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SUMMARY

In this paper, we present a mathematical framework of the bridging scale method (BSM), recently
proposed by Liu et al. Under certain conditions, it had been designed for accurately and efficiently
simulating complex dynamics with different spatial scales. From a clear and consistent derivation,
we identify two error sources in this method. First, we use a linear finite element interpolation, and
derive the coarse grid equations directly from Newton’s second law. Numerical error in this length
scale exists mainly due to inadequate approximation for the effects of the fine scale fluctuations.
An modified linear element (MLE) scheme is developed to improve the accuracy. Secondly, we
derive an exact multiscale interfacial condition to treat the interfaces between the molecular dynamics
region �D and the complementary domain �C , using a time history kernel technique. The interfacial
condition proposed in the original BSM may be regarded as a leading order approximation to the
exact one (with respect to the coarsening ratio). This approximation is responsible for minor reflections
across the interfaces, with a dependency on the choice of �D . We further illustrate the framework
and analysis with linear and non-linear lattices in one-dimensional space. Copyright � 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Along with the rapid progress in materials science and technology, there is an increasing demand
for probing into fine space and time scales. With limited computing capabilities, the demand is
partially fulfilled by describing a complex system with multiple scales. The crack problem, as
an example, involves microscopic dynamics around the crack, as well as macroscopic behaviour
for the bulk material. While the local dynamics evolve according to Newton’s second law for
atoms, the solid body can be approximated by linear elasticity far away from the crack. A
multiscale method aims at incorporating models and numerical methods for these scales in a
proper manner. A seamless treatment, namely, making them compatible, tries to avoid mismatch
across scales.

During the last two decades, numerous multiscale methods have been developed and applied
successfully in various applications for systems of atoms. Typically one performs molecu-
lar dynamics (MD) computation only in the localized region with active non-linear atomistic
interactions, while a coarse grid description is used in the surrounding region. It is well
known that the abrupt termination of the atomistic region leads to strong spurious wave
reflection at the interface between the two scales [1]. Due to the interaction between re-
gions, this reflection spreads error through the whole domain. Much research has been done in
handling such reflection. Because the atomistic displacement includes various wave numbers,
the governing equations of motion lead to dispersion during wave propagation. Therefore, in-
terfacial conditions derived for scattering problems like non-reflecting boundary conditions and
Dirichlet-to-Neumann methods cannot be applied here [2–5].

Most multiscale methods reduce interfacial reflection by making use of a handshaking region,
such as in the finite elements and atomistic method [6], the coupling of length scales method,
the coarse-grained molecular dynamics (CGMD) method, the macroscopic, atomistic, ab initio
dynamics (MAAD) method, or the bridging domain method [7–10]. In this region, a certain
weighted average is performed between the MD description and the coarse grid description. The
perfectly matched layer (PML) method introduces a damping term to absorb reflections [11, 12].
Quite differently, the quasicontinuum (QC) method reduces the reflection with a gradually
changing mesh, and uses representative atoms and the Cauchy–Born rule to compute strain
energy in a solid body [13–15]. However, it applies mainly to static and quasi-static problems.
The coupled atomistic and discrete dislocation (CADD) method [16, 17] has the same limitation.

Yet another interfacial treatment assumes linearity along a semi-infinite periodic chain. Based
on the study of a harmonic lattice [18], the exact displacement of the first atom outside of the
main MD region may be expressed as a convolution of the time history at the interfacial atom
[19]. The bridging scale method (BSM) was introduced recently by Liu et al. through a series
of papers, using this time history treatment essentially only for the fine fluctuation components
in the displacement. See References [1, 20–22] and references therein.

In contrast to enormous efforts in designing multiscale algorithms, most existing methods
are based on heuristic derivations or physical arguments. On the other hand, clear mathematical
formulations and careful analysis are desired for applications and further improvements [23, 24].
In this paper, we shall present such an attempt in formulating and analysing BSM. Besides
simplifying considerably the original derivations in Reference [1], we further identify two
error sources in this method. First, numerical error in the coarse scale comes mainly from an
linear element (LE) scheme, in which the effects of the fine scale fluctuations are inadequately
accounted for. We further develop an modified linear element (MLE) scheme to improve the
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accuracy. Secondly, in the original BSM formulation, a supplementary variable q was introduced,
and the MD computation was performed in a mixture of the coarse scale description for u

and the fine fluctuation in q. This causes inconsistency and complexity in deriving interfacial
conditions. Under the coarse–fine decomposition with the linear element interpolation, and an
assumption that the internal forces depend linearly on the fine fluctuations away from the MD
region, an exact multiscale interfacial condition is derived for the first time in this paper. The
interfacial condition used in the BSM implementations is actually a leading order approximation
of the exact condition (with respect to the coarsening ratio). It is this approximation that is
responsible for an energy interchange between the fine fluctuation and the mean displacement
across the interfaces, and minor reflections with a dependency on the choice of �D .

The major difference in the current paper from Reference [1] lies in the consistent and
rigorous derivation of governing equations for u′ and d, and the exact multiscale interfacial
conditions. These equations enable us to analyse error sources in BSM.

The rest of this paper is organized as follows. We shall formulate BSM in Section 2,
particularly the coarse grid equations and interfacial conditions. In Section 3, we apply it
to harmonic and anharmonic lattices in one-dimensional space, as well as a lattice with a
Lennard–Jones potential. Some concluding remarks are made in the last section.

2. GENERAL FORMULATION

Consider a material system in � ⊂ R3, consisting of na atoms. The position of the nth atom at
rest is xn. Under suitable initial and boundary conditions, the motion of each atom is governed
by Newton’s second law

MAü = f + fext (1)

with u, f, fext ∈ R3na representing the displacement, internal force and external force,
respectively. The mass matrix is MA = diag(m1I3×3, . . . , mna I3×3) where mi>0. The inter-
nal force comes from interactions among atoms, described by a potential U . When a rest
frame is used, the potential is a function of atom displacements, and

f = − ∇uU(u) (2)

BSM contains the following ingredients:

• We define a coarse grid over the whole domain �. At each coarse grid point yJ

(J = 1, . . . , nc), we assign a displacement dJ . They form a coarse grid displacement
vector d.

