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Abstract

Building upon the idea in [37], we establish stability of the type-I blowup with log correction for the com-
plex Ginzburg-Landau equation. In the amplitude-phase representation, a generalized dynamic rescaling
formulation is introduced, with modulation parameters capturing the spatial translation and rotation
symmetries of the equation and novel additional modulation parameters perturbing the scaling symme-
try. This new formulation provides enough degrees of freedom to impose normalization conditions on
the rescaled solution, completely eliminating the unstable and neutrally stable modes of the linearized
operator around the blowup profile. It enables us to establish the full stability of the blowup by enforcing
vanishing conditions via the choice of normalization and using weighted energy estimates, without relying
on a topological argument or a spectrum analysis. The log correction for the blowup rate is captured by
the energy estimates and refined estimates of the modulation parameters.

1 Introduction

We consider the complex Ginzburg-Landau equation

ψt = (1 + ıβ)∆ψ + (1 + ıδ)|ψ|p−1ψ − γψ, (CGL)

where ψ(t) : Rd → C, β, δ, γ are real constants and p > 1. The model equation (CGL) was first derived
by Stewardson and Stuart in [56] (see also [19], [20]) to examine afresh the problem of plane Poiseuille flow
in a wave system. The equation is also used to describe various phenomena in many fields, among which
are nonlinear optics with dissipation [47], turbulent behavior [3], Rayleigh-Bénard convection or Taylor-
Couette flow in hydrodynamics [21], [50], [49], reaction-diffusion systems [33], [39], [54], [55], the theory of
superconductivity [2], [9], [22], [32], etc. For further details on the physical background and derivation of the
complex Ginzburg-Landau equation, we refer to the surveys [1], [46], and the references therein.

The local Cauchy problem has been well established through a semigroup approach in the works [29, 30, 31].
A solution to (CGL) blows up in finite time if limt→T ∥ψ(t)∥L∞(Rd) = +∞ for some T < +∞. Singularity
formation has been intensively studied for the two limiting models of (CGL): the classical nonlinear heat
equation in the limit β, δ, γ → 0,

∂tψ = ∆ψ + |ψ|p−1ψ, ψ(t) : x ∈ Rd → R, (NLH)

and the nonlinear Schrödinger equation in the limit β, |δ| → ∞,

ı∂tψ +∆ψ + µ|ψ|p−1ψ = 0, µ = ±1. (NLS)
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We refer to [53] and [26] for intensive lists of references from the early 1960s concerning blowup results of
these two equations. However, singularities in (CGL) (collapse, chaotic, or blowup) are much less understood
in comparison with what have been established for (NLH) and (NLS). The study of singularity in (CGL)
is a challenging problem due to the lack of variational structure, no maximum principle, non-self-adjoint
linearized operator, etc. Nevertheless, singularity in (CGL) was experimentally reported in [40], [41] where
the authors described an extensive series of experiments on traveling-wave convection in an ethanol/water
mixture, and collapse solutions were observed. We have a sharp sufficient criteria for collapse in (CGL) for
the case of subcritical bifurcation described in [58]. In [27], the authors used the modulation theory and
numerical observations to show that the collapse dynamic is governed in the (CGL) limit of the L2-critical
cubic (NLS). For the existence of blowup, there are the results of [7] and [8] in which the authors studied
(CGL) for the case β = δ. In [6] and [52], the authors gave some evidence for the existence of a radial solution
that blows up in a self-similar way, their arguments were based on the combination of rigorous analysis and
numerical computations. In [60] and [43], the authors rigorously constructed particular examples of initial
data for which the solutions of (CGL) blow up in finite time for (β, δ) in the subcritical range

♭∗ := p− δ2 − βδ(p+ 1), ♭∗ > 0 (subcritical range). (1.1)

The constructed blowup solution in the subcritical case admits the asymptotic behavior

ψ(x, t) ∼ | log(T − t)|ıµ
[
(T − t)

(
p− 1 + cp|Z|2

)]− 1+ıδ
p−1

, Z =
x√

(T − t)| log(T − t)|
, (1.2)

where the constants cp and µ are given by

cp =
(p− 1)2

4♭∗
> 0 , µ = −β(1 + δ2)

2♭∗
. (1.3)

The spectral analysis for a non-self-adjoint operator developed in [43] can be implemented for other problems
where an energy-type method is not applicable, see for example [28]. The blowup for the critical range,
♭∗ = 0, has been recently solved in [51], [24] following the approach of [43]. The blowup for (CGL) in the
supercritical range, ♭∗ < 0, has recently been solved in [23] for the special choice β = 0. We remark that in the
mentioned works ([60], [43], [51], [24], [23]), the authors focused on the case of dimension d = 1, and briefly
described the stability properties of constructed blowup solutions through a spectral approach in a restricted
(well-prepared) class of initial data.

In this paper, we aim to develop a new approach based on the dynamical rescaling formulation and
simple vanishing conditions to study blowup solutions to (CGL). This new approach allows us to establish
asymptotically self-similar blowup and a clear notion of stability capturing the logarithm correction (1.2) in
the subcritical case for a large class of initial data in all dimensions d ≥ 1. Throughout this paper, we use
the amplitude-phase representation,

ψ(x, t) = u(x, t)eıθ(x,t), (1.4)

where u and θ are real-valued functions of time and space solving the coupled system

∂tu =
[
∆− |∇θ|2

]
u− β

(
2∇u · ∇θ + u∆θ

)
+ up − γu, (1.5a)

u∂tθ = β
[
∆− |∇θ|2

]
u+ 2∇u · ∇θ + u∆θ + δup. (1.5b)

The case β = 0 is related to a class of reaction-diffusion equations appearing in the study of pattern formation,
see for example [33] and references therein.

1.1 Main result

For any k ≥ 1, we introduce the functional spaces Ek and Fk

Ek =
{
w : ∥w∥Ek

=

k∑
j=0

∥∇jw∥ρj
< +∞

}
, Fk =

{
ϕ, ∥ϕ∥Fk

=

k∑
j=1

∥∇jϕ∥ρ̊j
< +∞

}
, (1.6)
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where ∥ · ∥ρk
and ∥ · ∥ρ̊k

stand for the standard weighted L2-norm with ρk and ρ̊k being defined as in (1.28).
Let Ū be the universal profile

Ū(z) =
(
p− 1 +

(p− 1)2

4♭∗
|z|2

)− 1
p−1

, ∀ z ∈ Rd, (1.7)

and V0 be a non-degenerate global maximizer of u0 defined by

V0 = argmaxu0(z), u0(V0) > 0, −∇2u0(V0) ≻ 0, (1.8)

where A ≻ 0 means that A is a positive definite matrix. The main result of this paper is the following theorem.

Theorem 1 (Existence and stability of blowup solutions to (CGL)). Consider β, δ in the sub-critical range
(1.1), i.e. ♭∗ > 0, p > 1 and d ≥ 1. Let K = K(d, p) ∈ N be defined as in (1.29). There exists an open set
O ⊂ EK × FK of initial data ψ0 = u0e

θ0 with the property (1.8) such that the corresponding solution ψ = ueθ

to (CGL) blows up in finite time T and the following asymptotic behaviors hold.

(i) (The amplitude-phase decomposition)∥∥∥H(t)u
(
R(t)z + V (t), t

)
− Ū(z)

∥∥∥
EK

+
∥∥∥θ(R(t)z + V (t), t

)
− µ(t)− δ log Ū(z)

∥∥∥
FK

≤ C

1 + | log(T − t)|
, (1.9)

where H(t) and µ(t) are scalar functions, R(t) is an upper triangular matrix and V (t) is a vector in Rd,

lim
t→T

H(t)p−1

T − t
= 1, lim

t→T

R(t)√
(T − t)| log(T − t)|

= Id, lim
t→T

V (t) = VT , (1.10)

for some VT ∈ Rd, and µ(t)1 admits the expansion

µ(t) = − δ

p− 1
log(T − t)− dβ(1 + δ2)

2♭∗
log | log(T − t)|+ µ̂(t), lim

t→T
µ̂(t) = µ̂T , (1.11)

for some scalar function µ̂(t) and µ̂T ∈ R.

(ii) (L∞ asymptotic behavior)∥∥∥| log(T − t)|ı
dβ(1+δ2)

2♭∗ (T − t)
1+ıδ
p−1 e−ıµ̂(t) ψ(R(t)z + V (t), t)− Ū1+iδ

∥∥∥
L∞

≤ C

1 + | log(T − t)|σ′ , (1.12)

where σ′ = min
{
1, 4

p−1

}
and C = C(u0, θ0) > 0.

Remark 1 (Description of the set O of initial data). For initial data u0 satisfies the property (1.8), we can
define an upper triangular matrix M0 with M0,ii > 02 and the rescaled variables (U0,Θ0)

H0 =
κ0

u0(V0)
, MT

0 M0 = −κ0∇
2u0(V0)

κ2u0(V0)
= H0

∇2u0(V0)

κ2
, κ0 = Ū(0), κ2 = ∂21 Ū(0),

U0(z) = H0u0(M−1
0 z + V0), Θ0(z) = θ0(M−1

0 z + V0),

(1.13)

where Ū is defined in (1.7). Since ∇u(V0, 0) = 0, by definition, (1.13) implies the following normalization

U0(0) = κ0 = Ū(0) , ∇U0(0) = 0 , ∇2U0(0) = ∇2Ū(0) = κ2Id . (1.14)

1While the FK norm in (1.9) only involves ∇iϕ, i ≥ 1 and µ(t) does not play a role in (1.9), we keep µ(t) in (1.9) to indicate
that it captures the phase of ψ. See (1.11), (1.12).

2Simple linear algebra shows that M is uniquely determined.
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Let ν > 0 be small, ϵ2 and Cb be defined in (1.30) and (3.7), the set of initial data in Theorem 1 consists of
initial data (u0, θ0) satisfying (1.8) and its rescaled variable (U0,Θ0) satisfies

U0Ū
−1−ϵ2 > 2Cb, Hp−1

0 < ν, u0(V0)
−ptr(∇2u0(V0)) < ν, (1.15)

and

∥W0∥EK
= ∥U0 − Ū∥EK

< ν, ∥Φ0∥F̄K
:= ∥Θ0 − δ log Ū∥FK−1

+ ∥⟨z⟩K− d
2∇K(Θ0 − δ log Ū)∥L2 < ν. (1.16)

The last quantity in (1.15) is invariant under the parabolic rescaling: u0,l(z) = l1/(p−1)u0(l
1/2z). We will

use its smallness to show that the viscous terms are small compared to the nonlinear terms. The lower bound
U0Ū

−1−ϵ > 2Cb in (1.15) ensures that U0(z) ̸= 0 for any z, without which can lead to low regularity of rescaled
velocity |U |p of up (1.5a).

Remark 2 (Positive definiteness of the Hessian of the initial data). While the limiting blowup profile Ū (1.7)
is isotropic near z = 0, we do not need to assume that the initial data u0 is isotropic near V0, i.e., ∇2u0(V0)
is close to cId for some c ̸= 0. By introducing the upper triangular matrix R(t) in the rescaling (see (2.1)),
we can handle a much larger class of initial data with non-degenerate global maximizer (1.8).

Remark 3. The asymptotics of the blowup solution (1.12) recovers the constructed result of Masmoudi-Zaag
[43] for the case d = 1. The set of initial data leading to the blowup solution described in Theorem 1 is larger
than the one in [43] which is only a subset of L∞(R). We note that there is a free phase-shift µ̂ in (1.12)
corresponding to the phase invariant of (CGL) that was fixed to be µ̂(t) = 0 in [43] by a specific choice of
initial data through a topological argument. We remark that the relaxing asymptotics (1.10) and (1.11) are
natural for rigorous stability analysis in all dimension d ≥ 1 treated in this present paper.

Note that the asymptotic behavior (1.9), (1.12) involves the 4 parameter functions H,R, V and µ (or µ̂)
which are responsible for all the symmetries of (CGL).3 Theorem 1 is stated in terms of the rescaled profiles,
with a singular weight at the origin. We note that the condition (1.8) and parameters M0, H0, V0 in (1.13)
are C2-stable if the global maximizer is unique. We can therefore simplify the assumptions in Theorem 1 to
obtain the following stability results with a more explicit description of the open set of initial data.

Theorem 2 (Stability of blowup solutions to (CGL)). Let K = K(d, p) ∈ N be defined as in (1.29), and
HK ,FK−1 be the norms defined in (3.9), (1.6). Suppose that (u0, θ0) satisfies the assumptions (1.8), (1.15),
(1.16) and V0 is the unique global maximizer: u0(V0) > u0(z) for all z ̸= V0. There exists ϵ0 = ϵ0(u0) > 0
such that if

∥ũ0 − u0∥HK + ∥(ũ0 − u0)Ū
−1−ϵ2∥L∞ + ∥θ̃0 − θ0∥FK−1

+ ∥⟨z⟩K− d
2∇K(θ̃0 − θ0)∥L2 < ϵ0, (1.17)

the solution ψ̃ = ũeθ̃ to (CGL) with the initial data ψ̃0 = ũ0e
θ̃0 blows up in finite time T̃ . Moreover, there

exists H(t),R(t), V (t), µ(t) satisfying (1.10) and (1.11) such that (1.9) and (1.12) holds for (ũ(t), θ̃(t)) with
T being replaced by T̃ .

From the proof of Theorem 2, it can be shown that ϵ0 depends on u0 through its certain norms. We do
not state the dependence explicitly for simplicity.

Remark 4. The assumptions in Theorems 1,2 are satisfied, e.g. for u0 = CŪ , θ0 = Θ̄0 with C sufficiently
large. The weighted norms ∥ · ∥HK (3.9) and ∥ · ∥FK

(1.6) are well-defined for sufficiently smooth functions
with fast decay. We do not require that u0 − ũ0 agrees up to O(|z− V0|k), k > 0 near the maximizer V0 of u0.

1.2 Dynamic rescaling formulation with extra modulation parameters

The dynamic rescaling formulation or the modulation technique was developed to study singularity formulation
in the nonlinear Schrödinger equation [44], [42] numerically and various nonlinear PDEs; see the comprehensive

3Although H(t) is absent in (1.12), we can replace the factor (T − t)1/(p−1) by H(t) using (1.10).
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references on (NLH), (NLS), and related models in [53], [26]. Recently, researchers also generalized this
technique for fluid mechanics [12, 13, 14], [25]. We can establish singularity in two steps. Firstly, one constructs
an approximate steady state of the dynamic rescaling equation (analytically or numerically). Secondly, one
performs linear and nonlinear stability analysis for perturbation around the approximate steady state with
appropriate normalization conditions. The law of blowup will then be prescribed by the normalizing constants.
One can establish stability using a L2-based [16, 17] or L∞-based [13] argument. In these arguments, one of
the crucial steps is to design appropriate singular weights depending on the profile, and then use the weights
to derive damping terms for the energy estimates. The approach does not require an explicit profile and
is robust to small perturbation, which makes it possible to combine weighted energy estimates for stability
analysis, a numerical implicit profile, and computer-assisted proofs to construct blowup solutions. See for
example, [13, 14] for applications in 3D incompressible Euler equations with smooth data and [16, 17], [10],
[38] for related 1D models.

