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Abstract. We show that on the manifold of fixed-rank and symmetric positive semi-definite matrices, the Rie-
mannian gradient descent algorithm almost surely escapes some spurious critical points on the boundary of the
manifold. Our result is the first to partially overcome the incompleteness of the low-rank matrix manifold without
changing the vanilla Riemannian gradient descent algorithm. The spurious critical points are some rank-deficient
matrices that capture only part of the eigen components of the ground truth. Unlike classical strict saddle points,
they exhibit very singular behavior. We show that using the dynamical low-rank approximation and a rescaled
gradient flow, some of the spurious critical points can be converted to classical strict saddle points in the parame-
terized domain, which leads to the desired result. Numerical experiments are provided to support our theoretical
findings.
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1 Introduction

Low-rank matrix recovery problems are prevalent in modern data science, artificial intelligence
and related technological fields. The low-rank property of matrices is widely exploited to ex-
tract the hidden low-complexity structure in massive datasets from machine learning, signal
processing, imaging science, advanced statistics, information theory and quantum mechanics,
just to name a few.

The low-rank matrix manifold [10, 11] has gained popularity in recent years since it gives a
neat description of low-rank matrices. The set of matrices with the same size 𝑚 by 𝑛 and a fixed
rank 𝑟 forms a smooth manifold M𝑟 , which is a nonconvex set that is locally isomorphic to the
Euclidean space. Many nonconvex optimization techniques can be transferred to M𝑟 without
much difficulty. Among them, the Riemannian gradient descent, the manifold version of the
vanilla gradient descent, demonstrates nearly optimal convergence rate and practical flexibility
in a number of problems, see e.g. [4, 5, 13, 27, 30, 31].

A fundamental problem has yet remained open in the global analysis of optimization on
the low-rank matrix manifold. This comes from the fact that M𝑟 is not a complete set. The
boundary of M𝑟 consists of matrices with rank smaller than 𝑟, which are not in M𝑟 themselves.
In other words, M𝑟\M𝑟 = ∪𝑟−1

𝑠=0M𝑠 ⊄ M𝑟 . There is no guarantee that the limit point of an
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iterative sequence will converge to a rank-𝑟 ground truth instead of being stuck at some lower-
rank spurious critical points.

In our previous work [13], it has been proved that under certain assumptions, the con-
verging set of the spurious points has very small measure. This means that starting from a
randomly sampled initialization, the iterative sequence avoids these spurious critical points
with high probability. However, practical applications seem to imply an even stronger result. In
fact, we observe that from random initializations, Riemannian gradient descent almost surely
avoids these spurious critical points. This motivates us to conjecture that their converging sets
actually have zero measure.

To understand this phenomenon, it helps to compare it with the asymptotic escape of strict
saddle points by gradient descent [18]. The two are remarkably similar, except that the spu-
rious critical points in our context are not strict saddles. Instead, the spurious critical points
are singular points with negative infinity Hessian directions. More advanced techniques are
needed to deal with their singularity.

In this paper, we give a partially confirmatory answer to the aforementioned conjecture. We
show that the Riemannian gradient flow and the Riemannian gradient descent with varying
stepsize asymptotically escape the rank-(𝑟 −1) spurious critical points on the rank-𝑟 symmetric
positive semi-definite (SPSD) manifold. We propose to use the dynamical low-rank approxi-
mation [15] to describe the gradient flow on the low-rank matrix manifold. We then introduce
a rescaled gradient flow to remove the singularity of the ODE system. After rescaling, classical
saddle escape theorems can be applied to derive the desired result.

Below is an example which illustrates that the spurious critical points can be the limit points
of the Riemannian gradient descent algorithm, but the required initialization is so special that
it is almost impossible under random initialization.

Example 1.1. Assume that 𝑛 = 3, 𝑟 = 2. We use the vanilla Riemannian gradient descent
(Riemannian GD) algorithm 𝑍𝑘+1 = 𝑅(𝑍𝑘 − 𝛼 · 𝑃𝑇𝑍𝑘

(𝑍𝑘 − 𝑋)) to minimize the least squares loss
function 𝑓 (𝑍) = 1

2 ‖𝑍 − 𝑋 ‖2
𝐹

on the manifold M2 = {𝑍 : 𝑍 ∈ R3×3, rank(𝑍) = 2}. Here 𝑃𝑇𝑍𝑘
(·) is

the projection onto the tangent space of M2 at 𝑍𝑘 and 𝑅(·) is the retraction, cf. Section 2.1. Let

𝑋 =

(
2 0 0
0 1 0
0 0 0

)
, 𝑍0 =

(
2 0 0
0 0 0
0 0 1

)
.

Let the step size 𝛼 ∈ (0, 1). Then the sequence {𝑍𝑘 }∞𝑘=0 generated by the Riemannian GD and
its limit point are given by

𝑍𝑘 =

(
2 0 0
0 0 0
0 0 (1 − 𝛼)𝑘

)
, 𝑍# := lim

𝑘→∞
𝑍𝑘 =

(
2 0 0
0 0 0
0 0 0

)
.

We see that 𝑍# is a spurious critical point. Note that even though 𝑍𝑘 ∈ M2 for any 𝑘 , 𝑍# ∉ M2.
Instead, 𝑍# ∈ M1.

However, from a slightly perturbed initial point

𝑍0 =

(
2 0 0
0 𝜖2 𝜖

0 𝜖 1

)
,
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with arbitrarily small 𝜖 > 0, one can always show that lim𝑘→∞ 𝑍𝑘 = 𝑋 , i.e., the limit point is not
a spurious point.

Figure 1 is a visualization of the gradient ‖𝑃𝑇𝑍 (𝑍 − 𝑋)‖𝐹 in the neighborhood of a spurious
𝑍#. We can see that the gradient is singular near 𝑍#. There is only one direction in which the
sequence converges to 𝑍#. Along other directions, the Riemannian gradient remains large and
the sequence does not converge to 𝑍#.

Figure 1: Magnitude of the gradient in the neighborhood of a spurious critical point

1.1 Related work

Incompleteness of the low-rank matrix manifold. The fact that M𝑟 is not a complete set is
first reported in [30] in the context of matrix completion, and later in [16] with low Tucker-rank
tensor completion. To guarantee that the iterative sequence of the proposed algorithm stays
inside a compact subset of M𝑟 , the author of [30] proposes to add a regularization term to the
objective function 𝑓 (𝑍):

𝑔(𝑍) = 𝑓 (𝑍) + 𝜇2(‖𝑍 ‖2
𝐹 + ‖𝑍†‖2

𝐹 ),

where 𝑍† is the pseudo-inverse of 𝑍 , and 𝜇 is a parameter. In particular, the term 𝜇2‖𝑍†‖2
𝐹

guarantees that ‖𝑍†‖𝐹 will not go to infinity, i.e. 𝑍 will not go to rank lower than 𝑟.
However, the author also comments that 𝜇2 can be chosen very small, in fact as small as

10−16. In numerical experiments, one can simply neglect this term and use the original function
𝑓 (𝑍) instead of the regularized function 𝑔(𝑍). In other words, the author observes that the
iterative sequence of the vanilla Riemannian gradient descent almost surely avoids the rank-
deficient points and stays inside M𝑟 .

Apocalypses from a geometric point of view. Concurrent with our paper, the authors of [19]
propose a similar concept. They use the term apocalypse to describe the event where the se-
quence of iterative points is in M𝑟 but the limit point has rank less than 𝑟 . This is exactly
what happens in Example 1.1. They observe that apocalypse occurs when the tangent cone at
the limit is not contained in the limit of the tangent cones. A more detailed discussion on the
relation between tangent cones and optimality conditions can be found in [20].

Along this line of research, two remedies have been proposed to fix the apocalypse. The first
is a second-order algorithm [19], which uses a smooth lift (essentially the Burer-Monteiro fac-
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torization 𝑋 = 𝑈𝑉>) and the trust-region method. Another is a first-order algorithm proposed
in [23], which uses the numerical rank to perform suitable rank reductions.

We remark that although both approaches could avoid spurious points, they require ma-
jor modification to the gradient descent algorithm. In contrast, we focus on explaining why
gradient descent needs no modification in practice.

Asymptotic escape of classical strict saddle points. Gradient descent with random initializa-
tion almost surely escapes strict saddle points and converges to minimizers. Such phenomenon
has been well studied in the literature. The seminal works in [18] and [17] deal with isolated
strict saddles in the Euclidean space. Later the result is extended to non-isolated saddles in
[24], to the Riemannian manifold in [6] and [29], and to the strict critical submanifold in [12].
We cite it in its most general form in Theorem 2.13. In addition to the results with fixed step
size, later work also extends the result to a diminishing step size [25].

Our central observation is that the spurious critical points in M𝑟\M𝑟 are fundamentally dif-
ferent from, but subtly related to, the classical strict saddle points. The spurious critical points
have singular local neighborhoods as illustrated in Figure 1. Their asymptotic escape behavior
cannot be directly explained by Theorem 2.13. However, using a rescaled gradient flow, we can
eliminate the singularity, and apply the saddle escape results to the rescaled system.

Implicit regularization in low-rank matrix factorization. The concept of implicit regularization
is often used to describe the emergence of favorable structures without explicit regularization
terms. In deep matrix factorization and deep neural networks, this describes a tendency to-
wards low-rank solutions and better generalization [2]. In statistical estimation, this could
mean a tendency to promote incoherence and accelerate convergence [5][21]. As we have seen,
the phenomenon that iterative sequences on the incomplete manifold M𝑟 stay inside the mani-
fold does not rely on an explicit regularization term 𝜇2‖𝑍†‖2

𝐹
. Thus it can also be seen as a form

of implicit regularization.

Matrix decomposition and its continuity. Our analysis crucially relies on finding a low-rank
decomposition that is sufficiently continuous along the whole gradient flow trajectory. The
dynamical low-rank approximation (DLRA), first proposed in [15], is a decomposition that
suits our purpose. In contrast, the singular value decomposition will lose its differentiability
whenever singular values coalesce [8]. A variant called the analytic SVD [3] could fix this issue,
but it requires analyticiy of the gradient function, which cannot be satisfied by Riemannian
gradients on M𝑟 . We remark that the success of DLRA is still limited to the rank-(𝑟−1) spurious
critical points. Extension of the current analysis to general spurious critical points is left for
future work.

1.2 Organization of this paper

The rest of this paper is organized as follows. In Section 2 we introduce some preliminary re-
sults to set the stage. In Section 3 we present and prove the main result of this paper, which is
the asymptotic escape of the rank-(𝑟 − 1) spurious critical points by the gradient flow. Specifi-
cally, we introduce the rescaled gradient flow, prove its 𝐶0- and 𝐶1-extension to the rank-(𝑟 −1)
spurious critical points, and show that these points are strict saddles under the rescaled flow.
In Section 4 we present the corresponding result for the gradient descent. In Section 5, some
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numerical experiments are performed to illustrate our theoretical results. Finally, Section 6 is
devoted to some discussions.

2 Preliminaries

Notations. Unless otherwise specified, upper case letters stand for matrices, lower case letters
stand for vectors or scalars, and calligraphic letters stand for manifolds or sets. The field F can
be either R or C. The low-rank matrix manifold is denoted as M𝑟 . The Hermitian transpose is
denoted as (·)∗. The set of 𝑛 × 𝑛 Hermitian matrices is denoted as S𝑛. The Stiefel manifold is
St(𝑛, 𝑟) = {𝑈 ∈ F𝑛×𝑟 : 𝑈∗𝑈 = 𝐼𝑟 }. The orthogonal group is SO(𝑛) = St(𝑛, 𝑛). The subscript (·)#
is reserved for the spurious critical points. We use grad and Hess to denote the Riemannian
gradient and Hessian, and ∇ to denote the Euclidean derivative.

2.1 Manifold setting

Let M𝑟 (𝑟 ∈ N) denote the fixed rank manifold {𝑍 ∈ F𝑚×𝑛 : rank(𝑍) = 𝑟}, where F = R or C.
Let M𝑟 be its closure. We summarize some basic properties of M𝑟 below. A more detailed
introduction can be found in [12].

Lemma 2.1. Let M𝑟 = {𝑍 ∈ F𝑚×𝑛 : rank(𝑍) = 𝑟}, where F = R or C. Then M𝑟 = {𝑍 ∈ F𝑚×𝑛 :
rank(𝑍) ≤ 𝑟}. Furthermore, we have the following:

(1) M𝑟 is dense in M𝑟 .

(2) For general M𝑟 ⊂ F𝑚×𝑛 of non-Hermitian matrices, M𝑟 is connected. If restricted to 𝑚 = 𝑛,
M𝑟 ⊂ S𝑛 Hermitian, then M𝑟 has 𝑟 + 1 disjoint branches and each branch is connected.

