
NEARLY SELF-SIMILAR BLOWUP OF GENERALIZED AXISYMMETRIC NAVIER–STOKES AND
BOUSSINESQ EQUATIONS

THOMAS Y. HOU

DEDICATED TO RUSSEL CAFLISCH ON THE OCCASION OF HIS 70TH BIRTHDAY

Abstract. We perform numerical study of the nearly self-similar blowup of the generalized axisymmetric
Navier–Stokes equations and the generalized Boussinesq system. Scaling instability is an essential difficulty
that prevents us from obtaining a stable nearly self-similar blowup for the Navier–Stokes. To eliminate
the scaling instability, we lift the space dimension above 3 and vary the space dimension dynamically to
ensure that the advection along the 𝑟 and the 𝑧 directions has the same scaling. We further introduce
a novel two-scale dynamic rescaling formulation which enables us to treat space dimension as an extra
degree of freedom to prevent formation of two-scale solution structures. For the generalized axisymmetric
Navier–Stokes equations with solution dependent viscosity, we show that the solution develops a one-scale
self-similar blowup with dimension equal to 3.188 and the self-similar profile satisfies the axisymmetric
Navier–Stokes equations with constant viscosity. Moreover, the dimension seems to approach to 3 as
we reduce the background viscosity. We also study the nearly self-similar blowup of the axisymmetric
Boussinesq system with constant viscosity. The generalized axisymmetric Boussinesq system preserves
almost all the known properties of the 3D Navier–Stokes equations except for the conservation of angular
momentum. We present convincing numerical evidence that the generalized axisymmetric Boussinesq
system develops a stable nearly self-similar blowup solution with maximum vorticity increased by 𝑂(1030).

1. Introduction

The question of global well-posedness of the 3D incompressible Euler and Navier–Stokes equations
is one of the most important fundamental questions in nonlinear partial differential equations [33].
The main difficulty is due to the presence of vortex stretching. There has been some recent exciting
developments for the singularity formation of the 3D incompressible Euler equations in the presence
of boundary or with 𝐶𝛼 initial vorticity, see e.g. [28, 29, 14, 12, 30, 31, 11, 24, 23]. However, not
much progress has been made for the 3D incompressible Navier–Stokes equations with smooth inital
data in the interior domain. In two recent papers by the author [37, 38], we proposed a new blowup
candidate for the axisymmetric Navier–Stokes equations that develop a tornado like traveling wave
solution with maximum vorticity increased by a factor of 107.

One of the essential difficulties in obtaining finite time blowup of the 3D Navier–Stokes equations is
to overcome the scaling instability that could lead to a two-scale structure, which is not compatible
with the scaling properties of the Navier–Stokes equations. We develop a novel two-scale dynamic
formulation and introduce space dimension as a new degree of freedom to eliminate this scaling
instability. For other nonlinear PDEs such as the nonlinear Schrödinger or Keller-Segel system, one
can eliminate these unstable modes by using the symmetry properties of the solution and studying
the spectral properties of the compact linearized operator around an explicit ground state, see e.g.
[66, 21]. In our case, we do not have an explicit ground state and the linearized operator is not
compact. We need to enlarge the solution space by lifting the space dimension above 3, and varying
the space dimension dynamically to enforce the scaling balance between the advection along the 𝑟 and
𝑧 directions. This effectively eliminates the scaling instability and leads to one-scale blowup.
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Inspired by the work [37, 38], we perform numerical study of finite time singularity of the generalized
axisymmetric Navier–Stokes and Boussinesq equations. Let 𝑢𝜃, 𝜔𝜃, and 𝜓𝜃 be the angular velocity,
angular vorticity, and angular stream function, respectively. We define 𝑢1 = 𝑢𝜃/𝑟, 𝜔1 = 𝜔𝜃/𝑟 and
𝜓1 = 𝜓𝜃/𝑟. Denote by Γ = 𝑟𝑢𝜃 as the total circulation. It is well known that the total circulation satisfies
an important conservation property. In this paper, we propose the following generalized 𝑛-dimensional
axisymmetric Navier–Stokes equations formulated in terms of (Γ, 𝜔1, 𝜓1) as follows:

Γ𝑡 + 𝑢𝑟Γ𝑟 + 𝑢𝑧Γ𝑧 = 𝜈

(
Γ𝑟𝑟 +

(𝑛 − 4)
𝑟

Γ𝑟 +
(6 − 2𝑛)

𝑟2
Γ + Γ𝑧𝑧

)
, (1.1a)

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 =

(
Γ2

𝑟4

)
𝑧

− (𝑛 − 3)𝜓1,𝑧𝜔1 + 𝜈
(
𝜔1,𝑟𝑟 +

𝑛

𝑟
𝜔1,𝑟 + 𝜔1,𝑧𝑧

)
, (1.1b)

−
(
𝜕2𝑟 +

𝑛

𝑟
𝜕𝑟 + 𝜕2𝑧

)
𝜓1 = 𝜔1, (1.1c)

where 𝑢𝑟 = −(𝑟𝑛−2𝜓𝜃)𝑧/𝑟𝑛−2, 𝑢𝑧 = (𝑟𝑛−2𝜓𝜃)𝑟/𝑟𝑛−2 and 𝑛 (𝑛 ≥ 2 can be any positive real number) is
the space dimension. When 𝑛 = 3, we recover the 3D axisymmetric Navier–Stokes equations. This
generalized version of the axisymmetric Navier–Stokes equations enjoys almost all the known properties
of the 3D axisymmetric Navier–Stokes equations, including the conservation of the total circulation
and the incompressibility condition (𝑟𝑛−2𝑢𝑟)𝑟 + (𝑟𝑛−2𝑢𝑧)𝑧 = 0. Moreover, we will show that the kinetic
energy

∫
( |𝑢1 |2 + |∇𝜓1 |)𝑟𝑛𝑑𝑟𝑑𝑧 =

∫
|u|2𝑟𝑛−2𝑑𝑟𝑑𝑧 is conserved for smooth solutions and a fixed 𝑛. To

the best of our knowledge, all the known non-blowup criteria also apply to the generalized axisymmetric
Navier–Stokes equations for a given constant dimension 𝑛.

1.1. Self-similar blowup of the generalized Navier–Stokes equations. We first investigate the
nearly self-similar blowup of the generalized axisymmetric Navier–Stokes equations with smooth initial
data and solution dependent viscosity. Denote by (𝑅(𝑡), 𝑍(𝑡)) the position where 𝑢1(𝑡, 𝑟, 𝑧) = Γ/𝑟2
achieves its global maximum. Our solution dependent viscosity is given by 𝜈 = 𝜈0∥𝑢1(𝑡)∥∞𝑍(𝑡)2 with
𝜈0 = 0.006. Note that this solution dependent viscosity is scaling invariant. This choice of solution
dependent viscosity is to enforce the balance between vortex stretching term and the diffusion term. We
choose the space dimension 𝑛 to be 𝑛 = 1 + 2𝑅(𝑡)/𝑍(𝑡), which is also scaling invariant. This choice of
the dimension is to balance the advection along the 𝑟 and 𝑧 directions since 𝑢𝑟 scales like (𝑅(𝑡)/𝑍(𝑡))𝜓
while 𝑢𝑧 scales like 𝜓. By choosing 𝑛 to scale like 𝑅(𝑡)/𝑍(𝑡), we ensure that 𝑢𝑟 and 𝑢𝑧 have the same
scaling as 𝑅(𝑡) and 𝑍(𝑡) approach to zero, which prevents formation of two-scale structures.

Our study shows that the generalized Navier–Stokes equations with this solution dependent viscosity
develop a nearly self-similar blowup solution of the form:

𝜓1(𝑡, 𝑟, 𝑧) =
𝜆 (𝑡)

(𝑇 − 𝑡)1/2
Ψ1

(
𝑡,

𝑟

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

,
𝑧

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

)
,

𝑢1(𝑡, 𝑟, 𝑧) =
1

(𝑇 − 𝑡)𝑉1

(
𝑡,

𝑟

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

,
𝑧

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

)
,

𝜔1(𝑡, 𝑟, 𝑧) =
1

𝜆 (𝑡) (𝑇 − 𝑡)3/2
Ω1

(
𝑡,

𝑟

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

,
𝑧

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

)
,

where 𝜆 (𝑡) ≈ (𝑇−𝑡)0.0233 andwe normalize𝑉1 to satisfy𝑉1(𝑅(𝑡), 𝑍(𝑡)) = 1. If we denote 𝜆 (𝑡)
√︁
(𝑇 − 𝑡) ≡

(𝑇 − 𝑡)𝑐𝑙 , then we have 𝑐𝑙 = 0.5233 and 𝜈 = 𝜈0∥𝑢1∥∞𝑍(𝑡)2 = 𝜈0(𝑇 − 𝑡)2𝑐𝑙−1 since 𝑍(𝑡) = (𝑇 − 𝑡)𝑐𝑙 . We
observe that the maximum vorticity has the same scaling as ∥𝑢1(𝑡)∥∞. This implies that ∥𝝎(𝑡)∥∞ scales
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like 𝑂((𝑇 − 𝑡)−1), which violates the Beale-Kato-Majda non-blowup criterion [1]. An interesting obser-
vation is that the self-similar profile (Ψ1, 𝑉1,Ω1) satisfies the self-similar generalized Navier–Stokes
equations with constant viscosity 𝜈0 and 𝑛 ≈ 3.188 when we choose 𝜈0 = 0.006.

This generalized Navier-Stokes equation can serve as an attractive model to attack the original 3D
Navier-Stokes equations. An important observation is that the space dimension seems to approach 3 as
we reduce the background viscosity coefficient, 𝜈0. This suggests a promising strategy to study the
potential blowup of the 3D Navier-Stokes by constructing a sequence of self-similar blowup profiles
using 𝜈0 as a continuation parameter. If we can construct a limiting profile with the scaling property that
𝑐𝑙 (𝜈0) → 1/2 and 𝑛(𝜈0) → 3 as 𝜈0 → 0, we can study the potential blowup of the 3D Navier–Stokes
by treating the viscous term as a small perturbation to the generalized Euler equations and analyzing
the stability of the limiting self-similar profile for the 3D Euler equations.

1.2. Generalized axisymmetric Boussinesq system. We also investigate a generalized axisymmetric
Boussinesq system with two constant viscosity coefficients by treating Γ = 𝑟𝑢𝜃 as density and removing
the (𝑛 − 3)𝜓1,𝑧𝜔1 term from our generalized Navier–Stokes equations. The generalized Boussinesq
system is transported by the axisymmetric velocity u = 𝑢𝑟𝑒𝑟 + 𝑢𝑧𝑒𝑧 with no swirl.

Γ𝑡 + 𝑢𝑟Γ𝑟 + 𝑢𝑧Γ𝑧 = 𝜈1

(
Γ𝑟𝑟 +

(𝑛 − 4)
𝑟

Γ𝑟 +
(6 − 2𝑛)

𝑟2
Γ + Γ𝑧𝑧

)
, (1.2a)

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 =

(
Γ2

𝑟4

)
𝑧

+ 𝜈2

(
𝜔1,𝑟𝑟 +

𝑛

𝑟
𝜔1,𝑟 + 𝜔1,𝑧𝑧

)
, (1.2b)

−
(
𝜕2𝑟 +

𝑛

𝑟
𝜕𝑟 + 𝜕2𝑧

)
𝜓1 = 𝜔1, (1.2c)

where 𝑢𝑟 = −(𝑟𝑚−2𝜓𝜃)𝑧/𝑟𝑚−2, 𝑢𝑧 = (𝑟𝑚−2𝜓𝜃)𝑟/𝑟𝑚−2 and 𝑚 = (𝑛 + 3)/2. We show that for 𝑛 < 7, the
generalized energy

∫
( |𝑢𝜃 |2 + (7−𝑛)

4 ( |𝑢𝑟 |2 + |𝑢𝑧 |2)𝑟𝑛−2𝑑𝑟𝑑𝑧 is conserved. This generalized Boussinesq
system enjoys almost all the known properties of the 3D Navier–Stokes equations, including the
incompressibility condition (𝑟𝑚−2𝑢𝑟)𝑟 + (𝑟𝑚−2𝑢𝑧)𝑧 = 0, the conservation of "total circulation" (density)
Γ. Moreover, when 𝑛 = 3 and 𝜈1 = 𝜈2, we can recover the 3D Navier–Stokes equations.

In our study, we use a small viscosity coefficient (𝜈1 = 0.0006) for Γ to generate a sharp shock
like traveling wave for Γ that propagates toward the origin. This sharp shock front produces a Delta
function like source term (Γ2/𝑟4)𝑧 for the 𝜔1 equation. To stabilize the shearing instability induced
by the sharp front of Γ, we apply a relatively large viscosity coefficient 𝜈2 = 10𝜈1 in the 𝜔1 equation.
This choice of viscosity coefficients generates a stable nearly self-similar traveling wave that produces a
tornado like singularity at the origin with maximum vorticity increased by 1.4 · 1030 by 𝜏 = 155.

More specifically, we obtain the following scaling properties for the potential blowup solution:

𝜓1(𝑡, 𝑟, 𝑧) =
𝜆 (𝑡)

(𝑇 − 𝑡)1/2
Ψ1

(
𝑡,

𝑟

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

,
𝑧

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

)
,

𝑢1(𝑡, 𝑟, 𝑧) =
1

(𝑇 − 𝑡)𝑉1

(
𝑡,

𝑟

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

,
𝑧

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

)
,

𝜔1(𝑡, 𝑟, 𝑧) =
1

𝜆 (𝑡) (𝑇 − 𝑡)3/2
Ω1

(
𝑡,

𝑟

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

,
𝑧

𝜆 (𝑡)
√︁
(𝑇 − 𝑡)

)
,

where 𝜆 (𝑡) = (1+𝜖| log(𝑇−𝑡) |)−1/2 for some small constant 𝜖. We normalize𝑉1 to satisfy𝑉1(𝑅(𝑡), 𝑍(𝑡)) =
1 and choose 𝑛(𝑡) = 4𝑅(𝑡)/𝑍(𝑡) − 1, which corresponds to 𝑚 = 1 + 2𝑅(𝑡)/𝑍(𝑡). We observe that the
dimension seems to settle to 𝑛 ≈ 4.73 by 𝜏 = 155. This result is consistent with the finite time blowup
of a diadic model for the Navier–Stokes for dimension 𝑛 > 4 by Cheskidov in [18]. Since the maximum
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vorticity ∥𝝎(𝑡)∥∞ has the same scaling as ∥𝑢1∥∞, we conclude that ∥𝝎(𝑡)∥∞ scales like 𝑂((𝑇 − 𝑡)−1),
which violates the Beale-Kato-Majda non-blowup criterion [1].