In [37], the authors generalized the L2-based methodology to establish a type-I 4 blowup for the semilinear
heat equation beyond the self-similar setting where there is a logarithm correction in the self-similar scaling for
the spatial variable. Compared with the mentioned works [4], [34], [45], [43] where the authors heavily relied on
a spectral analysis with detailed properties of the associated linearized operator to establish the existence and
stability, we simply suppresses unstable directions and neutral modes via a clear characterization of weighted
Sobolev spaces, without using Brouwer’s fixed-point theorem or a topological argument. The correct Type
I blowup rate is automatically inferred by enforcing proper vanishing conditions of the perturbation. We
remark that for Type I blowup, there is indeed a link between the vanishing conditions at the origin and the
vanishing coefficients projected onto the unstable and neutral spectral eigenfunctions; see for example [37] and
[45] in the case of the nonlinear heat equation, where the eigenfunctions correspond to Hermite polynomials.
A further explanation of this connection is discussed in Step 2 in Section 1.3.

A generalized dynamical rescaling formulation with extra modulation parameters5. In this article,
we further generalize the above framework and the ideas in [37]. In particular, it consists of three main steps:

Step 1 (Renormalization with extra modulation parameters): The renormalization is an essential step in
the study of nonlinear PDEs with symmetries including incompressible/compressible fluids equations. For
the equation (CGL), there are trivial symmetries (see Section 2.1) from which we introduce the following
renormalization in terms of the amplitude-phase representation ψ(x, t) = u(x, t)eıθ(x,t),

U(z, τ) = H(τ)u
(
R(τ)z + V (τ), t(τ)

)
, Θ(z, τ) = θ

(
R(τ)z + V (τ), t(τ)

)
, t(τ) =

∫ τ

0

Hp−1(s)ds, (1.18)

where R(τ) ∈ Rd×d is a upper triangular matrix, V (τ) ∈ Rd and H(τ) ∈ R+. Here, H is responsible for time,
V for spatial translation.

The key novelty is that in addition to modulation parameters corresponding to the symmetries, we intro-
duce extra modulation parameters. Instead of applying the same rescaling to zi, we rescale zi with different
but similar scalings following the ideas [37]. See also a recent work [36] on the generalized Navier-Stokes equa-
tions, in which the author developed a generalized dynamic rescaling formulation by using different rescalings
for the r and z directions respectively and a self-similar blowup was observed numerically. In the case of
(CGL), we rescale zi with scaling slightly perturbed from the parabolic scaling. We remark that the choices
of different scalings for zi violate the scaling symmetries. Yet, in the case of (CGL), we will show that the
violation is asymptotically small and R(τ) converges to c(τ)Id asymptotically for some scalar function c(τ).
Therefore, the above renormalization (1.18) asymptotically agrees with the classical dynamical rescaling for-
mulation [13, 14], [16, 17]. These extra parameters provide us extra d − 1 degrees of freedom, and we have

crucial 1 + d + d(d+1)
2 degrees of freedom in total in choosing the dynamic variables H(τ), V (τ),R(τ). A

natural idea to represent the scaling in zi and capture the rotation symmetries is to choose R(τ) = D(τ)Q(τ)

4A blowup solution to (CGL) is of Type I if it satisfies the bound limt→T (T − t)
− 1

p−1 ∥u(t)∥∞ <∞, otherwise, blowup is of
Type II.

5The modulation parameters are also known as normalization constants in the dynamic rescaling formulation.

5



with a diagonal matrix D and an orthogonal matrix Q. Yet, it is challenging to parametrize a time-dependent

orthogonal matrix in Rd×d. Instead, we use the upper triangular matrix R(τ) with d(d+1)
2 parameters.

To determine these modulation parameters, we impose normalization conditions on ∇iU(0), i = 0, 1, 2,
so that the perturbation of U vanishes O(|z|3) near z = 0 and we can perform weighted energy estimates
mentioned above. Note that the number of (different) equations and that of the degrees of freedom are exactly
the same. For (CGL), these conditions allow us to completely eliminate the unstable and neutrally stable
modes of the linearized operator. See Step 2 in Section 1.3 for more details.

Step 2 (Equations of the profiles and modulation parameters): We derive the equations of F = (U,Θ) and
matrix (or vectors) Q(τ) governing the modulation parameters R(τ), V (τ), H(τ),

∂τF = NF (F,Q),
d

dτ
Q = NQ(F,Q), (1.19)

where NF is a nonlinear function and NQ is a matrix. Then the rescaling system is completely determined,
and we further construct the approximate steady state (F̄, Q̄) analytically or numerically.

Step 3 (Stability analysis and the log correction): In general, we do not know a-priori that the approximate
steady state (F̄, Q̄) is stable in some suitable topology. Nevertheless, if we can establish stability of (F̄, Q̄)
following the strategy mentioned above and H(τ)p−1 is integrable, then we can obtain finite time blowup
using (1.18) and the law of blowup will then be prescribed by the normalizing constants.

For (CGL), we will use energy method with an energy E for the perturbation F − F̄ to establish

d

dτ
E ≤ −c1 · E + Ctr(Q) + l.o.t.,

d

dτ
tr(Q) ≤ −c2 · tr(Q)2 + l.o.t.,

for some c1, c2, C > 0, where Q further satisfies that it is a positive definite matrix and l.o.t. denotes some
terms that are very small. The second ODE of tr(Q) further implies that |tr(Q)| ≲ (1 + τ)−1. A further
refinement of this algebraic decay in the self-similar time implies a log correction log(T − t) in the blowup
rate. We will elaborate more in Step 2 in Section 1.3.

One can thus hope to combine the above method for a log correction and the framework [13, 14] to problems
with numerical steady states, while spectral analysis heavily hinges on a simple and analytical approximate
steady state with explicit (nonlinear heat [45]) or at least asymptotical spectral information of the linearized
operator (Keller-Segel [18]). For example, constructing a smooth (approximate) steady state analytically for
3D incompressible Euler or Navier-Stokes equations (NSE) is challenging and remains an open problem. On
the other hand, constructing a numerical approximate steady state with computer-assistance is much more
feasible. See [13, 14], [59] for the construction in 3D Euler equations. For NSE, self-similar blowup with
a perfect self-similar scaling has been ruled out [57], [48]. Yet, one can construct a blowup violating these
non-blowup results by adding a log correction in the spatial variable. See numerical evidence on the singular
behavior of NSE with a potential logarithm correction in the potential blowup by the second author [35].

1.3 Ideas of the blowup analysis

We first discuss some of difficulties in the study of singularity formation in (CGL). Then we follow the
generalized dynamic rescaling framework to establish the existence and stability of asymptotically self-similar
blowup solutions to (CGL) by briefly discussing the strategy and main ideas of our analysis.

Difficulties: Compared with (NLH) or (NLS), the analysis for the complex Ginzburg-Landau equation
(CGL) has the following additional challenges.

1. The complex Ginzburg-Landau equation (CGL) is not of a gradient form, rendering energy estimates
hard. To overcome this challenge, we use the amplitude-phase representation (1.4), (1.5) to analyze (CGL).

2. We remove the even symmetry assumption of the perturbation required in [37] to recover full stability.
Without the even symmetry assumption, we have more potentially unstable modes for the linearized operator.

6



We control these unstable modes using the generalized dynamic rescaling formulation in Step 1 in Section
1.2.

3. We consider the whole range of the nonlinearity p > 1. For the analysis of the phase equation (1.5b)
and the nonlinearity up (1.5a), (1.5b), we need to bound the rescaled amplitude U from below, which we
establish using the maximal principle and a weighted L∞ estimate. Due to the non-integer power p to control
∇K(Up) in the HK estimate, which leads to terms like Up−K(∇U)K , we need to obtain sharp decay estimates
for ∇iU . This is done by choosing an almost tight power in the far field of the weight for the weighted Hk

energy estimates and using interpolation and embedding inequalities following [11]. An additional difficulty
comes from the coupling between u, θ in the viscous terms in (1.5a), (1.5b). We design the top order energy
with a special algebraic structure to cancel out the top order terms and show that the viscous terms have a
good sign. See Step 3(b) in Section 1.3.

Ideas and strategy: We briefly discuss the strategy and main ideas of our analysis.

Step 1 (Dynamical rescaling formulation): We follow Step 1 in Section 1.2 to perform the rescaling (1.18).
Then, we introduce the following factors governing the evolution of these parameters

Hτ

H
= cU , cU = − 1

p− 1
+ cW , M = e−

τ
2 R−1, V = −R−1Vτ , P = MτM−1. (1.20)

Step 2 (Normalization and vanishing conditions): Let Ū be the profile defined in (1.7). To determine the
law for the parameter functions H(τ), V (τ),R(τ), we enforce the following normalization conditions on the
amplitude U :

k = 0, 1, 2, ∇kU(0, τ) = ∇kŪ(0). (1.21)

Since ∇2U ∈ Rd×d is symmetric, we have 1 + d + d(d+1)
2 different equations, which match the degrees of

freedom of the dynamic variables exactly. The above conditions determine the initial modulation parameters
H(0),R(0), V (0) and the leading order system of cW ,P,V (1.20)

cW =
2(1− βδ)

4♭∗
tr(Q) +O(E0), V = O(E0), P = O(|Q|+ E0), where Q = Hp−1eτMMT , (1.22)

where E0 tracks some lower order terms depending on the perturbation (W,Φ) (1.24a), (1.24b) and Q. The
main unknown Q ∈ Rd×d (a positive definite matrix) solves the following ODE

d

dτ
tr(Q) = −tr(Q2) +O(E0|Q|) ≤ −1

d
(tr(Q))2 +O(E0|Q|). (1.23)

From (1.23), (1.22), (1.20), we can control all the modulation parameters. A refined estimate using tr(Q) and
tr(Q−1) yieldsQ = 1

τ Id+O(τ−3/2+), together with an asymptotic refinement of the phase yield the asymptotics
in Theorem 1. See Section 2.3 for deriving (1.22), Section 4 for the estimates of Q and Proposition 5 for the
refinement of the phase.

Roughly speaking, imposing (1.21) for U is equivalent to imposing local orthogonality conditions for the
perturbation W = U − Ū to 1, zi, zizj , 1 ≤ i, j ≤ d. These functions are all the neutrally stable and unstable
modes of L = Id− 1

2z ·∇, which behaves similarly to the main linearized operator LŪ in (1.24a) for |z| small.
We then get a damping in the weighted L2 energy estimate.

Step 3 (Stability analysis): We linearize (U,Θ) around the approximate steady state (Ū, Θ̄) defined in (1.7)
and (1.27) and obtain the equations for the perturbation W = U − Ū,Φ = Θ− Θ̄,

Wτ = LŪW + FU + NU + DU , LŪW =
(
− 1

p− 1
+ pŪp−1 − 1

2
z · ∇

)
W (1.24a)

Φτ = −1

2
z · ∇Φ+ FΘ + NΘ + DΘ, (1.24b)
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where FU ,NU ,DU ,FΘ,NΘ,DΘ are small residue, nonlinear, and viscous terms (3.3), and will be treated
perturbatively. Below, we outline the stability estimates and focus on the linear part and the viscous terms.

(a) Estimates of the (W,Φ) : LŪ to the leading order is the linearized equation for Riccati equation or
semilinear heat equation. With the vanishing conditions ∇kW = 0, k = 0, 1, 2 (1.21), we obtain its stability
using weighted Hk estimates with singular weights. See [37] in the case of p = 2 and [15], [16, 17], [10].

The right-hand side of (1.24) only involves ∇Φ, which enjoys better stability. We estimate ∇Φ by per-
forming a similarly weighted Hk estimate (starting from k = 1) on (1.24b) and exploiting the term − 1

2z ·∇Φ.
In the nonlinear estimates and the estimates of the phase, we need to control 1/U . We use the maximal

principle and a weighted L∞ estimate to obtain a lower bound of U .

(b) Estimates of the viscous terms: For the viscous terms DU ,DΘ (2.9), the main difficulty is the coupling
between U and Θ. At the top HK estimate, the highest order derivative terms read

∇KDU = ∆Q∇KU − βU∆Q∇KΘ+ l.o.t. := I1 + I2 + l.o.t.,

∇KDΘ = β
∆Θ∇KU

U
+∆Q∇KΘ+ l.o.t. := I3 + I4 + l.o.t.,

where ∆QF is a weighted elliptic operator defined in (2.6). The terms I1, I4 lead to damping terms of ∇K+1U
and ∇K+1Θ via integration by parts. To control I2, I3, we exploit their cancellation using the energy J1 below
with some weight ρK independent of U,Θ and couple their estimates in J2

J1 =

∫
(|∇KW |2 + U2|∇KΦ|2)ρK , J2 =

∫
((−βU∆Q∇KΘ) · ∇KU + (β

∆Θ∇KU

U
) · U2∇KΦ)ρK . (1.25)

Applying integration by parts, J2 reduces to some lower order terms and we can close the viscous estimates.
For estimates of intermediate-order terms, we use interpolation inequalities following [11].

(c) Choosing the weights: To extract damping in the energy estimates, we need to design various suitable
weights. The weights (1.28) for W are very similar to those of the semilinear heat equation [37]. They are
singular near z = 0 for the lower order energy estimates and regular for the top order energy estimates so
that the viscous terms will have a good sign. In addition, we choose an almost optimal rate at the infinity for
these weights to obtain a sharp decay estimate for (W,Φ) using interpolation and embedding following [11].

Organization of the paper: The rest of the paper is organized as follows. In Section 2, we introduce the
generalized dynamic rescaling formulation using the symmetries of (CGL) and derive the ODEs governing the
modulation parameters. Section 3 is devoted to the stability analysis of the profile. In Section 4, we establish
the asymptotics of the blowup rate. In Section 4.3, we prove Theorem 1 and Theorem 2.

Notations: We use ı to denote the imaginary number, f̄ to denote approximate profiles for the variable f ,
e.g.,Ū , rather than conjugates, and (·, ·) to denote the inner product on Rd: (f, g) =

∫
Rd fg. For a weight ρ,

we denote ∥f∥ρ = (|f |2, ρ)1/2. For matrix notations, we use tr(R) to denote the trace of a matrix R, Tu(R)
to denote the upper triangular part of R; namely (Tu(R))ij = Rij1i≤j . We use δij = 1i=j to denote the
Kronecker delta function, and |T| := (

∑
i T

2
i )

1/2 with summation over all entries Ti to denote the tensor norm
of a tensor T, e.g., higher-order derivatives ∇kf . We use C to denote an absolute constant only dependent
on the constants p, β, δ, γ and the dimension d, which may vary from line to line. C(µ) denotes a constant
depending on µ. We denote A = O(B) or A ≲ B if there exists an absolute constant C > 0, such that
|A| ≤ CB, and denote A ≈ B if A ≲ B and B ≲ A. Furthermore, we denote

Λ = z · ∇, ⟨z⟩ =
√

1 + |z|2 . (1.26)

Parameters and special functions: We introduce

Θ̄ =
δ

p− 1
τ + δ log Ū , cp =

(p− 1)2

4♭∗
, σ = − 2

p− 1
. (1.27)
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We choose the weights for the Hk estimates as follows:

ρk = |z|−6+ϵ−d+2k + c0|z|−2σ−ϵ−d+2k, 0 ≤ k ≤ d+ 5

2
, ρk = 1 + c1|z|−2σ−ϵ−d+2k,

d+ 5

2
< k ,

ρ̊k = |z|2k−1−d , 0 < k ≤ d

2
, ρ̊k = 1 + |z|2k−1−d ,

d

2
< k < K , ρ̊K = U2ρK ,

(1.28)

where we determine the constants in the following order:

K = 2d+ 4 + 2

⌈
p+ 1

min{p− 1, cp}

⌉
, (1.29)

ϵ= min{ p− 1

5(p+ 3)(K + p)
,

4

5(p+ 3)(K + p)
}, ϵ2 =

(p− 1)ϵ

4
. (1.30)

For c0, c1 used in (1.28), we determine c0 via (3.26) and c1 via (3.47). Note that c0, c1 only depends on
K, ϵ, p, δ. Hence, they are considered as fixed constants throughout the paper.