• By the projections to be defined later on, we decompose the displacement u into a mean
displacement ū, and a fine fluctuation u′. In particular, the mean displacement has a
relatively longer characteristic length, and may be expressed by a linear interpolation of
the coarse grid displacement d.

• Assuming that strong coupling between ū and u′ occurs in a certain localized subdomain
�D only. We perform MD computations solely in �D , and separate the physical domain
� into two subdomains, namely �D and �C = �\�D .

In the following, we shall extensively use subscript D to denote quantities in �D , and C

for those in �C . For instance, the displacement vector is taken as u = [uD

uC

]
.
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We perform macroscopic (MC) computations for the evolution of d over the whole domain.
In �C , fine fluctuations in the atomistic motion are assumed to be negligible. We therefore
describe the motion only in the coarse grid. On the other hand, detailed MD computations are
performed in �D , to accurately capture the non-linear dynamics. Compared with a full MD
simulation, the computing load and memory requirement are greatly reduced.

We remark that most existing multiscale methods utilize a handshaking region, and make
a certain average of the MD and MC description in this region [7–9]. A coupled system for
MD and MC variables are formed and solved numerically. The averaged description in the
handshaking region is empirical, and the related error is usually hard to control.

In contrast, we use an overlapping region. That is, we compute both d and u in �D . In
general, these two quantities are not guaranteed to evolve in a consistent way. We regard
the MD solution uD as a more accurate description, and modify accordingly the coarse grid
displacement d. This is explained in more detail in Section 2.1. The use of the overlapping
region allows us to compute separately the MD solution and MC solution with different time-
step sizes. The algorithm is clearer, and easier to implement.

We note that in Reference [1], the governing equations of ū and u′ involve the supplementary
displacement q. In particular, MD computations for qD are performed in �D . Displacement
was obtained through uD = ūD + q ′

D . As we shall further explain in Section 2.2, this causes
inconsistency in posing the interfacial conditions. In contrast, here we derive the precise gov-
erning equations for u′, without the redundant supplementary displacement q. MD computations
are performed for uD . This makes the framework compact, and allows us to derive a multiscale
interfacial condition, which is exact for linear lattices.

Throughout this paper, we shall confine ourselves to situations where only a linear effect of
the fine fluctuation u′

C on mean motion is accounted for in �C . This assumption fails for lattice
systems with finite temperature. We remark that some progresses have been made recently for
treating non-zero temperature within the BSM framework [20].

In the presentation of BSM, we describe the following main issues in Sections 2.1 and 2.2.
We give a flowchart of the algorithm in Section 2.3.

• We decompose the displacement u into ū and u′. We relate ū and d by an interpolation
matrix, corresponding to the linear finite element.

• We derive the governing equation for the dynamics of d. Because d is defined at coarse
grid points over the whole domain �, boundary conditions are naturally obtained from
the physical problem setting.

• We specify the interfacial condition for MD computation on �D . While the equations are
just Newton’s second law, we need to specify boundary conditions. The boundary of �D

may consist of physical boundaries and �C/�D interfaces. The dynamics of an atom at
a physical boundary is prescribed by the problem setting. In contrast, internal force on
an interfacial atom may involve nearby atoms in �C (ghost points), for which we do not
have detailed description about the fine fluctuation. We reconstruct u′ at ghost point atoms
by using the time history kernel technique, described in Section 2.2.

2.1. Displacement decomposition and coarse grid equation

A linear finite element is adopted for interpolation. That is, we take a linear shape function
matrix N of size 3na × 3nc, and each component of d stands for displacement at a finite
element nodal point. We recall that na and nc are the number of the atoms, and the number
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of the coarse grid points, respectively. To get the optimal approximation of u, we minimize
the residual (u − Nd)TMA(u − Nd). It is solved by

d = M−1NTMAu (3)

Here, the effective mass matrix M = NTMAN is symmetric, positive definite, and rank(M)=
3nc. We call the displacement approximation ū = Nd the mean displacement, and the
deviation u′ = u − ū the fine fluctuation. This defines a coarse–fine decomposition

ū = Pu = Nd, u′ = Qu (4)

with projection operators P = NM−1NTMA and Q = I − P .
The dynamics of the coarse grid variable d is obtained when we multiply (1) from the left

by M−1NT

d̈ = M−1NT(f + fext) (5)

From U(u) = U(Nd + u′) and the chain rule, we may rewrite it as

Md̈ = − ∇dU(Nd + u′) + NTfext (6)

This resembles Newton’s second law over the coarse grid, if we view M as ‘mass’, and d

as displacement at coarse grid points.
Equation (6) is valid in the whole domain �. With the presence of fine fluctuation u′, no

approximation has been made so far. However, in a multiscale method, we avoid
computing the fine fluctuations u′

C . To get a governing equation in closed form, we should
make approximations to incorporate the effect of u′

C properly.
We propose to simulate the dynamics of d in the following way. For each coarse scale time

step, we first compute an intermediate value d̃ with a coarse grid equation in closed form. In
the numerical examples to be presented later in this paper, we basically drop out u′ terms to

get an linear element (LE) scheme. That is, with profile (d̃(tn),
˙̃
d(tn)) = (d(tn), ḋ(tn)), we use

M
¨̃
d = − ∇

d̃
U(Nd̃) + NTfext (7)

to get (d̃(tn+1),
˙̃
d(tn+1)).