Denote 𝜉 = 𝑟

𝜆 (𝑡)
√

(𝑇−𝑡)
, 𝜂 = 𝑧

𝜆 (𝑡)
√

(𝑇−𝑡)
. We observe that as 𝑡 → 𝑇 , the rescaled profile Ω1 becomes

increasingly flattened in an inner region centered at (𝜉, 𝜂) = (𝑅𝜔, 𝑍𝜔) where Ω1 achieves its maximum.
Moreover, we observe that −Δ(𝜉,𝜂)Ω1 roughly scales like 𝜆2(𝜏)Ω1, which implies that the nearly self-
similar profile enjoys a parabolic scaling within this inner region with domain size shrinking to zero
in a logarithmic rate 𝜆 (𝑡) as 𝑡 → 𝑇 . This scaling property plays an essential role in maintaining the
balance between the source term (Γ2/𝑟4)𝑧 and the diffusion term for 𝜔1. Note that (Γ2/𝑟4)𝑧 is the
only nonlinear source term in the 𝜔1 equation. This makes it possible for the diffusion term of 𝜔1 to
balance this Delta function like source term (Γ2/𝑟4)𝑧.
1.3. The two-scale dynamic rescaling formulation. In order to capture the nearly self-similar blowup
of the generalized Navier–Stokes equations and the generalized Boussinesq system, we need to control
some unstable modes associated with the nearly self-similar blowup solution. These unstable modes
are induced by the scaling instability due to the change of the scaling in the 𝑟 and 𝑧 directions, and the
change of amplitude in the rescaled profile 𝑉1. In order to control the scaling instability due to the
change of the scaling in the 𝑟 and 𝑧 directions, we need to fix the location (𝑅(𝜏), 𝑍(𝜏)) in which the
solution 𝑉1 achieves its maximum. We can achieve this by introducing a two-scale dynamic rescaling
formulation, in which we rescale the 𝑟 and 𝑧 directions independently. This gives us an extra free
scaling parameter to fix the location of the maximum of 𝑉1 to be at (𝜉, 𝜂) = (𝑅0, 1).

1.4. Confirming the blowup solution using various blowup criteria. We observe that the maximum
vorticity for both the generalized Navier–Stokes with solution dependent viscosity and the generalized
Bouissinesq system with two constant viscosity coefficients scales like 𝑂(1/(𝑇 − 𝑡)). According to the
Beale-Kato-Majda blow-up criterion [1], this would imply that both these equations with our initial
data would develop a finite time singularity.

For the 3D Navier–Stokes equations, another quantity of interest is the growth rate of enstrophy
∥𝝎(𝑡)∥2

𝐿2
. For the generalized Boussinesq system in 𝑛-dimension, we consider a generalized enstrophy

∥𝝎(𝑡)∥𝑛−1
𝐿𝑛−1

. We observe a very rapid dynamic growth of the generalized enstrophy. A scaling analysis
implies that

∫ 𝑡

0 ∥𝝎(𝑠)∥𝑞
𝐿𝑛−1

𝑑𝑠with 𝑞 =
2(𝑛−1)
(𝑛−2) must blow up if the solution of the Navier–Stokes equations

develops a self-similar blowup. We observe that
∫ 𝑡

0 ∥𝝎(𝑠)∥𝑞
𝐿𝑛−1

𝑑𝑠 grows roughly like log(1/(𝑇 − 𝑡) for
the generalized Boussinesq system with constant viscosity. This provides additional support that the
generalized Boussinesq system with constant viscosity develops a finite time singularity.

We have also examined a generalized Ladyzhenskaya-Prodi-Serrin regularity criteria [52, 71, 74]
that are based on the estimate of the 𝐿

𝑞
𝑡 𝐿

𝑝
𝑥 norm of the velocity with 𝑛/𝑝 + 2/𝑞 ≤ 1. We study

the cases of (𝑝, 𝑞) = (4𝑛/3, 8), (2𝑛, 4), (3𝑛, 3), and (∞, 2) respectively. Denote by ∥u(𝑡)∥𝐿𝑝,𝑞 =(∫ 𝑡

0 ∥u(s)∥𝑞
𝐿𝑝 (Ω)𝑑𝑠

)1/𝑞
. Our numerical results show that ∥u(𝑡)∥𝑞

𝐿𝑝,𝑞
blows up roughly with a logarithmic

rate, 𝑂( | log(𝑇 − 𝑡) |) for 𝑝 large, e.g. 𝑝 = 2𝑛, 3𝑛,∞. This provides strong evidence for the development
of a potential finite time singularity of the generalized Boussinesq system.

We have further investigated the nonblowup criteria based on the 𝐿3 norm of the 3D velocity due
to Escauriaza-Seregin-Sverak [32]. In the 𝑛-dimensional setting, we should consider the 𝐿𝑛 norm of
the velocity [69], which is scaling invariant. We observe a mild logarithmic growth of ∥u(𝑡)∥𝐿𝑛 for the
generalized Boussinesq system. Moreover, we examine the growth of the negative pressure and observe
that ∥ − 𝑝∥∞ and ∥0.5|∇u| + 𝑝∥∞ blow up like 𝑂(1/(𝑇 − 𝑡). This provides further evidence for the
potential finite time singularity of the generalized Boussinesq system.

For the axisymmetric 3D Navier–Stokes equations, there are two more non-blowup criteria. In
the work by Yau et al [10, 9] and Sevrak et al [55], they exclude finite time blowup if the velocity
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field satisfies ∥u∥∞ ≤ 𝐶√
𝑇−𝑡 provided that ∥𝑟𝑢𝑟∥∞ and ∥𝑟𝑢𝑧∥∞ remain bounded for 𝑟 ≥ 𝑟0 > 0. Our

numerical study shows that ∥𝑟𝑢𝑟∥∞ has a mild logarithmic growth in time. In the work by Wei [80]
(see also [57]), finite time blowup of the 3D axisymmetric Navier–Stokes is excluded if the condition
| log(𝑟) |3/2 |Γ(𝑡, 𝑟, 𝑧) | ≤ 1 for 𝑟 ≤ 𝛿0 < 1/2. If we assume that their key estimate based on the Hardy
inequality still holds, their result should also apply to the generalized Boussinesq system. Our numerical
result shows that max𝑟≤𝛿0 | log(𝑟) |3/2 |Γ(𝑡, 𝑟, 𝑧) | can grow roughly like 𝑂( | log(𝑇 − 𝑡) |) as 𝑡 → 𝑇 . This
provides further evidence for the finite time blowup of the generalized Boussinesq system.

1.5. Review of previous works. For the 3D Navier–Stokes equations, the partial regularity result due
to Caffarelli–Kohn–Nirenberg [6] is one of the best known results (see a simplified proof by Lin [59]).
This result implies that any potential singularity of the axisymmetric Navier–Stokes equations must
occur on the symmetry axis. There have been some very interesting theoretical developments regarding
the lower bound on the blow-up rate for axisymmetric Navier–Stokes equations [10, 9, 55]. Another
interesting development is a result due to Tao [77] who proposed an averaged three-dimensional
Navier–Stokes equation that preserves the energy identity, but blows up in finite time.

There have been a number of theoretical developments for the 3D incompressible Euler equations,
including the Beale–Kato–Majda blow-up criterion [63], the geometric non-blow-up criterion due to
Constantin–Fefferman–Majda [22] and its Lagrangian analog due to Deng-Hou-Yu [25]. Inspired by
their work on the vortex sheet singularity [8], Caflisch and Siegel have studied complex singularity for
3D Euler equation, see [7, 75], and also [70] for the complex singularities for 2D Euler equation.

In 2021, Elgindi [28] (see also [29]) proved an exciting result: the 3D axisymmetric Euler equations
develop a finite time singularity for a class of 𝐶1,𝛼 initial velocity with no swirl and a very small 𝛼.
There have been a number of interesting theoretical results inspired by the Hou–Lou blowup scenario
[61, 62], see e.g. [54, 19, 20, 53, 13, 16, 15] and the excellent survey article [51]. We remark that
Huang-Qin-Wang-Wei recently proved the existence of exact self-similar blowup profiles for the gCML
model and the Hou-Luo model by using a purely analytic fixed point method in [48, 47].

There has been substantial progress on singularity formation of 3D Euler equations in recent years.
In [14, 12], Chen and Hou have established a computer-assisted proof of finite time blowup for the
2D Boussinesq and the 3D axisymmetric Euler equations with boundary and smooth initial data by
proving the nonlinear stability of the blowup profile in the dynamic rescaling equations. In [30, 31],
Elgindi-Pasqualotto established blowup of 2D Boussinesq and 3D Euler equations (with large swirl) with
𝐶1,𝛼 velocity and without boundary. In [24], Cordoba-Martinez-Zoroa-Zheng developed a new method
different from the above self-similar approach to establish blowup of axisymmetric Euler equations
with no swirl and with u(𝑡) ∈ 𝐶∞(𝑅3\𝑂) ∩ 𝐶1,𝛼 ∩ 𝐿2. In [11], Chen proved that such a blowup result
can also be established by the self-similar approach. By adding an external force 𝑓 uniformly bounded
in 𝐶1,1/2− up to the blowup time, the authors of [23] established blowup of 3D Euler with smooth
velocity.

There have been relatively few papers on the numerical study regarding the potential blow-up
of the 3D Navier–Stokes equations. We refer to a recent survey paper [72] by Protas on systematic
search for potential singularities of the Navier–Stokes equations by solving PDE optimization problems.
It concludes that "No evidence for singularity formation was found in extreme Navier–Stokes flows
constructed in this manner in three dimensions." There were a number of attempts to look for potential
Euler singularities numerically, see [35, 27, 2, 50, 42, 43, 61, 62, 3, 39, 40, 79]. We refer to a review
article [34] for more discussions on potential Euler singularities.

The rest of the paper is organized as follows. In Section 2, we derive the generalized Navier–Stokes
equation and perform the energy estimates for the generalized Navier–Stokes equations and the
generalized Boussinesq system. In Section 3, we introduce our two-scale dynamic rescaling formulation.
In Section 4, we investigate the self-similar blowup of the generalized Navier–Stokes equations with
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solution dependent viscosity. Section 5 is devoted to the nearly self-similar blowup of the generalized
Boussinesq system with constant viscosity. Some concluding remarks are made in Section 6.

2. Derivation of the generalized Navier–Stokes equations and energy estimates

We first review the 3D axisymmetric Navier–Stokes equations. Let 𝑢𝜃, 𝜔𝜃, and 𝜓𝜃 be the angu-
lar velocity, angular vorticity and angular stream function, respectively. We consider the following
reformulated axisymmetric Navier–Stokes equations derived by Hou-Li in [41]:

𝑢1,𝑡 + 𝑢𝑟𝑢1,𝑟 + 𝑢𝑧𝑢1,𝑧 = 2𝑢1𝜓1,𝑧 + 𝜈1

(
𝑢1,𝑟𝑟 +

3
𝑟
𝑢1,𝑟 + 𝑢1,𝑧𝑧

)
, (2.1a)

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 = (𝑢21)𝑧 + 𝜈2

(
𝜔1,𝑟𝑟 +

3
𝑟
𝜔1,𝑟 + 𝜔1,𝑧𝑧

)
, (2.1b)

−
(
𝜕2𝑟 +

3
𝑟
𝜕𝑟 + 𝜕2𝑧

)
𝜓1 = 𝜔1, (2.1c)

where 𝑢𝑟 = −𝑟𝜓1,𝑧, 𝑢𝑧 = 2𝜓1 + 𝑟𝜓1,𝑟, 𝑢1 = 𝑢𝜃/𝑟, 𝜔1 = 𝜔𝜃/𝑟, 𝜓1 = 𝜓𝜃/𝑟.

2.1. A brief review of the adaptive mesh computation. In [37, 38], the author studied the singular
solution of the axisymmetric Euler and Navier–Stokes equations using the following initial condition:

𝑢1(0, 𝑟, 𝑧) =
12000(1 − 𝑟2)18 sin(2𝜋𝑧)

1 + 12.5(sin(𝜋𝑧))2 , 𝜔1(0, 𝑟, 𝑧) = 0, 𝑟 ≤ 1. (2.2)

The flow is completely driven by large swirl initially. The other two velocity components are set to zero
initially. Note that 𝑢1 is an odd and periodic function of 𝑧 with period 1. The oddness of 𝑢1 induces
the oddness of 𝜔1 dynamically through the vortex stretching term in the 𝜔1-equation. It is worth
emphasizing that the specific power 18 is important, which determines the ratio of the scales along the
𝑟 and 𝑧 directions and enforces a rapid decay near the boundary 𝑟 = 1. This initial condition generates
a solution that has comparable scales along the 𝑟 and 𝑧 directions, leading to an one-scale traveling
solution moving toward the origin.

We will impose a periodic boundary condition in 𝑧 with period 1 and no-slip no-flow boundary
condition at 𝑟 = 1. Since 𝑢𝜃, 𝜔𝜃, 𝜓𝜃 is an odd function of 𝑟 [60], 𝑢1, 𝜔1, 𝜓1 is an even function of
𝑟. Thus, we impose the following pole conditions: 𝑢1,𝑟 (𝑡, 0, 𝑧) = 𝜔1,𝑟 (𝑡, 0, 𝑧) = 𝜓1,𝑟 (𝑡, 0, 𝑧) = 0. To
numerically compute the potential singularity formation of the equations (2.1) with initial condition
(2.2), we adopt the numerical methods developed in [39, 40]. In particular, we design an adaptive
mesh by constructing two adaptive mesh maps for 𝑟 and 𝑧 explicitly. The computation is performed in
the transformed domain using a uniform mesh. When we map back to the physical domain, we obtain
a highly adaptive mesh. We refer to Appendix A in [40] for more detailed discussions.

We will study the nearly self-similar blowup of the generalized axisymmetric Navier–Stokes equations
using a novel two-scale dynamic rescaling formulation. We will use the late stage solution obtained by
the adaptive mesh computation in [38] at the time 𝑇1 by which the maximum vortcity has increased by
a factor of 106. We will rescale the solution at 𝑇1 using the parabolic scaling invariant property and
apply a soft cut-off to the far field to obtain an initial condition for the dynamic rescaling formulation.

2.2. Derivation of the generalized Navier–Stokes equations. We first derive the generalized Navier–
Stokes equations. In [45, 46], we performed numerical study of the finite time self-similar blowup of
the axisymmetric Euler equations with no swirl in 3 and higher space dimensions for 𝐶𝛼 initial vorticity
for a wide range of 𝛼. We first define the 𝑛-dimensional cylindrical unit vectors

𝑒𝑟 = (cos 𝜃1, sin 𝜃1 cos 𝜃2, ..., sin 𝜃1, ... cos 𝜃𝑛−2, sin 𝜃1... sin 𝜃𝑛−2, 0),
𝑒𝜃1 = (− sin 𝜃1, cos 𝜃1 cos 𝜃2, ..., cos 𝜃1, ... cos 𝜃𝑛−2, cos 𝜃1... sin 𝜃𝑛−2, 0),
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𝑒𝜃𝑛−2 = (0, 0, ...,− sin 𝜃𝑛−2, cos 𝜃𝑛−2, 0),
𝑒𝑧 = (0, 0, ..., 1).

