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SUMMARY

For cable bridges, the cable tension force plays a crucial role in their construction, assessment and long-term
structural health monitoring. Cable tension forces vary in real time with the change of the moving vehicle
loads and environmental effects, and this continual variation in tension force may cause fatigue damage of a
cable. Traditional vibration-based cable tension force estimation methods can only obtain the time-averaged
cable tension force and not the instantaneous force. This paper proposes a new approach to identify the
time-varying cable tension forces of bridges based on an adaptive sparse time-frequency analysis method. This
is a recently developed method to estimate the instantaneous frequency by looking for the sparsest
time-frequency representation of the signal within the largest possible time-frequency dictionary (i.e. set of
expansion functions). In the proposed approach, first, the time-varying modal frequencies are identified from
acceleration measurements on the cable, then, the time-varying cable tension is obtained from the relation
between this force and the identified frequencies. By considering the integer ratios of the different modal
frequencies to the fundamental frequency of the cable, the proposed algorithm is further improved to increase
its robustness to measurement noise. A cable experiment is implemented to illustrate the validity of the
proposed method. For comparison, the Hilbert–Huang transform is also employed to identify the time-varying
frequencies, which are then used to calculate the time-varying cable-tension force. The results show that the
adaptive sparse time-frequency analysis method produces more accurate estimates of the time-varying cable
tension forces than the Hilbert–Huang transform method. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Structural health monitoring systems for the safety of structures have been widely investigated and
installed on many civil infrastructure systems, such as long-span bridges, offshore structures, large
dams, nuclear power stations, tall buildings and other large spatial structures [1–4]. For large span brid-
ges, such as cable-stayed and suspension bridges, the cables are a crucial element for overall safety of
the structure. The cable tension forces vary in real time because of the loads from moving vehicles and
other environmental effects, and this variation in cable tension forces may cause fatigue damage.
Therefore, estimation of the time-varying cable tension forces from cable vibration measurements or
special force sensors on the cables is important for the maintenance and safety assessment of cable-
based bridges.
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Vibration-based methods for estimating cable tension forces use a relation between the natural fre-
quency of the cable vibrations and the tension force in the cable. These nondestructive monitoring
methods are widely studied and often are used in practice with the advantages of being inexpensive
and convenient to install. The existing vibration-based estimation methods can be classified into four
categories depending on what cable vibration theory they use [5].

The first category of estimation methods utilizes the flat taut string theory that neglects both sag-
extensibility and bending stiffness

F ¼ 4mL2f 21 (1)

where F is the cable tension forces; f1 is the fundamental natural frequency; and m and L are the mass
density and length of cable, respectively. Casas [6] used Eqn (1) to measure cable tension forces in the
Alamillo Bridge with accelerometers installed on cables. Gentile [7] used microwave remote sensing to
measure the vibration response in the longer cables of two cable-stayed bridges and then predicted the
cable tensions from natural frequencies using the formula as Eqn (1). Kim and Shin [8] have made a
comparative study of several tension estimation methods for cable supported bridges and they
concluded that taut string theory is a good tool for a first approximation because of its simplicity
and quick calculation. Ren et al. [9] discussed the effects of sag and the bending moment on the
fundamental frequencies of cables under ambient excitation and concluded that these frequencies are
close to the fundamental frequency of a taut-string even when the cable sag and bending stiffness
effects are taken into account. Then they used these frequency differences to replace the fundamental
frequency in the taut string theory formula and estimated the cable tension forces in laboratory tests and
in a field test for the stay cables from the Qingzhou Bridge in China.

For the second category of estimation methods, sag-extensibility is considered but bending stiffness
is ignored. Based on this theory, Russell and Lardner [10] experimentally investigated estimation of
cable tension forces. On their approach, additional information consisting of the unstrained length of
the cable is needed and a nonlinear characteristic equation is solved by trial and error [10]. However,
the unstrained length is often not available in practice [5].

