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Many physically interesting problems involve propagation of free surfaces.
Vortex-sheet roll-up in hydrodynamic instability, wave interactions on the
ocean’s free surface, the solidification problem for crystal growth and Hele~
Shaw cells for pattern formation are some of the significant examples. These
problems present a great challenge to physicists and applied mathematicians
because the underlying problem is very singular. The physical solution is
sensitive to small perturbations. Naive digcretisations may lead to numerical
instabilities. Other numerical difficulties include singularity formation and
possible change of topology in the moving free surfaces, and the severe time-
stepping stability constraint due to the stiffness of high-order regularisation
effects, such as surface tension.

This paper reviews some of the recent advances in developing stable and
efficient numerical algorithms for solving free boundary-value problems aris-
ing from fluid dynamics and materials science. In particular, we will consider
boundary integral methods and the level-set approach for water waves, gen-
eral multi-fluid interfaces, Hele-Shaw cells, crystal growth and solidification.
We will also consider the stabilising effect of surface tension and curvature
regularisation. The issue of numerical stability and convergence will be dis-
cussed, and the related theoretical results for the continuum equations will

- be addressed. This paper is not intended to be a detailed survey and the
* discussion is limited by both the taste and expertise of the author.
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1. Introduction

Many physically interesting problems involve propagation of free surfaces.
Water waves, boundaries between immiscible fluids, vortex sheets, Hele-
Shaw-cells, thin-film growth, crystal growth and solidification are some of
the better-known examples. These problems present a great challenge to
physicists and applied mathematicians because the underlying fluid-dynamic
instabilities, such as the Kelvin—Helmholtz and the Rayleigh-Taylor insta-
bilities, produce very rich and complex solution structures. Here we would
like to review some of the recent advances in developing efficient and sta-
ble numerical approximations for these interfacial flows, and investigate the
competing mechanism between fluid-dynamic instabilities and the physical
regularising effects such as surface tension. In many applications, surface
tension has an important effect on the dynamics of interfaces. It is espe-
cially central to understanding such fluid phenomena as pattern formation
in Hele-Shaw cells, crystal growth and unstable solidification, the motion
of capillary waves on free surfaces, the formation of fluid droplets and noise
generation at the ocean surface Prosperetti, Crum and Pumphrey (1989).
We will divide this paper into three parts. The first part is concerned
with numerical methods and their stability analysis for locally well-posed
interface problems. This includes water waves, multi-fluid interfaces and
Hele-Shaw cells with surface tension. The second part is concerned with
numerical methods for ill-posed interface problems. This includes vortex
sheets and multi-fluid interfaces without surface tension. Typically these
problems experience the Kelvin-Helmholtz and/or Rayleigh-Taylor insta-
bilities. The third part is concerned with the level-set approach which uses
front capturing techniques. Using this approach, singularity formation and
topological changes in the free surfaces can be computed naturally.

 1.1. Stable discretisations for locally well-posed interfaces

In this part of the paper, we are concerned with stable numerical methods
for water waves and multi-fluid interfaces with surface tension. Accurate
simulation of these free surfaces presents a problem of considerable diffi-
culty because the underlying physical problem is very singular and is sensi-
tive to small perturbations. The boundary-integral method has been one of
the most common approaches in solving these interfacial problems; see e.g.
Pozrikidis (1992). The earliest attempt at using boundary-integral methods
can be traced back to Rosenhead (1932) in his study of vortex-sheet roll-up.

]
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In the early Sixties, Birkhoff (1962) extended this method to more gen-
eral fluid interface problems. The first successful boundary integral method
was developed by Longuet-Higgins and Cokelet (1976) to compute plunging
breakers. Boundary-integral methods for the exact, time-dependent equa-
tions have been developed and used in many other works, including Vinje
and Brevig (1981), Baker, Meiron and Orszag (1982), Pullin (1979), Roberts
(1983), New, Mclver and Peregrine (1985), and Dold (1992). We refer to
Schwartz and Fenton (1982) and Yeung (1982) for a review of early works
in this area. For small-amplitude surface waves, efficient numerical methods
have also been developed based on perturbations about equilibrium in Eu-
lerian variables. An expansion in powers of the surface height is used to
-calculate Fourier modes. These works include Stiassnie and Shemer (1984),
West, Brueckner and Janda (1987), Dommermuth and Yue (1987), Gloz-
man, Agnon and Stiassnie (1993), and Craig and Sulem (1993). The last
paper has the advantage that the expansion is uniform in wave number.

The advantage of using boundary-integral methods is that they reduce the
two-dimensional problem into a one-dimensional problem involving quanti-
ties along the interface only, consequently avoiding the difficulty of differ-
entiating discontinuous fluid quantities across the fluid interface. However,
numerical simulations using boundary-integral methods also suffer from sen-
sitivity to numerical instabilities because the underlying problems are very
singular (Longuet-Higgins and Cokelet 1976; Roberts 1983; Dold 1992).
* Straightforward discretisations may lead to numerical instabilities. This
includes some of the existing boundary-integral methods. There are two
possible sources of numerical instability. First, a certain compatibility is
required between the choice of quadrature rule for the singular velocity inte-
gral and the choice of spatial derivative. This compatibility ensures that a
delicate balance of terms at the continuous level is preserved at the discrete
level. This balance is crucial for maintaining numerical stability. Second,
the periodicity of the numerical solution introduces aliasing errors which
affect adversely the balance of terms at the discrete level. Violation of this
delicate balance of terms will result in numerical instability.

The key in obtaining stable discretisations is to identify the most singular
(or the leading-order) contributions of the method, and to see how various
terms balance one another. To this end, we need to study the symbols
of discrete singular operators, such as the discrete Hilbert transform and
its variants. By studying the leading-order discrete singular operators, we
find that a certain amount of Fourier filtering on the interface variables is
required for the compatibility of the quadrature and derivative rules, Beale,
Hou and Lowengrub (to appear) and Beale et al. (1994). The amount of
filtering is determined by the quadrature rule in approximating the velocity
integral and the derivative rule being used. With this modification, we can
prove stability of the boundary-integral method for water waves and multi-
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fluid interfaces if surface tension effects are included. We also demonstrate
that this modification is necessary for stability. Without this modification,
the schemes using finite-order derivative operators are numerically unstable;
see Subsection 3.2. _

Linear analysis has contributed to understanding of numerical instabilities
for boundary integral methods. Roberts (1983) showed how to remove a
sawtooth instability. Baker and Nachbin (to appear) have performed Fourier
analysis near equilibrium for various schemes for a vortex sheet with surface
tension, identified sources of instability, and proposed new schemes which
are free of linear instabilities. Dold (1992) emphasised the role of time
discretisation with respect to instabilities.

While the spatial discretisations are proved to be stable and convergent,
stability of the time discretisation is very difficult to obtain in the presence
of surface tension. Surface tension introduces a large number of spatial
derivatives through local curvature. If an explicit time integration method
is used, these high-order derivative terms induce strong stability constraints
on the time-step. For example, the time-step stability.constraint for the
Hele-Shaw flows is given by At < Ch3, where At is the time step, and
h is the minimum particle spacing. These stability constraints are time
dependent, and become more severe by the differential clustering of points
along the interface.

In (Hou, Lowengrub and Shelley, 1994) we have successfully removed this
stiffness constraint by using an efficient implicit scheme based on a new refor-
mulation of the problem. This reformulation introduces a dynamic change
of variables from the (z,y) variables to the arclength metric and tangent
angle variables. In this framework, the leading-order singular terms are
shown to be linear and have constant coefficients (in space). Thus a Crank—
Nicholson-type of discretisation can be used to eliminate the stiffness of the
time discretisation. This reformulation greatly improves the stability con-
* straint. For computations of the vortex sheet roll-up in an Euler flow with
surface tension using a modest number of points (128), the time step can be
chosen 250 times larger than that for an analogous explicit method. Many
interfacial problems that were previously unobtainable are now solvable us-
ing our method, and new phenomena are discovered.

How to compute beyond the singularity time is a challenging task for the
front tracking approach. Here we propose to use curvature regularisation in
the boundary-integral formulation to continue beyond the singularity time.
This borrows the idea from the level-set approach where curvature regular-
isation has been used successfully (Osher and Sethian, 1988). Curvature
regularisation has an important property of preserving the index of a curve.
Consequently, self-crossing of a curve is excluded under this regularisation.
Moreover, the curvature regularisation is frame invariant. This is very differ-
ent from putting an artificial viscosity in the Lagrangian variable. It turns
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out that the reformulated system of the interface problem can be used most
naturally with the curvature regularisation. In motion by mean curvature,
the equation for the tangent angle is nonlinear hyperbolic in the absence of
curvature regularisation. It is well-known that a smooth initial condition
may develop a shock discontinuity at later times. An entropy condition is
required to select the unique physical weak solution. The curvature regu-
larisation plays the same role as the viscosity regularisation for hyperbolic
conservation laws. Consequently a physical continuation is obtained with
curvature regularisation. In practice, we can use high-order Godunov-type
methods developed for conservation laws to discretise the equation for the
tangent angle (parameterised in arclength variable). This has a similar ef-
fect to curvature regularisation. Curvature regularisation can also be used
to regularise the ill-posed vortex-sheet problem, providing an attractive al-
ternative to compute vortex-sheet roll-up (Hou and Osher, 1994).

The idea of using curvature regularisation to boundary-integral formula-
tions combines the advantages of both front tracking and front capturing.
By applying curvature regularisation to a free surface directly, we do not
need to introduce one extra space dimension as in the level-set approach.
More accurate numerical methods can be designed since we only deal with
the free surface and don’t have to differentiate across the free surface. Also,
the stiffness can be removed easily using our reformulated system.

1.2. Boundary integral methods for ill-posed interface problems

Methods of boundary-integral type have also been used for the ill-posed cases
of fluid-interface motion, including vortex sheets and Rayleigh~Taylor insta-
bilities (Moore, 1981; Anderson, 1985; Baker et al., 1982; Krasny, 1986a,b;
Kerr, 1988; Tryggvason, 1988, 1989; Baker and Shelley, 1990; Shelley, 1992).
Usually, either a regularisation or filtering of high wavenumbers is required
to obtain numerical stability and to maintain an accurate solution. Surface

" tension and viscosity have been suggested and used as physical regularisa-
tions for these ill-posed problems. We refer to (Pullin, 1982; Rangel and
Sirignano 1988; Tryggvason and Aref, 1983; Baker and Nachbin, to appear;
Hou et al, 1994a; Dai and Shelley, 1993) for numerical study of surface
tension regularisation, and Pozrikidis (1992), Tryggvason (1991) for study
using viscosity regularisations.