(3) The local dimension of M𝑟 is

dim(M𝑟 ) =


(𝑚 + 𝑛 − 𝑟)𝑟, F = R, non-Hermitian;
(2𝑚 + 2𝑛 − 𝑟)𝑟, F = C, non-Hermitian;
(2𝑚−𝑟+1)𝑟

2 , F = R, Hermitian;
(4𝑚−𝑟+1)𝑟

2 , F = C, Hermitian.

(4) The boundary of M𝑟 is M𝑟 \M𝑟 = ∪𝑟−1
𝑠=0M𝑠.

Lemma 2.2 (Tangent space of M𝑟 ). Let 𝑋 ∈ M𝑟 , 𝑋 = 𝑈Σ𝑉∗. Let U = Col(𝑈), V = Col(𝑉) be the
column spaces of 𝑈 and 𝑉 respectively. Then the tangent space of M𝑟 at 𝑋 is

𝑇𝑋M𝑟 = (U ⊗ V) ⊕ (U ⊗ V⊥) ⊕ (U⊥ ⊗ V).
We use the abbreviation 𝑇𝑋 when the manifold M𝑟 is clear from context. The projection operator onto
the tangent space can be characterized as

𝑃𝑇𝑋 (𝑌 ) = 𝑃𝑈 · 𝑌 + 𝑌 · 𝑃𝑉 − 𝑃𝑈 · 𝑌 · 𝑃𝑉 .

Definition 2.3 (Retraction). Let 𝑋 ∈ M𝑟 and 𝜉 ∈ 𝑇𝑋 . We define the natural retraction on M𝑟 as

𝑅(𝑋 + 𝜉) = arg min
𝑍 ∈M𝑟

‖𝑋 + 𝜉 − 𝑍 ‖𝐹 .
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2.2 Existence of spurious critical points

Our study of spurious critical points is motivated by the study in [13], which reveals a pre-
viously unknown property of the fixed rank matrix manifold M𝑟 . Namely, when minimizing
the least squares loss function 𝑓 (𝑍) = 1

2 ‖𝑍 − 𝑋 ‖2
𝐹

on M𝑟 with rank(𝑋) = 𝑟, there exist some
points with rank smaller than 𝑟 which could also serve as the limit points of minimizing se-
quences. This phenomenon was first reported in [11] and later attracted more research interest.
We summarize it in the following lemma.

Lemma 2.4 ([13, Lemma 3.8]). Consider using the Riemannian gradient descent algorithm

𝑍𝑘+1 = 𝑅

(
𝑍𝑘 − 𝛼𝑘𝑃𝑇𝑍𝑘

(grad 𝑓 (𝑍𝑘))
)

to minimize the least squares objective function

𝑓 (𝑍) = 1
2
‖𝑍 − 𝑋 ‖2

𝐹 .

Let the step size be 𝛼𝑘 ≡ 𝛼. Assume 𝑋 = 𝑈𝑥𝐷𝑥𝑉
∗
𝑥 is a singular value decomposition of 𝑋 , where

𝐷 ∈ R𝑟×𝑟 is a non-singular diagonal matrix and 𝑈 ∈ F𝑚×𝑟 , 𝑉 ∈ F𝑛×𝑟 . Then,

1) There are two types of fixed points: one is the ground truth 𝑍 = 𝑋 , and the other is the set

S# :=
{
𝑍# : 𝑍# = 𝑈1𝐷1𝑉1

∗, where 𝑈1, 𝐷1, 𝑉1 are submatrices of 𝑈𝑥 , 𝐷𝑥 , 𝑉𝑥 , satisfying
𝑈𝑥 = (𝑈1,𝑈2) , 𝐷𝑥 = diag{𝐷1, 𝐷2}, 𝑉𝑥 = (𝑉1, 𝑉2) respectively, and 𝑍# ≠ 𝑋

}
.

2) Specifically, if 𝑋 has distinct singular values, i.e. all the eigenvalues of 𝑋 have algebraic multi-
plicity equal to 1, then S# has cardinality |S# | = 2𝑟 − 1. Assume that 𝑋 =

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑣

∗
𝑖
, then

S# = {𝑍# =
∑𝑟

𝑖=1 𝑑𝑖𝜂𝑖𝑢𝑖𝑣
∗
𝑖
, where 𝜂 ∈ {0, 1}𝑟 and 𝜂 ≠ (1, 1, . . . , 1)∗}.

Motivated by the above lemma, we introduce the formal definition of the spurious critical
points.

Definition 2.5 (Spurious critical points). Assume that 𝑋 = 𝑈𝑥𝐷𝑥𝑉
∗
𝑥 is a singular value decom-

position of 𝑋 . Then the set of spurious critical points with respect to 𝑓 (𝑍) = 1
2 ‖𝑍 − 𝑋 ‖2

𝐹
on M𝑟

is S# = ∪𝑟−1
𝑠=0S𝑠, where each S𝑠 can be characterized as

S𝑠 :=
{
𝑍# : 𝑍# ∈ S#, rank(𝑍#) = 𝑠}

=
{
𝑍# : 𝑍# = 𝑈1𝐷1𝑉1

∗, 𝑈1 ∈ F𝑚×𝑠, 𝑉1 ∈ F𝑛×𝑠, 𝐷1 ∈ F𝑠×𝑠}.

Here 𝑈 = (𝑈1,𝑈2), 𝑈1 ∈ F𝑚×𝑠, 𝑈2 ∈ F𝑚×(𝑟−𝑠) is a block decomposition of 𝑈; similarly for 𝑉 and
𝐷.

A simple example of a minimizing sequence converging to a spurious critical point instead
of the ground truth 𝑋 has been given in Example 1.1. Observing such phenomenon, one nat-
urally asks how common this happens in practice. Interestingly, when the initial point 𝑍0 is
sampled on M𝑟 according to some general random sampling scheme, we observe that con-
vergence to spurious critical points almost never happens. The goal of this work is thus to
investigate the mechanism behind it.
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2.3 Dynamical low-rank approximation

The dynamical low-rank approximation was first proposed in [15] and soon gained popularity
as a discretization method for the computation of low-rank evolution systems. It gives a neat
description of the column space and core matrix of the low-rank matrix along the evolution.
The decomposition enjoys better smoothness than SVD and other classical decompositions.
While a smooth version of SVD is only available when the gradient function is analytic, the
dynamical low-rank approximation always preserves the smoothness of the gradient function.
Thus, it well suits our purpose.

Lemma 2.6 (Dynamical low-rank approximation1, [15]). Consider the gradient flow of a function
𝑓 (𝑍) : M𝑟 → R. Assume 𝑍 = 𝑈𝑆𝑉∗, where 𝑈, 𝑉 ∈ F𝑛×𝑟 are orthonormal, 𝑆 ∈ R𝑟×𝑟 nonsingular. Let
𝑀 := −grad 𝑓 (𝑍) = −𝑃𝑇𝑍 (∇ 𝑓 (𝑍)) denote the negative Riemannian gradient of 𝑓 (𝑍) on M𝑟 . Impose
the constraints ¤𝑈∗𝑈 = ¤𝑉∗𝑉 = 0. Then the gradient flow of 𝑓 (𝑍) can be described by the following ODE
system: 

¤𝑈 = 𝑃⊥
𝑈
𝑀𝑉𝑆−1,

¤𝑉 = 𝑃⊥
𝑉
𝑀∗𝑈 (𝑆−1)∗,

¤𝑆 = 𝑈∗𝑀𝑉.

(1)

Here, 𝑃⊥
𝑈

= 𝐼 −𝑈𝑈∗ and 𝑃⊥
𝑉
= 𝐼 −𝑉𝑉∗.

The dynamical low-rank approximation introduces a multiple-to-one mapping as a param-
eterization of M𝑟 . Let St(𝑛, 𝑟) denote the 𝑛 by 𝑟 Stiefel manifold, i.e. St(𝑛, 𝑟) = {𝑈 ∈ F𝑛×𝑟 :
𝑈∗𝑈 = 𝐼𝑟 }. Then we have that for 𝑆 nonsingular,

St(𝑚, 𝑟) ⊕ St(𝑛, 𝑟) ⊕ F𝑟×𝑟 → M𝑟

(𝑈,𝑉, 𝑆) ↦→ 𝑍 = 𝑈𝑆𝑉∗.

Since 𝑆 is not required to be diagonal, there are infinitely many tuples of (𝑈,𝑉, 𝑆) correspond-
ing to the same 𝑍 , and these tuples are not equivalent under permutations. However, after we
impose the constraints ¤𝑈∗𝑈 = ¤𝑉∗𝑉 = 0, from any initial tuple (𝑈0, 𝑉0, 𝑆0) there is a unique path
in St(𝑚, 𝑟) ⊕ St(𝑛, 𝑟) ⊕ F𝑟×𝑟 that describes the gradient flow of 𝑓 (𝑍) using a similar argument
as [15]. In other words, as long as the initial decomposition 𝑍0 = 𝑈0𝑆0𝑉

∗
0 is given, the decom-

position that satisfies the dynamical low-rank relation is uniquely determined along the whole
trajectory.

The advantage of the dynamical low-rank approximation (1) lies in the fact that the ODE
system generically stays continuous. This is especially remarkable for the singular vector ma-
trices 𝑈 and 𝑉 . As a comparison, SVD might enjoy uniqueness to some extent, but it is known
to lose its differentiability when singular values coalesce [8], and that could only be fixed with
the unrealistic assumption of analyticity [3].

More specifically, in the SPSD setting, for the least squares function 𝑓 (𝑍) = 1
2 ‖𝑍 − 𝑋 ‖2

𝐹
, we

have the following result.

1Strictly speaking, our ODE system is not an “approximation” but an exact characterization of the gradient flow.
We stick to this terminology for ease of reference.
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Lemma 2.7 (Existence of gradient flow). Consider the manifold of symmetric positive semi-definite
(SPSD) matrices, i.e., 𝑚 = 𝑛, and M𝑟 = {𝑍 ∈ S𝑛, 𝑍 < 0, rank(𝑍) = 𝑟}. Consider the least squares
objective function 𝑓 (𝑍) = 1

2 ‖𝑍 − 𝑋 ‖2
𝐹

. Let 𝑀 := −grad 𝑓 (𝑍) denote its negative Riemannian gradient.
Let 𝑍0 ∈ M𝑟 be the initialization of the gradient flow at time 𝑇 = 0, and 𝑈0 ∈ St(𝑛, 𝑟), 𝑆0 ∈ S𝑟
nonsingular such that 𝑍0 = 𝑈0𝑆0𝑈

>
0 . Then there exists a unique gradient flow satisfying{

¤𝑈 = 𝑃⊥
𝑈
𝑀𝑈𝑆−1,

¤𝑆 = 𝑈∗𝑀𝑈.

for all 0 ≤ 𝑇 < ∞.

Proof. The Riemannian gradient of the objective function 𝑓 (𝑍) = 1
2 ‖𝑍 − 𝑋 ‖2

𝐹
is 𝑃𝑇𝑍 (𝑍 − 𝑋).

Plugging in 𝑀 = −𝑃𝑇𝑍 (𝑍 − 𝑋), and noticing that 𝑃⊥
𝑈
𝑍 = 0 and 𝑃𝑈𝑈 = 𝑈, we get the following

ODE system: {
¤𝑈 = 𝑃⊥

𝑈
𝑋𝑈𝑆−1,

¤𝑆 = −𝑆 +𝑈∗𝑋𝑈.

It suffices to show that the ODE system does not blow up in finite time. We prove that for
any 𝑇1 > 0, 𝜎min(𝑆) is bounded from below for all 𝑇 ∈ [0, 𝑇1], where 𝜎min(𝑆) is the smallest
eigenvalue of 𝑆 ∈ 𝑆𝑟 .

At 𝑇 = 0, we have 𝜎min(𝑆) > 0. At a given time 𝑇 , let the multiplicity of 𝜎min(𝑆) be 𝑗 , i.e.,
𝜎𝑟− 𝑗 (𝑆) > 𝜎𝑟− 𝑗+1(𝑆) = . . . = 𝜎𝑟 (𝑆). Denote 𝑃𝑈(𝑟− 𝑗+1) to 𝑟

as the projection onto the corresponding
eigen subspace. Using a similar argument as in [22], one can show that

d
d𝑡

©«
𝑟∑︁

𝑙=𝑟− 𝑗+1

𝜎𝑙 (𝑆)
ª®¬ = tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· d
d𝑡

𝑆

)
.

In particular, when 𝜎𝑟 (𝑆) is a simple eigenvalue and 𝑢𝑟 is its eigenvector, this reduces to the
classical result

d
d𝑡

𝜎𝑟 (𝑆) = 𝑢∗𝑟

(
d
d𝑡

𝑆

)
𝑢𝑟 .