In general, this may not adequately resolve the mean displacement in �D , where
complicated non-linear dynamics occur. By construction, the non-linear dynamics are resolved

by the MD computation of uD . Therefore, we combine the information of (d̃(tn+1),
˙̃
d(tn+1))

and (uD(tn+1), u̇D(tn+1)) to get d and ḋ. More precisely, we approximate uC(tn+1) by
ūC(tn+1) = NCd̃(tn+1). This gives

u(tn+1) ≈
⎡⎣ uD(tn+1)

NCd̃(tn+1)

⎤⎦ (8)

This amounts to

d(tn+1) = M−1NTMAu(tn+1) ≈ d̃(tn+1) + M−1

[
NT

DMAD
uD(tn+1) − NT

DMAD
NDd̃(tn+1)

0

]
(9)
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Recall that corresponding to the domain decomposition, we take

N =
[

ND

NC

]
, MA =

[
MAD

MAC

]
(10)

The velocity ḋ(tn+1) is obtained in a similar way.
Instead of (7) and (9), there are more sophisticated ways to design schemes for d. For

instance, we propose an MLE scheme for a harmonic lattice in Section 3.1.2. It resolves the
mean displacement better than (7) in �C . As we shall illustrate later, a more accurate coarse
grid scheme has a limited effect in reducing the reflections. For many applications, designing
an accurate interfacial condition is the main issue.

Now we make a few remarks. First, the effects of the MD solution uD should be accounted
for the coarse scale dynamics in a proper manner. Many existing multiscale methods couple
them through certain hybrid descriptions such as a mixed Hamiltonian in a handshaking region.
Our approach avoids such a mixed description. The error in this step is just due to neglecting
u′

C in the projection, which is small by construction and well under control. Secondly, we
use only Newton’s second law for u to derive the coarse grid equations. In the literature,
other approaches have been proposed to get equations in closed form. For instance, with
the Cauchy–Born rule, the stress is obtained by considering locally uniform strain. This has
been adopted in both the quasi-continuum method [15] and the original version of BSM [1].
Meanwhile, Qian et al. proposed a virtual atom cluster (VAC) method under the BSM framework
[25]. We sketch its basic idea in the Appendix A. Thirdly, we will introduce a time history
treatment to get an expression of u′

C in Section 2.2. With some additional computing load,
it is then possible to further elaborate on the coarse grid equation. Finally, we remark that
a systematic way for deriving accurate and efficient coarse grid equations has been proposed
in Reference [26].

2.2. Interfacial conditions and time history kernel

It is well-known that a special treatment is required in posing conditions for �C/�D interfacial
atoms, to avoid a non-physical reflection. We adopt a time history kernel technique proposed for
a harmonic lattice by Adelmann and Doll [18]. Briefly speaking, after making a linearization,
we reconstruct u′ at ghost point atoms from the time history of fine fluctuations at related
interfacial atoms. The mean displacement is readily obtained by interpolating d. The summation
of these two parts provides the displacement at ghost point atoms, serving as the interfacial
conditions for MD computations in �D .

Noticing the symmetry of M and MA, we derive for the projection Q = I − P

QTMA = MA − MANM−1NTMA = MAQ (11)

Multiplying QT to (1) and noticing the definition u′ = Qu, we obtain the governing equation
for u′

MAü′ = QT(f + fext) (12)
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Next, we make a linearization of the internal force under the assumption that u′
C is small

f (u) ≈ f̃ (ū, u′
D) + K(ū, u′

D)u′
C

K(ū, u′
D) =

[
KD

KC

]
=
[∇uC

fD(ū, u′
D)

∇uC
fC(ū, u′

D)

]
(13)

Here K is a submatrix of the stiffness matrix ∇uf (u). In fact, the ghost point atoms (in
�C) and the interfacial atoms (in �D) are determined from non-zero entries of KD . If the ith
row in KD contains a non-zero entry, the corresponding ui (an entry in uC) exerts an internal
force on certain atom(s) in �D . The ith atom in �C is a ghost point, and the corresponding
atoms in �D receiving internal force are interfacial atoms.

From its general form, K = K(ū, u′
D) depends on both the mean displacement ū and the

fine fluctuation u′
D . Hence it is time dependent, and the time history treatment to be described

below fails in general. In many applications, however, we may take K for a lattice at rest to
approximate K(ū, u′

D). In the following discussions we shall use such a time-independent K .
Collecting forces independent of u′

C in

f ∗(ū, u′
D) = f̃ (ū, u′

D) + fext (14)

we end up with an approximate linear equation

MAC
ü′

C = QT
C(f ∗(ū, u′

D) + Ku′
C) (15)

Because MAC
, QC and K are time independent matrices, we apply a Laplace transform

(denoted by ˆ ) to (15)

MAC
[s2û′

C − su′
C(0) − u̇′

C(0)] = QT
C[f̂ ∗(ū, u′

D) + Kû′
C] (16)

The solution is

û′
C = (s2I − M−1

AC
QT

CK)−1[M−1
AC

QT
Cf̂ ∗(ū, u′

D) + su′
C(0) + u̇′

C(0)] (17)

We only need a few components in u′
C that correspond to the ghost point atoms for the MD

computations. The inverse Laplace transform is taken for these components. For each ghost
point atom, we take a corresponding row from the time history kernel matrix

� =L−1[(s2I − M−1
AC

QT
CK)−1] (18)

Let the submatrix formed by these rows be �G(t). The fine fluctuation at the ghost point
atoms is

u′
G = �G(t) ∗ [M−1

AC
QT

Cf ∗(ū, u′
D)] + �̇G(t)u′

C(0) + �G(t)u̇′
C(0) (19)

This provides conditions for the interfacial atoms. Under the assumptions mentioned above,
i.e. the localized fine fluctuation and the constant approximation of K, (18) and (19) form an
exact multiscale interfacial condition for the BSM formulation. However, M−1 is typically a
full matrix, and so are Q and QC . Even for a simple K , the kernel � is a full matrix, and
the inverse transform may not be easy to compute. Therefore, it demands heavy computing
load and memory to implement the exact multiscale interfacial condition (18) with (19). On
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the other hand, in the limit of an infinite coarsening ratio, it may be shown that all entries in
M−1 and P tend to zero. Accordingly, we approximate Q by the identity matrix I , and the
interfacial condition (19) by

u′
G ≈ �G(t) ∗ [M−1

AC
f ∗

C(ū, u′
D)] + �̇G(t)u′

C(0) + �G(t)u̇′
C(0) (20)

with

� =L−1[(s2I − M−1
AC

KCC)−1] (21)

Here KCC is the lower-right block of K corresponding to �C . With this simplification, we
notice that only a sub-vector of f ∗(ū, u′

D) needs to be memorized and convoluted. We note that
the complicated derivation presented in Reference [1] actually amounts to this approximation.
Furthermore, if the lattice has a repeated structure, we may compute the time history kernel
with the help of Fourier and Laplace transforms [1, 27, 28].

