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A mathematical model is proposed for shape evolution and locomotion of fish
epidermal keratocytes on elastic substrates. Themodel is based onmechanosen-
sing concepts: cells apply contractile forces onto the elastic substrate, while cell
shape evolution depends locally on the substrate stress generated by themselves
or external mechanical stimuli acting on the substrate. We use the level set
method to study the behaviour of the model numerically, and predict a
number of distinct phenomena observed in experiments, such as (i) symmetry
breaking from the stationary centrosymmetric to thewell-known steadily propa-
gating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves
in the lamellipodium leading edge, (iii) response to remote mechanical stress
externally applied to the substrate (tensotaxis) and (iv) changing direction of
motion towards an interface with a rigid substrate (durotaxis).
1. Introduction
It has long been known that various types of biological cells exert forces that
substantially deform their surroundings, such as the elastic substrate they
crawl on, or the extracellular matrix they are embedded in [1–4]. It is also recog-
nized that cells sense deformations or stresses that they themselves generate
[5,6], or that are caused by external factors, and that they also sense the stiffness
of the substrate [7]. These activities are known as mechanosensing (see [8], for a
review), and they facilitate some important modes of cell migration or evol-
ution: tensotaxis [9], the movement or protrusion towards regions of higher
tensile stress, and durotaxis [10], the tendency to move towards regions of
higher stiffness. These processes play a key role in wound healing, fibrosis,
tumour formation and cancer metastasis [11]. Mechanosensing has been
studied in the context of shape regulation and multi-cell interactions [5,12–15].

The cells whose mechanosensing behaviour has been studied the most are
fibroblasts [1,10,16]. More recently, it was determined that fish epidermal kerato-
cytes also exert strong contractile forces on their elastic surroundings, to the extent
that they can cause a sufficiently thin and compliant elastic substrate to wrinkle
[3]. Keratocytes are well known for their persistent, high-speed, steady locomotion
while maintaining a characteristic crescent-like shape that is quite different from
their stationary round configuration, e.g. [17,18]. Because of this, they have
served as a model system for the study of cell locomotion on substrates of various
types, through experiments [3,18–20] and theoretical modelling [21–26].

Theoretical models of keratocyte locomotion have largely focused on
detailed biophysical and biochemical processes within the cell, governing
spatial concentrations of constituents such as actin, myosin and adhesion
complexes [23,24], but have rarely considered mechanosensing [25–27].
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Here, we adopt an alternative approach: we propose a
mathematical model for the evolution of keratocytes on elastic
substrates that is entirely based on hypotheses of active
mechanosensing. The model is intentionally minimal in
describing processes within the cell, focusing instead on
purely mechanical interaction of the lamellipodium with the
substrate, through active force generation, passive stress detec-
tion and active response to stress sensing via local shape
evolution. The proposed mechanism of cell evolution is a feed-
back loop: the lamellipodium applies tractions onto the elastic
substrate; the resulting stress field in the substrate depends on
the instantaneous shape of the cell, while the evolution of the
cell shape depends on the substrate stress, closing the feedback
loop. The new hypothesis we make is that the shape of the cell
evolves according to a local evolution law. Specifically, at each
point on the lamellipodium boundary, the normal boundary
velocity is determined by the local stress state of the substrate,
in a way that favours local protrusion under tension and
retraction under compression.

We model the substrate as a linear elastic thin sheet in a
state of plane stress [28], as in experiments on compliant sili-
cone sheets [3,29,30] that facilitated visualization of substrate
deformation caused by keratocyte-applied tractions.

We assume a centripetal retrograde velocity field in the
lamellipodium, representing actin flow. While appropriate for
static keratocytes [18], which are round in shape, this assump-
tion is less accurate for locomoting keratocytes [18]. In
accordance with experimental observations [18,31], we thus
include a generalization, where the velocity field is polarized
in the direction of motion.

Tractions applied onto the substrate by the cell are
assumed proportional to the actin velocity field relative to
the substrate. This results in a stress field that is determined
by the shape of the lamellipodium through elastic equilibrium.
The motion of the lamellipodium boundary is determined by a
competition between retrograde actin velocity and the actin
polymerization speed normal to the boundary. We assume
that at each boundary point, this speed is equal to a function
of the component of the substrate stress normal to the lamelli-
podium boundary. While the structural mechanism behind
this is not clear, we note that actin fibres are known to act as
tension sensors [7,32–34], while formins control actin polymer-
ization rate in a mechanosensitive, tension-dependent way
[35], affected by external mechanical disturbances [36]. This
could point towards a link between polymerization speed
and substrate tension. For an alternative viewpoint, see [37].

Given the shape of the lamellipodium, the normal vel-
ocity of its boundary is determined at each point. This
determines the evolution of the lamellipodium shape through
a Hamilton–Jacobi equation, coupled to the elastic equili-
brium equation. The resulting mathematical problem is
amenable to numerical simulation via the level set method
[38–40] which has been applied to cell evolution [23,41]. In
addition to the substrate stress field, the evolving shape of
the lamellipodium is the main output of the model.

Despite its simplicity, the model predicts multiple differ-
ent modes of locomotion behaviour, owing to its rich
bifurcation response. These include symmetry breaking
from the stationary centrosymmetric to the well-known stea-
dily propagating crescent shape as observed [18]. We show
how mechanosensitive coupling between cell shape evolution
and substrate stress acts as a feedback loop to bring about the
symmetry breaking necessary for locomotion. Asymmetric
bipedal oscillations seen in experiments [42] and travelling
waves in the lamellipodium leading edge [31,43] occur in
model simulations. These results suggest that the mechanism
here is further symmetry breaking caused by actin flow polar-
ization. In addition, simulated cells exhibit tensotaxis, or
motion towards mechanical tension externally applied to
the substrate (seen in human keratinocytes [44]), and away
from compression, as observed in lamellipodium fragments
without a nucleus [17]. The model also exhibits durotaxis,
or turning towards an interface with a rigid substrate as
observed in various locomoting cells [45].
2. Methods
We model fish epidermal keratocytes crawling on a thin deform-
able planar substrate. We assume that the latter is composed of
linear elastic homogeneous isotropic material undergoing small
in-plane deformations. The linear theory of elasticity is used;
out-of-plane displacements are neglected, while all forces are
assumed to act in the plane. As in [29], we assume plane stress
for the substrate, which allows us to reduce the description to
that of a two-dimensional (2D) medium that occupies the
entire plane [28]; see plane stress in electronic supplemen-
tary material. The time-dependent displacement vector field is
u = u(x, t), where x is position vector in the plane and t is time.
The 2D stress tensor (thickness resultant of the 3D stress, i.e.
electronic supplementary material, eqn (2)) is related to the
thickness-averaged, in-plane displacement gradient

S ¼ �l(r � u)I þ �m(ruþruT), (2:1)

in the isotropic case considered here, where �l . 0 and �m . 0 are
the surface-Lamé constants (see plane stress in electronic
supplementary material) and I the identity tensor.