Let us assume that the only nontrivial swirl velocity is in 𝜃1 variable, denoted as 𝑢𝜃1 and 𝑢𝜃 𝑗 ≡ 0 for
𝑗 = 2, 3, ...𝑛 − 2. We call the velocity field u axisymmetric if it admits the following expression:

u = 𝑢𝑟 (𝑡, 𝑟, 𝑧)𝑒𝑟 + 𝑢𝜃1 (𝑡, 𝑟, 𝑧)𝑒𝜃1 + 𝑢𝑧 (𝑡, 𝑟, 𝑧)𝑒𝑧 .
Using the calculus on curvilinear coordinate, we obtain

∇ · u =
(𝑟𝑛−2𝑢𝑟)𝑟

𝑟𝑛−2
+ (𝑛 − 3) cot(𝜃1)

𝑟
𝑢𝜃1 + (𝑟𝑛−2𝑢𝑧)𝑧

𝑟𝑛−2
.

We will denote 𝜃1 as 𝜃 from now on. Similar to the 3D axisymmetric Euler or Navier–Stokes equations,
we introduce the angular vorticity 𝜔𝜃 and angular stream function 𝜓𝜃 by defining 𝜔𝜃 = 𝑢𝑧𝑟 − 𝑢𝑟𝑧 and
−Δ𝜓𝜃 = 𝜔𝜃. Using 𝜓𝜃, we can define 𝑢𝑟 and 𝑢𝑧 in terms of 𝜓𝜃 as follows:

𝑢𝑟 = − (𝑟𝑛−2𝜓𝜃)𝑧
𝑟𝑛−2

, 𝑢𝑧 =
(𝑟𝑛−2𝜓𝜃)𝑟

𝑟𝑛−2
. (2.3)

In order to satisfy the divergence free condition, we modify the velocity field as follows:

u = 𝑢𝑟 (𝑡, 𝑟, 𝑧)𝑒𝑟 + 𝑢𝑧 (𝑡, 𝑟, 𝑧)𝑒𝑧 .
Moreover, we treat the total circulation Γ = 𝑟𝑢𝜃 as "density" and still define 𝑢1 = 𝑢𝜃/𝑟, 𝜔1 = 𝜔𝜃/𝑟 and
𝜓1 = 𝜓𝜃/𝑟. Our generalized 𝑛-dimensional axisymmetric Navier–Stokes equations are given as follows:

Γ𝑡 + 𝑢𝑟Γ𝑟 + 𝑢𝑧Γ𝑧 = 𝜈

(
Γ𝑟𝑟 +

(𝑛 − 4)
𝑟

Γ𝑟 +
(6 − 2𝑛)

𝑟2
Γ + Γ𝑧𝑧

)
, (2.4a)

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 = (𝑢21)𝑧 − (𝑛 − 3)𝜓1,𝑧𝜔1 + 𝜈
(
𝜔1,𝑟𝑟 +

𝑛

𝑟
𝜔1,𝑟 + 𝜔1,𝑧𝑧

)
, (2.4b)

−
(
𝜕2𝑟 +

𝑛

𝑟
𝜕𝑟 + 𝜕2𝑧

)
𝜓1 = 𝜔1, (2.4c)

where 𝑢𝑟 = −𝑟𝜓1,𝑧, 𝑢𝑧 = (𝑛−1)𝜓1+𝑟𝜓1,𝑟. The divergence free condition ∇·u =
(𝑟𝑛−2𝑢𝑟 )𝑟

𝑟𝑛−2 + (𝑟𝑛−2𝑢𝑧 )𝑧
𝑟𝑛−2 = 0

is satisfied exactly. The generalized Navier–Stokes equations still conserve the energy, see the derivation
in the next subsection. When 𝑛 = 3, we recover the 3D axisymmetric Navier–Stokes equations.

To derive the generalized Boussinesq system (1.2), we again treat Γ as density and remove (𝑛 −
3)𝜓1,𝑧𝜔1 from the generalized Navier–Stokes equations. We define the velocity as 𝑢𝑟 = −𝑟𝜓1,𝑧, 𝑢𝑧 =

(𝑚 − 1)𝜓1 + 𝑟𝜓1,𝑟 with 𝑚 = (𝑛 + 3)/2 and 𝑛 = 4𝑅(𝑡)/𝑍(𝑡) − 1. We will show that this generalized
Boussinesq system satisfies energy conservation in the next subsection. The blowup is driven by the
density variation of Γ, which develops a traveling wave with a sharp front approaching to the origin.

2.3. Energy estimates for the generalized Navier–Stokes equations. In this subsection, we will
derive the energy estimates for both the generalized Navier–Stokes equations and the generalized
Boussinesq system for a fixed dimension 𝑛. We first rewrite the Γ-equation in terms of 𝑢1 as follows:

𝑢1,𝑡 + 𝑢𝑟𝑢1,𝑟 + 𝑢𝑧𝑢1,𝑧 = 2𝑢1𝜓1,𝑧 + 𝜈1

(
𝑢1,𝑟𝑟 +

𝑛

𝑟
𝑢1,𝑟 + 𝑢1,𝑧𝑧

)
. (2.5)

To perform energy estimates for the generalize Navier–Stokes equations (2.4), we multiply the 𝑢1-
equation (2.5) by 𝑢1𝑟

𝑛𝑑𝑟𝑑𝑧 and integrate over the whole domain. Similarly, we multiply equation
(2.4b) for 𝜔1 and equation (2.4c) for 𝜓1 by 𝜓1𝑟

𝑛𝑑𝑟𝑑𝑧, and integrate over the whole domain. Using
the divergence form of the diffusion operator,

𝑢1,𝑟𝑟 +
𝑛

𝑟
𝑢1,𝑟 + 𝑢1,𝑧𝑧 =

( (𝑟𝑛𝑢1,𝑟)𝑟
𝑟𝑛

+ 𝑢1,𝑧𝑧

)
,
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we perform integration by parts to obtain∫
𝑢1(𝑢1,𝑟𝑟 +

𝑛

𝑟
𝑢1,𝑟 + 𝑢1,𝑧𝑧) 𝑟𝑛𝑑𝑟𝑑𝑧 = −

∫
|∇𝑢1 |2 𝑟𝑛𝑑𝑟𝑑𝑧,

−
∫

𝜓1(𝜓1,𝑟𝑟 +
𝑛

𝑟
𝜓1,𝑟 + 𝜓1,𝑧𝑧) 𝑟𝑛𝑑𝑟𝑑𝑧 =

∫
|∇𝜓1 |2 𝑟𝑛𝑑𝑟𝑑𝑧,∫

𝜓1(𝜔1,𝑟𝑟 +
𝑛

𝑟
𝜔1,𝑟 + 𝜔1,𝑧𝑧) 𝑟𝑛𝑑𝑟𝑑𝑧 = −

∫
|Δ𝜓1 |2 𝑟𝑛𝑑𝑟𝑑𝑧,

where we have used −Δ𝜓1 = 𝜔1. There are no contributions from the boundary when we perform
integration by parts since 𝜓1, 𝑢1 and 𝜔1 are odd function of 𝑧 and even function of 𝑟. Using 𝑢𝑟 =

−(𝑟𝑛−1𝜓1)𝑧/𝑟𝑛−2, 𝑢𝑧 = (𝑟𝑛−1𝜓1)𝑟/𝑟𝑛−2 and the incompressibility condition, we get∫
𝑢1(−𝑢𝑟𝑢1,𝑟 − 𝑢𝑧𝑢1,𝑧 + 2𝜓1,𝑧𝑢1)𝑟𝑛𝑑𝑟𝑑𝑧

=

∫ (
1
2
(𝑟𝑛−1𝜓1)𝑧 (𝑢21)𝑟 −

1
2
(𝑟𝑛−1𝜓1)𝑟 (𝑢21)𝑧

)
𝑟2𝑑𝑟𝑑𝑧 +

∫
2𝜓1,𝑧𝑢

2
1𝑟

𝑛𝑑𝑟𝑑𝑧

=

∫
𝜓1,𝑧𝑢

2
1 𝑟𝑛𝑑𝑟𝑑𝑧.

Similarly, we obtain by integration by parts that∫
𝜓1(−𝑢𝑟𝜔1,𝑟 − 𝑢𝑧𝜔1,𝑧 + (𝑢21)𝑧 − (𝑛 − 3)𝜓1,𝑧𝜔1)𝑟𝑛𝑑𝑟𝑑𝑧

=

∫ (
𝜓1(𝑟𝑛−1𝜓1)𝑧𝜔1,𝑟 − 𝜓1(𝑟𝑛−1𝜓1)𝑟𝜔1,𝑧

)
𝑟2𝑑𝑟𝑑𝑧 +

∫
(−𝜓1,𝑧𝑢

2
1 − (𝑛 − 3)𝜓1𝜓1,𝑧𝜔1)𝑟𝑛𝑑𝑟𝑑𝑧

= (𝑛 − 3)
∫

𝜓1𝜓1,𝑧𝜔1 𝑟𝑛𝑑𝑟𝑑𝑧 −
∫

(𝜓1,𝑧𝑢
2
1 + (𝑛 − 3)𝜓1𝜓1,𝑧𝜔1)𝑟𝑛𝑑𝑟

= −
∫

𝜓1,𝑧𝑢
2
1 𝑟𝑛𝑑𝑟𝑑𝑧.

By adding the above two estimates, we observe that the right hand side terms cancel each other.
Thus, we have

1
2
𝑑

𝑑𝑡

∫
(𝑢21 + |∇𝜓1 |2)𝑟𝑛𝑑𝑟𝑑𝑧 = −𝜈

∫
( |∇𝑢1 |2 + |Δ𝜓1 |2) 𝑟𝑛𝑑𝑟𝑑𝑧.

In terms of the original physical variables, we get by a direct computation that∫
(𝑢21 + |∇𝜓1 |2)𝑟𝑛𝑑𝑟𝑑𝑧 =

∫
( |𝑢𝜃 |2 + |𝑢𝑟 |2 + 𝑢𝑧 |2)𝑟𝑛−2𝑑𝑟𝑑𝑧,

which is the familiar kinetic energy
∫
|u|2𝑟𝑛−2𝑑𝑟𝑑𝑧 in 𝑛 dimensions. The damping term from the

viscous term can be shown to be equivalent to −𝜈
∫
( |∇u|2)𝑟𝑛−2𝑑𝑟𝑑𝑧.

We can perform a similar energy estimate for the generalized Boussinesq system. As we can see
from our above energy estimate, the term −(𝑛 − 3)𝜓1,𝑧𝜔1 from the 𝜔1 equation plays an important
role in canceling the contribution from the advection terms. Since we drop the term −(𝑛 − 3)𝜓1,𝑧𝜔1 in
the 𝜔1 equation in the generalized Boussinesq system, we need to change the weight in our energy
estimate to cancel the contribution from the advection terms. We proceed as follows:∫

𝑢1(−𝑢𝑟𝑢1,𝑟 − 𝑢𝑧𝑢1,𝑧 + 2𝜓1,𝑧𝑢1)𝑟𝑛𝑑𝑟𝑑𝑧
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=

∫ (
1
2
(𝑟𝑚−1𝜓1)𝑧 (𝑢21)𝑟 −

1
2
(𝑟𝑚−1𝜓1)𝑟 (𝑢21)𝑧

)
𝑟𝑛−𝑚+2𝑑𝑟𝑑𝑧 +

∫
2𝜓1,𝑧𝑢

2
1𝑟

𝑛𝑑𝑟𝑑𝑧

=
(5 − 𝑚)

2

∫
𝜓1,𝑧𝑢

2
1 𝑟𝑛𝑑𝑟𝑑𝑧 =

(7 − 𝑛)
4

∫
𝜓1,𝑧𝑢

2
1 𝑟𝑛𝑑𝑟𝑑𝑧.

Similarly, we obtain by integration by parts that∫
𝜓1(−𝑢𝑟𝜔1,𝑟 − 𝑢𝑧𝜔1,𝑧 + (𝑢21)𝑧)𝑟𝑛𝑑𝑟𝑑𝑧

=

∫ (
𝜓1(𝑟𝑚−1𝜓1)𝑧𝜔1,𝑟 − 𝜓1(𝑟𝑚−1𝜓1)𝑟𝜔1,𝑧

)
𝑟𝑛−𝑚+2𝑑𝑟𝑑𝑧 −

∫
𝜓1,𝑧𝑢

2
1𝑟

𝑛𝑑𝑟𝑑𝑧

= (2𝑚 − 3 − 𝑛)
∫

𝜓1𝜓1,𝑧𝜔1 𝑟𝑛𝑑𝑟𝑑𝑧 −
∫

𝜓1,𝑧𝑢
2
1 𝑟𝑛𝑑𝑟 = −

∫
𝜓1,𝑧𝑢

2
1 𝑟𝑛𝑑𝑟𝑑𝑧,

where we have used 𝑚 = (𝑛 + 3)/2 to cancel the first term on the right hand side in the second to the
last step. Since we assume 𝑛 < 7, we obtain the following generalized energy estimate by forming a
linear combination of the two energy terms to cancel the right hand sides
1
2
𝑑

𝑑𝑡

∫
(𝑢21 +

(7 − 𝑛)
4

|∇𝜓1 |2)𝑟𝑛𝑑𝑟𝑑𝑧 = −𝜈1
∫

|∇𝑢1 |2 𝑟𝑛𝑑𝑟𝑑𝑧 − 𝜈2
(7 − 𝑛)

4

∫
|Δ𝜓1 |2 𝑟𝑛𝑑𝑟𝑑𝑧.

We can further express
∫
(𝑢21 +

(7−𝑛)
4 |∇𝜓1 |2)𝑟𝑛𝑑𝑟𝑑𝑧 as

∫
((𝑢𝜃)2 + (7−𝑛)

4 ( |𝑢𝑟 |2 + |𝑢𝑧 |2)𝑟𝑛−2𝑑𝑟𝑑𝑧.

3. A novel two-scale dynamic rescaling formulation

In this subsection, we introduce a novel two-scale dynamic rescaling formulation to study potential
nearly self-similar blowup solution of the generalized Navier–Stokes equations. The dynamic rescaling
formulation was introduced in [65, 56] to study the self-similar blowup of the nonlinear Schrödinger
equations. This formulation is also called the modulation technique in the literature and has been
developed by Merle, Raphael, Martel, Zaag, Soffer, Weinstein, and others. It has been a very effective
tool to analyze the formation of singularities for many problems like the nonlinear Schrödinger equation
[76, 49, 66], compressible Euler equations [4, 5], the nonlinear wave equation [68], the nonlinear
heat equation [67], the generalized KdV equation [64], and other dispersive problems. Recently, this
method has been applied to study singularity formation in incompressible fluids [13, 28] .

We first define the following dynamically rescaled profiles and the rescaled time variable 𝜏.