A few remarks are as follows. First, the simplification made in BSM causes numerical
error across the interfaces. However, when the linear element interpolation N is adopted for
coarse–fine decomposition, we have to make this simplification to avoid complete evaluation
of the full matrix convolution in (19). Secondly, the initial data (u′

C(0), u̇′
C(0)) are rarely

available in �C for real applications. They are either ignored, or substituted by random fields.
In particular, suitable random fields may approximate a heat bath of finite temperature [20].
Thirdly, if no coarse–fine decomposition is performed for the displacement, the exact interfacial
condition reads uG = �G(t)∗[M−1

AC
f ∗

C]+�̇G(t)uC(0)+�G(t)u̇C(0) [19]. On the other hand, the
coarse–fine decomposition allows us to deal with applications when there are both incoming
and outgoing long waves, which are treated by the coarse grid computations. Finally, we
may perform displacement decomposition in a better way to avoid interactions between ū and
u′ [26]. The reflection is further reduced, because the convolution is performed only with u′,
which typically represents a small part of the total energy.

We further mention that if the coarse grid equations are given for the continuum (e.g.
Navier–Stokes equations), special interfacial treatments have been developed, such as a hy-
brid method (for fluids) in References [29, 30], and a dynamic atomistic-continuum method
in Reference [31].

2.3. Numerical scheme

We describe a verlet algorithm for time integration of a dynamical system

q̈ = A(q, t) (22)

With a time step size �t and data q(tn) = qn, q̇(tn) = q̇n, we first compute the acceleration
An = A(qn, tn). This is used for updating one step for q and half step for q̇ by

qn+1 = qn + q̇n�t + An (�t)2

2
, q̇n+1/2 = q̇n + An �t

2
(23)

Then we compute the new acceleration An+1 = A(qn+1, tn+1), and update another half step for
q̇ by

q̇n+1 = q̇n+1/2 + An+1 �t

2
(24)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1688–1713



1696 S. TANG, T. Y. HOU AND W. K. LIU

Figure 1. Illustration of the computing mesh for BSM.

This is applied for both the dynamics of d in the coarse grid, and Newton’s second law for
uD in �D . Furthermore, we use a mixed time integration technique in BSM, i.e. we use a
small time step size �� in MD computation of uD , and �t = m�� in the MC computation
of d.

We summarize the BSM (Figure 1) scheme in the following list, for updating one big time
step �t :

1. MD computation in �D .

• Holding the velocity and acceleration of d fixed at tn, we obtain the mean displacement
ū at the interfacial atoms and the ghost point atoms at sub-time steps tn + k�� (for
k = 1, . . . , m).

• At a sub-time step, we compute the fine fluctuation at the ghost point atoms u′
G with

time step size �� from (Equations (20) and (21) in Section 2.2)

u′
G ≈ �G(t) ∗ [M−1

AC
f ∗

C(ū, u′
D)] + �̇G(t)u′

C(0) + �G(t)u̇′
C(0) (25)

Here f ∗ collects all forces independent of u′
C

f ∗
C(ū, u′

D) = f̃C(ū, u′
D) + fext,C (26)

and �G(t) is a sub-matrix of

� =L−1[(s2I − M−1
AC

KCC)−1] (27)

In �D , we compute a subsystem of Newton’s second law

MAD
üD = fD + fext,D (28)

with the interfacial conditions of ghost point atom displacement

uG = ūG + u′
G (29)

We update the time history of M−1
AC

f ∗
C(ū, u′

D) after each sub-time step.
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2. Coarse grid computation in �.

• We compute (d̃
n+1

,
˙̃
dn+1) with (d̃

n
,

˙̃
dn) = (dn, ḋn) from (Equation (7) in Section 2.1)

M
¨̃
d = − ∇

d̃
U(Nd̃) + NTfext (30)

We remark that one may use other methods such as an MLE scheme, to be described,
or the VAC method (A2) in Appendix A.

• Making use of the MD solution at tn + m�� = tn + �t , we assign (Equation (9) in
Section 2.1)

dn+1 = d̃
n+1 + M−1

⎡⎣NT
DMAD

un+1
D − NT

DMAD
NDd̃

n+1

0

⎤⎦ (31)

and

ḋn+1 = ˙̃
dn+1 + M−1

⎡⎣NT
DMAD

u̇n+1
D − NT

DMAD
ND

˙̃
dn+1

0

⎤⎦ (32)

As the reassignment (31) and (32) are always performed, in the following discussions we shall
simply write d̃ in the coarse grid equation (30) as d, without making any
ambiguity.

3. APPLICATIONS

3.1. Harmonic lattice

A harmonic lattice is the simplest model for molecular dynamics of a crystal, and serves
as a test problem for multiscale methods. The exact solution is available due to linearity. A
precise quantitative analysis can be used to make an error estimate and study the accuracy of
the method.

3.1.1. Problem setting. Consider a harmonic lattice in one-dimensional space with na atoms.
The position of the nth atom at rest is xn = −L+nha for n = 1, . . . , na , with 2L = (na +1)ha ,
as shown in Figure 2. Its displacement is denoted by un(t). With both ends fixed, we consider
a nearest neighbour interaction. We scale time by

√
ma/k, with ma the mass and k the spring

Figure 2. Harmonic lattice in one-dimensional space.
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constant. The rescaled governing equations are

ü = DAu, DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 1

1 −2
. . .

. . .
. . . 1

1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
na×na

(33)

A coarse grid point is placed every p atoms, at yJ = − L + Jhe for J = 1, . . . , nc, where
he = pha and na + 1 = p(nc + 1).