Note that d
d𝑡 𝑆 = −𝑆 +𝑈∗𝑋𝑈 and 𝑋 is positive semi-definite. Thus d

d𝑡 𝑆 < −𝑆, and we have

d
d𝑡

©«
𝑟∑︁

𝑙=𝑟− 𝑗+1

𝜎𝑙 (𝑆)
ª®¬ ≥ tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· (−𝑆)
)
= −

𝑟∑︁
𝑙=𝑟− 𝑗+1

𝜎𝑙 (𝑆).

In particular, when 𝜎𝑟 (𝑆) is a simple eigenvalue, one has

d
d𝑡

𝜎𝑟 (𝑆) ≥ −𝜎𝑟 (𝑆).

By Grönwall’s inequality, 𝜎min(𝑆) decays no faster than exponentially fast. Thus it is bounded
from below in any finite time interval. �
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Under the above parameterization, any isolated critical point 𝑍# on M𝑟 corresponds to a
critical set on St(𝑚, 𝑟) ⊕ St(𝑛, 𝑟) ⊕ F𝑟×𝑟 consisting of infinitely many points, denoted as N𝑍# :

N𝑍# := {(𝑈#, 𝑉#, 𝑆#) : 𝑈#𝑆#𝑉
∗
# = 𝑍#}.

Some constraints need to be imposed on the above decomposition to make it a valid parame-
terization for a spurious critical point. We will discuss it in more detail in Section 3.1.

We do not distinguish between the parameterized gradient flow on St(𝑚, 𝑟) ⊕ St(𝑛, 𝑟) ⊕ F𝑟×𝑟
and the original gradient flow on M𝑟 when there is no confusion. To prove the asymptotic
escape of spurious critical points on M𝑟 , then, is to prove the asymptotic escape of spurious
critical submanifolds on St(𝑚, 𝑟) ⊕ St(𝑛, 𝑟) ⊕ F𝑟×𝑟 .

2.4 Asymptotic escape of classical strict saddles

In this subsection, we introduce the classical results for the asymptotic escape of strict saddle
points by gradient descent. Note that we only intend to include the results for the vanilla
gradient descent. We do not cover the perturbed or stochastic gradient descent, as they are less
relevant to our problem.

We emphasize that the spurious critical points in Definition 2.5, the subject of this study, are
not classical strict saddle points. It is because the Riemannian Hessian at the spurious critical
points is singular, as will be revealed in subsequent sections. Therefore, the theorems and lem-
mas in this subsection are not directly applicable to the spurious critical points. Nevertheless,
these theorems and lemmas will be used in an indirect manner, on a rescaled system where the
singularity is removed.

The first theorem is a result on the stable and unstable manifolds of the gradient flow at a
hyperbolic point.

Theorem 2.8 ([26, The Center Manifold Theorem]). Let 𝑓 ∈ 𝐶𝑟 (𝐸) where 𝐸 is an open subset of R𝑛

containing the origin and 𝑟 ≥ 1. Let 𝑥(𝑡) = 𝜙𝑡 (𝑥0) be the gradient flow of the system ¤𝑥 = 𝑓 (𝑥). Suppose
that 𝑓 (0) = 0 and that 𝐷 𝑓 (0) has 𝑘 eigenvalues with negative real part, 𝑗 eigenvalues with positive real
part, and 𝑚 = 𝑛 − 𝑘 − 𝑗 eigenvalues with zero real part. Then there exist

(1) A 𝑘-dimensional stable manifold 𝑊 𝑠 (0) of class 𝐶𝑟 tangent to the stable subspace 𝐸 𝑠 at 0, where
for all 𝑥0 ∈ 𝑊 𝑠 (0),

lim
𝑡→+∞

𝜙𝑡 (𝑥0) = 0;

(2) A 𝑗-dimensional unstable manifold 𝑊𝑢 (0) of class 𝐶𝑟 tangent to the unstable subspace 𝐸𝑢 at 0,
where for all 𝑥0 ∈ 𝑊𝑢 (0),

lim
𝑡→−∞

𝜙𝑡 (𝑥0) = 0;

(3) And an 𝑚-dimensional center manifold 𝑊𝑐 (0) of class 𝐶𝑟 tangent to the center subspace 𝐸𝑐 at 0.

Furthermore, 𝑊𝑐 (0), 𝑊 𝑠 (0) and 𝑊𝑢 (0) are invariant under the gradient flow.
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Next, we introduce the counterpart of the previous results for the gradient descent. Specif-
ically, instead of ¤𝑥 = 𝑓 (𝑥), we consider 𝑓 (𝑥) = 𝜑(𝑥) where 𝜑(𝑥) is the iteration function of the
gradient descent algorithm. For example, when minimizing the least squares loss function on
M𝑟 , the iteration function is 𝜑(𝑍) = 𝑅

(
𝑍 − 𝛼𝑃𝑇𝑍 (𝑍 − 𝑋)

)
. The strict saddle point is defined as

follows. It basically says that a strict saddle point is a hyperbolic point of the iteration function.

Definition 2.9 (Strict saddle point). Consider a function 𝑓 (·) : M → R defined on a manifold
M. We call 𝑍 ∈ M a strict saddle point of 𝑓 , if

(1) grad 𝑓 (𝑍)) = 0;

(2) Hess 𝑓 (𝑍) has at least one negative eigenvalue.

We then have the following theorem for the asymptotic escape of isolated saddle points.

Theorem 2.10 ([12, Theorem 2.15]). Let 𝑓 (·) : M → R be a 𝐶2 function on M. Suppose that
𝑓 (·) : M → R has either finitely many saddle points, or countably many saddle points in a compact
submanifold of M, and all saddle points of 𝑓 are strict saddles as is defined in Definition 2.9. Let A
denote the set of strict saddles. Then we have

Prob( lim
𝑘→∞

𝑍𝑘 ∈ A) = 0

The proof of the theorem is based on [28, Theorem III.7], which is very similar to Theorem
2.8 but focuses on the contraction/expansion of the iteration function. We omit the details here.

As is mentioned in the previous subsection, using the parameterization St(𝑚, 𝑟) ⊕ St(𝑛, 𝑟) ⊕
F𝑟×𝑟 → M𝑟 , each single critical point 𝑍# corresponds to a submanifold N𝑍# . We need the
following definitions of the analogy of strict saddle points for submanifolds.

Definition 2.11 (Critical submanifold). For 𝑓 : M ↦→ R, a connected submanifold N ⊂ M is
called a critical submanifold of 𝑓 if every point 𝑍 in N is a critical point of 𝑓 , i.e. grad 𝑓 (𝑍) = 0
for any 𝑍 ∈ N .

Definition 2.12 (Strict critical submanifold). A critical submanifold N of 𝑓 is called a strict
critical submanifold, if ∀𝑍 ∈ N ,

𝜆min(Hess 𝑓 (𝑍)) ≤ 𝑐 < 0,

where 𝜆min(·) takes the smallest eigenvalue, and 𝑐 = 𝑐(N) is a uniform constant for all 𝑍 ∈ N
depending only on N .

Using the above definitions, we have the following theorems on the asymptotic escape of
strict critical submanifolds for gradient descent.

Theorem 2.13 ([12, Theorem 2.19]). Let 𝑓 (·) : M → R be a 𝐶2 function on M. Suppose that
𝑓 (·) : M → R has either finitely many critical submanifolds, or countably many critical submanifolds
in a compact region of M, and all of them are strict critical submanifolds as defined in Definition 2.12.
Let A denote the union of strict critical submanifolds. Then we have

Prob( lim
𝑘→∞

𝑍𝑘 ∈ A) = 0.

We remark that the results on the asymptotic escape of saddle points in the Euclidean space,
e.g., the results in [18], can be seen as special cases of Theorem 2.13.
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3 Main result

From this section on, we focus on the set of symmetric positive semi-definite (SPSD) matrices,
i.e., 𝑚 = 𝑛, and M𝑟 = {𝑍 ∈ S𝑛, 𝑍 < 0, rank(𝑍) = 𝑟}. The ground truth 𝑋 is also a rank-𝑟 SPSD
matrix. Recall that by Definition 2.5, the set of spurious critical points is S# = ∪𝑟−1

𝑠=0S𝑠, where
each S𝑠 (0 ≤ 𝑠 ≤ 𝑟 − 1) is the set of rank-𝑠 spurious critical points, i.e.,

S𝑠 :=
{
𝑍# : 𝑍# ∈ S#, rank(𝑍#) = 𝑠}

=
{
𝑍# : 𝑍# = 𝑈1𝐷1𝑈1

∗, 𝑈1 ∈ F𝑛×𝑠, 𝐷1 ∈ F𝑠×𝑠}.

The first main result of this paper is as follows.

Theorem 3.1 (Asymptotic escape of S𝑟−1: gradient flow). Let 𝑓 (𝑍) = 1
2 ‖𝑍 − 𝑋 ‖2

𝐹
, where 𝑋 ∈ M𝑟

has distinct eigenvalues. Let 𝑍𝑡 : 𝑡 ≥ 0 be the gradient flow of 𝑓 (𝑍) on M𝑟 starting from a random
initialization 𝑍0. Then we have that 𝑍𝑡 ∈ M𝑟 ∀ 0 ≤ 𝑡 < +∞, and

Prob ( lim
𝑡→∞

𝑍𝑡 ∈ 𝑆𝑟−1) = 0.

The rest of this section is devoted to the proof of Theorem 3.1.

3.1 Parameterization of M𝑟

In order to use the dynamical low-rank approximation from Section 2.3, we decompose a rank-
𝑟 matrix 𝑍 ∈ S𝑛 into 𝑍 = 𝑈𝑆𝑈∗, where 𝑈 ∈ St(𝑛, 𝑟) and 𝑆 ∈ S𝑟 . This decomposition differs from
the eigenvalue decomposition in that 𝑆 is not necessarily a diagonal matrix.

Consider a spurious critical point 𝑍# = 𝑈1𝐷1𝑈1
∗ ∈ M𝑠 ⊂ M𝑟\M𝑟 , where 𝑈1 ∈ F𝑛×𝑠 repre-

sents the 𝑠 eigenvectors that are also eigenvectors of 𝑋 . We would like to determine a subman-
ifold N𝑍# ⊂ St(𝑛, 𝑟) ⊕ S𝑟 that corresponds to 𝑍#. Assume that

𝑍# = 𝑈#𝑆#𝑈
∗
# ,

where
𝑆# = 𝑃#Σ#𝑃

∗
#

is the eigenvalue decomposition of 𝑆#. Then there exists 𝑈3 ⊥ 𝑈1, such that

𝑈# = (𝑈1,𝑈3)𝑃∗
#, Σ# =

(
𝐷1 0
0 0

)
.

In addition, for 𝑍# to be a critical point of 𝑓 (𝑍) = 1
2 ‖𝑍 − 𝑋 ‖2

𝐹
, we need 𝑃𝑇𝑍#

(𝑍# − 𝑋) = 0. One
can show that this gives

𝑈3 ⊥ 𝑈𝑥 = (𝑈1,𝑈2).

In other words, 𝑈3, the 𝑛 × (𝑟 − 𝑠) matrix that makes up for the missing rank, should be chosen
to be perpendicular to the missing component 𝑈2. This also gives us lim𝑍→𝑍# grad 𝑓 (𝑍) = 0, a
property that will be useful in upcoming computations.
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To sum up, a spurious critical point 𝑍# ∈ S# can be parameterized as

N𝑍# =

{
(𝑈#, 𝑆#) : 𝑈# = (𝑈1,𝑈3)𝑃∗

#, 𝑆# = 𝑃#

(
𝐷1 0
0 0

)
𝑃∗

#, 𝑈3 ⊥ 𝑈𝑥

}
,

where 𝑃# ∈ SO(𝑟) is an orthonormal matrix.

Lemma 3.2. N𝑍# is an embedded submanifold of the manifold M := St(𝑛, 𝑟) ⊕ S𝑟 .