�̃�1(𝜏, 𝜉, 𝜂) = 𝐶𝑢(𝜏)𝑢1 (𝑡(𝜏), 𝐶𝑙𝑟 (𝜏)𝜉, 𝐶𝑙𝑧 (𝜏)𝜂) ,
𝜔1(𝜏, 𝜉, 𝜂) = 𝐶𝜔 (𝜏)𝜔1 (𝑡(𝜏), 𝐶𝑙𝑟 (𝜏)𝜉, 𝐶𝑙𝑧 (𝜏)𝜂) ,
𝜓1(𝜏, 𝜉, 𝜂) = 𝐶𝜓(𝜏)𝜓1 (𝑡(𝜏), 𝐶𝑙𝑟 (𝜏)𝜉, 𝐶𝑙𝑧 (𝜏)𝜂) ,

where 𝜉 = 𝑟/𝐶𝑙𝑟, 𝜂 = 𝑧/𝐶𝑙𝑧,

𝐶𝑢(𝜏) = 𝑒
∫ 𝜏

0 𝑐𝑢 (𝑠)d𝑠, 𝐶𝜔 (𝜏) = 𝑒
∫ 𝜏

0 𝑐𝜔 (𝑠)d𝑠, 𝐶𝜓(𝜏) = 𝑒
∫ 𝜏

0 𝑐𝜓 (𝑠)d𝑠,

and
𝐶𝑙𝑟 (𝜏) = 𝑒−

∫ 𝜏

0 𝑐𝑙𝑟 (𝑠)d𝑠, 𝐶𝑙𝑧 (𝜏) = 𝑒−
∫ 𝜏

0 𝑐𝑙𝑧 (𝑠)d𝑠, 𝑡(𝜏) =
∫ 𝜏

0
𝐶𝜓(𝑠)𝐶𝑙𝑧 (𝑠)d𝑠.

Here 𝜏 is the rescaled time variable satisfying 𝑑𝜏/𝑑𝑡 = (𝐶𝜓𝐶𝑙𝑧)−1. Then, the generalized 𝑛-dimensional
axisymmetric Navier–Stokes equations in the 𝜓1, �̃�1, 𝜔1 variables can be described by the following
two-scale dynamic rescaling equations

�̃�1,𝜏 + 𝑐𝑙𝑟𝜉�̃�1,𝜉 + 𝑐𝑙𝑧𝜂�̃�1,𝜂 + ũ · ∇(𝜉,𝜂) �̃�1 = 𝑐𝑢�̃�1 + 2�̃�1𝜓1,𝜂 +
𝜈1𝐶𝜓

𝐶𝑙𝑧

Δ�̃�,
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𝜔1,𝜏 + 𝑐𝑙𝑟𝜉𝜔1,𝜉 + 𝑐𝑙𝑧𝜂𝜔1,𝜂 + ũ · ∇(𝜉,𝜂)𝜔1 = 𝑐𝜔𝜔1 + (�̃�21)𝜂 − (𝑛 − 3)𝜓1,𝜂𝜔1 +
𝜈2𝐶𝜓

𝐶𝑙𝑧

Δ𝜔,

−Δ𝜓1 = 𝜔1, Δ =

(
𝛿2𝜕2𝜉 + 𝛿2

𝑛

𝜉
𝜕𝜉 + 𝜕2𝜂

)
,

where 𝛿 = 𝐶𝑙𝑧 (𝜏)/𝐶𝑙𝑟 (𝜏) and the rescaled velocity field is given by ũ = (𝑢𝜉, 𝑢𝜂), 𝑢𝜉 = −𝜉𝜓1,𝜂,
𝑢𝜂 = (𝑛− 1)𝜓1 + 𝜉𝜓1,𝜉, and the scaling parameters (𝑐𝑙𝑧, 𝑐𝑙𝑟, 𝑐𝜓, 𝑐𝑢, 𝑐𝜔) satisfy the rescaling relationship

𝑐𝜓 = 𝑐𝑢 + 𝑐𝑙𝑧, 𝑐𝜔 = 𝑐𝑢 − 𝑐𝑙𝑧 . (3.1)

We refer to the excellent survey paper [26] for more discussion of high dimensional Euler equations
(see also [46]). In the case of the generalized Boussinesq system, we drop (𝑛 − 3)𝜓1,𝜂𝜔1 from the
𝜔1 equation, and change the velocity field to 𝑢𝑟 = −(𝑟𝑚−2𝜓𝜃)𝑧/𝑟𝑚−2, 𝑢𝑧 = (𝑟𝑚−2𝜓𝜃)𝑟/𝑟𝑚−2 with
𝑚 = (𝑛 + 3)/2.

We have three free scaling parameters 𝑐𝑙𝑟, 𝑐𝑙𝑧 and 𝑐𝑢 to choose to enforce the normalization
conditions. Using the two-scale dynamic rescaling formulation and introducing space dimension
as a new degree of freedom are two key ingredients that enable us to eliminate the scaling
instability. If we use the traditional one-scale dynamic rescaling formulation with 𝑐𝑙𝑟 = 𝑐𝑙𝑧, we could
not eliminate this scaling instability. We enforce the normalization conditions that �̃�1 achieves its
maximum at (𝜉, 𝜂) = (𝑅0, 1) with 𝑅0 = 3.6927 and ∥�̃�1∥∞ being fixed to be 1. We remark that
(𝑅𝜔, 𝑍𝜔) converges to a fixed position (𝑅𝜔, 𝑍𝜔) as 𝜏 increases.

If the scaling parameters converge to a constant value as 𝜏 → ∞,

(𝑐𝑙𝑧 (𝜏), 𝑐𝑙𝑟 (𝜏), 𝑐𝜓(𝜏), 𝑐𝑢(𝜏), 𝑐𝜔 (𝜏)) → (𝑐𝑙𝑧, 𝑐𝑙𝑟, 𝑐𝜓, 𝑐𝑢, 𝑐𝜔),
we can obtain the actual blowup rate in the physical time variable by inverting the mapping from
𝜏 back to 𝑡. To simplify the derivation, we assume that (𝑐𝑙𝑧 (𝜏), 𝑐𝑙𝑟 (𝜏), 𝑐𝜓(𝜏), 𝑐𝑢(𝜏), 𝑐𝜔 (𝜏)) are time
independent. Then we obtain the following asymptotic scaling results:

𝐶𝜓(𝜏) = 𝑒𝑐𝜓𝜏, 𝐶𝑙𝑧 (𝜏) = 𝑒−𝑐𝑙𝑧𝜏,

which implies that

𝑡(𝜏) =
∫ 𝜏

0
𝐶𝜓(𝑠)𝐶𝑙𝑧 (𝑠)𝑑𝑠 =

1
𝑐𝜓 − 𝑐𝑙𝑧

(𝑒(𝑐𝜓−𝑐𝑙𝑧 )𝜏 − 1).

By inverting this relationship, we obtain

𝜏 =
1

𝑐𝑙𝑧 − 𝑐𝜓
log

(
1

𝑇 − 𝑡

)
,

where 𝑇 = 1
𝑐𝑙𝑧−𝑐𝜓 . By substituting 𝜏 =

| log(𝑇−𝑡) |
𝑐𝑙𝑧−𝑐𝜓 back to 𝐶𝑢, 𝐶𝜔, 𝐶𝑙𝑧 etc and using 𝑐𝜓 = 𝑐𝑢 + 𝑐𝑙𝑧 and

𝑐𝜔 = 𝑐𝑢 − 𝑐𝑙𝑧, we obtain the following scaling formula:

𝐶𝑙𝑧 (𝜏) = (𝑇 − 𝑡) �̂�𝑙𝑧 , 𝐶𝑙𝑟 (𝜏) = (𝑇 − 𝑡) �̂�𝑙𝑟 ,
where �̂�𝑙𝑧 = 𝑐𝑙𝑧/(𝑐𝑙𝑧 − 𝑐𝜓) and �̂�𝑙𝑟 = 𝑐𝑙𝑟/(𝑐𝑙𝑧 − 𝑐𝜓). The blowup rates are given by

1
𝐶𝑢(𝜏)

=
1

(𝑇 − 𝑡) ,
1

𝐶𝜔 (𝜏)
=

1
(𝑇 − 𝑡)1+�̂�𝑙𝑧

,
1

𝐶𝜓(𝜏)
=

1
(𝑇 − 𝑡)1− �̂�𝑙𝑧

,

where �̂�𝜔 = 𝑐𝜔/(𝑐𝑙𝑧 − 𝑐𝜓) = −1− �̂�𝑙𝑧 and �̂�𝜓 = 𝑐𝜓/(𝑐𝑙𝑧 − 𝑐𝜓) = −1+ �̂�𝑙𝑧. In our computation, we monitor
closely these normalized scaling exponents �̂�𝜔, �̂�𝜓, �̂�𝑙𝑧 and �̂�𝑙𝑟 to study their scaling properties.

As we mentioned before, we will use the conservative (Γ, 𝜔1, 𝜓1) formulation in our computation.
Using the relationship Γ = 𝑟2𝑢1, we can obtain an equivalent dynamic rescaling formulation for
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(Γ, 𝜔1, 𝜓1) as follows:

Γ̃𝜏 + 𝑐𝑙𝑟𝜉Γ̃𝜉 + 𝑐𝑙𝑧𝜂Γ̃𝜂 + ũ · ∇(𝜉,𝜂) Γ̃ = 𝑐Γ Γ̃ +
𝜈1𝐶𝜓

𝐶𝑙𝑧

Δ̃Γ̃,

𝜔1,𝜏 + 𝑐𝑙𝑟𝜉𝜔1,𝜉 + 𝑐𝑙𝑧𝜂𝜔1,𝜂 + ũ · ∇(𝜉,𝜂)𝜔1 = 𝑐𝜔𝜔1 + (�̃�21)𝜂 + (3 − 𝑛)𝜓1,𝜂𝜔1 +
𝜈2𝐶𝜓

𝐶𝑙𝑧

Δ𝜔,

−Δ𝜓1 = 𝜔1, Δ =

(
𝛿2𝜕2𝜉 + 𝛿2

𝑛

𝜉
𝜕𝜉 + 𝜕2𝜂

)
,

where 𝑐Γ = 𝑐𝑢 + 2𝑐𝑙𝑟 = 2(𝑐𝑙𝑟 − 𝑐𝑙𝑧) and

Δ̃Γ̃ =

(
𝛿2𝜕2𝜉Γ̃ + 𝛿2

𝑛 − 4
𝜉

𝜕𝜉Γ̃ + 𝛿2
6 − 2𝑛
𝜉2

Γ̃ + 𝜕2𝜂 Γ̃

)
.

We still choose 𝑐𝑙𝑟 and 𝑐𝑙𝑧 to enforce that �̃�1 achieves its maximum at (𝜉, 𝜂) = (𝑅0, 1) and choose 𝑐𝑢 to
fix the maximum value of �̃�1 to be 1.

In the case of the generalized Navier–Stokes equations with solution dependent viscosity 𝜈(𝜏) =
𝜈0∥𝑢1∥∞𝑍(𝑡)2, we note that ∥𝑢1∥∞𝑍(𝑡)2 = ∥�̃�1∥∞ = 𝐶𝑙𝑧/𝐶𝜓. Thus, we have 𝜈𝐶𝜓

𝐶𝑙𝑧
= 𝜈0. As a result, the

dynamic rescaling formulation is the same as that for the generalized axisymmetric Navier–Stokes
equations with a constant viscosity 𝜈0. If 𝑐𝑙𝑧 → 𝑐𝑙 and 𝑐𝑙𝑟 → 𝑐𝑙, then we have 𝛿(𝜏) → 𝜆0. In our
computation, we obtain 𝜆0 ≈ 0.914. If the dynamic rescaled solution converges to a steady state, we
can rescale the 𝜉 variable to 𝜉/𝜆0 to obtain an one-scale solution with 𝛿 = 1 and 𝑐𝑙𝑟 = 𝑐𝑙𝑧 ≡ 𝑐𝑙. If the
solution of the dynamic rescaling equations converges to a steady state, the steady state satisfies the
following self-similar equations:

(𝑐𝑙𝜉, 𝑐𝑙𝜂) · ∇(𝜉,𝜂) Γ̃ + ũ · ∇(𝜉,𝜂) Γ̃ = 𝜈0Δ̃Γ̃, (3.2)

(𝑐𝑙𝜉, 𝑐𝑙𝜂) · ∇(𝜉,𝜂)𝜔1,𝜂 + ũ · ∇(𝜉,𝜂)𝜔1 = 𝑐𝜔𝜔1 + (�̃�21)𝜂 − (𝑛 − 3)𝜓1,𝜂𝜔1 + 𝜈0Δ𝜔, (3.3)

−Δ𝜓1 = 𝜔1, Δ = −
(
𝜕2𝜉 +

𝑛

𝜉
𝜕𝜉 + 𝜕2𝜂

)
, (3.4)

where we have used 𝑐Γ = 2(𝑐𝑙𝑟 − 𝑐𝑙𝑧) = 0. In our study, we observe that 𝑐𝑙 and 𝑛 decrease as 𝜈0
decreases. It would be interesting to solve the self-similar equations directly with 𝜈0 as a continuation
parameter. Due to the total circulation conservation of the generalized Euler equations, we expect
to have 𝑐𝑙 → 1/2 as 𝜈0 → 0. We also observe that the dimension 𝑛 decreases toward 𝑛 = 3 as we
decrease 𝜈0, but the solution suffers from the Kelvin-Helmholtz instability when 𝜈0 is below certain
threshold.

3.1. The importance of resolving the far field solution. We remark that capturing the correct far
field decay rate is essential to capture the correct scaling properties of the solution. Resolving the
far field solution also plays an important role in capturing the slow growth rate of the 𝐿𝑛 norm of
the velocity and the dynamic growth of ∥𝑟𝑢𝑟∥∞. On the other hand, resolving the near field is also
important since we need to compute accurately the location of the maximum of 𝑉1 and its amplitude
in order to enforce our normalization conditions. It is also worth emphasizing the importance of using
the conservative (Γ, 𝜔1, 𝜓1) formulation in our two-scale dynamic rescaling formulation. This enables
us to capture the nearly self-similar blowup.