The cell is modelled as a time-dependent region Ωt in the
plane. The cell interacts with the substrate by exerting forces
on it. This occurs mostly in the lamellipodium, while the part
of the cell body around and under the nucleus need not even
be in contact with the substrate [20]. Accordingly, Ωt represents
the lamellipodium only. Forces exerted by the lamellipodium
onto the substrate are assumed to be in-plane; they are due to
retrograde actin flowwithin the cell caused bymyosin contraction
pulling at radial actin fibres; e.g. [18]. The actin exerts a force onto
the substrate through drag and/or adherence to focal adhesions
that are attached to it [46]. For stationary cells, there is evidence
[18,47,48] that the actin network within the cell arranges itself
radially from the centroid of the cell and exerts centripetal tractions
onto the substrate [3]. For fibroblasts on elastic substrates, this
occurs independently of shape [48]. Stationary keratocytes
assumeadisk shape; the lamellipodium is approximatelyan annu-
lus surrounding the nucleus. The direction of the actin flow
velocity is radially inward towards the cell centre [18] and the
magnitude increases with distance from the centroid.

We generalize this for moving cells. We assume that the actin
velocity relative to the substrate is radially inward towards a
point x0(t) travelling with the cell, and its magnitude increases
linearly with distance from x0(t). Thus the actin velocity in the
substrate frame is

vs(x, t) ¼ �g(x� x0(t)),

for x in Ωt, where the actin velocity coefficient γ > 0 is a constant.
In the cytoskeleton, myosin motors contract the actin fibres

and pull them backwards towards the nucleus and perinuclear
region. This retrograde flow causes actin to drag against the
adhesion complexes, inducing a frictional drag force against the
substrate, which is frequently modelled as a viscous drag force
[23,31,49]. We follow this approach here and model the traction
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exerted onto the substrate by the keratocyte lamellipodium (due to
viscous actin dragging against the substrate) as a viscous drag
force per unit area b = ζvs, where ζ > 0 is a drag coefficient. The
drag coefficient ζ is taken to be a constant, as in [31,49]. This
means we assume a spatially uniform adhesion strength. This is
more justifiable for keratocytes studied here, compared to fibro-
blasts. Focal adhesions are discrete and strong in fibroblasts [50],
causing corners in their shape and restrictions to mobility, but
much weaker, diffuse and uniform in keratocytes (smooth
shape, fast uniform motion). To quote [51] ‘perhaps the main
reason for the different shape of keratocytes and fibroblasts is
the nature of adhesions in these cells. In keratocytes, discrete
strong adhesions play a minor role, whereas in fibroblasts their
role is significant, disrupting the coherent protrusion of the actin
network.’ In view of this, we assume a uniform adhesion strength,
leading to a constant drag coefficient ζ [23,49]. As a result the drag
force per unit area is

b(x, t) ¼ �KxVt
(x)(x� x0(t)), (2:2)

where K = γζ and xVt
(x) ¼ 1 for x in Ωt and 0 outside Ωt is the

characteristic function of Ωt.
The total external traction force per unit area acting on the cell

is −b(x, t), the reaction exerted by the substrate. Both cell loco-
motion speeds and actin flow speeds are typically less than
0.5 μm s−1, whereas elastic wavespeeds of some of the softest sub-
strates used in experiments can be estimated to be of the order of
metres per second from modulus measurements [30]. In addition,
within the cell inertia effects are negligible compared to viscous
forces, with the extremely small Reynolds numbers prevalent in
cell biology [22]. Therefore, the process is essentially quasi-static
both for the substrate and the cell, and equilibrium is assumed
to hold. The total force acting on the cell must vanish, namely

ð
Vt

b(x, t) dx ¼ 0: (2:3)

In view of (2.2), this dictates that x0 ¼ �x, the cell centroid, given by

�x ¼ �x(t) ¼
Ð
Vt
xdxÐ

Vt
dx

, (2:4)

as first observed in [47]. This implies

vs(x, t) ¼ �g(x� �x), (2:5)

so that

b(x, t) ¼ �KxVt
(x)(x� �x(t)) ¼ zvs(x, t): (2:6)

A generalization of (2.6) is motivated by observations [18,31] of the
actin velocity field of locomoting keratocytes, which loses radial
symmetry and becomes polarized in the direction of cell motion
[18]. We include this variation of actin velocity in our model in a
phenomenological yetminimal form.We assume that at a givendis-
tance from the centroid, the actin velocity in the cell frame is more
pronounced in the direction of motion than in the perpendicular
direction, by a factor depending on the cell centroid velocity
�v ¼ _�x. We still assume that vs is linear in x− x0, but withmagnitude
that is larger in the direction �v of cell motion

vs ¼ �g(I þ e�v� �v)(x� x0), (2:7)

where the actin velocity coefficient γ > 0 and polarization coefficient
e≥ 0 are constants. In a basis with vectors along, and normal to, the
direction of cell motion, the matrix I þ e�v� �v takes the form

I þ e�v� �v ¼ 1þ ej�vj2 0
0 1

� �
:

Thus the velocity component along the direction of cell motion
is amplified by a factor 1þ ej�vj2 compared to the radially
symmetric actin velocity field. When �v ¼ 0, or for the choice
e = 0, the velocity field (2.7) reduces to the radially symmetric
one, (2.5). Cell equilibrium (2.3) with b = ζvs and vs given by (2.7)
determines

b(x, t) ¼ �xVt
(x)K(I þ e�v� �v)(x� �x): (2:8)

The substrate experiences an in-plane traction force (per unit
substrate area) equal to b(x, t) on its top surface, representing
tractions exerted by another body (the cell) in contact with it.
Assuming plane stress conditions [28] and performing a stan-
dard thickness average of the three-dimensional equilibrium
equations (see plane stress in electronic supplementary material)
for the substrate, we find,

r� S(x, t)þ b(x, t) ¼ 0, (2:9)

Here, S is the two-dimensional stress (i.e. electronic supplemen-
tary material, eqn (2)) acting in the plane of the substrate. It is
related to the thickness-averaged substrate displacement via
(2.1), while b is traction force per unit area exerted by the cell
onto the substrate and h is the substrate thickness.