For the third category of estimation methods, an axially loaded beam considering bending stiffness
but not sag-extensibility is used [11]

F ¼ 4mL2
f n
n

� �2

� EI
L2

nπð Þ2 (2)

where fn is the nth modal frequency, and EI denotes the flexural rigidity of cable. However, Eqn (2)
may cause errors for short and stout cables because this formula is derived from an axially tensioned
beam with hinged end boundaries rather than a fixed one [12]. Fang and Wang [12] proposed a
curve-fitting technique to solve the free vibration equation of the cable with two fixed ends, which gave
an explicit formula for cable tension estimation, and they then verified their formula with available
experimental results and finite element solutions. Sim et al. [13] developed a wireless cable tension
monitoring system using MEMSIC’s Imote2 (Intel Corporation, Santa Clara, CA, USA) smart sensors,
in which Eqn (2) is implemented on the sensors.

The last category of estimation methods takes account of both sag-extensibility and bending
stiffness using a practical formula. Zui et al. [14] developed a set of such formulas that were deduced
from the cable’s free vibration with some assumptions for simplicity. Kim and Park [5] proposed an
approach to estimate cable tension force from measured natural frequencies, while simultaneously
identifying flexural and axial rigidities of a cable system. They use a finite element model that
considers both sag-extensibility and flexural rigidities and then a frequency-based sensitivity-updating
algorithm is applied to identify the model. Liao et al. [15] developed a model-based method to
simultaneously identify cable tension and other structural parameters from the identified modal
frequencies by using a finite element model of the cables combined with a least-squares optimization
scheme. Cho et al. [16] embedded the cable tension force estimation equations proposed by
Zui et al. [14] into wireless sensors to produce an automated cable tension force monitoring
system for cable-stayed bridges.

All of these vibration-based methods are usually not able to estimate the time-varying cable tension
forces, but only their average values. In contrast, Li et al. [17] proposed an extended Kalman filter
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
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based method to estimate the time-varying cable tension force using the measured acceleration data,
but it also needs wind speed data from the bridge. Yang et al. [18] proposed a method to identify
time-varying cable tension forces from acceleration data via an unsupervised learning algorithm called
complexity pursuit. The method is based on flat taut string theory and tracks the time-varying cable
frequency using data from two accelerometers on a cable.

In addition to the vibration-based methods for bridge cable tension force identification, direct
measurements using traditional force sensors and elasto-magnetic (EM) sensors have also been used.
The traditional force sensor is used in a series connection with the cable to measure the strain, either
by a vibrating wire transducer, strain gauge, hydraulic pressure sensor or Fiber Bragg Grating sensor.
The series connection means that these sensors are not readily replaceable, and they are difficult to cal-
ibrate under the high stress states occurring in field applications. In addition, they tend to have unstable
long-term performance. These sensors are therefore not widely used for long-term monitoring of bridge
cables. On the other hand, EM sensors have been used to measure static cable tensions based on the
variation under stress of the magnetic permeability of a ferromagnetic material [19]. Field tests and
applications of EM sensors for monitoring the cable tension in some bridges have been reported [20,21].

For the identification of time-varying cable tension forces, one idea is to estimate these forces
by identifying the time-varying natural frequencies of the cable through time-frequency analysis of
the cable vibration signal. For the frequency varying through time over a small range and with noisy
data, a high resolution time-frequency analysis method is needed that is insensitive to noise. Recently,
a new adaptive signal analysis method has been developed to study trends and instantaneous frequen-
cies for nonlinear and non-stationary time series data [22–24]. By combining the Empirical Mode
Decomposition method [25] and Compressive Sensing theory [26–28], this method is able to look
for the sparsest time-frequency representation of the signal within a dictionary consisting of Empirical
Mode Decomposition intrinsic mode functions. The advantages of this novel adaptive sparse time-
frequency analysis method are its high resolution in the time-frequency domain and its robustness
to measurement noise. Here, we employ this method to estimate the time-varying cable tension force
by using only measurements of the cable vibrations obtained from accelerometers.
2. ADAPTIVE SPARSE TIME-FREQUENCY ANALYSIS

Typically, the time-frequency analysis method consists of two parts: a large dictionary of time-
frequency functions used to represent the signal and a decomposition method to decompose the signal
over the dictionary.