Study of singularity formation in vortex sheets has been an active sub-
ject in the past decade. The possibility of a finite-time singularity in vortex
sheets was first conjectured by Birkhoff (1962). The first analytical evidence
of singularity formation was given by Moore (1979, 1985) in an asymptotic
analysis. He predicted that to leading order in the initial amplitude ¢, the
curvature of the vortex sheet blows up at a critical time and the inter-
face forms a branch-point singularity of order 3/2. Using Taylor series in
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time, Meiron, Baker and Orszag (1982) obtained results in agreement with
Moore's. Krasny (1986) performed direct numerical simulations of vortex-
sheet motion using the point-vortex approximation and a Fourier filter to
control the growth of round-off errors. His results were also consistent with
Moore’s. Before the singularity time, the numerical solution converged, but
convergence was lost after the singularity time. By using an infinite-order
approximation combined with Krasny's Fourier filtering, Shelley (1992) has
provided strong numerical evidence that the branch singularity of order 3/2
is chosen. Caflisch and Orellana (1989) have found a continuum of explicit
solutions to the Birkhoff-Rott equation which display finite-time singulari-
ties. However, the physical interpretation of these constructed singularities
is not clear since branch-type singularities were built explicitly in their initial
data. The selection mechanism of a singularity for the general initial-value
problems is not known. Caflisch, Ercolani, Hou and Landis (1993) stud-
ied propagation of singularities for the localised Moore’s approximations.
The 3/2 branch-point singularities were found to be generic. Singularity
formation during the Rayleigh-Taylor instability has also been investigated
by Baker, Caflisch and Siegel (to appear) using asymptotic and numerical

methods. '

To compute beyond the singularity time, certain numerical or physical
regularisation is required. Moore (1978) has derived an evolution equation
for a vortex layer of small thickness. Pullin (1992) has included surface
tensions in the evolution equation. Pozrikidis and Higdom (1985) have nu-
merically studied a periodically perturbed layer of constant vorticity. Krasny
(Krasny, 1986b, 1987; Nitsche and Krasny, 1994) has used the vortex-blob
method to study vortex-sheet roll-up and has obtained a number of inter-
esting results. Baker and Shelley (1990) have considered regularisation of
a thin vortex layer. Tryggvason (1989) has considered the vortex-in-cell as
a grid-based vortex method, and has used an improved version of the VIC
method to study vortex-sheet roll-up. Bell and Marcus (1992) used a second-
order projection method for variable density flow to study Rayleigh-Taylor
instability. These computational results using different regularisations all
produced qualitatively similar results; at least they seem to agree outside
the region of vorticity concentration.

The global existence of weak solutions for vortex-sheet initial data is not
known in general. Motivated by the numerical studies of vortex sheets in
Krasny (1986b, 1987) and Baker and Shelley (1990), DiPerna and Majda
(1987a,b), introduced the concept of measure-valued solutions for vortex
sheets. These measure-valued solutions may develop regions of vorticity
concentration and may have a non-trivial set of defeat measure. If this
is the case, the vortex-sheet solution does not satisfy the incompressible,
inviscid Euler equations in the weak sense. In the special case of one-signed
vorticity, Delort (1991) has recently proved that vortex sheets are global
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weak solutions of the Euler equations. Using Delort’s result, Liu and Xin
(1994) have been able to prove that the vortex-blob calculation converges to
a weak solution of the Euler equations provided that the initial vorticity is
of the same sign. Other theoretical results for vortex-sheet motion assume
analytic initial data. Existence and well-posedness of vortex-sheet motion
have been established for analytic data for short times; see, for example,
Sulem et al. (1981), Dochun and Robert (1986, 1988), Caflisch and Orellana
(1988) and Ebin (1988).

1.8. Level-set approach

Although it is usually highly desirable to reformulate a problem into
boundary-integral equations, there are certain applications for which the
boundary-integral method has difficulty handling. For example, in crystal
growth and thin-film growth, an initially smooth front can develop cusps
and cracklike singularities, and isolated islands of film material can merge
(Gray, Chisholm and Kaplan, 1993; Sethian and Strain, 1992; Snyder et al.,
1991; Spencer, Voorhees and Davis, 1991). In order to compute up to and
continue beyond the singularity time, one has to use local-mesh refinement
and local surgery techniques (Unverdi and Tryggvason, 1992). This often
introduces some numerical instability and it is done in a somewhat unsat-
isfactory way. And it becomes increasingly difficult for three-dimensional
problems.

The level-set approach developed by Osher and Sethian (1988) provides a
powerful numerical method for capturing free surfaces in which topological
singularities may form dynamically. The idea is to regard the free surface
as a level set of a smooth function defined in one order higher space di-
mensions than the free surface. Only the information of the zeroth-level
set is physically relevant to the free surface we want to compute. Thus
we have sufficient freedom in specifying the level-set function away from
the zeroth-level set. This freedom makes it possible to select a relatively
smooth level-set function at all times. The free surface may form a singular-
ity such as corners or cusps, but the level-set function still remains relatively
smooth. Typically, we would like to choose the level-set function to be a

" signed distance function from the free surface. By viewing the surface as
a level set, sharp corners and cusps are handled naturally, and changes of
topology in the moving boundary require no additional effort. Furthermore,
these methods work in any number of space dimensions.

Another important property of the level-set formulation is that it pro-
vides the correct equation of motion for a front propagating with curvature-
dependent speed. This equation is of Hamilton-Jacobi type with a right-
hand-side that depends on curvature effects. The limit of the right-hand-side
as the curvature effect goes to zero satisfies an associated entropy condi-
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tion. Thus high-order numerical approximations can be devised using tech-
niques developed for the solution of hyperbolic conservation laws (Harten
et al., 1987; Colella and Woodward, 1984; Osher and Shu, 1991). Re-
cently, this approach has been applied to computation of minimal surfaces
(Chopp, 1993), compressible gas dynamics (Mulder, Osher and Sethian,
1992), crystal growth and dendritic solidification (Sethian and Strain 1992;
Osher, private communication), and interaction of incompressible fluid bub-
bles (Chang et al., 1994; Sussman, Smereka and Osher, 1994). In addition,
theoretical analysis of mean curvature flow based on the level-set model pre-
sented in Osher and Sethian (1988) has been developed by Evans and Spruck
(1991, 1992).

The rest of the paper is organised as follows. In Section 2, we intro-
duce several important examples of free boundary-value problems arising
from fluid dynamics and materials science. These include water waves,
general two-fluid interfaces. Hele-Shaw cells, 2 model for crystal growth
and unstable solidification. Their boundary-integral formulations will be
given. In Section 3, we present a convergent boundary-integral method for
water waves. A compatibility condition between the quadrature rule and
the discrete derivative is given, and the stability property of the modified
boundary-integral method is analysed. Examples of a class of unstable algo-
rithms are given to illustrate why certain Fourier smoothings are necessary
for our modified method to be stable. A numerical example of breaking-wave
calculation supports the applicability of the method in the fully non-linear
regime. In Section 4, we present several numerical methods for calculating
vortex sheets and vortex-sheet roll-up. These include Krasny’s filtering tech-
nique for the point-vortex method, vortex-blob desingularisation for vortex
sheets, thin vortex-layer desingularisation and vortex-in-cell method calcu-
lations for vortex-sheet roll-up. In Section 5, the stabilising effect of surface
tension is considered. We first consider a stable time-continuous discret-
isation. We then propose an efficient implicit time discretisation that com-
pletely removes the stiffness of surface tension by a dynamical reformulation
of the interface problems. We also propose a new approach to compute be-
yond singularity time using our reformulated system together with curvature
regularisation. Finally, in Section 6, we consider the level-set approach for
computing topological singularities. The basic ideas of level-set approaches
are reviewed. Applications to crystal growth and incompressible multi-fluid
bubbles are discussed.

2. General two-fluid interfaces

In this section, we consider several examples of interfacial flows arising from
fluid mechanics and materials science. They are water waves, stratified two-
density interfacial flows, Hele-Shaw flows, crystal growth and solidification.
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The stratified interfacial lows have been used as models to understand mix-
ing of fluids, separation of boundary layers, generation of sounds (in bubbly
flows) and coherent structures in turbulence models. Theoretical and numer-
ical studies of Hele-Shaw flows and crystal growth have received renewed
interest and increasing attention in recent years because of the rich phe-
nomena in the physical solutions and the potential applications in pattern
formation and materials science. These interfacial problems have one feature
in common. The underlying physical instability generates a rapid growth in
the high-frequency components of the solution. Without physical regular-
isations such as viscosity or surface tension, the problems are ill-posed in
the Hadamard sense (except for water waves). It is the competition between
the stabilising regularisation effect and the underlying physical instability
that generates many fascinating solution structures. Since these problems
are highly non-linear and non-local, it is usually difficult to obtain a com-
plete understanding by using only analytical tools. Numerical simulations
become essential in our study of these interfacial problems. It is not hard
to imagine that this is a very difficult task.

2.1. Water waves without surface tension

¥

Unsteady motion of water waves is one of the most familiar examples of
free surfaces in our everyday experience, and it illustrates a rich variety of
phenomena in wave motion. One of the spectacular properties of the sea
surface is its capacity to turn over on itself and produce breaking waves.
Mathematical difficulties in dealing with the exact equations are due to the
free boundary, and the inherent non-linear, non-local nature of the prob-
lem. The usual linear theory and shallow-water theory for small-amplitude
waves have been very useful in studying many important aspects of the wave
motion. However, they are valid only where the fluid acceleration is suffi-
ciently small compared to gravity. To obtain a better understanding of the
large-amplitude wave interactions such as wave breaking, we need to develop
effective numerical methods to compute free surface motion.
~ There are several different approaches that may be adopted to study free
surface motion numerically. We refer to Yeung’s (1982) paper for a partial
review. The boundary-integral formulation of the equations of water waves
leads to a natural approach for computing time-dependent motions. In this
approach, the moving interface is tracked explicitly. Only quantities on the
interface need be computed. However, high-frequency numerical instabilities
are difficult to avoid, because of the non-local and non-linear nature of the
problem, and the lack of dissipation.

