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Whether the 3D incompressible Euler and Navier–Stokes equations can de-
velop a finite-time singularity from smooth initial data with finite energy
has been one of the most long-standing open questions. We review some re-
cent theoretical and computational studies which show that there is a subtle
dynamic depletion of nonlinear vortex stretching due to local geometric regu-
larity of vortex filaments. We also investigate the dynamic stability of the 3D
Navier–Stokes equations and the stabilizing effect of convection. A unique
feature of our approach is the interplay between computation and analysis.
Guided by our local non-blow-up theory, we have performed large-scale com-
putations of the 3D Euler equations using a novel pseudo-spectral method
on some of the most promising blow-up candidates. Our results show that
there is tremendous dynamic depletion of vortex stretching. Moreover, we
observe that the support of maximum vorticity becomes severely flattened
as the maximum vorticity increases and the direction of the vortex filaments
near the support of maximum vorticity is very regular. Our numerical ob-
servations in turn provide valuable insight, which leads to further theoretical
breakthrough. Finally, we present a new class of solutions for the 3D Euler
and Navier–Stokes equations, which exhibit very interesting dynamic growth
properties. By exploiting the special nonlinear structure of the equations, we
prove nonlinear stability and the global regularity of this class of solutions.
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1. Introduction

The question of whether the 3D incompressible Navier–Stokes equations
can develop a finite-time singularity from smooth initial data is one of the
most long-standing open problems in fluid dynamics and mathematics. This
is also one of the seven Millennium Open Problems posted by the Clay
Mathematical Institute (see www.claymath.org). The understanding of this
problem could improve our understanding on the onset of turbulence and
the intermittency properties of turbulent flows.

The 3D incompressible Navier–Stokes equations are given by

ut + (u · ∇)u = −∇p+ ν∆u, (1.1)
∇ · u = 0, (1.2)

with initial condition u(x, 0) = u0(x). Here u is velocity, p is pressure, and
ν is viscosity. We consider only the initial value problem and assume that
the solution decays rapidly at infinity. Defining vorticity by ω = ∇ × u,
then ω is governed by

ωt + (u · ∇)ω = ∇u · ω + ν∆ω. (1.3)

The first term on the right-hand side of (1.3) is called the vortex stretching
term, which is absent in the two-dimensional problem. Note that ∇u is
formally of the same order as ω. Thus the vortex stretching term has a
formal quadratic scaling with respect to vorticity. This formal quadratic
nonlinearity in the vortex stretching term is the main difficulty in study-
ing the dynamic stability and global regularity of the 3D Navier–Stokes
equations. Under suitable smallness assumptions on the initial condition,
global existence and regularity results have been obtained for some time
(Ladyzhenskaya 1970, Constantin and Foias 1988, Temam 2001, Majda and
Bertozzi 2002). But these methods based on energy estimates do not gen-
eralize to the 3D Navier–Stokes with large data. Energy estimates seem to
be too crude to give a definite answer to whether diffusion is strong enough
to control the nonlinear growth due to vortex stretching. A more refined
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analysis seems to be needed, which takes into account the special nature of
the nonlinearities and their local interactions.

We believe that the global regularity of the 3D Navier–Stokes equations is
closely related to that of the 3D Euler equations. Since the nonlinearity of
the 3D Navier–Stokes equations is supercritical, the balance among different
nonlinear terms in the Euler equations may play an even more important role
than the diffusion term. Thus, it makes sense to investigate the mechanism
which may lead to finite-time blow-up or dynamic depletion of the nonlinear
vortex stretching in the 3D Euler equations.

There has been some interesting development in the theoretical under-
standing of the 3D incompressible Euler equations. In particular, Con-
stantin, Fefferman and Majda have shown that the local geometric regular-
ity of vortex lines can play an important role in depleting nonlinear vortex
stretching (Constantin 1994, Constantin, Fefferman and Majda 1996). In-
spired by their work, Deng, Hou and Yu (2005, 2006a) recently showed that
geometric regularity of vortex lines, even in an extremely localized region
containing the maximum vorticity, can lead to depletion of nonlinear vortex
stretching, thus avoiding finite-time singularity formation of the 3D Euler
equations. To obtain these results, Deng, Hou and Yu used a Lagrangian
approach and explored the connection between the stretching of local vor-
tex lines and the growth of vorticity. In particular, they showed that if the
vortex lines near the region of maximum vorticity satisfy some local geo-
metric regularity conditions and the maximum velocity field is integrable in
time, then no finite-time blow-up is possible. These localized non-blow-up
criteria provide stronger constraints on the local geometry of a potential
finite-time singularity.

There have been many computational attempts to find finite-time sin-
gularities of the 3D Euler and Navier–Stokes equations: see, e.g., Chorin
(1982), Pumir and Siggia (1990), Kerr and Hussain (1989), Grauer and
Sideris (1991), Shelley, Meiron and Orszag (1993), Kerr (1993), Caflisch
(1993), Boratav and Pelz (1994), Fernandez, Zabusky and Gryanik (1995),
Pelz (1997), Grauer, Marliani and Germaschewski (1998), Kerr (2005). One
example that has been studied extensively is the interaction of two per-
turbed antiparallel vortex tubes. This example is interesting because of
the vortex reconnection observed for the corresponding Navier–Stokes equa-
tions. It is natural to ask whether the 3D Euler equations would develop a
finite-time singularity in the limit of vanishing viscosity. Kerr (1993, 2005)
presented numerical evidence which suggested a finite-time singularity of
the 3D Euler equations for two perturbed antiparallel vortex tubes. Kerr’s
blow-up scenario is consistent with the non-blow-up criterion of Beale, Kato
and Majda (1984) and that of Constantin, Fefferman and Majda (1996).
But it falls into the critical case of Deng, Hou and Yu’s local non-blow-up
criteria (Deng, Hou and Yu 2005, 2006a).
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Guided by this local geometric non-blow-up analysis, Hou and Li (2006)
performed extremely large-scale computations with resolution up to 1536 ×
1024× 3072 to re-examine Kerr’s blow-up scenario (Kerr 1993). They used
a novel pseudo-spectral method with a 36th-order Fourier smoothing func-
tion which keeps a significant portion of the Fourier modes beyond the 2/3
cut-off point in the Fourier spectrum for the 2/3 de-aliasing rule. Their
extensive numerical results demonstrated that the pseudo-spectral method
with the high-order Fourier smoothing gives a much better performance
than the pseudo-spectral method with the 2/3 de-aliasing rule. In par-
ticular, they showed that the Fourier smoothing method captures about
12 ∼ 15% more effective Fourier modes than the 2/3 de-aliasing method
in each dimension. For 3D Euler equations, the total number of effective
modes in the Fourier smoothing method is about 20% more than that in the
2/3 de-aliasing method. This is a very significant increase in the resolution
for a large-scale computation.

There were several interesting findings in the large-scale computations of
Hou and Li (2006) for the 3D Euler equations using the initial data for the
antiparallel vortex tubes. First, they discovered a surprising dynamic can-
cellation in the vortex stretching term due to the local geometric regularity
of the vortex filaments. Vortex stretching was found to deplete dynamically
from a formally quadratic nonlinearity to a much weaker O(ω log(ω)) type
of nonlinearity, which leads to only double exponential growth in the maxi-
mum vorticity. Secondly, they showed that the velocity field is bounded up
to T = 19, beyond the alleged singularity time T = 18.7 of Kerr (2005).
With a bounded velocity field, the non-blow-up criterion of Deng, Hou and
Yu (2005) applies, which provides theoretical support for their computa-
tional results. Thirdly, they found that the vorticity vector near the point
of maximum vorticity aligns almost perfectly with the second eigenvector of
the rate of strain tensor. The second eigenvalue of the rate of strain tensor
is the smallest eigenvalue and does not seem to grow dynamically, while the
first and third eigenvalues grow very rapidly in time. This is further strong
evidence for the dynamic depletion of vortex stretching.

Inspired by the numerical findings of their paper of 2006, Hou and Li
(2008a) investigated the dynamic stability of the 3D Navier–Stokes equa-
tions by introducing an exact 1D model of the axisymmetric Navier–Stokes
equations along the symmetry axis. This 1D model is exact in the sense
that one can construct a family of exact solutions for the 3D Navier–Stokes
equations from this 1D model. Thus the 1D model preserves some es-
sential features of the 3D Navier–Stokes equations. What is surprising is
that they obtained a Lyapunov function which satisfies a new maximum
principle. This provides a pointwise estimate on the dynamic stability of
the Navier–Stokes equations. The traditional energy estimates are inca-
pable of capturing such subtle cancellation effects. Based on the global
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regularity of the 1D model, they constructed a new class of solutions for
the 3D Euler and Navier–Stokes equations, which exhibit very interesting
dynamic growth properties, but remain smooth for all times.

Motivated by the work of Hou and Li (2008a), Hou and Lei (2009b) further
proposed a new 3D model to study the stabilizing effect of convection. This
model was derived by neglecting the convection term from a reformulated
axisymmetric Navier–Stokes equations. It shares almost all the properties
of the 3D Navier–Stokes equations. In particular, the strong solution of
the model satisfies an energy identity similar to that of the full 3D Navier–
Stokes equations. They proved a non-blow-up criterion of Beale–Kato–
Majda type as well as a non-blow-up criterion of Prodi–Serrin type for the
model. Moreover, they proved that, for any suitable weak solution of the 3D
model in an open set in space-time, the one-dimensional Hausdorff measure
of the associated singular set is zero (Hou and Lei 2009a). This partial
regularity result is an analogue of the Caffarelli–Kohn–Nirenberg theory
(Caffarelli, Kohn and Nirenberg 1982) for the 3D Navier–Stokes equations.

Despite the striking similarity at the theoretical level between the 3D
model and the Navier–Stokes equations, the former has a completely differ-
ent behaviour from the full Navier–Stokes equations. Hou and Lei’s study
showed that the 3D model seems to form a finite-time singularity, while
the mechanism of generating such a finite-time singularity is removed when
convection is added back to the 3D model. Convection seems to play a very
important role in stabilizing the potential blow-up of the Navier–Stokes
equations. This result may have an important impact on future global reg-
ularity analysis of 3D Navier–Stokes equations. Up to now, most analysis
uses energy estimates in which convection plays no role at all. Such global
methods of analysis are too crude. Their studies suggest that one needs to
develop a new localized analysis which can in essence exploit the stabilizing
effect of convection.

There has been some interesting development in the study of the 3D in-
compressible Navier–Stokes equations and related models. By exploiting the
special structure of the governing equations, Cao and Titi (2007) proved
the global well-posedness of the 3D viscous primitive equation for large-
scale ocean and atmospheric dynamics. For the axisymmetric Navier–Stokes
equations, Chen, Strain, Tsai and Yau (2008, 2009) and Koch, Nadirashvili,
Seregin and Sverak (2009) recently proved that if |u(x, t)| ≤ C∗|t|−1/2, where
C∗ is allowed to be large, then the velocity field u is regular at time zero.
The 2D Boussinesq equations are closely related to the 3D axisymmetric
Navier–Stokes equations with swirl (away from the symmetry axis). Re-
cently, Hou and Li (2005) and Chae (2006) proved independently the global
existence of the 2D Boussinesq equations with partial viscosity. By taking
advantage of the limiting property of some rapidly oscillating operators and
using nonlinear averaging, Babin, Mahalov and Nicolaenko (2001) proved
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global regularity of the 3D Navier–Stokes equations for some initial data
characterized by uniformly large vorticity.

The rest of the paper is organized as follows. In Section 2, we study
the dynamic depletion of vortex stretching for the 3D Euler equations. We
also discuss at length how to design an effective high-resolution pseudo-
spectral method to compute potentially singular solutions of the 3D Euler
equations. Section 3 is devoted to studying the dynamic stability of the 3D
Navier–Stokes equations. In Section 4, we investigate the stabilizing effect
of convection for the 3D Navier–Stokes equations. Some concluding remarks
are made in Section 5.

2. Dynamic depletion of vortex stretching in 3D Euler
equations

Due to the supercritical nature of the nonlinearity of the 3D Navier–Stokes
equations, the 3D Navier–Stokes equations with large initial data are convec-
tion-dominated, instead of diffusion-dominated. For this reason, we believe
that the understanding of whether the corresponding 3D Euler equations
would develop a finite-time blow-up could shed useful light on the global
regularity of the Navier–Stokes equations.