Proof. See Appendix B. �

3.2 Rescaled gradient flow

Consider the dynamical low-rank description of the gradient flow for the objective function
𝑓 (𝑍) = 1

2 ‖𝑍 − 𝑋 ‖2
𝐹

. Impose the constraint ¤𝑈∗𝑈 = 0 as required by Lemma 2.6. Plug the Rie-
mannian gradient 𝑃𝑇𝑍 (𝑍 − 𝑋) into (1), and notice that 𝑃⊥

𝑈
𝑍 = 0 and 𝑃𝑈𝑈 = 𝑈, we obtain the

following ODE system: {
¤𝑈 = 𝐹 (𝑈, 𝑆) := 𝑃⊥

𝑈
𝑋𝑈𝑆−1,

¤𝑆 = 𝐻 (𝑈, 𝑆) := −𝑆 +𝑈∗𝑋𝑈.
(DLRA)

The main tool for the proof of asymptotic escape is the following rescaled gradient flow ODE
system: {

¤𝑈 = 𝐹 (𝑈, 𝑆) := 𝑃⊥
𝑈
𝑋𝑈𝑆−1 · 𝜎min(𝑆),

¤𝑆 = 𝐻 (𝑈, 𝑆) := (−𝑆 +𝑈∗𝑋𝑈) · 𝜎min(𝑆).
(DLRA*)

Here 𝜎min(𝑆) denotes the smallest eigenvalue of the 𝑟 × 𝑟 matrix 𝑆. In other words, the rescaled
system (DLRA*) is just the original system (DLRA) times a scalar 𝜎min(𝑆).

We first show that the rescaled system (DLRA*) is well-defined.

Lemma 3.3 (Continuity). The functions 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) are 𝐶0 in M𝑟 .

Proof. Inside M𝑟 , the matrix inverse 𝑆−1 is well-defined, so are the functions 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆).
Then use the fact that the smallest eigenvalue 𝜎min(𝑆) is 𝐶0 with respect to 𝑆. �

Lemma 3.4 (𝐶0-extension). The functions 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can be extended continuously to S𝑟−1.

Proof. Take any 𝑍# ∈ S𝑟−1 with parameterization 𝑍# = 𝑈#𝑆#𝑈
∗
# . It suffices to show that lim𝑍→𝑍# 𝐹 (𝑈, 𝑆)

and 𝐻 (𝑈, 𝑆) exist, and are independent of the specific choices of parameterization.
Let 𝑆 = 𝑃Σ𝑃∗ and 𝑆# = 𝑃#Σ#𝑃

∗
# be the eigenvalue decompositions of 𝑆 and 𝑆# respectively.

Denote 𝑝𝑖 = 𝑃(:, 𝑖), and 𝑝#,𝑖 = 𝑃#(:, 𝑖). Assume that 𝑋 = 𝑈𝑥𝐷𝑥𝑈
∗
𝑥 =

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑢

∗
𝑖
. Since 𝑍# ∈ S𝑟−1,

from the previous subsection, we know that

Σ# =

(
𝐷1 0
0 0

)
,
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where 𝐷1 is an (𝑟 − 1) × (𝑟 − 1) diagonal matrix, 𝐷1 = diag{𝑑1, . . . , 𝑑𝑟−1}. Moreover, when
‖𝑆 − 𝑆#‖𝐹 < 𝜖 for small enough 𝜖 , by the sinΘ theorem (Lemma A.1), we have

Σ = diag{𝜎1, . . . , 𝜎𝑟−1, 𝜎𝑟 },

where

𝜎𝑗 > min{𝑑1. . . . , 𝑑𝑟−1} − 𝜖, 1 ≤ 𝑗 ≤ 𝑟 − 1;
0 ≤ 𝜎𝑟 < 𝜖.

In other words, 𝜎𝑟 and the rest of the eigenvalues of 𝑆 are well-separated. Thus, when 𝜖 is small
enough, we always have 𝜎min(𝑆) = 𝜎𝑟 .

Consider 𝜑(𝑆) := 𝑆−1𝜎min(𝑆). When ‖𝑆 − 𝑆#‖𝐹 < 𝜖 , we have

𝜑(𝑆) = 𝑃 · diag{𝜎−1
1 , . . . , 𝜎−1

𝑟−1, 𝜎
−1
𝑟 } · 𝑃∗ · 𝜎𝑟

= 𝑃 · diag
{
𝜎𝑟

𝜎1
, . . . ,

𝜎𝑟

𝜎𝑟−1
, 1

}
· 𝑃∗

= 𝑃 · diag
{
𝜎𝑟

𝜎1
, . . . ,

𝜎𝑟

𝜎𝑟−1
, 0

}
· 𝑃∗ + 𝑝𝑟 𝑝

∗
𝑟 .

Thus,

lim
𝑆→𝑆#

𝜑(𝑆) = lim
𝑆→𝑆#

(
𝑃 · diag

{
𝜎𝑟

𝜎1
, . . . ,

𝜎𝑟

𝜎𝑟−1
, 0

}
· 𝑃∗ + 𝑝𝑟 𝑝

∗
𝑟

)
= 0 + 𝑝#,𝑟 𝑝

∗
#,𝑟

= 𝑝#,𝑟 𝑝
∗
#,𝑟 .

In other words, 𝜑(𝑆) can be continuously extended to 𝑆#.
We can now compute the limits of 𝐹 and 𝐻. Note that

𝐹 (𝑈, 𝑆) = 𝑃⊥
𝑈𝑋𝑈 · 𝜑(𝑆).

Using the parameterization

𝑍# = 𝑈#𝑆#𝑈
∗
# : 𝑈# = (𝑈1,𝑈3)𝑃∗

#, 𝑆# = 𝑃#

(
𝐷1 0
0 0

)
𝑃∗

#,

we have

lim
(𝑈,𝑆)→(𝑈#,𝑆#)

𝐹 (𝑈, 𝑆) = 𝑃⊥
𝑈#

𝑋𝑈# · lim
𝑆→𝑆#

𝜑(𝑆)

= 𝑃⊥
𝑈#

𝑋𝑈# · 𝑝#,𝑟 𝑝
∗
#,𝑟

= (𝐼 − 𝑃𝑈1 − 𝑃𝑈3) · (𝑈1𝐷1𝑈
∗
1 +𝑈2𝐷2𝑈

∗
2) · (𝑈1,𝑈3)𝑃∗

# · 𝑝#,𝑟 𝑝
∗
#,𝑟

= 𝑈2𝐷2𝑈
∗
2 · (𝑈1,𝑈3) · 𝑃∗

# · 𝑝#,𝑟 𝑝
∗
#,𝑟

= 0
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As for 𝐻 (𝑈, 𝑆), since 𝐻 (𝑈, 𝑆) is bounded and 𝜎min(𝑆) converges to zero, we have

lim
(𝑈,𝑆)→(𝑈#,𝑆#)

𝐻 (𝑈, 𝑆) = lim
(𝑈,𝑆)→(𝑈#,𝑆#)

𝐻 (𝑈,𝑉, 𝑆) · 𝜎min(𝑆) = 0.

Thus, 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can both be extended continuously to S𝑟−1, independent of the pa-
rameterization. �

3.3 Critical points of the rescaled system

In this section, we show that the ODE systems (DLRA) and (DLRA*) have the same critical
points.

Lemma 3.5 (Existence of rescaled gradient flow). Consider the rescaled ODE system (DLRA*).
Let 𝑍0 ∈ M𝑟 be the initialization of the gradient flow at time 𝑇 = 0, and 𝑈0 ∈ St(𝑛, 𝑟), 𝑆0 ∈ S𝑟
nonsingular such that 𝑍0 = 𝑈0𝑆0𝑈

>
0 . Then there exists a unique gradient flow that satisfies (DLRA*)

for all 𝑇 ∈ [0,∞).

Proof. The proof follows the same idea as that of Lemma 2.7. We show that within finite time,
(𝑈, 𝑆) remains in a region where 𝐹 and 𝐻 are Lipschitz continuous. Note that ∇𝑆𝑖 𝑗 (𝑆−1) =

−𝑆−1𝐸𝑖 𝑗𝑆
−1 where 𝐸𝑖 𝑗 is the indicator matrix of the (𝑖, 𝑗)-entry. Note also that the smallest

eigenvalue 𝜎min(𝑆) is Lipschitz continuous with respect to 𝑆 [14]. Thus the Lipschitz continuity
of 𝐹 and 𝐻 holds if 𝑆−1 is bounded. This is true if 𝜎min(𝑆) is bounded from below.

At a given time 𝑇 , let the multiplicity of 𝜎min(𝑆) be 𝑗 , i.e., 𝜎𝑟− 𝑗 (𝑆) > 𝜎𝑟− 𝑗+1(𝑆) = . . . = 𝜎𝑟 (𝑆).
Denote 𝑃𝑈(𝑟− 𝑗+1) to 𝑟

as the projection onto the corresponding eigen subspace. Using a similar
argument as in [22], we now have

d
d𝑡

©«
𝑟∑︁

𝑙=𝑟− 𝑗+1

𝜎𝑙 (𝑆)
ª®¬ = tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· d
d𝑡

𝑆

)
= tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· (−𝑆 +𝑈∗𝑋𝑈) · 𝜎min(𝑆)
)

≥ tr
(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· (−𝑆)
)
· 𝜎min(𝑆)

= − ©«
𝑟∑︁

𝑙=𝑟− 𝑗+1

𝜎𝑙 (𝑆)
ª®¬ · 𝜎min(𝑆).

In particular, when 𝜎𝑟 (𝑆) is a simple eigenvalue, this reduces to

d
d𝑡

𝜎𝑟 (𝑆) ≥ −𝜎𝑟 (𝑆)2.

Thus 𝜎min(𝑆) decays no faster than geometrically due to Grönwall’s inequality. Thus it is
bounded from below in any finite time interval. �

Lemma 3.6 (Limit points). Let 𝑍0 ∈ M𝑟 . Then the critical points of the ODE system (DLRA*) are
the same as those of (DLRA). Moreover, the gradient flows starting from the same initial point always
converge to the same limit point.
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Proof. Observe that the rescaled system (DLRA*) is just the original system (DLRA) multiplied
by a scalar:

𝐹 (𝑈, 𝑆) = 𝐹 (𝑈, 𝑆) · 𝜎min(𝑆),
𝐻 (𝑈, 𝑆) = 𝐻 (𝑈, 𝑆) · 𝜎min(𝑆).

Thus the gradient flow of the rescaled system follows the same path as the original system. In
other words, let 𝑍𝑡 (𝑡 ≥ 0) and 𝑍𝑡 (𝑡 ≥ 0) be the solutions of (DLRA) and (DLRA*) starting from
the same initial point 𝑍0, then for any time 𝑡 ≥ 0, there exists a corresponding time 𝑤 ≥ 0 such
that 𝑍𝑡 = 𝑍𝑤 .

When the time goes to infinity, both flows have limit points because both are minimizing
flows of a coercive and lower-bounded function 𝑓 (𝑍). Denote them as 𝑍∞ and 𝑍∞ respectively.
Then either 𝑍∞ = 𝑍∞, or there exists a finite 𝑇 such that 𝑍∞ = 𝑍𝑇 .

We now argue that only 𝑍∞ = 𝑍∞ is possible. Looking at the ODE system (DLRA*), a
critical point has to satisfy either 𝐹 (𝑈, 𝑆) = 𝐻 (𝑈, 𝑆) = 0, or 𝜎min(𝑆) = 0. In the former case,
𝐹 (𝑈, 𝑆) = 𝐻 (𝑈, 𝑆) = 0 means such (𝑈, 𝑆) is stationary for (DLRA), so 𝑍∞ = 𝑍∞. In the latter
case, such (𝑈, 𝑆) has to be 𝑍∞ because we know that 𝜎min(𝑆) cannot be zero at any finite time
from Lemma 2.7. So either way, 𝑍∞ = 𝑍∞. Therefore, the critical points of (DLRA*) could only
be those of (DLRA). �

By Lemma 3.6, if we can prove that gradient flows of (DLRA*) starting from random initial-
izations almost surely avoids the spurious critical points in S𝑟−1, we immediately have that the
same results apply to (DLRA). In the next subsection, we will show that this is much easier to
prove for the rescaled system than for the original system, because the points in S𝑟−1 are now
strict saddle points in the classical sense.

3.4 Landscape around the critical points

We now analyze the landscape around the critical points of (DLRA*). In fact, we will show that
the 𝐶0-extension that we proved in Lemma 3.4 can be improved to a 𝐶1-extension.

Lemma 3.7 (𝐶1-extension). Assume that the eigenvalues of the ground truth matrix 𝑋 are all distinct.
The functions 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can be 𝐶1-extended to S𝑟−1.

Proof. We first compute ∇𝐹 and ∇𝐻 in the interior of M𝑟 . In this region, 𝑆 is non-singular, and
all the derivatives are well defined. Let 𝜉 = (𝜉1, 𝜉2) be a placeholder for the directional deriva-
tive, where 𝜉1 and 𝜉2 correspond to the direction of 𝑈 and 𝑆 respectively. Direct computation
gives

∇𝐹 (𝑈, 𝑆) [𝜉] =
(
−(𝑈𝜉∗1 + 𝜉1𝑈

∗)𝑋𝑈𝑆−1 + 𝑃⊥
𝑈
𝑋𝜉1(𝑆−1)∗

−𝑃⊥
𝑈
𝑋𝑈𝑆−1𝜉2𝑆

−1

)
,

∇𝐻 (𝑈, 𝑆) [𝜉] =
(
𝜉∗1𝑋𝑈 +𝑈∗𝑋𝜉1

−𝜉2

)
.

