx̃T (δ2)
|b(T, x̃, xT,ϑ )|

= ∞x∈AxT (δ2)|b(T, x)|. (3.41)

where we have used the continuity of b(T, x) in the inequality, and the axisymmetry
property that |b(T, x)| is independent of ϑ in the third equality. Here, AxT (δ2) = {x :
x̃ ∈ Bx̃T (δ2)} is an annulus. The above inequality reproduces Equation (19) in [46].

3.4.3. Construction of the axisymmetric velocity vε,δ We follow [46,64] to construct
a cutoff function ϕ so that we can localize b(T, x) to the domain where it is large
using (3.41). Let ϕT (x) = ϕT (r, z) be a smooth function supported in AxT (δ2) with
||ϕT ||p = 1. For any t ∈ [0, T ], we define

ϕ(t, x) � ϕT (γT ◦ γ −1
t (x)). (3.42)

Since ϕT is independent of ϑ , using (3.16) and (3.17), we know that the (r, z) component
of γT ◦ γ −1

t (x) only depends on x̃ . Thus, we yield

ϕ(t, x) = ϕT (γ̃T ◦ γ̃ −1
t (x̃))

and ϕ(t, x) is independent of ϑ .
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Remark 3.7. We can also solve ϕ(t, x) using the PDE similar to (3.38), (3.39)

∂tϕ + uT · ∇ϕ = 0, ϕ(T, x) = ϕT (x). (3.43)

Tracking the support of ϕ and using the argument similar to that in the proof of (3.32),
one can show that these two constructions are the same.

Using (3.42) and (3.17), for x ∈ supp(ϕ(t, ·)), we have |γ̃T ◦ γ̃ −1
t (x)− γ̃T (x0)| ≤ δ2.

Since γ̃T ◦ γ̃ −1
t has Lipschitz constant L2

γ , from (3.40), we get

|x̃ − γ̃t (x0)| ≤ L2
γ |γ̃T ◦ γ̃ −1

t (x) − γ̃T (x0)| ≤ L2
γ δ2,

˜supp(ϕ(t, ·)) ⊂ Bγ̃t (x0)(L
2
γ δ2) ⊂ Bγ̃t (x0)(δ/2).

Using (3.30), we further obtain

˜supp(ϕ(t, ·)) ⊂ �2 ⊂ (D+
1 \ϒ) ∩ B(1,0)(R2,α) ⊂ B(1,0)(1/4), t ∈ [0, T ]. (3.44)

For fixed η, δ2, from Lemma 3.2, the function ϕ is Lipschitz in time and C4 in x on
[0, T ] × D1. Moreover, from (3.36), (3.37), we get

uT (t, x) = u(t, x), x ∈ supp(ϕ(t, ·)), t ∈ [0, T ]. (3.45)

Now, we follow [46,64] to construct an approximate solution (3.23) via the WKB ex-
pansion. Since ξ, b are axisymmetric flows and S(t, x), ϕ(t, x), |ξ(t, x)| are independent
of ϑ , using Lemma 3.6 repeatedly, we yield that

b × ξ,
b × ξ

|ξ |2 ϕei S/ε, vε,η = ε∇ × (
b × ξ

|ξ |2 ϕei S/ε)

are axisymmetric. We remark that |ξ(t, x)|−1 is uniformly bounded on [0, T ] × D1,
which can be proved using the Lagrangian version of (3.38), the boundedness of |∇uT |,
and |ξ(0, ·)| = |ξ0| = 1 (3.34). Due to (3.44), vε,η is supported in the interior of D1 and
vε,η · n = 0 on ∂D1.

Since supp(vε,η) ⊂ supp(ϕ), from (3.45), the localization of u in (3.36) and (3.37)
does not change the estimates of vε,η in [46,64]. Following the argument in [46,64], we
obtain that vε,δ2 is a solution to (1.2) with a small forcing term

∂tvε,δ2 + (u · ∇)vε,δ2 + (vε,δ2 · ∇)u + ∇qε,δ2 = Rε,δ2 . (3.46)

Moreover, we have the following estimates

||vε,δ2(T )||L p ≥ (1 − η)|b(T, x0, ξ0)| − Cη,δ2ε,

||vε,δ2(0, ·)||L p ≤ 1 + Cη,δ2ε, ||Rε,δ2 ||L p ≤ Cη,δ2ε,
(3.47)

where Cη,δ2 is some constant independent of ε. The first two estimates are consequences
of the leading order formula of vε,η (3.23), (3.35), (3.41), and the conservation of
||ϕ(t, ·)||L p = 1, which follows from the fact that ϕ is transported by an incompress-
ible flow, see e.g., (3.43). See also Appendix 5.7 for some formal derivations related to
(3.46)–(3.47).



On Stability and Instability of C1,α Singular Solutions Page 27 of 53   112 

3.4.4. Symmetrization An important observation is that vε,δ2 is only supported in the
upper half domain D+

1 \ϒ due to (3.44) and supp(vε,δ2) ⊂ supp(ϕ(t, ·)). For the sin-
gular solution u in Theorem 8, ωϑ(t) is odd and uϑ(t) is even in z, which induces the
symmetry property (Sym) that uz(t) is odd and uϑ(t), ur (t) are even in z. For vector
f = vε,δ2 , Rε,δ2 , we extend it to D−

1 according to the same symmetry

f̄ r = f r (r, z) + f r (r,−z), f̄ z = f z(r, z) − f z(r,−z), f̄ ϑ = f ϑ(r, z) + f ϑ(r,−z),

where f = f r er + f ϑeϑ + f zez, f̄ = f̄ r er + f̄ ϑeϑ + f̄ zez . For the pressure qε,δ2 in
(1.2), we extend it as an even function in z

q̄ε,δ2 = qε,δ2(r, z) + qε,δ2(r,−z).

The above symmetry properties are preserved by (1.1) and (1.2). We obtain that v̄ε,δ2

is a solution to (1.2) with pressure q̄ε,δ2 and forcing R̄ε,δ2 and enjoys the symmetry
property (Sym). Since supp(vε,δ2) ∈ D+

1 , v̄ε,δ2 − vε,δ2 and vε,δ2 are disjoint, applying
(3.47) yields

||v̄ε,δ2(T )||L p ≥ 2(1 − η)|b(T, x0, ξ0)| − Cη,δ2ε,

||v̄ε,δ2(0, ·)||L p ≤ 2 + Cη,δ2ε, ||R̄ε,δ2 ||L p ≤ Cη,δ2ε.
(3.48)

The last inequality on R̄ε,δ2 follows from the triangle inequality. Let v̄(T ) be the solution
to (1.2) with initial data v̄ε,δ2(0). Following the argument in [46,64], we obtain

||v̄(T ) − v̄ε,δ2(T )||L p ≤ Cη,δ2ε. (3.49)

Since the symmetry of v̄ε,δ2(0) in z is preserved by (1.2), v(T ) satisfies the symmetry
(Sym).

3.4.5. Control of λ
sym
p,σ for all power σ Denote χ2(x) = 1B(1,0)(

1
2 )(r, z). Since

supp(vε,δ2(t, ·)) = supp(ϕ(t, ·)) ⊂ B(1,0)(1/4) (3.44) and v̄ε,δ2 is the symmetric ex-
tension of vε,δ2 , we get χ2v̄ε,δ2 = v̄ε,δ2 . Moreover, for x ∈ supp(χ2) ∩ D1, we get
r ∈ [1/2, 1]. Then for any σ ∈ R, using (3.47), we obtain

||r−σ v̄ε,δ2(0, ·)||L p = ||r−σ χ2v̄ε,δ2(0, ·)||L p ≤ Cσ ||v̄ε,δ2(0, ·)||L p ≤ Cσ (2 + Cη,δ2ε).

Applying the above estimate, (3.41), (3.48), (3.49) and the definition (1.4), we yield

Cσ (2 + Cη,δ2 )λ
sym
p,σ (T ) ≥ ||r−σ v̄ε,δ2 (0, ·)||L pλ

sym
p,σ (T )

≥ ||r−σ v̄(T )||L p ≥ ||r−σ χ2v̄(T )||L p

≥ C̃σ ||χ2v̄(T )||L p ≥ C̃σ (||χ2v̄ε,δ2 (T )||L p − ||χ2(v̄(T ) − v̄ε,δ2 (T ))||L p )

≥ C̃σ (||v̄ε,δ2 (T )||L p − Cη,δ2ε)

≥ C̃σ (2(1 − η)b(T, x0, ξ0) − Cη,δ2ε) ≥ C̃σ

(1 − η

1 + η
β(T ) − Cη,δ2ε

)
.

Taking η = 1/2 and letting ε → 0 conclude the proof. ��
Proof of Theorem 1. From Theorem 8, we have limt→T∗ ||ωp(t)||∞ = ∞. Combining
Propositions 3.3 and 3.4, we establish

lim inf
t→T∗

λ
sym
p,s (t)2 ≥ Cσ lim inf

t→T∗
β2(T ) ≥ Cσ lim

t→T∗

||ωp(t)||∞
||ωp,0||∞ = ∞.

We conclude the proof of Theorem 1. ��
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3.5. Proof of Theorem 3. The proof of Theorem 3 is completely similar to that of The-
orem 1 and is easier. We follow the arguments in [63]. Firstly, we note that there is a
sign difference between the Boussinesq equations used in [11] (1.5) and [63]. In [63],
the Boussinesq equations are given by

θt + u · ∇θ = 0, ut + u · ∇u + ∇ p = (0, θ)T , ∇ · u = 0. (3.50)

The velocity-density formulation of (1.5) is the above equations with (0, θ)T replaced
by (0,−θ)T . Clearly, (1.5) and (3.50) are equivalent: (u, θ) solves (1.5) if and only
if (u,−θ) solves (3.50). The linearized equation of (3.50) around a solution (u, θ) of
(3.50) is given by

∂tη + u · ∇η + v · ∇θ = 0, ∂tv + u · ∇v + v · ∇u + ∇q = (0, η)T , div v = 0,
(3.51)

which is also different from (1.7) with (0, η)T in (3.51) replaced by (0,−η)T in (1.7).
Given solution (u, θ) of (1.5) and (v, η,u, θ) satisfying (1.7), we obtain that (u,−θ)

is solution of (3.50) and (v,−η,u,−θ) satisfies (3.51). To keep the minimal changes
of sign and other notations among this paper, [11], and [63], due to this connection, we
use the following setting. Given a singular solution (u,−θ) of (1.5) in Theorem 7, we
obtain the solution (u, θ) of (3.50), which satisfies the same properties in Theorem 7,
e.g., the blowup quantities and the regularity. Then we consider (3.50) and (3.51) in the
following discussions so that the derivations and notations are consistent with those in
[63].