Consider a two-dimensional incompressible, inviscid and irrotational fluid
below a free interface. We parameterise the interface by x = (z(e, t), y(e, t)),
where ¢« is a Lagrangian parameter along the interface. The kinematic con-
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dition only requires that the normal velocity of the interface be equal to
that of the fluid at the interface. There is no physical constraint on the
tangential velocity of the interface. Tangential motions along the interface
give only changes in frame for its parameterisation and are not physically
specified as they do not affect its shape. Later, in Subsection 5.2, we will
exploit this freedom in choosing a tangential motion to remove the stiffness
of surface tension. Here, we use the usual convention of choosing the tan-
gential velocity to be that of the fluid. Thus the interface is convected by
the fluid velocity u at the interface:

ox = u(x(a,t),t). (2.1)
ot
The fluid velocity u is determined by the incompressible Euler equations:
p (%% +u- Vu) = —Vp — pgj (2.2)

with the incompressibility constraint ¥V - u = 0, where p and p are the fluid
density and pressure, respectively, g is the constant of gravity and j is a unit
vector in the y direction. In the absence of surface tension, the pressure
is continuous across the interface. Since a vacuum is assumed above the
interface, the pressure is equal to zero at the interface. To simplify the
presentation, we only consider water waves with infinite depth in two space
dimensions. One can easily modify the formulation to accommodate the
bottom geometry if water waves with finite depth are considered, see, for
example, Baker et al. (1982). Generalisation to three dimensions can also
be carried out, see, for example Baker (1983) and Kaneda ( 1990).

Due to irrotationality, we can express velocity in terms of a velocity po-
tential ¢, that is, u = V. Then incompressibility implies that

Ap=0

in the interior flow region. Furthermore, the momentum equations (2.2) can
be integrated to obtain Bernoulli’s equation for the potential:
o¢

o T3lVel +gy=0. (2.3)

Thus if ¢(e,0) = ¢o(a) is given initially along the interface, then we can
evaluate ¢ at later times according to (2.3). To compute the fluid velocity at
the interface, we need to evaluate V¢ at the interface. It is easy to evaluate
the tangential velocity component at the interface. But determining the
normal velocity would require solving the interior problem for ¢. This could
be a difficult task since the relation between the Dirichlet value of ¢ and its
normal derivative at the interface is non-local. There are several ways to
relate the normal derivative of ¢ to its value at the interface, each involving
a Fredholm integral equation of a different kind.
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One way to relate the normal derivative of ¢ to its value at the interface is
to use Green’s third identity. This is the approach taken by Longuet-Higgins
and Cokelet (1976), among others. This corresponds to using a single-layer
potential representation. Denote by I' the interface. Green's third identity
gives

[ S (@6, afe))dz (@)

= 59(e(@) + [ 6a(@)) 3 (w(e) s(@)da(a’)), (24

where Fan' is the exterior normal derivative and G is the Green’s function for
the Laplace equation. In two dimensions, we have G(z, z') = Lloglz ~ 7).
If we prescribe ¢ at the interface, then (2.4) provides an integral relation
to determine the normal derivative of ¢ at the interface. Equation (2.4)
is a Fredholm integral equation of the first kind for the normal derivative
of ¢. Now the solution procedure is clear. Given x(e,t) and #(c, t) at the
interface, we can compute the normal derivative of ¢ by equation (2.4). This
determines the normal velocity at the interface. The tangential velocity is
given by ¢o/|x.|. Then we can update x in time by (2.1), and update ¢ by
Bernoulli’s equation. '

There are some disadvantages regarding this approach. To solve for 8¢/on
from equation (2.4), we necd to invert a dense N-by-N matrix if we discretise
the integral by N grid points. Direct inversion of a N x N matrix requires
O(N?) storage locations and O(N3) operation counts. For large N, this be-
comes prohibitively expensive. We must look for some fast iterative method
to approximately invert the dense matrix. However, the matrix associated
with a Fredholm integral of the first kind is usually not well conditioned and
the number of iterations required increases rapidly with N.

An alternative approach is to use the dipole representation. Following
Baker, Meiron and Orszag (1982) and Beale, Hou and Lowengrub (1993a),
we express the complex potential by a double-layer representation. Denote

. by p(a,t) the dipole strength and denote the interface position by complex
variable z(a,t) = z(a, t) + iy(a,t). We can write the complex potential &
in the fluid domain in terms of p

— 1 1 .I ’

for z away from the interface. The complex velocity w = u — iv can be
obtained by differentiating the complex potential with respect to z and per-
forming mtegration by parts. We get

Ao 1 1 o
YEET 27ri/z-—2(a’)7(a do,
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where v is the non-normalised vortex-sheet strength. It is given as the
Lagrangian derivative of the dipole strength, that is, ¥ = po. Using. the
Plemelj formula, we obtain the limiting velocity from the fluid region on the

interface as
_ 1 v(e') ()
w(e) = 5 / ) = @) s (2.5)

Here the integral is the Cauchy principal-value integral. Denote by ¢ the
real potential, ¢ = Re(®). We can determine < from the condition bo =
$2Ta + dyYa = Re(wz,). Using (2.5) we obtain

1 za(a) 7(01) ’
ba = 2 +RB( 27i z(a)-z(a')da>'

This is a Fredholm integral equation of the second kind. The kernel is an

adjoint double-layer potential. }

It is customary to assume that the interface are periodic in the horizontal
direction. Under this assumption, we can express z(o, t) = a+s(a, t), where
s(a,t) and ¢(a, t) are periodic in o with period 27. This also implies that the
flow is at rest at infinity. We can sum the singular kernel 1/2z over periodic

intervals to obtain a periodic kernel 3cot(z/2) defined over a single period.

I

To summarise, we obtain a system of time-evolution equations for 2 and ¢
as follows:

5= [" 7(e/)cot (‘_z(a) ;z(al) ) do’ + 1)

4mi J_p 22q(a)
= u(o, t) — iv(e, t), (2.6)
b= 5 %) =gy, (27)
ba = % + Re (:—7‘; /_: ¥(a')cot (M) da') : (2.8)

. where Z is the complex conjugate of z. Equations (2.6)—(2.8) completely
- determine the motion of the system. We remark that Bernoulli’s equation
(2.7) is different from (2.3) because of the change to Lagrangian variables.

The advantage of using the dipole representation is that the Fredholm
integral of the second kind has a globally convergent Neumann series (Baker,
Meiron and Orszag, 1982; and Beale, Hou and Lowengrub, 1993a). This
means that the equation for v may be solved by iteration provided that the
interface is reasonably smooth. For example, if 47 is the Jth iterate, then
¥*! is computed by

Y+Uz) = 2¢0(z) — 2Re (% _qu (@')cot (Z(a);zz(a’)) da') - (29)
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In general, only several iterations are required for high accuracy if we use
the v from the previous time level as our first iterate. By keeping values
of v at several previous time levels, an extrapolated first iterate can be
found which will further reduce the number of iterations to typically 1 or
2. More iterations are required when the solution develops a high-curvature
region such as in breaking surface waves. If the interface is not accurately
resolved in the high-curvature region, the iteration scheme will eventually
stop converging.

2.2. Stratified two-density fluid interfaces

Here we consider the motion of general two-density interfacial flows, that is,
an interface separating two inviscid, incompressible and irrotational fluids in
the presence of gravity and possibly surface tension in two space dimensions.
In the following, the subscript 2 denotes the fluid above the interface and 1
denotes the fluid below the interface. In each fluid, we have Euler's equations

pil6iu; + (u; - V)u;| = —=Vp; — pigj, i=1,2.

The incompressibility and irrotationality constraints imply V -u; = 0 and
V x u; = 0. Denote the interface by I'. At the interface, we impose the
Laplace-Young boundary condition which relates the pressure jump to the
curvature of the interface, «, by

[pllr = 7x,

where [p]|r denotes the jump of pressure across the interface I" and 7 is the
surface-tension coefficient. The normal velocity is assumed to be continuous
across the interface. As in the case of water waves, these interface problems
have vortex-sheet representations. We refer to Birkhoff (1962) and Baker,
Meiron and Orszag (1982) for a derivation of the governing equations.

The velocity at the interface is not uniquely defined since the tangential
velocity in general has a jump discontinuity across the interface. It is cus-
tomary to evolve the interface with the average velocity obtained from the
limiting velocities above and below the interface. As before, we denote the
interface position by complex variable z(a,t) = z(e,t) + iy(c, t), where o
is a Lagrangian parameter along the interface. Then, the interface evolves
according to

dz 1 v(c!,t) '
& = om / at) — 2(@, > (210)
where the integral is understood as the Cauchy principal-value integral and

7 is the unnormalised vortex-sheet strength. Equation (2.10) is also called
the Birkhoffi-Rott equation in the literature. The evolution equation for
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can be obtained from Bernoulli’s equations in both sides of the interface:

dy d?z 1 72 '
T —-24 (Re {-d?Za} + 86(, (W + gYa | + TKa, (2.11)
where A = (;1 — p2)/(p1 + p2) is the Atwood number. The curvature, k, is

evaluated by

_ Ta¥Yoa — Toala

G
Note that equation (2.11) is actually a Fredholm integral equation of the
second kind for dvy/dt. It has been shown that their Neumann series are
globally convergent in the periodic case (Baker, Meiron and Orszag, 1982).
The result also holds for unbounded domains (Beale, Hou and Lowengrub,
1993a). Therefore, the integral equation for dy/dt is invertible and can be
solved by iteration. Equations (2.10) and (2.11) completely determine the
motion of the interface. ;

2.3. Hele-Shaw flows

A closely related problem is the Hele-Shaw flow which describes the viscosity-
dominant creeping flow confined between two closely spaced plates. The case
in which one fluid displaces another has been studied extensively. This be-
gins with the theoretical work of Saffman and Taylor (1958). They found
exact self-similar fingers for the interface between the two fluids in a channel
geometry when surface tension is absent. The subsequent works have mostly
focused on the role of surface tension in the selection of finger width (see
Pelcé, 1988, for a review). The dynamical behaviour of Hele-Shaw flows has
received a lot of interests inspired by the complex patterns formed by an
expanding bubble (Paterson, 1981, 1985; Rauseo, Barnes and Maher, 1987).
It is believed that surface tension plays an essential role in producing these
structures.