Let us consider the 3D Euler equations in the vorticity form. One im-
portant observation is that when we consider the convection term together
with the vortex stretching term, the two nonlinear terms can be actually
represented as a commutator or a Lie derivative:

ωt + (u · ∇)ω − (ω · ∇)u = 0. (2.1)

It is reasonable to believe that the commutator would lead to some can-
cellation among the two nonlinear terms, thus weakening the nonlinearity
dynamically. This points to the potential important role of convection in
the 3D Euler equations. Another way to realize the importance of convec-
tion is to use the Lagrangian formulation of the vorticity equation. When
we consider the two terms together, we preserve the Lagrangian structure
of the solution (Chorin and Marsden 1993),

ω(X(α, t), t) = Xα(α, t)ω0(α), (2.2)

where Xα = ∂X
∂α and X(α, t) is the flow map,

dX
dt

(α, t) = u(X(α, t), t), X(α, 0) = α. (2.3)

Therefore, vorticity increases in time only through the dynamic deformation
of the Lagrangian flow map. On the other hand, due to the divergence-free
property of the velocity field, the flow map is volume-preserving, that is,
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det(Xα(α, t)) ≡ 1. Thus, as vorticity increases dynamically, the paral-
lelepiped spanned by the three vectors, (Xα1 , Xα2 , Xα3), will experience se-
vere deformation and become flattened dynamically. A formal asymptotic
analysis shows that the support of maximum vorticity also experiences a
similar deformation and becomes severely flattened as vorticity increases.
This is confirmed by our numerical experiments: see Section 2.5. Such de-
formation tends to weaken the nonlinearity of vortex stretching dynamically.

We remark that convection plays an essential role in deforming the sup-
port of maximum vorticity and induces an anisotropic scaling in the collapse
of the support of maximum vorticity. By exploiting the anisotropic scaling
of the support of maximum vorticity, Hou, Lei and Li (2008) recently proved
the global regularity of the axisymmetric Navier–Stokes equations with a
family of very large anisotropic initial data: see Section 2.8 for more dis-
cussions. On the other hand, if we ignore the convection term in the Euler
equations, the vortex stretching term may indeed achieve the O(|ω|2) scaling
dynamically and develop an isotropic singularity in finite time: see Section 4
for more discussions.

2.1. A brief review

We begin with a brief review of the subject. Due to the formal quadratic
nonlinearity in vortex stretching, only short time existence is known for the
3D Euler equations (Majda and Bertozzi 2002). One of the most well-known
results on the 3D Euler equations is due to Beale, Kato and Majda (1984),
who showed that the solution of the 3D Euler equations blows up at T if
and only if

∫ T
0 ‖ω‖∞(t) dt = ∞, where ω is vorticity.

There have been some interesting recent theoretical developments. In
particular, Constantin, Fefferman and Majda (1996) showed that local ge-
ometric regularity of the unit vorticity vector can lead to depletion of the
vortex stretching. Let ξ = ω/|ω| be the unit vorticity vector and let u
be the velocity field. Roughly speaking, Constantin, Fefferman and Majda
proved that if (1) ‖u‖∞ is bounded in a O(1) region containing the maxi-
mum vorticity, (2)

∫ t
0 ‖∇ξ‖2∞ dτ is uniformly bounded for t < T , then the

solution of the 3D Euler equations remains regular up to t = T .
There has been some numerical evidence that suggests a finite-time blow-

up of the 3D Euler equations. One of the most well-known examples is
the finite-time collapse of two antiparallel vortex tubes by R. Kerr (1993,
2005). In his computations, Kerr used a pseudo-spectral discretization in
the x- and y-directions, and a Chebyshev discretization in the z-direction
with resolution of order 512 × 256 × 192. His computations showed that
the maximum vorticity blows up like O((T − t)−1) with T = 18.9. In his
subsequent paper, Kerr (2005) applied a high wavenumber filter to the data
obtained in his original computations to ‘remove the noise that masked the
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structures in earlier graphics’ presented in the 1993 paper. With this filtered
solution, he presented some scaling analysis of the numerical solutions up to
t = 17.5. Two new properties were presented in the 2005 paper. First, the
velocity field was shown to blow up like O(T − t)−1/2 with T being revised
to T = 18.7. Secondly, he showed that the blow-up is characterized by two
anisotropic length scales, ρ ≈ (T − t) and R ≈ (T − t)1/2. It is worth noting
that there is still a considerable gap between the predicted singularity time
T = 18.7 and the final time t = 17 of Kerr’s original computations, which
he used as the primary evidence for the finite-time singularity.

Kerr’s blow-up scenario is consistent with the non-blow-up criterion of
Beale, Kato and Majda (1984) and that of Constantin, Fefferman and Majda
(1996). But it falls into the critical case of Deng, Hou and Yu’s local non-
blow-up criteria (Deng, Hou and Yu 2005, 2006a). Below we describe the
local non-blow-up criteria of Deng, Hou and Yu.

2.2. The local non-blow-up criteria of Deng, Hou and Yu (2005, 2006a)

Motivated by the result of Constantin, Fefferman and Majda (1996), Deng,
Hou and Yu (2005) have obtained a sharper non-blow-up condition which
uses only very localized information of the vortex lines. Assume that at
each time t there exists some vortex line segment Lt on which the local
maximum vorticity is comparable to the global maximum vorticity. Further,
we denote L(t) as the arclength of Lt, n the unit normal vector of Lt, and
κ the curvature of Lt.

Theorem 2.1. (Deng, Hou and Yu 2005) Assume that (1) maxLt(|u·
ξ| + |u · n|) ≤ CU (T − t)−A with A < 1, and (2) CL(T − t)B ≤ L(t) ≤
C0/maxLt(|κ|, |∇ · ξ|) for 0 ≤ t < T . Then the solution of the 3D Euler
equations remains regular up to t = T provided that A+B < 1.

In Kerr’s computations, the first condition of Theorem 2.1 is satisfied with
A = 1/2 if we use ‖u‖∞ ≤ C(T − t)−1/2 as alleged in Kerr (2005). Kerr’s
computations suggested that κ and ∇ · ξ are bounded by O((T − t)−1/2) in
the inner region of size (T−t)1/2×(T−t)1/2×(T−t) (Kerr 2005). Moreover,
the length of the vortex tube in the inner region is of order (T − t)1/2. If we
choose a vortex line segment of length (T − t)1/2 (i.e., B = 1/2), then the
second condition is satisfied. However, we violate the condition A+B < 1.
Thus Kerr’s computations fall into the critical case of Theorem 2.1. In a
subsequent paper, Deng, Hou and Yu (2006a) improved the non-blow-up
condition to include the critical case, A+B = 1.

Theorem 2.2. (Deng, Hou and Yu 2006a) Under the same assump-
tions as Theorem 2.1, in the case of A+B = 1, the solution of the 3D Euler
equations remains regular up to t = T if the scaling constants CU , CL and
C0 satisfy an algebraic inequality, f(CU , CL, C0) > 0.
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We remark that this algebraic inequality can be checked numerically if
we obtain a good estimate of these scaling constants. For example, if C0 =
0.1, which seems reasonable since the vortex lines are relatively straight in
the inner region, Theorem 2.2 would imply no blow-up up to T if 2CU <
0.43CL. Unfortunately, there was no estimate available for these scaling
constants in Kerr (1993). One of our original motivations for repeating
Kerr’s computations using higher resolutions was to obtain a good estimate
for these scaling constants.

2.3. Computing potentially singular solutions using pseudo-spectral
methods

Computing Euler singularities numerically is an extremely challenging task.
First of all, it requires huge computational resources. Tremendous reso-
lutions are required to capture the nearly singular behaviour of the Euler
equations. Secondly, one has to perform a careful convergence study. It is
dangerous to interpret the blow-up of an under-resolved computation as ev-
idence of finite-time singularities for the 3D Euler equations. Thirdly, if we
believe that the numerical solution we compute leads to a finite-time blow-
up, we need to demonstrate the validity of the asymptotic blow-up rate, i.e.,
is the blow-up rate ‖ω‖L∞ ≈ C

(T−t)α asymptotically valid as t→ T? If a nu-
merical solution is well resolved only up to T0 and there is still an order-one
gap between T0 and the predicted singularity time T , then one can not apply
the Beale–Kato–Majda criterion (Beale, Kato and Majda 1984) to this fitted
singularity, since the most significant contribution to

∫ T
0 ‖ω(t)‖L∞ dt comes

from the time interval [T0, T ], but there is no accuracy in the extrapolated
solution in this time interval if (T − T0) = O(1). Finally, one also needs to
check if the blow-up rate of the numerical solution is consistent with other
non-blow-up criteria (Constantin, Fefferman and Majda 1996, Deng, Hou
and Yu 2005, Deng, Hou and Yu 2006a) which provide additional constraints
on the blow-up rate of the velocity field and the local geometric regularity on
the vortex filaments. The interplay between theory and numerics is clearly
essential in our search for Euler singularities.

Hou and Li (2006, 2007) repeated Kerr’s computations using two pseudo-
spectral methods. The first pseudo-spectral method used the standard 2/3
de-aliasing rule to remove the aliasing error. For the second pseudo-spectral
method, they used a novel 36th-order Fourier smoothing to remove the alias-
ing error. For the Fourier smoothing method, they used a Fourier smoother
along the xj-direction as follows: ρ(2kj/Nj) ≡ exp(−36(2kj/Nj)36), where
kj is the wavenumber (|kj | ≤ Nj/2). The time integration was performed
by using the classical fourth-order Runge–Kutta scheme. Adaptive time-
stepping was used to satisfy the CFL stability condition with CFL num-
ber equal to π/4. In order to perform a careful resolution study, they
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used a sequence of resolutions: 768 × 512 × 1536, 1024 × 768 × 2048 and
1536 × 1024 × 3072 in their computations. They computed the solution
up to t = 19, beyond the alleged singularity time T = 18.7 by Kerr (2005).
Their computations were carried out on the PC cluster LSSC-II in the Insti-
tute of Computational Mathematics and Scientific/Engineering Computing
of Chinese Academy of Sciences and the Shenteng 6800 cluster in the Su-
per Computing Center of the Chinese Academy of Sciences. The maximal
memory consumption in their computations was about 120 Gbytes. The
largest number of grid points is close to 5 billion.

2.4. Convergence study of spectral methods for the Burgers equation

As a first step, we demonstrate that the two pseudo-spectral methods can
be used to compute a singular solution arbitrarily close to the singularity
time. For this purpose, we perform a careful convergence study of the two
pseudo-spectral methods in both physical and spectral spaces for the 1D
inviscid Burgers equation. The advantage of using the inviscid 1D Burgers
equation is that it shares some essential difficulties with the 3D Euler equa-
tions, yet we have a semi-analytic formulation for its solution. By using
the Newton iterative method, we can obtain an approximate solution to the
exact solution up to 13 digits of accuracy. Moreover, we know exactly when
a shock singularity will form in time. This enables us to perform a careful
convergence study in both physical space and spectral space very close to
the singularity time. This provides a solid foundation to the convergence
study of the two spectral methods.

We consider the inviscid 1D Burgers equation

ut +
(
u2

2

)

x

= 0, −π ≤ x ≤ π, (2.4)

with an initial condition given by

u|t=0 = u0(x).

We impose a periodic boundary condition over [−π, π]. By the method
of characteristics, it is easy to show that the solution of the 1D Burgers
equation is given by

u(x, t) = u0(x− tu(x, t)). (2.5)

The above implicit formulation defines a unique solution for u(x, t) up to the
time when the first shock singularity develops. After the shock singularity
develops, equation (2.5) gives a multi-valued solution. An entropy condition
is required to select a unique physical solution beyond the shock singularity
(LeVeque 1992).

We now use a standard pseudo-spectral method to approximate the so-
lution. Let N be an integer, and let h = π/N . We denote by xj = jh
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(j = −N, . . . , N) the discrete grid points over the interval [−π, π]. To
describe the pseudo-spectral methods, we recall that the discrete Fourier
transform of a periodic function u(x) with period 2π is defined by

ûk =
1

2N

N∑

j=−N+1

u(xj)e−ikxj .

The inversion formula reads

u(xj) =
N∑

k=−N+1

ûkeikxj .