2 Generalized dynamical rescaling formulation

In this section, we introduce a generalized dynamic rescaling formulation and decompose the complex Ginzburg-
Landau equation into the equation of the phase and the amplitude. We will consider a linearization around
the approximate profiles and choose the modulation parameters based on the vanishing conditions. Finally,
we will estimate the ODE of the modulation parameters.

2.1 Symmetries and renormalization

We exploit the following symmetries of equation (CGL) to study stability for general perturbation, which will
motivate our choice of rescaling. If ψ(x, t) solves (CGL), all of the following also solves (CGL):

1. Phase shift: ψa(x, t) := eıaψ(x, t), for a ∈ R.

2. Parabolic scaling for γ = 0: ψl(x, t) := l1/(p−1)ψ(l1/2x, lt), for l ∈ R.

3. Translation: ψb(x, t) := ψ(x− b, t), for b ∈ Rd.

4. Rotation: ψR(x, t) := ψ(Rx, t), for orthogonal matrix RRT = Id.

We use the symmetry groups of the parabolic scaling via a rescale in amplitude, of the translation via a shift
in space, and of the rotation via a rotation and rescaling in the spatial variable parametrized by an upper

triangular matrix. In sum, we can exploit modulation with 1+ d+ (d+1)d
2 degree of freedom. The phase shift

invariance corresponding to a constant addition in Θ is taken care of in (1.11) and (1.12). It is irrelevant to the
dynamical modulation of stability since the right-hand sides of (1.5a) and (1.5b) only involve the derivatives
of Θ. We remark that the modulation of symmetries due to Galilean transformations, including the rotation
symmetry, has been used successfully to obtain shock formation in compressible Euler equations with fine
characterization [5]. Below, we will use a general upper triangle matrix, which simplifies the parametrization
of the time-dependent orthogonal matrix.

For solution ψ to (CGL), we consider the amplitude-phase form ψ(x, t) = u(x, t)eıθ(x,t), where u(t) : x ∈
Rd → R+ and θ(t) : x ∈ Rd → R. For the amplitude u and phase ψ, we introduce the generalized dynamic
rescaling formulation

U(z, τ) = H(τ)u
(
R(τ)z + V (τ), t(τ)

)
, Θ(z, τ) = θ

(
R(τ)z + V (τ), t(τ)

)
, (2.1)

where the main unknown parameter functions are R ∈ C1
(
[τ0,+∞),Rd×d

)
a non degenerate upper triangular

matrix, V ∈ C1
(
[τ0,+∞),Rd

)
and H is given by

H = H(0) exp (

∫ τ

0

cU (s)ds) , t(τ) =

∫ τ

0

Hp−1(s)ds . (2.2)
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In a compact form, we have

U(z, τ)eıΘ(z,τ) = H(τ)(ueıθ)
(
R(τ)z + V (τ), t(τ)

)
, ψ = ueıθ. (2.3)

We decompose the solution into the approximate steady states (1.27), with perturbations W,Φ:

U = Ū +W , Θ = Θ̄ + Φ , cU = − 1

p− 1
+ cW , H = e−

τ
p−1CW . (2.4)

If R(τ) is a scalar factor and V = 0, (2.3) reduces to the standard dynamic rescaling formulation, see e.g.,
[17, 16, 12]. If R(τ) is a diagonal matrix and V = 0, it reduces to a formulation similar to [37]. We will show
that R is close to some identity matrix and V is some lower order term.

We first compute the spatial derivative

∇U = He−ıΘ∇ψR− ıHψe−ıΘ∇Θ ,

∇2U = He−ıΘRT∇2ψR− ıHe−ıΘ(∇ψR∇ΘT +∇ΘRT∇ψT )−Hψe−ıΘ∇Θ∇ΘT − ıHψe−ıΘ∇2Θ .

We then write from (CGL) the equation for U ,

Uτ = −ıΘτU + cUU − (
1

2
z + Pz + V) · ∇U − ıU(

1

2
z + Pz + V) · ∇Θ+ (1 + ıδ)Up − Cp−1

U γU

+ (1 + ıβ)(∆QU + 2ı⟨∇U,∇Θ⟩Q − U⟨∇Θ,∇Θ⟩Q + ıU∆QΘ) ,

where P,V are related to the matrix R as

M−1 = e−τ/2R, V = −R−1V̇, P = ṀM−1, Q := Cp−1
W MMT , (2.5)

and we use the notation

∆Qf := tr(Q∇2f) , ⟨x, y⟩Q := xTQy , ∀x, y ∈ Rd. (2.6)

Taking the real and imaginary parts we arrive at the following equations for U and Θ:

Uτ = cUU − (
1

2
z + Pz + V) · ∇U + Up − Cp−1

U γU + DU , (2.7)

Θτ = −(
1

2
z + Pz + V) · ∇Θ+ δUp−1 + DΘ , (2.8)

where DU and DΘ consists of the viscous terms and the nonlinear quadratic term we define the viscous terms
as follows:

DU = ∆QU − 2β⟨∇U,∇Θ⟩Q − U⟨∇Θ,∇Θ⟩Q − βU∆QΘ , (2.9a)

DΘ = β
∆QU

U
+ 2

⟨∇U,∇Θ⟩Q
U

− β⟨∇Θ,∇Θ⟩Q +∆QΘ . (2.9b)

We will show that the diffusion and Q, cW ,V,P, Hp−1 are lower order terms. See Remark 5. Dropping
these terms and setting ∂τU = 0, we obtain the leading order parts of (2.7) and (2.8):

− 1

p− 1
Ū − 1

2
ΛŪ + Ūp = 0 , Θ̄τ = −1

2
ΛΘ̄ + δŪ

p−1
,

whose solution are given by the approximate profiles (Ū, Θ̄) defined in (1.7), (1.27).

10



2.2 Initial rescaling and normalization conditions

We will choose some proper initial modulation parameters H(0), V (0),M(0) and the dynamic variables
cW ,V,P such that the perturbation W vanishes to the third order. We denote the following constants

κ0 = Ū(0) = (p− 1)−
1

p−1 , κ2 = ∂21 Ū(0) = − 2cpκ0
(p− 1)2

, κ4 = ∂41 Ū(0) =
12pc2pκ0

(p− 1)4
. (2.10)

Given initial data (u, θ) (2.3) satisfying (1.8), we first define M0, V0, H(0),Θ0, U0 using (1.13). Then we
determine other initial rescalings and initial data using

V (0) = V0, M(0) = M0, R(0) = M−1
0 , Θ(z, 0) = Θ0(z), U(z, 0) = U0(z).

We impose the following normalization conditions in time as

U(0, τ) = Ū(0) = κ0 , ∇U(0, τ) = ∇Ū(0) = 0 , ∇2U(0, τ) = ∇2Ū(0) = κ2Id .

From (1.14), the above holds for τ = 0. By the ansatz (2.3), it reduces a dynamical condition in time

∂τ∇kU(0, τ) = 0 , k = 0, 1, 2 ,

which we can use (2.7) to simplify as

cU + κp−1
0 −Hp−1γ +

DU (0)

κ0
= 0,

κ2V = ∇DU (0),

(cU − 1 + pκp−1
0 −Hp−1γ)δij − (Pij + Pji) +

∂ijDU (0)− V · ∇∂ijU(0)

κ2
= 0 ,

(2.11)

for any indices i, j. Notice that the inverse of an upper-triangular matrix is still upper-triangular, and as a
consequence P = MτM−1 is upper-triangular. We can further simplify the equations for cU and P by the
ansatz (2.4) as follows:

cW = −DU (0)

κ0
+Hp−1γ , (1 + δij)Pij = −DU (0)

κ0
δij +

∂ijDU (0)− V · ∇∂ijW (0)

κ2
, (2.12)

for any i ≤ j. We will estimate equations (2.12) and (2.11) in the next subsection.

2.3 ODE for the modulation parameters

In this subsection, we simplify equations (2.12) and (2.11) to derive a leading order ODE. We will treat the
perturbations W,Φ as low-order terms and estimate them in Section 3. Denote

Γ = max
0≤k≤5,1≤l≤5

(∥∇kW∥∞, ∥∇lΦ∥∞) , E0 = |Q|(Γ + Γ4) +Hp−1. (2.13)

Clearly, we have Γi|Q| ≲ E0, 1 ≤ i ≤ 4. We use E0 to track some lower order terms.

Lemma 1. We have the following estimates for the modulation parameters:

cW =
2(1− βδ)

(p− 1)2
cptr(Q) +O(E0) , V = O(E0) , (2.14)

and

P = O(|Q|(1 + Γ4) +Hp−1) , Qτ = −(Qu +
1

2
Qd)Q−Q(QT

u +
1

2
Qd) +O(E0|Q|), (2.15)

where Qu,Qd are the strictly upper part and diagonal part of Q.
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Remark 5. Formally to the leading order when we take the trace, we have

tr(Q)τ ≈ −tr(Q2) , tr(Q−1)τ ≈ −d .

Recall that Q = Cp−1
W MMT is positive. We can estimate tr(Q), tr(Q−1) and obtain Q ≈ τ−1Id. Therefore

Q, cW ,V,P are indeed small and the viscous terms can be treated perturbatively. We will make this heuristic
rigorous by choosing H(0) = CW (0) small; see Section 3.6. Although we allow anisotropicity in the initial
data, the profile will converge to a isotropic one, i.e. Q will converge to a diagonal matrix.

Proof. Notice that by (2.9a), we have

DU = tr(QS1) , S1 = ∇2U − 2β∇U∇ΘT − U∇Θ∇ΘT − βU∇2Θ . (2.16)

We can simplify (2.12) by an asymptotic expansion of S1 near the origin up to the second order.

Ū = κ0 +
κ2
2
|z|2 + κ4

24
|z|4 +O(|z|6) , ∇Θ̄ =

δ

Ū
∇Ū = δ

κ2
κ0
z +O(|z|3) ,

∇2Ū = κ2Id +
κ4
6
|z|2Id +

κ4
3
zzT +O(|z|4) ,

∇2Θ̄ =
δ

Ū
∇2Ū − δ

Ū2
∇Ū∇ŪT = δ(

κ2
κ0
Id + (

κ4
6κ0

− κ22
2κ20

)(|z|2Id + 2zzT )) +O(|z|4) .

Decomposing U = Ū +W,Θ = Θ̄ + Φ (2.4) and using Γ (2.13) to control the perturbation W,Φ, we expand

S1 = κ2(1− βδ)Id + (
κ4
3

+ (−2β − δ)δ
κ22
κ0

− βδ(
κ4
3

− κ22
κ0

))zzT

+ (
κ4
6

− βδ(
κ22
2κ0

+
κ4
6

− κ22
2κ0

))|z|2Id +O(|z|4 + Γ + Γ3) .

The estimates for ∇iS1 are similar. We have chosen Γ (2.13) to control ∇kW,∇k+1Φ with high enough order
k. In particular, for an error term I in S1 bounded by |z|4 + Γ + Γ3, e.g.,(U − Ū)∇2(Θ− Θ̄), we have

|∇iI| ≲ |z|4−i + Γ + Γ3, i = 1, 2.

Since we only need the expression at z = 0, the error term O(|z|j), j ≥ 1 vanishes in the following derivations.
For this reason, we do not track the constant associated with |z|j .

As a consequence, we have the expressions for derivatives of DU as

DU (0) = κ2(1− βδ)tr(Q) +O(E0) , ∇DU (0) = O(E0) ,

∂ijDU (0) = δij(1− βδ)
κ4
3
tr(Q) + 2((1− βδ)

κ4
3

− (β + δ)δ
κ22
κ0

)Qij +O(E0) .

We plug the estimates into (2.12) and (2.11) and get

cW = −κ2
κ0

(1− βδ)tr(Q) +O(E0) , v = O(E0) ,

P = Tu
[ κ4
6κ2

(1− βδ)tr(Q)Id + ((1− βδ)
κ4
3κ2

−
(
β + δ)δ

κ2
κ0

)(
2Q− diag(Q)

)]
−Tu(

κ2
2κ0

(1− βδ)tr(Q)Id) +O(E0) ,

where we recall that Tu is the upper-triangular part of the matrix. Notice that by (2.10), we have the
relationship

κ4
6κ2

= p
κ2
2κ0

, (1− βδ)
κ4
3κ2

− (β + δ)δ
κ2
κ0

= (p− δ2 − βδ(1 + p))
κ2
κ0

= −1

2
.
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Therefore, we collect

P +
p− 1

2
cW Id = −Tu(Q− 1

2
diag(Q)) +O(E0) . (2.17)

Recall that Mτ = PM by definition, and we can compute

Qτ = (p− 1)cWQ+ Cp−1
W (PMMT +MMTPT ) =

(
P +

p− 1

2
cW Id

)
Q+Q

(
P +

p− 1

2
cW Id

)T
.

If we decompose Q into the strictly upper, lower, and diagonal parts as Q = Qu + QT
u + Qd, then we can

simplify

Qτ = −(Qu +
1

2
Qd)Q−Q(QT

u +
1

2
Qd) + EQQ+QET

Q, EQ = O(E0).

and we conclude the proof of the lemma.

Remark 6. In the above ODE of Q, we get −1 for the coefficient of Q2 since we have normalized the profile
(1.27). The factor p − δ2 − βδ(1 + p) > 0 (corresponding to the subcritical case) appears in the constant cp.
For the critical case

p− δ2 − βδ(1 + p) = 0 ,

without such a normalization, we can see that if we do something similar, the coefficient of Q2 will be zero.
We could keep track of the next order terms of size Γ to derive a system of size |Q|3. This can potentially
help us establish a result similar to [24] but we do not pursue it here.

3 Stability analysis and finite time blowup

In this section, we perform stability analysis and establish nonlinear stability of the perturbation around the
approximate steady state following the ideas and strategy outlined in Section 1.3.

We linearize (2.7) and (2.8) around the approximate profile as in ansatz (2.4) and obtain the equations of
the perturbations as follows:

Wτ = LŪW + FU + NU + DU , (3.1)

Φτ = −1

2
ΛΦ + FΘ + NΘ + DΘ , (3.2)

where we recall from (2.9a) and (2.9b) the definition of DU and DΘ, and define the linear, residue, and
nonlinear parts respectively as

LŪW = cŪW − 1

2
ΛW + pŪp−1W , Λ = z · ∇,

FU = cWU − (Pz + V) · ∇U − Cp−1
U γU , NU = (Ū +W )p − Ūp − pŪp−1W ,

FΘ = −(Pz + V) · ∇Θ , NΘ = δ((Ū +W )p−1 − Ūp−1) .

(3.3)

We will group the terms by integrability: LU and NU vanish to the third order at the origin. Recall that by
Lemma 1 and Remark 5, we know that Q, cW ,V,P are small. The viscous terms DU , DΘ are small of order
|Q| with a typical size of 1/τ . Also obviously H = CW e−τ/(p−1) is small.

We define the weighted Hk energy as follows

E2
k = (|∇kW |2, ρk) , 0 ≤ k ≤ K , F 2

k = (|∇kΦ|2, ρ̊k) , 0 < k ≤ K . (3.4)

Our goal is to prove the following nonlinear stability results.