In numerical simulations, we shall always take ha = 0.005, p = 10, he = pha = 0.05. The
initial data is set by un(0) = u0(xn) with

u0(x) =

⎧⎪⎨⎪⎩0.005
e−100x2 − e−6.25

1 − e−6.25
(1 + 0.1 cos(80�x)), |x|�0.25

0 elsewhere

(34)

3.1.2. Coarse grid equations. Let a = 1
p
[p − 1, · · · , 1, 0]T, and b = 1

p
[1, · · · , p]T. The shape

function matrix is

N =

⎡⎢⎢⎢⎢⎢⎢⎣

1

a b

. . .
. . .

a b

⎤⎥⎥⎥⎥⎥⎥⎦ (35)

This corresponds to a linear interpolation ūIp+k = ((p − k)dI + kdI+1)/p.
From (33), we observe that each atom has a unitary mass after rescaling. This gives a mass

matrix MA = I . The effective mass matrix is then

M = NTN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0 �

� � �

. . .
. . .

. . .

� � �

� �0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

with �0 = 1 + aTa = bTb = (p + 1)(2p + 1)/6p, � = aTa + bTb = (2p2 + 1)/3p, � = aTb =
(p2 − 1)/6p.

Now (6) reads

(Md̈)J = 1
p
(dJ−1 − 2dJ + dJ+1 + u′

(J−1)p − 2u′
Jp + u′

(J+1)p) (37)
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We call it an linear element with molecular dynamics information (LEMD) scheme. Dropping
the u′ terms, we obtain an LE scheme, corresponding to (30)

(Md̈)J = 1
p
(dJ−1 − 2dJ + dJ+1) (38)

A modified version may be derived as follows. Noticing that uJp = dJ + u′
Jp, we rewrite

(37) as

(Md̈)J = 1
p
(u(J−1)p − 2uJp + u(J+1)p) (39)

Or in a vector form,

Md̈ = 1
p
DV (40)

Here D is in the same form as DA but of size nc × nc, and V = [up, . . . , uncp]T.
The second-order spatial derivative uxx at yJ = xJp may be approximated by either

(uJp−1 −2uJp +uJp+1)/h2
a in the fine grid, or (dJ−1 −2dJ +dJ+1)/(pha)

2 in the coarse grid.
Accordingly, we approximate Newton’s second law for the (Jp)th atom by

üJp = uJp−1 − 2uJp + uJp+1 ≈ (dJ−1 − 2dJ + dJ+1)/p
2 (41)

In a vector form, this gives

V̈ ≈ Dd/p2 (42)

Now, we differentiate (40) twice with respect to time to get

M
d4

dt4 d = 1

p3 D2d (43)

It may be shown that away from the boundary, M and D share the same set of eigenvectors,
and

√
MD = D

√
M . This allows us to decompose (43) into(√

M
d2

dt2 + 1√
p3

D

)(√
M

d2

dt2 − 1√
p3

D

)
d = 0 (44)

The first operator is unstable, therefore irrelevant to the physical problem. An MLE scheme
then follows:

√
Md̈ = 1√

p3
Dd (45)

We shall refer to the multiscale method using the LE scheme for coarse grid computation
as the BSM-LE scheme, and that using the MLE scheme as the BSM-MLE scheme.

3.1.3. Interfacial conditions. We now turn to ghost point atom displacement. To make it precise,
we consider an �C/�D interface at the nbth atom, as shown in Figure 2. It is recognized that
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MAC
is an identity matrix, KC = DC . Corresponding to (26), we have

f ∗ =
⎡⎣DDuD + (0, . . . , 0, ūnb+1)

T

DCūC + (u′
nb

, 0, . . . , 0)T

⎤⎦ , KD =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

...
...

...

0 0 . . . 0

1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ (46)

After some manipulations, we find (19) as

u′
nb+1 = �1 ∗ u′

nb
+ �G ∗ [IC(DAP − PDA)ū − PCDDDu′

D

−PCC(u′
nb

, 0, . . . , 0)T] + �̇Gu′
C(0) + �Gu̇′

C(0) (47)

where �G = [�1, . . . ,�na−nb
], IC = [0nb × nb

, I(na−nb) × (na−nb)], and PC = [PCD, PCC] is a
submatrix of P = NM−1NT. Making use of the form of KD , as shown in (18), �G is the first
row of

L−1 [(s2I − QT
CK)−1] =L−1[(s2I − DC + PCCDC + PCDKD)−1] (48)

Implementation of the exact interfacial condition (47) causes heavy computing load. From
(36), we notice that diagonal entries of order p dominate the effective mass matrix M . This
corresponds to a ‘lumped mass’ at the coarse grid points. Then, each entry in P = NM−1NT

is of the order 1/p. When p is big enough, we neglect P in the previous expressions as a
leading order approximation. The formulae (47) and (48) are approximated by

u′
nb+1 ≈ �1 ∗ u′

nb
+ �̇Gu′

C(0) + �Gu̇′
C(0) (49)

� =L−1((s2I − QT
CK)−1) ≈ � =L−1((s2I − DC)−1) (50)

They correspond to (20) and (21), respectively. Direct computation shows that the (1,1) entry
in (s2I − DC)−1 is

�̂ = S
1 − S2∗N

1 − S2∗(N+1)

N→+∞−→ S (51)

with S = [s2 + 2 − s
√

s2 + 4]/2. Therefore, we approximate

�1(t) ≈ �(t) ≈L−1(S) = −
(

J1(2t)

t

)′

= 2J2(2t)

t
(52)

If the initial fine fluctuation is ignored in �C , we have

unb+1 ≈ unb+1 + �(t) ∗ u′
nb

(t) (53)
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We note that when t → +∞, we have Jn(t) ≈ √
2/�t cos(t − n�/2 − �/4). In our numerical

implementation, we only keep a partial history u′
nb

(�) for � ∈ [t − T , t]. This introduces an
additional numerical error∣∣∣∣∫ t−T

0
�(t − �)g(�) d�

∣∣∣∣�‖g‖L2([0,t−T ])‖�‖L2([T ,t])�C‖g‖L2([0,∞))T
−1 (54)

Numerical experiments indicate that the time history cut-off is only a secondary error source,
compared with those incurred in other approximations such as throwing away the P -related
terms.