The bicharacteristics-amplitude ODE system of (3.50) [63] read

γ̇ (t, x0) = u(t, γ (t, x0)), (3.52)

ξ̇ (t, x0, ξ0) = −(∂xu)T ξ(t, x0, ξ0), (3.53)

ḃ(t, x0, ξ0) = −(∂x�z)b + Lb + (2
�ξ T (∂x�z)b

|ξ |2 − �ξ · (Lb)
|ξ |2 )�ξ, (3.54)

where �z � (θ,u), b ∈ R
3, the matrix ∂x�z, vector �ξ , and linear operator L are given

below

∂x�z �

⎛
⎝ 0 ∂1θ ∂2θ

0 ∂1u1 ∂2u1
0 ∂1u2 ∂2u2

⎞
⎠ , �ξ �

⎛
⎝ 0

ξ1
ξ2

⎞
⎠ , Lb �

⎛
⎝ 0

0
b1

⎞
⎠ . (3.55)

The initial data is given by γ |t=0 = x0, ξ |t=0 = ξ0 ∈ R
2\{0} and b|t=0 = b0 ∈ R

3.
Denote

ϒ2 � {(x, y) ∈ R
2
+ : x = 0 or y = 0}, D = R

2
+, D± � {(x, y) : y ≥ 0,±x ≥ 0}.

(3.56)
For the singular solution (u,−θ) in Theorem 7 (then (u, θ) solves (3.50)), since ω

is odd, θ is even in x , and v(x, 0) = 0, we have

u · n|ϒ2 = 0, (3.57)

where n is the normal vector of ϒ2. We first generalize Lemma 3.2 as follows.
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Lemma 3.8. Let γt be the solution to (3.52) with initial data x0, T∗ be the blowup
time, T < T∗, and D± be the domains defined in (3.56). (a) For any x0 ∈ ϒ2 and
t ∈ [0, T∗), its trajectory γt remains in ϒ2; for any x0 ∈ D±

1 \ϒ2 and t ∈ [0, T∗), we
have γt ∈ D±\ϒ2. For any t ∈ [0, T ], γt is invertible, and γt , γ

−1
t are Lipschitz in time

and the initial value.
(b) For x0 ∈ D±\ϒ2, there exists δ(x0, T ) > 0 depending on x0, T and a compact

set �2 such that
γt (Bx0(δ)) ∪ Bγt (x0)(δ) ⊂ �2 ⊂ D±\ϒ2. (3.58)

As a result, for initial data z0 ∈ Bx0(δ) and any b0, ξ0, there exist a unique solution
(γt , bt , ξt ) to (3.52)–(3.54) on t ∈ [0, T ]. The functions (γt , bt , ξt ) are Lipschitz in time
and C4 with respect to initial data z0 ∈ Bx0(δ) and b0, ξ0, and γ −1

t (x) is Lipschitz in
time and C4 in x ∈ γt (Bx0(δ)) ∪ Bγt (x0)(δ).

Unlike Lemma 3.2 for the 3D Euler equations, in the above Lemma, since it is in 2D,
we do not need to consider the angular variable ϑ and the poloidal component x̃ (3.2).
Moreover, unlike (3.18), we do not restrict the initial data x0 and the trajectory γt (x0)

to a domain near the singularity (0, 0) since the velocity u(t) in Theorem 7 is smooth
in any interior compact domain in R

+
2 .

The proof of Lemma 3.8 follows from the non-penetrated condition (3.57), the regu-
larity u, θ ∈ C1,α and u, θ ∈ C50(�) for any compact set � ⊂ D±\ϒ2 from Theorem
7, and the same argument in the proof of Lemma 3.2.

We adopt the following notation from [63] by replacing the domain D by D\ϒ2

α(T ) � sup
|b0|=1,|ξ0|=1,x0∈D\ϒ2,b0·�ξ0=0

|b(T, x0, ξ0, b0)|.

Recall from (3.55) that b0, �ξ0 ∈ R
3, ξ0 ∈ R

2. From Lemma 3.8, for x0 ∈ D\ϒ2,
b(T, x0, ξ0, b0) and α(T ) are well-defined. We modify Proposition 3.1 from [63] as
follows.

Proposition 3.9. Assume that (u,−θ) is the singular solution in Theorem 7. Then (u, θ)

is the singular solution of (3.50). For any t ∈ (0, T∗), we have

||∇θ(T )||∞ ≤ ||∇θ0||∞α2(T ).

Note that ∇θ ∈ Cα is continuous, and we can solve (3.52)–(3.54) for x0 ∈ D±\ϒ2
from Lemma 3.8. The proof follows from the proof of Proposition 3.1 in [63] with minor
modifications similar to those in the proof of Proposition 3.3. Thus, we omit the proof.

We modify Proposition 3.2 from [63] as follows.

Proposition 3.10. Assume that (u,−θ) is the singular solution in Theorem7. Then (u, θ)

is the singular solution of (3.50). For any T ∈ (0, T∗) and p ∈ (1,∞), we have

α(T ) ≤ Cpγ
sym
p (T ).

The proof follows from the argument in [63] and the argument in the proof of Theorem
3.4. The key point is that the approximate solution (ηε,δ, vε,δ) constructed in [63] is
similar to (3.23) and supported in a compact domain �2 ⊂ D±\ϒ2. See (3.44) for the
case of the 3D Euler equations. The proof is much simpler since we do not need to
construct an axisymmetric solution.

We give a sketch of the proof. We fix T < T∗. For any initial data x0 ∈ D±\ϒ2

and b0, ξ0 with b0 · �ξ0 = 0, |b0| = 1, |ξ0| = 1, from Lemma 3.8, there exists δ > 0
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and a compact set �2 such that (3.58) holds. Without loss of generality, we assume
x0 ∈ D+\ϒ2. We construct a smooth cutoff function χT similar to (3.36) such that

χT (x) = 1, x ∈ �2, �2 ⊂ supp(χT ) = �3 ⊂ D+\ϒ2.

We localize the singular solution (u, θ) similar to (3.37) as follows

uT (t, x) � u(t, x)χT (x), θT (t, x) � θ(t, x)χT (x). (3.59)

From Theorem 7, we get uT , θT ∈ L∞([0, T ],C50(D)). Then we construct b(t, x),
ξ(t, x), γ (t, x) by solving the PDE (Eulerian) form of (3.52)–(3.54) withu, θ, �z replaced
by uT , θT , zT = (θT ,uT ) using the following initial data

b(0, x) ≡ b0, ξ(0, x) = ξ0, S(0, x) = x · ξ0.

We choose δ2 = δ
4(1+Lγ )3 similar to (3.40) and choose ϕT that is supported in Bδ2(γT (x0))

with ||ϕT ||L p = 1. Then we construct a localized function with properties similar to
(3.44)

ϕ(t, x) = ϕT (γT ◦ γ −1
t (x)), supp(ϕ(t, x)) ⊂ Bγt (x0)(δ/2) ⊂ �2.

These functions b(t, x), ξ(t, x), S(t, x), ϕ(t, x) are at least C4 in the whole domain for
t ∈ [0, T ]. From (3.59), we have

uT (t, x) = u(t, x), θT (t, x) = θ(t, x), x ∈ supp(ϕ(t)) ⊂ �2, t ∈ [0, T ].
Using these functions b, ξ, S, ϕ, we follow [63] to construct the WKB solution, which
is supported in supp(ϕ(t)) ⊂ �2. Due to the above relation, the localization (3.59) does
not change the estimates of the solution. We can further symmetrize the solution using
the argument in Sect. 3.4.4. The rest of the proof follows [63].

One difference between our settings and those in [63] is that our domain R
+
2 has

boundary, while the domain in [63] is R
2 or T

2. In the proof of Proposition 3.10, this
difference appears only in the elliptic estimate

−
q = ∇ · g, x ∈ R
+
2 , −∂q

∂n
= n · g, on ∂R

+
2,

where n is the unit normal vector. In [63], there is no boundary and the second equation.
In R

+
2 , the L p estimate

||∇q||L p �p ||g||L p , p ∈ (1,∞)

follows from the Poisson’s formula for q and the Calderon-Zygmund estimates of the
kernel.

Now, we are in a position to prove Theorem 3. The proof is simpler than that in [63]
since we do not require the blowup criterion on

∫ T
0 ||∇θ ||∞dt .

Proof of Theorem 3. From Theorem 7, we have limt→T∗ ||∇θ(t)||∞ = ∞. Combining
Propositions 3.9 and 3.10, we establish

lim inf
t→T∗

γ
sym
p (t)2 ≥ Cp lim inf

t→T∗
α2(T ) ≥ Cp lim

t→T∗

||∇θ(t)||∞
||∇θ0||∞ = ∞.

We conclude the proof of Theorem 3. ��
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3.6. Proof of Theorem 2. For the singular solution [26], near the singularity (r, z) =
(0, 0), the flow moves down the z axis, and then travel outward in the r direction. See
also Remark 2.1 in [26]. We will use the outward flow to prove Theorem 2. Denote

ϒ3 � {(r, z) : r = 0 or z = 0}, β̃σ (t) = sup
(x0,b0,ξ̃0)∈(R3\ϒ3)×R

3×S1,
b0·ξ0=0,|b0|=rσ

0

|r−σ
t bt (x0, ξ̃0, b0)|.