To extend ∇𝐹 and ∇𝐻 themselves to S𝑟−1 is impossible: 𝑆−1 is singular near S𝑟−1, causing the
derivatives to explode. We aim to show that it becomes possible with the rescaled system
(DLRA*).
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For this purpose, we define the following function, which is the directional derivative of
𝜑(𝑆) along the direction 𝜂:

𝜓(𝑆, 𝜂) := ∇𝜑(𝑆) [𝜂] = ∇(𝑆−1𝜎min(𝑆)) [𝜂] .

We follow the same notations as before. Direct computation gives

lim
𝑆→𝑆#

𝜓(𝑆, 𝜂) = lim
𝑆→𝑆#

(
−𝑆−1𝜂𝑆−1𝜎min(𝑆) + 𝑆−1 · ∇𝜎min(𝑆) [𝜂]

)
.

We know from the proof of Lemma 3.4 that when ‖𝑆 − 𝑆#‖𝐹 < 𝜖 for small enough 𝜖 , the larger
eigenvalues 𝜎1 to 𝜎𝑟−1 and the smallest eigenvalue 𝜎𝑟 are well-separated. In fact, assuming that
the eigenvalues of 𝑋 are distinct, for small enough 𝜖 , all the eigenvalues of 𝑆 are well-separated,
and the corresponding eigenvectors are continuous with respect to the change of 𝑆. In this case,
we know from [22] that

∇𝜎𝑟 (𝑆) [𝜂] = 𝑝∗𝑟𝜂𝑝𝑟 .

Thus, we have

lim
𝑆→𝑆#

𝜓(𝑆, 𝜂) = lim
𝑆→𝑆#

(
−𝑆−1𝜂𝑆−1𝜎𝑟 + 𝑆−1𝑝∗𝑟𝜂𝑝𝑟

)
.

For simplicity, we focus on the case F = R. Since {𝑝𝑖𝑝∗𝑗}𝑟𝑖, 𝑗=1 form a complete orthogonal basis
of R𝑟×𝑟 , we can write

𝜂 =
∑︁

1≤𝑖, 𝑗≤𝑟
𝑐𝑖 𝑗 𝑝𝑖𝑝

∗
𝑗 .

Such decomposition is continuous around 𝑆#, since all 𝜎𝑖’s are well-separated and all 𝑝𝑖’s are
continuous with respect to the change of 𝑆.

It now suffices to compute lim𝑆→𝑆# 𝜓(𝑆, 𝜂) for 𝜂 = 𝑝𝑖𝑝
∗
𝑗
, as 𝜓(𝑆, 𝜂) is linear in 𝜂. This comes

in the following cases:

(1) If 𝑖, 𝑗 < 𝑟:

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑖𝑝∗𝑗) = lim
𝑆→𝑆#

(
−𝑆−1𝑝𝑖𝑝

∗
𝑗𝑆

−1𝜎𝑟 + 𝑆−1𝑝∗𝑟 𝑝𝑖𝑝
∗
𝑗 𝑝𝑟

)
= lim

𝑆→𝑆#

(
−𝑃Σ−1𝑒𝑖𝑒

∗
𝑗Σ

−1𝜎𝑟𝑃
∗ + 𝑆−1 · 0

)
= lim

𝑆→𝑆#
(−𝑃 · 0 · 𝑃∗ + 0)

= 0.

(2) If 𝑖 < 𝑟, 𝑗 = 𝑟 :

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑖𝑝∗𝑟 ) = lim
𝑆→𝑆#

(
−𝑆−1𝑝𝑖𝑝

∗
𝑟𝑆

−1𝜎𝑟 + 𝑆−1𝑝∗𝑟 𝑝𝑖𝑝
∗
𝑟 𝑝𝑟

)
= lim

𝑆→𝑆#

(
−𝑃Σ−1𝑒𝑖𝑒

∗
𝑟Σ

−1𝜎𝑟𝑃
∗ + 𝑆−1 · 0

)
= 𝑑−1

𝑖 𝑝𝑖𝑝
∗
𝑟 .
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(3) If 𝑖 = 𝑟 , 𝑗 < 𝑟: Similar to the previous case,

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑟 𝑝∗𝑗) = 𝑑−1
𝑗 𝑝𝑟 𝑝

∗
𝑗 .

(4) If 𝑖 = 𝑗 = 𝑟:

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑟 𝑝∗𝑗) = lim
𝑆→𝑆#

(
−𝑆−1𝑝𝑟 𝑝

∗
𝑟𝑆

−1𝜎𝑟 + 𝑆−1𝑝∗𝑟 𝑝𝑟 𝑝
∗
𝑟𝑣𝑟

)
= lim

𝑆→𝑆#

(
−𝑃Σ−1𝑒𝑟 𝑒

∗
𝑟Σ

−1𝜎𝑟𝑃
∗ + 𝑆−1

)
= lim

𝑆→𝑆#

(
𝑃 · diag

{
𝜎−1

1 , . . . , 𝜎−1
𝑟−1,−𝜎

−1
𝑟 + 𝜎−1

𝑟

}
· 𝑃∗

)
= lim

𝑆→𝑆#

(
𝑃 · diag

{
𝜎−1

1 , . . . , 𝜎−1
𝑟−1, 0

}
· 𝑃∗

)
= 𝑃# · diag

{
𝜎−1

1 , . . . , 𝜎−1
𝑟−1, 0

}
· 𝑃∗

#.

Therefore, 𝜓(𝑆, 𝜂) can be continuously extended to 𝑆# for any 𝜂.
We now compute the derivatives of 𝐹 and 𝐻 at 𝑍#. The directional derivative in 𝑈 only

involves 𝜑(𝑆#), and we have

lim
𝑍→𝑍#

∇𝑈𝐹 (𝑈, 𝑆) [𝜉1] = lim
𝑍→𝑍#

(
−(𝑈𝜉∗1 + 𝜉1𝑈

∗)𝑋𝑈𝑆−1𝜎min(𝑆) + 𝑃⊥
𝑈𝑋𝜉1𝑆

−1𝜎min(𝑆)
)

= −(𝑈#𝜉
∗
1 + 𝜉1(𝑈#)∗)𝑋𝑈# · 𝜑(𝑆#) + 𝑃⊥

𝑈#
𝑋𝜉1 · 𝜑(𝑆#)

= −(𝑈#𝜉
∗
1 + 𝜉1(𝑈#)∗)𝑋𝑈# · 𝑝𝑟 𝑝∗𝑟 + 𝑃⊥

𝑈#
𝑋𝜉1𝑝𝑟 𝑝

∗
𝑟 .

As for the directional derivative in 𝑆, we now make use of 𝜓(𝑆#, 𝜂):

lim
𝑍→𝑍#

∇𝑆𝐹 (𝑈, 𝑆) [𝜉2] = lim
𝑍→𝑍#

∇𝑆

(
𝑃⊥
𝑈𝑋𝑈𝑆−1

)
[𝜉2]

= lim
𝑍→𝑍#

(
𝑃⊥
𝑈𝑋𝑈𝜓(𝑆, 𝜉2)

)
= 𝑃⊥

𝑈#
𝑋𝑈# · 𝜓(𝑆#, 𝜉2).

Since 𝑃⊥
𝑈#

𝑋𝑈# = 0 and 𝜓(𝑆#, 𝜉2) is bounded, we have

lim
𝑍→𝑍#

∇𝑆𝐹 (𝑈, 𝑆) [𝜉2] = 0 · 𝜓(𝑆#, 𝜉2) = 0.

Thus, the derivatives of 𝐹 can be extended continuously to 𝑍#, and we have

lim
𝑍→𝑍#

∇𝐹 (𝑈, 𝑆) =
(
−(𝑈#𝜉

∗
1 + 𝜉1(𝑈#)∗)𝑋𝑈# · 𝑝𝑟 𝑝∗𝑟 + 𝑃⊥

𝑈#
𝑋𝜉1 · 𝑝𝑟 𝑝∗𝑟

0

)
.

As for the derivative of 𝐻, we have

lim
𝑍→𝑍#

∇𝐻 (𝑈, 𝑆) [𝜉] = lim
𝑍→𝑍#

(
(𝜉∗1𝑋𝑈 +𝑈∗𝑋𝜉1) · 𝜎min(𝑆)

−𝜉2 · 𝜎min(𝑆) + (−𝑆 +𝑈∗𝑋𝑈)∇𝑆𝜎min(𝑆) [𝜉2]

)
=

(
0
0

)
.

Thus, we have shown that the derivatives of 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can both be extended con-
tinuously to such 𝑍#, which is equivalent to saying that the functions themselves can be 𝐶1-
extended to such 𝑍#. �

17



The 𝐶1-extension is crucial to the landscape analysis of the system (DLRA*) at the subman-
ifolds corresponding to the rank-(𝑟 − 1) spurious critical points. It enables us to compute the
Jacobian right at those submanifolds, and determine its eigenvalues. We now show that those
submanifolds are actually strict critical submanifolds of the system (DLRA*).

Lemma 3.8 (Strict critical submanifold). Assume that the eigenvalues of the ground truth matrix 𝑋

are all distinct. Given a point 𝑍# ∈ S𝑟−1, let N𝑍# = {(𝑈#, 𝑆#) : 𝑈#𝑆#𝑈
∗
# = 𝑍#} be the submanifold

after parameterization that corresponds to 𝑍#. Then N𝑍# is a strict critical submanifold of the system
(DLRA*).

Proof. The goal is to show that for any (𝑈#, 𝑆#) ∈ N𝑍# , it is a hyperbolic point of the gradient
flow with at least one escape direction, and all these points in N𝑍# share a common escape
direction perpendicular to the submanifold itself with a uniformly bounded eigenvalue. We
will determine this escape direction by construction, using the results from the proof of Lemma
3.7.

Recall that 𝑆 = 𝑃Σ𝑃∗, 𝑆# = 𝑃#Σ#𝑃
∗
#, and 𝑋 = 𝑈𝑥𝐷𝑥𝑈

∗
𝑥 =

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑢

∗
𝑖
. Let

𝜉 = (𝜉1, 𝜉2), 𝜉1 = 𝑢𝑟 𝑝
∗
#,𝑟 , 𝜉2 = 0.

Note that 𝑋 = 𝑈1𝐷1𝑈
∗
1+𝑈2𝐷2𝑈

∗
2 , where𝑈2 = 𝑢𝑟 , 𝐷2 = 𝑑𝑟 , and𝑈2𝐷2𝑈

∗
2 is the missing component

in this spurious critical point 𝑍#. In other words, we construct 𝜉 exactly along the direction of
this missing component. Using this property, we have that

∇𝑈𝐹 (𝑈, 𝑆) [𝜉1] | (𝑈,𝑆)=(𝑈#,𝑆#)

= −(𝑈#𝜉
∗
1 + 𝜉1𝑈

∗
#)𝑋𝑈# · 𝑝#,𝑟 𝑝

∗
#,𝑟 + 𝑃⊥

𝑈#
𝑋𝜉1 · 𝑝#,𝑟 𝑝

∗
#,𝑟

= −(𝑈#𝑝#,𝑟𝑢
∗
𝑟 + 𝑢𝑟 𝑝

∗
#,𝑟𝑈

∗
#)𝑋𝑈# · 𝑝#,𝑟 𝑝

∗
#,𝑟 + (𝐼 − 𝑃⊥

𝑈1
− 𝑃⊥

𝑈3
)𝑋 · 𝑢𝑟 𝑝∗#,𝑟 · 𝑝#,𝑟 𝑝

∗
#,𝑟

= −
(
(0,𝑈3)𝑢∗𝑟 + 𝑢𝑟 (0,𝑈3)∗

) (
𝑈1𝐷1𝑈

∗
1 +𝑈2𝐷2𝑈

∗
2
)
·𝑈#𝑝#,𝑟 𝑝

∗
#,𝑟 +𝑈2𝐷2𝑈

∗
2 · 𝑢𝑟 𝑝∗#,𝑟

= 0 + 𝑑𝑟𝑢𝑟𝑢
∗
𝑟 · 𝑢𝑟 𝑝∗#,𝑟

= 𝑑𝑟𝑢𝑟 𝑝
∗
#,𝑟 ,

and

∇𝑆𝐹 (𝑈, 𝑆) [𝜉2] | (𝑈,𝑆)=(𝑈#,𝑆#)= 0.