In our computation, we expand the domain size by 𝑅(𝜏)−1/5 and 𝑍(𝜏)−1/5 in the 𝑟 and 𝑧 directions,
respectively and apply the homogeneous Neumann boundary conditions for the stream function 𝜓1, Γ̃
and 𝜔1. In the case of the generalized axisymmetric Boussinesq system with two constant viscosity
coefficients, we have (𝑅(𝜏), 𝑍(𝜏)) = (3.3 · 10−15, 6.2 · 10−16) by the end of our computation. The
domain size has increased to [0, 3 · 107] × [0, 1.65 · 107] from the initial domain size of 𝑂(104).
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3.2. The operator splitting strategy. We will adopt an operator splitting strategy developed in [45]
to enforce the normalization conditions. To enforce the normalization conditions accurately at every
time step, we utilize the operator splitting method. We denote by v = (Γ̃, 𝜔1). We will split the time
evolution of v into two parts:

v𝜏 = 𝐹(v) + 𝐺(v),
where 𝐹(v) contains the original terms in the generalized Navier–Stokes equations and 𝐺(v) contains
the linear terms that control the rescaling, i.e. 𝐺(v) = −𝑐𝑙𝑟𝜉v𝜉 − 𝑐𝑙𝑧𝜂v𝜂 + 𝑐vv. We view 𝜓1 as a function
of 𝜔1 through the Poisson equation. The operator splitting method allows us to solve the dynamic
rescaling formulation by solving v𝜏 = 𝐹(v) and v𝜏 = 𝐺(v) alternatively. We can use the forward Euler
method to solve v𝜏 = 𝐹(v). In the second step, we can obtain a closed form solution to v𝜏 = 𝐺(v) as
follows:

v(𝜏, 𝜉, 𝜂) = 𝐶v (𝜏)v(0, 𝐶𝑙𝑟𝜉, 𝐶𝑙𝑧𝜂),
where 𝐶v = exp

(∫ 𝜏

0 𝑐v (𝑠)𝑑𝑠
)
, 𝐶𝑙𝑟 = exp

(
−

∫ 𝜏

0 𝑐𝑙𝑟 (𝑠)𝑑𝑠
)
and 𝐶𝑙𝑧 = exp

(
−

∫ 𝜏

0 𝑐𝑙𝑧 (𝑠)𝑑𝑠
)
. In the first

step, solving v𝜏 = 𝐹(v) will violate the normalization conditions. But we will correct this error in
the second step by solving v𝜏 = 𝐺(v) with a smart choice of 𝐶v, 𝐶𝑙𝑟 and 𝐶𝑙𝑧. In other words, at every
time step when we solve v𝜏 = 𝐺(v), we can exactly enforce the normalization conditions of fixing the
location of the maximum of �̃�1 to be at (𝑅0, 1) by rescaling the 𝜉 and 𝜂 coordinates. We could also
adopt Strang’s splitting method to improve the splitting scheme to second order accuracy.

4. Blowup of the generalized Navier-Stokes equations with solution dependent viscosity

In this section, we will investigate the asymptotically self-similar blowup of the generalized Navier-
Stokes equations with solution dependent viscosity. It turns out that the choice of the viscosity coefficient
plays a crucial role in generating a stable and self-similar blowup of the generalized Naver–Stokes
equations. In our study, we choose 𝜈 = 𝜈0∥𝑢1∥∞𝑍(𝑡)2 with 𝜈0 = 0.006. Here (𝑅(𝑡), 𝑍(𝑡)) is the
position where 𝑢1 achieves its maximum. Note that ∥𝑢1∥∞𝑍(𝑡)2 is scaling invariant. This choice of
viscosity is to enforce the balance between the vortex stretching terms and the diffusion terms for both
the 𝑢1 and 𝜔1 equations. Another way to interpret this solution dependent viscosity is that it is chosen
such that the cell Reynolds number is finite and independent of the small scales of the physical solution.

An important consequence of this choice of viscosity is that the self-similar profile of the blowup
solution satisfies the generalized self-similar Navier–Stokes equations with constant viscosity coefficient
𝜈0. This explains why we can maintain the balance between the vortex stretching term and the diffusion
term in the self-similar space variables 𝜉 = 𝑟/𝐶𝑙𝑟 and 𝜂 = 𝑧/𝐶𝑙𝑧.

4.1. Rapid growth of maximum vorticity. In this subsection, we investigate how the profiles of
the solution evolve in time. We will use the numerical results computed on the adaptive mesh using
resolution (𝑛1, 𝑛2) = (1024, 1024). We have computed the numerical solution up to time 𝜏 = 185
when the solution is still well resolved.

In Figure 4.1(a), we plot the dynamic growth of the maximum vorticity as a function of 𝜏. We observe
a rapid growth of ∥𝝎∥∞. By the end of the computation, the maximum vorticity has increased by a
factor of 9× 1021. To best of our knowledge, such a large growth rate of the maximum vorticity has not
been reported for the 3D Euler or Navier–Stokes equations in the literature. In Figure 4.1(b), we plot
the time integral of the maximum vorticity

∫ 𝑡

0 ∥𝝎(𝑠)∥∞𝑑𝑠 =
∫ 𝜏

0 ∥�̃�(𝑠′)∥∞𝑑𝑠′. We observe a perfect
linear growth of the time integral of the maximum vorticity with respect to 𝜏. Since 𝜏 = 𝑐0 | log(𝑇 − 𝑡) |,
this implies that ∥𝝎∥∞ ∼ 1

𝑇−𝑡 . This violates the Beale-Kato-Majda blowup criterion [1]
In Figure 4.2 (a), we compare the growth rate of the maximum vorticity using two different

resolutions, 768 × 768 vs 1024 × 1024. A zoomed-in version is provided in Figure 4.2 (b). We can see
that the maximum vorticity computed by the resolution 1024 × 1024 grows slightly faster than that
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Figure 4.1: Left plot: Dynamic growth of the maximum vorticity as a function of 𝜏. Right plot: The
growth of

∫ 𝜏

0 ∥�̃�∥𝐿∞𝑑𝑠 as a function of 𝜏. The perfect linear fitting implies that ∥𝝎(𝑡)∥𝐿∞ = 𝑂
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Figure 4.2: Left plot: Comparison of ∥𝝎(𝜏)∥𝐿∞/∥𝝎(0)∥𝐿∞ in time, 𝑛 = 768 (blue) vs 𝑛 = 1024 (red).
Right plot: Zoomed-in version.

computed by the resolution 768 × 768. This indicates that the higher resolution captures the growth of
the maximum vorticity more accurately, but their difference is very small, indicating that the solution
is well resolved by the 1024 × 1024 grid.

In Figure 4.3, we present the 3D solution profiles of (�̃�1, 𝜔1, Γ̃, 𝜓1,𝜂) at time 𝜏 = 185. By this time,
the maximum vorticity has increased by a factor of 9 × 1021 as we can see from Figure 4.1. We observe
that the singular support of the profiles travels toward the origin with distance of order 𝑂(10−15).
Note that the position (𝑅, 𝑍) where 𝑢1 achieves its maximum has been fixed to be at (𝑅0, 1). Due to
the viscous regularization, the profile of �̃�1 remains relatively smooth near (𝑅, 𝑍). Moreover, the thin
structure for 𝜔1 that we observed for the 3D Euler equations in [37] becomes much smoother. The tail
part of 𝑢1 and 𝜔1 is quite smooth and decays rapidly into the far field.

Due to the relatively small viscosity 𝜈 for Γ̃, we observe that the total circulation Γ̃ develops a
traveling wave with a relatively sharp front, propagating toward the origin. The diffusion term in the
𝜔1 equation regularizes the nearly singular source term due to the sharp traveling wave profile of Γ̃ and
generates a regularized Delta function like profile for 𝜔1. We observe that 𝜓1,𝜂 achieves its maximum
value at 𝜂 = 0 near 𝜉 = 𝑅0. This property is crucial in generating a traveling wave that propagates
toward 𝜂 = 0, overcoming the destabilizing effect of the transport along the 𝜂 direction.

We observe that the rescaled profile 𝜔1 decays rapidly in the far field with boundary values of
𝑂(10−18). Similar observation also applies to 𝑢1 whose boundary values are of order 𝑂(10−12). The
rescaled profile 𝜓1 also has a fast decay in the far field with boundary values of order 𝑂(10−6). On the
other hand, a portion of Γ in the near field is transported to the far field, resulting in 𝑂(1) values of Γ̃
in the far field. We note that Γ̃ contributes to the generalized Navier–Stokes equations only through
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the vortex stretching term (Γ̃2/𝜉4)𝜂, which is extremely small with order 𝑂(10−34) at the far field
boundary. Therefore, we do not need to enforce the decay of Γ̃ in the far field. Moreover, the boundary
values of the transport terms for Γ̃ and 𝜔1 are of order 10−9 and 10−29, respectively.

(a) Rescaled profile for �̃�1 (b) Rescaled profile for 𝜔1

(c) Rescaled profile for Γ̃ (d) Rescaled profile for 𝜓1𝜂

Figure 4.3: The local view of rescaled profiles at time 𝜏 = 185. (a) �̃�1; (b) 𝜔1; (c) Γ̃; (d) 𝜓1,𝜂.

4.2. The streamlines. In this subsection, we investigate the features of the velocity field. We first
study the velocity field by looking at the induced streamlines. Interestingly the induced streamlines
look qualitatively the same as those obtained for the 3D Navier–Stokes equations in a periodic cylinder
[38]. In Figure 4.4, we plot the streamlines induced by the velocity field ũ at 𝜏 = 185 for different
initial points. By this time, the ratio between the maximum vorticity and the initial maximum vorticity,
i.e. ∥𝝎(𝑡)∥𝐿∞/∥𝝎(0)∥𝐿∞ , has increased by a factor of 9 × 1021.

The velocity field resembles that of a tornado spinning around the symmetry axis (the green pole). In
Figure 4.4(a) with (𝑟0, 𝑧0) = (4, 1.5), we observe that the streamlines form a torus spinning around the
symmetry axis. In Figure 4.4(b) with (𝑟0, 𝑧0) = (2, 0.25), the streamlines go straight upward without
any spinning. In Figure 4.4(c) with (𝑟0, 𝑧0) = (6, 2.5), the streamlines first go downward, then travel
inward and upward, finally travel downward and spin outward. In Figure 4.4(d) with (𝑟0, 𝑧0) = (6, 2),
the streamlines first spin downward and then outward. The solution behaves qualitatively the same as
what we observed for the axisymmetric Navier–Stokes equations in a periodic cylinder [38].

4.3. The 2D flow. To understand the phenomena in the most singular region as shown in Figure 4.4,
we study the 2D velocity field (𝑢𝑟, 𝑢𝑧). In Figure 4.5(a)-(b), we plot the dipole structure of 𝜔1 in a local
symmetric region and the hyperbolic velocity field induced by the dipole structure in a local microscopic
domain [0, 𝑅𝑏] × [0, 𝑍𝑏] at 𝜏 = 185. The dipole structure for the generalized Navier–Stokes equations
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(a) 𝑟0 = 4, 𝑧0 = 2 (b) 𝑟0 = 2, 𝑧0 = 0.25

(c) 𝑟0 = 6, 𝑧0 = 0.5 (d) 𝑟0 = 6, 𝑧0 = 2.5

Figure 4.4: The streamlines of (𝑢𝑟 (𝑡), 𝑢𝜃(𝑡), 𝑢𝑧 (𝑡)) at time 𝜏 = 185 with initial points given by (a)
(𝑟0, 𝑧0) = (4, 2), streamlines form a torus; (b) (𝑟0, 𝑧0) = (2, 0.25), streamlines go straight upward;
(c) (𝑟0, 𝑧0) = (6, 0.5), streamlines first go downward, then travel inward, finally go upward; (d)
(𝑟0, 𝑧0) = (6, 2.5), streamlines spin downward and outward. The green pole is the symmetry axis 𝑟 = 0.

look qualitatively similar to that of the 3D Navier–Stokes equations in a periodic cylinder [38]. As in
the case of the 3D Navier–Stokes equations in a periodic cylinder, the negative radial velocity near 𝜂 = 0
induced by the antisymmetric vortex dipoles pushes the solution toward 𝜉 = 0, then move upward
away from 𝜂 = 0. This is one of the driving mechanisms for a potential singularity on the symmetry
axis. Since the value of �̃�1 becomes very small near the symmetry axis 𝜉 = 0, the streamlines almost do
not spin around the symmetry axis, as illustrated in Figure 4.4(b).

We also observe that the velocity field (𝑢𝑟 (𝑡), 𝑢𝑧 (𝑡)) forms a closed circle right above (𝑅, 𝑍). The
corresponding streamlines are trapped in the circle region in the 𝜉𝜂-plane, which is responsible for the
formation of the spinning torus that we observed earlier in Figure 4.4(a).

We can also understand this hyperbolic flow structure from the velocity contours in Figure 4.6
(a)-(b). As we can see from Figure 4.6(a), the radial velocity 𝑢𝑟 is negative and large in amplitude
below the red dot (𝑅, 𝑍) where �̃�1 achieves its maximum, pushing the flow toward the symmetry axis
𝜉 = 0. But it becomes large and positive above (𝑅, 𝑍), pushing the flow outward. Similarly, we can see
from Figure 4.6(b) that the axial velocity 𝑢𝑧 is negative and large in amplitude to the right hand side
of (𝑅, 𝑍), pushing the flow downward toward 𝜂 = 0. But it becomes large and positive on the left hand
side of (𝑅, 𝑍), pushing the flow upward away from 𝜂 = 0. This is the driving mechanism for forming
the hyperbolic flow structure near the origin.

In Figure 4.7(a)-(b), we demonstrate the alignment between 𝜓1𝜂 and �̃�1 at 𝜏 = 185. Although the
maximum vorticity has grown a lot by this time, the local solution structures have remained qualitatively
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Figure 4.5: The dipole structure of 𝜔1 and the induced local velocity field at 𝜏 = 185. Left plot: the
velocity vector. Right plot: the velocity vector with the 𝜔1 contour as background. The red dot is the
position (𝑅, 𝑍) where is �̃�1 achieves its maximum.
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Figure 4.6: The level sets of 𝑢𝜉 (left) and 𝑢𝜂 (right) at 𝜏 = 185. The red point is the maximum location
(𝑅, 𝑍) of �̃�1.
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Figure 4.7: Left plot: Alignment between alignment �̃�1 and 𝜓1,𝜂 at 𝜂 = 𝑍 as a function of 𝜉 at 𝜏 = 185.
Right plot: Alignment between alignment �̃�1 and 𝜓1,𝜂 at 𝜉 = 𝑅 as a function of 𝜂 at 𝜏 = 185.

the same in the late stage of the computation. This shows that the viscous effect has a strong stabilizing
effect that enhances the nonlinear alignment of vortex stretching. We also observe that 𝜓1𝜂 is relatively
flat in the region {(𝜉, 𝜂) |0 ≤ 𝜉 ≤ 0.9𝑅, 0 ≤ 𝜂 ≤ 0.5𝑍}. This property is critical for �̃�1 to remain large
between the sharp front and 𝜉 = 0, thus avoiding developing a two-scale structure.
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We observe that the large, positive, and relative flat 𝜓1𝜂 near 𝜂 = 0 induces a large growth of �̃�1
through the vortex stretching term 2𝜓1𝜂�̃�1 in the �̃�1-equation (2.1a). We also note that 𝜓1𝜂 is positive
to the left hand side of 𝜂 = 𝑍 and negative to the right hand side of 𝜂 = 𝑍. Thus the nonlinear vortex
stretching term 𝜓1𝜂�̃�1 generates a traveling wave that pushes the solution toward 𝜂 = 0, overcoming
the destabilizing effect of the transport along the 𝜂 direction, which tries to push the solution outward
away from 𝜂 = 0. Due to the oddness of �̃�1 as a function of 𝜂, the large growth of 𝑢1 near 𝜂 = 0
generates a large positive gradient of �̃�21 in the 𝜂-direction between 𝜂 = 0 and 𝜂 = 𝑍. The vortex
stretching term (�̃�21)𝜂 in the 𝜔1-equation (2.1b) then induces a growth of 𝜔1. This in turn generates
growth of 𝜓1𝜂 near 𝜂 = 0. The whole coupling mechanism forms a positive feedback loop.