Theorem 3. Denote EQ = tr(Q). There exists 0 < E∗ < 1 sufficiently small and µ3 > 0, such that for any
initial perturbation satisfying

Uρ > 2Cb, E(0) < E∗, EQ < E∗, Hp−1(0) < E∗, (3.5)
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we have the following estimates for all τ > 0

EQ(τ) ≤ min(2EQ(0), 4d/τ), U(τ)ρ > Cb, Hp−1(τ) < Hp−1(0)e−τ/2,

E(τ) ≤ e−λτ/2(E(0) + µ3H
p−1(0) + µ3EQ(0)) + µ3 min(EQ(0), 1/τ).

(3.6)

Moreover, the boostrap assumptions 1, 2, 3 (introduced below) hold for all τ > 0.

Note that the parameters µ1, µ2 will be introduced in the proof in Section 3.6.
We impose the following weak bootstrap assumptions for nonlinear estimates. To control 1/U , which will

appears in the estimate of NU ,NΘ, we impose a lower bound on U , which is almost comparable with Ū , up
to a small power. To simplify the notations in the nonlinear estimates and to ensure that R,M are invertible
(2.5), (2.4), we impose the following weak assumptions on the energy Ei, Fj and det(Q).

Assumption 1. Let ϵ2 be defined in (1.30). We impose the following bootstrap assumptions

U ≥ CbŪ
1+ϵ2 , Cb = min

|z|≤1
Ū−ϵ2(z)/4 > 0, (3.7)

max(EK , E0, FK , F1) ≤ 1, det(Q) > 0. (3.8)

Below, we will first establish some functional inequalities in Section 3.1. We will start with the L2 analysis
of perturbations W and ∇Φ in Sections 3.2, 3.3, and then build higher-order estimates in Section 3.4. We
obtain a lower bound of the amplitude U via the maximal principle in Section 3.5, inspired by [17]. Then we
close the nonlinear estimates and prove Theorem 3 via a bootstrap argument in Section 3.6.

3.1 Functional inequalities

In this section, we establish a few functional inequalities, which will be used to estimate the decay of the
solution and close the nonlinear estimates. We introduce the following norms

||f ||Ḣk := ||∇kfg
1/2
k ||L2 , ||f ||Hk := ||f ||Ḣk + ||f ||Ḣ0 , gk = ⟨z⟩−2σ−ϵ−d+2k. (3.9)

By definition of ρk (1.28) and (3.4) for Ek, we have

gk ≲ ρk, ||f ||Ḣk ≲ Ek, ||f ||Hk ≲ E0 + Ek. (3.10)

We define the low-order terms E1, E2 that we later show to be small:

E1 := |Q|+Hp−1 +
∑

i≤K−1

Ei +
∑

1≤j≤K−1

Fj + (FK + F1 + EK + E0)
2,

E2 := |Q|+Hp−1.

(3.11)

We treat E1 as a lower order term since it either contains nonlinear terms or energy with order lower than
EK , FK . Note that E2 is the low-order term of order P in Lemma 1 by asuming (3.8), which implies Γ ≲ 1.
See (3.15).

Following Lemma C.4 in [11], we have the following weighted interpolation and embedding inequalities.

Proposition 1 (Interpolation ). Let σ = − 2
p−1 and ϵ be the constants defined in (2.10), (1.30). For any

µ > 0, there exists a constant C(µ), such that the following interpolation inequalities hold:

Ek ≤ µEl + C(µ)E0 , ∀0 ≤ k < l ≤ K , (3.12a)

Fk ≤ µFl + C(µ)F1 , ∀1 ≤ k < l ≤ K , (3.12b)

||f ||Ḣk ≤ µ||f ||Ḣl + C(µ)||f ||H0 , ∀0 ≤ k < l ≤ K. (3.12c)
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Moreover, we have the following embedding

|∇lW | ≲ ⟨z⟩−l+σ+ϵ/2 min(El+d, ||W ||Hl+d), ∀0 ≤ l ≤ K − d , (3.13a)

|∇lΦ| ≲ ⟨z⟩−l+1/2Fl+d, ∀1 ≤ l ≤ K − d− 1 . (3.13b)

As a result, for k < l, we have the following product rule for i ≤ n, j ≤ m with i+ d ≤ n, or j + d ≤ m,

||∇iF∇jGg
1/2
i+j ||L2 ≲ ||F ||Hn ||G||Hm . (3.14)

Finally, assuming (3.8), for 0 ≤ i ≤ K, 1 ≤ j ≤ K and Γ defined in (3.58), we have

Ei ≲ 1, Fj ≲ 1, Γ ≲ 1. (3.15)

Since K (1.29) is absolute, l, k ≤ K, and the parameters c0, c1 in the weights (1.28) and norms depend on
absolute constants K, ϵ (1.30), we only need to track the constants related to µ.

Proof. (a) Interpolation inequalities. To prove (3.12), we use integration by parts. For (3.12a), we
compute for K > k > 0 that

E2
k = −

∑
i

∫
(∂2i ∇k−1W · ∇k−1Wρk + ∂i∇k−1W · ∇k−1W∂iρk) .

Notice that the weights (1.28) satisfy

ρ2k ≲ ρk+1ρk−1 , (∂iρk)
2 ≲ ρkρk−1 .

Combined with a Cauchy-Schwarz inequality, we obtain

E2
k ≲ Ek−1(Ek + Ek+1) .

Since ϵ only depends on K (1.30), by a weighted AM-GM inequality, for any µ > 0, we have

E2
k ≤ C(µ)E2

k−1 + µE2
k+1 .

From here, to conclude the first inequality, since µ > 0 is arbitrary, we only need to that show it holds for
k = l − 1, which we can combine the above estimates for k = 1, 2, .., l − 1 to establish.

The proof of (3.12c) follows from the same argument.
For the second inequality (3.12b), we can repeat the same procedure to conclude, provided that the weights

ρ̊k satisfy the same inequalities for K > k > 1 (1.28):

ρ̊2k ≲ ρ̊k+1ρ̊k−1 , (∂iρ̊k)
2 ≲ ρ̊kρ̊k−1 .

When k + 1 < K, this is obvious. For k = K − 1, we only need to show

⟨z⟩2K−1−d ≲ ρ̊K ≈ U2⟨z⟩−2σ+2K−ϵ−d ,

which is true, since by the choice of ϵ, ϵ2 (1.30) and the bootstrap Assumption 1 we have

U ≥ CbŪ
1+ϵ2 ≈ ⟨z⟩σ−ϵ/2, 2ϵ < 1.

(b) Embedding (3.13). To prove the L∞ estimates (3.13), one can proceed as in [37] and invoke the
weighted Morrey-type inequality. Below, we present a simpler proof. By a density argument, we can assume
that W ∈ C∞

c . Without loss of generality, we fix z ∈ Rd with zi ≥ 0 and estimate ∇lW (z). Consider the
region Ω(z) = {y ∈ Rd, yi ≥ zi}. We have |y| ≥ |z| for any y ∈ Ω(z). Denote δ = −2σ − ϵ − d > −d (1.30).
We have

|∇lW (Z)| ≲l

∫
Ω(z)

|∂1∂2..∂d∇lW (y)|dy ≲l ||⟨y⟩l+d+δ/2∇l+dW ||L2

(∫
|y|≥|z|

⟨y⟩−2l−2d−δdy
)1/2

.
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For 0 ≤ l ≤ K − d− 1, using ρl+d ≳ ⟨y⟩2(l+d)+δ (1.28), −2l− d− δ − 1 < −1, and the first inequality (3.12a)
with k = l + d < K, for any µ > 0, we further obtain

|∇lW (y)| ≲K El+d(

∫
R≥|y|

⟨R⟩−2l−2d−δRd−1dR)1/2 ≲K El+d⟨y⟩−l−(d+δ)/2.

Rearranging the power on both sides, we prove (3.13a).
The proof of (3.13b) with 1 ≤ l ≤ K − d− 1 is similar by replacing W by ∇Φ in the above argument and

using ρ̊l+d ≳ ⟨y⟩2(l+d)+δ2 for δ2 = −d− 1 (1.28) and −2l − d− δ2 − 1 = −2l < −1 for l ≥ 1.

(c) Other inequalities. For (3.14), without loss of generality, we assume that i + d ≤ n. Using g
1/2
i+j ≲

⟨z⟩ig1/2j , σ + ϵ
2 < 0 (3.12c), we prove

||∇iF∇jGg
1/2
i+j ||L2 ≲ ||F ||Hi+d ||∇jGg

1/2
j ||L2 ≲ ||F ||Hn ||G||Hm .

The inequalities (3.15) follow from (3.12a), (3.12b) and the assumption (3.8).

Combining Assumption 1 and the decay estimates (3.13a), (3.13b), we have the following estimates.

Corollary 2. Denote W = Ū − U . Under the Assumption 1, for any α ∈ [0, 1] and any q ∈ R we have

⟨z⟩σ−ϵ/2 ≲ U ≲ ⟨z⟩σ+ϵ/2,

|(Ū + αW )(z)|q ≲ C(|q|)⟨z⟩σq+|ϵq|/2,

||Ū + αW ||HK , ||U ||HK ≲ 1,

(3.16)

where σ, ϵ are defined in (2.10). As a result, for i+ j ≤ K, we have the following estimates for the weights

ρ̊i ≲ ρi⟨z⟩σ+ϵ/2−1/2, i ≤ K − 1, ρ̊K ≲ ρK⟨z⟩σ+ϵ/2,

ρi+j ≲ ρi⟨z⟩2j , ρ̊i+j ≲ ρ̊i⟨z⟩2j .
(3.17)

Proof. (a) Estimate of U . By definition of ϵ2 (1.30), we get − 2
p−1 (1 + ϵ2) = − 2

p−1 − ϵ
2 . Thus, under

Assumption 1, we yield

U ≳ Ū1+ϵ2 ≳ ⟨z⟩−
2

p−1−
ϵ
2 .

Since Ū + αW = Ū + α(U − Ū) = αU + (1 − α)Ū , which is between U, Ū , and Ū, U > 0, using (3.13a),
K > d (1.29) and the above estimate, we prove

|(Ū + αW )| ≲ Ū + U ≲ (1 + EK + E0)⟨z⟩σ+ϵ/2, |(Ū + αW )|−1 ≲ min(Ū, U)−1 ≲ ⟨z⟩−σ+ϵ/2.

The first estimate with α = 1 implies the upper bound for U in (3.16). Raising the above estimates to
|q|-th power proves the second estimate in (3.16).

For the last estimate in (3.16), using triangle inequality, |∇iŪ | ≲ ⟨z⟩σ−i, and (3.10), we prove

||Ū + αW ||HK + ||Ū +W ||HK ≲ ||Ū ||HK + ||W ||HK ≲ 1 + E0 + EK ≲ 1.

(b) Estimate of weights. We consider (3.17). Using U ≲ ⟨z⟩σ+ϵ/2, clearly, we have

|z| ≤ 1 : ρ̊i ≲ ρi ≲ ρi⟨z⟩2σ+ϵ−1,

|z| ≥ 1 : ρ̊i ≲ |z|2k−1−d ≲ ρi⟨z⟩2σ+ϵ−1, i ≤ K − 1, ρ̊K ≲ U2ρK ≲ ρK⟨z⟩2ϵ+ϵ.

For (f, τ) = (ρ,−2σ − ϵ) or (ρ̊,−1) and i+ j < K, from the definition of fi (1.28), we have

fi+j ≲ fi ≲ fi⟨z⟩2j , |z| ≤ 1, fi+j ≈ |z|2i+2j+τ−d ≲ |z|2i+τ−d⟨z⟩2j ≲ fi⟨z⟩2j , |z| ≥ 1.

For i+ j = K, the above estimate still holds for f = ρ. For ρ̊i and ρ̊K , using U ≲ ⟨z⟩σ+ϵ/2, we obtain

ρ̊K ≲ ⟨z⟩2σ+ϵρK ≲ ⟨z⟩2K−1−d = ⟨z⟩2i−1−d⟨z⟩2j ≲ ρ̊i⟨z⟩2j .

We complete the proof of (3.17).

16



Proposition 3. Suppose that (3.8) holds true. For 0 ≤ k ≤ K, j1 + j2 ≤ k and any α ∈ [0, 1], denote

V = Ū + αW, I(j1,j2) = ∇j1W1 · ∇j2W2∇k−j1−j2V p−2.

We have the following product estimates

||I(j1,j2)||gk ≲ ||W1||Hmax (j1,K−1) ||W2||Hmax(j2,K−1) , (3.18)

and

||W1W2V
p−2||HK ≲ (||W1||HK−1 ||W2||HK + ||W1||HK ||W2||HK−1), (3.19a)

||W1W2V
p−2||ρ0 ≲ ||W2||ρ0 ||W1||Hd . (3.19b)

Moreover, we have

||⟨z⟩σ+ϵ/2∇l+1U∇m(U−1)||gk ≲ ||U ||Hmax(l+1,m,k) , l +m = k ≤ K, (3.20)

|∇l+1U · ∇m(U−1)| ≲ ⟨z⟩−l−m, l,m ≤ K − 1− d, (3.21)

Proof. A direct computation yields

Ij1,j2 ≤
∑

2≤q≤k+2,

∑
∑q

l=1 jl=k,jl≥0

I⃗j,q, I⃗j,q = |V |p−q · |∇j1W1||∇j2W2|
q∏

l=3

|∇jlV |. (3.22)

For a fixed (j, q), we denote

J1 =W1, J2 =W2, Jl = V, l ≥ 3, i = argmax
l≤q

jl.

If there are more than one indices a with ja = argmaxl≤q jl, we just pick one of them. Clearly, we have
jl ≤ k/2, l ̸= i (1.29). By Proposition 1 (3.13a), we have

|∇jlJl| ≲ ⟨z⟩−jl+σ+ϵ/2||Jl||Hjl+d

Applying the above L∞ estimates to Jl, l ̸= i, and Corollary 2 for V = Ū + αW , we obtain

I⃗j,q ≲ |∇jiJi|
∏
l ̸=i

⟨z⟩−jl+σ+ϵ/2||Jl||Hjl+d⟨z⟩(p−q)σ+|p−q|ϵ/2. (3.23)

Combining the exponents of the ⟨z⟩· terms, and using the definitions of σ = − 2
p−q (2.10) and ϵ (1.30), we

yield

ξ =
∑

1≤l ̸=i≤q

(−jl + σ + ϵ/2) + (p− q)σ + |p− q|ϵ/2

= −(k − ji) + (p− q + q − 1)σ + (p+ q + q − 1)ϵ/2 = −(k − ji)− 2 + (p+K)ϵ < −(k − ji).

(3.24)

Since ρ
1/2
k ⟨z⟩−(k−ji) ≲ ρk−ji (1.28), applying weighted L2 bound to ∇jiJi, we further obtain

I⃗j,q ≲ ||Ji||Hji

∏
l ̸=i

||Jl||Hjl+d .

Since jl + d ≤ k/2 + d ≤ K − 1 for l ̸= i, k ≤ K , ji ≤ k, and ||V ||HK ≲ 1 + E0 + EK , we obtain
jl + d ≤ max(jl,K − 1) and thus

I⃗j,q ≲ ||W1||Hmax(j1,K−1) ||W2||Hmax(j2,K−1) .
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Using max(p− q, 0) + q ≤ p+K + q and summing the estimates of I⃗j,q, we conclude the proof of (3.18).