Thus,

∇𝐹 (𝑈, 𝑆) [𝜉] | (𝑈,𝑆)=(𝑈#,𝑆#)= 𝑑𝑟𝑢𝑟 𝑝
∗
#,𝑟 + 0 = 𝑑𝑟𝑢𝑟 𝑝

∗
#,𝑟 .

Meanwhile,

∇𝐻 (𝑈, 𝑆) [𝜉] | (𝑈,𝑆)=(𝑈#,𝑆#)= 0.

Putting everything together, we have

∇(𝐹, 𝐻) [𝜉] = 𝑑𝑟 · (𝑢𝑟 𝑝∗#,𝑟 , 0)
= 𝑑𝑟 · 𝜉.

This means that 𝜉 = (𝑢𝑟 𝑝∗#,𝑟 , 0) is an eigenvector of the Jacobian ∇(𝐹, 𝐻) with eigenvalue 𝑑𝑟 ,
which is positive.

Thus, for every tuple (𝑈#, 𝑆#) in N𝑍# , we have found an escape direction with uniform eigen-
value. So N𝑍# is a strict critical submanifold as desired. �
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3.5 Proof of the main result

We now prove Theorem 3.1 using the results from previous subsections.

Proof of Theorem 3.1. By Lemma 2.4, there are only finitely many spurious critical points in
S𝑟−1. By Lemma 3.8, for each 𝑍# ∈ S𝑟−1, in the parameterized domain St(𝑛, 𝑟) ⊕ S𝑟 , the corre-
sponding submanifold N𝑍# is a strict critical submanifold for the rescaled gradient flow. Since
there are only finitely many of them, we can apply Theorem 2.8. This implies that the rescaled
gradient flow in the parameterized domain almost never converges to ∪𝑍#∈S𝑟−1N𝑍# . Thus the
rescaled gradient flow in the original domain M𝑟 also almost never converges to S𝑟−1. By
Lemma 3.6, the original gradient flow has the same limit as the rescaled gradient flow. Thus
the original gradient flow enjoys the same result, i.e., Prob (lim𝑡→∞ 𝑍𝑡 ∈ 𝑆𝑟−1) = 0. �

4 Main result for the gradient descent

The previous section has focused on the gradient flow. In this section we derive the result
for the gradient descent, namely the asymptotic escape of the Riemannian gradient descent
algorithm from the spurious critical points in S𝑟−1.

Lemma 4.1 (Asymptotic escape of S𝑟−1: gradient descent). Let M𝑟 be the rank-𝑟 SPSD matrix
manifold. Consider 𝑓 (𝑍) = 1

2 ‖𝑍 − 𝑋 ‖2
𝐹

where 𝑋 ∈ M𝑟 has distinct eigenvalues. Let 𝑍0 ∈ M𝑟 be
a random initialization, and {𝑍𝑘 }∞𝑘=0 be the sequence generated by the following Riemannian gradient
descent algorithm with varying step size:

𝑍𝑘+1 = 𝑅

(
𝑍𝑘 − 𝛼 · 𝜎𝑟 (𝑍𝑘) · 𝑃𝑇𝑍𝑘

(
∇ 𝑓 (𝑍𝑘)

) )
, (2)

i.e. 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘), where 𝜎𝑟 (𝑍𝑘) is the 𝑟-th eigenvalue of 𝑍𝑘 , and 𝛼 > 0. Assume that 𝑍𝑘 ∈ M𝑟 for
any 𝑘 < +∞, i.e., the sequence stays inside M𝑟 at any finite step. Then we have

Prob ( lim
𝑘→∞

𝑍𝑘 ∈ 𝑆𝑟−1) = 0.

In particular, this holds true for arbitrarily large 𝛼 > 0.

Remark 4.2. A few remarks are in order.

(1) The stepsize 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘) is varying but not necessarily diminishing. It is important
to note that there is no upper bound on the constant 𝛼. Thus even though 𝜎𝑟 (𝑍𝑘) → 0 as
𝑍𝑘 → 𝑍#, the constant 𝛼 can be chosen accordingly so that {𝛼𝑘 } can be arbitrarily close to
non-diminishing stepsize.

(2) The reason for the choice 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘) is similar to the rescaling of the ODE system
(DLRA*) in the previous section. Namely, this makes the Jacobian of the iteration func-
tion 𝐶1-extendable to the rank-(𝑟 − 1) spurious critical points in S𝑟−1, using the same
techniques as in the proof of Lemma 3.7.
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Proof of Lemma 4.1. We use the same notations as before, namely 𝑍 = 𝑈𝑆𝑈∗, 𝑆 = 𝑃Σ𝑃∗, 𝑆# =

𝑃#Σ#𝑃
∗
#, and 𝑋 = 𝑈𝑥𝐷𝑥𝑈

∗
𝑥 =

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑢

∗
𝑖
. We also let 𝑍 = 𝑈𝑧Σ𝑈

∗
𝑧 denote the SVD of 𝑍 , which

implies 𝑈𝑧 = 𝑈 · 𝑃∗. We let 𝑈 ∈ St(𝑛, 𝑛 − 𝑟) be the orthogonal complement of 𝑈. It is also the
orthogonal complement of 𝑈𝑧 . Since 𝑈 = (𝑈1,𝑈3), where 𝑈3 ⊥ 𝑈2, we know that span{𝑈2} ⊂
span{𝑈}. Without loss of generality, we let 𝑈2 be the first column of 𝑈.

Consider the iteration function

𝜙(𝑍) = 𝑅
(
𝑍 − 𝛼 · 𝜎𝑟 (𝑍) · 𝑃𝑇𝑍 (∇ 𝑓 (𝑍))

)
= 𝑅

(
𝑍 − 𝛼 · 𝜎𝑟 (𝑍) · grad 𝑓 (𝑍)

)
.

(3)

Here grad 𝑓 (𝑍) is the Riemannian gradient. The Jacobian of the iteration function is

𝐷𝜙(𝑍) = 𝐼 − 𝛼 ·
(
𝜎𝑟 (𝑍) · Hess 𝑓 (𝑍) + 𝐷𝜎𝑟 (𝑍) · grad 𝑓 (𝑍)

)
.

It has been shown in [30] that

Hess 𝑓 (𝑍) [𝜉] = 𝜉 + 𝑃⊥
𝑈𝑧

(𝑍 − 𝑋)𝑈𝑁Σ−1𝑈∗
𝑧 +𝑈𝑧Σ

−1𝑁∗𝑈∗(𝑍 − 𝑋)𝑃⊥
𝑈𝑧

, (4)

where the vector 𝜉 is parameterized as

𝜉 = 𝑈𝑧𝑀𝑈∗
𝑧 +𝑈𝑧𝑁𝑈

∗ +𝑈𝑁∗𝑈∗
𝑧 , 𝑀 ∈ F𝑟×𝑟 , 𝑁 ∈ F𝑟×(𝑛−𝑟 ) .

In particular, when F = R, the degree of freedom of 𝜉 is 𝑟 (2𝑛−𝑟+1)
2 . It is equal to the dimension of

the tangent space that 𝜉 lies in, which is the same as the dimension of the manifold.
Consider lim𝑍→𝑍# 𝐷𝜙(𝑍) for 𝑍# ∈ S𝑟−1. Note that the parameterization from Section 3.1

ensures that span{𝑈3} ⊥ span{𝑈1,𝑈2}, so that 𝑍# is a valid critical point, i.e. grad 𝑓 (𝑍#) = 0.
Plugging Equation (4) into Equation (3), we have

𝐷𝜙(𝑍#) [𝜉] := lim
𝑍→𝑍#

𝐷𝜙(𝑍) [𝜉]

= 𝜉 − 𝛼 ·
(

lim
𝑍→𝑍#

(𝜎𝑟 (𝑍) · Hess 𝑓 (𝑍) [𝜉]) + 𝐷𝜎𝑟 (𝑍) [𝜉] · grad 𝑓 (𝑍#)
)

= 𝜉 − 𝛼 ·
(

lim
𝑍→𝑍#

(𝜎𝑟 (𝑍) · Hess 𝑓 (𝑍) [𝜉])
)

= 𝜉 − 𝛼 ·
(

lim
𝑍→𝑍#

(
𝜎𝑟 (𝑍) · 𝜉 − 𝑃⊥

𝑈 (𝑍 − 𝑋)𝑈𝑁Σ−1𝑈∗ −𝑈Σ−1𝑁∗𝑈∗(𝑍 − 𝑋)𝑃⊥
𝑈

))
= 𝜉 − 𝛼 ·

(
0 · 𝜉 −𝑈2𝐷2𝑈2

>𝑈𝑁2

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑈∗

# −𝑈#

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑁∗𝑈∗𝑈2𝐷2𝑈2

>
)

= 𝜉 + 𝛼 ·
(
𝑈2𝐷2𝑈2

>𝑈𝑁2

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑈∗

# +𝑈#

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑁∗𝑈∗𝑈2𝐷2𝑈2

>
)
.

Here, similar to the proof of Lemma 3.4, we have

lim
Σ→Σ#

Σ−1𝜎𝑟 = diag{0, . . . , 0, 1} = 𝑒𝑟 𝑒
∗
𝑟 .
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Thus, it follows that

𝐷𝜙(𝑍#) [𝜉] = 𝜉 + 𝛼 ·
(
𝑈2𝐷2𝑈2

>𝑈𝑁𝑒𝑟 𝑒
∗
𝑟𝑈

∗
# +𝑈#𝑒𝑟 𝑒

∗
𝑟𝑁

∗𝑈∗𝑈2𝐷2𝑈2
>
)
.

Note that without loss of generality, we have let 𝑈2 be the first column of 𝑈. Thus we have

𝐷𝜙(𝑍#) [𝜉] = 𝜉 + 𝛼 ·
(
𝑈2𝐷2(1, 0, . . . , 0) (𝑁𝑒𝑟 )

©«
𝑈2

>

0
...

0

ª®®®®¬
+ (𝑈2, 0, . . . , 0) (𝑒∗𝑟𝑁∗)

©«
1
0
...

0

ª®®®®¬
𝐷2𝑈2

>
)

= 𝜉 + 𝛼 · 2𝑁 (1, 1) ·𝑈2𝐷2𝑈2
>.

We can immediately read the eigenvalues and eigenvectors of 𝐷𝜙(𝑍#) from the above expres-
sion. Specifically, when F = R, 𝐷𝜙(𝑍#) has

(1) One eigenvector 𝜉 = 𝑈𝑁𝑈∗ +𝑈𝑁𝑈∗ with 𝑁 =

©«
1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

ª®®®®¬
, whose corresponding eigen-

value is 𝜆 = 1 + 2𝛼 · 𝐷2 > 1;

(2) ( 𝑟 (2𝑛−𝑟+1)
2 − 1) eigenvectors with eigenvalues 𝜆 = 1.

The case F = C is similar except that the dimensionality is different.
Now that 𝐷𝜙(𝑍#) has one eigenvalue greater than 1, while the rest of the eigenvalues are

equal to 1. By [28, Theorem III.7], there is an unstable manifold and a center manifold in the
neighborhood of 𝑍#, which can be extended globally. The existence of the unstable manifold
ensures that 𝑍# is an asymptotic unstable fixed point of the iteration function 𝜙(𝑍#). Thus, the
Riemannian gradient descent algorithm with varying step size (2) almost surely escapes S𝑟−1.

In particular, 𝐷𝜙(𝑍#) is always a local diffeomorphism independent of the choice of 𝛼, as its
only eigenvalues are 1 and 1+𝛼𝐷2. Therefore, the result of Lemma 4.1 holds true for arbitrarily
large 𝛼 > 0. �

5 Numerical experiments

In this section, we present some numerical experiments to illustrate our theoretical results in
Theorem 3.1 and 4.1. We also provide some evidence in support of conjectures beyond the
previous theorem and lemma.

In all experiments, we let F = R, 𝑚 = 𝑛 = 100, 𝑟 = 5, and we use the same ground truth matrix
𝑋 ∈ M𝑟 with distinct singular values. We use the Riemannian gradient descent algorithm to
minimize 𝑓 (𝑍) = 1

2 ‖𝑍−𝑋 ‖2
𝐹

. The experiments only differ by the sampling rule and the choice of
the step sizes 𝛼𝑘 . Each figure is generated by repeating the experiment 100 times. The shaded
area represents the range of the data and the solid line represents the median.
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(a) Local escape near S𝑟−1 (b) Local escape near S𝑟−2

Figure 2: Escape of spurious critical points

The first experiment is performed near a rank-(𝑟 −1) spurious critical point 𝑍 (1)
# ∈ S𝑟−1. The

initial points are randomly sampled in the local neighborhood of 𝑍 (1)
# . The stepsize is fixed to

be 𝛼𝑘 ≡ 𝛼 = 0.2. Figure 2a shows the log10 distance between 𝑍𝑘 and 𝑋 . It can be seen that in all
the repeated experiments, the sequence always succeeds to escape 𝑍

(1)
# and converge to 𝑋 .