Consider an interface I' that separates two Hele—-Shaw fluids of different
viscosities and densities. For simplicity, I is assumed periodic in the horizon-
tal direction. The fluid below I' is labelled fluid 1, and that above is labelled
2, and similarly for their respective viscosities and so forth. The velocity
in each fluid is given by Darcy’s law, together with the incompressibility
constraint:

b2
(uj,v;) = —mv(w - pigy), V-u; =0,
Here b is the gap width of the Hele-Shaw cell, ; is the viscosity, p; is the
pressure, p; is the density and gy is the gravitational potential. The bound-
ary conditions are exactly the same as for the two-density fluid interfaces.
That is, the normal velocity is continuous across the interface, the jump in .
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the pressure across the interface is proportional to the local mean curvature,
and velocity vanishes at infinity. Again, one can derive a boundary-integral
‘formulation for the Hele-Shaw problem using the dipole representation; see,
for example, Dai and Shelley (1993). The interface position will satisfy
the same Birkhoff-Rott equation as in (2.10). The vortex-sheet strength -y
satisfies

v(e,t) = —2A,Re {-E‘-"-/ z(a,;r)(i ’zt()a’,t) da'} + Tha — Rya-

2mi

Here A, = (u1 — p2)/(p1 + p2) is the Atwood ratio of the viscosities, 7 is
the non-dimensional surface tension and R is a signed measure of density
stratification (p; < p2 implies R < 0). As before, the equation for v is
a Fredholm integral of the second kind, and it has a globally convergent
Neumann series.

2.4. Crystal growth and dendritic solidification

The last example we consider is concerned with crystal growth in unsta-
ble solidification. This problem has attracted considerable interest over the
past decade from applied mathematicians, physicists and materials scien-
tists. Here we only consider one particular model, for this problem. There
are many other interesting free-boundary problems arising from materials
science that can be studied by numerical methods similar to those described
in this paper. This includes the morphological instability in thin-film growth
and the Ostwald ripening problem, see, for example, Gray, Chisholm and
Kaplan (1993), Spencer, Voorhees and Davis (1991), Spencer and Meiron
(1994), Voorhees et al. (1988) and Voorhees (1992).

Consider a container of the liquid phase of the material. Suppose we
cool the box smoothly and uniformly below its freezing temperature. If this
is done very carefully, the liquid does not freeze. The system is now in a
‘metastable’ state. A small disturbance, such as dropping a tiny seed of solid
phase, will initiate a rapid and unstable process known as dendritic solidi-
fication. The solid phase will grow from the seed by sending out branching
fingers. This growth process is unstable in the sense that small perturbations
of the initial data can produce large changes in the solid/liquid boundary.
One can model] this phenomenon by a moving-boundary problem. The tem-
perature field satisfies a heat equation in each phase, coupled through two
boundary conditions on the unknown moving solid/liquid boundary. We
refer to Langer (1980), Gurtin (1986) and Caginalp and Fife (1988) for
derivations. Extensive asymptotic analysis for the solution has been carried
out by several authors in the literature; see Langer (1986), Chadam and Or-
toleva (1983), Kessler and Levine (1986), Benamar and Pomeau (1986), and
Gaginalp and Fife (1988). It is also possible to reformulate the equations
of motion in boundary-integral forms, as is done in Meiron (1986), Strain
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(1989), Karma (1986), Kessler and Levine (1986) and Langer (1980). This
yields accurate results for smooth boundaries.

The set-up of the problem described below follows the framework of
Strain, Sethian and Strain (1992, 1989). Consider a square container, B =
[0,1] x [0,1], filled with the liquid and solid phases of some pure substance.
The unknowns are the temperature u(z, t) for z € B, and the solid/liquid
boundary I'(t). The temperature field u is taken to satisfy the heat equa-
tion in each phase, together with an initial condition in B and boundary
conditions on the container walls. Thus we have

w= Au in B off I'(t),
u(z,t) = up(x) in Batt=0,
u(z,t) = up(z) for z € B. .
Since the position of the moving boundary I'(t) is unknown, two boundary
conditions on I'(t) are required to determine u and I'(t). Let n be the

outward normal to the boundary, pointing from solid to liquid. The first
boundary condition is the classical Stefan condition:

[Bu/On] = -HV on T(t).

Here [0u/8n] is the jump in the normal cémponent of heat flux Ou/On from
solid to liquid across I'(t), V is the normal velocity of I'(t) and H is a
constant. The second boundary condition on I’(t) is the classical Gibbs-
Thomson relation,

u(z,t) = —ex(n)k —ey(n)V for ze I'(t),

where k is the curvature at z on I(t). Here we model the crystalline
anisotropy by assuming that e, and ey depend on the local normal vec-
tor n. Now we describe how to put the problem into a boundary-integral
form. First we subtract the temperature field due to the initial condition

ug and the boundary condition up. Let U (z,t) be the solution to the heat
equation

Ut = AU in B,
Uz,0) = wup(z) att =0, _
U(z,t)= Up(z,t) forzedBandt>D0.
Define W = u — U. Then W satisfies

Wi= AW  inB-TI(t), (2.12)
W(z,00= 0 att =0, (2.13)
W(z,t)= 0 for z € 8B, (2.14)

[OW/6n] = ~HV on [I(¢), (2.15)
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W(z,t) = —ex(n)s — ey (n)V — U(z,t) for =z eI'(1). (2.16)

The temperature filed U can be obtained easily since there is no free bound-
ary present. For example, we can use any standard numerical discretisation
for the initial-boundary-value problem for the heat equation to obtain U.
The difficult part is to compute W. We will formulate it as a boundary-
integral equation. We use the kernel K of the heat equation to express the
solution W to equations (2.12)-(2.16) as a single-layer potential. Given a
function V on

T
Ir=[]T() = {(=t)lz€T(1),0<t < T},
A ’ 0
the single-layer heat potential SV is defined for (z,t) in B x [0,T) by
t
SV(z,t) = / K(z,z',t - t)\V(z',t')dz'dt’.
0 Jr)

Here the z’ integration is over the curves comprising I'(#'), and the Green
function K of the heat equation in the box B = [0,1] x [0, 1] with Dirichlet
boundary conditions on the box walls is given by

o = = —(k2+k2)m2t
K(z,z',t') = Z Ze 1
ky=1ko=1
x sin(ky 7wz, ) sin(kemzs) sin(ky 7z} sin(komz)),

where z = (z1,7;) and ©’ = (z},z}). The function SV defined above is a
continuous function on B x [0, T}, vanishing for ¢ = 0 or on 8B , and satisfying
the heat equation every where off I'y. Across I'(t), SV(z,t) has a jump in its
normal derivative equal to V. Thus, W(z,t) = H -8§V(z,t) is the solution to
equations (2.12)-(2.16). All that remains is to satisfy the second boundary
condition (2.16). This is equivalent to the boundary-integral equation

t
ex(n)i+eyV + U+ H /0 /P o K@t =WV V)i'dt =0, (217
for z € T'(t). Equation (2.17) is an integral equation for the normal velocity,
V, of the moving boundary. We note that the velocity V' of a point = on I'(¢)
depends not only on the position of I'(t) but also on its previous history.
Thus in order to evaluate V(z,t), we need to store information about the
temperature in the previous history of the boundary.

The boundary-integral formulation of the problem requires the evaluation
of the single-layer potential on a M x M grid in B. The computation of
SV (z,t) by a quadrature rule at M2 points at N time steps would require
O(M3N?) work if there are O(M) points on I'(t) at each time t. For M
and N large, this becomes prohibitively expensive (Strain, 1989). A fast
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algorithm has been developed by Greengard and Strain (1990) which reduces
the operation count to O(M?2) per time step. This greatly improves the speed
of the calculation. A related, but different, fast method for solidification
has also been proposed and implemented by Spencer and Meiron (1994).
Recently, Osher and his coworker (private communication) have designed an
extremely efficient numerical method based on level-set formulation which
only involves a local heat equation solver without using boundary integral
formulation. The preliminary results seem to be very promising,.

2.5. Linear stability eround equilibrium solutions

It is instructive to consider the linear stability of equilibrium solutions to
(2.10) and (2.11). "The equilibrium solution is the flat sheet: z(a,t) =
@, v(a,t) = 70, where 79 is constant. Looking for solutions of (2.10) and
(2.11) of the form 2 = a + €z and ¥ = o + €}, and keeping only the linear
terms in € give the linearised equations

di- Y yry.

"d_t = —'EH (ya)’

dg 1.\ Y.,

dy

dt
where z = & + iy. Notice that dy/dt is determined explicitly in the third
equation. In the linear level, the integral equation contribution has dropped
out. H is the Hilbert transform defined as

(@)= [ 10

It is easy to see that it has the Fourier symbol H(k) = —isgn(k). The
growth rates of the perturbations are determined by the eigenvalues of the
perturbed system which can be calculated explicitly in the Fourier space as
follows:

= —AvYa+ A')'gi:aa — 2Ag9Ya + TYaaar

2

The fact that the system admits zero eigenvalue implies that the interface
does not change its shape by translating Lagrangian points along the in-
terface. In the absence of surface tension, that is, 7 = 0, the other two
eigenvalues may grow with large k. In fact, if 49 £ 0, the interface experi-
ences the Kelvin-Helmoltz instability, and the growth rate is proportional
to O(|k|) for large k. On the other hand, if vy = 0, the stability of the per-
turbation depends on the sign of the Atwood number A. If 4 > 0, then the

2.2
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interface is stable. If A < 0, then the interface experiences the Rayleigh—
Taylor instability. The growth rate is proportional to /[k]. In general,
due to baroclinic generation of vorticity at the interface, the vortex-sheet
strength 7 can be non-zero in some region even if it is equal to zero initially.
Thus the Kelvin-Helholtz instability is always present for two-density inter-
faces as long as A% # 1, even if we have lighter fluid on top of a heavy fluid.
In the case of positive surface tension, that is, 7 > 0, we can see that in the
high-wavenumber regime, the surface-tension term dominates. The eigenval-
ues become imaginary, which can produce oscillations but no growth at the
high modes. Thus surface tension is a dispersive regularisation of those in-
stabilities. Of course, for small surface tension, there is still a band of modes
below a certain critical wavenumber that can grow exponentially in time.
Similar linearised stability analysis for the Hele-Shaw flows indicates that
the surface tension is a dissipative regularisation. For simplicity, we take
A, = 0. The eigenvalues are as follows:

AK) =0, =3 (rlkf° + RIK]).

Therefore, if R < 0, there is a band of unstable modes near k = 0. This
is a Mullins-Sekerka type of instability (1963), driven by the unstable den-
sity stratification. At higher wavenumbers, this instability is cut off by the
surface-tension term which acts as a third-order dissipation.

3. A convergent boundary-integral method for water waves

The boundary-integral formulation of water waves is naturally suited for nu-
merical computation. There are many ways one can discretise the boundary-
integral equations, depending on how we choose to discretise the singular
integral and the derivatives. These choices affect critically the accuracy and
stability of the numerical method. Straightforward numerical discretisations
of (2.6)—(2.8) may lead to rapid growth in the high wavenumbers. In order
to avoid numerical instability, a certain compatibility between the choice
of quadrature rule for the singular integral and that of the discrete deriva-
tives must be satisfied. This compatibility ensures that a delicate balance
of terms at the continuous level is preserved at the discrete level. V1olat10n
of this compatibility will lead to numerical instability.