4.4. Alignment of vortex stretching. Due to the viscous regularization, the solution becomes smoother
and is more stable. We are able to compute up to a time when (𝑅(𝑡), 𝑍(𝑡)) is very close to the origin.
This is something we could not achieve for the 3D Navier–Stokes equations in a periodic cylinder [38].
In Figure 4.8(a), we observe that the positive alignment between �̃�1 and 𝜓1𝜂 converges to a constant
as 𝜏 increases. This indicates that the generalized Navier–Stokes equations with solution dependent
viscosity achieves a self-similar scaling relationship. We observe some mild oscillations in time for
the alignment and the normalized coefficients in Figure 4.8. This is due to the rapid decay of the
solution dependent viscosity 𝜈(𝑡) in time (see Figure 4.9(b)), which is not strong enough to stabilize
the shearing instability induced by the sharp front of Γ in the generalized Euler equations.
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Figure 4.8: Left plot: The ratio between 𝜓1,𝜂 and �̃�1 at (𝜉, 𝜂) = (𝑅, 𝑍) as a function of 𝜏. Right plot:
The normalized scaling exponent 𝑐𝑙𝑧/(𝑐𝑙𝑧 − 𝑐𝜓) and 𝑐𝑙𝑟/(𝑐𝑙𝑧 − 𝑐𝜓) as a function of 𝜏.

In the Figure 4.8(b), we plot the normalized scaling parameters �̂�𝑙𝑧 = 𝑐𝑙𝑧/(𝑐𝑙𝑧 − 𝑐𝜓) and �̂�𝑙𝑟 =

𝑐𝑙𝑟/(𝑐𝑙𝑧 − 𝑐𝜓). We observe that they converge to the same constant 𝑐𝑙 = 0.523 as 𝜏 increases. If we
kept the space dimension 𝑛 = 3 for all time, we observed that 𝑐𝑙𝑧 and 𝑐𝑙𝑟 did not converge to the same
value as 𝜏 increases. It would generate a potential two-scale blowup, which is not compatible with
the scaling properties of a Navier–Stokes blowup. However, when we vary the space dimension as
𝑛(𝜏) = 1+ 2𝑅(𝜏)/𝑍(𝜏), we observe that 𝑐𝑙𝑧 and 𝑐𝑙𝑟 magically converge to the same value as 𝜏 increases.
This shows that using the space dimension as an extra degree of freedom can eliminate the scaling
instability and generate a one-scale self-similar blowup. Since ∥𝑢1∥∞ = 1/(𝑇 − 𝑡) and 𝑍(𝑡) = (𝑇 − 𝑡)𝑐𝑙 ,
the solution dependent viscosity is given by 𝜈 = 𝜈0∥𝑢1(𝜏)∥∞𝑍(𝑡)2 = 𝜈0(𝑇 − 𝑡)2𝑐𝑙−1 = 𝜈0(𝑇 − 𝑡)0.1272.
4.5. Balance between vortex stretching and diffusion and self-similar profile. In this subsection,
we study the balance between the vortex stretching terms and the diffusion terms for both �̃�1 and
𝜔1 equations. Using the scaling relationship 𝑐𝑢 = 𝑐𝜓 − 𝑐𝑙𝑧 given by (3.1), we can easily show that the
solution dependent viscosity satisfies

𝜈(𝜏) = 𝜈0∥𝑢1∥∞𝑍(𝑡)2 = 𝜈0𝐶𝑙𝑧/𝐶𝜓,



18 T. Y. HOU

which exactly cancels the scaling factor 𝐶𝜓/𝐶𝑙𝑧 in front of the rescaled diffusion term. This is why we
obtain constant viscosity 𝜈0 in the dynamic rescaling formulation for both �̃�1 and 𝜔1 equations.

In Figure 4.9(a), we plot the ratio between the vortex stretching term 2𝜓1,𝜂�̃�1 and the diffusion term
−𝜈0Δ�̃�1 at (𝑅, 𝑍) where �̃�1 achieves its maximum. We observe that this ratio converges to a constant
value 5.22 as 𝜏 increases. This shows that the vortex stretching term dominates the diffusion term. In
the same figure, we also plot the ratio between (�̃�21)𝜂 and −𝜈0Δ𝜔1 at (𝑅𝜔, 𝑍𝜔) where 𝜔1 achieves its
maximum. We do not include the contribution from the term (𝑛 − 3)𝜓1,𝜂𝜔1 since (𝑛 − 3)𝜓1,𝜂𝜔1 is
only 7% of (�̃�21)𝜂 at (𝑅𝜔, 𝑍𝜔). We observe that the ratio of these two terms converges to a constant
value 2.4 as 𝜏 increases, which again shows that the vortex stretching term dominates the diffusion,
but the diffusion term has a nontrivial contribution as the solution develops a self-similar blowup. The
balance between the vortex stretching terms and the diffusion terms is crucial in maintaining the robust
nonlinear growth of the maximum vorticity in time.

In Figure 4.9(b), we plot the solution dependent viscosity 𝜈(𝜏) = 𝜈0∥𝑢1∥∞𝑍(𝜏)2 as a function of 𝜏.
We observe that this solution dependent viscosity decays to zero as 𝜏 increases with 𝜈(185) = 1.3 ·10−6.
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Figure 4.9: Left plot: Ratio between the vortex stretching term 2𝜓1,𝜂�̃�1 and the diffusion term −𝜈0Δ�̃�1
at (𝑅, 𝑍) (blue) and ratio between the vortex stretching term (�̃�)2𝜂 and the diffusion term −𝜈0Δ𝜔1 at
(𝑅𝜔, 𝑍𝜔) (red) in 𝜏. Right plot: Viscosity 𝜈(𝜏) = 𝜈0∥𝑢1(𝜏)∥∞𝑍(𝜏)2 in 𝜏 with 𝜈(185) = 1.3 · 10−6.
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Figure 4.10: Left plot: Ratio of 𝑍(𝜏)/𝑅(𝜏) as a function of 𝜏. Right plot: The space dimension
𝑛(𝜏) = 1 + 2𝑅(𝜏)/𝑍(𝜏) as a function of 𝜏 with 𝑛(185) = 3.188.

In Figure 4.10(a), we plot the ratio between 𝑍(𝜏) and 𝑅(𝜏). We observe that the ratio 𝑍(𝜏)/𝑅(𝜏)
converges to a constant value of 0.914. This shows that we have an one-scale blowup. In Figure 4.10(b),
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we plot the space dimension 𝑛(𝜏) = 1 + 2𝑅(𝜏)/𝑍(𝜏) as a function of 𝜏. We observe that the space
dimension is relatively flat and seems to settle down to a constant value 𝑛 = 3.188 by 𝜏 = 185.

In Figure 4.11, we plot the contours of �̃�1 and 𝜔1 as a function of (𝜉, 𝜂) for three different time
instants, 𝜏 = 159, 172, 185 using resolution 1024 × 1024. During this time interval, the maximum
vorticity has increased by a factor of 1029. We observe that these contours are almost indistinguishable
from each other. This shows that 𝑢1 and 𝜔1 develop a self-similar blowup with scaling proportional to
𝐶𝑙𝑧 ∼ (𝑇 − 𝑡)𝑐𝑙 and 𝐶𝑙𝑟 ∼ (𝑇 − 𝑡)𝑐𝑙 (𝑐𝑙 = 0.523).

Figure 4.11: Left plot: Contours of �̃�1 with respect to (𝜉, 𝜂). Right plot: Contours of 𝜔1 with respect to
(𝜉, 𝜂) at 𝜏 = 159, 172, 185 during which the maximum vorticity has grown by a factor of 1029.

5. Blowup of the generalized Boussinesq system with constant viscosity

In this section, we will investigate the nearly self-similar blowup of the generalized Boussinesq
system with two constant viscosity coefficients. If we choose the two viscosity coefficients to be the
same constant viscosity 𝜈0, we find that the solution of the generalized Boussinesq system either
develops a turbulent flow if 𝜈0 is too small or becomes a laminar flow if 𝜈0 is too large. After performing
many experiments, we find that 𝜈1 = 6 · 10−4 and 𝜈2 = 6 · 10−3 seem to give robust one-scale nearly
self-similar blowup. This choice of viscosity coefficients produces a stable nonlinear alignment of vortex
stretching and nearly self-similar scaling properties. We use a stronger cut-off to cut off the far field
tail of the solution obtained by solving the 3D Navier–Stokes using an adaptive mesh. The modified
initial data behave like a pair of anti-symmetric vortex rings circled around the symmetry axis.

5.1. Rapid growth of maximum vorticity. In this subsection, we investigate how the profiles of the
solution evolve in time. We will use the numerical results computed on the adaptive mesh of resolution
(𝑛1, 𝑛2) = (1024, 1024). We have computed the numerical solution up to time 𝜏 = 155.

In Figure 5.1, we present the solution profiles of (�̃�1, 𝜔1, Γ̃, 𝜓1,𝜂) at time 𝜏 = 155. By this time, the
maximum vorticity has increased by a factor of 1.4 · 1030. We observe that the singular support of the
profiles travels toward the origin with distance of order 𝑂(10−15).

The solution profiles look qualitatively similar to those for the generalized Navier–Stokes equations
with solution dependent viscosity. Due to the relatively small viscosity 𝜈1 for Γ̃, we observe that the
density Γ̃ forms a shock like traveling wave profile, propagating toward the symmetry axis 𝜉 = 0. This
sharp shock like profile induces a Delta function like source term for the 𝜔1 equation. The relatively
large viscosity 𝜈2 then regularizes this nearly singular source term and generates a regularized Delta
function like profile for 𝜔1. We observe that 𝜓1,𝜂 achieves its maximum value at 𝜂 = 0 near 𝜉 = 𝑅0. As
we commented earlier, this is a crucial property that overcomes the destabilizing effect of the transport
along the 𝜂 direction, which pushes the solution upward away from 𝜂 = 0.
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(a) Rescaled profile for �̃�1 (b) Rescaled profile for 𝜔1

(c) Rescaled profile for Γ̃ (d) Rescaled profile for 𝜓1𝜂

Figure 5.1: The local view of rescaled profiles at time 𝜏 = 155. (a) �̃�1; (b) 𝜔1; (c) Γ̃; (d) 𝜓1,𝜂.

We observe that the rescaled profile 𝜔1 decays rapidly in the far field with boundary values of
𝑂(10−21). The rescaled profile 𝜓1 also has a fast decay in the far field with boundary values of order
𝑂(10−8). Although the boundary values of Γ̃ are 𝑂(1), the vortex stretching term (Γ̃2/𝜉4)𝜂 is extremely
small at the far field boundary of order 𝑂(10−35). Moreover, the boundary values of the transport
terms for Γ̃ and 𝜔1 are of order 𝑂(10−13) and 𝑂(10−34), respectively.
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Figure 5.2: Left plot: the amplification of maximum vorticity relative to its initial maximum vortic-
ity, ∥𝝎(𝜏)∥𝐿∞/∥𝝎(0)∥𝐿∞ as a function of time. Right plot: the time integral of maximum vorticity,
∥�̃�(0)∥−1𝐿∞

∫ 𝜏

0 ∥�̃�(𝑠)∥𝐿∞𝑑𝑠 as a function of time. The solution is computed using 1024 × 1024 grid. The
final time instant is 𝜏 = 155.
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Figure 5.3: Left plot: Comparison of ∥𝝎(𝜏)∥𝐿∞/∥𝝎(0)∥𝐿∞ in time, 𝑛 = 768 (blue) vs 𝑛 = 1024 (red).
Right plot: Zoomed-in version.

We observe that the solution develops rapid growth dynamically. In the left subplot of Figure 5.2, we
compute the relative growth of the maximum vorticity ∥𝝎(𝑡)∥𝐿∞/∥𝝎(0)∥𝐿∞ as a function of 𝜏. We can
see that the maximum vorticity grows extremely rapidly in time. We observe that ∥𝜔(𝑡)∥𝐿∞/∥𝜔(0)∥𝐿∞
has increased by a factor of 1.4 · 1030 by the end of the computation. To best of our knowledge,
such a large growth rate of the maximum vorticity has not been reported for the 3D incompressible
Navier–Stokes equations in the literature.

In the right subplot of Figure 5.2, we plot that the time integral of the maximum vorticity in the
rescaled time 𝜏, i.e.

∫ 𝜏

0 ∥�̃�(𝑠)∥𝐿∞𝑑𝑠 as a function of 𝜏. We observe that the growth rate is roughly
linear with respect to 𝜏. This implies that the growth rate of the maximum vorticity is proportional
𝑂

( 1
𝑇−𝑡

)
. The rapid growth of

∫ 𝑡

0 ∥𝝎(𝑠)∥𝐿∞ d𝑠 violates the well-known Beale-Kato-Majda blow-up
criterion [1], which implies that the generalized axisymmetric Navier–Stokes equations develop a finite
time singularity.

In Figure 5.3 (a), we compare the growth rate of the maximum vorticity using two different
resolutions, 768 × 768 vs 1024 × 1024. A zoomed-in version is provided in Figure 5.3 (b). We can see
that the two curves are almost indistinguishable with the 1024 × 1024 resolution gives a slightly faster
growth. This indicates that the maximum vorticity is well resolved by our computational mesh.

5.2. Alignment of vortex stretching. Due to the viscous regularization, the solution becomes smoother
and is more stable. We are able to compute up to a time when (𝑅(𝑡), 𝑍(𝑡)) is very close to the origin
with distance of order 𝑂(10−15). This is something we could not achieve for the 3D Navier–Stokes
equations in a periodic cylinder [38].

In Figure 5.4(a)-(b), we demonstrate the alignment between 𝜓1𝜂 and �̃�1 at 𝜏 = 155. Although
the maximum vorticity has grown so much by this time, the local solution structures have remained
qualitatively the same in the late stage of the computation. We observe that the viscous effect actually
enhances the nonlinear alignment of vortex stretching. Although we use two constant viscosity
coefficients here, we observe qualitatively the same phenomena as we did for the generalized Navier–
Stokes equations with solution dependent viscosity. In particular, 𝜓1𝜂 is relatively flat in a local region
near the origin. This is an essential property that prevents the formation of a two-scale structure.
Moreover, we observe the same qualitative positive feedback mechanism as we observed for the
generalized Navier–Stokes equations with solution dependent viscosity.

In Figure 5.5(a), we observe that the positive alignment between �̃�1 and𝜓1𝜂 is almost flat in time with
a mild increase in the late stage of the computation. This indicates that the generalized axisymmetric
Boussinesq system achieves a nearly self-similar scaling relationship.