The estimate (3.19a) follows from summing the estimates of I(j1,j2) (3.18) over (j1, j2) with j1 + j2 ≤ K,
and using the fact that we have j1 ≤ K− 1 or j2 ≤ K− 1. The estimate (3.19b) follows from applying L2(ρ0)
estimate to W2 and L∞ estimate to W1, V similar to the above.

For the last estimate (3.20), we note that U = Ū +W . Applying the Leibniz rule, we obtain

|∇l+1U∇m(U−1))| ≲
∑

1≤q≤k+1,

∑
∑q

l=1 jl=k+1,j1≥1,jl≥0

Tj⃗,q, Tj⃗,q = |U |−q ·
q∏

l=1

|∇jlU |.

Denote i = argmaxl jl. Applying the above estimates of I⃗j,q with (J1, .., Jl), V, p−q replaced by (U,U, .., U), U,−q
(3.22)-(3.24), and using max(−q, 0) = 0, q ≤ K + 1, we obtain

|⟨z⟩σ+ϵ/2Tj⃗,q| ≲ |∇jiU |⟨z⟩ξ
∏
l ̸=i

||U ||Hjl+d ,

where
ξ = σ +

ϵ

2
+

∑
1≤l ̸=i≤q

(−jl + σ +
ϵ

2
) + (−q)σ + | − q| ϵ

2

= −(k + 1− ji) + (−q + q)σ + (q + q)ϵ/2 = −(k − ji)− 1 + (1 +K)ϵ < −(k − ji).

Using jl + d ≤ K/2 + d < K, ||U ||Hjl+d ≲ ||U ||HK for l ̸= i, ρ
1/2
k ≲ ρ

1/2
ji

⟨z⟩k−ji , q, ji ≤ k + 1, and applying

weighted L2 estimate to ∇jiJi, we establish

||⟨z⟩σ+ϵ/2Tj⃗,q||gk ≲ ||U ||Hji (1 + ||U ||HK )q−1 ≲ ||U ||Hk+1 .

Combining the estimates for Tj⃗,q with different j⃗, q, we conclude the proof of (3.20).

For (3.21), denote k = l + m. Applying L∞ estimate to each term ∇jlU in Tj⃗,q and noting that jl ≤
max(l + 1,m) ≤ K − d, we prove

Tj,q ≲ ⟨z⟩ξ ≲ ⟨z⟩−k−1/2,

where we have used

ξ =
∑

1≤l≤q

(−jl + σ +
ϵ

2
) + (−q)σ + | − q| ϵ

2
= −(k + 1) + qϵ < −k − 1/2.

We complete the proof.

3.2 L2 stability analysis of the amplitude

In this section, we estimate the weighted L2 energy E2
0 = (W,Wρ0) (3.4). In the following energy estimates,

without specification, we will assume that the bootstrap assumption 1 holds true. We will show that the
following lemma holds.

Lemma 2 (Weighted L2 estimate). Under the bootstrap assumption 1, it holds

1

2

d

dτ
E2

0 ≤ (− ϵ

8
+ CE1)E2

0 + CE2E0 . (3.25)

or some absolute constant C > 0.

Proof. Notice that W vanishes at the origin to the third order so this choice of singular weight induces a
well-defined energy. We have by (3.1) that

1

2

d

dτ
E2

0 = (LŪW,Wρ0) + (NU ,Wρ0) + (FU + DU ,Wρ0) .
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For the leading order linear term, we have via integration by parts that

(LŪW,Wρ0) = (d0W,Wρ0) ,

where we calculate the damping

d0 := cU +
1

2ρ0
∇ · (dŪzρ0) + pŪp−1 = − 1

p− 1
+ pŪp−1 +

1

4ρ0
∇ · (zρ0)

= − 1

p− 1
+

p

p− 1 + cp|z|2
+

(−6 + ϵ)|z|−6+ϵ + ( 4
p−1 − ϵ)c0|z|

4
p−1−ϵ

4(|z|−6+ϵ + c0|z|
4

p−1−ϵ)
≤ − ϵ

8
.

The last inequality amounts to

4p(|z|−6+ϵ + c0|z|
4

p−1−ϵ) + ((−6− 4

p− 1
+

3ϵ

2
)|z|−6+ϵ − ϵ

2
c0|z|

4
p−1−ϵ)(p− 1 + cp|z|2)

≤ −(p− 1)|z|−6+ϵ − ϵ

2
c0cp|z|2+

4
p−1−ϵ + 4pc0|z|

4
p−1−ϵ ≤ 0 .

The last inequality is implied by a weighted AM-GM inequality provided that( ϵc0cp

2(6 + 4
p−1 − 2ϵ)

)6+ 4
p−1−2ϵ

(
p− 1

2
)2 ≥

( 4pc0

8 + 4
p−1 − 2ϵ

)8+ 4
p−1−2ϵ

. (3.26)

Notice that ϵ ≤ 1/2 is fixed to be small. We can choose a sufficiently small constant c0 > 0 such that we can
conclude the linear estimate (

LŪW,Wρ0
)
≤ − ϵ

8
E2

0 . (3.27)

The nonlinear estimate is more subtle due to the general nonlinearity p. We use Taylor’s expansion or
Newton-Leibniz’s formula twice to derive

NU =W 2p(p− 1)

∫ 1

0

(1− α)(Ū + αW )p−2dα . (3.28)

Using Proposition 3 (3.19b) with (W1,W2) = (W,W ) and E1 defined in (3.11), we obtain

||W 2(Ū + αW )p−2||ρ0
≲ ||W ||Hd ||W ||ρ0

≲ (E0 + Ed)E0 ≲ E1E0,

which implies

|(NU ,Wρ0)| ≤ ∥NU∥ρ0
E0 ≲ E1||W ||ρ0

E0 ≲ E1E2
0 . (3.29)

Finally, we estimate the viscous and residue terms together. We group the terms to make them integrable.
Consider a fixed 1D smooth cutoff function χ such that it equals 1 in [−1, 1] and 0 outside of [−2, 2]. We

use the notation f̃ to denote functions only differing from f near the origin, where they equal the residue
of f when expanded until its second-order Taylor’s expansion at the origin, via the cutoff function χ. For
illustrative purposes, we will explicitly write down f̃ by the expansions

f = (f(0) + zT∇f(0) + 1

2
zT∇2f(0)z)χ(|z|) + f̃ ,

where f̃ vanishes to the third order at the origin. By the choice of the modulation parameters in (2.11), it’s
easy to see that6

FU + DU = cW Ũ − Pz · ∇Ũ − v · ∇̃U −Hp−1γŨ + D̃U := F̃U + D̃U . (3.30)

6Note that Ũ does not denote the perturbation.
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Each of the terms in F̃U vanishes to the third order at the origin. Notice that ρk = ρ0|z|2k, for k = 1, 2, 3.
Recall the definition of E1, E2 from (3.11). By Lemma 1, we have that

∥F̃U∥ρ0
≲ E2(1 + E0 + E1 + ∥∇̃W∥ρ0

) .

We can decompose the integral region into the near field I = [0, 1]d and the rest of the outer region Ic to
estimate

∥∇̃W∥ρ0 ≲ (

∫
z∈I

|z|ϵ−d)1/2 sup
z∈I

|∇̃W/|z|3|+ ∥∇̃W |z|∥ρ0 ≲ Γ + E1 .

Combined with Proposition 1, we have the residue estimate

|(F̃U ,Wρ0)| ≲ E2E0 . (3.31)

For the viscous term, we notice as in (2.16), we can write

D̃U = tr(QS̃1) , S1 = S11 + S12 + S13 + S14 .

We estimate the four terms respectively. We compute

∥S̃11∥ρ0 = ∥∇̃2U∥ρ0 ≲ 1 + ∥∇̃2W∥ρ0 ≲ 1 + Γ + E2 ,

where in the last inequality we use again the decomposition of the integral into the near and far fields. For
the remaining three viscous terms, we estimate similarly as follows:

∥S̃12∥ρ0
= 2|β|∥ ˜∇U∇ΘT ∥ρ0

≲ 2|β|∥∇̃W ∇̃ΦT ∥ρ0
+ (1 + Γ)2 ≲ Γ(Γ + E1) + (1 + Γ)2 ,

∥S̃13∥ρ0 = ∥ ˜U∇Θ∇ΘT ∥ρ0 ≲ ∥W̃ ∇̃Φ∇̃ΦT ∥ρ0 + (1 + Γ)3 ≲ Γ2(Γ + E0) + (1 + Γ)3 ,

∥S̃14∥ρ0 = ∥Ũ∇2Θ∥ρ0 ≲ ∥W̃ ∇̃2Φ∥ρ0 + (1 + Γ)2 ≲ Γ(Γ + E0) + (1 + Γ)2.

We can collect the viscous estimate by Proposition 1 and Assumption 1:

|(D̃U ,Wρ0)| ≲ E2(1 + E0 + E1 + E2 + Γ)3E0 ≲ E2(1 + E0 + EK)3E0 ≲ E2E0 . (3.32)

We thereby conclude the proof of Lemma 2 using (3.27), (3.29), (3.31), and (3.32).

One sees that we already have leading order damping in the L2 estimates. However, to close the nonlinear
estimates, we will need higher order estimates to control the L∞ norms.

3.3 H1 stability analysis of the phase

We consider the weighted H1 norm of the phase F 2
1 = (∇Φ,∇Φρ̊1) (3.4). We choose this norm since Φ does

not decay at the origin. We will show that the following lemma holds.

Lemma 3 (Weighted H1 estimate). Under the bootstrap assumption 1, it holds

1

2

d

dτ
F 2
1 ≤ −1

8
F 2
1 + C(EK−1 + E0)

2 + CE2F1 , (3.33)

for some absolute constant C > 0.

Proof. We have by (3.2) that

1

2

d

dτ
F 2
1 = (∇(−1

2
ΛΦ) +∇NΘ +∇FΘ +∇DΘ,∇Φρ̊1) .
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For the leading order linear term, we have via integration by parts that

(∂i(−
1

2
ΛΦ), ∂iΦρ̊1) = −1

4
(∂iΦ, ∂iΦρ̊1) .

Therefore we have the linear estimate

(∇(−1

2
ΛΦ),∇Φρ̊1) = −1

4
F 2
1 . (3.34)

For the nonlinear estimate, we again use Newton-Leibniz’s formula to get

NΘ = δ((Ū +W )p−1 − Ūp−1) = δ(p− 1)W

∫ 1

0

(Ū + αW )p−2dα . (3.35)

It is not difficult to see that ⟨z⟩σ+ ϵ−1
2 ∈ Hi for any i ≥ 0 since ϵ−1 < 0. Note that ρ̊1 (1.28) is locally integrable

and ρ̊1 ≲ ⟨z⟩σ+ ϵ−1
2 g1. Applying L∞ estimate for W, Ū + αW from Corollary 2, (3.13a) in Proposition 1, and

Proposition 3 (3.18) with W1 = ⟨z⟩σ+ ϵ−1
2 ,W2 =W, j1 = 0, j2 = 1, k = 1, we obtain

||∇NΘ||ρ̊1 ≲ ||∇NΘ||L∞(|z|≤1) + ||W1∇NΘ||g1 ≲ E0 + EK−1 + ||W1∇NΘ||ρ1

≲ E0 + EK−1 + ||W2||HK−1 ≲ E0 + EK−1.

We can collect the nonlinear estimate, via an AM-GM inequality as follows:

|(∇NΘ,∇Φρ̊1)| ≤ C∥∇NΘ∥ρ̊1F1 ≤ C(E0 + EK−1)
2 +

1

8
F 2
1 . (3.36)

For the residue estimate, we have

|(∇FΘ,∇Φρ̊1)| ≤ ∥∇FΘ∥ρ̊1
F1 ≲ E2(1 + F1 + ∥∇2Φ∥ρ̊1

)F1 ≲ E2F1 . (3.37)

For the viscous estimate, we have

|∇DΘ∥ρ̊1
≲ E2

(
∥∇

3U

U
∥ρ̊1

+ ∥∇
2U

U
∥ρ̊1

∥∇U
U

∥∞ + ∥∇U
U

∥∞∥∇2Θ∥ρ̊1

+ (∥∇
2U

U
∥∞ + ∥∇U

U
∥2∞)∥∇Θ∥ρ̊1 + 1 + F1 + ∥∇3Φ∥ρ̊1

)
.

(3.38)

To estimate the integral L2(ρ̊1), we apply L
∞ estimate in the region |z| ≤ 1 and (3.20) and ρ̊1 ≲ ⟨z⟩σ+ϵ/2g1 ≲

⟨z⟩σ+ϵ/2g2 to the region |z| ≥ 1:

||∇lU/U ||ρ̊1 ≲ ||∇lU/U ||L∞(|z|≤1) + ||⟨z⟩σ+ϵ/2∇lU/U ||g1 ≲ 1 + E0 + EK ≲ 1, l = 2, 3.

Applying (3.21) with (l,m) = (1, 0), (0, 0), we get

|∇l+1U/U | ≲ 1. (3.39)

As a consequence, we can simplify the viscous estimate as follows:

|∇DΘ∥ρ̊1
≲ E2(1 + F1 + ∥∇2Φ∥ρ̊1

+ ∥∇3Φ∥ρ̊1
) . (3.40)

Finally, since ρ̊1 is L
1 integrable and ρ̊i ≲ ⟨z⟩2i−2ρ̊1 (3.17), we can decompose the integral region into I = [0, 1]d

and the rest of the outer region Ic as in the L2 estimate of the amplitude to compute

∥∇lΦ∥ρ̊1 ≲ sup
z∈I

|∇lΦ|+ ∥∇lΦ|z|2l−2∥ρ̊1 ≲ Γ + Fl , ||∇lΘ̄||ρ̊1 ≲ 1, l = 2, 3 .

We use Proposition 1 and the bootstrap assumption (3.8) to further obtain

∥∇lΦ∥ρ̊1
+ ||∇Θ̄|ρ̊1

≲ 1 + F1 + FK ≲ 1.

Plugging in the estimate in (3.40) and combined with (3.34), (3.36), and (3.37), we establish Lemma 3.
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3.4 HK stability analysis

For the estimate at the highest order, we consider the weighted HK energies (3.4)

E2
K = (|∇KW |2, ρK) , F 2

K = (|∇KΦ|2, U2ρK) .

In this section, we will establish the following lemma.

Lemma 4 (Weighted HK estimate). Under the bootstrap assumption 1, we have

1

2

d

dτ
(E2

K + F 2
K) ≤ − ϵ

8
(E2

K + F 2
K) + µ0E1(EK + FK) (3.41)

for some absolute constant µ0 > 0.

3.4.1 Estimates of the amplitude

Recall the definitions of LŪ ,NU ,FU from (3.3). We have

1

2

d

dτ
E2

K = (∇K(LŪW ) +∇KNU +∇KFU +∇KDU ,∇KWρK) .

For the leading order linear term, we can calculate the damping similarly as in the L2 estimates. A direct
computation yields Ūp−1 ∈ Hi (1.27) for any i ≥ 0. Using the Leibniz rule, the product rule (3.14) in
Proposition 1 with i+ j = K, j ≤ K − 1,m = K − 1, n = i+ d, and gK ≈ ρK (1.28), (3.9), we yield

||∇K(Ūp−1W )− Ūp−1∇KW ||ρK
≲

∑
j≤K−1

∇K−j ||Ūp−1||Hi+d ||W ||Hj ≲
∑

j≤K−1

Ej ≲ E1.