We note that ûk is periodic in k with period 2N . This is an artifact of the
discrete Fourier transform, and the source of the aliasing error. To remove
the aliasing error, one usually applies some kind of de-aliasing filtering when
we compute the discrete derivative. Let ρ(k/N) be a cut-off function in the
spectrum space. A discrete derivative operator may be expressed in the
Fourier transform as

(̂Dhu)k = ikρ(k/N)ûk, k = −N + 1, . . . , N. (2.6)

Both the 2/3 de-aliasing rule and the Fourier smoothing method can be
described by a specific choice of the high-frequency cut-off function, ρ (also
known as Fourier filter). For the 2/3 de-aliasing rule, the cut-off function is
chosen to be

ρ(k/N) =

{
1, if |k/N | ≤ 2/3,
0, if |k/N | > 2/3.

(2.7)

In our computations, in order to obtain an alias-free computation on a grid
of M points for a quadratic nonlinear equation, we apply the above filter
to the high wavenumbers so as to retain only (2/3)M unfiltered wavenum-
bers before making the coefficient-to-grid Fast Fourier Transform. This de-
aliasing procedure is alternatively known as the 3/2 de-aliasing rule because
to obtain M unfiltered wavenumbers one must compute nonlinear products
in physical space on a grid of (3/2)M points: see p. 229 of Boyd (2000) for
more discussions.

For the Fourier smoothing method, we choose ρ as follows:

ρ(k/N) = e−α(|k|/N)m
, (2.8)

with α = 36 and m = 36. In our implementation, both filters are applied
to the numerical solution at every time step. Thus, for the 2/3 de-aliasing
rule, the Fourier modes with wavenumbers |k| ≥ 2/3N are always set to
zero. Thus there is no aliasing error being introduced in our approximation
of the nonlinear convection term. For the Fourier smoothing method, the
nonlinear term will have some non-zero modes beyond the 2/3 point cut-off
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Figure 2.1. The profile of the Fourier smoothing, exp(−36(x)36), as
a function of x. The vertical line corresponds to the cut-off point in
the Fourier spectrum in the 2/3 de-aliasing rule. We can see that
using this Fourier smoothing we keep about 12 ∼ 15% more modes
than those using the 2/3 de-aliasing rule.

point in the Fourier space. However, these non-zero modes will accumulate
in time to pollute the solution.

The Fourier smoothing method we choose is based on three considera-
tions. The first one is that the aliasing instability is introduced by the
highest-frequency Fourier modes. As demonstrated in Goodman, Hou and
Tadmor (1994), as long as one can damp out a small portion of the highest-
frequency Fourier modes, the mild instability caused by the aliasing error
can be under control. The second observation is that the magnitude of
the Fourier coefficient is decreasing with respect to the wavenumber |k|
for a function that has a certain degree of regularity. Typically, we have
|ûk| ≤ C/(1 + |k|m) if the mth derivative of a function u is bounded in L1.
Thus the high-frequency Fourier modes have a relatively smaller contribu-
tion to the overall solution than the low- to intermediate-frequency modes.
The third observation is that one should not cut off high-frequency Fourier
modes abruptly to avoid the Gibbs phenomenon and the loss of the L2-
energy associated with the solution. This is especially important when we
compute a nearly singular solution whose high-frequency Fourier coefficient
has a very slow decay.

Based on the above considerations, we choose a smooth cut-off function
which decays exponentially fast with respect to the high wavenumber. In
our cut-off function, we choose the parameters α = 36 and m = 36. These
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two parameters are chosen to achieve two objectives. (i) When |k| is close
to N , the cut-off function reaches machine precision, i.e., 10−16. (ii) The
cut-off function remains very close to 1 for |k| < 4N/5, and decays rapidly
and smoothly to zero beyond |k| = 4N/5. In Figure 2.1, we plot the cut-
off function ρ(x) as a function of x. The cut-off function used by the 2/3
de-aliasing rule is plotted on top of the cut-off function used by the Fourier
smoothing method. We can see that the Fourier smoothing method keeps
about 12 ∼ 15% more modes than the 2/3 de-aliasing method. In this paper,
we will demonstrate by our numerical experiments that the extra modes we
keep by the Fourier smoothing method give an accurate approximation of
the correct high-frequency Fourier modes.

We have performed a sequence of resolution studies with the largest reso-
lution being N = 16384 (Hou and Li 2007). Our extensive numerical results
demonstrate that the pseudo-spectral method with the high-order Fourier
smoothing (the Fourier smoothing method for short) gives a much more
accurate approximation than the pseudo-spectral method with the 2/3 de-
aliasing rule (the 2/3 de-aliasing method for short). One of the interesting
observations is that the unfiltered high-frequency coefficients in the Fourier
smoothing method approximate accurately the corresponding exact Fourier
coefficients. Moreover, we observe that the Fourier smoothing method cap-
tures about 12 ∼ 15% more effective Fourier modes than the 2/3 de-aliasing
method in each dimension: see Figure 2.2. The gain is even higher for the 3D
Euler equations since the number of effective modes in the Fourier smooth-
ing method is higher in three dimensions. Further, we find that the error
produced by the Fourier smoothing method is highly localized near the re-
gion where the solution is most singular. In fact, the pointwise error decays
exponentially fast away from the location of the shock singularities. On the
other hand, the error produced by the 2/3 de-aliasing method spreads out
to the entire domain as we approach the singularity time: see Figure 2.3.

2.5. The high-resolution 3D Euler computations of Hou and Li (2006, 2007 )

Hou and Li (2006) performed high-resolution computations of the 3D Euler
equations using the initial data for the two antiparallel vortex tubes. They
used the same initial condition whose analytic formula was given by Kerr
(see Section III of Kerr (1993), and also Hou and Li (2006) for corrections
of some typos in the description of the initial condition in Kerr (1993)).
However, there was some minor difference between their discretization and
Kerr’s discretization. Hou and Li used a pseudo-spectral discretization in all
three directions, while Kerr used a pseudo-spectral discretization only in the
x- and y-directions and used a Chebyshev discretization in the z-direction.
Based on the results of early tests, positive vorticity in the symmetry plane
was imposed in the initial condition of Kerr (1993). How this was imposed
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Figure 2.2. Comparison of Fourier spectra of the two methods on different
resolutions at a sequence of times. (a) N = 4096, (b) N = 8192. Dashed lines,
‘exact’ spectra; solid lines, Fourier smoothing method; dash-dotted lines, 2/3
de-aliasing method. Times, t = 0.9, 0.95, 0.975, 0.9875 respectively (from
bottom to top). Initial condition, u0(x) = sin(x). Singularity time for this
initial condition, T = 1.
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Figure 2.3. The pointwise errors of the two pseudo-spectral methods as a function
of time using three different resolutions. The plot is in a log scale. (a) N = 1024,
(b) N = 2048, both at t = 0.9875. Initial condition, u0(x) = sin(x). The error of
the 2/3 de-aliasing method (upper curve) is highly oscillatory and spreads out
over the entire domain, while the error of the Fourier smoothing method (lower
curve) is highly localized near the location of the shock singularity.
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as the vorticity field was mapped onto the Chebyshev mesh was not doc-
umented by Kerr (1993). This has led to some ambiguity in reproducing
that initial condition which is being resolved by Kerr’s group (private com-
munication).

We will summarize the main findings of Hou and Li (2006) in the rest
of Section 2. We first illustrate the dynamic evolution of the vortex tubes.
In Figure 2.4, we plot the isosurface of the 3D vortex tubes at t = 0 and
t = 6 respectively. As we can see, the two initial vortex tubes are very
smooth and relatively symmetric. Due to the mutual attraction of the two
antiparallel vortex tubes, the two vortex tubes approach each other and
become flattened dynamically. By time t = 6, there is already a significant
flattening near the centre of the tubes. In Figure 2.5, we plot the local
3D vortex structure of the upper vortex tube at t = 17. By this time,
the 3D vortex tube has essentially turned into a thin vortex sheet with
rapidly decreasing thickness. The vortex lines become relatively straight.
The vortex sheet rolls up near the left edge of the sheet.

In order to see better the dynamic development of the local vortex struc-
ture, we plot a sequence of vorticity contours on the symmetry plane at
t = 17.5, 18, 18.5, and 19, respectively, in Figure 2.6. From these results, we
can see that the vortex sheet is compressed in the z-direction. It is clear
that a thin layer (or a vortex sheet) is formed dynamically. The head of
the vortex sheet is a bit thicker than the tail at the beginning. The head of
the vortex sheet begins to roll up around t = 16. By the time t = 19, the
head of the vortex sheet has travelled backward for quite a distance, and
the vortex sheet has been compressed quite strongly along the z-direction.

We would like to make a few important observations. First of all, the
maximum vorticity at a later stage of the computation is actually located
near the rolled-up region of the vortex sheet and moves away from the
bottom of the vortex sheet. Thus the mechanism of strong compression
between the two vortex tubes becomes weaker dynamically at the later
time. Secondly, the location of maximum strain and that of maximum
vorticity separate as time increases. Thirdly, the relatively ‘strong’ growth
of the maximum velocity between t = 15 and t = 17 becomes saturated
after t = 17 when the location of maximum vorticity moves to the rolled-
up region: see Figure 2.14. All these factors contribute to the dynamic
depletion of vortex stretching.

We now perform a convergence study for the two numerical methods
using a sequence of resolutions. For the Fourier smoothing method, we use
the resolutions 768 × 512 × 1536, 1024 × 768 × 2048, and 1536 × 1024 ×
3072 respectively. Except for the computation on the largest resolution,
1536 × 1024 × 3072, all computations are carried out from t = 0 to t = 19.
The computation on the final resolution, 1536 × 1024 × 3072, is started
from t = 10 with the initial condition given by the computation with the
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Figure 2.6. The contour of axial vorticity of the upper
vortex tube around the maximum vorticity on the
symmetry plane (the xz-plane) at t = 17.5, 18, 18.5, 19.
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Figure 2.7. The energy spectra versus wavenumbers. The
dashed lines and dash-dotted lines are the energy spectra,
with resolution 1024 × 768 × 2048, using the 2/3 de-aliasing
rule and Fourier smoothing, respectively. The times for the
spectra lines are t = 15, 16, 17, 18, 19 respectively.

resolution 1024 × 768 × 2048. For the 2/3 de-aliasing method, we use the
resolutions 512 × 384 × 1024, 768 × 512 × 1536 and 1024 × 768 × 2048
respectively. The computations using these three resolutions are all carried
out from t = 0 to t = 19. See Hou and Li (2006, 2007) for more details.

In Figure 2.7, we compare the Fourier spectra of the energy obtained
by using the 2/3 de-aliasing method with those obtained by the Fourier
smoothing method. For a fixed resolution, 1024 × 768 × 2048, we can see
that the Fourier spectra obtained by the Fourier smoothing method retain
more effective Fourier modes than those obtained by the 2/3 de-aliasing
method. This can be seen by comparing the results with the correspond-
ing computations using a higher resolution, 1536 × 1024 × 3072 (the solid
lines). Moreover, the Fourier smoothing method does not give the spuri-
ous oscillations in the Fourier spectra. In comparison, the Fourier spectra
obtained by the 2/3 de-aliasing method produce some spurious oscillations
near the 2/3 cut-off point. We would like to emphasize that the Fourier
smoothing method conserves the total energy extremely well. More studies
including the convergence of the enstrophy spectra can be found in Hou and
Li (2006, 2007).

It is worth emphasizing that a significant portion of those Fourier modes
beyond the 2/3 cut-off position are still accurate for the Fourier smoothing
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method. This portion of the Fourier modes that go beyond the 2/3 cut-off
point is about 12 ∼ 15% of total number of modes in each dimension. For
3D problems, the total number of effective modes in the Fourier smoothing
method is about 20% more than that in the 2/3 de-aliasing method. For
our largest resolution, we have about 4.8 billion unknowns. An increase of
20% in the effective Fourier modes represents a very significant increase in
the resolution for a large-scale computation.

2.6. Comparison of the two spectral methods in physical space

Next, we compare the solutions obtained by the two methods in physical
space for the velocity field and the vorticity. In Figure 2.8, we compare the
maximum velocity as a function of time computed by the two methods using
resolution 1024×768×2048. The two solutions are almost indistinguishable.
In Figure 2.9, we plot the maximum vorticity as a function of time. The
two solutions also agree reasonably well. However, the comparison of the
solutions obtained by the two methods at resolutions lower than 1024 ×
768 × 2048 shows more significant differences between the two methods:
see Figure 2.10.