A central ingredient of our model is the evolution law that
governs the motion of the lamellipodium boundary curve Ct. It
is based on the notion that cells can detect stress in the substrate
(mechanosensing) [32] and make local adjustments to their shape
accordingly.

In order to characterize the moving curve Ct, it suffices to
specify its normal velocity Vn(x, t) at each x∈Ct and time t. To
begin with, we follow previous models [22,26,52] in assuming

Vn ¼ vs � nþ vp on Ct: (2:10)

Here, it is assumed that actin filaments polymerize at the boundary
with outward normal speed vp but also flow inwards with velocity
vs whose normal component is vs · n. Thus the net normal bound-
ary velocity Vn is the excess of the polymerization speed vp over
the retrograde inward actin flow speed in the direction normal to
the cell boundary. It remains to characterize the polymerization
speed vp. A point of departure from other models of keratocyte
evolution [21–26] is the incorporation of mechanosensing in a con-
stitutive relation for vp. In particular, we hypothesize that the actin
polymerization speed depends on the substrate stress.

In order to identify a possible structural mechanism behind
this hypothesis, we observe that actin fibres are known to act
as tension sensors [7,32,33]; also cyclic variations in the assem-
bly/disassembly rate of actin are synchronous to traction
fluctuations at focal adhesions [34]. A more direct link between
polymerization speed and substrate tension may be provided
by formins, proteins that play a major role in actin polymeriz-
ation. Experiments have shown that formins control the
polymerization rate of the actin filaments in a mechanosensitive
manner, i.e. the polymerization rate depends increasingly on the
local state of tension force [35]. In addition, mechanical forces
exerted onto the cell membrane, or stretching the substrate,
affected formin-controlled polymerization rate [36]. Through
cell-substrate adhesions, substrate stress is transmitted to the
lamellipodium membrane, while formins anchor the barbed
ends of actin filaments to the membrane [33] at the leading
edge. Substrate stress in the vicinity of the leading edge is thus
likely to affect the polymerization rate through mechanosensitive
formins, providing plausibility to the mechanism proposed here.

In previous models, the polymerization speed vp is some-
times assumed to be constant [52], or a function of one of the
concentrations within the cell, for example G-actin or myosin
[23]. Here, we follow a different approach and link polymeriz-
ation speed to substrate stress. We include two contributions:

vp ¼ G(n � Sn)þ L 1� A(t)
A(0)

� �
on Ct: (2:11)

The rationale behind the first term in (2.11) is as follows. We
make a mechanosensing hypothesis, which we refer to as local
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tensotaxis: the lamellipodium boundary tends to protrude locally
in areas of tension and recede in areas of compression. This is
motivated by a global tensotaxis behaviour: cells are known to
move away from regions of compressive stress [53], in addition
to favouring tensile stress [10]. Since stress S, being a tensor,
can be both compressive and tensile at the same point (in differ-
ent directions) we must clarify the precise meaning of tension
and compression. On an isotropic substrate, there are no other
special directions, except the lamellipodium boundary unit
normal n. It is thus reasonable to choose the component of
stress in this normal direction, n · Sn, as the one related to the
polymerization rate. An obvious choice would be a linear
relation between normal polymerization velocity and normal
tension, however, we require the velocity to remain bounded as
cells seem to move with bounded speeds on substrates, rarely
exceeding a few micrometres per second, so it is reasonable to
assume instead a relation that saturates for large values of
tension. Thus in (2.11), we choose

G(z) ¼ b
z

s0 þ jzj , (2:12)

which is an odd, increasing function that remains bounded for large
values of its argument, with β a positivemobility coefficient and σ0 a
constant with dimensions of stress. Accordingly, apart from the
second term in (2.11), vp changes signs depending on whether the
normal stress component n · Sn is tensile or compressive.

The second term in (2.11) is a penalty term that tends to
maintain the area A(t) of Ωt constant (Λ =const. > 0). Here, we
follow common practice in enforcing essentially constant area
[23,26,31]. This is supported by experiments; Keren et al. [21]
found that ‘projected cell area, although quite variable across
the [cell] population, was essentially constant for a given cell
(fig. 2a in [21]). This suggests that the area, probably determined
by the total amount of available plasma membrane or by tight
regulation of the membrane surface area, is intrinsic to each
cell and constant through time.’

Once an initial lamellipodium shape Ω0 at t = 0 is specified,
further evolution is governed by the normal velocity Vn, (2.10),
where vp is given by (2.11), vs is determined by (2.7), and the
stress S is obtained from the solution of equations (2.9), (2.1),
with forcing given by the cell traction force b from (2.8).

We use the level set method [38–40] which has been success-
fully applied to cell evolution study, e.g. [23,41] to solve for the
evolution of the lamellipodium boundary Ct together with the
other model equations. The level set function w(x, t) vanishes on Ct,
is positive inside Ωt and negative outside it. It evolves according
to the level set equation

wt þ Vnjrwj ¼ 0, (2:13)

with Vn the normal velocity of Ct, which is determined by the
equation w = 0. The model thus comprises equations (2.9), (2.13),
with b given by (2.8), Vn supplied by equations (2.10), (2.11).
2.1.1. Non-dimensional form and parameter estimation
The model involves eight constitutive parameters. The substrate is
characterized by the Lamé constants λ > 0 and μ > 0, while the cell
by the kinetic coefficient β, actin velocity coefficient γ, drag coeffi-
cient ζ, velocity polarization e, area penalty coefficient Λ and stress
coefficient σ0. We define the non-dimensional variables

~x ¼ g

b
x, ~t ¼ gt, ~v ¼ v

b
, ~S ¼ 1

s0
S

This shows that γ is in essence a time scale, while β sets a velocity
scale. We also define the non-dimensional constants

~z ¼ b2

gs0
z, ~e ¼ b2e, ~L ¼ L

b
:

We then revert to the same notation (without tilde) for the non-
dimensional variables and constants; this is equivalent to setting
β = 1, γ = 1, σ0 = 1 in the original system. The remaining indepen-
dent parameters for the cell are ζ, e, Λ. Since the forcing term
(2.8) is independent of the Lamé moduli λ, μ, for null displacement
or traction-free boundary conditions, a theorem of linear elasticity
[54] asserts that the thickness resultant stress field S depends on λ,
μ only through their ratio, or equivalently Poisson ratio n ¼ l

2(lþm).
Thus there is one independent non-dimensional parameter ν for
the substrate, or a total of four non-dimensional model par-
ameters. Unless otherwise specified, in our simulations, we used
a standard parameter set of

b ¼ 2:5 L=T, g ¼ 0:8=T, K ¼ gz ¼ 3F=L,

e ¼ 2(T=L)2, L ¼ 30L=T and n ¼ 1=4: (2:14)

Here, L, T and F are computational units of length, time, and trac-
tion (force per unit area), respectively, or scale factors relating
computational to physical parameter magnitudes. We choose
L = 5 μm and T = 15 s. This gives rise to moving cell size of roughly
20− 40 μm and typical steady cell locomotion speed 0.2 μm s−1

from our simulations. These agree with reported values [18,21].
Then the choice γ = 0.8/T = 0.05 s−1 yields actin velocity magni-
tudes γL = 0.25 μm s−1 of the observed order [18,22]. Letting the
traction (force per unit area) scale be F = 100 pN μm−2 [19], the
choice K = 3F/L yields average tractions KL = 300 pN μm−2 =
3000 dyn cm−2 within the experimentally measured range
[19,30]. Also for these values we obtain a drag coefficient ζ =K/
γ = 1200 pN s μm−3, close to the estimate of 1000 pN s μm−3 of
[22]. The parameter Λ is not easy to estimate, but results are not
very sensitive to its value. The polarization coefficient has the stan-
dard value e = 18 s2 μm−2. Equation (2.7) allows an estimate of the
difference of actin speed magnitude between the front and
the wings (furthest from the x-axis of motion) of γeV2L with
V the cell speed. From low adhesion strength data of [31], we
obtain roughly e = 12 s2 μm−2 or two-thirds the standard value
used here. In physical, units model parameters are

b ¼ 0:83mm s�1, g ¼ 0:05 s�1, K ¼ 60 pNmm�3,

e ¼ 18 s2 m�2, L ¼ 10mm s�1 and n ¼ 1=4: (2:15)

In general, our standard parameter values are consistent with
estimates from experiments.
3. Results and discussion

3.1.1. Symmetry breaking and topological transition
Keratocytes typically assume a roughly circular shape when
stationary, with an annular lamellipodium surrounding the
nucleus [18]. Contact and force transmissionwith the substrate
occurs only at the lamellipodium and not the nucleus and
organelles [20]. Accordingly, we choose the initial lamellipo-
dium region Ω0 to be an annulus in the centre of the square
domain D, with the nucleus excluded from description by
the model. We find that for standard parameters (2.15), an
annulus with radii 8.5 μm and 17 μm and lamellipodium
area 680 μm2 remains stable and radially symmetric during
our computations. These values are comparable with the
ones in [18] fig. 2a. The actin velocity field in the annulus is
centripetal. Next, we modify the annulus Ω0 with a slight
shape imperfection, in the form of a localized slight
thinning or dimple at the left side of the cell (figure 1a).
We try different perturbations in the form of indentations
of different depth and width on one side of the annulus.
We find that either the cell returns to the initial radially sym-
metric state if the perturbation is small, or a sufficiently large
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Figure 1. Transition from the stationary annulus configuration to the locomoting crescent shape of the keratocyte lamellipodium, from our model simulation with
standard parameters (2.15): (a) initial condition for model simulation: stationary annular lamellipodium with centripetal velocity field and imperfection, (b) retraction
( pinching) of the left side, (c) topological transition, (d ) motile horseshoe shape, (e) fully developed locomoting crescent shape; motion is to the right and
( f ) image sequence of observed transition from [18].
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indentation grows and breaks the symmetry. This causes the
lamellipodium outside the boundary to move towards the
centre in the vicinity of the imperfection (figure 1b). The loca-
lized retraction causes further thinning until the
lamellipodium pinches off completely and a topological tran-
sition occurs (figure 1c) as the annulus splits off into a
simply connected, horseshoe-shaped domain (figure 1d ).
The topological change is evident as a result of excluding the
nucleus from Ωt. Retraction of the cell rear occurs before the
front starts to protrude, as reported in the experiments of
[18]. The horseshoe flattens into a banana or crescent shape
which only has symmetry about the x-axis. This polarized
shape starts moving in the positive x-direction and quickly
reaches steady shape and velocity, which it maintains for a
long time (figure 1e). The transition from the annular station-
ary state, to the polarized, crescent-shaped, locomoting state
is remarkably similar to the sequence of observations reported
in ([18], fig. 2a); an example is reproduced here in figure 1f . The
locomoting state is independent of the shape of the perturbing
dimple, provided the latter is severe enough to cause sym-
metry breaking. The locomoting crescent is thus a stable
travelling state.

We find that the initial transition from static annulus to
locomoting crescent is not strongly dependent of parameters,
because the centroid velocity is small, hence the polarization
term does not play an important role. In the absence of polar-
ization (e = 0) the actin velocity (2.5) is radially symmetric, so
it is the lamellipodium that breaks radial symmetry during
the transition.

Mechanosensitive coupling between cell shape evolution
and substrate stress acts as a feedback loop to bring about
the symmetry breaking necessary for locomotion. Perturbing
the radial symmetry of the static cell shape breaks the sym-
metry of the substrate stress field; this induces asymmetry
of the polymerization velocity (protrusion rate), which in
turn amplifies asymmetric polarized shape evolution, closing
the feedback loop, even in the presence of a radial, non-polar
actin flow. In the presence of polarization (e > 0), the radial
symmetry of the velocity field is broken as well, once the
centroid moves; thus the presence of polarization affects the
long-term locomoting shape of the lamellipodium.
3.1.2. Steady motion and parameter dependence
Consistent with the observations of [18], our model predicts
that following symmetry breaking, topological change, and
flattening of the broken annulus into a crescent, the cell settles
into steady motion at essentially constant shape and velocity
in the low polarization regime e < 2, K < 15. An example of
full transition from static annulus to fully developed steady
state can be seen in electronic supplementary material,
video SV1 (standard parameters except for e = 1.5). The
long-time fully developed crescent shape depends on the par-
ameters K and e. Figure 2 shows the fully developed crescent
shape for various combinations of K and e in the low polariz-
ation regime. In particular, for fixed K, the aspect ratio
increases with increasing e, while for fixed e, raising K
increases the length of the trailing horns and the overall
diameter slightly, but decreases the aspect ratio. The reasons
for this dependence stem from (2.10). The forcing term b in
(2.9), and hence the stress field, is proportional to K. The
stress in turn controls the size of the term vp in (2.10). At
the sides of the cell furthest away from the axis of motion,
Vn vanishes, so an increase in vp for larger K must be
balanced by an increase in absolute value of vs at the sides,
which can only occur by increasing the diameter of the cell,
as vs depends on distance from the centre. An increase in e
polarizes both the actin velocity and the forcing, hence the
stress, and the entire right-hand side of (2.10), in the direction
of motion, hence the normal direction n is likely to be closer
to the motion direction as well. This causes a flatter crescent,
whose aspect ratio must be larger than a rounded one, due to
the area constraint. More drastic increases in polarization e
have more profound effects on motion, considered in detail
in the next section.