3.1.4. Numerical results. First, we compare different coarse grid schemes, by numerical tests in
the domain x ∈ [−2, 2] without the time history kernel. Solutions at time t = 150 are depicted
in Figure 3. Because of the finite propagation speed, the lattice is essentially at equilibrium far
away. Furthermore, the system has a symmetry x → −x, which is preserved by our numerical
schemes. Therefore, we only plot solutions in a part of the computational domain.

The exact solution is computed by a full MD simulation with �� = 0.005. In Figure 3, we
observe that the primary wave (solid line) moves to around x = ha ∗ t = 0.75, whereas the fine
fluctuation propagates slower.

With p = 10, the coarse grid schemes are tested for �t = 0.05. The fine fluctuations could
not be reproduced in such a coarse grid. With the exact solution at hand, the LEMD scheme
reproduces the mean of the solution faithfully.

The LE scheme produces a faster phase speed at the wave front, accompanied by a kink. In
contrast, the MLE scheme resolves the mean displacement very well. These are clearly explained
by their dispersion relations. In fact, for a monochromatic wave in the form of un(t) = ei(�t−�n),
we find � = 2 sin(�/2). Meanwhile, substituting this form into the LE scheme (38) and the
MLE scheme (45), we obtain dispersion relations for these two schemes. Please refer to

Figure 3. Harmonic lattice u(x, 150): by LEMD, LE and MLE schemes. The LE scheme produces
faster propagation speed, as highlighted in the boxed region.
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ω

Figure 4. Dispersion relation for harmonic lattice by LE and MLE schemes: round frequency in time
is plotted versus wave number � ∈ [0, �/10].

Appendix B for more details

�LE = 2 sin(�p/2)√
p2 − 2(p2 − 1) sin2(�p/2)/3

, �MLE = 2 sin(�p/2)

4
√

p4 − 2p2(p2 − 1) sin2(�p/2)/3
(55)

The dispersion relations are displayed in Figure 4. It is obvious that �LE(�)>�(�).
Next, we compute by the BSM. The time history is kept for T = 5. We take �D = [−0.375,

0.375], containing 151 atoms.
The solution at various times is shown in Figure 5, computed by the BSM-LE scheme. At

time t = 50, oscillations have not reached the interface, and no reflection is observed. In a later
stage, oscillations go across the interface, and minor reflection is observed. Reflection appears
to vary slowly with a fairly long wavelength in space, in contrast to the short wavelength of
fine fluctuation in the exact solution. At t = 150, oscillations have already passed the �C/�D

interface. A small amount of energy is left in �D . We also note that the LE scheme produces
a small kink ahead of the wave front.

If we use the BSM-MLE scheme instead, the evolution remains similar. Better resolution is
achieved in �C , as shown in Figure 6. However, bigger reflections are observed. This sounds
paradoxical, as the MLE scheme resolves the coarse grid solution better than the LE scheme. In
fact, the major reason for interfacial reflection is the approximated interfacial condition, where
the projection matrix P -related terms are dropped out. As we shall show in a moment, there
is an energy interchange between the mean displacement and fine fluctuations. The truncation
error due to the coarse grid scheme then becomes of secondary importance for accuracy. For
instance, if we take an enlarged �D = [−0.425, 0.425] instead (containing 161 atoms), the exact
multiscale interfacial condition changes. However, after dropping out the P -related terms, we
still use the same interfacial conditions (52) and (53). In subplots (a) and (b) of Figure 7, we
clearly observe that reflections become comparable between the BSM-LE and the BSM-MLE
schemes. Nevertheless, in all cases, the reflections have been considerably reduced, compared
with the results by the LE scheme without time history kernel treatment, which are shown in
subplots (c) and (d) of Figure 7.

We notice that reflections by the BSM method contain mainly long waves, in contrast with
short wave reflection in subplots (c) and (d) of Figure 7. This indicates that the
error does not come directly from the short wave absorption in the time history kernel
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(a) (b)

(c) (d)

Figure 5. Harmonic lattice by BSM-LE (BSM with linear element): (a) u(x, 50); (b) u(x, 100);
(c) u(x, 130); and (d) u(x, 150). Faster propagation speed is highlighted in the boxed region.

treatment. To find the error source, we make use of linearity, and compute separately the evo-
lution with smooth initial data (mean part) and that with purely fluctuating initial data. From
Figure 8(a), we observe that the residual in �D is mainly due to smooth initial data. This
is interpreted in the following way. Because the projection procedure maintains a continuous
energy interchange between fine fluctuation and mean motion, u′ becomes non-zero during the
evolution, even if it is zero at a previous instant. The terms neglected in (49) and (50) cause
matching error at the interface. The long wavelength reflection forms by the energy interchange
mechanism. When we keep a longer time history, the fine fluctuations are suppressed, but this
does not stop energy input from a coarse grid solution. As a result, global reflections remain
at the same level. See Figure 8(b).

3.2. Anharmonic lattice

3.2.1. Physical setting and schemes. For an anharmonic lattice, we assume a potential
function as

U(u) = U1(u) + U2(U) = 1

2

∑
n

(un+1 − un)
2 + K

4

∑
n

(un+1 − un)
4 (56)
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(a) (b)

(c) (d)

Figure 6. Harmonic lattice by BSM-MLE (BSM with modified linear element) scheme: (a) u(x, 50);
(b) u(x, 100); (c) u(x, 130); and (d) u(x, 150).

Accordingly, the Newton equation is

ün = un−1 − 2un + un+1 + K[(un+1 − un)
3 − (un − un−1)

3] (57)

Though the mean displacement changes the time history kernel, we neglect this effect to
reduce computing load. A harmonic lattice time history kernel is used.