To understand better how the two methods differ in their performance,
we examine the contour plots of the axial vorticity in Figures 2.11, 2.12 and
2.13. As we can see, the vorticity computed by the 2/3 de-aliasing method
already develops small oscillations at t = 17. The oscillations grow bigger
by t = 18 (see Figure 2.12), and bigger still at t = 19 (see Figure 2.13). We
note that the oscillations in the axial vorticity contours concentrate near
the region where the magnitude of vorticity is close to zero. Thus they have
less of an effect on the maximum vorticity. On the other hand, the solution
computed by the Fourier smoothing method is still relatively smooth.

2.7. Dynamic depletion of vortex stretching

In this section, we present some convincing numerical evidence which shows
that there is a strong dynamic depletion of vortex stretching due to local
geometric regularity of the vortex lines. We first present the result on the
growth of the maximum velocity in time: see Figure 2.14. The growth rate
of the maximum velocity plays a critical role in the non-blow-up criteria
of Deng, Hou and Yu (2005, 2006a). As we can see from Figure 2.14, the
maximum velocity remains bounded up to t = 19. This is in contrast to the
claim in Kerr (2005) that the maximum velocity blows up like O((T−t)−1/2)
with T = 18.7. We note that the velocity field is smoother than the vorticity
field. Thus it is easier to resolve the velocity field than the vorticity field.
We observe an excellent agreement between the maximum velocity fields
computed by the two largest resolutions. Since the velocity field is bounded,
the first condition of Theorem 2.1 is satisfied by taking A = 0. Furthermore,



Blow-up or no blow-up? 21

0 2 4 6 8 10 12 14 16 18
0.3

0.4

0.5

Figure 2.8. Comparison of maximum velocity as a function of time
computed by two methods. Solid line, solution obtained by the
Fourier smoothing method; dashed line, solution obtained by the 2/3
de-aliasing method. Resolution 1024 × 768 × 2048 for both methods.
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Figure 2.9. Comparison of maximum vorticity as a function of time
computed by two methods. Solid line, solution obtained by the
Fourier smoothing method; dashed line, solution obtained by the 2/3
de-aliasing method. Resolution 1024 × 768 × 2048 for both methods.
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Figure 2.10. Comparison of maximum vorticity as a function of time
computed by two methods. Solid line, solution obtained by the
Fourier smoothing method; dashed line, solution obtained by the 2/3
de-aliasing method. Resolution 768 × 512 × 1024 for both methods.

(a)

(b)

Figure 2.11. Comparison of axial vorticity contours at t = 17 computed
by two methods. (a) Solution obtained by the 2/3 de-aliasing method,
(b) solution obtained by the Fourier smoothing method. Resolution
1024 × 768 × 2048 for both methods.
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(a)

(b)

Figure 2.12. Comparison of axial vorticity contours at t = 18 computed
by two methods. (a) Solution obtained by the 2/3 de-aliasing method,
(b) solution obtained by the Fourier smoothing method. Resolution
1024 × 768 × 2048 for both methods.

(a)

(b)

Figure 2.13. Comparison of axial vorticity contours at t = 19 computed
by two methods. (a) Solution obtained by the 2/3 de-aliasing method,
(b) solution obtained by the Fourier smoothing method. Resolution
1024 × 768 × 2048 for both methods.
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since both ∇ · ξ and κ are bounded by O((T − t)−1/2) in the inner region
of size (T − t)1/2 × (T − t)1/2 × (T − t) (Kerr 2005), the second condition
of Theorem 2.1 is satisfied with B = 1/2 by taking a segment of the vortex
line with length (T − t)1/2 within this inner region. Thus Theorem 2.1 can
be applied to our computation, which implies that the solution of the 3D
Euler equations remains smooth at least up to T = 19.

We also study the maximum vorticity as a function of time. The maxi-
mum vorticity is found to increase rapidly from the initial value of 0.669 to
23.46 at the final time t = 19, a factor of 35 increase from its initial value.
Our computations show no sign of finite-time blow-up of the 3D Euler equa-
tions up to T = 19, beyond the singularity time predicted by Kerr. The
maximum vorticity computed by resolution 1024 × 768 × 2048 agrees very
well with that computed by resolution 1536 × 1024 × 3072 up to t = 17.5.
There is some mild disagreement towards the end of the computation. This
indicates that a very high space resolution is needed to capture the rapid
growth of maximum vorticity at the final stage of the computation.

In order to understand the nature of the dynamic growth in vorticity,
we examine the degree of nonlinearity in the vortex stretching term. In
Figure 2.15, we plot the quantity, ‖ξ · ∇u · ω‖∞, as a function of time.
If the maximum vorticity indeed blew up like O((T − t)−1), as alleged in
Kerr (1993), this quantity should have been quadratic as a function of max-
imum vorticity. We find that there is tremendous cancellation in this vortex
stretching term. It actually grows more slowly than C‖	ω‖∞ log(‖	ω‖∞): see
Figure 2.15. It is easy to show that ‖ξ · ∇u · ω‖∞ ≤ C‖	ω‖∞ log(‖	ω‖∞)
would imply at most doubly exponential growth in the maximum vorticity.
Indeed, as demonstrated by Figure 2.16, the maximum vorticity does not
grow more rapidly than doubly exponential in time. We have also gener-
ated a similar plot by extracting the data from Kerr (1993). We find that
log(log(‖ω‖∞)) basically scales linearly with respect to t from 14 ≤ t ≤ 17.5
when Kerr’s computations are still reasonably resolved. This implies that
the maximum vorticity up to t = 17.5 in his computations does not grow
more rapidly than doubly exponential in time. This is consistent with our
conclusion.

We study the decay rate in the energy spectrum in Figure 2.17 at t =
16, 17, 18, 19. A finite-time blow-up of enstrophy would imply that the en-
ergy spectrum decays no more rapidly than |k|−3. Our computations show
that the energy spectrum approaches |k|−3 for |k| ≤ 100 as time increases
to t = 19. This is in qualitative agreement with Kerr’s results. Note that
there are fewer than 100 modes available along the |kx|- or |ky|-direction
in Kerr’s computations: see Figure 18(a),(b) of Kerr (1993). On the other
hand, our computations show that the high-frequency Fourier spectrum for
100 ≤ |k| ≤ 1300 decays much more rapidly than |k|−3, as one can see from
Figure 2.17. This indicates that there is no blow-up in enstrophy.
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Figure 2.14. Maximum velocity ‖u‖∞ in
time using three different resolutions.
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Figure 2.15. Study of the vortex stretching term in time, resolution
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D
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Figure 2.16. The plot of log log ‖ω‖∞ versus
time, resolution 1536 × 1024 × 3072.
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Figure 2.17. The energy spectra for velocity at t = 15, 16, 17, 18, 19
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Table 2.1. The alignment of the vorticity vector and the eigenvectors
of S around the point of maximum vorticity with resolution
1536 × 1024 × 3072. Here, θi is the angle between the ith eigenvector
of S and the vorticity vector.

Time |ω| λ1 θ1 λ2 θ2 λ3 θ3

16.012 5.628 −1.508 89.992 0.206 0.007 1.302 89.998
16.515 7.016 −1.864 89.995 0.232 0.010 1.631 89.990
17.013 8.910 −2.322 89.998 0.254 0.006 2.066 89.993
17.515 11.430 −2.630 89.969 0.224 0.085 2.415 89.920
18.011 14.890 −3.625 89.969 0.257 0.036 3.378 89.979
18.516 19.130 −4.501 89.966 0.246 0.036 4.274 89.984
19.014 23.590 −5.477 89.966 0.247 0.034 5.258 89.994

It is interesting to ask how the vorticity vector aligns with the eigenvec-
tors of the deformation tensor. Recall that the vorticity equations can be
written as

∂

∂t
ω + (u · ∇)ω = S · ω, S =

1
2
(∇u + ∇Tu) (2.9)

(see Majda and Bertozzi (2002)). Let λ1 < λ2 < λ3 be the three eigenvalues
of S. The incompressibility condition implies that λ1 + λ2 + λ3 = 0. If the
vorticity vector aligns with the eigenvector corresponding to λ3, which gives
the maximum rate of stretching, then it is very likely that the 3D Euler
equations would blow up in a finite time.

In Table 2.1, we document the alignment information of the vorticity
vector around the point of maximum vorticity with resolution 1536×1024×
3072. In this table, θi is the angle between the ith eigenvector of S and the
vorticity vector. One can see clearly that for 16 ≤ t ≤ 19 the vorticity
vector at the point of maximum vorticity is almost perfectly aligned with
the second eigenvector of S. Note that the second eigenvalue, λ2, is about
20 times smaller in magnitude than the largest eigenvalue λ3, and does not
grow much in time. The alignment of the vorticity vector with the second
eigenvector of the deformation tensor is another indication that there is a
strong dynamic depletion of vortex stretching.

2.8. Global regularity of large anisotropic initial data

The numerical studies of the 3D Euler equations by Hou and Li (2006)
strongly suggest that the support of maximum vorticity becomes severely
flattened and develops an anisotropic scaling as vorticity increases rapidly in
time. This seems quite generic and is a consequence of the incompressibility
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and the Lagrangian structure of the vorticity equation. Convection plays
an essential role in producing this anisotropic structure of the solution.
Motivated by the desire to understand how the local anisotropic structure
of the solution near the support of maximum vorticity may lead to the
depletion of vortex stretching, Hou, Lei and Li (2008) recently studied the
3D axisymmetric Navier–Stokes equations with large anisotropic data. They
proved the global regularity of the 3D Navier–Stokes equations for a family
of large anisotropic initial data. Moreover, they obtained a global bound of
the solution in terms of its initial data in some Lp-norm. Their results also
revealed some interesting dynamic growth behaviour of the solution due to
the interaction between the axial vorticity and the the derivative of vorticity.

Specifically, let uθ and ωθ be the angular velocity and vorticity compo-
nents of the 3D axisymmetric Navier–Stokes equations. They considered
initial data for uθ and ωθ that have the following scaling property:

uθ(r, z, 0) =
1

ε1−δ
U0(εr, z), ωθ(r, z, 0) =

1
ε1−δ

W0(εr, z), (2.10)

where r =
√
x2 + y2, δ and ε are some small positive parameters, and the

rescaled profiles U0/r andW0/r are bounded in L2p and L2q, respectively, for
some p and q with p = 2q; note that uθ and ωθ must satisfy a compatibility
condition: uθ|r=0 = 0 = ωθ|r=0 (Liu and Wang 2006). We remark that
these initial data are not small. In fact, we have

‖u0‖L2(R2×[0,1])‖∇u0‖L2(R2×[0,1]) =
C0

ε4−2δ
� 1,

for ε small, where u0 is the initial velocity vector. Thus the classical regular-
ity analysis for small initial data does not apply to these sets of anisotropic
initial data.

Hou, Lei and Li (2008) proved the global regularity of the 3D axisym-
metric Navier–Stokes equations for initial data (2.10) by exploring the an-
isotropic structure of the solution for ε small. They also obtained a global
bound on ‖uθ/r‖L2p and ‖ωθ/r‖L2q in terms of their initial data. Note
that by using the scaling invariance property of the Navier–Stokes equa-
tions, their global regularity result also applies to the following rescaled
initial data:

uθ(r, z, 0) =
1

ε2−δ
U0

(

r,
z

ε

)

, ωθ(r, z, 0) =
1

ε3−δ
W0

(

r,
z

ε

)

, (2.11)

and

uθ(r, z, 0) =
1
ε
U0

(
r

ε1−δ
,
z

ε

)

, ωθ(r, z, 0) =
1
ε2
W0

(
r

ε1−δ
,
z

ε

)

. (2.12)

Note that the parameters ε in the initial data (2.10)–(2.11) and δ in (2.12)
measure the degree of anisotropy of the initial data. If δ = 0, then the
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initial data (2.12) become isotropic, i.e.,

u0(x, y, z) =
1
ε
U0

(
x

ε
,
y

ε
,
z

ε

)

.

Their analysis would break down when there is no anisotropic scaling in
the initial data, i.e., δ = 0. Clearly, if the analysis could be extended to
the case of δ = 0, one would prove the global regularity of the 3D axisym-
metric Navier–Stokes equations for general initial data by using the scaling
invariance property of the Navier–Stokes equations. It is interesting to note
that by using an anisotropic scaling of the initial data, we turn the global
regularity of the 3D Navier–Stokes equations into a critical case of δ = 0.