As an example of a dictionary, the Fourier transform, one of the most widely used frequency anal-
ysis methods, uses the well-known Fourier harmonic basis functions

sin2πkt; cos2πkt : k ¼ 0; 1; 2;⋯f g (3)

where we assume that time has been scaled for the signal so that t∈ [0, 1]. For any signal f(t), t∈ [0, 1],
we have the following Fourier expansion:

f tð Þ ¼ a0 þ ∑
M

k¼1
akcos2kπt þ bksin2kπtð Þ (4)

where the coefficients ak, bk can be obtained by the Fourier integral, and the frequency for each
component is 2kπ, which is the derivative of the phase function 2kπt.

The Fourier series is a powerful tool which has been widely used in many different applications.
However, in many applications of time-frequency analysis, the Fourier series is not adequate because
the signal frequencies are time varying, whereas the frequencies given by the Fourier basis functions
in Eqn (3) are all constants over the whole time span. For example, consider a simple chirp signal
f(t) = cos 50πt2, t∈ [0, 1]. Intuitively, the frequency should continuously increase as time grows, but this
information is not revealed by its Fourier coefficients as can be seen in Figure 1.

In order to get a time-varying frequency, one natural idea is to enlarge the dictionary of the time-
frequency functions to incorporate functions with time-changing frequency. One such generalization
is to replace the Fourier basis by the so-called AM–FM signals, which can be written a(t)cos θ(t),
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
DOI: 10.1002/stc



4 of 17 Y. BAO ET AL.
where we require that a(t) and the derivative of θ(t),
:
θ tð Þ , are less oscillatory than cos θ(t). ‘Less

oscillatory’ means that over a few oscillations of cos θ(t), the variation of a(t) and
:
θ tð Þ is small so that

that they can be well approximated by constants during these few oscillations. Then in this short time
interval, the signal is decomposed approximately over the Fourier basis, which means that the
frequency ω(t) can be defined to be the derivative of the phase function

ω tð Þ ¼ :
θ tð Þ (5)

We can therefore define informally the dictionary of AM–FM signals by

D ¼ a tð Þcosθ tð Þ : a tð Þ; :
θ tð Þ are less oscillatory than cosθ tð Þ� �

(6)

To give a rigorous definition of ‘less oscillatory’, we define a linear space V(θ),

V θð Þ ¼ span 1; cos
kθ tð Þ
Lθ

� �� �
1≤k≤λLθ

; sin
kθ tð Þ
Lθ

� �� �
1≤k≤λLθ

: k ¼ 1;…; λLθ

( )
(7)

where λ≤ 1/2 is a parameter to control the smoothness and Lθ= (θ(1)� θ(0))/2π is the number of
oscillations. A function, a(t), is said to be ‘less oscillatory’ than cos θ(t) if and only if a(t)∈V(θ). Then,
the dictionary D can be made well defined by

D ¼ a tð Þcosθ tð Þ : a tð Þ; :θ tð Þ∈V θð Þ� �
(8)

Notice that V(θ) is different for each choice of θ(t), and D includes all possible choice of θ(t). So, the
dictionary D is a huge dictionary that includes most of the published time-frequency dictionaries, such
as the Fourier dictionary in Eqn (3), the Gabor dictionary and the wavelet dictionary.

For an arbitrary signal f(t), we need to decompose it over the above dictionary D to within a given
tolerance threshold ε:

f tð Þ ¼ ∑
M

k¼1
ak tð Þcosθk tð Þ þ r tð Þ (9)

where r(t) is a small residual satisfying ‖r‖2≤ ε. For each component, its frequency is defined as

ωk tð Þ ¼ :
θk tð Þ (10)

The remaining problem is how to choose the decomposition. In Fourier analysis, because the
basis is orthogonal, the unique decomposition is obtained by the Fourier transform. Unfortunately,
the dictionary D in Eqn (8) is highly redundant (the functions are not linearly independent) which
means that the decomposition is not unique. Taking the chirp signal in Figure 1 as an example;
obviously both f(t)cos(50πt2) and its Fourier series are feasible decompositions using dictionary
D, but the decomposition cos(50πt2) is the one we want because this decomposition gives us
an instantaneous frequency. A fundamental feature of this decomposition is that it is very sparse.
The whole signal is represented by only one component while there are about 100 components in
the Fourier series (Figure 1).
Figure 1. The chirp signal (left) and its Fourier coefficients (right).
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For general time-frequency analysis of signals, we therefore look for the sparsest decomposition
among all feasible decompositions based on dictionary D in Eqn (8), which is defined informally by
the following optimization problem:

Minimize
akð Þ1≤k≤M ; θkð Þ1≤k≤M

M

Subject to : f tð Þ-∑
M

k¼1
ak tð Þcos θk tð Þ

���� ����
2

≤ε; on 0; 1½ �

ak tð Þ cos θk tð Þ∈ D

(11)

If the signal f(t) is completely known on [0, 1], the optimization problem in Eqn (11) can be approx-
imately solved by the following nonlinear matching pursuit method [23]:

Step 1 Let
r0 tð Þ ¼ f ; k ¼ 1 (12)

Step 2 Solve the following nonlinear least-squares problem for functions ak and θk on [0, 1]

ak tð Þ; θk tð Þð Þ∈Argmin
a tð Þ; θ tð Þ

rk�1 tð Þ � a tð Þcosθ tð Þk k22; subject to : a tð Þ cos θ tð Þ∈ D (13)

Step 3 Update the residual

rk tð Þ ¼ f tð Þ � ∑
k

i¼1
ai tð Þcosθi tð Þ (14)

Step 4 If ‖rk(t)‖2< ε, stop, where ε is a chosen residual threshold. Otherwise, set k= k+1 and go to
Step 2.

In the above algorithm, the key part is to solve the nonlinear least-squares problem in Step 2. It is
found that this problem can be approximately solved by using Gauss–Newton type iteration along with
the Fast Fourier transform. By combining these techniques, an efficient method was proposed in [22].
Under some assumptions, the convergence of this method has been proved [24].

In real applications, all the signals are given at discrete time points. Suppose that the discrete signal
vector f∈ℜN is the measurements of f(t) over discrete time points tj= jΔt, Δt=1/N, j=1,…,N. The
discrete phase function θk∈ℜN is the sample of θk(t) over discrete time points tj. Then the discrete form
of Eqn (13) for k=1 is given by

min
x;θ

f �Φθ�xk k2; subject to :
:
θ∈V θð Þ (15)

where V(θ) is discrete space version of V(θ) in Eqn (7); Φθ is a N× (2λLθ+1) matrix with the jth row
given by:

Φθ;j ¼ cosθ tj
� �� �

Πθ;j; j ¼ 1;…;N (16)

and Πθ,j is the jth row of matrix Πθ defined by:

Πθ;j ¼ 1; cos
kθ tj

� �
Lθ

� �� �
1≤k≤λLθ

; sin
kθ tj

� �
Lθ

� �� �
1≤kλLθ

" #
; j ¼ 1;…;N (17)

In Eqn (15), x is the vector of coefficients of the envelope a(t) in V(θ); if a∈ℜN is the discrete vector
of a(t) over discrete time points tj= jΔt, Δt=1/N, j=1,…,N, then a=Πθ �x. The constraint

:
θ∈V θð Þ is

enforced by setting
:
θ ¼ Πθ�z , where z is the coefficient vector. Then the discrete version of the

matching pursuit algorithm is

Step 1 Let
r0 ¼ f ; k ¼ 1 (18)

Step 2 Solve the following nonlinear least-squares problem for vectors xk and θk on [0, 1]

xk ; θkð Þ∈Argmin
x; θ

rk�1 �Φθ�xk k22; subject to :
:
θ∈V θð Þ (19)

and set ak=Πθ �xk.
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
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Step 3 Update the residual

rk ¼ f � ∑
k

i¼1
aicosθi (20)

Step 4 If ‖rk‖2< ε, stop, where ε is a chosen residual threshold. Otherwise, set k=k+1 and go to Step 2.

The performance of this algorithm depends on the assumption that the components of the underly-
ing decomposition are approximately orthogonal to each other.
3. IDENTIFICATION OF TIME-VARYING TENSION IN BRIDGE CABLES

According to the widely used flat taut string theory that neglects both sag-extensibility and bending
stiffness, a constant cable tension force F can be calculated by

F ¼ 4mL2
ωn

2πn

	 
2
(21)

where ωn denotes the nth natural frequency in radian/s; and m and L are the mass density and length of
the cable, respectively. Given the measured frequency for the nth mode number, the cable tension can
be calculated directly from Eqn (21).