See [3,20,21] for various examples of steady shapes of
different aspect ratios but similar overall form. The crescent-
shaped lamellipodium and persistent, steady motion are



(a) (b) (c) (d) (e)

Figure 2. Parameter dependence of fully developed locomoting crescent lamellipodium shape in the low actin velocity polarization regime. Motile keratocyte
moving to the right. (a–c) K = 3 and e = 0, 1.5, 2, respectively. (d,e) K = 10 and e = 0, 2, respectively. Green curve is lamellipodium shape, actin velocity vectors
are shown red.
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well-known characteristics of crawling keratocytes [18,22],
not only whole cells but also separated fragments of the
lamellipodium [17,52] without the nucleus. This is also
predicted by our model; see the Tensotaxis section below.
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3.1.3. Bipedal oscillations and lamellipodial travelling waves
Henceforth, we fix K = 3 and focus on the effect of varying the
polarization coefficient e. We find that there are roughly three
regimes of locomotion, depending on its value. For low
polarization, approximately 0≤ e < 2, following the transition
from annular stationary to locomoting crescent shape, propa-
gation quickly becomes steady with constant velocity and no
shape change, as described above.

In the intermediate polarization regime (roughly 2≤
e≤ 4), after settling to steady motion, the cell suddenly
switches to oscillatory propagation. The centroid follows a
roughly sinusoidal trajectory that oscillates about the x-axis,
with the onset of oscillations at e = 2 (figure 3a), and higher
amplitude as e increases, e.g. e = 3 (figure 3b). Hence the
direction of polarization, which is along the centroid velocity
vector in our model, oscillates about the x direction as well.
The substrate displacements alternate from nearly symmetric
to antisymmetric with respect to the x-axis twice over an
oscillation period (red arrows in figure 4a–d and electronic
supplementary material, video SV2). The lamellipodium
oscillates somewhat rigidly with little shape change, except
at the posterior trailing edges, which alternate from a pointed
to a rounded shape out of phase with each other (see lamel-
lipodium contours in figure 4f and a–d ). The bipedal nature of
these oscillations is illustrated (figure 5) by tracking the two
trailing points on the lamellipodium boundary, or points
with the smallest x-coordinate on the lamellipodium bound-
ary above and below the x-axis. Their trajectories, x-
coordinates and x-velocities undergo antiphase oscillations
as shown in figure 5. The trailing points not only oscillate
out of phase with each other; they even undergo alternating
intermittent backward motion.

Thus the cell propagates through asymmetric bipedal
motion, as shown in electronic supplementary material,
video SV2; see also video SV3. These qualitative characteristics
occur in keratocyte motion reported in [42], where it is noted
that ‘in persistently polarized, fan-shaped cells, retraction of
the trailing edge on one side of the cell body is out of phase
with retraction on the other side, resulting in periodic lateral
oscillation of the cell body’. A comparison of electronic sup-
plementary material, video SV2 and ([42] electronic
supplementary material, movie S2) shows very similar alter-
nating trailing edge retraction shapes (alternate rounded and
pointed) but a larger wavelength in the latter.
Increasing e decreases the oscillation frequency and the cell
speed, figure 3e, which correlate with each other, figure 3f , in
accordance with [42]. This agreement is qualitative; the spatial
wavelength of centroid oscillation in our simulations seems
much smaller than the ones reported in [42]. Choosing compu-
tational units to match cell size and speed reported in [42]
(x-unit = 5 μm and t-unit = 15 s in figure 5d–f) predicts an oscil-
lation frequency of ω = 0.7 s−1, roughly three times that
reported in fig. 1, [42]. The overall centroid trajectory (with
oscillations averaged out) becomes curved and gradually
strays away from the x-axis more for higher values of e,
figure 3d. This is also observed in locomoting keratocytes [42].

The high polarization regime (e≥ 5) is characterized by
increasingly severe, more irregular lamellipodium shape
distortions, in phase with centroid oscillations that are super-
posed on a trajectory curving further away from the x-axis
for higher values of e, figure 3c,d and 4f –i. A striking feature
of this regime is the formation of kinks in the anterior lamelli-
podium front, figure 4g–k, which would retain its convexity in
lower polarization regimes. Each such kink is the leading edge
of a protrusion that propagates along the anterior lamellipo-
dium boundary, away from the anterior centre, outwards to
the sides of the lamellipodium (successive contours in
figure 4j,k and electronic supplementary material, videos SV4
and SV5). Remarkably, these travelling protrusions exhibit
qualitative similarities with travelling waves observed on the
anterior lamellipodium edge of keratocytes on high adhesion
strength substrates [31,43]; an example is shown here in
figure 4l (reproduced from Fig. 1A in [43]). There are various
differences between the travelling protrusions seen in our
simulations and reported in [31,43]. In our case, protrusions
can be more angular and less prominent than those reported
in [43]. In addition trailing lamellipodium edges are more pro-
nounced in our simulations, while anterior profiles are flatter,
than those observed. These differences are illustrated by a com-
parison of figure 4j,k with 4l.

The trajectories of these cells aremore erratic and the centroid
position oscillations are non-smooth figure 3d,e, compared to
those of the intermediate polarization regime. The centroid oscil-
lation frequency and speed are substantially lower than those of
oscillating cells with intermediate polarization, figure 3e, in
qualitative accord with [31]. On the other hand, our prediction
of oscillation frequency for cells travelling with speedsmatching
those reported in fig. 1a, [43] overestimates their oscillation
frequency roughly by a factor of 5.