We remark that the global regularity results of Hou, Lei and Li (2008)
were obtained on a regular size domain, R2 × [0, 1], for initial data (2.10).
In this sense, their results are different from those global regularity results
obtained for a thin domain, Ωε = Q1 × [0, ε] with Q1 being a bounded do-
main in R2. The global regularity of the 3D Navier–Stokes equations in
a thin domain of the form Ωε has been studied by Raugel and Sell in a
series of papers (Raugel and Sell 1993a, 1994, 1993b). They proved the
global regularity of the 3D Navier–Stokes equations under the assumption
that ‖∇u0‖2

L2(Ωε)
≤ C0 ln 1

ε . This is an improvement over the classical global
regularity result for small data, which requires ‖∇u0‖2

L2(Ωε)
≤ C∗ε (Raugel

and Sell 1993a). One may interpret the global regularity result of Hou,
Lei and Li with initial data (2.11) as a result on a generalized thin do-
main. Note that the initial data given by (2.11) satisfy the following bound:
‖∇u0‖2

L2(Ωε)
= C0ε

−5+2δ (here δ > 0 can be made arbitrarily small), which
is much larger than the corresponding bound C0 ln 1

ε required by the global
regularity analysis of Raugel and Sell (1993a, 1994, 1993b).

3. Dynamic stability of 3D Navier–Stokes equations

The axisymmetric 3D Navier–Stokes equation with swirl is perhaps the sim-
plest form of the 3D Navier–Stokes equations, yet still retains the most es-
sential difficulties of the 3D Navier–Stokes equations. It has attracted a lot
of attention in recent years. Although some partial progress has been made
in studying the global regularity of the axisymmetric Navier–Stokes equa-
tions with swirl using energy estimates (see, e.g., Chae and Lee (2002) and
references cited there), the question of global regularity for general initial
data is still an open question.

Hou and Li (2008a) studied the dynamic stability of the axisymmetric
Navier–Stokes equations with swirl via a new 1D model. This model is
derived from the axisymmetric Navier–Stokes equations along the symmetry
axis. Surprisingly, this model is an exact reduction of the 3D axisymmetric
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Navier–Stokes equations along the symmetry axis. It captures the essential
nonlinear features of the 3D Navier–Stokes equations. One of the important
findings by Hou and Li (2008a) was that the convection term plays an
essential role in cancelling some of the vortex stretching terms. Specifically,
they found a positive Lyapunov function which satisfies a new conservation
law and a maximum principle. This holds for both the viscous and inviscid
cases. This a priori pointwise estimate plays a critical role in obtaining
nonlinear stability and global regularity of the 1D model. Using this a priori
estimate, they proved global regularity of the 3D Navier–Stokes equations
for a family of large data, which can experience large transient dynamic
growth but remain smooth for all times.

It is worth emphasizing that such subtle dynamic stability properties of
the 3D Navier–Stokes equations would have been completely missed by using
the traditional energy estimates. Traditional energy estimates are too crude
to capture some of the most essential properties of the 3D incompressible
Navier–Stokes equations. To illustrate its limitations, we briefly review how
the energy estimates are used in proving global regularity of the 3D Navier–
Stokes equations.

For incompressible Navier–Stokes equations, one of the most important
a priori estimates is the energy identity. More precisely, for any strong
solution u, we have

1
2

d
dt

∫
|u|2 dx + ν

∫
|∇u|2 dx = 0, (3.1)

by observing
∫

u·(u·∇u) dx = −1
2

∫
(∇·u)|u|2 dx = 0, since u is divergence-

free. Unfortunately, this energy identity is not strong enough to rule out
finite-time singularities. To prove global regularity, we need to obtain con-
trol in a stronger norm, either in ‖u‖Lp with p ≥ 3 or in ‖ω‖L2 . To illustrate
the main difficulty of the traditional energy estimates, let us perform energy
estimates for the vorticity equation:

1
2

d
dt

∫
|ω|2 dx + ν

∫
|∇ω|2 dx =

∫
ω · ∇u · ω dx. (3.2)

Again, the convection term does not contribute to the L2-norm of vorticity
(or any Lp-norm with p > 1). The main difficulty is to control the vortex
stretching term. Using the Sobolev embedding theory, one can show that

∫
ω · ∇u · ω dx ≤ Cν

(∫
|ω|2 dx

)3

+
ν

2

∫
|∇ω|2 dx, (3.3)

which can not be improved. This implies that

1
2

d
dt

∫
|ω|2 dx +

ν

2

∫
|∇ω|2 dx ≤ Cν

(∫
|ω|2 dx

)3

. (3.4)
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Unfortunately, the above estimate does not imply global regularity for large
data even if we use the energy identity (3.1). However, the estimate (3.4)
can be used to obtain global regularity for small initial data. To see this,
we substitute the following interpolation inequality,

(∫
|ω|2 dx

)2

= ‖ω‖4
L2 ≤ C0‖u‖2

L2‖∇ω‖2
L2 , (3.5)

into (3.4) to obtain

1
2

d
dt

‖ω‖2
L2 ≤

(

CνC0‖u‖2
L2‖ω‖2

L2 − ν

2

)

‖∇ω‖2
L2 ≤ 0, (3.6)

provided that

CνC0‖u0‖2
L2‖ω0‖2

L2 ≤ ν

2
. (3.7)

Since ‖u(t)‖2
L2 ≤ ‖u0‖2

L2 for all t, condition (3.7) and inequality (3.6) imply
that ‖ω(t)‖2

L2 ≤ ‖ω0‖2
L2 for all times. Note that ‖ω0‖2

L2 = ‖∇u0‖2
L2 . Thus

we can also replace (3.7) by

CνC0‖u0‖2
L2‖∇u0‖2

L2 ≤ ν

2
. (3.8)

Due to the incompressibility condition, convection plays no role in the
energy estimate. The same estimate can be also applied to the following
nonlinear diffusion equation:

wt = w2 + ν∆w. (3.9)

An energy estimate gives

1
2

d
dt

∫
|w|2 dx + ν

∫
|∇w|2 dx =

∫
w3 dx. (3.10)

Using an embedding inequality similar to (3.3), we get

1
2

d
dt

∫
|w|2 dx +

ν

2

∫
|∇w|2 dx ≤ Cν

(∫
|w|2 dx

)3

, (3.11)

which is identical to (3.4).
However, it is well known that (3.9) can develop a finite-time isotropic

self-similar blow-up solution, which does not violate the energy identity
(3.1), in the sense that

∫ T
0 ‖w(t)‖2

L2 dt <∞. The above analysis shows that
energy estimates can not distinguish a nonlinear diffusion equation, which
has a finite-time blow-up solution, from the 3D Navier–Stokes equations,
which have completely different physical properties and may not necessarily
blow up in finite time.
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3.1. Reformulation of 3D axisymmetric Navier–Stokes equations

Consider the 3D axisymmetric incompressible Navier–Stokes equations

uθ
t + uruθ

r + uzuθ
z = ν

(

∇2 − 1
r2

)

uθ − 1
r
uruθ, (3.12)

ωθ
t + urωθ

r + uzωθ
z = ν

(

∇2 − 1
r2

)

ωθ +
1
r

(
(uθ)2

)
z
+

1
r
urωθ, (3.13)

−
(

∇2 − 1
r2

)

ψθ = ωθ, (3.14)

where r =
√
x2 + y2, uθ, ωθ and ψθ are the angular components of the

velocity, vorticity and stream function respectively, and

ur = −(ψθ)z uz =
1
r
(rψθ)r.

Note that equations (3.12)–(3.14) completely determine the evolution of the
3D axisymmetric Navier–Stokes equations.

Hou and Li (2008a) introduced the following new variables,

u1 = uθ/r, ω1 = ωθ/r, ψ1 = ψθ/r, (3.15)

and derived the following equivalent system that governs the dynamics of
u1, ω1 and ψ1:

∂tu1 + ur∂ru1 + uz∂zu1 = ν

(

∂2
r +

3
r
∂r + ∂2

z

)

u1 + 2u1ψ1z, (3.16a)

∂tω1 + ur∂rω1 + uz∂zω1 = ν

(

∂2
r +

3
r
∂r + ∂2

z

)

ω1 + (u2
1)z, (3.16b)

−
(

∂2
r +

3
r
∂r + ∂2

z

)

ψ1 = ω1, (3.16c)

where ur = −rψ1z, uz = 2ψ1+rψ1r. Liu and Wang (2006) showed that if u
is a smooth velocity field, then uθ, ωθ and ψθ must satisfy the compatibility
condition uθ|r=0 = ωθ|r=0 = ψθ|r=0 = 0. Thus u1, ψ1 and ω1 are well defined
as long as the solution remains smooth.

3.2. An exact 1D model for 3D Navier–Stokes equations

Hou and Li (2008a) derived an exact 1D model along the symmetry axis
by assuming the solution is more singular along the z-direction than along
the r-direction (i.e., the solution has an locally anisotropic scaling). Along
the symmetry axis r = 0, we have ur = 0, uz = 2ψ1. Since the solution is
more singular along the z-direction, one can drop the derivatives along the
r-direction to the leading order in the reformulated Navier–Stokes equations
(note that 3

r∂r is of the same order as ∂2
r ). This gives rise to the following
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1D model:

(u1)t + 2ψ1(u1)z = ν(u1)zz + 2(ψ1)zu1, (3.17)

(ω1)t + 2ψ1(ω1)z = ν(ω1)zz + (u2
1)z, (3.18)

−(ψ1)zz = ω1. (3.19)

Note that the system (3.17)–(3.19) is already a closed system. Let ũ = u1,
ṽ = −(ψ1)z, and ψ̃ = ψ1. By integrating (3.18) with respect to z, one can
further reduce the above system to

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽũ, (3.20)

(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (3.21)

where ṽ = −(ψ̃)z, ṽz = ω̃, and c(t) is an integration constant to enforce
the mean of ṽ equal to zero. If we assume that the solution is periodic
with respect to z with period 1, the integration constant c(t) is equal to
3

∫ 1
0 (ṽ)2 dz − ∫ 1

0 (ũ)2 dz.
A surprising result is that the above 1D model is exact. This is stated in

the following theorem.

Theorem 3.1. Let u1, ψ1 and ω1 be the solution of the 1D model (3.17)–
(3.19) and define

uθ(r, z, t) = ru1(z, t), ωθ(r, z, t) = rω1(z, t), ψθ(r, z, t) = rψ1(z, t).

Then (uθ(r, z, t), ωθ(r, z, t), ψθ(r, z, t)) is an exact solution of the 3D Navier–
Stokes equations.

Theorem 3.1 tells us that the 1D model (3.17)–(3.19) preserves some es-
sential nonlinear structure of the 3D axisymmetric Navier–Stokes equations.

3.3. Properties of the model equation

In this section, we will study some properties of the 1D model. We first con-
sider the properties of some further simplified models obtained from these
equations. Both numerical and analytical studies are presented for these
simplified models. Based on the understanding of the simplified models, we
prove the global existence of the full 1D model.

The ODE model
To start with, we consider an ODE model by ignoring the convection and
diffusion term:

(ũ)t = −2ṽũ, (3.22)

(ṽ)t = (ũ)2 − (ṽ)2, (3.23)

with initial condition ũ(0) = ũ0 and ṽ(0) = ṽ0.
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Clearly, if ũ0 = 0, then ũ(t) = 0 for all t > 0. In this case, the equation for
ṽ is decoupled from ũ completely, and will blow up in finite time if ṽ0 < 0.
In fact, if ṽ0 < 0 and ũ0 is very small, then the solution can experience very
large growth dynamically. The growth can be made arbitrarily large if we
choose ũ0 to be arbitrarily small. However, the special nonlinear structure
of the ODE system has an interesting cancellation property which has a
stabilizing effect on the solution for large times. This is described by the
following theorem.

Theorem 3.2. Assume that ũ0 �= 0. Then the solution (ũ(t), ṽ(t)) of the
ODE system (3.22)–(3.23) exists for all times. Moreover, we have

lim
t→+∞ ũ(t) = 0, lim

t→+∞ ṽ(t) = 0. (3.24)

Proof. Inspired by the work of Constantin, Lax and Majda (1985), we
make the following change of variables: w = ũ+ iṽ. Then the ODE system
(3.22)–(3.23) is reduced to the following complex nonlinear ODE:

dw
dt

= iw2, w(0) = w0, (3.25)

which can be solved analytically. The solution has the form

w(t) =
w0

1 − iw0t
. (3.26)

In terms of the original variables, we have

ũ(t) =
ũ0(1 + ṽ0t) − ũ0ṽ0t

(1 + ṽ0t)2 + (ũ0t)2
, (3.27)

ṽ(t) =
ṽ0(1 + ṽ0t) + ũ2

0t

(1 + ṽ0t)2 + (ũ0t)2
. (3.28)

It is clear from (3.27)–(3.28) that the solution of the ODE system (3.22)–
(3.23) exists for all times and decays to zero as t→ +∞ as long as ũ0 �= 0.
This completes the proof of Theorem 3.2.