Therefore, we can compute

∇K(LŪW ) = cŪ∇KW − 1

2

∑
i

zi∇K∂iW − K

2
∇KW + pŪp−1∇KW +O(RL ,K), ||RL ,K ||ρK

≲ E1.

We can calculate the damping similar to the L2 case as follows:

dK := − 1

p− 1
− K

2
+ pŪp−1 +

1

4ρK
∇ · (zρK)

=
p

p− 1 + cp|z|2
− 1

p− 1
− K

2
+
d+ (2K + 4

p−1 − ϵ)c1|z|
4

p−1−ϵ−d+2K

4(1 + c1|z|
4

p−1−ϵ−d+2K)
≤ − ϵ

8
,

where the last inequality holds for a sufficiently small c1, which we defer till (3.47) where we combine this
damping with the estimates of the nonlinear term in the phase equation.

For the nonlinear term, we use Netwon-Leibniz’s formula twice as in the L2 estimate (3.28), to derive

|(∇KNU ,∇KWρK)| ≲ sup
α∈[0,1]

(1− α)∥∇K(W 2(Ū + αW )p−2)∥ρK
EK .

Since ||f ||ρK
≲ ||f ||HK (1.28), (3.9), using the product estimate (3.19a) with (W1,W2) = (W,W ) and ||f ||HK ≲

E0 + EK (3.10), we obtain

|(∇KNU ,∇KWρK)| ≲ EK ||W ||HK ||W ||HK−1 ≲ EK(EK + E0)(E0 + EK−1) ≲ EKE1. (3.42)

Recall E2 from (3.11). For the residue term, we have via integration by parts that

|(∇KFU ,∇KWρK)|≲ E2(E2
K + EK + (|∇KW |2, |z · ∇ρK |+ |∇ρK |)) .

Since we have |∇ρK |⟨z⟩ ≲ ρK , we can conclude the residue estimate

|(∇KFU ,∇KWρK)| ≲ E2(EK + E2
K)≲ E1EK . (3.43)
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3.4.2 Estimates of the phase

We have

1

2

d

dτ
F 2
K =

(
∇K(−1

2
ΛΦ) +∇KNΘ +∇KFΘ +∇KDΘ,∇KΦU2ρK

)
+
(
LŪW + NU + FU + DU , U |∇KΦ|2ρK

)
.

Notice that the weight is time-dependent. We remark that it is essential to pair the two linear terms and
the two residue terms together to cancel out the leading order term via integration by parts. For the leading
order linear term, we have via integration by parts that

(∇K(−1

2
ΛΦ),∇KΦU2ρK) + (LŪW + NU , U |∇KΦ|2ρK) = (d̊K , |∇KΦ|2U2ρK) ,

where we can calculate the damping

d̊K =
−K
2

+
1

4ρK
∇ · (zρK)− 1

p− 1
+
Up

U
< dK + Up−1 − Ūp−1 .

Notice that by (3.28), (3.13a) in Proposition 1 with l = 0, and Corollary 2, we can further estimate

|Up−1 − Ūp−1| ≲ sup
0≤α≤1

|W (Ū + αW )p−2| ≲ (E0 + EK−1)(1 + EK + E0)
p+2) ≲ E1. (3.44)

For the residue term, similarly via integration by parts, we have

|(∇KFΘ,∇KΦU2ρK)|+ |(FU , U |∇KΦ|2ρK)|≲ E2(FK + F 2
K + (

∇ · ((Pz + v)ρK)

2ρK
, |∇KΦ|2U2ρK))

≲ E2(FK + F 2
K) ≲ E1FK ,

(3.45)

where the inequality is again by the fact that |∇ρK |⟨z⟩ ≲ ρK .
For the nonlinear term, using Newton-Leibniz’s formula (3.35), we obtain

|∇KNΘ| ≤ I0,K + C
∑

j≤K−1

I0,j , Ii,j = δ(p− 1) · ∇jW · ∇K−j(U + αW̄ ).

Applying (3.18) in Proposition 3 with (W1,W2, j1, j2, k) = (U,W, 0, j,K − j) and Ū ∈ Hi (3.16), we obtain

||UI0,j ||ρK
≲ ||U ||HK ||W ||HK−1 ≲ E0 + EK−1 ≲ E1.

Recall ρ̊K = U2ρK (1.28). For j ≤ K − 1, the above estimate implies

||I0,j ||ρ̊K
= ||UI0,j ||ρK

≲ E1, |(I0,j ,∇KΦρ̊K)| ≲ ||I0,j ||ρ̊K
FK ≲ E1FK . (3.46)

The term I0,K is trickier and we need to estimate by an AM-GM inequality:

((Ū + αW )p−2∇KW,∇KΦU2ρK) ≤ 1

2
∥(U 1

2 (Ū + αW )
p−2
2 ∇KΦ∥2ρ̊K

+
1

2
∥U 1

2 (Ū + αW )
p−2
2 ∇KW∥2ρK

,

where we pair one of U in U2 with ρ
1/2
K to get ρ̊

1/2
K . Applying U = (1 − α)W + Ū + αW , Newton-Leibniz’s

rule for (Ū + αW )p−1 − Ūp−1, Proposition 1 for W , and Corollary 2 for Ū + sW, s ∈ [0, 1], which are similar
to the estimate of NΘ (3.35), we obtain

U(Ū + αW )p−2 ≤ (Ū + αW )p−1 + C|W (Ū + αW )p−2| ≤ Ūp−1 + C sup
s∈[0,1]

|W (Ū + sW )p−2

≤ Ūp−1 + C(EK−1 + E0) ≤ (min{p− 1, cp})−1⟨z⟩−2 + CE1,
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where we extract a decay at the far field for the leading order term. We can calculate the damping

δ(p− 1)(min{p− 1, cp})−1⟨z⟩−2 + dK

≤ δ(p− 1)(p+ 1)

min{p− 1, cp}(1 + |z|2)
− 1

p− 1
− K

2
+
d+ (2K + 4

p−1 − ϵ)c1|z|
4

p−1−ϵ−d+2K

4(1 + c1|z|
4

p−1−ϵ−d+2K)
.

Recall the definition of K in (1.29) and similar to the L2 damping, we can use a weighted AM-GM inequality
to conclude for a sufficiently small positive c1, we have

(p− 1)δ(min{p− 1, cp})−1/2⟨z⟩−1/2 + dK ≤ − ϵ

8
. (3.47)

As a consequence, we collect the linear and nonlinear estimates of the phase, and the linear estimate of the
amplitude together as follows:(

∇K(LŪW ),∇KWρK

)
+
(
∇K(−1

2
ΛΦ + NΘ) +

LŪW + NU

U
,∇KΦU2ρK

)
≤ − ϵ

8
(E2

K + F 2
K) + CE1(EK + FK) . (3.48)

3.4.3 Estimates of the viscous terms

Finally, we estimate the viscous terms. The simpler term can be estimated as follows:

(DU , U |∇KΦ|2ρK) ≤ ∥DU

U
∥∞F 2

K ≲ E1FK . (3.49)

The last inequality is derived similarly to the H1 viscous estimates in (3.38), (3.39).
We group leading order viscous terms as follows and estimate them together:

(∇KDU ,∇KWρK) + (∇KDΘ,∇KΦU2ρK) ,

and we will use integration by parts to cancel out the leading order terms and extract damping. Recall the
definition of the viscous terms in (2.9). For any tensor f , we define

|f |2Q =
∑
i

(∇fi)TQ∇fi ,

where we sum over its scalar entry components fi.
Notice that |∇ρK | ≲ ρK . We compute the damping of the amplitude using integration by parts and the

Cauchy-Schwarz inequality as

(∇K∆QU,∇KWρK) ≤ CE1EK − (|∇KW |2Q, ρK) + C|Q|1/2∥∇KW∥ρK
∥|∇KW |Q∥ρK

≤ CE1EK − 1

2
(|∇KW |2Q, ρK) .

Using (3.13a) from Proposition 1 and (3.16), we get

|∇U | ≲ U, |∇(U2ρK)| ≲ |∇U |UρK + U2|∇ρK | ≲ U2ρK .

Similarly, we compute the damping of the phase as

(∇K∆QΘ,∇KΦU2ρK) ≤ CE1FK − 1

2
(|∇KΦ|2Q, U2ρK) .

For the four intermediate terms in the viscous terms

I1 = ⟨∇U,∇Θ⟩Q , I2 = U⟨∇Θ,∇Θ⟩Q , I3 =
⟨∇U,∇Θ⟩Q

U
, I4 = ⟨∇Θ,∇Θ⟩Q ,
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we can simply control their weighted norms using the diffusion term.
We consider the most challenging term I3. Using the Leibniz rule, (3.20) in Proposition 3, we obtain

||I3||ρ̊K
≲

∑
0≤i≤K

||I3,i||ρ̊K
, I3,i = (∇i∇U

U
,∇K−i+1Θ)Q.

For 1 ≤ i ≤ K − 1, applying (3.21) to ∇U/U if i ≤ K/2 + 1 < K − d− 1 and (3.12) to Θ if i > K/2, which
implies K − i+ 1 ≤ K/2 + 1 < K − d− 1, we obtain

|I3,i| ≲ |Q|(⟨z⟩−i|∇K−i+1Θ|+ ⟨z⟩−(K−i)|∇i(∇U/U)|).

Since i ≤ K − 1,K − i+ 1 ≤ K, using the estimate (3.17) for weights

ρ̊
1/2
K ≲ ⟨z⟩i−1ρ̊

1/2
K−i+1, ⟨z⟩−(K−i)ρ̊

1/2
K ≲ ρ̊

1/2
i ≲ ⟨z⟩σ+ϵ/2ρ

1/2
i ,

and (3.20), we obtain

||I3,i||ρ̊K
≲ |Q|(||∇K−i+1Θ||ρ̊K−i

+ ||⟨z⟩σ+ϵ/2∇i(∇U/U)||ρi) ≲ |Q| ≲ E1.

For I3,0, I3,K , we use the Cauchy-Schwarz inequality to compute that its ρK norm is bounded by

E1 + |Q|1/2(∥∇Θ∥∞∥|∇KW |Q∥ρK
+ ∥∇U

U
∥∞∥U |∇KΦ|Q∥ρK

) .

Similarly, we have the estimates for the other three viscous terms I1, I2, I4. Combined with (3.39), we can
use the Cauchy-Schwarz inequality to derive that(
− 2β∇K⟨∇U,∇Θ⟩Q −∇K(U⟨∇Θ,∇Θ⟩Q),∇KWρK

)
+

(
2∇K ⟨∇U,∇Θ⟩Q

U
− β∇K⟨∇Θ,∇Θ⟩Q,∇KΦU2ρK

)
≤ CE1(EK + FK) +

1

8
((|∇KW |2Q, ρK) + (|∇KΦ|2Q, U2ρK)) .

Finally, for the last two viscous terms, we use integration by parts to cancel out the leading order terms.
Applying estimates similar to the those for I3 in the above, we can extract the leading order terms, which
involve ∇K+2U or ∇K+2Θ,

−β
(
∇K(U∆QΘ),∇KWρK

)
= −β(U∆Q∇KΘ,∇KWρK) +O(E1EK) +

1

16
(|∇KΦ|2Q, U2ρK),

β
(
∇K ∆QU

U
,∇KΦU2ρK

)
= β

(∆Q∇KU

U
,∇KΦU2ρK

)
+O(E1FK) +

1

16
(|∇KU |2Q, ρK).

Now, we use U = Ū +W,Θ = Θ̄ + Φ and integration by parts to cancel out the leading order terms.

− (∇K∆QΘ,∇KWUρK) + (∇K∆QU,∇KΦUρK)

=− (∇K∆QΦ,∇KWUρK) + (∇K∆QW,∇KΦUρK) +O(E1(EK + FK))

=
∑
i,j

(
Qij(−∂i(∂j∇KΦ · ∇KW ) + ∂j(∂i∇KW · ∇KΦ)), UρK

)
≤CE1(EK + FK) +

1

16β
((|∇KW |2Q, ρK) + (|∇KΦ|2Q, U2ρK)) .

We notice that the remaining terms from integration by parts are controlled since |∇(UρK)| ≲ UρK .
Combining the viscous estimates with the estimates (3.42), (3.43), (3.45), and (3.48), we conclude the

proof of Lemma 4.
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3.4.4 Summary of the HK estimates

Using (3.12a), (3.12b) in Proposition 1, for any µ > 0, we obtain

E1 ≤ |Q|+Hp−1 + C(µ)(E0 + F1) + µ(EK + FK) + (E0 + F1 + EK + FK)2.

By Lemma 4, choosing µ < ϵ
16µ0

and then collecting (3.41), (3.33), and (3.25), we obtain that there exists a
sufficiently small constant 1 > ν1 > ν2 > 0, ν2 determined after ν1, such that for the energy

E2 = E2
K + F 2

K + 1/ν1F
2
1 + 1/ν2E

2
0 , (3.50)

the following estimate holds

1

2

d

dτ
E2 ≤ − ϵ

16
E2 + C(|Q|+Hp−1)E + CE3 , ⇐⇒ d

dτ
E ≤ − ϵ

16
E + µ1(|Q|+Hp−1) + µ1E

2 , (3.51)

for some absolute constant µ1 > 0. Here, the constant C would depend on ν1, ν2. Once we fix ν1, ν2, then C
becomes a fixed constant µ1. The estimate holds provided that Assumption 1 is valid.

3.5 Lower bound of the amplitude

We now prove the bootstrap Assumption 1 by estimating the lower bound of Uρ, for the weight ρ = Ū−1−ϵ2 .
We will proceed with a maximal principle argument and a barrier argument. Notice that

∇U =
∇(Uρ)− U∇ρ

ρ
, ∇2U =

∇2(Uρ)− U∇2ρ

ρ
− ∇(Uρ)∇ρT +∇ρ∇(Uρ)T − 2U∇ρ∇ρT

ρ2
.

We compute by (2.7) that

∂τ (Uρ) = PU (Uρ), PUf = A0f +A1 · ∇f + tr(Q∇2f). (3.52)

where the coefficients A0, A1 of the parabolic operator PU are:

A0 = cU −Hp−1γ + Up−1 + (
1

2
z + Pz + V) · ∇ρ

ρ
− ∆Qρ− 2β⟨∇ρ,∇Θ⟩Q

ρ
+ 2

⟨∇ρ,∇ρ⟩Q
ρ2

− ⟨∇Θ,∇Θ⟩Q − β∆QΘ ,

A1 = −(
1

2
z + Pz + V + 2

Q∇ρ
ρ

+ 2βQ),

Notice that Ū is the approximate steady state and |∇ρ|⟨z⟩ ≲ ρ. We can calculate the damping using the
nonlinear estimate (3.44) and Lemma 1 that:

A0 = O(E1)− ϵ2
z · ∇Ū
Ū

, A1 = −(
1

2
z + Pz) +O(E1), |P| ≲ E1.

Next, we define a barrier function F = Ū−4ϵ2 . Since |z · ∇F | ≲ F, |∇iF | ≲ F, i = 1, 2, we get

PUF = (O(E1)− ϵ2
z · ∇Ū
Ū

+
A1 · ∇F

F
)F + tr(Q∇2F )

= (O(E1)− ϵ2
z · ∇Ū
Ū

− 1

2

z · ∇F
F

)F = (O(E1)− (ϵ2 − 2ϵ2)
z · ∇Ū
Ū

)F = (O(E1) + ϵ2
z · ∇Ū
Ū

)F.