(3.60)
The definition of β̃σ (t) modifies (3.21) and is similar to (3.22). The velocity ur , uz in
Theorem 9 satisfies

u(t) · n
∣∣∣
ϒ3

= ur (t) · nr + uz(t) · nz(t) = 0, (3.61)

and (ur , uz) is smooth in R
3\ϒ3 and uϑ = 0. In particular, γt is a bijection from

R
3\ϒ3 to R

3\ϒ3. Hence, we can generalize Lemma 3.2 to the current setting, and solve
(3.6)–(3.8) in R

3\ϒ3 with solutions bt , γt , ξt , γ
−1
t that are C4 on the initial data.

The following result is established in the proof of Proposition 2 in [46].

Proposition 3.11. For any (T, xT ) ∈ (0, T∗) × R
3\{r = 0} and σ ∈ R, let xt be the

backward solution of (3.6) from time T and xT , ω0 = ω(0, x0), ξt be the solution of
(3.7) with initial data ξ0 · ω0 = 0, ξ0 �= 0, ξ0 · eϑ(x0) = 0, and bt be a solution of (3.8)
with initial data b0 = rσ

0 eϑ and b0 · ξ0 = 0. Then we have rσ+1
0 ≤ rT |bT |.

Applying the above result to xT ∈ R
3\ϒ3 ⊂ R

3\{r = 0} and using definition (3.60),
we yield

rσ+1
0

rσ+1
T

≤ r−σ
T |bT | ≤ β̃σ (T ).

Since xT = γT (x0) is arbitrary in R
3\ϒ3 and γT is a bijection from R

3\ϒ3 to itself, we

derive supx0∈R3\ϒ3

rσ+1
0
rσ+1
T

≤ β̃σ (T ). Since u ∈ C1,α and γT (x) is Lipschitz in x , we get

γT (r0, ϑ0, 0) = limz→0 γT (r0, ϑ0, z). Hence, we further obtain

sup
x0∈R3\{r=0}

rσ+1
0

rσ+1
T

≤ β̃σ (T ). (3.62)

We have the following estimate for rT /r0. The idea is that the outgoing flow in the r
direction near (r, z) = (0, 0) generates rapid growth of rT /r0.

Lemma 3.12. Let u be the singular solution in Theorem 9. Then for any T < T∗, we
have

sup
r0 �=0

rT
r0

≥ exp
(1

2

∫ T

0
urr (t, 0, 0)dt

)
.

Proof. Note that ur (t, 0, z) = 0. For T < T∗, since ur (t) ∈ C0([0, T ],C1,α) and
urr (t, 0, 0) > 0, t ∈ [0, T ], there exists δ > 0, such that

0 <
1

2
urr (t, 0, 0) ≤ ur (t, r, 0)

r
≤ 2urr (t, 0, 0). (3.63)
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for all r ≤ δ, t ∈ [0, T ]. Since uz(t, r, 0) = 0, solving the r component of the ODE
(3.6) backward with initial data xT = (rT , 0), rT = δ/2, we get that the trajectory is on
z = 0 and

d

dt
rT−t = −ur (T − t, rT−t , 0) = −rT−t

ur (T − t, rT−t , 0)

rT−t

Since ur (T − t, r, 0) ≥ 0 on r ∈ [0, δ], rT−t is decreasing in t and rT−t ∈ [0, δ]. Using
the above ODE, (3.63), and Gronwall’s inequality, we obtain

r0 ≤ exp(−1

2

∫ T

0
urr (t, 0, 0)dt)rT , r0 ≥ exp(−2

∫ T

0
urr (t, 0, 0)dt)rT > 0.

The desired result follows. ��
For the singular solution in Theorem 9 , Proposition 3 in [46] remains true.

Proposition 3.13. Let t ∈ (0, T∗), p ∈ (1,∞), σ ∈ (− 2
p′ , 2

p ) and u be the singular

solution in Theorem 8. Then we have β̃p(T ) � λ
sym
p,σ (T ).

From Theorem 9, for any T < ∞ and any compact domain � ⊂ R
3\ϒ3, we can

localize u using some cutoff function such that u(t, x)χ(x) = u(t, x) for (x, t) ∈
� × [0, T ], and uχ is much smoother. The weighted estimate involving the weight r−σ

in Lemma 4.1 in [46] does not require higher order regularity on u. Thus the proof
follows from [46] and the proof of proposition 3.4.

Now, we are in a position to prove Theorem 2

Proof of Theorem 2. From Theorem 9, we have
∫ T∗

0 urr (t, 0, 0)dt = ∞. For σ < −1,
−σ − 1 > 0, combining Lemma 3.12 and (3.62), we obtain

λ
sym
p,σ (T ) ≥ C β̃σ (T ) ≥ C sup

r0 �=0
(
r0

rT
)σ+1 = C( sup

r0 �=0

rT
r0

)−1−σ ≥ C exp(
−1 − σ

2

∫ T

0
urr (t, 0, 0)dt).

Letting T → T∗, we complete the proof. ��

4. Properties of the Singular Solutions to the 2D Boussinesq Equations

In this Section, we prove Theorem 7 regarding the properties of the singular solutions
to the 2D Boussinesq equations (1.5) constructed in [11]. In Sect. 5, we generalize these
estimates to the 3D Euler equations with boundary. We will prove the higher-order
interior regularity in Theorems 7–9 by generalizing the nonlinear stability estimates in
[11] to the higher order and using embedding inequalities. These quantitative stability
estimates can be useful for future study of the singular solution. Since the estimates
essentially follow from similar estimates in [11], we will only summarize the estimates
and refer the details to Section 4.1−4.4 in the arXiv version of this paper.

After the completion of this work, recently, the first author [8] established the higher-
order interior regularity using another approach. This is done by performing weighted
Hölder estimates of the physical equations directly with a BKM-type [1] continuation
criterion.

4.1. Setup for the 2D Boussinesq equations. Firstly, we recall the setup from [11].



On Stability and Instability of C1,α Singular Solutions Page 33 of 53   112 

4.1.1. Dynamic rescaling formulation The analysis of the singular solutions [11] is
based on the dynamic rescaling formulation [47,54]. To distinguish the solutions to (1.5)–
(1.6) and the solutions to its dynamic rescaling formulation, we denote by ωphy(x, t),
θphy(x, t),uphy(x, t) the solutions of (1.5)–(1.6). Then it is easy to show that

ω(x, τ ) = Cω(τ)ωphy(Cl(τ )x, t (τ )), θ(x, τ ) = Cθ (τ )θphy(Cl(τ )x, t (τ )),

u(x, τ ) = Cω(τ)Cl(τ )−1uphy(Cl(τ )x, t (τ )),
(4.1)

are the solutions to the dynamic rescaling equations

ωτ (x, τ ) + (cl(τ )x + u) · ∇ω = cω(τ)ω + θx , θτ (x, τ ) + (cl(τ )x + u) · ∇θ = 0,

(4.2)
where u = (u, v)T = ∇⊥(−
)−1ω, x = (x, y)T ,

Cω(τ) = exp

(∫ τ

0
cω(s)dτ

)
,Cl(τ ) = exp

(∫ τ

0
−cl(s)ds

)
,

Cθ (τ ) = exp

(∫ τ

0
cθ (s)dτ

)
,

(4.3)

t (τ ) = ∫ τ

0 Cω(τ)dτ and the rescaling parameter cl(τ ), cθ (τ ), cω(τ) satisfies

cθ (τ ) = cl(τ ) + 2cω(τ).

We have the freedom to choose the time-dependent scaling parameters cl(τ ), cω(τ)

according to some normalization conditions. Then (4.2) is completely determined and
(4.2) is equivalent to the original equation using the relations (4.1)–(4.3), as long as
cl(τ ), cω(τ) remain finite. We refer more discussion about this reformulation for the 2D
Boussinesq equations to [11].

The dynamic rescaling formulation [47,54] is closely related to the modulation tech-
nique [42,52,55,58,59]. It has been a very effective tool to study singularity formation
for many problems [3,4,42,52,55,59]. Recently, it has been used to establish singu-
larity formation in 3D incompressible Euler equations [11,26,27] and related models
[5–7,15,15,16,28].

To simplify our presentation, we still use t to denote the rescaled time.

4.1.2. Polar coordinates and different variables Consider the polar coordinates in R
+
2

r =
√
x2 + y2, β = arctan(y/x), R = rα.

Let ω, θ, ψ = (−
)−1ω be the vorticity, density, and the stream function in (4.2).
Denote

�(R, β, t) = ω(x, y, t), � = 1

r2 ψ, η(R, β, t) = (θx )(x, y, t),

ξ(R, β, t) = (θy)(x, y, t). (4.4)

Using the (R, β) coordinates and the above new variables, we reformulate (4.2) as
follows

�t + αcl R∂R� + (u · ∇)� = cω� + η,

ηt + αcl R∂Rη + (u · ∇)η = (2cω − ux )η − vxξ,

ξt + αcl R∂Rξ + (u · ∇)ξ = (2cω − vy)ξ − uyη.

(4.5)
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The elliptic equation (1.6) reduces to the following for the modified stream function �

−α2R2∂RR� − α(4 + α)R∂R� − ∂ββ� − 4� = �, (4.6)

with boundary conditions

�(R, 0) = �(R, π/2) = 0, lim
R→∞ �(R, β) = 0. (4.7)

We consider the equations of (ω, θx , θy) in (4.5) since these variables have similar
regularities.

The approximate steady state of (4.5) under the coordinates (R, β) is given by

�̄(R, β) = α

c
�(β)

3R

(1 + R)2 , η̄(R, β) = α

c
�(β)

6R

(1 + R)3 , c̄l = 1

α
+ 3, c̄ω = −1,

�(β) = (cos(β))α, c = 2

π

∫ π/2

0
�(β) sin(2β)dβ.

(4.8)
We decompose a solution (�̂, η̂, ξ̂ , ĉl , ĉω) of (4.5) into the approximate steady state

and their perturbations

�̂ = �̄ + �, η̂ = η̄ + η, ξ̂ = ξ̄ + ξ, ĉl = c̄l + cl , ĉω = c̄ω + cω.

To uniquely determine the dynamic rescaling formulation, we impose the following
normalization conditions on the perturbation of the rescaling parameters cl(t), cω(t)

cω(t) = − 2

πα
L12(�(t))(0), cl(t) = −1 − α

α

2

πα
L12(�(t))(0) = 1 − α

α
cω(t),

(4.9)
where L12(·) is defined below in (4.10). We use �, η, ξ to denote the perturbation since
we will mainly focus on the analysis of the perturbation in the rest of the paper. The
reader should not confuse them with the solution to (4.5).