We are confident that the observed oscillations are not an
artefact of the numerical method used, but an essential
feature of our model’s behaviour, as we have confirmed
through a numerical convergence study; see electronic
supplementary material.
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Figure 3. Oscillatory and unsteady motion in the intermediate and high velocity polarization regimes. Blue curve: centroid trajectory with wiggles. Note increasing
wavelength, and increasing deviation from the x-axis, from (a) to (d ). Green curve: lamellipodium shape. Red arrows: substrate displacements. Here, K = 3 in all
snapshots. (a,b) Intermediate polarization regime with bipedal oscillations and e = 2, 3, respectively. (c,d ) High polarization regime with irregular oscillations and
travelling waves (kinks) on anterior lamellipodium boundary and e = 5, 11, respectively. (e) Average centroid speed V and frequency Ω versus velocity polarization e
from our simulations. Both are normalized by the speed V2 and frequency Ω2 from the run with e = 2. ( f ) Average frequency Ω correlates with average centroid
speed V.
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The shift from steady motion to oscillations, as well as the
emergence of travelling lamellipodium waves as polarization
is increased, seem to be bifurcation phenomena. Our simu-
lations suggest that velocity polarization in the direction of
the centroid velocity plays a central role in these non-steady
propagation modes. This may happen because a polarized
actin velocity field possesses an additional degree of freedom,
namely, the direction of polarization; this direction can
oscillate, compared to a radial, non-polar velocity field.

Polarization occurs in the direction of cell centroid velocity
and introduces an additional degree of freedom. When the
centroid undergoes sinusoidal oscillations, the polarization
direction oscillates out of phase with the lamellipodium, as
can be inferred from figure 5b. If the lamellipodium shape
were rigid, the stress field would rotate with it and so would
the velocity field (which is coupled to the stress field) prohibit-
ing out of phase oscillations. However, additional distortional
modes of lamellipodial shape change do allow out of phase
deviations between the lamellipodium axis and the polariz-
ation direction. Eventually, the rigid rotation mode is likely
to provide a restoring tendency for the polarization direction
through the stress field, resulting in oscillations. Thus bipedal
motion is facilitated by the possibility of oscillation of the
polarization direction. This explains why bipedal oscillations
are not observed when e = 0, since the centrosymmetric actin
velocity field lacks polarization altogether.

The travelling kinks observed travelling perpendicular to
the average cell direction of motion at the high polarization
regime can be understood to some extent, by noting first
that a high polarization creates a strong retrograde actin
flow vs in (2.7) that inhibits forward motion (2.10) at the lead-
ing edge. The retrograde flow due to polarization inhibits the
lamellipodium normal speed Vn by a factor proportional to
e�v � n; see (2.7). Hence maximum inhibition occurs when n



(a) (b) (c) (d) (e)

( f ) (g)

(j) (k) (l)

(h) (i)

Figure 4. (a–e) Intermediate polarization regime: K = 3, e = 3. Snapshots during a period of bipedal oscillation. In (a,c), the substrate displacement fields (red
arrows) are roughly antisymmetric about the x-axis and mirror images to each other. In (b,d ), they are nearly symmetric about the x-axis. By contrast, the upper and
lower posterior trailing edges are pointed and rounded, respectively in (b), and reversed in (d ) so locomotion is bipedal and the displacement oscillates between
symmetry and antisymmetry about the x-axis. See also figure 5. Note the rather regular oscillatory centroid trajectory with slight deviation from the x-axis (blue
curve). (e) Overlaid lamellipodium contours, showing upper/lower trailing edges switching between pointed/rounded and rounded/pointed. ( f –l ) High polarization
regime: K = 3, e = 11. ( f –i) Four successive snapshots illustrating a kink (travelling wave) on the lamellipodium front (green curve) nucleating in ( f ), growing in
(g) and travelling outward in (h) and (i). Note the irregular shape and curved, jagged centroid trajectory with large deviation from the x-axis (blue curve). ( j,k):
Overlaid lamellipodium contours showing two examples of kinks (travelling waves) travelling upwards along the anterior lamellipodium boundary. Analogous
sequence of a kink moving upwards from experiments, reproduced from fig. 1A in [43].
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is along the direction of motion �v; this agrees with forward
velocity decreasing as e increases (figure 3e). By contrast,
minimal inhibition occurs for n perpendicular to �v, which
explains why kinks can propagate nearly perpendicular to
the average motion direction.
3.1.4. Substrate displacement and traction prediction
We next compare predicted actin velocity, substrate displace-
ments and tractions to experiments. The velocity field (2.7) in
our model, which is prescribed for given parameters, exhibits
larger inward flow at the posterior horns of the lamellipo-
dium figure 6c) and smaller retrograde flow at the front
(right side). This agrees to some extent with observations of
[18] shown here in figure 6b, although not quantitatively.

The predicted substrate displacement field, figure 6d
shows some qualitative similarities with measured displace-
ments using traction force microscopy [30], figure 6e, in
particular, arrows a curve towards the rear as the x-axis is
approached from the trailing horns in a similar way. In our
model, actin velocity is proportional to traction, so figure 6c
is representative of traction vectors, while figure 6f , traction
inferred from discrete experimental displacement [30], does
not compare so well with figure 6c.
3.1.5. Response to external stimuli and tensotaxis
Fibroblasts respond to external forces applied remotely on
the elastic substrate by changing shape and direction of
motion. When microneedles are used to induce stresses
on the substrate, fibroblasts—either the entire cell or a
protrusion—tend to move towards tensile stresses and
away from compressive stresses [10]. This is known as tenso-
taxis. While we are unaware of similar experiments on whole
keratocytes, we examine whether our model predicts tenso-
taxis. Lamellipodial fragments that are severed from the
keratocyte lamellipodium, and do not contain the nucleus
or organelles, behave similar to entire cells [17]. They are
disk-shaped when stationary. When pushed by a one-sided
external force, they break symmetry, become crescent
shaped and start propagating steadily away from the pushing
force, even after the latter is removed. While we cannot model
the direct application of force onto the cell body, we simulate
a situation similar to the experiments of [10]. A force
(uniform traction over a disk-shaped area) is applied onto
the substrate some distance from the circular stationary lamel-
lipodium fragment, pointing towards it. The force is applied
for a short time, then removed. In response, an indentation
forms spontaneously, as part of the fragment boundary retreats
away from the applied force. This breaks the symmetry of the
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Figure 5. Bipedal oscillatory motion of the two rearmost (trailing) points of the posterior lamellipodium boundary. (a–c) Trajectories for e = 2, 3, 5, respectively.
Red curves: trajectories of trailing points. Blue curve: lamellipodium centroid trajectory. Note intermittent backward motion in (c) causing loops in trajectories.
(d–f ) X-coordinates of trailing points versus time for e = 2, 3, 5, respectively. Red graph: top leftmost point, blue graph: bottom leftmost point. Inserts: deviations
of x-coordinates from uniform motion with velocity equal to the average velocity (difference from linear fits of x-coordinate versus time graphs). (g–i) X-velocities of
trailing points versus time for e = 2, 3, 5, respectively. Note alternating (antiphase) top/bottom trailing-point x-deviation peaks in (e) and (h), and velocity peaks in
(h) and (i). Negative velocity peaks in (h) and (i) indicate intermittent alternating backward motion of trailing points. Computational units in graphs (d–f ) x-unit =
5 μm and t-unit =15 s.
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fragment, which becomes crescent shaped and starts
propagating away from the applied force site; figure 7.