- For |z| ≥ 1, we derive by the form of Ū in (1.27) the lower bound − z·∇Ū
Ū

≥ µU,2 for some positive constant
µU,2 . Recall the definition of E1 (3.11) and E ≲ 1 from (3.50) and Assumption (3.8). Since |Q| ≲ tr(Q), for
some positive constant µU,1, we have

A0 ≥ µU,2ϵ2 − µU,1(tr(Q) +Hp−1 + E) , PUF ≤ (µU,1(tr(Q) +Hp−1 + E)− µU,2ϵ2)F. (3.53)

- For |z| ≤ 1, since ρ is bounded on the interval and we recall the definition of Γ (2.13), we can estimate

Uρ = Ū−ϵ2 +Wρ ≥ 4Cb − CΓ ≥ 4Cb − µU,3E , (3.54)

for some positive constant µU,3. Here we use the definition of Cb in Assumption 1.
Hence, by enforcing E, |Q|+Hp−1 sufficiently small, we will verify the following bootstrap assumption.
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Assumption 2.
A0 > 0, PUF < 0, |z| ≥ 1, Uρ > 2Cb, |z| ≤ 1. (3.55)

Now, we consider Ωc = Uρ+ cF for c > 0. From Corollary 2 and the choice of ϵ2, we obtain

Uρ ≲ ⟨z⟩σ+ϵ/2⟨z⟩−σ+ϵ/2 = ⟨z⟩ϵ, F = Ū−4ϵ2 ≳ ⟨z⟩8ϵ2/(p−1) ≳ ⟨z⟩2ϵ.

Under the assumption (3.55) and 1, for any c > 0, we have

Ωc(z) > 2Cb, |z| ≤ 1, lim
|z|→∞

Ωc = ∞.

Using the above estimates of PU , we get

∂τΩc = ∂τ (Uρ) = PU (Uρ+ cF )− cPUF = PUΩc − cPUF > PUΩc.

By choosing initial data with Uρ > 2Cb and then applying the maximal principle to the operator PU on
|z| ≥ 1, we obtain

Ωc > 2Cb, Uρ+ cF ≥ 2Cb, |z| ≥ 1.

Since c is arbitrary, taking c→ 0, we prove Uρ > 2Cb for |z| ≥ 1, which along with (3.55) for Uρ concludes
Uρ ≥ 2Cb,∀z ∈ Rd and strengthens (3.7) in Assumption 1.

In Section 3.6, we prove Assumption 2.

3.6 Bootstrap argument and blowup

In this section, we prove Theorem 3 by combining previous estimates and use a bootstrap argument.
Recall the ODE of Q from Lemma 1 and E0,Γ from (2.13)

Qτ = −(Qu +
1

2
Qd)Q−Q(QT

u +
1

2
Qd) +O(|Q|E0), E0 = |Q|(Γ + Γ4) +Hp−1. (3.56)

Since the parameters νi in the energy E (3.50) have been chosen as some absolute constants, under the
bootstrap assumption 1, we get

E ≲ 1, Γ ≲ E0 + EK ≲ E ≲ 1, E0 ≲ |Q|Γ +Hp−1 ≲ |Q|E +Hp−1. (3.57)

Taking trace on both side of (3.56) and then using Q = Qu +QT
u +Qd,

tr((Qu +
1

2
Qd)Q+Q(Qu +

1

2
Qd)

T ) = tr((Qu +
1

2
Qd +

1

2
Qd +QT

u )Q) = tr(Q2),

|Q| ≈ tr(Q), tr(Q2) =
∑

λ2Q,i ≥
1

d
(
∑

λQ,i)
2 =

1

d
(tr(Q))2,

where λQ,i is the eigenvalue of Q, and the above estimates, we get for a constant µ2:

∂τ tr(Q) ≤ −tr(Q2) + µ2(Etr(Q)2 +Hp−1tr(Q)) ≤ −1

d
(trQ)2 + µ2(E(trQ)2 +Hp−1tr(Q)). (3.58)

Recall cW from (2.4). To simplify the nonlinear estimates, in addition to bootstrap assumption 1, we
impose the following assumption

Assumption 3.

|cW | < 1

2
min((p− 1)−1, 1), E(τ) < min(

1

4dµ1
,

ϵ

32µ2
), (3.59)

where µ1 is the constant in (3.50). We denote

ϵ1 = µ2H
p−1, a(τ) = exp(µ2

∫ τ

0

Hp−1(s)ds), λ =
ϵ

32
. (3.60)
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Consequence of bootstrap assumptions. We perform the energy estimates under the assumptions (3.59)
and 1 and show that these estimates can be strengthened.

Using (2.2), (2.4), we obtain (p− 1)cU (s) = −1 + (p− 1)cW (s) ≤ − 1
2 and

Hp−1(τ) ≤ Hp−1(0) exp(

∫ τ

0

(p− 1)cU (s)ds) ≤ Hp−1(0) exp(−τ/2), −1

d
+ µ2E(τ) < − 1

2d
. (3.61)

We can solve the ODE of (tr(Q))−1 using the above estimate and (3.58) to obtain

∂τE
−1
Q ≥ 1

2d
− µ2H

p−1E−1
Q , EQ := tr(Q).

By choose Hp−1(0) small enough such that exp(2ϵ1) < 2, for any 0 ≤ s ≤ τ , we get

a(τ)a(s)−1 ≤ eϵ1
∫ τ
0

exp(−s/2)ds ≤ e2ϵ1 < 2, a(τ)−1a(s) >
1

2
, a(0) = 1.

Solving the above ODE, we yield

E−1
Q (τ) ≥ a(τ)−1E−1

Q (0) +
1

2d

∫ τ

0

a(τ)−1a(s)ds ≥ 1

2
(E−1

Q (0) +
1

2d
τ),

EQ(τ) ≤ min(2EQ(0), 4d/τ).

(3.62)

Using (3.59), the above estimates, and − ϵ
16 + µ1E < − ϵ

32 = λ (3.60), we obtain

d

dτ
E ≤ −λE + C(EQ +Hp−1(0)e−τ/2).

Solving the ODE and using (3.62), we obtain

E(τ) ≤ e−λτE(0) + C

∫ τ

0

e−λ(τ−s)(min(EQ(0),
1

s
) +Hp−1(0)e−s/2)ds,

where C is some absolute constant and can depend on ϵ, λ. Since λ < 1/2, by decomposing the integral into
s < τ/2 and s ≥ τ/2, we obtain

E(τ) ≤ e−λτ (E(0) + CHp−1(0)) + C
(
EQ(0)

∫ τ/2

0

e−λ(τ−s)ds+

∫ τ

τ/2

e−λ(τ−s) min(EQ(0), 1/τ)ds
)

≤ e−λτ/2(E(0) + µ3H
p−1(0) + µ3EQ(0)) + µ3 min(EQ(0), 1/τ)

(3.63)

for some absolute constant µ3 > 0.
Plugging the above estimates and (3.57) into Lemma 1, and using E ≲ 1 (3.59), we get for some µ4 > 0:

|cW (τ)| < C(EQ(τ) + EQ(τ)E(τ) +Hp−1(τ)) < µ4(min(EQ(0), 1/τ) +Hp−1(0)e−τ/2). (3.64)

Continuation of the bootstrap assumptions. For initial data satisfying

E(0) < E∗, EQ(0) < E∗, Hp−1(0) < E∗, (3.65)

with E∗ sufficiently small, we obtain from (3.62), (3.63), (3.64) the following estimates

E(τ) ≤ e−λτ/2E∗(1 + 2µ3) + µ3 min(E∗, 1/τ) < E∗(1 + 3µ3), EQ(τ) < 2E∗, |cW | < µ4E∗,

Hp−1(τ) ≤ Hp−1(0) < E∗, E(τ) + tr(Q) +Hp−1 < (4 + 3µ3)E∗.

Therefore, there exists ν3 > 0 such that for E∗ < ν3, the bootstrap assumption (3.59) can be strengthened
and continued. Plugging the above estimates into (3.53), (3.54) we obtain

A0 ≥ µU,2ϵ2 − µU,3(3µ3 + 4)E∗, PUF ≤ (µU,2(4 + 3µ3)E∗ − µU,2ϵ2)F, Uρ ≥ 4Cb − µU,3(1 + 3µ3)E∗.
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By further requiring E∗ to be sufficiently small, the Assumption 2 can be strengthened and continued.
The L∞ estimate in Section 3.5 strengthens (3.7) in the Assumption 1. Using the definition (3.50) and the
above estimate for E, we obtain

(E0 + EK + F1 + FK)(t) ≤ C(ν1, ν2)E∗,

which strengthens the first inequality in (3.8) in Assumption 1 by further choosing E∗ to be small enough.
For the second inequality in (3.8), applying the Jacobi’s formula d

dτ det(Q(τ)) = det(Q(τ))tr(Q−1 d
dτQ) to

(2.15) and using tr(AB) = tr(BA),Q = Qu +Qd +QT
u , we obtain

∂τ det(Q) = det(Q) · tr(−Q+O(E0)).

From the above estimates, |Q| and E0 remain uniformly bounded for all τ > 0. Since det(Q(0)) > 0, we
prove det(Q) ≥ det(Q(0))e−Cτ , which strengthens the second inequality in (3.8). This concludes the proof of
Theorem 3.

4 Refined asymptotics

In this section, building on Theorem 3, we obtain sharp asymptotics stated in Theorem 1. In Section 4.1,
we estimate the sharp blowup rates for the amplitude similarly as in [37]. In Section 4.2, we estimate
the asymptotics related to the phase and prove L∞ convergence. In Section 4.3, we combine Theorem 3,
Propositions 4 and 5 to prove Theorem 1.

4.1 Asymptotics of the amplitude and blowup rate

We use Oin and Cin to track any constant depending on the norm of the initial data tr(Q(0)), tr(Q−1(0)).
We have the following results for the asymptotics.

Proposition 4. Suppose that the initial data (U,Θ,Q, H) satisfy the assumption in Theorem 3. We have the
following asymptotics for the modulation parameters∣∣∣H(τ)p−1

T − t(τ)
− 1

∣∣∣ ≲ Cin⟨τ⟩−1, lim
τ→∞

τ

| log(T − t(τ))|
= 1, lim

t→T

R(t)√
(T − t)| log(T − t)|

= Id. (4.1)

We consider τ ≥ 2. Note that E∗ < 1. We focus on the asymptptics as τ → ∞ and the decay rate in τ .

Refined estimate of Q. By inserting (3.63) and (3.61) into (3.58), we get

∂τEQ ≤ −1

d
E2

Q + C((
1

τ
+ e−λτ/2)E2

Q + EQe
−τ/2) ,

for some absolute constant C > 0. Since EQ > 0, we arrive at the ODE

∂τE
−1
Q ≥ 1

d
− C(

1

τ
+ e−λτ/2)− CE−1

Q e−τ/2 .

By introducing the integrating factor a(τ) = exp(−CE∗
∫ τ

1
e−s/2ds), and using the fast convergence

|a(τ)/a(s)− 1| ≲ E∗e
−s/2, a(τ) ≥ e−CE∗ for 1 ≤ s < τ , we can solve the above ODE and obtain

E−1
Q ≥ 1

d
τ +O(log τ) + E−1

Q (2)e−CE∗ ≥ 1

d
τ +Oin(log τ).

Since tr(Q) =
∑
λQ,i, we know that

min(λQ,i) ≤
1

d
EQ ≤ 1

τ
+Oin(

log τ

τ2
). (4.2)

29



Next we estimate tr(Q−1). From (3.56), we have by (3.57) that

∂τ tr(Q−1) = d− 2tr(EQQ−1) ≤ d+ µ2(EEQ +Hp−1)tr(Q−1).

By the above estimates of EQ, and the same estimates of E and Hp−1 in (3.63) and (3.61), we have that for
sufficiently large τ , there exists a µ5 such that

∂τ tr(Q−1) ≤ d+
C

τ2
tr(Q−1).

We conclude that
tr(Q−1) ≤ dτ +O(log τ) + tr(Q−1(2)) ≤ dτ +Oin(log τ)

Using tr(Q−1) =
∑

i λ
−1
Q,i, we obtain

max(λQ,i) ≥
d

tr(Q−1)
≥ 1

τ
+Oin(

log τ

τ2
). (4.3)

Combining the above estimates, we obtain

tr(Q−1)tr(Q) ≤ d2 +Oin(
log τ

τ
).

Using tr(Qα) =
∑
λαQ,i, α = 1,−1, we derive

tr(Q−1)tr(Q) =
∑

λQ,i

∑
λ−1
Q,i = d2 +

∑
i<j

(

√
λQ,i

λQ,j
−

√
λQ,j

λQ,i
)2.

It follows (√λQ,i

λQ,j
−

√
λQ,j

λQ,i

)2

= Oin

( log τ
τ

)
, ∀i < j,

max(λQ,i)

min(λQ,i)
= 1 +Oin((

log τ

τ
)1/2).

Combining the above estimate with (4.2) and (4.3), we have that each one of the eigenvalue satisfies

λQ,i =
1

τ
+Oin(τ

−3/2
√

log τ) =
1

τ
+Oin(aτ ), aτ = τ−3/2+ϵ3 , ϵ3 =

1

10
.

Since Q is symmetric and Q(τ) = R(τ)ΛR(τ)T for Λ = diag(λQ,1, .., λQ,d) and some orthogonal matrix
R, which satisfies |R(τ)| ≤ C for C independent in τ , the above estimates further imply,

Q = R(τ)
(1
τ
Id +Oin(aτ )

)
R(τ)T =

1

τ
Id +Oin(aτ ). (4.4)

Estimate of R and blowup rate. Recall from (2.4), (2.5)

M = e−τ/2R−1, Q = Cp−1
W MMT = Cp−1

W e−τ/2R−1(e−τ/2R−1)T =MQM
T
Q , MQ := C

(p−1)/2
U R−1.

Note that R,M,MQ are upper triangular matrices. Due to MQ,ii(0) > 0 and the non-degeneracy 0 <
det(Q) = det(MQ)

2 =
∏
M2

Q,ii for all τ from (3.8), by continuity, we have MQ,ii(τ) > 0, which are the

eigenvalues of MQ,M
T
Q . For each real eigenpair (λ, v) of MT

Q with ||v||2l2 = 1, we obtain

λ2 = λ2||v||2l2 = vTMQM
T
Qv = vTQv = τ−1||v||2l2 +Oin(aτ ) = τ−1 +Oin(aτ ).

Since MQ,ii > 0 is a eigenvalue of MQ, we obtain

MQ,ii = τ−1/2(1 + τO(aτ ))
1/2 = τ−1/2 +O(τ1/2aτ ) = τ−1/2 +O((log τ)1/2/τ).
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Next, we estimate the strictly upper part of MQ: M
u
Q. Taking trace, we get∑

i ̸=j

M2
Q,ij = tr(MQM

T
Q)−

∑
i

M2
Q,ii = tr(Q)−

∑
i

M2
Q,ii = d/τ − d/τ +O(aτ ) = O(aτ )

which implies Mu
Q = O(a

1/2
τ ). Comparing the strictly upper part Q = (MQ,d +Mu

Q)(MQ,d +Mu
Q)

T , we get

Mu
QMQ,d = Qu − (MQ,uM

T
Q,u)

u = O(aτ ), Mu
Q = O(aτ )M

−1
Q,d = O(aττ

1/2).