In the Figure 5.5 (b), we plot the normalized scaling exponents 𝑐𝑙𝑧/(𝑐𝑙𝑧 − 𝑐𝜓) and 𝑐𝑙𝑟/(𝑐𝑙𝑧 − 𝑐𝜓)
as a function of 𝜏. We observe that they seem to approach the same value 0.5 as 𝜏 increases. This is
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Figure 5.4: Left plot: Alignment between �̃�1 and 𝜓1,𝜂 at 𝜂 = 𝑍 as a function of 𝜉 at 𝜏 = 155. We
observe a sharper front along the 𝜉 direction due to the fact that we use a smaller viscosity 𝜈1. Right
plot: Alignment between �̃�1 and 𝜓1,𝜂 at 𝜉 = 𝑅 as a function of 𝜂 at 𝜏 = 155.
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Figure 5.5: Left plot: The ratio between 𝜓1,𝜂 and �̃�1 at (𝜉, 𝜂) = (𝑅, 𝑍) as a function of 𝜏. Right plot:
The normalized scaling exponent 𝑐𝑙𝑧/(𝑐𝑙𝑧 − 𝑐𝜓) and 𝑐𝑙𝑟/(𝑐𝑙𝑧 − 𝑐𝜓) as a function of 𝜏.

again due to the stabilizing effect of varying the space dimension to eliminate the scaling instability.
If we kept 𝑛 = 3, the solution developed a two-scale solution structure. Using two different viscosity
coefficients seems to play an essential role for us to obtain nearly parabolic scaling property in the
sense that 𝑐𝑙𝑧/(𝑐𝑙𝑧 − 𝑐𝜓) and 𝑐𝑙𝑟/(𝑐𝑙𝑧 − 𝑐𝜓) approach to 0.5 as 𝜏 increases. This is something that we
could not have accomplished if we used the same viscosity coefficients for both Γ and 𝜔1 equations.

5.2.1. The streamlines. In this subsection, we investigate the features of the velocity field. We first
study the velocity field by looking at the induced streamlines. In Figure 5.6, we plot the streamlines
induced by the velocity field 𝒖(𝑡) at 𝜏 = 155. By this time, the ratio between the maximum vorticity
and the initial maximum vorticity, i.e. ∥𝝎(𝑡)∥𝐿∞/∥𝝎(0)∥𝐿∞ , has increased by a factor of 1.4 · 1030.

Surprisingly the induced streamlines look qualitatively the same as those obtained for the generalized
Navier–Stokes equations with solution dependent viscosity. We will use a similar set of parameters
to draw the streamlines to compare with the streamlines obtained for the generalized Navier–Stokes
equations that we reported in the previous section. In Figure 5.6(a) with (𝑟0, 𝑧0) = (4, 1.5), we observe
that the streamlines form the same type of torus spinning around the symmetry axis. In Figure 5.6(b)
with (𝑟0, 𝑧0) = (2, 0.25), we obsevre that the streamlines go straight upward without any spinning. In
Figure 5.6(c) with (𝑟0, 𝑧0) = (6, 2.8), the streamlines first go downward, then travel inward and finally
go upward. Note that this starting point is different from the corresponding case for the generalized
Navier-Stokes equations with solution dependent viscosity where we used (𝑟0, 𝑧0) = (6, 0.5). This
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(a) 𝑟0 = 4, 𝑧0 = 2 (b) 𝑟0 = 2, 𝑧0 = 0.25

(c) 𝑟0 = 6, 𝑧0 = 2.8 (d) 𝑟0 = 6, 𝑧0 = 2.2

Figure 5.6: The streamlines of (𝑢𝑟 (𝑡), 𝑢𝜃(𝑡), 𝑢𝑧 (𝑡)) at time 𝜏 = 155 with initial points given by (a)
(𝑟0, 𝑧0) = (4, 2), streamlines form a torus; (b) (𝑟0, 𝑧0) = (2, 0.25), streamlines go straight upward;
(c) (𝑟0, 𝑧0) = (6, 2.8), streamlines first go downward, then travel inward, finally go upward; (d)
(𝑟0, 𝑧0) = (6, 2.2), streamlines spin downward and outward. The green pole is the symmetry axis.

explains why the two sets of streamlines look different. Finally, we plot in Figure 5.6(d) the streamlines
that start with (𝑟0, 𝑧0) = (6, 2). We can see that the streamlines first spin downward and then outward.
It is also interesting to note that the solution behaves qualitatively the same as what we observed for
the 3D axisymmetric Navier–Stokes equations in a periodic cylinder [38].

5.2.2. The 2D flow. To understand the phenomena in the most singular region as shown in Figure 5.6,
we also study the 2D velocity field (𝑢𝑟, 𝑢𝑧). In Figure 5.7(a)-(b), we plot the dipole structure of 𝜔1 in
a local symmetric region and the hyperbolic velocity field induced by the dipole structure in a local
microscopic domain [0, 𝑅𝑏] × [0, 𝑍𝑏] at 𝜏 = 155. The dipole structure for the generalized Boussinesq
equations with constant viscosity looks qualitatively similar to that of the generalized Navier–Stokes
equations with solution dependent viscosity. The negative radial velocity near 𝜂 = 0 induced by the
vortex dipole pushes the solution toward 𝜉 = 0, then move upward away from 𝜂 = 0. This is the main
driving mechanism for the flow to develop a hyperbolic structure. Since the value of �̃�1 becomes very
small near the symmetry axis 𝜉 = 0, the streamlines almost do not spin around the symmetry axis, as
illustrated in Figure 5.6(b).

We can also understand this hyperbolic flow structure from the velocity contours in Figure 5.8
(a)-(b). Although the velocity contours look qualitatively the same as those for the generalized Navier-
Stokes equations with solution dependent viscosity, a closer look shows that there are some subtle
differences in the local solution structure, especially in the shape of vorticity contours of 𝜔1 if we
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compare Figure 4.5(b) with Figure 5.7(b). From Figure 5.8(a), we observe that the radial velocity 𝑢𝑟 is
negative and large in amplitude below the red dot (𝑅, 𝑍), which pushes the flow toward the symmetry
axis 𝜉 = 0. The axial velocity 𝑢𝑧 is negative and large in amplitude to the right hand side of (𝑅, 𝑍),
pushing the flow downward toward 𝜂 = 0. On the left hand side of (𝑅, 𝑍), it becomes large and positive
on the left hand side of (𝑅, 𝑍), which pushes the flow upward away from 𝜂 = 0. This is very similar to
the flow structure of the generalized Navier-Stokes equations with solution dependent viscosity.
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Figure 5.7: The dipole structure of 𝜔1 and the induced local velocity field at 𝜏 = 155. Left plot: the
velocity vector. Right plot: the velocity vector with the 𝜔1 contour as background. The red dot is the
position (𝑅, 𝑍) where is �̃�1 achieves its maximum.
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Figure 5.8: The level sets of 𝑢𝜉 (left) and 𝑢𝜂 (right) at 𝜏 = 155. The red point is the maximum location
(𝑅, 𝑍) of �̃�1.

As in the case of the axisymmetric Navier-Stokes equations in a periodic cylinder, the velocity field
(𝑢𝑟 (𝑡), 𝑢𝑧 (𝑡)) forms a closed circle right above (𝑅, 𝑍). The corresponding streamlines are trapped in
the circle region in the 𝜉𝜂-plane, which is responsible for the formation of the spinning torus that we
observed earlier.

5.3. Scaling properties of the nearly self-similar blowup. In this subsection, we study the blowup
scaling properties. We observe that all the scaling parameters 𝑐𝑙𝑧, 𝑐𝑙𝑟, 𝑐𝜓, 𝑐𝜔, and 𝑐𝜓 all converge to
a constant value as 𝜏 increases. By the discussion in Section 2, we know that we should study the
normalized scaling parameters defined by 𝑐𝑙𝑧/(𝑐𝑙𝑧 − 𝑐𝜓), 𝑐𝑙𝑟/(𝑐𝑙𝑧 − 𝑐𝜓), 𝑐𝜓/(𝑐𝑙𝑧 − 𝑐𝜓), etc. In Figure 5.9
(a), we plot the space dimension 𝑛(𝜏) = 3 + 4(𝑅(𝜏)/𝑍(𝜏) − 1) as a function of 𝜏. As we can see, 𝑛(𝜏)
remains relatively flat in the late stage with 𝑛(155) = 4.73. In Figure 5.9(b), we plot 𝐶𝜓(𝜏)/𝐶𝑙𝑧 (𝜏) as
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a function of 𝜏. We observe that 𝐶𝜓(𝜏)/𝐶𝑙𝑧 (𝜏) roughly has a linear growth with respect to 𝜏 with a
very small slope 𝜖 since the growth of 𝐶𝜓(𝜏)/𝐶𝑙𝑧 (𝜏) is very small over a long time.

From the discussion in Section 2, we know that

𝜏 = 𝑐0 log
(

1
𝑇 − 𝑡

)
, 𝐶𝑙𝑧 = (𝑇 − 𝑡) �̂�𝑙𝑧 , 𝐶𝜓 = (𝑇 − 𝑡)1− �̂�𝑙𝑧 .

If we assume that
𝐶𝜓(𝜏)/𝐶𝑙𝑧 (𝜏) = 1 + 𝜖𝜏,

for 𝜏 large, then we would obtain
(𝑇 − 𝑡)1−2̂𝑐𝑙𝑧 = 1 + 𝜖𝜏 ,

which implies

�̂�𝑙𝑧 =
1
2
+ log(1 + 𝜖𝜏)

2𝜏
.

Thus, we obtain that the convergence of �̂�𝑙𝑧 to 1/2 with a logarithmic rate only. Moreover, if 𝜏 is not
large and 𝜖 is small, we get �̂�𝑙𝑧 ≈ 1/2 + 𝜖/2. By substituting �̂�𝑙𝑧 =

1
2 +

log(1+𝜖𝜏)
2𝜏 into 𝐶𝑙𝑧 = (𝑇 − 𝑡) �̂�𝑙𝑧 , we

further obtain
𝜆 (𝑡) = 𝐶𝑙𝑧√

𝑇 − 𝑡
=

1
√
1 + 𝜖𝜏

=
1√︁

1 + 𝑐0𝜖| log(𝑇 − 𝑡) |
.

Since �̂�𝑢 = 𝑐𝑢/(𝑐𝑙𝑧 − 𝑐𝜓) = −1, we conclude that 𝐶𝑢 ≈ (𝑇 − 𝑡) and ∥𝑢1∥∞ = 𝑂(1/(𝑇 − 𝑡)), which implies

∥𝝎∥∞ = 𝑂

(
1

𝑇 − 𝑡

)
.
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Figure 5.9: Left plot: The space dimension 𝑛(𝜏) = 3 + 4(𝑅(𝜏)/𝑍(𝜏) − 1) as a function of 𝜏 with
𝑛(155) = 4.73. Right plot: 𝐶𝜓(𝜏)/𝐶𝑙𝑧 (𝜏) in 𝜏.

5.4. Checking against various blowup criteria. In this subsection, we apply various blowup criteria
to confirm the finite time blowup of the generalized Boussinesq system with two constant viscosity
coefficients. Our studies show that the nearly self-similar blowup satisfies almost all the generalized
blowup criteria that have been established for the 3D axisymmetric Navier–Stokes equations with
smooth initial data.

5.4.1. Non-blowup criteria based on enstrophy growth. We first study the growth rate of a generalized
enstrophy. For the 3D axisymmetric Navier–Stokes, the enstrophy is defined as

∫
|𝝎(𝑡) |2𝑟𝑑𝑟𝑑𝑧. In the

𝑛-dimensional setting, we define a generalized enstrophy,
∫
|𝝎(𝑡) |𝑛−1𝑟𝑛−2𝑑𝑟𝑑𝑧. Using scaling analysis,

one can show that if the generalized Boussinesq system develops a self-similar blowup,
∫ 𝑇

0 ∥𝝎(𝑡)∥𝑞
𝐿𝑛−1

𝑑𝑡
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with 𝑞 =
2(𝑛−1)
𝑛−2 will blow up in finite time. Since ∥𝝎(𝑡)∥∞ = 𝑂(1/(𝑇 − 𝑡)) and 𝐶𝑙𝑧 and 𝐶𝑙𝑟 scaled like

(𝑇 − 𝑡)1/2, we expect that ∥𝝎(𝑡)∥𝑞
𝐿𝑛−1

roughly scales like (𝑇 − 𝑡)−1. In Figure 5.10 (a), we observe that

∥𝝎(𝑡)∥𝑛−1
𝐿𝑛−1

develops rapid dynamic growth. In Figure 5.10 (b), we plot
∫ 𝑇

0 ∥𝝎(𝑡)∥𝑞
𝐿𝑛−1

𝑑𝑡 as a function

of 𝜏. We observe that
∫ 𝑇

0 ∥𝝎(𝑡)∥𝑞
𝐿𝑛−1

𝑑𝑡 grows slightly slower than linear growth with respect to 𝜏.
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Figure 5.10: Left plot: The dynamic growth of the enstrophy
∫
|𝝎(𝑡) |𝑛−1𝑟𝑛−2𝑑𝑟𝑑𝑧 as a function of 𝜏.

Right plot: The dynamic growth of
∫ 𝜏

0 ∥�̃�(𝑠)∥𝑞
𝐿𝑛−1

𝑑𝑠 with 𝑞 =
2(𝑛−1)
𝑛−2 .
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Figure 5.11: Left plot: The dynamic growth of
∫ 𝜏

0 ∥ũ(𝑠)∥8
𝐿4𝑛/3

𝑑𝑠 as a function of 𝜏. Right plot: The
dynamic growth of

∫ 𝜏

0 ∥ũ(𝑠)∥4
𝐿2𝑛

𝑑𝑠 as a function of 𝜏. The nearly linear fitting implies that ∥u(𝜏)∥𝐿2𝑛,4 ≈
𝑂(𝜏1/4).

5.4.2. The Ladyzhenskaya-Prodi-Serrin regularity criteria. Next, we study the Ladyzhenskaya-Prodi-
Serrin regularity criteria [52, 71, 74], which state that if a Leray-Hopf weak solution u for the 3D
Navier-Stokes equations [58, 36] also lies in 𝐿

𝑞
𝑡 𝐿

𝑝
𝑥 , with 3/𝑝 + 2/𝑞 ≤ 1, then the solution is unique

and smooth in positive time. The endpoint result with 𝑝 = 3, 𝑞 = ∞ has been proved in the work of
Escauriaza-Seregin-Sverak in [32]. In the 𝑛-dimensional setting, one can derive a similar result by
studying the 𝐿

𝑞
𝑡 𝐿

𝑝
𝑥 norm of u with 𝑛/𝑝 + 2/𝑞 ≤ 1.