We introduce

L12(�) �
∫ ∞

R

∫ π/2

0

sin(2β)�(s, β)

s
dsdβ, �∗ � � − sin(2β)

πα
L12(�). (4.10)

The following decompositions of velocity (U, V ) = ∇⊥(−
)−1� in the (R, β)

coordinates are derived in Section 8.1 in [11]

U (�) = −2r cos(β)

πα
L12(�) − 2r sin(β)�∗ − αr sin βDR� − r cos β∂β�∗,

V (�) = 2r sin(β)

πα
L12(�) + 2r cos β�∗ + αr cos βDR� − r sin β∂β�∗,

(4.11)

where � is the solution of (4.6). For small α, the L12 terms capture the leading order
terms (U, V ), and �∗ is the lower order part in �. We estimate the lower order terms
using the elliptic estimates in Propositions B.2, B.3. Moreover, using the formula of �̄

in (4.8), we have

L12(�̄) = π

2

3α

1 + R
. (4.12)
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4.1.3. Weights and energy norms We define the differential operators

DR = R∂R, Dβ = sin(2β)∂β.

We recall the following singular weights and norms Hk, Ck from [11].

Definition 4.1. Recall �(β) = cosα(β). Let σ = 99
100 , γ = 1 + α

10 . Define ϕi , ψi , φi by

ψ0 � 3

16

(
(1 + R)3

R4 +
3

2

(1 + R)4

R3

)
�(β)−1, ϕ0 � (1 + R)3

R3 sin(2β),

ϕ1 � (1 + R)4

R4 sin(2β)−σ , ϕ2 � (1 + R)4

R4 sin(2β)−γ ,

ψ1 � (1 + R)4

R4 (sin(β) cos(β))−σ , ψ2 � (1 + R)4

R4 sin(β)−σ cos(β)−γ ,

φ1 � 1 + R

R
, φ2 � 1 + (R sin(2β)α)−

1
40 , φi j = 1i≥1φ1 + 1 j≥1φ2.

(4.13)

The special forms of ψ0, ϕ0 are designed carefully to exploit nonlocal cancellations
in the linearized equations of (4.5) and are crucial for the linear stability analysis of the
weighted L2 part of the energy in (4.16). We define the weighted Hk norms as follows

|| f ||Hm(ρ) �
∑

0≤k≤m

||ρ1/2
1 Dk

R f ||L2 +
∑

i+ j≤m−1

||ρ1/2
2 Di

RD
j+1
β f ||L2 . (4.14)

Choosing ρi = ϕi and ρi = ψi , i = 1, 2, we get the Hm(ϕ) and Hm(ψ) norm, respec-
tively. We simplify Hm(ϕ) as Hm . The Hm norm is used for �, η and the Hk(ψ) norm
for ξ .

We need the weighted Ck norm to control ξ

|| f ||Ck � || f ||∞ +
∑

1≤i≤k

(||φ1D
i
R f ||∞ + ||φ2D

i
β f ||∞)

+
∑

i, j≥1,i+ j≤k

||(φ1 + φ2)D
i
RD

j
β f ||∞.

(4.15)

We remark that the second weights ϕ2, ψ2, φ2 are used to handle the angular derivatives.
For mixed derivatives only involving DR , we use the first weights ϕ1, ψ1, φ1.

We define the L2-type energy with some parameters μi , μi j > 0 to be chosen

E2
1(�, η, ξ) �||�ϕ

1/2
0 ||22 + ||ηψ

1/2
0 ||22 +

81

4πc
L2

12(�)(0) + μ1(||�ϕ
1/2
1 ||22 + ||ηϕ

1/2
1 ||22)

+ ||ξψ
1/2
1 ||22 + μ2(||�ϕ

1/2
1 ||22 + ||ηϕ

1/2
1 ||22) + ||Dβξψ

1/2
2 ||22

+ μ3(||DR�ϕ
1/2
1 ||22 + ||DRηϕ

1/2
1 ||2 + ||DRξψ

1/2
1 ||22),

E2
k (�, η, ξ) �E2

1 +
∑

2≤i≤k

∑
0≤ j≤i

μi, j

(
||p1/2

j D j
RD

i− j
β �||22 + ||p1/2

j D j
RD

i− j
β η||22

+||q1/2
j D j

RD
i− j
β ξ ||22

)
.

(4.16)
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To estimate the velocity of the approximate steady state, we use the W l,∞ norm
[11,26]

|| f ||W l,∞ �
∑

0≤k+ j≤l, j �=0

∣∣∣
∣∣∣ sin(2β)−

α
5

Dk
RD

j
β

α
10 + sin(2β)

f
∣∣∣
∣∣∣
L∞ +

∑
0≤k≤l

∣∣∣
∣∣∣Dk

R f
∣∣∣
∣∣∣
L∞ . (4.17)

4.2. Nonlinear stability and finite time blowup. In Section 4.1−4.4 in the arXiv version
of this paper [12], we generalize the third order nonlinear energy estimates of the pertur-
bation in [11], which is essentially (4.19) with k = 3, to the higher order version (large
k). In particular, we fix k = 100 and establish the following. There exist some absolute
constants νi j > 0 (for E·,∞), μi j , μi > 0 (for Ek (4.16)) such that the energy given by

E(�, η, ξ) � (Ek(�, η, ξ)2 + αEk−2,∞(ξ)2)1/2, k = 100,

E2
k,∞(ξ) � ||ξ ||2∞ +

∑
i+ j≤k

νi j ||Pi jξ ||2∞, Pi j � φi j D
i
RD

j
β, (4.18)

satisfies the following nonlinear energy estimates

1

2

d

dt
E2(�, η, ξ) ≤ − 1

15
E2 + Kα1/2E2 + Kα−3/2E3 + Kα2E . (4.19)

Since the estimates are essentially the same as those presented in [11], we do not present
them here.

Using a standard bootstrap argument, we establish that there exists a small absolute
constant α1 < 1

1000 and K∗, such that if E(�(·, 0), η(·, 0), ξ(·, 0)) < K∗α2, we have

E(�(t), η(t), ξ(t)) < K∗α2 (4.20)

for all time t > 0 and α < α1. We refer the detailed bootstrap argument to [11].
Following the argument in [11], we obtain that cl(t), cω(t) defined in (4.8), (4.9)

satisfy

−3

2
< cω(t) + c̄ω < −1

2
,

1

2α
+ 3 < cl + c̄l <

2

α
+ 3,

where c̄ω, c̄l (4.8) denote the scaling parameters associated to the approximate steady
state, and cω, cl are the perturbations. In particular,Cω(τ),Cl(τ ) defined in (4.3) remains
finite for any τ < +∞ with bounds depending on τ, α only.

Finally, we consider the regularity of the solutions ω + ω̄, η + η̄, ξ + ξ̄ in the physical
space using the relations (4.1), (4.3). Below, we show that 1

r (u + ū) ∈ Ck−2. Applying
L̄12(�) = π

2
3α

1+R (4.12), the embedding in Proposition B.1, and Proposition B.3 toU (�̄)
(4.11), we yield

||1

r
U (�̄)||Ck � || 1

1 + R
||Ck + ||�̄∗||Ck + ||DR�̄||Ck + ||∂β�̄∗||Ck

�α 1 + ||1 + R

R
�̄∗||Wk,∞ + ||1 + R

R
DR�̄||Wk,∞ + ||1 + R

R
∂β�̄∗||Wk,∞ �α 1.

(4.21)
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For U (�), we first consider L12(�) using Lemma C.4. Let χ be the radial cutoff
function defined in Lemma C.4, which is constant near r = 0. Using Proposition B.1
and (4.20), we have

||L12(�)||Ck−2 � ||L12(�) − χ1L12(�)(0)||Ck−2 + ||χ1||Ck−2 |L12(�)(0)| �α ||�||Hk �α 1.

Applying Propositions B.2 and B.1 to control the �,�∗ terms in U (�) (4.11), we
get

||1

r
U (�)||Ck−2 � ||L12(�)||Ck−2 + ||�||Hk �α 1.

Similarly, using the estimates of the approximate steady state in Lemmas C.1, C.2,
C.3, and Propositions B.1, B.3, we obtain

||1

r
(V (�+�̄)||Ck−2 �α 1, ||�̄+�||Ck−2 �α 1, ||η̄+η||Ck−2 �α 1, ||ξ̄+ξ ||Ck−2 �α 1.

(4.22)
Since the (R, β) coordinates of (Clx,Cl y) is (Cα

l R, β), using the rescaling relation
(4.1), (4.4), in (R, β) coordinates, we obtain

�(R, β, τ )=Cω(τ)ωphy(C
α
l (τ )R, β, t (τ )), ωphy(R, β, t (τ ))=C−1

ω �(C−α
l R, β, τ ).

Similar relations apply for θ,u. Applying (4.21), (4.22), the above relation, and ρ(λR, β)

� C(λ)ρ(R, β) for any weight ρ in Definition 4.1, we have

||ωphy(t (τ ))||Ck−2 + ||θx,phy(t (τ ))||Ck−2 + ||θy,phy(t (τ ))||Ck−2

+ ||1

r
u phy ||Ck−2 + ||1

r
vphy ||Ck−2 � C(Cl(τ ),Cω(τ), α, τ ) � C(α, τ ) < +∞.

(4.23)
To further estimate the Ck regularity, we have the following simple embedding.

Lemma 4.2. Let S � {(x, y) : x �= 0, y > 0} = {(r, β) : r > 0, β ∈ (0, π/2) ∪
(π/2, π)}. For any compact domain � ⊂ S and l ≥ 1, we have

|| f ||Cl−1(�) �l,α,� || f ||Cl .

Proof. Recall DR = R∂R and R = rα . Using the chain rule, we yield r∂r = αR∂R . For
any compact domain � ⊂ S, i ≥ 0 and p ∈ R, since r �= 0, sin(β), | cos β| ∈ (0, 1),
we obtain

|∂ ir r p| �i,p,� 1, |∂ iβ sinp(β)| �i,p,� 1, |∂ iβ | cos(β)|p| �i,p,� 1.