Consider a slowly time-varying cable tension force F(tj), j=1,…,N, then Eqn (21) is expressed as

F tj
� � ¼ 4mL2

ωn tj
� �

2πn

� �2

(22)

where ωn(tj) is the time-varying nth natural frequency.
An important and useful feature of the flat taut string theory for vibration of a cable is that the

natural frequencies of the higher modes are integer multiples of the fundamental frequency, that is
ωn(t) = nω1(t). This feature means that we only need to calculate one instantaneous frequency, which
significantly simplifies the algorithm.

3.1. Improved algorithm for identification of time-varying frequencies of cable vibration signals

Here, the continuous signal, f(t), is the acceleration at time t, and the vector f is the samples of f(t) at dis-
crete time tj, j=1,…,N. If the number of samples, N, is large enough such that f(t) can be well approxi-
mated by f, the algorithm in Section 2 works. Moreover, if we only need one instantaneous frequency,
then iteration is not necessary. We only need to solve one nonlinear least-squares problem

min
akð Þ1≤k≤K ; θ1

f tð Þ � ∑
K

k¼1
ak tð Þcoskθ1 tð Þ

���� ����2
2

; subject to : ak tð Þ∈V θ1ð Þ; :
θ1 tð Þ∈V θ1ð Þ (23)

Here,K is the number of modes used to calculate the instantaneous frequency which is a given positive
integer. The corresponding discrete version is

min
x; θ1

f � eΦθ1 �x
�� ��2

2
; subject to :

:
θ1∈V θ1ð Þ (24)

where eΦθ is a N×K(2λLθ+1) dimensional matrix

eΦθ1 ¼ Φθ1 ;…;Φ Kθ1ð Þ
� �

(25)

and each Φ(kθ), k=1,…,K is a N× (2λLθ+1) matrix whose jth row is defined as follows:

Φ kθ1ð Þ;j ¼ coskθ1 tj
� �� �

Πθ1;j; j ¼ 1;…;N (26)

and Πθ1;j is defined in Eqn (17).
The above nonlinear least-squares problem is solved by a Gauss–Newton type iteration method which

is described below as the adaptive sparse time frequency analysis (AS-TFA) Algorithm. The explanation
of this algorithm can be found in reference [23]. The difference is that only θ1 needs to be optimized.
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
DOI: 10.1002/stc



IDENTIFICATION OF TIME-VARYING CABLE TENSION FORCES 7 of 17
To start the AS-TFA Algorithm, we need an initial guess of the phase function. Gauss–Newton type
iteration is known to be sensitive to the initial guess. In general, it is not an easy task to find a good
initial guess. In order to abate the dependence on the initial guess, we replace λ in Eqn (7) by η in
the step of updating θ1 . When η is small,

:
θ1 is confined to a smaller space, so that the objective

functional is expected to have fewer extrema. The iterations may then find a good approximation for
:
θ1 in this smaller space. Then we gradually increase η up to λ, so correspondingly, the space for

:
θ1

is enlarged, which allows for more detail in
:
θ1. The parameter Δη in step 7 of the algorithm, which

is used to increase η, is chosen to be λ/10.
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
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After we obtain the solution eθ1 tj
� �

, j=1,…,N, the fundamental modal frequency is eω1 tj
� � ¼ :

θ̃1 tj
� �

,

where
:
θ̃1 tj
� �

is calculated by central difference on eθ1 tj
� �

. Then, the time-varying cable tension forceeF tj
� �

is estimated as

eF tj
� � ¼ 4mL2

eω1 tj
� �
2π

� �2

(27)

4. CABLE EXPERIMENTS

4.1. Experimental set-up

An experiment with a model cable of 1403 cm length (Figure 2) was carried out by Li et al. [17],
and it is employed here to illustrate the proposed approach. The similar cable experiment model
also has been used by other researchers [29–31]. The vibration of the cable is excited by two
550kW blower fans to simulate wind. A force sensor that is installed between the left anchorage
of the cable and the sliding bearing is used to measure the time-varying cable tensions. A threaded
rod is installed in a series connection with the cable to adjust the cable tension in real time, as
shown in Figure 2(b); the threaded rod is operated manually to generate the cable tension var-
iation. Two accelerometers are placed at 2.43 and 3.60m from the sliding bearing to measure
the in-plane and out-of-plane vibrations of the cable. The dSPACE CP1103 (GmbH, Paderborn,
Germany) data acquisition system is used to record the acceleration and cable tension force data
with a sampling frequency of 200Hz.