We discretise the interval by choosing N equally spaced points a; = jh,
where h = 27/N. Denote by z;(t), ¢;(t), v;(t) the discrete approximations of
z(aj,t), ¢(aj,t), v(aj, t) respectively. To approximate the velocity integral,
we use the alternating trapezoidal rule:

N/2

[_: v(e/)cot (i(aj);—z(af)) do/ = 5 ~-cot (zj ;zk) oh, (3.1)

k==N/241
(k=3) odd
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The advantage of using this alternating trapezoidal quadrature is that the
approximation is spectrally accurate. This and related quadrature rules
have been used by several authors in the literature. Baker (1983) used the
alternating quadrature rule for a desingularised integrand in water-wave cal-
culations. It gives a quadrature similar to (3.1), but with a different (and
desingularised) integrand. Sidi and Israeli (1988) analysed the spectral ac-
curacy of a midpoint-rule approximation for a periodic singular integrand.
They realised that the alternating quadrature rule applied to singular, pe-
riodic Cauchy kernels such as the integral in (3.1) gives spectral accuracy.
Shelley (1992) used scheme (3.1) with Krasny’s filtering in the context of
studying the vortex-sheet singularity by the point-vortex method. By using
the spectral accuracy of the alternating-trapezoidal rule, Hou, Lowengrub,
and Krasny (1991) gave a simplified proof of convergence of the point vortex
method for vortex sheets (Hou, Lowengrub and Krasny, 1991).

It seems natural to use the alternating-quadrature rule and a finite-order
derivative operator (e.g. cubic spline) for the a-derivative. However, as will
be seen later, the resulting scheme is numerically unstable at equilibrium;
see Baker and Nachbin (to appear), Beale, Hou and Lowengrub (1993b) and
Beale et al. (to appear). To see how standard schemes can be modified so
that they become numerically stable, we use the discrete Fourier transform.
For a discrete function {f;} on the periodic interval, the discrete transform
and its inverse are (assuming N is even)

.1 M ' N2
fe=v 3o geke, fi= Y fre
J==N/2+1 k=—N/2+1

We will write a discrete derivative operator in the form

N/2
DPfi= S plkh)ikfie™, k=-N/2+1,.,Nf2,  (32)
k=—=N/2+1

where p is some non-negative, even function satisfying p(0) = 1, p(7) = 0.
The choice of p(£) varies depending on what kind of derivative operator is
used. For example, we have po(kh) = sin(kh)/kh for the second-order cen-
tred differencing; pc(kh) = 3sin(kh)/(kh(2 + cos(kh))) for the cubic spline
approximation. It is easy to see that the order of accuracy is the order to
which p(§) — 1 as € — 0. The spectral derivative without smoothing corre-
sponds to the choice of p = 1. We denote it by D,(tl). It is well known that the
pseudo-spectral methods without smoothing may introduce aliasing errors
which could lead to numerical instability (Kreiss and Oliger, 1979; Gottlieb

and Orszag, 1977; Tadmor, 1987; and Goodman, Hou and Tadmor, 1994).
To suppress aliasing errors, Fourier smoothing is often used. In that case,
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p should satisfy (i) p > 0,p(£7) = 0; (ii) p(z) = 1 for |z] < Ax for some
0 < A < 1; and (iii) p is smooth. Condition (ii) ensures spectral accuracy.
Once a derivative operator is chosen, we also use a smoothing based on
p. For arbitrary periodic function f;, we define f}p) by multiplying fi by
p(kh) and taking the inverse Fourier transform. That is,
N/2

= plkh)fremes.

=—N/24+1

Thus, we have fo ) fi= D,(ll) f;p). Similarly, we define zJ(-p ) by applying p to
the transform of z; — a;. It is clear that f (P) is an rth-order approximation
to f if p corresponds to the rth-order derivative operator.

Now we can present our numerical algorithm for the water-wave equations
(2.6)—(2.8) as follows:

= N/2 (0) (o)
dz; 1 2 I 27 .
= yrcot | L——— | 2h + —— = u; —iv;, (3.3)
T, 2, ( 2 ) 2ADP2);
(k—j)odd
dé; 1 o 2 ' A
) D@ N/2 A9 _ zI(:a)
D(P)¢. =1 4+ Re | =222 yrcot | L——— | 2R | . (3.5)
h 737 9 4mi k=§/:2 " 2
(k—3)odd

In practice, we solve for «y; from (3.5) by iteration using (2.9).

Remark. The Fourier smoothing 2 in (3.3) and (3.5) is to balance the
high-frequency errors introduced by fo ) This will become apparent in the
discussion of stability below. The choice of such smoothing is sharp. If we
use finite-order derivative operators or Fourier smoothing for the spectral
derivative, the use of smoothing on z is necessary for stability. We do not
need to smooth on < because v defined by (3.5) has been smoothed im-
plicitly through Dg” ) and z(®. We now state the convergence result; see
Beale, Hou and Lowengrub (1993) and Beale et al. (to appear).

Theorem 1 (Convergence of a Boundary-Integral Method) Assume that

z(-, 1), ¢(-, t) € C™*2[0, 27) and (-, t) € C™*1(0, 27] for m > 3, and |2(e, t)—

z(8,t)| > cla — B] for 0 <t < T and ¢ > 0. Furthermore, assume that
(ug,vt) - n—(0,—g) n>co>0. (3.6)

Here (u,v) is the Lagrangian velocity, » is the normal vector to the interface,
pointing out of the fluid region, and co is some constant. Then if DY )
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corresponds to an rth-order-derivative approximation, we have for A < ho(T)
l12(2) = (-, )l < C(T)A", (3.7)

Similarly, ¢; is accurate to order A", and 7; is accurate to order A™"! in
Y, @5 j

the discrete L2 norm defined by l2lZ = K, |22k, 1 D,(f) corresponds to
the spectral approximation, we have the same convergence result as above
except for replacing h™ by h™.

We remark that the sign condition (3.6) is required to prove well-posedness
of the water-wave equations (Beale, Hou and Lowengrub, 1993a). It guar-
antees that the problem is stably stratified. It means that the interface is
not accelerating downward, normal to itself, as rapidly as the normal accel-
eration of gravity. If (3.6) is violated, it would generate the Rayleigh-Taylor
instability as if water were above the interface. It can be viewed as a natural
generalisation of the criterion of Taylor ( 1950).

8.1. Discussion ;Jf stability enalysis

Here we discuss some of the main ingredients in the stability analysis of the
scheme given by (3.3)-(3.5). We will mainly focus on the linear stability.
Once linear stability is established, non-linear stability can be obtained rel-
- atively easily by using the smallness of the error and an induction argument.
The reader is referred to Beale, Hou and Lowengrub (to appear) and Beale
et al. (to appear) for details.

To analyse linear stability, we write equations for the errors 2;(t) = 2;(t) -
z(aj,t), and so forth, and try to estimate their growth in time. If we compare
the sum in (3.3) for the discrete velocity with the corresponding one for the
exact velocity, the terms linear in zj, v; are

1 T ok
2 | “eda 2(05) 1) — z(cy ) (P)
;(p) _ ,(p)
LMz, -
1 e )

2mi Seda (2(05)) — 2(ay ) (022

where we have expanded the periodic sum, with & now unbounded. To
identify the most singular terms, we use the Taylor expansion to obtain the
most singular symbols

1
z(aj) - z(ak) = Za(aj)(a_,- —ay) +f(aj’ak)a

where f is a smooth function. Thus, the most important contribution to
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the first term is (2izq) ™! Hp¥;, where Hy, is the discrete Hilbert transform

. 1 Vi
= - 2h. .
Hy (%) = = (k_jZ)Odd a—or h (3.8)

Similarly, the most important contribution to the second term is
—‘y(Zizg)“lAh(zJ(»p )), where Ay, is defined as follows:

A,,(fj)s-l- > iz o (3.9)

™ (k—3)odd (aJ - ak)z

Let H and A be the corresponding continuous operators for H; and A,
respectively, that is, with the discrete sums replaced by continuous integrals.
At the continuous level, it is easy to show that

A(f) = H(Daf), (3.10)

where D,, is the continuous derivative operator. It turns out that in order to
maintain numerical stability of the boundary-integral method, the quadra-
ture rule for the singular integral and the discrete derivative operator D,(f )
must satisfy a compatibility condition similar to (3.10). That is, a given
quadrature rule, which defines corresponding discrete operators Hy, and Ay,
and a discrete derivative Dflp ), must satisfy a compatibility condition similar
to (3.10):
An() = Hy(DP) (%), (3.11)
for 3 satisfying zg = EN/Q = 0. If (3.11) is violated, this will generate a
singular operator of the form (A, — Hh(D,(l” )))(2) in the error equations.
This will generate numerical instability; see Subsection 2.6.
For the spectrally accurate alternating-trapezoidal-quadrature rule, the

discrete Hilbert transform defined above has properties that are surprisingly
similar to those of the continuum counterpart, that is,

(Hn)y, = —isgn(k), (), = |K] - (3.12)

Thus the compatibility condition (3.11) would imply that a spectral deriva-
tive operator without smoothing should be used to obtain numerical stabil-
ity. However, it is well known that aliasing errors can arise from products
for spectral methods without smoothing. These aliasing errors will upset
the high-mode balance of lower-order terms; see below.

By performing appropriate Fourier smoothing in the approximations of
the velocity integral, we can ensure a variant of compatibility condition

(3.11) is satisfied, that is,

A(&7) = Ho(DP)(). (313)
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This can be verified from the spectrum properties of Hy, and A, and the
definition of the p smoothing. This modified compatibility condition is suf-
ficient to ensure stability of our modified boundary-integral method. This
explains why we need to smooth z in (3.3) and (3.5) when we approximate
the velocity integral. The modified algorithm also allows use of non-spectral
derivative operators.

The Fourier smoothing is also needed to eliminate aliasing errors in the
discrete integral operator with smooth kernels. Typically, the lower-order
terms are of the form 3 _;)o4d f(@j, @k)2k2h for a smooth function f € C™.

In the continuous case, we have for any 2 € L?