Recall the relation among ∂x , ∂y, ∂r , ∂β

∂x = cos(β)∂r − sin(β)

r
∂β, ∂y = sin(β)∂r +

cos(β)

r
∂β.

Using the Leibniz rule, induction on l and the above estimate, for i + j ≤ l and
(x, y) ∈ �, we obtain

|∂ ix∂ j
y f | �l,�

∑
m+n≤l

|∂mr ∂nβ f | �l,�

∑
m+n≤l

|(r∂r )m∂nβ f | �l,α,�

∑
m+n≤l

|Dm
R ∂nβ f |

�l,α,� || f ||Cl .

It follows f ∈ Cl−1(�). ��



  112 Page 38 of 53 J. Chen, T. Y. Hou

Since u = r · 1
r u and r ∈ Ck−2(�), from (4.23) and Lemma 4.2, we further get

u ∈ Ck−3(�) for any compact set � ⊂ {(x, y) : x �= 0, y > 0}. Using the above
bootstrap estimates, e.g. (4.20), the regularity estimates, the arguments of localizing the
initial data and that for the finite time blowup in [11], we prove Theorem 7. We refer
these two arguments to [11].

5. Properties of the Singular Solution to the 3D Euler Equations

In [11], to generalize the blowup estimates from the 2D Boussinesq equations in R
+
2

to the 3D axisymmetric Euler equations with boundary, we need the nonlinear energy
estimates for the Boussinesq equations and two additional steps. The first step is to
control the support of the solutions in the domain (r, z) ∈ [0, 1] × T so that it does not
touch the symmetry axis r = 0. The second step is to generalize theH3 elliptic estimates
in the Boussinesq equations to the 3D Euler equations. See Section 1.3 and Section 9 in
[11].

For higher order estimates of the singular solutions to the 3D Euler equations, we only
need to generalize the H3 elliptic estimates to the Hk version since the first step does not
involve higher order estimates and we have established the nonlinear energy estimates
for the Boussinesq equations (4.19). Note that the H3 elliptic estimates in Proposition

9.9 in [11] is proved inductively with the weighted L2(
(1+R)4

R4 ) elliptic estimate being

the based case. Therefore, its generalization to the Hk estimate in Proposition 5.2 below
is straightforward.

These higher order estimates imply the interior regularity estimates ofωϑ, (uϑ)2, ur , uz

in Theorem 8. See Sect. 5.3. The estimate of uϑ does not follow from that of (uϑ)2. In
Sects. 5.5 and 5.6, we further estimate uϑ .

The proof of Theorem 9 is similar and is mostly based on the estimates in [26,27].
Thus, we will only sketch the proof.

5.1. Setup of the 3D axisymmetric Euler equations. We first review the basic setup of
the 3D axisymmetric Euler equations from Section 9 in [11]. Recall the 3D axisymmetric
Euler equations from (3.9)–(3.11) and the cylindrical coordinates (r, ϑ, z) (3.1) in R

3.
We introduce the following variables

θ̃ (r, z) � (ruϑ)2, ω̃(r, z) = ωϑ/r, (5.1)

new coordinates (x, y) centered at r = 1, z = 0, and its related polar coordinates

x = Cl(τ )−1z, y = (1−r)Cl(τ )−1, ρ =
√
x2 + y2, β = arctan(y/x), R = ρα,

(5.2)
where Cl(τ ) is defined below (5.5). The reader should not confuse the relation R = ρα

with R = rα in the 2D Boussinesq. Since the domain D = {(r, z) : r ≤ 1, z ∈ T} of the
equations (3.9)–(3.11) is periodic in z with period 2, we focus on one period

D1 � {(r, z) : r ≤ 1, |z| ≤ 1}. (5.3)

In the proof in [11], the variables ω̃, θ̃ (5.1) are the analog of (ω, θ) in the 2D Boussinesq
equations (1.5). The cylindrical coordinates (r, z) for the 3D Euler equations relate to
(y, x) in the 2D Boussinesq equations (1.5) via the change of variables (5.2).
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We consider the following dynamic rescaling formulation centered at r = 1, z = 0

θ(x, y, τ ) = Cθ (τ )θ̃(1 − Cl(τ )y,Cl(τ )x, t (τ )) = Cθ (τ )θ̃(r, z, t (τ )),

ω(x, y, τ ) = Cω(τ)ω̃(1 − Cl(τ )y,Cl(τ )x, t (τ )) = Cω(τ)ω̃(r, z, t (τ )),

ψ(x, y, τ ) = Cω(τ)Cl(τ )−2ψ̃(1−Cl(τ )y,Cl(τ )x, t (τ ))=Cω(τ)Cl(τ )−2ψ̃(r, z, t (τ )),

(5.4)
where Cl(τ ),Cθ (τ ),Cω(τ), t (τ ) are given by Cθ (τ ) = C−1

l (τ )C2
ω(τ),

Cω(τ) = Cω(0) exp

(∫ τ

0
cω(s)dτ

)
, Cl(τ ) = Cl(0) exp

(∫ τ

0
−cl(s)ds

)
,

t (τ ) =
∫ τ

0
Cω(τ)dτ.

(5.5)

These rescaling relations are similar to those in (4.1)–(4.3). Denote

�(R, β) = 1

ρ2 ψ(ρ, β), �(R, β) = ω(ρ, β), η(R, β) = (θx )(ρ, β),

ξ(R, β) = (θy)(ρ, β). (5.6)

Since we rescale the cylinder D1 = {(r, z) : r ≤ 1, |z| ≤ 1}, the domain for (x, y) is

D̃1 � {(x, y) : |x | ≤ C−1
l , y ∈ [0,C−1

l ]}. (5.7)

Using the above change of variables, one can reformulate the elliptic equation (3.10)
as follows

− α2R2∂RR� − α(4 + α)R∂R� − ∂ββ� − 4�

+
Clρ

r
(sin(β)(2 + αDR)� + cos(β)∂β�) +

C2
l ρ

2

r2 � = r�,
(5.8)

with boundary condition of � (in the sector R ≤ C−α
l ) given below

�(R, 0) = �(R, π/2) = 0. (5.9)

See Sections 9.1 and 9.2 [11] for the details.

Definition 5.1. We define the size of support of the rescaling variables (θ, ω) (5.4)

S(τ ) = ess∞{ρ : θ(x, y, τ ) = 0, ω(x, y, τ ) = 0 for x2 + y2 ≥ ρ2}.

Obviously, the support of �, η defined in (5.6) is S(τ )α . After rescaling the spatial
variable, the support of (θ̃ , ω̃) (5.1), (3.9) satisfies

supp(θ̃(t (τ ))), supp(ω̃(t (τ ))) ⊂ {(r, z) : ((r − 1)2 + z2)1/2 ≤ Cl(τ )S(τ )}. (5.10)
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5.2. Localized elliptic estimates. Let χ1(·) : [0,∞) → [0, 1] be a smooth cutoff func-
tion, such that χ1(R) = 1 for R ≤ 1, χ1(R) = 0 for R ≥ 2 and (DRχ1)

2 � χ1. This
assumption can be satisfied if χ1 = χ2

0 where χ0 is another smooth cutoff function.
Denote

χλ(R) = χ1(R/λ), �χλ = �χλ, �χλ = �χλ. (5.11)

In Section 9.2.2 in [11], we showed that the leading order part of � near 0 is captured
by

L12(Zχλ)(0) = −L12(�)(0) + 4α

∫ π/2

0
�(0, β) sin(2β)dβ, (5.12)

when λ ≥ (S(τ ))α .
As discussed at the beginning of Sect. 5, we can generalize Proposition 9.9 in [11] as

follows.

Proposition 5.2. Suppose that� is the solution of (5.8) and� ∈ Hk . There exists some
absolute constantα2 and constant δk ∈ (0, 1/4), such that ifα < α2,λ = δkC

−α
l , Cl S <

α · δ
1/α+1
k , we have

α2||R2∂RR�χλ ||Hk + α||R∂Rβ�χλ ||Hk + ||∂ββ(�χλ

− sin(2β)

απ
(L12(�) + χ1L12(Zχλ)(0)))||Hk �k ||�||Hk ,

|L12(Zχλ)(0)| � 3− 1
α ||�1 + R

R
||L2 .

In Proposition 9.9 in [11], we prove the case for k = 3 with δk = 2−13. The follow-
ing results generalize Proposition 9.11 from [11]. The conditions λ = δkC

−α
l ,Cl S <

αδ
1/α+1
k guarantee that λ ≥ (S(τ ))α in (5.12).

Proposition 5.3. Let �̄0(t) be the solution of (5.8) with source term � = �̄0 =
�̄χ(R/ν), and α2, δk be the constants in Proposition 5.2. If α < α2, λ = δkC

−α
l , Cl S <

αδ
1/α+1
k , 2ν < λ, we have

α||1 + R

R
D2

R�̄0,χλ ||Wk,∞ + α||1 + R

R
R∂Rβ�̄0,χλ ||Wk,∞

+ ||1 + R

R
∂ββ(�̄0,χλ − sin(2β)

απ
(L12(�̄0) + χ1L12(Z̄χλ)(0)))||Wk,∞ �k α,

|L12(Z̄χλ)(0)| � 3− 1
α ,

where L12(Z̄χλ)(0) associated to �̄0 is defined in (5.12).

The case of k = 5 is Proposition 9.11 in [11]. The general case follows from a similar
argument.

Choosing k = 100 in Propositions 5.2 and 5.3 and using (5.11), we obtain the elliptic
estimates for �(R, β) = �χλ(R, β), R ≤ λ = δ100C

−α
l in the dynamic rescaling

equations. Using the relations (5.2) and (5.6) and rescaling the domain, we obtain that
R ≤ λ is equivalent to

ρ ≤ C−1
l δ

1/α
100 , ρCl ≤ δ

1/α
100 , |(r, z) − (1, 0)| ≤ δ

1/100
100 .
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Thus, we have H100 estimate of the stream function ψ̃ (3.9) in the physical domain

B(1,0)(R2,α), R2,α = δ
1/α
100 < 1/4. (5.13)

Now, we are in a position to prove Theorem 8. Denote

DR2 � {(r, z) : r ∈ (0, 1), z �= 0} ∩ B(1,0)(R2,α), ϒ � {(r, z) : r = 1 or z = 0}.
(5.14)

Remark 5.4. In later estimates, we will choose α to be very small and then choose S(0)

to be very large. Finally, we choose Cl(0) much smaller than S(0)−1, α. We treat Cl(0)

roughly as 0.