To verify whether S𝑠 (𝑠 < 𝑟 − 1) incurs the same behavior, we repeat the experiment with
𝑍
(2)
# ∈ S𝑟−2. It can be seen in Figure 2b that the phenomenon is indeed the same. Thus we

conjecture that a similar result as Theorem 3.1 holds for those S𝑠 with 𝑠 < 𝑟 − 1 as well. Proof
of such result is left for future work.

Next, we investigate Lemma 4.1 and the varying step size 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘). Figures 3a and
3b are the results with a fixed stepsize 𝛼𝑘 ≡ 0.2. Figures 3c and 3d are the results with varying
stepsizes 𝛼𝑘 = 2𝜎𝑟 (𝑍𝑘). The left are the distances to the ground truth 𝑋 . The right are the log
values of 𝜎𝑟 (𝑍𝑘) along the iterative path. We can see that first of all, the iterative sequences
always escape all spurious critical points and converge to the ground truth. Moreover, the
value of 𝜎𝑟 (𝑍𝑘) is never too small, but soon converges to the smallest singular value of 𝑋 . This
helps illustrate that the varying stepsize 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘) is not a diminishing stepsize in practice,
but is rather always above a certain value.

6 Discussion

In this paper, we discuss the asymptotic escape of the spurious critical points on the low-rank
matrix manifold. The goal is to shed some light on the incompleteness of the low-rank matrix
manifold M𝑟 and justify the global use of Riemannian gradient descent on the manifold. To this
end, we first point out the existence of a set of spurious critical points S# ⊂ M𝑟\M𝑟 and discuss
its singularity. We then use a rescaled gradient flow combined with the dynamical low-rank
approximation to describe the local landscape, which enables us to eliminate the singularity
and prove the asymptotic escape result. We also present a corresponding result for the gradient
descent. Numerical experiments are provided to illustrate the theoretical results.

Though this study is focused on S𝑟−1, the asymptotic escape is empirically observed for S𝑠
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(a) log10 (‖𝑍𝑘 − 𝑋 ‖𝐹 ), fixed stepsize (b) log10 (𝜎𝑟 (𝑍𝑘 )), fixed stepsize

(c) log10 (‖𝑍𝑘 − 𝑋 ‖𝐹 ), varying stepsize (d) log10 (𝜎𝑟 (𝑍𝑘 )), varying stepsize

Figure 3: Comparison of fixed and varying stepsizes

with 𝑠 ≤ 𝑟 −2 as well. In fact, all spurious critical points in S# are observed to be asymptotically
unstable in practice, which can be seen from the numerical experiments. The current rescaled
gradient flow (DLRA*) loses both 𝐶0- and 𝐶1-extensions at S𝑠 with 𝑠 ≤ 𝑟−2. This is because the
continuity of eigenvalues and eigenvectors are only possible when only one of the eigenvalues
is approaching zero. Extension of the result to the case 𝑠 ≤ 𝑟 − 2 is left for future work. On the
other hand, the assumption that the eigenvalues of 𝑋 are distinct is not an essential assumption,
and can easily be removed.

Even though the result for the gradient descent calls for a step size 𝛼·𝜎𝑟 (𝑍), there is no upper
bound on the constant 𝛼 from the asymptotic escape analysis. It is because the isomorphism
requirement will not be violated even for arbitrarily large 𝛼. Thus the step size criterion is
not more stringent than that in classical saddle escape results, where there is usually an upper
bound on the step size.

In addition to the asymptotic result in this paper, a non-asymptotic result on the number
of steps needed to escape the spurious critical points can be found in [13]. There it is shown
that the converging set of the spurious critical points can be upper bounded by a small positive
measure. With high probability, one has nearly linear convergence rate towards the ground
truth. The two sides of the story complement each other and provide a wholesome picture of
the unique structure of the low-rank matrix manifold.
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A Auxiliary lemmas

Lemma A.1 (The sinΘ Theorem, [7]). Let 𝐴 be a Hermitian operator. Assume that

𝐴 =
(
𝐸0 𝐸1

) (
𝐴0 0
0 𝐴1

) (
𝐸∗

0
𝐸∗

1

)
is an invariant subspace decomposition (i.e., a generalized eigenvalue decomposition) of 𝐴. Let

𝐵 = 𝐴 + Δ, 𝐵 =
(
𝐹0 𝐹1

) (
𝐵0 0
0 𝐵1

) (
𝐹∗

0
𝐹∗

1

)
.

Let Θ0 be the angle matrix between subspaces 𝐸0 and 𝐹0. Define the residual as

𝑅 := 𝐵𝐸0 − 𝐸0𝐴0.

If there is an interval [𝛽, 𝛼] and 𝛿 > 0, such that the spectrum of 𝐴0 lies entirely in [𝛽, 𝛼], while that of
𝐵1 lies entirely in (−∞, 𝛽 − 𝛿] ∪ [𝛼 + 𝛿, +∞), then for every unitary-invariant norm ‖ · ‖, we have

𝛿‖sinΘ0‖ ≤ ‖𝑅‖.

In particular, this holds true for the matrix 2-norm and the Frobenius norm.

B Proof of Lemma 3.2

We recall the lemma from the main text.

Lemma 3.2. Define

N𝑍# :=
{
(𝑈#, 𝑆#) : 𝑈# = (𝑈1,𝑈3)𝑃∗

#, 𝑆# = 𝑃#

(
𝐷1 0
0 0

)
𝑃∗

#, 𝑈3 ⊥ 𝑈𝑥

}
.

Then N𝑍# is an embedded submanifold of the manifold M := St(𝑛, 𝑟) ⊕ S𝑟 .

The intuition behind Lemma 3.2 is that the set N𝑍# is a subset of M characterized by some
algebraic constraints, namely 𝑈#𝑆#𝑈

∗
# = 𝑍# and 𝑈3 ⊥ 𝑈𝑥 . As is often the case, one would ex-

pect such algebraic constraints to give an embedded submanifold. We will make this intuition
rigorous in this section.

We note that traditionally, embedded submanifold is proved by the submersion theorem,
i.e., by showing that the set is the preimage of a regular value of a submersive mapping. But
this approach does not work here because 𝑍# is not a regular value. Instead, we need to go back
to the definition of a submanifold and construct chart functions on N𝑍# directly.

Below are some auxiliary results from the literature.
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Lemma B.1 ([1, Proposition 3.3.2]). A subset N of a manifold M is a 𝑑-dimensional embedded sub-
manifold of M if and only if, around each point 𝑥 ∈ N , there exists a chart (U, 𝜑) of M such that N∩U
is a 𝜑-coordinate slice of U, i.e.,

N ∩U = {𝑥 ∈ U : 𝜑(𝑥) ∈ R𝑑 × 0}.

In this case, the chart (N ∩ U, 𝜑), where 𝜑 is seen as a mapping into R𝑑 , is a chart of the embedded
submanifold N .

By Lemma B.1, if we can construct an atlas of M and an atlas of N𝑍# , such that the charts in
the latter atlas are coordinate slices of the charts in the former atlas, then N𝑍# is an embedded
submanifold of M. This approach is less common than the traditional submersion theorem
approach, but is necessary for our problem.

Lemma B.2 ([9]). For the real Stiefel manifold St(𝑛, 𝑘), there exists an atlas ∪𝑄 (U𝑄, 𝜑𝑄) of the Stiefel
manifold. Namely, for each chart (U𝑄, 𝜑𝑄), 𝑄 is a matrix in St(𝑛, 𝑘), and the function 𝜑𝑄 can be
expressed as

𝜑𝑄 : U𝑄 → Skew(𝑘) ⊕ R(𝑛−𝑘)×𝑘 ,

𝑈 ↦→ (Ω11,Ω21),

where

Ω11 = (𝑈>
1 +𝑄>

1 )
−1 (

𝑄>
1𝑈1 +𝑈>

2 𝑄2 −𝑈>
1 𝑄1 −𝑄>

2𝑈2
)
(𝑈1 +𝑄1)−1, Ω11 = −Ω>

11,

Ω21 = (𝑈2 −𝑄2) (𝑈1 +𝑄1)−1,

and 𝑈 =

(
𝑈1
𝑈2

)
, 𝑄 =

(
𝑄1
𝑄2

)
are the block forms of 𝑈 and 𝑄 respectively. Such chart function is defined on

the subset U𝑄 ⊂ St(𝑛, 𝑘) which covers all of the manifold St(𝑛, 𝑘) except a zero-measure set.

In particular, if 𝑄 =

(
𝐼𝑘
0

)
, then

Ω11 = (𝑈>
1 + 𝐼𝑘)−1 (

𝑈1 −𝑈>
1
)
(𝑈1 + 𝐼𝑘)−1,

Ω21 = 𝑈2(𝑈1 + 𝐼𝑘)−1.

Lemma B.2 provides a neat construction of charts on the Stiefel manifold. In fact, we only
need two charts to cover the whole manifold, if we choose any two 𝑄’s that do not share any
left singular vector. We will use this construction frequently in the proof of Lemma 3.2.

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. We restrict our attention to the case F = R. The case F = C is very sim-
ilar except that the dimensionalities of some manifolds in the subsequent proof are slightly
different.

We aim to construct explicit charts of M = St(𝑛, 𝑟) ⊕ S𝑟 , and explicit charts of N𝑍# , such that
the latter are the coordinate slices of the former. For clarity, we will first write out the charts of
N𝑍# , and then express them as coordinate slices of charts of M.
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Step 1: Construct charts of N𝑍# .
For any (𝑈, 𝑆) ∈ N𝑍# , we rewrite 𝑈 and 𝑆 as the following:

𝑈 = 𝑈1𝑃
>
1 +𝑈3𝑃

>
2 , 𝑆 = 𝑃1𝐷1𝑃

>
1 ,

where 𝑃1 ∈ R𝑟×𝑠, 𝑃2 ∈ R𝑟×(𝑟−𝑠) , 𝑃 = (𝑃1, 𝑃2) ∈ SO(𝑟).

We argue that there exists a mapping from every 𝑃1 to a unique 𝑃2. An intuitive explanation
is that 𝑃2 can always be uniquely determined by a Gram-Schmidt process starting from the
identity matrix. Thus we can write 𝑃2 = P2(𝑃1) where P2 : R𝑟×𝑠 → R𝑟×(𝑟−𝑠) is a function.
Therefore, any (𝑈, 𝑆) ∈ N𝑍# can be re-parameterized using only (𝑃1,𝑈3). We write this re-
parameterization as a function 𝑓 :

𝑓 : N𝑍# → St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑥);
(𝑈, 𝑆) ↦→ (𝑃1,𝑈3).

Here St(𝑟, 𝑠) is a Stiefel manifold, and S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑥) is a constrained Stiefel manifold:

S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑥) := {𝑈3 : 𝑈3 ∈ St(𝑛, 𝑟 − 𝑠), 𝑈3 ⊥ 𝑈𝑥} , where 𝑈𝑥 = (𝑈1,𝑈2).

We now construct charts for 𝑃1 and𝑈3 respectively. The domain of 𝑃1 is the Stiefel manifold
St(𝑟, 𝑠). By Lemma B.2, there exists an atlas where every chart function maps to Skew(𝑠) ⊕
R(𝑟−𝑠)×𝑠. Let 𝑔 (1) be one such chart function:

𝑔 (1) : St(𝑟, 𝑠) → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠

𝑃1 ↦→ (Ω11,Ω21).

The domain of𝑈3 is the constrained Stiefel manifold S̃t(𝑛, 𝑟− 𝑠; 𝑈𝑥). Here𝑈𝑥 ∈ St(𝑛, 𝑟) is the
eigenvectors matrix of the ground truth 𝑋 , which is fixed. To construct a chart of S̃t(𝑛, 𝑟− 𝑠; 𝑈𝑥),
we first construct a mapping 𝑔 (2) according to Lemma B.2, such that

𝑔 (2) : S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑥) → Skew(𝑟 − 𝑠) ⊕ R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) ,

𝑈3 ↦→ (Λ11,Λ21).

The domain of Λ21 is R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) , which is a constrained set. To express the constraints

𝑈3 ⊥ 𝑈𝑥 in terms of constraints on Λ21, we write 𝑈3 =

(
𝑈3,1
𝑈3,2

)
and 𝑈𝑥 =

(
𝑈𝑥,1
𝑈𝑥,2

)
. Assume without

loss of generality that 𝑔 (2) is constructed by picking 𝑄 = (𝐼𝑟−𝑠, 0)> in Lemma B.2. Then

Λ21 = 𝑈3,2(𝑈3,1 + 𝐼𝑟−𝑠)−1.