Therefore, we conclude,

C
(p−1)/2
U R−1 =MQ =

1√
τ
Id +Oin(τ

1/2aτ ) =
1√
τ
Id +Oin(τ

−1+ϵ3). (4.5)

Using (2.2), we define the blowup time as T = t(∞). Using (2.2) for t(τ), Lemma 1 and (3.59) for cW ,
and (3.64), (3.6), (4.4) for tr(Q), E0, we obtain

tτ = Hp−1, (p− 1)cW =
µ5

τ
+Oin(aτ ), |(p− 1)cW | < 1

2
, aτ = τ−3/2+ϵ3 , µ5 =

2(1− βδ)dcp
p− 1

. (4.6)

Using (2.2), (2.4), for τ ≥ 2, s > 0, we obtain

Hp−1(τ + s)

Hp−1(τ)
= e−sF (τ, s), F (τ, s) := e(p−1)

∫ τ+s
τ

cW (z)dz.

Since |(p−1)cW (s)| < min( 12 , Cτ
−1), using |ex−1| ≲ |x|(ex+1), ∂sF (τ, s) = (p−1)cW (τ+s)F (τ, s), F (τ, 0) =

1, for 0 ≤ z ≤ s, we obtain

|F (τ, s)− 1| ≲ s/τ(F (τ, s) + F (τ, 0)) ≲ es/2s/τ,

|cW (τ + z)− µ5τ
−1| ≲ |(τ + z)−1 − τ−1|+ aτ ≲ zτ−2 + aτ ,

which implies

|cW (τ + z)F (τ, z)− µ5τ
−1| ≲ |cW (τ + z)(F (τ, z)− 1) + (cW (τ + z)− µ5τ

−1)| ≲ aτ + ez/2zτ−2 + zτ−2,

|F (τ, s)− 1− sµ5τ
−1| ≲ s max

0≤z≤s
|cW (τ + z)F (τ, z)− µ5τ

−1| ≲ es/2s2τ−2 + sτ−3/2+ϵ3 .

Therefore, integrating Hp−1(τ+s)
Hp−1(τ) for s from 0 to ∞ and using the above estimates, we get

T − t(τ)

Hp−1(τ)
=

∫ ∞

0

Hp−1(τ + s)

Hp−1(τ)
ds =

∫ ∞

0

e−sF (τ, s)ds =

∫ ∞

0

(1 + µ5sτ
−1)e−sds+Oin(τ

−3/2+ϵ1)

= 1 + µ5τ
−1 +Oin(τ

−3/2+ϵ1),

(4.7)

where we use
∫∞
0
se−sds = 1. Since (p− 1)cU = (p− 1)(c̄U + cW ) = −1 +O(τ−1), we further obtain

log(T − t(τ)) = (1 +O(τ)−1) log(Hp−1) = (1 +O(τ)−1)(Oin(1) +

∫ τ

0

(p− 1)cU ) = −τ +Oin(log(τ)). (4.8)

Combining (4.5), (4.7), (4.8), we prove (4.1) and Proposition 4.
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4.2 Asymptotics of phase and L∞ convergence

In this section, our goal is to prove the following convergence.

Proposition 5. Suppose that the initial data (U,Θ) satisfy the assumption in Theorem 3. We have

|U(z, τ)eı(Θ−A(τ)) − Ū1+ıδ| ≲ min(⟨z⟩σ+ϵ/2⟨τ⟩−ϵ, ⟨τ⟩max(−1,2σ)). (4.9)

where A(τ) satisfies the following estimate for some constant Cin depending on the initial data

|A− Ā| ≤ Cin, A(τ) :=
δ

p− 1
τ +Φ(τ, 0), Ā(τ) := −δ log(T − t(τ))

p− 1
− dβ(1 + δ2) log | log(T − t(τ))|

2♭∗
.

(4.10)

Proof. We will first estimate Φ(0) and then prove convergence.

Estimate of Φ(0). Firstly, we compute Aτ , Āτ . Using (3.2), we perform similar computations to the proof
of Lemma 1 to compute that

Φτ (0) = −v · ∇Φ(0) + DΘ(0) = O(E0) + (β + δ)
κ2
κ0

tr(Q) .

Applying (4.4) and the estimates (3.6), (3.57) for E0, we yield

Aτ (τ) =
δ

p− 1
− d(β + δ)

2♭∗τ
+Oin(τ

−3/2+ϵ1), Āτ (τ) =
δ

p− 1

tτ
T − t

− dβ(1 + δ2)tτ
2♭∗| log(T − t)|(T − t)

.

Using tτ = Hp−1 (4.6), (4.7), and (4.8), we yield

tτ
T − t(τ)

=
Hp−1

T − t(τ)
= 1− µ5

τ
+Oin(τ

−3/2+ϵ1),
tτ

(T − t) log(T − t)
=

1

τ
+Oin(log(τ)τ

−2).

Using the definition of µ5 (4.6), cp (1.27), we conclude

Aτ − Āτ = (−d(β + δ)

2♭∗
+

µ5δ

p− 1
+
dβ(1 + δ2)

2♭∗
)
1

τ
+Oin(τ

− 3
2+ϵ3)

=
δ

τ
(
2(1− βδ)dcp

(p− 1)2
− d(1− βδ)

2♭∗
) +Oin(τ

− 3
2+ϵ3).

The first term vanishes due to (1.27) for cp. Since the error term is integrable in τ ≥ 2, we conclude the
asymptotics of the phase (4.10).

L∞ convergence. Recall Θ = Θ̄ + Φ (2.4). Integrating (3.13b) with l = 1, we obtain

|Φ(z)− Φ(0)| ≲
∫ 1

0

|∇Φ(tz)|dt ≲ E

∫ 1

0

⟨tz⟩−1/2dt ≲ E⟨z⟩1/2. (4.11)

Using U = Ū +W (2.4), we decompose

J := Ueı(Θ−Θ̄−Φ(0)) − Ū = Ueı(Φ−Φ(0)) − Ū =Weı(Φ−Φ(0)) + Ū(eı(Φ−Φ(0)) − 1) = I + II.

Appyling (3.13a) to I, (4.11) and |eıx − 1| ≲ min(|x|, 1) to II, and E ≲ ⟨τ⟩−1 (3.6), we prove

|J | ≲ ⟨z⟩σ+ϵ/2E + ⟨z⟩σ min(E⟨z⟩1/2, 1) ≲ min(⟨z⟩σ+ϵ/2(E + Eϵ), E + E−2σ)

≲ min(⟨z⟩σ+ϵ/2⟨τ⟩−ϵ, ⟨τ⟩max(−1,2σ)).

Since Θ−Θ̄−Φ(0)+δ log Ū = Θ−A(τ) (1.27) and (4.10), we get U ıδJ = Ueı(Θ−A(τ))−Ū1+ıδ. Since |U ıδ| = 1,
the above estimate conclude the proof of (4.9).
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4.3 Proof of Theorem 1

In this section, we prove Theorem 1 with the open set O prescribed in Remark 1.

Verification of assumptions in Theorem 3. We first choose ν < 1 in (1.15) for Theorem 1. Following
the proof of Corollary 2, we obtain U0 ≲ ⟨z⟩σ+ϵ/2. Using the definitions (3.4) and (1.16) of FK and F̄K, and
(1.28), we get

ρ̊K = ρKU
2 ≤ C⟨z⟩2σ+ϵρK ≥ C(1 + |z|−d−2K), FK ≤ C∥Φ∥F̄K

.

From (1.6), (3.50), we obtain E ≤ CEin. By choosing ν = cE∗ in (1.15) with c > 0 sufficiently small, the
assumptions (1.15) implies the assumptions (3.5) in Theorem 3 except for EQ < E∗. Using the definitions of
M0, H(0) (1.13) R0,Q (2.5), and CW (0) = H(0) (2.4), we obtain

tr(Q(0)) = H(0)p−1tr(MMT ) = H(0)p−1tr(MTM) = Cu0(V0)
−ptr(∇2u0(V0))

for some absolute constant C. Therefore, by further choosing c small in µ = cE∗, we obtain |EQ| < E∗ from
the last assumption in (1.15). We verify the assumptions in Theorem 3 and can use the results in Theorem
3, and Propositions 4 and 5.

For the time t in Theorem 1, we use the change of variables t = t(τ) (2.2). Then we only need to prove
Theorem 1 in terms of the self-similar time τ .

Proof of estimates (1.9), (1.12). Using Theorem 3, we obtain the estimates (3.6), which along with the
relation between (U,Θ), (u, θ) and W = U − Ū,Φ = Θ− Θ̄ prove (1.9) in Theorem 1.

To obtain (1.12) and (1.11), we choose µ(t(τ)) = A(τ), µ̂(t) = A(τ)− Ā(τ). Using Θ−A = Θ− Ā− µ̂ and
the formula of Ā (4.10), we obtain

J : = | log(T − t)|ı
dβ(1+δ2)

2♭∗ (T − t)
1+ıδ
p−1 ψ(R(t)z + V(t), t)e−ıµ̂(t) = (T − t)

1
p−1H−1U(z, τ)eı(Θ(z,τ)−Ā−µ̂)

= (T − t)
1

p−1H−1U(z, τ)eı(Θ(z,τ)−A(τ)).

We denote
J2 = U(z, τ)eı(Θ(z,τ)−A(τ)).

Using the limits H(τ)/(T − t)1/(p−1) → 1 and τ/| log(T − t(τ))| → 1 as τ → ∞ (4.1), and the estimate
(4.9), we prove

|J − Ū1+iδ| ≲ |(T − t)
1

p−1H−1 − 1| · |Ū1+iδ|+ (T − t)
1

p−1H−1|J2 − Ū1+iδ|
≲ Cin(1 + τ)η ≲ Cin(1 + | log(T − t(τ))|)η,

where η = max(−1, 2σ).

Proof of rates (1.10), (1.11). Next, we show that V (τ) converges as τ → ∞ in (1.10). From Lemma 1 for
V, the decay estimates for Q, E in Theorem 3, and R(τ) → 0 as τ → ∞ in Proposition 4, we obtain

|R(τ)V(τ)| ≲ (1 + τ)−2.

Since the upper bound is integrable in τ , using |V̇ (τ)| = |R(τ)V(τ)| (2.5), we prove that V (τ) converges as
τ → ∞. The asymptotics (1.11) follows from the definition of µ and (4.1).This ends the proof of Theorem 1.

4.4 Proof of Theorem 2

To prove Theorem 2, we only need to show that for ϵ0 = ϵ0(u0), assumption (1.17) implies that ũ0 is in the
open set O in Theorem 1.
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Estimates of Ṽ0,M̃0, H̃0. Since V0 is the unique maximizer and ∇2u0(V0) ≻ 0, for δ1 sufficiently small, we
obtain that ũ0 admits a global non-degenerate maximizer Ṽ0 close to V0

7 with |V0−Ṽ0| → 0 as ||ũ0−u0||L∞ →
0. Using embedding (3.13a) in Proposition 1, we obtain

||u0 − ũ0||C2 ≲ ||u0 − ũ0||HK .

Denote
δ1 := ||u0 − ũ0||HK , δ2 := |V0 − Ṽ0|.

Using continuity and the above embedding, we obtain

lim
ϵ0→0

|Ṽ0 − V0| = lim
ϵ0→0

δ2 = 0, |ũ0(Ṽ0)− u0(V0)| ≲ δ1 + δ2, |∇2ũ0(Ṽ0)−∇2u0(V0)| ≲ δ1 + δ2. (4.12a)

Upon choosing ϵ0 > 0 small, we can define the initial modulation parameters (1.13) H̃0,M̃0 associated
with ũ0 and obtain

lim
ϵ0→0

|M̃0 −M0|+ |H0 − H̃0| = 0. (4.12b)

We denote by Ũ0 the rescaled variables for ũ0:

Ũ0 = H̃0ũ0(M̃−1
0 z + Ṽ0). (4.13)

Verification of assumptions. We show that (ũ0, Ũ0) satisfies assumptions (1.15). The implicit constants
can depend on u0.

Firstly, assumptions (1.8), (1.15) for ũ0 except for

Ũ0Ū
−1−ϵ2 > 2Cb (4.14)

follow from continuity and choosing δ1 small. Condition (4.14) follows from the assumption (4.14) for U0,
(1.17), the triangle inequality, and choosing ϵ0 small.

Next, we verify (1.16) for Ũ0, i.e.
||Ũ0 − Ū0||EK

< ν. (4.15)

Using the definition (4.13), we decompose Ũ0 − Ū as follows

Ũ0 − Ū = H̃0

(
ũ0(M̃−1

0 z + Ṽ0)− u0(M̃−1
0 z + Ṽ0)

)
+
(
H̃0u0(M̃−1

0 z + Ṽ0)− Ū0

)
:= J1 + J2. (4.16)

For J1, using a change of variable, (4.12a), the assumption (1.17) for u0 − ũ0, and the embedding (3.13a),
we obtain

||J1||HK ≲ ||u0 − ũ0||HK ≲ ϵ0, lim
ϵ0→0

max
|z|≤1

|∇iJ1| = 0, for i = 0, 1, 2, 3. (4.17)

Denote H1 = H̃0H
−1
0 ,M1 = M0M−1

0 , V1 = M0(Ṽ0 − V0). For J2, using u0(z) = H−1
0 U0(M0(z − V0))

(1.13) and a change of variable, we obtain

J2 = H̃0H
−1
0 U0(M0M−1

0 z +M0(Ṽ0 − V0))− Ū0 = H1U0(M1z + V1)− Ū

= H1(U0 − Ū)(M1z + V1) +
(
H1Ū(M1z + V1)− Ū

)
:= J21 + J22.

From (4.12b), we obtain that M1 − 1 = o(1), H1 − 1 = o(1), V1 = o(1). Since ||U0 − Ū0||EK
< ν, by

choosing ϵ0 small enough, we yield
||J21||EK

< ν. (4.18)

Using the smoothness of Ū and the embedding (3.13a), we obtain

lim
ϵ0→0

||J22||HK + max
|z|≤1,i≤3

|∇iJ22| = 0. (4.19)

7Since for any δ > 0, there exists a r > 0, such that u0(V0) > u0(V0 + z) + δ, |z| > r, we obtain |Ṽ0 − V0| < r when δ1 < δ/2.
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Next, we show that for f with ∇jf(0) = 0, j ≤ 2 and i ≤ K, we have

||∇if ||ρi ≲ ||f ||HK . (4.20)

Using the definition of (1.28) ρK , EK (3.4), gk,HK (3.9), and embedding (3.13a), for f with ∇jf(0) =
0, j ≤ 2, we have

||∇if ||ρi
≲ ||∇3f ||L∞ || |x|3−i1|x|≤1||ρi

+ ||∇if ||gi ≲ ||f ||HK , i ≤ 3,

||∇if ||ρi
≲ ||∇if ||L∞ ||1|x|≤1||ρi

+ ||∇if ||gi ≲ ||f ||HK , i ≤ (d+ 5)/2.

For d+5
2 < i ≤ K, ρi and gi are equivalent and (4.20) follows from (3.12c). From the definition of Ũ0 and

Ji, for l ≤ 2, i = 1, 2, we obtain ∇lJ21(0) = 0,∇l(J1 + J22)(0) = 0. Applying (4.20), we obtain

||J1 + J22||EK
≲ ||J1 + J22||HK ,

which goes to 0 as ϵ0 → 0. Since the inequality (4.18) is strict, for ϵ0 small enough, we prove (4.15). Condition
(1.16) follows from a similar argument, we conclude the proof of Theorem 2.
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