Three experimental cases are considered:

Case 1 the initial cable tension is 6500N, the variation of cable force is 15% with duration of 25 s;
Case 2 the initial cable tension is 6500N, the variation of cable force is 20% with duration of 25 s;
Case 3 the initial cable tension is 6500N, the variation of cable force is from 5%, 10%, 15% and 20%

with duration of 30, 25, 30 and 30 s, respectively.

4.2. Identification results

4.2.1. Identification results for Case 1. For Case 1, the measured cable acceleration signal and its
Fourier amplitude spectrum within a frequency range of [2,15] Hz are shown in Figure 3.
Figure 2. Experimental setup: (a) experimental model; (b) tension adjusting device; (c) data acquisition system
and (d) blowers and cable.

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
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Figure 3. Measured acceleration and the Fourier transform of the signal for Case 1: (a) acceleration data; and (b)
Fourier amplitude spectrum.
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Figure 3(b) clearly shows the first five modal frequencies of the cable are very close to being integer
multiples of 1, 2, 3, 4 and 5 of the fundamental frequency around 2.57Hz.

For applying the AS-TFA Algorithm to the measured acceleration data to identify each time-
varying modal frequency, the first five modal responses in the time domain are separated from
the signal shown in Figure 3 by narrow-band filtering and the time axis is normalized to [0, 1]
as shown in Figure 4. The corresponding frequency intervals of the signal in Figure 4 are
[2.32, 2.83] Hz, [4.64, 5.66] Hz, [6.90, 8.49] Hz, [9.28, 11.32] Hz and [11.60, 14.15] Hz, respec-
tively, which are centred on the estimates of the modal frequencies: f1 = 2.57 Hz, f2 = 5.15 Hz,
f3 = 7.72 Hz, f4 = 10.29 Hz and f5 = 12.87 Hz.

The selection of the initial phase is important when using the AS-TFA algorithm. For some
signals where the frequency significantly changes with time, it is difficult to obtain the initial
phase. Fortunately, for the vibration signals of bridge cables, the time variation of the frequency
caused by vehicles and wind is usually relatively small. Therefore, the initial phase can be readily
Figure 4. The separated first five mode responses in the time domain.

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
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estimated from the modal frequencies which are obtained by picking a modal peak in the
frequency domain

θ0 ¼ 2π
nf k
f

ν (28)

where n is the length of signal; fk is the kth modal frequency; f is the sampling frequency (f=200
Hz in this example); and ν= [0 : 1/(n� 1) : 1]T is a normalized time axis vector. The initial phase
for the AS-TFA algorithm can be calculated using Eqn (28) for each of the first five modal
frequencies with sample length n= 7774 giving θ0 = 628.40ν, 1256.80ν, 1885.2ν, 2513.60ν and
3142.00ν, respectively.

Applying the AS-TFA algorithm to each modal response in Figure 4, the identified time-frequency
results of Case 1 are shown in Figure 5(a) for the first five time-varying modal frequencies. For
comparison, the Hilbert–Huang transform (HHT) calculated using the Matlab Toobox developed by
N. Huang et al. (http://rcada.ncu.edu.tw/research1.htm) is also employed to identify the first five
time-varying modal frequencies, and the results are shown in Figure 5(b). Figure 5 shows that the
identified time-varying modal frequencies by AS-TFA algorithm are much smoother and more stable
than the HHT results.