5.3. Blowup, control of the trajectory and the interior regularity . Recall from Definition
5.1 the size of support S(t) in the dynamic rescaling equations. Then Cl(t)S(t) is the
size of the support of the solution in the physical space. In [11], for some small α0 > 0
and any 0 < α < α0, we construct a class of Cα singular solutions with the following
control of the support and trajectory. For a point within the support of the initial data
(θ0, ω0) (5.4) and with trajectory (R(t), β(t)), R(t) satisfies a uniform estimate

Cl(t)R(t)1/α ≤ C(α, S(0))Cl(0) (5.15)

for some constantC(α, S(0)) up to the blowup time. See Section 9.3.5 in [11]. For initial
data with support size S(0), we can pick Cl(0) small enough such that

Cl(t)S(t) ≤ C(α, S(0))Cl(0) < R2,α/8 � R1,α, (5.16)

where R2,α is defined in (5.13). It follows

(S(t))α < Rα
1,αC

−α
l < (R2,α/2)αC−α

l < δ100C
−α
l .

Thus, within the support of the solution, we can apply the high order elliptic estimates
(k = 100) in Propositions 5.2 and 5.3 to estimate �(R, β).

As discussed at the beginning of Sect. 5, using the argument in [11] and the higher
order elliptic estimates in Propositions 5.2 and 5.3, we can generalize the blowup results
in Theorem 7 for the 2D Boussinesq equations to the 3D axisymmetric Euler equations.
In particular, we have the control of the support and the trajectory (5.15)–(5.16) and
obtain the following generalization of (4.21) and (4.22) for the solution (θ, ω,ψ) in the
dynamic rescaling formulation (5.4) of (3.9)

||∇θ(τ )||C60 + ||ω(τ)||C60 + || 1

ρ
∇(ψ(τ)χλ)||C60 �α 1. (5.17)

In general, θ, ω,ψ are only defined in the bounded and rescaled domain (5.7). Since
θ, ω,ψχλ have compact support with S(t) < 1

2C
−1
l (5.16) or (2λ)1/α < 1

2C
−1
l (see

Lemma 5.2), these variables can be extended naturally to (x, y) ∈ R+ × R. Then the
Ck norm (4.15) of these variables are well-defined. From (5.10) and (5.16), the solution
θ̃ (t, r, z), ω̃(t, r, z) are supported in B(1,0)(R1,α) ⊂ B(1,0)(R2,α). Since χλ = 1 in
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B(1,0)(R2,α), using (5.17), (3.10), the rescaling relation (5.4), (5.1), and estimates similar
to those in Lemma 4.2, we yield

||θ̃ (t)||C50(�) +||ω̃(t)||C50(�) +||ur (t)||C50(�) +||uz(t)||C50(�) � C(α,�,Cl(τ ),Cω(τ))

(5.18)
for the compact domain � ⊂ DR2 (5.14). Since r, 1

r is smooth away from r = 0, from
(5.1), we yield (uϑ)2, ωϑ ∈ C50(�). We prove estimates for ωϑ, (uϑ)2, ur , uz in result
(c) in Theorem 8.

In the (r, z) coordinates, from (5.15), (5.16), and (5.2), for (r0, z0) ∈ supp(ω̃0) ∪
supp(θ̃0) = supp(uϑ

0 ) ∪ supp(ωϑ
0 ), we have

γt (r0, z0) ∈ B(1,0)(R1,α). (5.19)

This proves result (b) in Theorem 8.

5.4. Result (a): Blowup of ωp. Recall the poloidal component of ω from (3.3)

ωp = ωr er + ωzez, ωr = −∂zu
ϑ , ωz = 1

r
∂r (ru

ϑ).

From (5.4), (5.5), and (5.1), we get ∂xθ(x, y, τ ) = CθCl∂z θ̃ = C2
ω∂z((uϑ/r)2). It

follows

I (τ ) �
∫ t (τ )

0
||∂z( (u

ϑ(s))2

r2 )||∞ds =
∫ τ

0
C−2

ω ||∂xθ(x, y, s)||∞ds.

The nonlinear stability result implies that ||∂xθ(x, y, s)||∞ ≈ ||θ̄x ||∞ �α 1 and
Cω(τ) ≤ exp(−τ/2). See Section 9.3.6 in [11] for the derivations. Since uϑ is supported
in B(1,0)(1/4) and ruϑ(r, z, t) is transported (3.9), we obtain

||∂z( (u
ϑ(s))2

r2 )||∞ � ||∂zuϑ(s)||∞||ruϑ(s)||∞ � ||ωp(s)||∞||ruϑ
0 ||∞.

Therefore, we establish
∫ τ

0
exp(s)ds �α I (τ ) =

∫ t (τ )

0
||∂z( (u

ϑ(s))2

r2 )||∞ds � ||ruϑ
0 ||∞

∫ t (τ )

0
||ωp(s)||∞ds.

Taking τ → ∞ yields
∫ T∗

0 ||ωp(s)||∞ds = ∞, where T∗ = t (∞) < +∞ (5.5) is the
blowup time.

5.5. Interior regularity of uϑ
0 . The smoothness of uϑ does not follow from (uϑ)2 since

uϑ can degenerate. In this section, we choose uϑ
0 smooth in the interior of the domain.

In Sect. 5.6, we show that the regularity can be propagated.
Let �1 be any compact domain with

�1 ⊂ {(x, y) : x �= 0, y > 0}. (5.20)



On Stability and Instability of C1,α Singular Solutions Page 43 of 53   112 

Remark 5.5. Recall from Remark 1.2 that we made a minor change of the approximate
steady state of the 3D Euler equations in [14] and the updated arXiv version of [11], i.e.
[10]. More precisely, in [10], we modify θ̄old used in [11] by θ̄ below

θ̄old =
∫ x

0
θ̄x (z, y), θ̄ = 1 +

∫ x

0
θ̄x (z, y)dz, (5.21)

where θ̄x (x, y) = η̄(R, β) (4.8). See Eq (A.20) in [10]. This modification does not
change ∇ θ̄ , i.e. ∇ θ̄ = ∇ θ̄old , and we have θ̄ ∈ C1,α . We remark that [10,11] are
essentially the same except for this minor change. In the following derivations, we use
this new approximate steady state θ̄ .

The initial data for θ in [10] (see Eq (9.55) in Sections 9.3.2 and 9.3.6 [10]) is chosen
as

θ0(x, y) = θ̄0(x, y) = χ1(R/ν)θ̄(x, y),

where θ̄ is given in (5.21) and χ1 is some smooth cutoff function satisfying that χ
1/2
1

is smooth. We have the smoothness of χ
1/2
1 by choosing χ1 = χ̃2

1 for another smooth
cutoff function χ̃1. Since θ̄x (x, y) > 0 for x > 0, θ̄ (0, y) ≥ 1 and θ̄ is even, we get
θ̄ ≥ 1.

Using induction and the Leibniz rule, we get θ̄1/2 ∈ C60(�1). Since θ̄
1/2
0 = θ̄1/2

χ
1/2
1 (R/ν), R ∈ C60(�1), andχ

1/2
1 is smooth, we further obtain θ

1/2
0 (x, y) = θ̄

1/2
0 (x, y)

∈ C60(�1).
Since �1 is an arbitrary compact domain with (5.20), using the relation among

θ0, θ̃0, uϑ
0 (5.1), (5.4) and the relation between the coordinate (r, z) and (x, y) in (5.2),

we obtain uϑ
0 (r, z) = θ

1/2
0 /r ∈ C60(�) for any compact domain � ⊂ DR2 (5.14).

Moreover, uϑ
0 is even in z and this symmetry is preserved by (3.9).

5.6. Propagate the regularity of uϑ . In Theorem 8, it remains to proveuϑ(t) ∈ L∞([0, T ],
C50(�)) for any compact set � ⊂ DR2 (5.14). Recall ϒ from (5.14).

The idea is that if the domain � is away from supp(uϑ), then uϑ vanishes and it is
smooth. Otherwise, the trajectory gt (5.22) through � can be contained in a compact set
in (D1\ϒ)∩B(1,0)(R2,α) and is smooth according to Theorem 8. Since ruϑ is transported
along the trajectory and the initial data uϑ

0 is smooth, we then obtain that uϑ(t) is smooth
in �.

Proof. Recall D1, ϒ from (5.3), (5.14). We fix T < T∗ and a compact set � ⊂ (D1\ϒ)∩
B(1,0)(R2,α). Consider the flow map gt : (r, z) ∈ D1 → D1 generated by (ur , uz)

d

dt
gt (r, z) = (ur (gt (r, z), t), u

z(gt (r, z), t), g0(r, z) = (r, z). (5.22)

It is the same as γ̃t in (3.16), (3.17). Since ur , uz ∈ L∞([0, T ],C1,α(D1)), we can
solve the above ODE with gt , g

−1
t being Lipschitz in (r, z). Due to the non-penetrated

condition (3.15), we obtain that gt , g
−1
t are bijections from D1 to D1 and D1\ϒ to

D1\ϒ . One should not confuse (5.22) with (3.6). Denote Lg by the Lipschitz constant
of gt , g

−1
t for t ∈ [0, T ]. Recall from (3.9) that

∂t (ru
ϑ) + (ur∂r + uz∂z)(ru

ϑ) = 0.
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We abuse the notation by denoting x = (r, z). We get rtuϑ(t, gt (x)) = r0uϑ
0 (x). Invert-

ing gt yields

ruϑ(t, x) = r(g−1
t (x))uϑ

0 (g−1
t (x)). (5.23)

From result (b) in Theorem 8, we yield

supp(uϑ(t)) ⊂ gt (supp(uϑ
0 )) ∩ B(1,0)(R1,α), t ∈ [0, T∗). (5.24)

Since � is compact, it suffices to show that for any x ∈ �, there exists δ > 0 such
that uϑ(t) ∈ C50(Bx (δ)) with norm uniformly bounded on [0, T ]. Since gt , g

−1
t are

bijections and Lipschitz in t and x and g−1
t (�) ∩ ϒ = ∅, we yield

δ1 � min
t∈[0,T ] dist(g−1

t (�),ϒ) > 0. (5.25)

Now, we define

δ = 1

4(Lg + 1)
min(R1,α, δ1), �2 � {x : dist(x, ϒ) ≥ δ} ∩ B̄(1,0)(4R1,α) ∩ D̄1,

S(t, ρ) = {x : |x − y| ≤ ρ, y ∈ supp(uϑ(t))} ∩ D1.