For the coarse grid equations, we compute the internal force due to the non-linear potential,
and obtain a concrete form of (6) as

(Md̈)I = 1

p
(u(I−1)p − 2uIp + u(I+1)p)

+K

p

p−1∑
k=0

[
(uIp+k+1 − uIp+k)

3 − (u(I−1)p+k+1 − u(I−1)p+k)
3
]

(58)
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(a) (b)

(c) (d)

Figure 7. Harmonic lattice u(x, 150): (a) the BSM-LE (BSM with linear element) scheme
with enlarged �D; (b) the BSM-MLE (BSM with modified linear element) scheme with
enlarged �D; (c) the BSM-LE (BSM with linear element) scheme without time history
kernel technique; and (d) the BSM-LE (BSM with linear element) scheme with enlarged
�D , no time history kernel technique. Faster propagation speed is highlighted in the boxed

regions for the results by the BSM-LE (BSM with linear element) scheme.

Dropping the fine fluctuations, we get an LE scheme (30)

(Md̈)I = 1

p
(dI−1 − 2dI + dI+1) + K

p3 [(dI+1 − dI )
3 − (dI − dI−1)

3] (59)

Alternatively, we may derive an MLE scheme in a similar way as for the harmonic lattice.
Denoting a vector V same as in the harmonic lattice, and a vector Z composed of the non-linear
terms K

p3 [(dI+1 − dI )
3 − (dI − dI−1)

3], we take twice time derivative of (58) as follows:

M
d4

dt4 d = D

p
V̈ + Z̈ ≈ D2

p3 d +
(

d2

dt2 + D

p2

)
Z (60)
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(a) (b)

Figure 8. Error source in harmonic lattice by BSM-MLE (BSM with modified linear element) scheme,
time history cut-off: (a) T = 5; and (b) T = 50.

Making operator decomposition and a further approximation, we have(√
M

d2

dt2 − D√
p3

)
d =

(√
M

d2

dt2 − D√
p3

)−1 (
d2

dt2 + D

p2

)
Z ≈ Z√

M
(61)

3.2.2. Numerical results. For the anharmonic lattice, we take numerical parameters and initial
data the same as for the harmonic lattice, and non-linear coefficient K = 10/h2

a with ha = 0.005.
Solutions u(x, t) at time t = 50, 100, 130, 150 are displayed in Figure 9 for the BSM-LE
scheme. At t = 50, the primary wave starts to go across the interface, whereas fluctuations do
not. The solutions are not discernable from the exact solution. At t = 100, fluctuations go across
the interface, and minor reflection is observed. We remark that at this moment, the assumption
of linear dependence of internal force on u′

C does not hold. Theoretically multiscale methods
may fail. However, we still obtain a reasonable resolution. At t = 150, the wave has left �D ,
leaving behind a fairly small amount of energy. On the other hand, if we use the BSM-MLE
scheme instead, the coarse grid solution in �C has a better resolution, as shown in Figure 10.
However, this does not reduce reflection in �D .

3.3. Lennard–Jones potential

A Lennard–Jones potential is widely used in studies at the microscopic scale. For a displacement
vector u = (u1, . . . , uN)T, the potential function is

U(u) = 4	
∑
n

[(



r0 + un+1 − un

)12

−
(




r0 + un+1 − un

)6
]

(62)

with r0 the atom distance at rest, 
 the collision diameter and 	 the bonding/dislocation
energy. In our numerical tests, we take the rescaled values as 
 = 	 = 1, and correspondingly
r0 = 21/6.
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(a) (b)

(c) (d)

Figure 9. Anharmonic lattice with K = 10/h2
a by the BSM-LE (BSM with linear element)

scheme: (a) u(x, 50); (b) u(x, 100); (c) u(x, 130); and (d) u(x, 150). Faster propagation
speed is highlighted in the boxed regions.

The governing equation for the displacement un is

ün = − 48[(r0 + un+1 − un)
−13 − (r0 + un − un−1)

−13]
+ 24[(r0 + un+1 − un)

−7 − (r0 + un − un−1)
−7] (63)

The LE scheme is reduced to

(Md̈)I = − 48

[(
r0 + un+1 − un

p

)−13

−
(

r0 + un − un−1

p

)−13
]

+ 24

[(
r0 + un+1 − un

p

)−7

−
(

r0 + un − un−1

p

)−7
]

(64)
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(a) (b)

(c) (d)

Figure 10. Anharmonic lattice with K = 10/h2
a by BSM-MLE (BSM with modified linear element)

scheme: (a) u(x, 50); (b) u(x, 100); (c) u(x, 130); and (d) u(x, 150).

The curvature of U at r0 is k = 624r−14
0 − 168r−8

0 = 72/
3
√

2. The time history kernel
function is

�(t) = 2J2(2
√

kt)/t (65)

In our numerical experiment, we take 41 coarse grid points in � = [−200r0, 200r0] (p = 10),
and �t = 0.01. The MD region is �D = [−55r0, 55r0] with 111 atoms, computed with �� =
0.001. The initial data is

u(x) =

⎧⎪⎨⎪⎩0.015
e−(x/20)2 − e25

1 − e25
(1 + 0.2 cos(2�x/80)) |x|<100

0 elsewhere

(66)

Numerical solutions at t = 6, 9, 12, 20 are displayed in Figure 11. Basic features are similar to
the anharmonic lattice. Agreement with the exact solutions is quite good up to about t = 9, when
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(a) (b)

(c) (d)

Figure 11. Lattice with Lennard–Jones potential, by the BSM-LE (BSM with
linear element) scheme: (a) u(x, 6); (b) u(x, 9); (c) u(x, 12); and (d) u(x, 20).

Faster propagation speed is highlighted in the boxed regions.

the fluctuation partly goes across the interface. Though the condition required for validating the
multiscale methods fails, our numerical scheme still performs very well in a later stage. In
particular, reflections in �D are fairly small.

4. DISCUSSIONS

In this paper, we have formulated the BSM for simulating complex systems. This is the first
rigorous and systematic derivation for BSM. Through the study, we have clearly identified the
conditions for using the method, and analysed the error sources.