Steady propagation in crescent form continues even
though the force has been removed. A similar sequence of
events occurs in experiments [17] but due to direct pushing
of the fragment instead of the substrate. Instead, here the
applied force induces compressive stress between where it
is applied and the lamellipodium fragment, which in turn
causes the boundary velocity of the cell to become negative
in the location closest to the applied force site; thus the sym-
metry is broken, eventually leading to the crescent shape and
steady propagation away from the location of the force, even
after the latter ceases to act.

By contrast, when the direction of the applied force is
opposite (away from the lamellipodium fragment) tensile
stress is generated in front of the fragment, leading to protru-
sion towards the force site, symmetry breaking, and in some
instances, propagation in crescent shape in the direction of
the applied force even after the latter is removed; figure 8.
This occurs for ellipsoidal fragments with the long axis trans-
versal to the pulling force. Circular fragments tend to
elongate in the direction of the pull, then stop after the pull-
ing force is removed. These simulations exhibit tensotaxis:
either motion away from higher compressive stress or protru-
sion and/or motion towards greater tensile stress. This
behaviour has similarities with that of fibroblasts [10],
although it seems not to have been investigated in the case
of keratocytes. More recently [44], relevant behaviour was
observed with human epithelial keratinocytes, which are
closer to fish epidermal keratocytes than fibroblasts.
A needle pulls the substrate behind a locomoting cell and
away from it. The cell turns, moves away transversally to
the original direction, elongates towards the needle, similar
to what happens in the case of a circular fragment, then
gradually turns towards the needle. See electronic sup-
plementary material, video SV6 for a simulation capturing
various stages of this behaviour qualitatively.
3.1.6. Turning towards stiffer substrates and durotaxis
On a substrate with an interface between regions of different
stiffness, cells that assume a crescent morphology similar to
keratocytes starting on the softer region, have been observed
to follow a curved trajectory, so that they turn towards, and
cross into, the stiffer portion of the substrate [45].



(a) (b)

5 mm

(c)

(d) (e) ( f )

Figure 6. Comparison of lamellipodium shape (a) versus (c), actin velocity (b) versus (c), substrate displacement (d ) versus (e) and traction ( f ) versus (a) from
experiments ((a), (b), (e), ( f )), and our model (c,d ). (a) Motile keratocyte with nearly steady shape and speed (moving to the right) from [18], fig. 1E. (b) Measured
actin velocity vectors in the lamellipodium (blank region corresponds to the nucleus) [18], fig. 1F. (c) Simulation of present model predicts steady propagation of the
lamellipodium following the sequence shown in figure 1. Green: steady lamellipodium shape; also shown are actin velocity vectors (red); note large inward flow at
the rear and smaller speeds in the front in rough qualitative agreement with (b). (d ) Same as (c) but red arrows are substrate displacements. (e) Substrate dis-
placement and cell shape from [30], fig. 2a. ( f ) Substrate traction inferred from displacements shown in (e) from [30], fig. 2b. The ligament to the left of the
nucleus in (e,f ) is not part of the lamellipodium.

(a) (b) (c) (d) (e)

Figure 7. Reverse tensotaxis: model simulation snapshots of a lamellipodium fragment (red: initial fragment position, green: subsequent fragment positions).
(a) External forces are exerted onto the substrate to the left of the circular fragment (red arrows pointing to the right). (b) The fragment starts receding
away from the compressive stresses induced by the forces which are about to be removed. (c,d ) The fragment becomes crescent like and starts moving to
the right even after the forces are removed. (e) It assumes the usual steady shape of a crawling lamellipodium and moves steadily to the right henceforth.
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Under zero displacement boundary conditions, the simu-
lation domain boundary becomes equivalent to an interface
with a region of infinite stiffness (rigid). We find that cells
starting on the central axis of the rectangular symmetric
domain typically travel straight along it. However, a cell
with initial position closer to the top boundary follows a cur-
ving trajectory, while also turning almost rigidly (figure 9), so
that it approaches, and eventually contacts, the top bound-
ary; see electronic supplementary material, video SV7. This
attraction by a rigid boundary is an instance of durotaxis,
and also reproduces the observations of crescent-shaped
fibroblasts following a curved trajectory while turning
almost rigidly with slight shape change [19].

By contrast, traction-free boundary conditions make the
boundary behave like the interface with a softer material, in
the limit of zero stiffness. Repeating the previous simulation
with traction free conditions makes the cell turn away from
the boundary towards the centreline along the x-axis, repelled



(a) (b) (c) (d) (e)

Figure 8. Tensotaxis: model simulation snapshots of a lamellipodium fragment (red: initial fragment position, green: subsequent fragment positions). (a) External forces
are exerted onto the substrate to the right of the elliptical fragment (red arrows pointing to the right). (b) The fragment starts protruding towards the tensile stresses to
its right induced by the forces (which are about to be removed). (c,d ) The fragment becomes crescent like and starts moving to the right even after the forces are
removed. (e) It assumes the usual steady shape of a crawling lamellipodium and moves steadily to the right henceforth.