(5.26)
The set S(t, ρ) is the ρ neighborhood of supp(uϑ(t)), and �2 is a compact set in D1\ϒ ∩
B(1,0)(R2,α). From result (c) in Theorem 8, we have ur , uz ∈ L∞([0, T ],C50(�2)).

If x ∈ �\S(t, 2δ), we get uϑ(t, x) = 0 on Bx (δ) and thus uϑ(t) ∈ C50(Bx (δ)).
If x ∈ �∩S(t, 2δ)), from (5.24), we have x = γt (x0)+z, x0 ∈ B(1,0)(R1,α), |z| ≤ 2δ.

Hence, we get Bx (δ) ⊂ Bγt (x0)(3δ). Next, we show that the trajectory passing through
Bγt (x0)(3δ) is contained in �2. Recall that Lg is the Lipschitz constant of gt , g

−1
t on

[0, T ]. For any s ∈ [0, t] and y = gt (x0) + z ∈ D1, |z| ≤ 3δ, using (5.25), (5.26), we
get

|g−1
s (y) − g−1

s gt (x0)| ≤ Lg|y − gt (x0)| ≤ 3Lgδ,

dist(g−1
s (y), ϒ) ≥ dist(g−1

s gt (x0), ϒ) − 3Lgδ ≥ δ1 − 3Lgδ > δ,

|g−1
s (y) − (1, 0)| ≤ |g−1

s gt (x0) − (1, 0)| + 3Lgδ ≤ 3Lgδ + R1,α ≤ 2R1,α,

where we have used gτ (x0) ∈ B(1,0)(R1,α) from Theorem 8 for x0 ∈ supp(uϑ
0 ) and

τ ∈ [0, T ]. Hence, we establish

g−1
s Bx (δ) ⊂ g−1

s Bγt (x0)(3δ) ⊂ �2, s ∈ [0, t].

Since ur , uz ∈ L∞([0, T ],C50(�2)) (5.18), solving (5.22) backward with backward
initial data in Bx (δ), we yield g−1

t ∈ C50(Bx (δ)), with bound depending on T and
�2. Since r ∈ [1/2, 1] within the support of uϑ(·), using (5.23), we prove uϑ(t) ∈
C50(Bx (δ)) with bound depending on T, �2.

Combining both cases x ∈ �\S(t, 2δ), x ∈ �∩S(t, 2δ), we obtain uϑ ∈ L∞([0, T ],
C50(Bx (δ)). Since δ is uniform for x ∈ � and � can be covered by finite balls with
radius δ, we obtain uϑ ∈ L∞([0, T ],C50(�)). ��
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5.7. Proof of Theorem 9. The proof of Theorem 9 is similar and simpler than that of
Theorem 8 since we do not need to control the trajectory and estimate the swirl uϑ .

Proof. The first part of the theorem about the blowup result from some ωϑ
0 ∈ Cα

c and
uϑ

0 = 0 has been proved in Theorems 1, 2 in [27]. Moreover, higher order estimates
of the perturbation in the Hk norm for k ≥ 1 and the profile have been established in
Theorem 2 in [27]. Thus, the interior regularity ωϑ, ur , uz ∈ L∞([0, T ],C50(D2)) in
Theorem 9 follows from these higher order estimates and the argument in the proof of
Theorem 7.

It remains to estimate urr (t, 0, 0). Let (r, ϑ, z) be the cylindrical coordinates in R
3

(3.1), ρ, R, β be the modified polar coordinates for (r, z) and � be the vorticity in the
new coordinates

β = arctan(z/r), ρ = (r2 + z2)1/2, R = ρα, �(R, β) = ωϑ(ρ, β). (5.27)

Firstly, we show that

urr (0, 0) = −1

2
L(ωϑ)(0) = − 1

2α
L(�)(0),

L( f )(r) �
∫ ∞

r

∫ π/2

0

f (r, β) cos2(β) sin(β)

r
drdβ. (5.28)

This can be obtained by following the derivations in [26,27]. For the sake of complete-
ness, we derive (5.28) in Appendix D using the formula u = ∇ × (−
)−1ω in R

3.
In [27], it is proved that the blowup solution � satisfies

�(R, β, t) = 1

λ(t)
�(

R

λ1+δ
, β, s),

ds

dt
= 1

λ(t)
, ||�||L∞ �α 1,

� = F + ε(τ ) = F∗ + α2g + ε(τ ),
1

α
L(F)(0) = −1 + O(α), L(ε(τ ))(0) ≡ 0,

(5.29)
for some rescaled time s and factor T∗

T∗−t λ(t) → 1 as t → T∗, where T∗ is the blowup

time. Here F = F∗ + α2 g is the time-independent self-similar profile of (1.1) without
swirl constructed in [26]. See Sections 2.3−2.5 in [27]. In particular, for α small enough,
we get

urr (0, 0, t) = − 1

2α
L(�)(0) = − 1

2αλ(t)
L(�)(0) = − 1

2αλ(t)
L(F)(0) > 0,

urr (t, 0, 0) �α ||�(t)||L∞ = ||ω(t)||L∞ .

The last inequality is a consequence of that urr (t, 0, 0) and ||ωϑ ||L∞ = ||ω||L∞ have the
same scaling and that the blowup is asymptotically self-similar. It follows

∫ T∗
0 urr (t, 0, 0)

dt = ∞. ��
Remark 5.6. In [26], the setup of the 3D axisymmetric Euler equations is not conven-
tional and differs from (3.9)–(3.11) by a negative sign. See Section 2 in [26] for this
difference. Therefore, in the current setting, the profile F for the vorticity is negative,
and 1

α
L(F)(0) = −1 + O(α), while the profile F is positive in [26,27]. These changes

do not affect the positive sign of urr (0, 0, t).
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Appendix A. Review of the Construction of Unstable Solutions

We provide a brief review of the construction of the unstable solution in [46,64] via a
WKB expansion and explain the connections among the WKB expansion, the bicharacteristics-
amplitude ODE system (3.6)–(3.8), and the growth of the unstable solution.

A.1. Construction of the approximate solution. Suppose that u(t, x) is a singular solu-
tion of (1.1). Denote by γt (x) the flow map

d

dt
γt (x) = u(t, γt (x)), γ0(x) = x . (A.1)

The main idea in [64] is to construct an approximate solution to (1.2) using a WKB
expansion

v(t, x) ≈ b(t, x) exp(
i S(t, x)

ε
) (A.2)

for sufficiently small ε and the characteristics of the flow, where b(t, x) ∈ R
3 and S is

a scalar. Plugging the above ansatz into (1.2), we obtain

Rε = (∂t + u · ∇ + ∇u)v = i

ε
(∂t + u · ∇)S · bei S/ε + (∂t + u · ∇ + ∇u)b · ei S/ε,

where (∇u) f = f · ∇u = f j∂ j ui ei . To eliminate the O(ε−1) term, one requires

(∂t + u · ∇)S = 0. (A.3)

Then we can rewrite Rε as follows

Rε = (∂t + u · ∇ + ∇u)b · ei S/ε � F(t, x) · ei S/ε, F � (∂t + u · ∇ + ∇u)b. (A.4)

An important observation in [64] is that for high frequency oscillation, i.e. small ε, the
pressure term in (1.2) is almost local. We would like to construct (v, Q) such that

Rε = F(t, x)ei S/ε = ∇Q + Eε,



On Stability and Instability of C1,α Singular Solutions Page 47 of 53   112 

where Eε is a small error term. This is possible since Q is one order more regular than a
highly oscillatory function F(t, x)ei S/ε . By integration and exploiting the cancellation,
Q can be of order O(ε). In fact, taking ∇× on both sides, we obtain

∇ × Rε = (∇ × F)ei S/ε +
i

ε
(∇S × F)ei S/ε = ∇ × (∇Q + Eε) = ∇ × Eε.

To eliminate the O(ε−1) term, we require ∇S × F = 0, which implies F = c(t, x)∇S
for some scalar c(t, x). In this case, one can construct the pressure Q as follows

Q = −iεc(t, x)ei S/e.

As a result, the error is given by

Eε = Rε − ∇Q = c∇Sei S/ε + iε · ∇c · ei S/ε + iεc
i∇S

ε
ei S/ε = iε · ∇c · ei S/ε. (A.5)

Suppose that c is smooth, then the L p norm of the error Eε is small as ε → 0.
From F = c(t, x)∇S and (A.4), we yield

(∂t + u · ∇ + ∇u)b = F(t, x) = c(t, x)(∇S)(t, x).

Using the Lagrangian coordinates and the flow map γt (A.1), we get

∂t b(t, γt (x)) = −(∇u)b(t, γt (x)) + c(t, x)(∇S)(t, γt (x)).

Denote
ξt (x) � (∇S)(t, γt (x)), bt (x) � b(t, γt (x)) . (A.6)

The above equation reduces to

d

dt
bt = −(∇u)bt + c(t, x)ξt . (A.7)

Next, we determine the equations for b, ξ . In order for v(t, x) to be incompressible, from
the ansatz (A.2) and

∇ · v(t, x) = (∇ · b)ei S/ε +
i

ε
b · ∇Sei S/ε ,

we require b(t, x) · (∇S)(t, x) = 0 to eliminate the O(ε−1) term. In the Lagrangian
coordinates, this condition is equivalent to enforcing

b(t, γt (x)) · (∇S)(t, γt (x)) = bt (x) · ξt (x) = 0. (A.8)

Taking the gradient in the transport equation (A.3), we get

(∂t + u · ∇)∇S = −(∇u)T∇S.