Using each of these five time-varying frequencies to calculate the cable tension forces by
Eqn (27), the results are shown in Figure 6, where the solid lines (labelled ‘Measured’) are the
cable tension forces measured by the force sensor without de-noising in the experiments, the dotted
lines (labelled ‘HHT’) are the identified cable tension forces by the HHT method, and the dashed
lines (labelled ‘AS-TFA’) are the identified cable tension forces by the AS-TFA method. As shown
in Figure 6, the identified time-varying cable tension forces are close to the measured cable tension
forces, especially for the AS-TFA Algorithm. The calculated cable tension forces from the HHT
method in Figure 6 are much more noisy, especially for the fourth and fifth time-varying modal
frequencies. To quantify the identification error, the relative error of the cable tension force is
calculated by

ξa ¼
eFa � T

�� ��
2

Tk k2
�100% (29)
Figure 5. Identified first five time-varying frequencies for Case 1: (a) adaptive sparse time frequency analysis; and
(b) Hilbert–Huang transform.

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
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Figure 6. Identified time-varying cable tension forces of Case 1 using the first five time-varying modal frequencies
from adaptive sparse time frequency analysis (AS-TFA) and Hilbert–Huang transform (HHT), which are shown

from (a) to (e) from the first through to the fifth modal frequency.
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ξh ¼
eFh � T

�� ��
2

Tk k2
�100% (30)

where ξa and ξh are the percentage identification errors of the cable-tension forces identified

by adaptive sparse time-frequency and HHT based methods, respectively; eFa ¼eFa t1ð Þ;…; eFa tNð Þ
h i

and eFh ¼ eFh t1ð Þ;…; eFh tNð Þ
h i

are the identified cable tension force vectors

for these two methods; and T = [T(t1),…, T(tN)] is the measured cable tension force at the
sampled times. The identification errors for the cable tension forces calculated using the iden-
tified first to fifth time-varying modal frequencies from the AS-TFA algorithm are:
ξa = 4.26%, 3.62%, 3.27%, 4.36% and 3.43%, respectively. The identification errors for the
cable tension forces calculated using the identified first to fifth time-varying modal frequen-
cies by using the HHT method are: ξh = 5.29%, 3.34%, 3.41%, 5.83% and 5.20%,
respectively.

Figure 6 shows that the time-varying cable forces estimated using each identified modal frequency
have some differences. We now impose the constraints between the higher-order modal frequencies
and the fundamental frequency of the cable and set the parameter K=5 and the initial phase
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
DOI: 10.1002/stc
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θ0 = 628.40ν in the AS-TFA Algorithm. The identification results obtained from AS-TFA Algorithm
are shown in Figure 7, where the identified time-varying cable force for Case 1 is smooth and stable,
and it has a corresponding identification error of ξa=3.34%.

4.2.2. Identification results for Case 2. For Case 2, the measured cable acceleration signal with length
n=8630 and its Fourier amplitude spectrum within a frequency range of [2,15] Hz are shown in Figure 8.

With the same calculation procedure as used in Case 1, applying the AS-TFA Algorithm to the first five
modal responses separated from the measured acceleration data, which are shown in Figure 8(a), leads to the
identified time-frequency results of Case 2 that are shown in Figure 9(a), which clearly shows the first five
time-varying modal frequencies. Comparing with the identification results by using the HHTmethod, which
are shown in Figure 9(b), the adaptive sparse time frequency analysis method obviously produces much bet-
ter results.

The time-varying cable tension force identification results of Case 2 are shown in Figure 10, which shows
that the time-varying cable tension force can be well identified by the adaptive sparse time-frequency anal-
ysis method with small identification error compared with the HHT based results. The corresponding cable
tension force identification error for both of these methods are: ξa=3.76%, 3.62%, 3.53%, 4.25%, 3.46%;
and: ξh=8.84%, 8.30%, 5.69%, 5.94%, 7.15%, respectively. The identification results from combining the
first five time-varying modal frequencies are also smoother and more stable than the results identified from
each signal frequency, as shown in Figure 11, where the identification error is 3.58%.

4.2.3. Identification results for Case 3. For the more complex scenario of Case 3, the measured cable
acceleration signal length n=56999 and its Fourier amplitude spectrum within a frequency range of
[2,15] Hz are shown in Figure 12.