As we can see from (3.27)–(3.28), the solution can grow very fast in a
very short time if ũ0 is small, but ṽ0 is large and negative. For example, if
we let ṽ0 = −1/ε and ũ0 = ε for ε > 0 small, we obtain at t = ε

ũ(ε) = 1/ε3, ṽ(ε) = 1/ε.

We can see that within ε time, ũ grows from its initial value of order ε to
O(ε−3), a factor of ε−4 amplification.

The key ingredient in obtaining the global existence in Theorem 3.2 is
that the coefficient on the right-hand side of (3.22) is less than −1. For this
ODE system, there are two distinguished phases. In the first phase, if ṽ
is negative and large in magnitude, but ũ is small, then ṽ can experience
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growth induced by the nonlinear terms. However, because the nonlinear
ODE system in the absence of viscosity is very unstable, the di�usion term
can actually have a destabilizing e�ect. Below we demonstrate this some-
what surprising fact through careful numerical experiments.

In Figures 3.2…3.4, we plot a time sequence of solutions for the above
reaction…di�usion system with the following initial data:

�u0(z) =  (2 + sin(2 �z )) , �v0(z) = Š
1


Š sin(2�z ),

where  = 0 .001. For this initial condition, the solution is periodic in z
with period one. We use a pseudo-spectral method to discretize the coupled
system (3.29)…(3.30) in space and use the simple forward Euler discretiza-
tion for the nonlinear terms and the backward Euler discretization for the
di�usion term. In order to resolve the nearly singular solution structure, we
useN = 32, 768 grid points with an adaptive time step satisfying

� tn
	
| max{ �un}| + | min{ �un}| + | max{ �vn}| + | min{ �vn}|



� 0.01,

where �un and �vn are the numerical solution at time tn and tn = tnŠ 1+� tnŠ 1
with the initial time stepsize � t0 = 0 .01 . During the time iterations, the
smallest time step is as small asO(10Š 10).

From Figure 3.2, we can see that the magnitude of the solution �v increases
rapidly by a factor of 150 within a very short time ( t = 0 .00099817). As
the solution �v becomes large and negative, the solution �u increases much
more rapidly than �v. By time t = 0 .0010042, �u has increased to about
2.5 × 108 from its initial condition, which is of magnitude 10 Š 3. This is a
factor of 2.5 × 1011 increase. At this time, the minimum of �v has reached
Š2 × 108. Note that since �u has outgrown �v in magnitude, the nonlinear
term, �u2 Š �v2, on the right-hand side of the �v-equation has changed sign.
This causes the solution �v to split. By the time t = 0 .001004314 (see
Figure 3.3), both �u and �v have split and settled down to two relatively
stable travelling wave solutions. The wave on the left will travel to the left
while the wave on the right will travel to the right. Due to the periodicity
in z, the two travelling waves approach each other from the right side of the
domain. The •collision• of these two travelling waves tends to annihilate each
other. In particular, the negative part of �v is e�ectively eliminated during
this nonlinear interaction. By the time t = 0 .00100603 (see Figure 3.4),
the solution �v becomes all positive. Once �v becomes positive, the e�ect
of nonlinearity becomes stabilizing for both �u and �v, as in the case of the
ODE system. From then on, the solution decays rapidly. Byt = 0 .2007, the
magnitude of �u is as small as 5.2 × 10Š 8, and �v becomes almost a constant
function with value close to 5. From this time on, �u is essentially decoupled
from �v and will decay like O(1/t ).
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Based on our numerical studies, we become convinced that the solution of
the full 1D model should be regular for all times. However, it is extremely
di�cult, if not impossible, to prove the global regularity of the 1D model
by using an energy type of estimates. If we multiply the �u-equation by �u,
and the �v-equation by �v, and integrate over z, we arrive at

1
2

d
dt

� 1

0
�u2 dz = Š3

� 1

0
(�u)2�v dz Š �

� 1

0
�u2

z dz, (3.31)

1
2

d
dt

� 1

0
�v2 dz =

� 1

0
�u2�v dz Š 3

� 1

0
(�v)3 dz Š �

� 1

0
�v2

z dz. (3.32)

Even for this 1D model, the energy estimate shares the some essential
di�culty as the 3D Navier…Stokes equations. It is not clear how to control
the nonlinear vortex-stretching-like terms by the di�usion term. On the
other hand, if we assume that

� T

0
� �v� L � dt < � ,

similar to the Beale…Kato…Majda non-blow-up condition for vorticity (Beale,
Kato and Majda 1984), then one can easily show that there is no blow-up
before t = T.

In order to obtain the global regularity of the 1D model, we need to use a
local estimate. The key is to obtain a pointwise estimate for a positive Lya-
punov function. Convection is found to play an essential role in cancelling
the destabilizing vortex stretching terms. Using this pointwise estimate, we
can prove that if the initial conditions for �u and �v are in Cm with m 	 1,
then the solution remains in Cm for all times.

Theorem 3.3. (Hou and Li 2008 a) Assume that �u(z,0) and �v(z,0) are
in Cm [0, 1] with m 	 1 and periodic with period 1. Then the solution (�u, �v)
of the 1D model will be in Cm [0, 1] for all times and for � 	 0.

Proof. The key is to obtain a pointwise estimate a priori for the positive
Lyapunov function �u2

z + �v2
z . Di�erentiating (3.20)…(3.21) with respect to z,

we get

(�uz)t + 2 �� (�uz)z Š 2�v�uz = Š2�v�uz Š 2�u�vz + � (�uz)zz, (3.33)

(�vz)t + 2 �� (�vz)z Š 2�v�vz = 2�u�uz Š 2�v�vz + � (�vz)zz. (3.34)

Note that the convection term contributes to stability by cancelling one of
the nonlinear terms on the right-hand side. This gives

(�uz)t + 2 �� (�uz)z = Š2�u�vz + � (�uz)zz, (3.35)

(�vz)t + 2 �� (�vz)z = 2�u�uz + � (�vz)zz. (3.36)
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Multiplying (3.35) by 2�uz and (3.36) by 2�vz, we obtain

(�u2
z)t + 2 �� (�u2

z)z = Š4�u�uz �vz + 2 � �uz(�uz)zz, (3.37)

(�v2
z)t + 2 �� (�v2

z)z = 4�u�uz �vz + 2 � �vz(�vz)zz. (3.38)

Now, we add (3.37) to (3.38). Surprisingly, the remaining nonlinear vortex
stretching terms cancel each other exactly. We get

	
�u2

z + �v2
z



t + 2 ��

	
�u2

z + �v2
z



z = 2 �

	
�uz(�uz)zz + �vz(�vz)zz



. (3.39)

Further, we can rewrite equation (3.39) as follows:
	
�u2

z + �v2
z



t + 2 ��

	
�u2

z + �v2
z



z = �

	
�u2

z + �v2
z



zz Š 2�

�
(�uzz)2 + (�vzz)2�

. (3.40)

Now it is easy to see that (�u2
z + �v2

z) satis“es a maximum principle for all
� 	 0:

� �u2
z + �v2

z � L � � � (�u0)2
z + (�v0)2

z� L � .

It is worth emphasizing that the cancellation between the convection term
and the vortex stretching term takes place at the inviscid level. Viscosity
does not play an essential role here.Since �v has zero mean, the Poincar´e
inequality implies that � �v� L � � C0, with C0 de“ned by

C0 = �
	
(�u0)2

z + (�v0)2
z


 1
2 � L � .

The boundedness of �u follows from the bound on �v, that is, � �u(t)� L � �
� �u0� L � exp(2C0t). The higher-order regularity follows from the standard
estimates. This proves Theorem 3.3.

3.5. Construction of a family of 3D globally smooth solutions

We can use the solution from the 1D model to construct a family of glob-
ally smooth solutions for the 3D axisymmetric Navier…Stokes equations
with large initial data of “nite energy. We remark that a special fea-
ture of this family of globally smooth solutions is that the solution can
potentially develop very large dynamic growth and it violates the small-
ness condition required by classical global existence results (Constantin and
Foias 1988, Temam 2001).

Theorem 3.4. (Hou and Li 2008 a) Let � (r ) be a smooth cut-o� func-
tion and u1, � 1 and � 1 be the solution of the 1D model. De“ne

u� (r, z, t ) = ru 1(z, t)� (r ) + �u(r, z, t ),

� � (r, z, t ) = r� 1(z, t)� (r ) + �� (r, z, t ),

� � (r, z, t ) = r� 1(z, t)� (r ) + �� (r, z, t ).
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Then there exists a family of globally smooth functions �u, �� and �� such
that u� , � � and � � are globally smooth solutions of the 3D Navier…Stokes
equations with “nite energy.

4. Stabilizing e�ect of convection for 3D Navier…Stokes

Hou and Lei (2009b) studied the stabilizing e�ect of the convection term
in the 3D incompressible Euler or Navier…Stokes equations using a new
3D model. This model was derived from the reformulated Navier…Stokes
equations. It shares many properties with the 3D Euler or Navier…Stokes
equations. First of all, it has the same nonlinear vortex stretching term.
Secondly, it has the same type ofa priori energy identity. Thirdly, al-
most all the existing non-blow-up criteria for the 3D Euler or Navier…Stokes
equations are also valid for our model. A 3D model that satis“es all these
properties seems hard to “nd in general. But in terms of the equations for
the new variables, u1, � 1, and � 1, we obtain our 3D model equations by
simply dropping the convective term from the reformulated Navier…Stokes
equations (3.16):

� t u1 = �
�

� 2
r +

3
r

� r + � 2
z

�
u1 + 2u1� 1z, (4.1a)

� t � 1 = �
�

� 2
r +

3
r

� r + � 2
z

�
� 1 + ( u2

1)z, (4.1b)

Š
�

� 2
r +

3
r

� r + � 2
z

�
� 1 = � 1. (4.1c)

Note that (4.1) is already a closed system. The main di�erence between our
3D model and the Navier…Stokes equations is that we neglect the convection
term in our model. If we add the convection term back to our 3D model,
we will recover the Navier…Stokes equations.

Below we will summarize some important properties of the model equa-
tions (4.1).

4.1. Properties of the 3D model

This 3D model shares many important properties with the axisymmetric
Navier…Stokes equations. First of all, one can de“ne an incompressible
velocity “eld for the 3D model,

u(t, x) = ur (t, r, z )er + u� (t, r, z )e� + uz(t, r, z )ez, (4.2)

u� = ru 1, ur = Šr� 1z, uz = 2 � 1 + r� 1r , (4.3)

where x = ( x, y, z), r =
�

x2 + y2. It is easy to check that

� · u = � r ur + � zuz +
ur

r
= 0 , (4.4)
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which is the same as the original Navier…Stokes equations.
Furthermore, Hou and Lei (2009b) proved the following energy identity

for the 3D model.

Theorem 4.1. (Energy identity (Hou and Lei 2009 b)) The strong so-
lution of (4.1) satis“es

1
2

d
dt

� 	
|u1|2 + 2 |D� 1|2



r 3 dr dz + �

� 	
|Du 1|2 + 2 |D 2� 1|2



r 3 dr dz = 0 ,

(4.5)

Here D is the “rst-order derivative operator de“ned in R5.

This energy identity is equivalent to that of the Navier…Stokes equations,
which has the form

1
2

d
dt

� 	
|u1|2 + |D� 1|2



r 3 dr dz + �

� 	
|Du 1|2 + |D 2� 1|2



r 3 dr dz = 0 .