Using the Lagrangian coordinates and (A.6), we derive

d

dt
ξt = d

dt
(∇S)(t, γt (x)) = −(∇u)T (∇S)(t, γt (x)) = −(∇u)T ξt . (A.9)



  112 Page 48 of 53 J. Chen, T. Y. Hou

The incompressible condition (A.8) implies d
dt (bt · ξt ) = 0. Thus, from (A.7) and (A.9),

we get

〈c(t, x)ξt , ξt 〉 − 〈(∇u)bt , ξt 〉 − 〈(∇u)T ξt , bt 〉 = 0,

where 〈p, q〉 = piqi . It follows that

c(t, x) = 2
ξ Tt (∇u)bt

|ξt |2 .

Thus, from (A.1),(A.7),(A.9), γt , ξt , bt satisfy the bicharacteristics-amplitude ODE sys-
tem (3.6)–(3.8) of (1.1) [46,64]
The above derivation reveals the main idea behind the construction of an approximate
solution to (1.2) in [64] and the relationship between the WKB expansion (A.2) and the
bicharacteristics-amplitude ODEs (3.6)–(3.8). The last step is to localize the solution
v(t, x) to some trajectory and add a correction to v(t, x) (A.2) so that it is incompressible.
We refer to [64] for the details.

A.2. Growth of the solution. The solution v(t, x) satisfies (1.2) up to an error similar to
(A.5). Since Eε contains the highly oscillatory phase ei S/ε, the error may not be small in
Ck,α or Hs norm. In [64], based on the WKB construction (A.2) and using the smallness
of the error in the L p norm, the authors constructed an approximate solution to (1.2)
with error controlled by ε. To prove the instability, they further showed the growth of
v(t, x). From (A.2), the growth of ||v||p is due to ||bt ||p. The authors showed that if the
velocity u(t, x) is smooth, the system (3.6)–(3.8) satisfies the following conservations
along the characteristic γt (x)

ω(t, γt (x)) · ξt = ω0(x) · ξ0, bt · ξt = b̃t · ξt , (bt × b̃t ) · ξt = (b0 × b̃0) · ξ0,

where ω = ∇ × u is the vorticity of the blowup solution u, ξt , bt , b̃t are the solution
to (3.6)–(3.8) with initial data x0, ξ0, b0, b̃0, b0 · ξ0 = b̃0 · ξ0 = 0 and b0, b̃0, ξ0 being
linearly independent.
From the first and the third identity, formally, bt × b̃t plays a role similar to ω(t, γt (x)).
Indeed, using the above conservations, the authors further proved

||ω(t, ·)||∞ ≤ ||ω0||L∞
(

sup
|b0|=|ξ0|=1,x0∈�,b0·ξ0=0

|bt (x0, ξ0, b0)|
)2

. (A.10)

According to the BKM blowup criterion, ||ω(t)||∞ must blowup, which leads to the
growth of bt and ||v(t)||L p and implies linear instability.

Appendix B. Embedding Inequalities and Estimates of Nonlinear Terms

We have the following estimates for different norms. The first and last inequality gen-
eralize Proposition 7.6 in [11]. The second inequality is exactly Proposition 7.7 in [11].
The third inequality in (B.1) generalizes Lemma 7.11 in [11]. Since the proof essentially
uses the estimates in [11], we omit the proof here and refer it to Appendix B in the arXiv
version of this paper [12].
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Proposition B.1. Let Ck andWk,∞ be the norms defined in (4.15) and (4.17). For k ≥ 1,

|| f g||Ck � || f ||Ck ||g||Ck , || f g||Wk,∞ � || f ||Wk,∞||g||Wk,∞,

|| f ||Ck � α−1/2|| f ||Hk+2 , || f ||Ck � ||1 + R

R
f ||Wk,∞ .

(B.1)

We have the following elliptic estimates for the stream function (4.10), (4.6).

Proposition B.2. Assume that α ≤ 1
4 and � ∈ Hk, k ≥ 3. Let � be the solution to (4.6)

with boundary condition (4.7). Then we have

α2||R2∂RR�||Hk + α||R∂Rβ�||Hk + ||∂ββ(� − 1

απ
sin(2β)L12(�))||Hk �k ||�||Hk .

The above estimate with k = 3 has been established in [11]. The general case k ≥ 3 can
be proved similarly. See also [26].
We have the following estimates for the velocity ū of the approximate steady state.

Proposition B.3. For α ≤ 1
4 and k ≥ 5, we have

||1 + R

R
∂ββ(�̄ − sin(2β)

πα
L12(�̄))||Wk+2,∞ � α, ||L12(�̄)||Wk+2,∞ � α,

α||1 + R

R
D2

R�̄||Wk,∞ + α||1 + R

R
∂βDR�̄||Wk,∞

+ ||1 + R

R
∂ββ(�̄ − sin(2β)

πα
L12(�̄))||Wk,∞ � α.

The case of k = 5 has been proved in Proposition 7.8 [11]. The general case k ≥ 5
follows from a similar argument. See also [26].

Appendix C. Estimate of the Approximate Steady State

Recall from (4.4) that �̄, η̄, ξ̄ denote the approximate steady state ω̄, θ̄x , θ̄y under the
coordinates (R, β), and the formula of �̄, η̄ in (4.8).

�̄ = α

c

3R�(β)

(1 + R)2 , η̄ = α

c

6R�(β)

(1 + R)3 . (C.1)

We generalize Lemma A.6 in [11] from k ≤ 3 to any k below.

Lemma C.1. The following results apply to any k ≥ 0, 0 ≤ i + j ≤ k, j �= 0. (a) For
f = �̄, η̄, �̄ − DR�̄, η̄ − DR η̄, we have

|Dk
R f | �k f, |Di

RD
j
β f | �k α sin(β) f. (C.2)

Recall the Wk,∞ norm (4.17). We generalize Lemma A.7 in [11] from k = 7 to any
k ≥ 7.

Lemma C.2. For any k ≥ 7, it holds true that �(β), �̄, η̄ ∈ Wk,∞ with

|| (1 + R)2

R
�̄||Wk,∞ + || (1 + R)2

R
η̄||Wk,∞ �k α, ||Dβ�̄||Wk,∞ + ||Dβη̄||Wk,∞ �k α2.
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Recall the Kk norm (4.15). We generalize Lemma A.8 in [11] from k = 5 to any k ≥ 5
below.

Lemma C.3. Assume that 0 ≤ α ≤ 1
1000 . For R ≥ 0, β ∈ [0, π/2], k ≥ 1 and i + j ≤ k,

we have

|Di
RD

j
β ξ̄ | �k −ξ̄ , |Di

RD
j
β(3ξ̄ − R∂R ξ̄ )| �k −ξ̄ ,

||ξ̄ ||Ck � ||1 + R

R
(1 + (R sin(2β)α)−

1
40 )ξ̄ ||L∞ � α2,

The proofs of Lemmas C.1–C.3 follows from the argument in [11], and thus are omitted.
For the L12 operator (4.10), we generalize Lemma A.4 in [11] fromH3 to itsHk version.
The proof follows from a similar argument.

Lemma C.4. Letχ(·) : [0,∞) → [0, 1]bea smooth cutoff function, such thatχ(R) = 1
for R ≤ 1 and χ(R) = 0 for R ≥ 2. For 0 ≤ k ≤ n, 0 ≤ l ≤ n − 1, n ≥ 3, we have

||L12(�) − L12(�)(0)χ ||Hn + ||DR(L12(�) − L12(�)(0)χ)||Hn �n ||�||Hn ,

||Dk
RL12(�)||∞ + ||Dk

R(L12(�) − χL12(�)(0))||∞ �n ||�||Hn .
(C.3)

Appendix D. Derivation of urr(0, 0)

We derive the formula (5.28) for urr (0, 0) using the formula

u(x) = ∇ × (−
)−1ω = 1

4π

∫
R3

ω(y) × (x − y)

|x − y|3 dy.

Recall the coordinates and change of variables (5.27)

β = arctan(z/r), ρ = (r2 + z2)1/2, R = ρα, �(R, β) = ωϑ(ρ, β),

where (r, ϑ, z) is the cylindrical coordinates in R
3 (3.1). Note that urr (0, 0) = − 1

2u
z
z(0, 0)

(3.10), we compute uzz(0, 0). Since there is no swirl uϑ ≡ 0, we get

ω = ωϑeϑ = (−ωϑ sin ϑ,ωϑ cos ϑ, 0),

(ω × (x − y))3 = −ωϑ sin(ϑ)(x2 − y2) − ωϑ cos(ϑ)(x1 − y1).

Since the above formula is independent of z = x3 and ωϑ(y) is odd in y3, we yield

∂3u
3 = 1

4π

∫
R3

(ω × (x − y))3∂x3

1

|x − y|3 dy = 1

4π

∫
R3

(ω × (x − y))3
−3(x3 − y3)

|x − y|5 dy.

Evaluating at x = 0 and using

(ω × (−y))3 = ωϑ(y) sin(ϑ)y2 + ωϑ cos(ϑ)y1,= ωϑ(y)r
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and r = ρ cos β, z = ρ sin β, β ∈ [−π/2, π/2], we obtain

∂3u
3(0, 0) = 3

4π

∫
R3

ωϑ(y)r y3

|y|5 dy = 3

4π

∫ ∞

0

∫ 2π

0

∫
R

ωϑ(y)r z

|y|5 rdrdϑdz

= 3

2

∫
R+×R

ωϑ(y)r2z

ρ5
drdz

= 3

2

∫ ∞

0

∫ π/2

−π/2

ωϑ(ρ, β) cos2(β) sin(β)

ρ
dρdβ

= 3
∫ ∞

0

∫ π/2

0

ωϑ(ρ, β) cos2(β) sin(β)

ρ
dρdβ.

Using urr (0, 0) = − 1
2u

z
z(0, 0) (3.10) and dρ

ρ
= 1

α
dR
R , we prove (5.28).
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