The identified time-frequency results for Case 3 from using the adaptive sparse time-frequency and
HHT methods are shown in Figure 13. Obviously, the adaptive sparse time-frequency based results are
Figure 7. Identified time-varying cable tension force for Case 1 by combining the first five time-varying frequen
cies, with the identification error ξa= 3.34%. AS-TFA, adaptive sparse time frequency analysis.

Figure 8. Measured acceleration and the Fourier transform of the signal for Case 2: (a) acceleration data; and (b
Fourier amplitude spectrum.
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Figure 9. Identified first five time-varying frequencies for Case 2: (a) adaptive sparse time frequency analysis; and
(b) Hilbert–Huang transform.

Figure 10. Identified time-varying cable tension forces of Case 2 using the first five time-varying frequencies from
adaptive sparse time frequency analysis (AS-TFA) and Hilbert–Huang transform (HHT), which are shown from

(a) to (e) for the first through to the fifth modal frequency.
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Figure 11. Identified time-varying cable tension force of Case 2 by combining the first five time-varying frequen-
cies, with the identification error ξa= 3.58%. AS-TFA, adaptive sparse time frequency analysis.

Figure 12. Measured acceleration and the Fourier transform of the signal for Case 3: (a) acceleration data; and (b
Fourier amplitude spectrum.

Figure 13. Identified first five time-varying frequencies for Case 3: (a) adaptive sparse time frequency analysis
and (b) Hilbert–Huang transform.

14 of 17 Y. BAO ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2017; 24: e1889
DOI: 10.1002/stc
)

much smoother and more stable than the HHT based results. Using each of these five time-varying fre-
quencies, the calculated time-varying cable tension forces are shown in Figure 14, which shows that
the AS-TFA based identification results are close to the measured cable forces, with relative identifica-
tion errors: ξa=3.04%, 2.96%, 2.56%, 2.50% and 2.26% for each of the five time-varying modal fre-
quencies. However, the corresponding identification errors for the HHT based results are significantly
larger: ξh=5.62%, 4.23%, 5.19%, 5.36% and 5.98%, respectively. In this case, the results obtained by
;



Figure 14. Identified time-varying cable tension forces of Case 3 using the first five time-varying modal
frequencies from adaptive sparse time frequency analysis (AS-TFA) and (HHT), which are shown from (a) to

(e) for the first through to the fifth modal frequency.
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HHT are much more noisy, and the real variations of the cable tension forces are not well identified.
The identification result in Figure 15 shows the improvement from combining the first five time-
varying modal frequencies in the AS-TFA Algorithm with K=5 and the initial phase calculated by
Eqn (28), with the identification error being ξa=1.95%.
Figure 15. Identified time-varying cable tension force of Case 3 by combining the first five time-varying frequen-
cies; with the identification error ξa= 1.95%. AS-TFA, adaptive sparse time frequency analysis.
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5. CONCLUSIONS

A time-varying cable tension force identification method based on adaptive sparse time-frequency
analysis is proposed in this paper where the first step is to estimate the time-varying modal frequencies
from a cable vibration signal, and the second step is to use these results to calculate the time-varying
cable tension force by flat taut string theory. Additional robustness of the method is provided by
considering the integer ratios of the different modal frequencies to the fundamental frequency of the
cable in the adaptive sparse time-frequency algorithm.

The results of cable experiments show that the time-varying modal frequencies of the cable can be
well identified by the proposed adaptive sparse time-frequency algorithm and that the time-varying ca-
ble tension forces calculated from each time-varying frequency separately are close to the force sensor
measurements. A comparison of the results obtained from the HHT method and the proposed approach
show that the latter results are much more stable and have smaller identification errors. The identified
first five time-varying modal frequencies from the cable experiment can be combined to produce more
accurate and more robust results. The relative identification errors of the time-varying cable tension
forces for all three experimental scenarios are less than 5%, which is an acceptable error for structural
health monitoring purposes.

We expect that the procedure of looking for the sparsest decomposition among all feasible decom-
positions based on a redundant time-frequency dictionary could also be achieved using a Bayesian
model selection method. For future research, it would be interesting to develop a Bayesian method
for sparse time-frequency analysis for the identification of time-varying cable tension forces and
compare the results with the approach proposed in this paper.
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