Since 𝑈3 ⊥ 𝑈𝑥 , we have

𝑈>
𝑥𝑈3 = 𝑈>

𝑥,1𝑈3,1 +𝑈>
𝑥,2𝑈3,2 = 0.

Thus,

𝑈>
𝑥,2𝑈3,2 = −𝑈>

𝑥,1𝑈3,1.
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This gives us

𝑈>
𝑥,2Λ21 = −𝑈>

𝑥,1𝑈3,1(𝑈3,1 + 𝐼𝑟−𝑠)−1.

These are linear constraints on Λ21.
Let 𝑔 be the concatenation of 𝑔 (1) and 𝑔 (2) , then we have a re-parameterization of (𝑃1,𝑈3)

as follows:

𝑔 : St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠) → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) ;
(𝑃1,𝑈3) ↦→ (Ω11,Ω21,Λ11,Λ21).

Here R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) is the submanifold of R(𝑛−(𝑟−𝑠))×(𝑟−𝑠) defined by the linear constraints that
we derived:

R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) :=
{
Λ21 ∈ R(𝑛−(𝑟−𝑠))×(𝑟−𝑠) : 𝑈>

𝑥,2Λ21 = −𝑈>
𝑥,1𝑈3,1(𝑈3,1 + 𝐼𝑟−𝑠)−1

}
.

Let Λ◦
21 be an arbitrary solution to the equation 𝑈>

𝑥,2Λ21 = −𝑈>
𝑥,1𝑈3,1(𝑈3,1 + 𝐼𝑟−𝑠)−1. Then

R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) = Λ◦
21 + Ker(𝑈>

𝑥,2).

By finding an orthogonal basis for Ker(𝑈>
𝑥,2), it is easy to construct a chart function

ℎ : R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) → R(𝑛−(𝑟−𝑠)) (𝑟−𝑠)−𝑟 (𝑟−𝑠)

Λ21 ↦→ Γ.

Putting everything together, we have that

𝜑 := (id, ℎ) ◦ 𝑔 ◦ 𝑓 : N𝑍# → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R(𝑛−(𝑟−𝑠)) (𝑟−𝑠)−𝑟 (𝑟−𝑠) ;
(𝑈, 𝑆) ↦→ (Ω11,Ω21,Λ11, Γ).

This is a chart function for the whole N𝑍# except a zero-measure set. Varying 𝑔 (1) and 𝑔 (2) as
needed and we have the atlas for the whole N𝑍# .
Step 2: Express the charts of N𝑍# as coordinate slices of charts of M.

To express things into coordinate slices, we will work the other way around: we extend the
chart function 𝜑 into a chart function 𝜑 defined on M = St(𝑛, 𝑟) ⊕ S𝑟 .

For any (𝑈, 𝑆) ∈ M = St(𝑛, 𝑟) ⊕ S𝑟 , we construct a re-parameterization as follows:

𝑈 =

(
(𝑈1𝑅1, 0) + (𝑀4,𝑈3𝑅2)

) (
𝑃>

1
𝑃>

2

)
, 𝑆 = (𝑃1, 𝑃2)𝑆

(
𝑃>

1
𝑃>

2

)
,

where 𝑃1 ∈ R𝑟×𝑠, 𝑃2 ∈ R𝑟×(𝑟−𝑠) , 𝑃 = (𝑃1, 𝑃2) ∈ SO(𝑟),
𝑈3 ∈ S̃t(𝑛, 𝑟 − 𝑠; 𝑈1), 𝑀4 ∈ R̃𝑛×𝑠, 𝑆 ∈ S𝑟 ,
𝑅1 ∈ upper(𝑠, 𝑠), 𝑅2 ∈ �upper(𝑟 − 𝑠, 𝑟 − 𝑠).

The domain of 𝑃1 is St(𝑟, 𝑠). 𝑃2 is still uniquely determined by 𝑃1 as before. The domain of 𝑈3

is the constrained Stiefel manifold S̃t(𝑛, 𝑟 − 𝑠; 𝑈1) := {𝑈3 : 𝑈3 ∈ St(𝑛, 𝑟 − 𝑠), 𝑈3 ⊥ 𝑈1}. Note that
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the constraints are only in terms of𝑈1 instead of𝑈𝑥 = (𝑈1,𝑈2). The domain of 𝑀4 is the linearly
constrained subspace R̃𝑛×𝑠 := {𝑀4 ∈ R𝑛×𝑠, 𝑀4 ⊥ 𝑈1}. The domain of 𝑆 is S𝑟 . The domain of
𝑅1 is the subspace of 𝑠 × 𝑠 upper triangular matrices. The domain of 𝑅2 is the subspace of
(𝑟 − 𝑠) × (𝑟 − 𝑠) upper triangular matrices, but with some constraints that will be specified later.
We define the following mapping:

�̃� : St(𝑛, 𝑟) ⊕ S𝑟 → St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠; 𝑈1) ⊕ R̃(𝑛, 𝑠) ⊕ �upper(𝑟 − 𝑠, 𝑟 − 𝑠) ⊕ S𝑟 ⊕ upper(𝑠, 𝑠);

(𝑈, 𝑆) ↦→
(
𝑃1,𝑈3, 𝑀4, 𝑅2 − 𝐼𝑟−𝑠, 𝑆 −

(
𝐷1 0
0 0

)
, 𝑅1 − 𝐼𝑠

)
.

The mapping �̃� is written in such a way because, if (𝑈, 𝑆) ∈ N𝑍# , then the last few components
are all zero, and 𝑓 is just a coordinate slice of �̃� :

�̃� (𝑈, 𝑆) = (𝑃1,𝑈3, 0, 0, 0, 0) .

For the first part of the image of �̃� , we apply 𝑔 as before:

𝑔 : St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠) → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) ;
(𝑃1,𝑈3) ↦→ (Ω11,Ω21,Λ11,Λ21).

However, the set R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) is different from the R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) before, because the con-
straints only contain 𝑈1 but does not contain 𝑈2. Fewer constraints mean a larger subspace,
and we have

R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) =
{
Λ21 ∈ R(𝑛−(𝑟−𝑠))×(𝑟−𝑠) : 𝑈>

1,2Λ21 = −𝑈>
1,1𝑈3,1(𝑈3,1 + 𝐼𝑟−𝑠)−1

}
= R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) +

(
Ker(𝑈>

1,2)\Ker(𝑈>
𝑥,2)

)
= Λ◦

21 + Ker(𝑈>
𝑥,2) +

(
Ker(𝑈>

1,2)\Ker(𝑈>
𝑥,2)

)
.

Let ℎ (2) be the chart function for the extra subspace, then

(ℎ, ℎ (2) ) : R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) → R(𝑛−(𝑟−𝑠)) (𝑟−𝑠)−𝑟 (𝑟−𝑠) ⊕ R(𝑟−𝑠) (𝑟−𝑠) ,

Λ21 ↦→ (Γ, Γ(2) ).

Putting them together, we have

(id, ℎ, ℎ (2) ) ◦ 𝑔 ◦ 𝑓 : (𝑃1,𝑈3) ↦→ (Ω11,Ω21,Λ11, Γ, Γ
(2) ).

The chart function 𝜑 is a coordinate slice of the above mapping.
It suffices to find the chart functions for the remaining components of �̃� (𝑈, 𝑆), i.e., the com-

ponents 𝑀4, 𝑆, 𝑅1, 𝑅2. For 𝑆 ∈ S𝑟 and 𝑅1 ∈ upper(𝑠, 𝑠), the domains are Euclidean spaces with
natural bases. We now look at 𝑀4 and 𝑅2.

Decompose 𝑀4 into parts that are parallel to and perpendicular to the subspace of 𝑈3:

𝑀4 = 𝑀
‖
4 + 𝑀⊥

4 , where 𝑀
‖
4 = 𝑃𝑈3𝑀4, 𝑀⊥

4 = 𝑃⊥
𝑈3
𝑀4.
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Let 𝑀⊥
4 = 𝑈4𝑅4 be the QR decomposition of 𝑀⊥

4 . Then the whole 𝑀4 could be written as

𝑀4 = (𝑈3,𝑈4)
(
𝑅3
𝑅4

)
, 𝑅3 ∈ R(𝑟−𝑠)×(𝑟−𝑠) , 𝑅4 ∈ upper(𝑠, 𝑠).

In this way, we can re-parameterize (𝑀4, 𝑅2) using (𝑈4, 𝑅2, 𝑅3, 𝑅4):

𝑝 : (𝑀4, 𝑅2 − 𝐼𝑟−𝑠) ↦→ (𝑈4, 𝑅2, 𝑅3, 𝑅4).

The domain of 𝑈4 is the constrained Stiefel manifold S̃t(𝑛, 𝑠;𝑈1,𝑈3). Just as before, we can
construct a composite function for this constrained Stiefel manifold:

𝑔 (3) : S̃t(𝑛, 𝑠;𝑈1,𝑈3) → Skew(𝑠) ⊕ R̃(𝑛−𝑠)×𝑠,

𝑈4 ↦→ (Π11,Π21);
ℎ (3) : R̃(𝑛−𝑠)×𝑠 → R(𝑛−𝑠)𝑠−𝑟𝑠,

Π21 ↦→ Ξ;

(id, ℎ (3) ) ◦ 𝑔 (3) : S̃t(𝑛, 𝑠;𝑈1,𝑈3) → Skew(𝑠) ⊕ R(𝑛−𝑠)𝑠−𝑟𝑠,

𝑈4 ↦→ (Π11,Ξ).

The remaining components are 𝑅2, 𝑅3, and 𝑅4. The constraints for them come from the require-
ment that 𝑈 as a whole is in St(𝑛, 𝑟). This gives

𝑈>𝑈 =

(
(𝑈1𝑅1, 0) + (𝑀4,𝑈3𝑅2)

)> (
(𝑈1𝑅1, 0) + (𝑀4,𝑈3𝑅2)

)
=

(
𝑅>

1 𝑈
>
1 𝑈1𝑅1 0
0 0

)
+

(
(𝑈4,𝑈3)

(
𝑅4 0
𝑅3 𝑅2

))> (
(𝑈4,𝑈3)

(
𝑅4 0
𝑅3 𝑅2

))
=

(
𝑅>

1 𝑅1 0
0 0

)
+

(
𝑅4 0
𝑅3 𝑅2

)> (
𝑅4 0
𝑅3 𝑅2

)
=

(
𝑅>

1 𝑅1 + 𝑅>
3 𝑅3 + 𝑅>

4 𝑅4 𝑅>
3 𝑅2

𝑅>
2 𝑅3 𝑅>

2 𝑅2

)
= 𝐼𝑟

Denote

𝑅0 :=
(
𝑅2 𝑅3
0 𝑅4

)
∈ upper(𝑟, 𝑟).

Then the 𝑟 × 𝑟 upper-triangular matrix 𝑅0 should satisfy

𝑅>
0 𝑅0 =

(
𝐼𝑟−𝑠 0

0 𝐼𝑠 − 𝑅>
1 𝑅1

)
.

Such 𝑅0 is uniquely determined. Therefore, we get the following chart function for the compo-
nents (𝑀4, 𝑅2):

(id, ℎ (3) ) ◦ 𝑔 (3) ◦ 𝑝 : R̃(𝑛, 𝑠) ⊕ �upper(𝑟 − 𝑠, 𝑟 − 𝑠) → Skew(𝑠) ⊕ R(𝑛−𝑠)𝑠−𝑟𝑠,

(𝑀4, 𝑅2 − 𝐼𝑟−𝑠) ↦→ (Π11,Ξ).
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Putting everything together, we get the following chart function for the manifold M:

𝜑 :=
(
(id, ℎ, ℎ (2) ) ◦ 𝑔, (id, ℎ (3) ) ◦ 𝑔 (3) ◦ 𝑝, id

)
◦ �̃� :

M →
(
Skew(𝑠) ⊕ R(𝑟−𝑠)𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R(𝑛−2𝑟+𝑠) (𝑟−𝑠) ⊕ R(𝑟−𝑠) (𝑟−𝑠)

)
⊕

(
Skew(𝑠) ⊕ R(𝑛−𝑠−𝑟 )𝑠

)
⊕ S𝑟 ⊕ upper(𝑠, 𝑠),

(𝑈, 𝑆) ↦→
((
Ω11,Ω21,Λ11, Γ, Γ

(2)
)
,

(
Π11,Ξ

)
, 𝑆 −

(
𝐷1 0
0 0

)
, 𝑅1 − 𝐼𝑠

)
.

The chart function 𝜑 is a coordinate slice of the chart function 𝜑. Hence, N𝑍# is an embedded
submanifold of M. �
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