[ flaa)ita)de = Am(d),

where m is the degree of regularities of f and A_,, is a linear bounded
operator from HY to Hit™ HJ being the Sobolev space of function with j
derivatives in L2. This is no longer true at the discrete level due to aliasing
errors associated with the alternating-point-quadrature rule. For example,
if we let z; = e/(¥/2-125 and f(q, o) = (2 — &%*’)/(a — o), e can show
that

Z flay, o) 2k2h = ’_2iei(-N/2+l)a,-,
(k—j)odd

which is of course no smoother than z. This is a result of aliasing errors at
the highest frequencies and is why we must use the Fourier smoothing to
eliminate the aliasing errors in the high modes. With the p smoothing, we
can prove that (Beale, Hou and Lowengrub, to appear)

Z f(a,-, ak)i,(f)Zh = A_l(.i).
(k—j)odd

With these observations, we can derive an error equation for z; that is similar
to the continuum counterpart in the linear well-posedness study (Beale, Hou
and Lowengrub, 1993a)

dz;

dt
where F' = ¢ — ué — vy. This also suggests that we should project the
error equation onto the local tangential and normal coordinate systems. In
these local coordinates, the stability property of the error equations becomes
apparent. Let 2V, ;T be the normal and tangential components of  with

respect to the underlying curve z(a), where N is the outward normal, and
6 = 2T + HpzN. We obtain

= 25 (I — iH)DPF + Ag(2) + A_1(¢) + O(R"),

: 1 . : .
t = pHDVE+ AL() + Ao(2), (3.14)
(44
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b = A_1(d) + Ao(2), (3.15)
F = —cloyt)zVA_1(3),  clayt)=(uw,u+g)-N, (3.16)

where equation (3.16) is obtained by performing error analysis on Bernoulli’s
equation and using the Euler equations. In this form it is clear that only the
normal component of # is important. Now it is a trivial matter to establish

an energy estimate for the error equations. Note that HhD,(f Visa positive
operator with a symbol p(kh)|k|. The problem is stable if the sign condition,
c(e, t) > 0, is satisfied. We refer to Beale, Hou and Lowengrub (to appear)
for details.

3.2. Ezample of unstable schemes

In this section, we present a class of unstable schemes based on an equivalent
boundary-integral formulation. We will demonstrate the numerical instabil-
ity by performing a von Neumann stability analysis around the equilibrium
(see also Baker and Nachbin (to appear)). Consider a boundary-integral
formulation that uses the dipole strength u. The vortex-sheet strength is
defined in terms of i by the relationship ¥ = u,. The evolution equations
for z and ¢ are the same as before. The only difference is in the relation
between ¢ and u. .

¢= % + Re (Z% ./:r ()24 (' )cot (M) da’) . (3.17)

It is clear that equation (2.8) is obtained by differentiating the relation
(3.17) with respect to o and integrating by parts. A natural numerical
approximation to the above equations is given by

dz; 1 Zj— 2k Y4 P
—_— = Z Yxcot (———) 2h + ——— = u; — v, (3.18)
dt i S 2 2(D,(f)zj)
do; 1
% =308+ - v+, (3.19)
) 1 ;-
¢; = % +Re (4——. > ukDP zcot (z’—zzﬁ) 2h}, (3-20)
! (k=7)odd
7 =D, (3.21)

where D,(lp ) can be any finite-order derivative approximation. As before, we

denote its Fourier symbol as D}f ) x = ikp(kh).
Now we perform a linear stability analysis around the equilibrium. Let

=a+5p=dpu=1+
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Substituting the above expressions into the discrete equations (3.18)-(3.21),
and using (3.12), we obtain to leading order

d- 1 . . '
Sh = o HDP i)+ D2, (3:22)
d, :

. 1 . .

b = 321 + Q(Hh(D}.P)yj) = An(9))s (3.24)

where Hj, and A are defined as before. This system of equations has con-
stant coefficients and it can be diagonalised in the Fourier space. The eigen-
values of the resulting system in the Fourier space give the growth rates of
x,Y, é. They are explicitly given by

M = 0; Mg, g = 0.5k2p(1 — p) % 0.5¢/kg2(1 — p)? — 16g]klp.

Notice that if p # 0,1, then g, A3 = O(k?) for large k. This indicates that
the numerical high-mode instability is even stronger than that of Kelvin—-
Helmholtz! It is clear that the instability is caused by violating the compat-
ibility condition (3.11), that is, HaDY) — An # 0 (see (3.24)). If the Fourier
smoothing is used as in (3.3) and (3.5), then this term vanishes and one
can easily see that the modified method is stable. On the other hand, alias-
ing instabilities cannot be seen from this linear stability analysis around the
equilibrium solution because there is no mode mixing for constant-coefficient
problems. For computational evidences of numerical instabilities, we refer
to Longuet-Higgins and Cokelet (1976); Roberts (1983); Dold (1992); Beale,
Hou and Lowengrub (to appear); and Beale et al. (to appear).

There are other ways to perform smoothing to partially alleviate the diffi-
culty due to high-mode instability, see Longuet-Higgins and Cokelet (1976),
Roberts (1983) and Dold (1992). But they cannot completely eliminate the
source of numerical instability since the modified schemes still fail to satisfy
the compatibility constraint. So there is still a large number of intermediate
to high modes that are numerically unstable. As the number of grid points
increases, or as we compute further in time, the numerical scheme will suffer
from the high-mode instability. This has been one of the major obstacles in
computing free-surface waves.

3.9. A numerical calculation of wave breaking

Here we present a calculation of wave breaking to illustrate how well our
modified boundary integral performs in the fully non-linear regime. For a
survey of breaking waves; see Peregrine (1983). We use the following initial
condition:

z(a, 0) = a,y(e, 0) = 0.1 cos(27e), ¥(e,0) = 1.0+ 0.1 sin(27ra).
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The gravity coefficient is chosen to be g = 9.8. Note that the vortex-
sheet strength v does not have zero mean in this case. This amounts to
a convenient choice of frame of reference. Although the derivation of (2.6)-
(2.8) was for the special case where ¢ is periodic and v has zero mean,

the formulation is still valid provided only that we apply D;f’) to equation

(2.7); only Dfl” )¢ is needed in (2.8). The time integration in this numer-
ical example is the fourth-order explicit Adams-Bashforth method. The
fourth-order Runge-Kutta method is used to initialise the first three time
steps. Also, a fourth-order extrapolation in time is used to obtain a more
accurate first iterate in the iterative scheme for -, as suggested in Baker,
Meiron and Orszag (1982). With this improved initial guess, the itera-
tion will converge with an iteration error of order 10710 in two iterations
for most time until the wave is close to breaking. In this calculation, we
use a 25th-order Fourier smoothing in the spectral derivative with p given
by

p(kh) = exp(—10- (2|k[/N)*), for |k| < N/2.

In Figure 1, we present a series of interface profiles from ¢t = 0.28 to
t = 0.5175. In order to see clearly the time evolution of the water wave, we
plot the solution at five different times in a single picture. The first curve
from the top is obtained by adding 0.6 to the y coordinate; the successive
ones are displaced by multiples of 0.3. Time increases from top to bottom.
As we can see from Figure 1b, the interface becomes vertical around t =
0.32. After that, the wave turns over. In the mean time, the interface
develops large curvature, and requires more-refined numerical resolution.
With N = 256, we can compute up to ¢ = 0.5 with six digits of accuracy in
the interface positions. But in order to compute very close to the time of
wave breaking, we need to increase our resolution to N = 512, or larger. Of
course, beyond ¢ = 0.32 when the interface becomes vertical, our convergence
result will cease to be valid since it violates our condition (3.6) in Theorem
1. But one can sée that our numerical calculations remain robust even after
condition (3.6) is violated. Without additional filtering, our code can run
up to ¢t =~ 0.51. In order to compute all the way up to the time of wave
breaking, we need to use Krasny’s filtering (see Subsection 4.1) beyond the
time of wave turnover (¢ =~ 0.32) to control the growth of round-off errors
due to the Rayleigh-Taylor instability.

In Figure 1c, we plot the enlarged version of the wave fronts from ¢t = 0.5
to 0.5175 when the wave is close to breaking. It is evident that the wave
will break in finite time. In Figure 1d, we illustrate the number of com-
putational particles near the wave front at the final time of our calcula-
tions. We can see that the interface is still well resolved and more particles
are clustered near the head of the wave front where the curvature is the
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Fig. 1. (A) Water waves at ¢ = 0.28,0.32,0.36,0.4, 0.44, N = 256, At = 0.001. From
Beale, Hou and Lowengrub (to appear). (B) Water waves at t = 0.46,0.48,0.5,0.51,
0.5175, N = 512, At = 0.00025. From Beale, Hou and Lowengrub (to appear). (C)
Enlarged view of wave fronts at ¢t = 0.5, 0.5025, ...,0.5175, N = 512, At = 0.00025.
From Beale, Hou and Lowengrub (to appear). (D) Enlarged view of wave fronts at
¢t = 0.5175, N = 512, At = 0.00025. From Beale, Hou and Lowengrub (to appear)

largest (about 800 in amplitude). This demonstrates the self-adaptive na-
ture of the boundary-integral method. Details of the calculation and other
computational examples can be found in Beale, Hou and Lowengrub (to

appear).

4. Numerical computations of vortex-sheet roll-up

The idealisation of a shear layer as a vortex sheet separating two regions of
potential flow has often been used as a model to study mixing properties,
boundary layers and coherent structures of fluids. A vortex sheet corre-
sponds to the case when the two fluid densities are the same on each side

of the interface, but the tangential velocity across the interface has a jump
 discontinuity. Without Physical regularisation such as surface tension or vis-
cosity, the vortex-sheet problem is ill-posed in the Hadamard sense. Sma]l
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perturbations can lead to exponential growth in high wavenumbers due to
the Kelvin-Helmholtz instability. Since the Kelvin—-Helmholtz instability
is a generic fluid-dynamical instability for multi-fluid interfaces (except for
the case of unit Atwood number A2 = 1), the understanding of the numeri-
cal and analytical difficulties of the vortex-sheet problem would shed useful
light into the general multi-fluid interfaces. In fact, most of the numerical
techniques we discuss in this section can be and have been extended to the
study of Rayleigh~Taylor instability in multi-Auid interfaces.