We summarize the conditions for applying BSM as follows:

• Active non-linear fluctuation occurs only in a localized sub-domain �D .
• Atomistic forces depend on u′

C nearly in a linear way.
• The linear dependence on u′

C is well characterized by a time-independent matrix K .
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These conditions actually amount to a linear approximation for the fine fluctuations across the
interface. A special case satisfying the second condition is when ‖u′

C‖>1 under certain suitable
norm. The third condition may be relaxed to a slowly time varying K , for which we may update
time history kernel �G after a suitable time. We remark that the whole algorithm still remains
non-linear, because of a non-linear coarse grid scheme and non-linear MD computations.

The BSM adopts the linear element approximation and defines the coarse scale displace-
ment d. In �C , the mean displacement is represented by interpolating d. Since d has a much
smaller degree of freedom, the computing load and memory requirement are considerably re-
duced. Furthermore, in MD region, a full atomistic computation is performed to resolve the
active dynamics. An approximated time history treatment is applied to the fine fluctuations,
in order to reduce the reflections due to the abrupt termination of the MD region. Typi-
cally the fine fluctuation part only represents a small portion of the total energy, and the
treatment is quite effective. The computation of time history convolution makes up the main
additional computing load and memory requirement. We remark that there are fast convolution
techniques [32].

In the BSM algorithm, we have made the following approximations:

• In the coarse grid equation for d and the reassignment of it, the contribution of the fine
fluctuations is not fully resolved.

• Across the interfaces between �C and �D , a linear constant K is taken into account for
the effect of u′

C .
• In the interfacial conditions, a leading order approximation is made with respect to the

coarsening ratio, to alleviate computing load for evaluating convolutions.
• The convolution is performed with a truncated time history.

From our clear derivations and numerical experiments, we identify the error source in BSM
as follows:

• Approximation in the coarse grid equations with the LE scheme. We may improve this
by the MLE scheme.

• Simplification in the interfacial conditions. This causes an energy interchange between the
fine fluctuation and mean displacement across the interfaces. Minor reflections appear in
�D , with a dependency to the choice of �D .

In the current framework, it is not easy to handle the second error source. If we adopt
the precise interfacial condition, the numerical cost in evaluating all convolutions is expensive.
Furthermore, though the error in this simplification formally decreases as the coarsening ratio
increases, we should be cautious in increasing the ratio for maintaining accuracy in coarse grid.
If the ratio is too large, we may fail to resolve the waves associated with the macroscopic so-
lution. We further remark that in a pseudo-spectral multiscale method [26], a balanced accuracy
and efficiency may be achieved for the coarse and fine scales, and the interfaces. Moreover,
a matching differential operator approach has been proposed to design accurate and efficient
coarse grid equations for multi-dimensional linear and non-linear lattice systems.

In addition to deriving a clear and consistent formulation, we also present a numerical
algorithm that is slightly different from its original version in Reference [1]. In particular, with
the exact evolution Equations (11) and (12), we do not need to introduce a supplementary
variable q for computing the fine fluctuations in the MD region. Though these differences
do not strongly affect the accuracy, they help in making the BSM algorithm clearer and the
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implementation easier. Some further features of this formulation are as follows:

• We use an overlapping region and consistently adopt the projection operator to pass
information between the coarse and fine scales. We therefore obtain a clear algorithm for
coarse scale dynamics, and avoid empirical descriptions such as a mixed Hamiltonian.

• With the projection operator, we derive the precise equation for u′, and the multiscale
interfacial condition that is exact for linear lattices.

• We develop more accurate coarse grid schemes (MLE), which better resolve the dynamics
in �C .

Among many challenging issues in further developing BSM, we note some topics under
consideration. First, from the perspective of numerical methods, a rigorous study of convergence
and accuracy may help further improvement. Secondly, we currently use a fixed MD region
and a time-independent K , describing the linear dependence on fine fluctuations in �C . An
adaptive MD region and time-dependent K may further enhance the capability of these methods.
Moreover, if we discard the linear dependency, more sophisticated homogenization techniques
are required to decouple the coarse and fine scales.

APPENDIX A: VIRTUAL ATOM CLUSTER METHOD

While many inter-atomic components may appear, we demonstrate the idea with pairwise
potential. It involves atom distances (within cut-off radius) in the form of U(u) = ∑

��=� �(r��),

with r�� = r0
�� + u� − u� and r0

�� the rest distance.
In �C , one neglects fine fluctuations in u� and u� to get

r�� ≈ r̄�� = r0
�� +∑

J

(N�J − N�J )dJ (A1)

As a result, the internal force may be approximated by a function of r̄ and hence of d as∑
� �=�

��
�r��

(r̄��)(N�J − N�J ). We end up with a coarse grid equation

(Md̈)J ≈ ∑
� �=�

��

�r��
(r��)(N�J − N�J ) +∑

�
N�J fext,� (A2)

where r�� is approximated by r̄�� for atoms outside of �D .

APPENDIX B: DISPERSION RELATIONS

For a given wave number �, we assume that the solution to the harmonic lattice Equation (33)
takes the form of un(t) = ei(�t−�n). Substituting it into the equation, we obtain

−�2ei(�t−�n) = ei(�t−�(n−1)) − 2ei(�t−�n) + ei(�t−�(n+1)) (B1)

This gives � = 2 sin(�/2).
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Similarly, we assume that the numerical solution to the LE scheme (38) takes the form of
dJ (t) = ei(�t−�Jp). With the explicit expression (36) of M , the scheme reads

−�2
LE(�ei(�t−�(J−1)p) + �ei(�t−�Jp) + �ei(�t−�(J+1)p))

= 1

p
(ei(�t−�(J−1)p) − 2ei(�t−�Jp) + ei(�t−�(J+1)p)) (B2)

After some manipulations, we obtain

�LE = 2 sin(�p/2)√
p2 − 2(p2 − 1) sin2(�p/2)/3

(B3)

For the MLE scheme (45), we obtain in a similar way that

�MLE = 2 sin(�p/2)

4
√

p4 − 2p2(p2 − 1) sin2(�p/2)/3
(B4)
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