(4.6)

Another result obtained by Hou and Lei is a non-blow-up criterion of the
3D model equations (4.1), which is an analogue of the Beale…Kato…Majda
(BKM) result for the 3D Euler and Navier…Stokes equations. For the 3D
Euler and Navier…Stokes equations, the BKM non-blow-up criterion states
that the solution u blows up at time T < � if and only if the accumulation of
vorticity

� T
0 �� x × u� L � (R3) dt is in“nite (Beale, Kato and Majda 1984). The

BKM non-blow-up criterion was later improved by Kozono and Taniuchi
(2000), who proved that the � · � L � -norm can be replaced by the norm
in the BMO space. This generalization is interesting because some crucial
Sobolev embedding theorems can be applied to the BMO space, but not to
the L � -space. A non-blow-up result formulated in terms of the BMO space
has a broader range of applications.

Theorem 4.2. (A non-blow-up criterion of Beale…Kato…Majda type
(Hou and Lei 2009 b)) A smooth solution (u1, � 1, � 1) of the model (4.1)
for 0 � t < T blows up at time t = T if and only if

� T

0
�� × u� BMO( R3) dt = � , (4.7)

where u is de“ned in (4.2)…(4.3).

There have been many results on the global regularity of the solutions
of the 3D Navier…Stokes equations under some additional conditions im-
posed on the solution. In particular, the papers of Prodi (1959) and Serrin
(1963) gave the following non-blow-up criterion for the solution of the 3D
Navier…Stokes equations:Any Leray…Hopf solutionu to the 3D Navier…
Stokes equations on[0, T] is smooth on [0, T] if � u� L q

t L p
x ([0,T ]× R3) < � for
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somep, q satisfying (3/p ) + (2 /q ) � 1, 3 < p � � . A local version was later
established by Serrin (1962) for (3/p ) + (2 /q ) < 1 and by Struwe (1988)
for (3/p ) + (2 /q ) = 1. The highly non-trivial end-point case of p = 3 was
recently established by Iskauriaza, Seregin and Sverak (2003).

To demonstrate the similarity between the 3D model equations (4.1) and
the axisymmetric Navier…Stokes equations, Hou and Lei proved a non-blow-
up criterion of the Prodi…Serrin type for their model.

Theorem 4.3. (A non-blow-up criterion of Prodi…Serrin type (Hou
and Lei 2009 b)) A weak solution (u1, � 1, � 1) of the model (4.1) is smooth
on [0, T] × R3 provided that

� u� � L q
t L p

x ([0,T ]× R3) < � (4.8)

for somep, q satisfying 3
p + 2

q � 1 with 3 < p � � and 2 � q < � .

Finally, Hou and Lei (2009a) studied the local behaviour of the solutions
to the 3D model equations and established an analogue of the Ca�arelli…
Kohn…Nirenberg partial regularity theory (Ca�arelli et al. 1982) for their
model. They proved that for any suitable weak solution of the 3D model
in an open set in space-time, the one-dimensional Hausdor� measure of the
associated singular set is zero. The proof of this partial regularity result
is similar in spirit to that of Lin (1998), but there are some new technical
di�culties associated with the 3D model. One of the di�culties is in han-
dling the singularity induced by the cylindrical coordinates. This makes it
di�cult to analyse the partial regularity of the 3D model in R × R3. To
overcome this di�culty, they performed their partial regularity analysis in
R × R5. By working in R5, they avoided the di�culty associated with the
coordinate singularity.

Another di�culty in obtaining our partial regularity result is that we do
not have an evolution equation for the entire velocity “eld. We need to
reformulate the model in terms of a new vector variable. This new variable
can be considered as a •generalized velocity “eld• inR5. We remark that
the partial regularity theory for Navier…Stokes equations inR5 is still open
due to the lack of certain compactness. When formulating the 3D model in
R × R5, they found a 3D structure which has the same scaling as that of
the 3D Navier…Stokes equations. This is why the partial regularity analysis
can be carried out for the 3D model inR × R5 using a strategy similar to
that of Lin (1998).

Theorem 4.4. (An analogue of Ca�arelli…Kohn…Nirenberg partial
regularity result (Hou and Lei 2009 a)) For any suitable weak solution
of the 3D model equations (4.1) on an open set in space-time, the one-
dimensional Hausdor� measure of the associated singular set is zero.
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4.2. Potential singularity formation of the 3D model

Despite the striking similarity at the theoretical level between the 3D model
and the Navier…Stokes equations, the former displays a completely di�erent
behaviour from the full Navier…Stokes equations. In the next subsection,
we will present numerical evidence which seems to support that the model
may develop a potential “nite-time singularity from smooth initial data with
“nite energy. Before we do that, we would like to gain some understanding at
the theoretical level why the 3D model may develop a “nite-time singularity.
For this purpose, we consider the inviscid model by setting� = 0 in (4.1):

� t u1 = 2u1� 1z, (4.9a)

� t � 1 = ( u2
1)z, (4.9b)

Š
�

� 2
r +

3
r

� r + � 2
z

�
� 1 = � 1. (4.9c)

If we let v = log( u2
1), then we can further reduce the 3D model to the

following non-local nonlinear wave equation:

vtt = 4
	
(Š� 5)Š 1ev


zz, (4.10)

whereŠ� 5 = Š
	
� 2

r + 3
r � r + � 2

z



, and

�
evr 3 dr dz � C0. Note that ( Š� 5)Š 1

is a positive operator. If we were to omit (Š� 5)Š 1 from (4.10), we would
obtain a 1D nonlinear wave equation,vtt = 4(ev)zz, or

vtt = 4evvzz + 4ev(vz)2, (4.11)

which we expect to develop a “nite-time singularity.

4.3. Special blow-up solutions of the 3D model

We can construct a special class of blow-up solutions by lettingu1 = z�u(r, t ),
� 1 = z�� (r, t ), and � 1 = z �� (r, t ). Then it is easy to derive the following
system for �u(r, t ), �� (r, t ), and �� (r, t ):

� t �u = 2 �� �u + � (� 2
r +

3
r

� r )�u, (4.12a)

� t �� = 2�u2 + � (� 2
r +

3
r

� r )��, (4.12b)

Š
�

� 2
r +

3
r

� r

�
�� = ��. (4.12c)

Note that the nonlinear terms become local and quadratic. It is easy to show
that if the initial data are positive, then the solution of (4.12) will remain
positive for all times. Using this property, we can prove that the above
system has “nite-time blow-up solutions. However, such singular solutions
have in“nite energy unless we introduce a cut-o� along thez-direction.
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We remark that Constantin (1986) has constructed a family of “nite-time
blow-up solutions to the distorted Euler equations:

(� u)t + ( � u)2 + �� p = 0 , (4.13)

where Š� p = T r (( � u)2). We note that u is no longer divergence-free (in
fact, there is no evolution equation foru), and the model does not conserve
energy. Moreover, the blow-up solution has in“nite energy.

4.4. Numerical evidence for a potential “nite-time singularity

In this subsection, we present numerical evidence which seems to support
that the model may develop a potential “nite-time singularity from smooth
initial data with “nite energy. By exploiting the axisymmetric geometry
of the problem, we obtain a very e�cient adaptive solver with an optimal
complexity which provides e�ective local resolutions of order 40963. With
this level of resolution, we obtain an excellent “t for the asymptotic blow-
up rate of maximum axial vorticity. If we denote by � z the axial vorticity
component along thez-direction, we “nd that � � z� � (t) � C(T Š t)Š 1 and
the potential singularity approaches the symmetry axis (the z-axis) as t �
T . Moreover, our study seems to suggest that the potential singularity is
locally self-similar and isotropic.

The initial condition considered in our numerical computations is given by

u1(z, r, 0) = (1 + sin(4 �z ))( r 2 Š 1)20(r 2 Š 1.2)30, (4.14)

� 1(z, r, 0) = 0 , (4.15)

� 1(z, r, 0) = 0 . (4.16)

A second-order “nite-di�erence discretization is used in space, and the clas-
sical fourth-order Runge…Kutta method is used to discretize in time. Since
we expect that the potential singularity will appear along the symmetry
axis at r = 0, we use the following coordinate transformation along ther -
direction to achieve the adaptivity by clustering the grid points near r = 0:

r = f (� ) � � Š 0.9 sin(�� )/�. (4.17)

With this change of variables, we can achieve an e�ective resolution up to
40963 for the corresponding 3D problem.

We now present numerical results which show that the solution of the
viscous model becomes nearly singular. We choose the viscous coe�cient to
be � = 0 .001 and perform a series of resolution studies using the adaptive
method. We have used both uniform mesh and adaptive mesh withNz
ranging from 256 to 4096. Below we present the computational results
obtained by using the adaptive mesh with the highest resolutionNz = 4096,
Nr = 400, and � t = 2 .5 × 10Š 7. We will also perform a resolution study to
demonstrate that our computations are well resolved.



Blow-up or no blow-up? 49

From our analytical study of the 3D model, it follows by using a standard
energy estimate that if u1 is bounded, then the solution of the viscous 3D
model cannot blow up in a “nite time. Thus it is su�cient to monitor the
growth of � u1� � in time. We will present numerical evidence which seems
to support that u1 may develop a potential “nite-time singularity for the
initial condition we consider. The nature of this potential singularity and
the mechanism for generating this potential singularity will be analysed in
a later subsection.

In Figure 4.1, we plot the maximum of u1 in time over the time interval
[0, 0.021] using the adaptive mesh method withNz = 4096 and Nr = 400.
The time step is chosen to be �t = 2 .5× 10Š 7. We can see that� u1� � expe-
riences a very rapid growth in time after t = 0 .02. In Figure 4.1(b), we also
plot log(log( � u1� � )) as a function of time. We can see clearly that� u1� �
grows much more rapidly than double exponential in time, which implies
that the solution of our model may develop a “nite-time singularity. We will
present more careful analysis of this potentially singular behaviour later.

In Figures 4.2…4.3, we show a sequence of contour plots foru1 from
t = 0 .014 to t = 0 .021. At early times, we observe that the solution forms
two large focusing centres ofu1 which approach each other. As this occurs,
these rather localized regions are squeezed and form a thin layer parallel
to the r -axis and with large gradients along thez-direction. As these re-
gions approach each other and develop a thin layer parallel to ther -axis,
the solution becomes locallyz-dominant near the region whereu1 achieves
its maximum. In this region, the 3D model can be approximated to the
leading order by the corresponding 1D model along thez-direction. Hou
and Lei (2009b) proved that the solution of the 1D model cannot blow up.
The solution survives this potential blow-up scenario. After t = 0 .0172,
the maximum of u1 starts to decrease. The two focusing centres move
away from each other and their supports become more isotropic. As time
increases, we observe that there is a strong nonlinear interaction between
u1 and (� 1)z, which is induced by the overlap between the support of max-
imum of u1 and the support of maximum of (� 1)z. By the support of
maximum of u1, we mean the region in whichu1 is comparable to its max-
imum. The strong alignment between u1 and (� 1)z near the support of
maximum of u1 leads to a rapid growth of the solution which may become
singular in a “nite time.

Another important observation is that as time increases, the position at
which u1 achieves its maximum also moves towards the symmetry axis. This
suggests that the potential singularity will be along the symmetry axis at
the singularity time. We note that lim r � 0+ u1 = 0 .5 limr � 0+ � z. Thus, the
blow-up of u1 characterizes the blow-up of the axial vorticity, � z.

Next, we perform a detailed study for the 3D model and push our com-
putations very close to the potential singularity time. We use a sequence of
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follows. We look for a “nite-time singularity of the form

� u1� � �
C

(T Š t)� . (4.18)

We have tried several ways to determine the “tting parametersT, C and
� . Ultimately, we “nd that the best way is to study the inverse of � u1� �
as a function of time using a sequence of numerical resolutions. For each
resolution, we “nd that the inverse of � u1� � is almost a perfect linear
function of time: see Figures 4.4 and 4.5. By using a least-squares “t of
the inverse of � u1� � , we “nd that � = 1 gives the best “t. The same
least-squares “t also determines the potential singularity time T and the
constant C. We remark that the O(1/ (T Š t)) blow-up rate of u1, which
measures the axial vorticity, is consistent with the non-blow-up criterion of
Beale…Kato…Majda type.

To con“rm that the above procedure indeed gives a good “t for the po-
tential singularity, we plot � u1� Š 1

� as a function of time in Figure 4.4(a). We
can see that the agreement between the computed solution withNz × Nr =
4096× 400 and the “tted solution is almost perfect. In Figure 4.4(b) we plot
� u1� � computed by our adaptive method against the form “t C/ (T Š t) with
T = 0 .02109 andC = 8 .20348. The two curves are almost indistinguishable
during the “nal stage of the computation from t = 0 .018 to t = 0 .021.