Assume the interface is periodic in the horizontal direction, that is,
2(e,t) = o+ s(a,t) with s(e,t) being periodic in o. The vortex-sheet
strength - is also periodic. For a vortex sheet, the Atwood number is equal
to zero. This greatly simplifies the equations of motion for the interface.
The governing equations reduce to

3—f =2 /'y(a',t)cot (z(a, ) — A, t)) de/,

T 47 2

d

o

di
This shows that v is conserved along Lagrangian particle trajectories. If
the initial vortex-sheet strength vy is positive, then we can parameterise the
interface by its circulation variable I'. Then the above equations further

reduce to a single equation for the interface position z:

dz 1 z(I',t) — 2(TV,1) y

— =— /[ cot dr, 4.1

& m / 0 ( 2 ) (1)
Linear stability around equilibrium solution z = I gives the dispersion rela-
tion

2 = k%4, (4.2)

* 50 there is one growing eigenmode and one decaying eigenmode. Arbitrar-
ily small perturbation can lead to unbounded exponential growth in high
wavenumbers.

4.1. The point-vortex approzimation

The point-vortex approximation to (4.1) was first introduced by Rosenhead
(1932). The idea is to represent the vortex sheet by a collection of point
sources. Let z;(t) denote the numerical approximation of 2(T;,t), withT; =
Jjh, h=2m/N. The integral on the right-hand side of (4.1) is approximated
by the trapezoidal rule, which omits the infinite contribution due to the
self-induced velocity at I = I'. This gives rise to a system of ordinary
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differential equations for the particle trajectories

dz; _ 1 & (zj—zk>

2 - ma\Te )h (43)
k#j

z;(0) = Tj+s(T;,0). (4.4)

* Equations (4.3) have 'a Hamiltonian structure for the conjugate variables
z;N~1/2,y;N=1/2_ The Hamiltonian is given by

N
Hn(t) = 4—;—1172- ;g In(cosh(y; — yk) — cos(z; — Zx))- (4.5)

One immediate consequence from the Hamiltonian is that if the variables
y;(t) remain bounded, then the invariance of Hy(t) implies that the point
vortices remain separated (recall that we have assumed one signed vorticity
distribution here).

The main issue here is the question of numerical stability of the point-
vortex approximation. Using a sinusoidal initial perturbation with a small
number of particles, Rosenhead integrated the vortex-sheet equation (4.3)
and obtained the expected roll-up of the, vortex sheet. These calculations
were repeated by Birkhoff (1962). Birkhoff found that the point-vortex ap-
proximation did not converge as the number of particles increased. In fact,
the increased number of points led to irregular motion of the points and
early deterioration of the calculations. Some investigators have tried to use
high-order discretisations to resolve this difficulty, and different smoothing
techniques have been tried. But irregular motion still persists. We refer to
van de Vooren (1980), Higdon and Pozrikidis (1985), Pullin (1982), Moore
(1985) and Fink and Soh (1978) for more detailed discussions.

The source of numerical instability was later clarified by Krasny (1986a).
Krasny found that there are two types of irregular motion that can occur in
the numerical solution of the point-vortex equations for vortex sheets. The
first one occurs at smaller times ¢ > 0 as the value of N increases. The
- second type occurs only beyond the vortex-sheet’s critical time regardless
of the value of N. The second type of irregular motion is due to the loss
of regularity of the solution beyond the critical time. Without additional
physical or numerical regularisation, the point-vortex method will fail to
converge beyond the singularity time. The first type of irregular motion
is caused by round-off errors due to the computer’s finite-precision arith-
metic. Once these round-off error perturbations enter the calculations, they
grow according to the equations’ dynamics and are subject to the Kelvin—
Helmholtz instability. Thus the highest modes will grow the fastest and the
growth rate is exponential with increasing wavenumbers. This explains why
increasing the number of grid points will lead to rapid growth and early-
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time irregular motion. In order to control the growth of the round-off-error
perturbations, Krasny introduced a non-linear filtering technique ( 1986a.).
That is, at every time step, before we evaluate the singular integral, we take
the Fourier transform of the particle position z;. Set to zero those Fourier
coefficients that are below a certain cut-off level, say 10~13 if a 16-digit
arithmetic is used. Then take the inverse Fourier transform.

More specifically, we can consider Krasny's filtering as a projection oper-
ator, denoted by P. Given an error tolerance 7, the projection operator P
is given by

DA fka if |fk’ Z 7,
(Pf)e = { 0, otherwise, (4.6)

for any periodic function f. The filter P is non-linear because the wavenum-
bers at which it is applied depend on the solution. In order for this filtering
operator to be effective, we assume that the 'underlying function, f, has a
rapid decay in the Fourier space. Moreover, we want to take the filter level,
7, as small as possible for the sake of accuracy. So it is preferable to per-
form the numerical calculations in double-precision arithmetic. To illustrate
the method, we take the forward Euler discretisation for the point-vortex
method as an example. With Krasny's filtering, the numerical method
becomes

= P{z;*+At4iﬁzcot (ZJ—;Z—") h}. (47)
k#j

The effect of this filtering is dramatic. With this filtering, the first type of
irregular motion is eliminated. One can compute up to the time when the
curvature singularity is formed. Since the filter level is very small (typically
10713 in a 16-digit arithmetic), it does not affect the accuracy much in the
smooth region. Comparison of the filtered calculation and the unfiltered
29-digit calculation shows very good agreement (Krasny, 1986a). Moreover,
the filter does not suppress the growth of high-wavenumber modes. With
~ the filtering, the high wavenumber modes can still grow through non-linear
interactions. Once the modes grow larger than the filtered level, they are
not affected by the filtering.
- We include the calculations obtained by Krasny (1986a) for the initial
data (note that the period is 1, not 27):

z(T',0) =T + 0.01 sin 2xT, ¥(T',0) = —0.01 sin 24T,

which is a small-amplitude perturbation of the equilibrium solution. The
filtering technique was used in double precision (16-digit) with N = 100. The
time step was set to be At = 0.01 for ¢ <0.25and At =0.001fort > 0.25. A
fourth-order Runge-Kutta method was used for time integration. The filter
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Fig. 2A. Double-precision (16-digit) calculation with filter level set at 10~13 (the
horizontal line in (b)). This calculation used N = 100 and At = 0.01 for ¢ <0.25
and At = 0.001 for ¢t > 0.25: (a) point-vortex positions; (b) log-linear plot of the
Fourier coefficients. (2.2) amplitudes versus wavenumber. From Krasny (1986a)

level was set to 10713, In this case, the filter turned off at ¢ ~ 0.35. The
resulting point positions and the Fourier coefficients are plotted in Figure 2A.
In this calculation the Hamiltonian was also well conserved. There is no
sign of the first type of irregular point motion which had appeared in the
unfiltered 16-digit calculation at ¢ = 0.375; Using filtering with N = 200 in
double precision, Krasny can compute up to the singularity time t = 0.375;
see Figure 2B (d). It is worth noting that without filtering even a 29-digit
calculation yielded irregular motion at time ¢ = 0.375 (see Fig 2B (c)), not,
to mention the calculations obtained used single and double precisions (Fig
2B (a) and (3). |

Shelley (1992) used the spectrally accurate alternating quadrature to re-
examine the singularity formation in vortex-sheet motion, trying to acquire
more precise information on the singularity structure. Shelley’s calculations
were performed in 30 digits of precision in conjunction with Krasny's filtering
technique. The filter level was set to 10725, This high precision seems to
be necessary to discern the asymptotic behaviour of the spectrum. It was
found that Moore’s asymptotic analysis is valid only at times well before
the singularity time. Near the singularity time the form of the singularity
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Fig. 2B. Point-vortex positions at ¢ = 0.375 for N = 200: (a) single precision
(7 digit); (b) double precision (16 digit); (¢) CDC double precision (29 digit); (d)
filtered at level 10~!3, double precision (16 digit). From Krasny (1986a).

departs significantly from that predicted by Moore. Moreover, the real and
imaginary parts of the solutions behave differently near the singularity time.
The form of the singularity also depends upon the amplitude of the initial
disturbance.
~ Convergence of the point-vortex method for vortex sheets was first ob-
tained by Caflisch and Lowengrub (1989) for analytic initial data. A simpli-
fied proof was later obtained by Hou, Lowengrub and Krasny (1991), using
the spectral accuracy of the alternating quadrature rule. However, these
convergence results are for short times, and do not consider the effect of
round-off errors. In fact, with a simulated round-off-error term, the con-
vergence result breaks down very quickly as the number of computational
particles increases. Recently, Caflisch, Hou and Lowengrub (1994) have been
able to prove convergence of the point-vortex method for vortex sheets with
Krasny’s filtering. The proof is in an analytic function class and uses a
discrete form of the Cauchy-Kowalewski theorem. The proof is presented
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for the case in which the sheet is initially near equilibrium and convergence
is obtained nearly up to the singularity time. The analysis in this paper
applies directly to other ill-posed problems such as Rayleigh-Taylor unsta-
ble interfaces in incompressible, inviscid and irrotational fluids, as well as to
Mullins-Sekerka unstable interfaces in Hele-Shaw cells.

4.2. Vortez-blob calculations

In this section, we present a vortex-blob desingularisation to study vortex-
sheet roll-up beyond the curvature singularity. The first application
of vortex-blob methods for vortex-sheet roll-up was given by Chorin and
Bernard (1973) in which they proposed to regularise the point-vortex method
by smooth vortex blobs. Subsequently, Anderson (1985) applied vortex-blob
methods to study vortex-sheet roll-up using the Bousinesqu approximation,
and performed a careful numerical convergence study. In a series of papers
(Krasny, 1986b; Krasny, 1987; Nitsche and Krasny, 1994), Krasny has used
the vortex-blob method to study vortex-sheet roll-up and has obtained a
number of interesting results. Some previous alternative desingularisations
for vortex sheets have incorporated a stabilising physical mechanism into the
model. Moore (1978) has derived an evolution equation for a vortex layer
of small thickness. Pozrikidis and Higdom (1985) have numerically stud-
ied a periodically perturbed layer of constant vorticity. Baker and Shelley
(1990) have considered regularisation of a thin vortex layer. Pullin (1982)
has included surface tension in the evolution equation. We will come back
to these other types of regularisation in later sections. Unlike these ap-
proaches, the specific form of desingularisation that is used in vortex-blob
methods does not correspond precisely to a physical effect. It is a purely
numerical regularisation.

The vortex-blob desingularisation for vortex sheets can be described as
follows. Let 6 be a non-negative real number. We will desingularise the
Birkhoff-Rott equations by placing a cut-off in the singular kernel.