(a) (b) (c) (d) (e)

Figure 9. Durotaxis: snapshots of a keratocyte (model simulation; green: lamellipodium, red: actin velocity vectors) near a rigid boundary (top) starting to move to
the right as in figure 1b, then turning towards a rigid boundary (black line). The shape is slightly distorted as the keratocyte turns, and symmetry about the
instantaneous direction of motion is perturbed. Contact of the lamellipodium with the rigid boundary occurs at (e).
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by the interface with a much softer substrate. See electronic
supplementary material, video SV8.

How can a cell sense an interface with a stiffer region at a
distance? Our model provides insight into the mechanism
responsible for the attraction of cells by a rigid boundary.
Cells exert contractile forces onto the substrate. In the vicinity
of a rigid boundary, this causes tensile stresses that are high-
est in the ligament between the boundary and the cell. These
tensile stresses are sensed by the cell, which tends to protrude
in their direction in accordance with the evolution law. The
closer the cell approaches the boundary, the higher this
stress becomes; this causes acceleration and the result is a tra-
jectory that curves towards the stiff boundary. This strongly
suggests that keratocytes and fibroblasts exert contractile
forces in order to probe their surroundings by sensing inho-
mogeneities in the stress field they themselves generate. In
this case, the inhomogeneity is caused by the vicinity of a
stiff interface.
4. Conclusions
We have constructed a minimal model for the evolution of
fish epidermal keratocytes based on an active mechanosen-
sing hypothesis: we posit that these cells sense the stress
field that they themselves actively generate in the substrate,
and evolve accordingly, by locally protruding in areas of ten-
sion and contracting in areas of compression.

Most previous theoretical models concentrate on the pro-
cesses inside the cell, such as actin–myosin interaction. By
contrast, our model focuses on the mechanical interaction
between the lamellipodium and substrate. The model of the
cell itself is minimal and consists of an actin velocity field
with central symmetry inside an evolving curve represent-
ing the lamellipodium boundary. The centripetally flowing
actin exerts contractile tractions onto the elastic substrate.
The resulting substrate stress depends on the shape of the
lamellipodium boundary. At the same time, this stress
enters the evolution law at each point of the lamellipodium
boundary curve.

In its non-dimensional form, the model involves two
coupled partial differential equations and just four indepen-
dent parameters. The model predicts multiple types of
observed behaviour of keratocytes on elastic substrates for
the same parameter set. The parameters used are consistent
with experiment-based estimates. The well-known crescent
shape, characteristic of keratocytes in steady locomotion,
emerges through symmetry-breaking bifurcation and a topolo-
gical change from the annulus-shaped lamellipodium typical
of stationary keratocytes, as observed experimentally [18].

It is by now well understood that symmetry breaking is
necessary for locomotion, e.g. [55]. In previous models, this
was brought about by internal processes of the cell, govern-
ing spatial concentrations of actin, myosin and adhesion
strength via additional partial differential equations
[21–24,31,55]. Here, we identify a new symmetry breaking
mechanism: a feedback loop due to mechanosensitive coup-
ling between the lamellipodium shape and substrate stress.
Indeed, perturbing the radial symmetry of the static cell
shape breaks the symmetry of the substrate stress field,
which induces asymmetry of the polymerization velocity
(protrusion rate), which in turn amplifies asymmetric polar-
ized shape evolution, closing the feedback loop, even in the
presence of a radial, non-polar actin flow. It is likely that
this mechanism is complementary to internal actomyosin/
adhesion mechanisms, however, our results indicate that it
is important in processes involving substrate mechanics,
notably tensotaxis and durotaxis.

When the model is generalized to include actin velocity
polarization in the direction of motion, further symmetry
breaking occurs, leading to two additional types of complex
locomotion behaviour observed in experiments. For high
enough polarization, reflection symmetry of the lamellipo-
dium is lost and steady motion of the crescent bifurcates
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into oscillatory bipedal asymmetric locomotion. Here, actin
velocity polarization provides another mechanism for sym-
metry breaking. The polarization direction is an additional
degree of freedom that can oscillate out of phase with the
lamellipodium. Further increases of the polarization par-
ameter yield more irregular, slower oscillations with
increased distortion of the lamellipodium shape, in the
form of alternating travelling waves (kinks) moving along
the leading lamellipodium edge transversal to the average
motion. Keratocytes exhibit both phenomena [31,42]. The
three main types of locomotion, steady, bipedal/oscillatory
and wavelike, are due to a series of symmetry breaking bifur-
cations starting from the radially symmetric stationary
annular lamellipodium.

When microneedles are used to induce stresses in the sub-
strate, fibroblasts tend to move towards tensile stresses and
away from compressive stresses [10,17,44]. In our simu-
lations, a localized traction force on the substrate, some
distance away from the cell, creates either a compressive or
tensile stress between the force and the cell (when pointing
towards or away from the cell, respectively). The cell either
moves away from a force pointing towards it, or protrudes
towards a force in the opposite direction. This is an example
of tensotaxis. Unfortunately, such experiments seem not to
have been performed with fish keratocytes, but recently
with human keratinocytes [44]; our model captures essential
aspects of these experiments.

Our model exhibits a form of durotaxis, whereby simu-
lated cells are attracted by the closest rigid boundary and
curve their trajectories towards it, similar to observed
motion of crescent-shaped cells towards interfaces with stiffer
regions [45]. The model allows us to identify the mechanism
underlying this attraction as cell-induced tensile stress, which
is highest in the region between the cell and the closest
boundary, leading to protrusion towards the latter.

We believe that the present model is the first to explain
multiple types of keratocyte locomoting behaviour, by identi-
fying new mechanisms of symmetry breaking, facilitated by
active mechanosensing. Despite a combination of non-local
and nonlinear effects, the model is comparatively simple;
hopefully, future bifurcation and post-bifurcation analysis
will provide additional insights into the underlying mechan-
isms responsible for complex observed behaviour such as
bipedal oscillations and travelling waves.

The model also provides insight into phenomena such as
tensotaxis and durotaxis, more commonly observed with
fibroblasts and other cells. To test the validity of the active
mechanosensing hypothesis further, it would be interesting
to perform experiments analogous to [10,17,44,45], but with
fish keratocytes instead of fibroblasts, on substrates where
remote forces are exerted by microneedle, or where substrate
stiffness varies with position, either gradually or discontinu-
ously. It will be especially instructive to determine in what
ways mechanosensing affects differences in morphology
and locomotion between keratocytes and fibroblasts, or
other cells known to be mechanosensitive.
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