We further investigate the potential singular behaviour of the solution
by using a sequence of resolutions to study the limiting behaviour of the

Table 4.1. Resolution study of parametersT and C in the asymptotic
“t for the viscous model: � u1� Š 1

� � (T Š t )
C using di�erent resolutions

hz = 1 / (2Nz). The resolutions we use in our adaptive computations
are Nz × Nr = 1024 × 128, 2048× 256, 3072× 328 and 4096× 400
respectively. The corresponding time steps are �t = 10Š 6, 5 × 10Š 7,
3.625× 10Š 7 and 2.5 × 10Š 7 respectively. The last row is obtained by
extrapolating the second-order polynomial that interpolates the data
obtained using hz = 1 / 4096, 1/ 6144 and 1/ 8192.

hz T C

1/ 2048 0.02114 8.409
1/ 4096 0.0211 8.2237
1/ 6144 0.021093 8.20946
1/ 8192 0.02109 8.20348

extrapolation to hz = 0 0.021083 8.1901
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Figure 4.5. The inverse of� u1� � in time for the viscous model.
The solution is computed by adaptive mesh withNz = 1024, 2048,
3072 and 4096 respectively (ordering from top to bottom in the “gure),
� t = 10Š 6, 5 × 10Š 7, 3.625× 10Š 7, and 2.5 × 10Š 7 respectively.
The last curve is the singularity “t by extrapolating the computational
results obtained by Nz = 2048, 3072 and 4096 to in“nite resolution
Nz = � . The “tted curve is of the form � u1� Š 1

� � (T Š t)/C , with
T = 0 .021083 andC = 8 .1901; � = 0 .001.

computed solution as we re“ne our resolutions. The space resolutions we use
are Nz × Nr = 1024× 128, 2048× 256, 3072× 328 and 4096× 400 respectively.
The corresponding time steps are �t = 10Š 6, 5 × 10Š 7, 3.625× 10Š 7 and
2.5 × 10Š 7 respectively. For each resolution, we obtain an optimal least-
squares “t of the singularity of the form � u1� Š 1

� � (T Š t)/C . The results
are summarized in Table 4.1. Based on the “tted parametersT and C from
the three largest resolutions, we construct a second-order polynomial that
interpolates T and C through these three data points. We then use the
polynomial to extrapolate the values of T and C to the in“nite resolution
limit. The extrapolated values at hz = 0 are T = 0 .021083 andC = 8 .1901
respectively. In Figure 4.5, we plot the inverse of� u1� � as a function
of time using four di�erent resolutions. We can see that as we re“ne the
resolution, the computed solution converges to the extrapolated singularity
limiting pro“le.
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Figure 4.6. The 3D view ofu1 at t = 0 .02 for the viscous model
computed by the adaptive mesh with Nz = 4096, Nr = 400,
� t = 2 .5 × 10Š 7, � = 0 .001.

Figure 4.7. The 3D view ofu1 at t = 0 .021 for the viscous model
computed by the adaptive mesh with Nz = 4096, Nr = 400,
� t = 2 .5 × 10Š 7, � = 0 .001.
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Figure 4.8. The 3D view of � 1 at t = 0 .02 for the viscous model
computed by the adaptive mesh with Nz = 4096, Nr = 400,
� t = 2 .5 × 10Š 7, � = 0 .001.

To illustrate the nature of the nearly singular solution, we show the 3D
view of u1 as a function of r and z in Figures 4.6 and 4.7. We also show the
3D view of w1 as a function of r and z in Figure 4.8. While u1 is symmetric
with respect to z = 0 .375, w1 is anti-symmetric with respect to z = 0 .375.
We can see that the support of the solutionu1 in the most singular region
is isotropic and appears to be locally self-similar (Hou and Lei 2009b).

Resolution study
Finally, we perform a resolution study for our computations by comparing
the computation obtained by three di�erent resolutions, which are Nz ×
Nr = 2048 × 256, Nz × Nr = 3072 × 328, and Nz × Nr = 4096 × 400. In
Figure 4.9, we plot � u1� � as a function of time using these three resolutions
Nz × Nr = 2048× 256,Nz × Nr = 3072× 328, andNz × Nr = 4096× 400 over
the time interval [0 , 0.021]. We can see that while the computation with
Nz = 2048 under-resolves the solution near the end of the computation, the
solution obtained by using Nz = 3072 gives an excellent agreement with
that obtained by using Nz = 4096.

We also compare the solution ofu1 at r = 0 using three di�erent resolu-
tions. Using the partial regularity theory for the 3D model, any singularity
of our 3D model must lie on the symmetry axis, r = 0. Thus it makes
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sense to perform a resolution study for the solution along the symmetry
axis which is the most singular region of the solution. In Figure 4.10(a), we
plot the solutions obtained by two resolutions usingNz × Nr = 2048 × 256
(� t = 5 × 10Š 7) and Nz × Nr = 4096× 400 (� t = 2 .5× 10Š 7) on top of each
other at t = 0 .02. The two solutions are almost indistinguishable. However,
the computation with Nz × Nr = 2048 × 256 is not su�cient to resolve
the nearly singular behaviour of the solution at t = 0 .021. On the other
hand, the computation with Nz × Nr = 3072 × 328 (� t = 3 .625× 10Š 7)
gives much improved resolution. In Figure 4.10(b) we compare the solu-
tion obtained by using Nz × Nr = 3072 × 328 with that obtained by using
Nz × Nr = 4096 × 400 at t = 0 .021. We observe that the agreement of
the two solutions is very good except near the points whereu1 attains its
maximum.

4.5. Mechanism for a “nite-time blow-up

To understand the mechanism for the potential blow-up of the viscous
model, we plot the solution u1 on top of (� 1)z along the symmetry axis
r = 0 at t=0.021 in Figure 4.11. We see that there is a signi“cant overlap
between the supports of the maximum ofu1 and of the maximum of (� 1)z.
Moreover, the solution u1 has a strong alignment with (� 1)z near the region
of maximum of u1. The local alignment betweenu1 and (� 1)z induces a
strong nonlinearity on the right-hand side of the u1-equation, which has the
form 2(� 1)zu1. This strong alignment between u1 and (� 1)z is the main
mechanism for the potential “nite-time blow-up of the 3D model. Similar
alignment between u1 and (� 1)z near the region of maximum u1 is also
observed for the inviscid model (Hou and Lei 2009b).

It is interesting to note that the position at which u1 attains its maximum
does not coincide with that at which (� 1)z attains its maximum. In fact,
at the point where u1 reaches its maximum, the value of (� 1)z is relatively
small, or even negative. This misalignment between the position at whichu1
attains its maximum and the position at which ( � 1)z attains its maximum
induces a dynamic motion which pushes the two focusing centres ofu1 to
move away from each other. This dynamics reinforces the local alignment
between u1 and (� 1)z. We remark that this wave-like behaviour of the
solution along thez-direction is consistent with the nonlinear non-local wave
equation (4.10) that we derived for v = log( u2

1) for the inviscid model.
As we see in the next subsection, the inclusion of the convection term

forces the two focusing centres to travel towards each other. Moreover, the
local alignment betweenu1 and (� 1)z is destroyed. As a result, the solution
becomes defocused and smoother along the symmetry axis. There is no
evidence that the solution of the full Navier…Stokes equations would develop
a “nite-time singularity, at least for the time interval considered here.
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metry axis. The fact that the most singular part of the solution moves away
from the symmetry axis indicates that the full Navier…Stokes equations will
not form a “nite-time singularity, at least not for the initial condition we
consider here over the time interval for which we compute the solution. On
the other hand, the solution of the 3D model with the same initial condition
seems to develop a potential “nite-time singularity in an earlier time. This
con“rms that convection plays an essential role in depleting the destabilizing
e�ect induced by vortex stretching.

5. Concluding remarks

Our analysis and computations revealed a subtle dynamic depletion of vor-
tex stretching. Su�cient numerical resolution is essential to capture this
dynamic depletion. Our computations for the two antiparallel vortex tubes
initial data showed that the velocity is bounded and that the vortex stretch-
ing term is bounded by C� � � L � log(� � � L � ). In Hou and Li (2008b), we
also repeated the computation of R. Pelz using highly symmetric initial
data (Pelz 1997). We found that while Pelz•s vortex “lament model indeed
produces a “nite-time self-similar singularity, the solution of the full 3D
Euler equation with the same initial data gives only very modest growth
dynamically. No evidence of “nite-time singularities was found. Pelz•s vor-
tex “lament computation was inspired by his earlier computation of the
3D Navier…Stokes equations (Boratav and Pelz 1994). However, our com-
putation showed that the rapid growth of vorticity observed by Boratav
and Pelz (1994) was due to under-resolution of his numerical solution (Hou
and Li 2008b). The actual growth of maximum vorticity was only expo-
nential in the time interval when the solution was still well resolved. It is
natural to ask if the dynamic depletion that we observed is generic, and
to consider the driving mechanism for this depletion of vortex stretching.
Some recent progress has been made in analysing the dynamic depletion
of vortex stretching and nonlinear stability for 3D axisymmetric ”ows with
swirl (Hou and Li 2008a, Hou, Lei and Li 2008). A related study for the 2D
quasi-geostrophic model can be also found in Deng, Hou, Li and Yu (2006b).
The local geometric structure of the solution near the region of maximum
vorticity and the anisotropic scaling of the support of maximum vorticity
seem to play a key role in the dynamic depletion of vortex stretching.

We also studied the dynamic stability of the 3D Navier…Stokes equations
via an exact 1D model. This 1D model is an exact reduction of the 3D
Navier…Stokes equations along the symmetry axis for a special class of initial
data. It retains some essential nonlinear features of the 3D Navier…Stokes
equations. We proved the global regularity of this 1D model by using a
pointwise estimate. The key was to show that a positive Lyapunov function
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satis“es a new maximum principle. Here convection played an essential role
in cancelling the destabilizing vortex stretching terms. Using the solution
of the 1D model as a building block, we constructed a family of solutions
of the 3D Navier…Stokes equations which experience interesting dynamic
growth but remain smooth for all times.

To gain further understanding of the stabilizing e�ect of convection, we
constructed a new 3D model by neglecting the convection term from the
reformulated Navier…Stokes equations. This 3D model shares almost all
properties of the Navier…Stokes equations, including an equivalent energy
identity and a partial regularity result. Our numerical results seemed to
support the conclusion that the solution of the 3D model develops locally
self-similar isotropic singularities. But when we added the convection term
back to the 3D model, the mechanism for generating the “nite-time singu-
larity in the 3D model was destroyed.

The results presented in this paper may have some important implication
to the global regularity of the 3D Navier…Stokes equations. Our studies
indicate that a successful strategy in analysing the global regularity of the
3D Navier…Stokes equations need to take advantage of the stabilizing e�ect
of the convection term in an essential way. So far most of the regularity
analysis for the 3D Navier…Stokes equations has not used the stabilizing
e�ect of the convection term. In many cases, the same results can also
be obtained for our 3D model. We are currently working to prove that
the 3D model develops “nite-time singularities from smooth initial data
with “nite energy. Such a theoretical result would show convincingly that
traditional energy estimates are inadequate to prove global regularity of the
3D Navier…Stokes equations. New analytical tools that exploit the local
geometric structure of the solution and the stabilizing e�ect of convection
would be needed.

We also investigated the performance of pseudo-spectral methods in com-
puting nearly singular solutions of ”uid dynamics equations. In particu-
lar, we proposed a novel pseudo-spectral method with a high (36th)-order
Fourier smoothing which retains a signi“cant portion of the Fourier modes
beyond the 2/3 cut-o� point. We demonstrated that the pseudo-spectral
method with the high-order Fourier smoothing gives a much better per-
formance than the pseudo-spectral method with the 2/3 de-aliasing rule.
Moreover, we showed that the high-order Fourier smoothing method cap-
tures about 12 � 15% more e�ective Fourier modes in each dimension than
the 2/3 de-aliasing method. For the 3D Euler equations, the gain in the
e�ective Fourier codes for the high-order Fourier smoothing method can
be as large as 20% over the 2/3 de-aliasing method. Another interesting
observation was that the error produced by the high-order Fourier smooth-
ing method is highly localized near the region where the solution is most
singular, while the 2/3 de-aliasing method tends to produce oscillations in
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the entire domain. The high-order Fourier smoothing method was found be
very stable dynamically. No high-frequency instability was observed.
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