In Figure 5.11, we plot the dynamic growth of ∥u∥8
𝐿4𝑛/3,8

and ∥u∥4
𝐿2𝑛,4

. We also plot ∥u∥3
𝐿3𝑛,3

in Figure
5.12(a). We can see that they all grow rapidly in time. For larger 𝑝 with 𝑝 = 2𝑛 and 𝑝 = 3𝑛, the growth
rate is almost linear in 𝜏. This suggests that ∥u∥𝐿2𝑛,4 ∼ 𝑂(𝜏1/4) and ∥u∥𝐿3𝑛,3 ∼ 𝑂(𝜏1/3).

In Figure 5.12(b), we plot the dynamic growth of
∫ 𝑡

0 ∥u(𝑠)∥2𝐿∞ . The 𝐿∞,2 norm of the maximum
velocity is one of the endpoint cases in the the Ladyzhenskaya-Prodi-Serrin regularity criteria with
𝑝 = ∞ and 𝑞 = 2. We observe that this quantity grows almost perfectly linear in 𝜏. This suggests
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Figure 5.12: Left plot: The dynamic growth of
∫ 𝜏

0 ∥ũ(𝑠)∥3
𝐿3𝑛

𝑑𝑠 as a function of 𝜏. The almost linear
fitting implies that ∥u(𝜏)∥𝐿3𝑛,3 ∼ 𝑂(𝜏1/3). Right plot: The dynamic growth of

∫ 𝜏

0 ∥ũ(𝑠)∥2𝐿∞𝑑𝑠 as a
function of 𝜏. The almost linear fitting implies that ∥u(𝜏)∥𝐿∞ ∼ 𝑂(𝜏1/2).

that ∥u(𝑡)∥𝐿∞ roughly scales like 1/(𝑇 − 𝑡)1/2, which provides further evidence for the finite time
singularity of the generalized Boussinesq system with constant viscosity.
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Figure 5.13: Left plot: The minimum of the original pressure 𝑝 as a function of 𝜏. Right plot: The
profile of the rescaled pressure �̃� at 𝜏 = 155.
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Figure 5.14: Left plot: The minimum of the rescaled pressure �̃� as a function of 𝜏. Right plot: The
growth of ∥0.5|∇ũ|2 + �̃�∥∞ as a function of 𝜏.
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5.4.3. The blowup of the negative pressure. Another blowup criteria is based on the blowup of the
negative pressure [73]. In Figure 5.13(a), we plot the minimum of the original pressure 𝑝 as a function
of 𝜏. We observe that the minimum of the pressure approaches to negative infinity. In Figure 5.13(b),
we plot the rescaled pressure profile. We observe that the minimum of the rescaled pressure �̃� is
negative with its global minimum close to the origin. In Figure 5.14 (a), we plot the dynamic growth
of the global minimum of the rescaled pressure �̃� as a function of time. In Figure 5.14 (b), we plot
the ∥| 12 |ũ|

2 + �̃�∥𝐿∞ as a function of time. We can see that both of these two quantities stay bounded
and seem to approach to a constant value as 𝜏 → ∞. Since the original pressure variable 𝑝 scales like
∥𝑢1∥∞ �̃�, and ∥𝑢1∥∞ = 1/(𝑇 − 𝑡), we conclude that the minimum of the pressure goes to minus infinity
with a blowup rate 𝑂(1/(𝑇 − 𝑡)) as 𝑡 → 𝑇 . Similarly, we conclude that

∥𝑝∥∞ = 𝑂

(
1

𝑇 − 𝑡

)
, ∥1

2
|∇u| + 𝑝∥∞ = 𝑂

(
1

𝑇 − 𝑡

)
.

The rapid growth of these two quantities provides additional evidence for the development of potentially
singular solutions of the generalized Boussinesq system with constant viscosity [73].

5.4.4. The growth of the critical 𝐿𝑛 norm of the velocity in 𝑛 dimensions. We now study the 𝐿𝑛 norm
of the velocity field. As shown in [32], the 3D Navier–Stokes equations cannot blow up at time 𝑇 if
∥u(𝜏)∥𝐿3 is bounded up to time 𝑇 . In 𝑛 dimensions, we should monitor the growth of ∥u(𝜏)∥𝐿𝑛 , which
is scaling invariant. In Figure 5.15 (a), we plot the dynamic growth of ∥u(𝜏)∥𝐿𝑛 as a function of time
in the late stage. We observe that ∥u(𝑡)∥𝐿𝑛 experiences a mild logarithmic growth. Here we only plot
the growth of ∥u(𝜏)∥𝐿𝑛 in the late stage.

We remark that the non-blowup criterion for 3D Navier–Stokes using the ∥u∥𝐿3 estimate is based
on a compactness argument. As a result, the bound on max0≤𝑡≤𝑇 ∥u(𝑡)∥𝐿3 does not provide a direct
estimate on the dynamic growth rate of the 3D Navier–Stokes solution up to 𝑇 . In a recent paper
[78], Tao further examined the role of the 𝐿3 norm of the velocity on the potential blow-up of the 3D
Navier-Stokes equations. He showed that as one approaches a finite blow-up time 𝑇 , the critical 𝐿3
norm of the velocity must blow up at least at a rate

(
log log log 1

𝑇−𝑡
) 𝑐 for some absolute constant 𝑐.

This implies that even for a potential finite time blow-up of the Navier–Stokes equations, ∥u(𝑡)∥𝐿3 may
blow up extremely slowly. Morever, the blow-up rate could be even slower for higher dimensions. We
refer to [69] for a generalized result for dimension 𝑛 ≥ 4 by Palasek who showed that ∥u(𝑡)∥𝐿𝑛 must
blow up at least at a rate

(
log log log log 1

𝑇−𝑡
) 𝑐 for some absolute constant 𝑐.
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Figure 5.15: Left plot: The dynamic growth of ∥u(𝜏)∥𝐿𝑛 as a function of 𝜏. Right plot: The dynamic
growth of ∥| log(𝑟) |3/2Γ(𝜏, 𝑟, 𝑧)∥𝐿∞ as a function of 𝜏.

We also examine another non-blowup criteria based on the bound of ∥| log(𝑟) |3/2Γ(𝑡)∥𝐿∞ (𝑟≤𝑟0 ) by D.
Wei in [80] (see also a related paper by Lei and Zhang in [57]). In Figure 5.15(b), we plot the dynamic
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growth of ∥| log(𝑟) |3/2Γ(𝜏)∥𝐿∞ (Ω (𝜏) over our expanding computational domain Ω(𝜏). Note that since
we only expand the domain by a factor of 𝑍(𝑡)−1/5, the actual domain in the original physical space is
actually shrinking in time. We observe that this quantity grows roughly linearly in 𝜏 in the late stage.
This implies that the non-blowup condition stated in [80, 57] is also violated.

Another important non-blowup result is the lower bound on the growth rate of the maximum
velocity for the axisymmetric Navier–Stokes equations. The results in [10, 9, 55] imply that the 3D
axisymmetric Navier–Stokes equations cannot develop a finite time singularity if the maximum velocity
field is bounded by ∥u(𝑡)∥𝐿∞ ≤ 𝐶(𝑇 − 𝑡)1/2, provided that |𝑟u(𝑡, 𝑟, 𝑧) | remains bounded for 𝑟 ≥ 𝑟0 for
some 𝑟0 > 0. These results are based on some compactness argument. In Figure 5.16, we plot the
growth ∥𝑟𝑢𝑟∥𝐿∞ and ∥𝑟𝑢𝑧∥𝐿∞ as a function of 𝜏. We observe that ∥𝑟𝑢𝑟∥𝐿∞ develops a mild linear growth
in the late stage of the computation, which violates the non-blowup conditions stated in [10, 9, 55].
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Figure 5.16: Left plot: The dynamic growth of ∥𝑟𝑢𝑟 (𝜏)∥𝐿∞ as a function of 𝜏. Right plot: The dynamic
growth of ∥𝑟𝑢𝑧 (𝜏)∥𝐿∞ as a function of 𝜏.

5.5. Balance between the source term and the diffusion term. In this subsection, we study the
balance between the nearly singular Delta function like source term and the diffusion term in the
𝜔1 equation. Since the density Γ̃ satisfies a conservative advection diffusion equation, the nonlinear
growth of maximum vorticity is mainly driven by the nearly singular source term in the 𝜔1 equation. It
is important to monitor whether the source term and the diffusion term remain balanced throughout
the computation.

In Figure 5.17(a), we plot the ratio between the source term (�̃�21)𝜂 and the diffusion term −𝜈2(𝜏)Δ𝜔1
at (𝑅𝜔, 𝑍𝜔) where 𝜔1 achieves its maximum. Here 𝜈2(𝜏) = 𝜈2𝐶𝜓(𝜏)/𝐶𝑙𝑧 (𝜏) with 𝜈2 = 0.006. We
observe that the ratio of these two terms has a mild increase in time and settles down to 2.04 at 𝜏 = 155.
This shows that the vortex stretching term dominates the diffusion throughout the computation. Since
the vortex stretching comes from the 𝜔1 equation only and there is no vortex stretching in the Γ̃
equation, the balance between the vortex stretching term and the diffusion term in the 𝜔1 equation is
crucial in maintaining the robust nonlinear growth of the maximum vorticity in time.

Recall that 𝐶𝑙𝑧 and 𝐶𝑙𝑟 scale like 𝜆 (𝑡)
√
𝑇 − 𝑡. In Figure 5.17(b), we plot the contours of 𝜔1 as a

function of (𝜆 (𝜏) (𝜉 − 𝑅𝜔), 𝜆 (𝜏) (𝜂 − 𝑍𝜔)) for three different time instants, 𝜏 = 139, 147, 155 using
resolution 1024 × 1024. During this time interval, the maximum vorticity has increased by a factor of
1554. We observe that these contours are almost indistinguishable from each other. This shows that 𝜔1
actually enjoys a parabolic scaling property within the inner region centered at (𝑅𝜔, 𝑍𝜔) with local
scaling proportional to 𝐶𝑙𝑧/𝜆 (𝑡) ∼

√
𝑇 − 𝑡 and 𝐶𝑙𝑟/𝜆 (𝑡) ∼

√
𝑇 − 𝑡. This explains why we can achieve

the balance between the source term (�̃�21)𝜂 and the diffusion term 𝜈2(𝜏)Δ𝜔1 within this inner region
centered at (𝑅𝜔, 𝑍𝜔) with domain size shrinking to zero at a rate 𝜆 (𝜏).
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Figure 5.17: Left plot: Ratio between the source term (�̃�21)𝜂 and the diffusion term 𝜈2(𝜏)Δ𝜔1 at
(𝑅𝜔, 𝑍𝜔) as a function of 𝜏, where 𝜈2(𝜏) = 𝜈2𝐶𝜓(𝜏)/𝐶𝑙𝑧 (𝜏). Right plot: Contours of 𝜔1 with respect to
((𝜉 − 𝑅𝜔)𝜆 (𝜏), (𝜂 − 𝑍𝜔)𝜆 (𝜏)) at 𝜏 = 139, 147, 155 during which ∥𝝎∥∞ has increased by 1554.

6. Concluding Remarks

We proposed the generalized Navier–Stokes equations with solution dependent space dimension
and presented strong numerical evidence that they developed a nearly self-similar blowup with smooth
initial data and solution dependent viscosity. Due to some scaling instability, a traditional numerical
method would only allow us to get close to the potential blowup of the 3D Navier–Stokes equations, but
we could not get arbitrarily close to the blowup time. For other nonlinear PDEs such as the nonlinear
Schrödinger equation or the Keller-Segel system (see e.g. [66, 21]), one can eliminate some unstable
modes by using the symmetry properties of the solution and study the spectral properties of the compact
linearized operator around an explicit ground state. In our case, we do not have an explicit ground
state and the linearized operator is not compact. Our strategy is to enlarge the solution space by lifting
the space dimension above 3 and use the space dimension as an extra degree of freedom to eliminate
this scaling instability and obtain an essentially one-scale blowup.

A novel contribution of this paper is to introduce a two-scale dynamic rescaling formulation. The
two-scale dynamic rescaling formulation enables us to enforce scaling balance between the advection
along the 𝑟 and 𝑧 directions by varying the space dimension, thus prevents the development of a
two-scale solution structure.

An important consequence of using a solution dependent viscosity is that the self-similar blowup
profile satisfies the self-similar equation for the generalized Navier–Stokes equations with constant
viscosity 𝜈0. Since the generalized axisymmetric Euler equations enjoy total circulation conservation,
we expect that the normalized scaling exponent �̂�𝑙𝑟 → 1/2 as 𝜈0 → 0. Indeed, we observed that the
space dimension seems to approach 3 as we reduce the background viscosity coefficient 𝜈0. Thus,
studying the self-similar blowup of the generalized Navier–Stokes equations provides a promising
approach to study the potential blowup of the 3D Navier-Stokes equations. In our future work, we
would like to solve the self-similar equations directly by using the background viscosity coefficient 𝜈0 as
a continuation parameter. By studying a sequence of self-similar profiles and analyzing the stability of
the limiting profile as 𝜈0 → 0, we hope to find a self-similar blowup of the original 3D Euler equations
with scaling exponent �̂�𝑙 = 1/2. If this could be done, it would provide a promising strategy to study
the potential blowup of the 3D Navier–Stokes by treating viscous term as a small perturbation to the
3D Euler equations and studying the stability of the self-similar profile of the 3D Euler equations.

We have also investigated the nearly self-similar blowup of the generalized Boussinesq system
with two constant viscosity coefficients. The generalized Boussinesq system preserves almost all the
known properties of the 3D Navier–Stokes equations with the exception of the angular momentum
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conservation. To the best of our knowledge, all known blowup criteria can be applied to the generalized
Boussinesq system. We have applied several blow-up criteria to study the nearly self-similar blowup of
the generalized Boussinesq system with two constant viscosity coefficients, including the 𝐿𝑛 norm of
the velocity, the Ladyzhenskaya-Prodi-Serrin nonblowup criteria, and some non-blowup criteria that
are specially derived for the axisymmetric Navier–Stokes equations. All these blowup criteria confirm
the potential finite time singularity of the generalized Boussinesq system with constant viscosity.

It would be extremely interesting to develop a computer assisted proof to verify the findings obtained
in this paper. Since we expect to obtain an asymptotically self-similar blowup for the generalized
Navier-Stokes equations with solution dependent viscosity, we may be able to extend the method of
analysis developed for the Hou-Luo blowup scenario in [14, 12] to this new blowup scenario.

It would be more challenging to analyze the blowup of the generalized Boussinesq system due
to the logarithmic correction. Nearly self-similar blowup with a logarithmic correction has been
observed in other nonlinear PDEs (see e.g. [66, 21]). We need to extend the method of analysis
to accommodate nearly self-similar blowup with a logarithmic correction. We have recently made
some preliminary progress in extending the method of analysis to analyze the stable blowup of the
semilinear heat equation [44] and the complex Ginzburg-Landau equation [17] without using any
spectrum information or a topological argument. We are currently extending this technique to other
more challenging nonlinear PDEs.
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