Oz _ -1 [ sinh(y - y’) )
at - 4r /—w COSh(y —_ y’) —_ COS(:L‘ — 2")_+ 52 dr’ ) (48)
Oy 1 sin(z — ') /
8t  4r /—1: cosh(y — y') — cos(z — z') + 62 dr’, (4.9)

where z = z(I',t), ' = z(I",t). When 6 = 0, the integral is understood
as the Cauchy principal-value integral. In that case, we recover the vortex-
sheet equations in the periodic case. )

A flat vortex sheet of constant strength is an equilibrium solution of the
desingularised equations. It is easy to perform a linear stability analysis
around the equilibrium solution. This helps us gain insight into the nature of
the desingularisation. The growth rates of the perturbation can be computed
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by Fourier transform. The dispersion relation is given by Krasny (1986b)
2 k(l — e-lc CDsh—l(l+62))e_k COSh—l(l+62)
- 16(2 + 62)172

The positive branch of w corresponds to the growing perturbations. For
a fixed value of § > 0, there is a wavenumber km for which the growth
rate w(km) is maximum. In the limit £ — oo we have w(k) — 0. For
example, with § = 0.05, the maximum growth rate of the eigenvalue is about
3.5. The desingularised equations therefore do not exhibit the severe short
wavelength instability of the exact vortex-sheet equations. As § — 0 with a
fixed wavenumber, we recover the exact dispersion relation w? ~ k2/4.

We can apply standard discretisation techniques to solve the initial valye
problem (4.8)-(4.9). For example, the trapezoidal quadrature of the inte-
grals in (4.8)~(4.9) yields a system of ordinary differential equations in the
case of period-one initial condition

w

_d'rj -1 Y sinh 27r(yJ - yk)

= 72X R, (4.10
dt 2 {= cosh 27 (y; — y) — cos 2m(z; — 7)) + 62 (4.10)

ks

dy; 1 & sin 27 (z; — z)

= 72 Ao (411
dt 2 {= cosh 27(y; — yx) — cos 2m(z; — i) + 62 ( )

k#j

If 6 =10, then the above discretisation is the point-vortex approximation of
Rosenhead (1932). As for the point-vortex system, for any 6 > 0, the equa-
tions (4.10),(4.11) form a Hamiltonian system for the conjugate variables
zj- N™Y2 y; - N=1/2, with the Hamiltonian function given by

-1

N
ZrE 2o 2 In(cosh 2m(y; — y) ~ cos 27 (zj — z1) + 6%). (4.12)

J=1k>j

Hy(t) =

Krasny (1986b) used the above vortex-blob method to compute vortex-
. sheet roll-up using the same initial condition as for the point-vortex method
calculation

simultaneously reduces all three parameters, one does not get a convergent
result in general. The strategy, which was first used by Anderson (1985), is
to first keep § fixed, and then reduce At and h until we get a convergent
solution of the § equations. By repeating this process for several values of
8, one can extrapolate the limit § — 0. .

Krasny (1986b) showed that using the é-desingularisation the vortex sheet
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Fig. 3A. Vortex-blob-method solutions of the § equation at ¢ = 1, N = 400. From
Krasny (1986b).

rolls up into a double-branched spiral past the critical time. The effect of
decreasing § at a fixed time (¢ = 1) beyond the critical time (tc = 0.375) is
shown in Figure 3A, which plots the interface for several values of § between
0.2 and 0.05. These calculations used N = 400 and At = 0.05. In the case of
6 = 0.05, a smaller time step was used, At = 0.01, and the computation was
performed in double-precision arithmetic (16 digits). As & decreases with
t =1 in Figure 3A, more turns appear in the core. For § = 0.05, the core
region is tightly packed. An enlarged view is shown in Figure 3B, which
shows that each branch of the spiral contains five complete resolutions. The
curve's outer region seems to converge as § decreases. Some evidence was
given in Krasny (1986b).

Krasny also used the vortex-blob method for several other applications,
including computing the vortex-sheet roll-up in the Trefftz plane [95], and
computing vortex sheet roll-up past a sharp edge to study separation (112)].
The calculation of vortex ring formation at .the edge of a circular tube in
an axisymmetric 3-D vortex-sheet model seems to support the experimental
findings (Nitsche and Krasny, 1994). Related numerical studies for axisym-
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Fig. 3B. An enlarged view of the inner portion of the § = 0.04 case, t = 1, N = 400.
From Krasny (1986b). '

metric vortex-sheet motion have been carried out by Pullin (1979), Caflisch,
Li and Shelley (1993), Pugh (1989), Kaneda (1990) and Dahm, Frieler and
Tryggvason (1992).

Convergence of vortex-blob methods for vortex sheets has been established
by Caflisch and Lowengrub (1989) for short times using analytic data. Fol-
lowing Delort’s observation, Liu and Xin (to appear) have been able to prove
that Krasny's vortex-blob calculation converges globally to a weak solution
of the Euler equations if the initial vorticity does not change sign.

Finally, we remark that it is an easy matter to generalise the vortex-
blob method to study Rayleigh-Taylor instability for general two-density
interface problems; see, for example, Kerr (1988).

4.3. Thin-vorticity-layer regularisation of vortez sheets

- Another approach to compute vortex-sheet motion beyond the singularity
time is to study the motion of smoother solutions to the Euler equation.
In 1990, Baker and Shelley approximated the vortex sheet by a thin layer
of constant and finite vorticity of mean width H. The limiting behaviour
of such vortex layers as H — 0 was investigated to determine the possible
nature of the vortex sheet past its singularity time. They found that the
behaviour of an asymptotically thin vortex layer is given by a vortex sheet
whose strength is the local layer width times the vorticity strength.

The problem of vortex layers with constant vorticity, also called vortex
patches, is of interest in itself. Accurate and robust numerical methods for

vortex-patch problems have been developed by Zabusky et al. (1979, 1983).
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They referred to their methods as ‘contour dynamics’. It has led to some
interesting applications; see, for example, Dritschel (1989) for a review. The
mathematical theory of vortex patches has attracted a lot of interest in re-
cent years. The well-known result of Yudovich (1963) provides a theoretical
framework for the vortex-patch problem. In particular, it guarantees the
global existence of the flow. Yudovich’s theory does not preclude the for-
mation of singularities in the boundaries of vortex patches. Majda (1986)
proposed the vortex-patch problem, in contour-dynamic form, as a model
for the inviscid, incompressible creation of small scales. Motivated by anal-
ogy with the stretching of vorticity in three dimensions and by a simple
mode] (1985, 1986), he suggested the possibility of finite-time singularities.
In other words, some smooth initial contours might, in finite time, lead to
loss of regularity such as infinite length, corners or cusps. This suggestion
has been the subject of some debate in the computational literature (Buttke,
1989; Dritschel and MclIntyre, 1990). Recently, Chemin (1993) proved that
smooth contours stay smooth for all times provided that the initial condi-
tion is in C1* witha > 0. A simplified proof was given by Bertozzi and
Constantin (1993).

The set-up of the thin layer regularisation is as follows. Consider a peri-
odic vortex layer surrounded by two interfaces. Att = 0, these two interfaces
are symmetric with respect to the flat interface ¥ = 0. The vortex layer is
assumed to have mean width H and vorticity —2U/H. The lower interface,
I'1, is parameterised as 21(a), and the upper interface, Iy, as 22(a), where
zj(@) = z(a) + iy;j(c). The thin layer is assumed to be 2n-periodic in the
z-direction. It can be shown that the velocity of the fluid at a point z;(c, t)
on the jth interface (j = 1, 2) is given by

623' 2U 2 ’
2@ = o [ et - @)

. - !
xcot (ZJ(O!,t) 221(a 1t))) z_zlf(a’,t)da’ (4.14)
2U 2T

“Tm ) et - @)

zi(a,t) — z(a, t z

xcot ( 1CR) 5 2(, ))) g—cj(a’,t)da'. (4.15)
Note that the motion of vortex layers depends only upon information on the
boundaries. .

There have been many numerical studies in developing accurate quadra-
ture rules for the boundary integrals in the above contour dynamic equa-
tions. Consider the case J =1 as an example. The first integral in (4.14)
has a smooth, periodic integrand due to a compensating zero in the function
v1(a,t) — y1(a’,t). Thus the standard trapezoidal rule over equally spaced
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collocation points gives spectral or infinite-order accuracy. Accuracy is then
limited by the approximation to 82, /8¢’ at the collocation peints. In Baker
and Shelly (1990), derivatives were approximated by periodic, quintic splines
with an accuracy of O(hS). The approximation to the second integral can
be derived similarly. It is even simpler in this case since the field point z;(a)
does not sit on the boundary I'.

The numerical study of Baker and Shelley (1990) indicates that the mo-
tion of the vortex layer leads to the formation of regions of high curvature,
and regions of rapid stretching in the bounding interfaces. To maintain res-
olution of the interfaces, the mesh was redistributed periodically to resolve
the high-curvature regions and collocation points were kept in the regions
of rapid stretching. The mesh redistribution was done through a smooth
reparameterisation of the interfaces.

The initial conditions for layer interfaces considered in Baker and Shelley
(1990) were given by

21{a,0) = — ig(l —a cos @), 29(a,0) = @ + ig(l —a cos a),

with @ < 1. The limit of the above initial data as H — 0 corresponds to the
vortex-sheet initial data considered by Meiron, Baker and Orszag (1982) in
“their study of the singularity structure of a vortex sheet. In particular, the
vortex sheet acquires a curvature singularity at o = 7.

The evolution of vortex layers with U = 1/2 and ¢ = 1/2 was calcu-
lated for various mean thicknesses, H = 0.025, 0.05,0.1 and 0.2. The case
H = 0.025 corresponds to an aspect ratio of 250 to 1. This was the small-
est value of H that Baker and Shelley (1990) could compute reliably. The
critical time of curvature singularity is about te = 1.6 (Shelley, 1992). Fig-
ure 4a shows the location of the layer interfaces with H = 0.025 at various
times ¢ = 0, = 2.0 and ¢t = 2.4. Figure 4b shows several sequences of
layer profiles for various thicknesses. Each column gives a sequence of lay-
ers at various times with H fixed, and goes as far as the computation is
reliable. For a fixed time beyond the critical time, the central region of the
layer does not show a converging pattern, but at different times one can
observe a similarity in the profiles. This non-uniformity behaviour makes it
very difficult to extrapolate the limiting behaviour from the profiles of the
layer.

A close examination reveals that the evolution generically occurs in three
phases: First, the vorticity advects to the centre (i.e. o = =), causing a
further thickening near the centre. Second, the vorticity in the centre quickly
reforms into a roughly elliptical core with trailing arms, which subsequently
wrap around the core as it evolves. As the value of & becomes smaller, the
vorticity becomes more intense, which leads to faster roll-up. For thinner
layers the core structure becomes a smaller fraction of the total layer. The
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Fig. 4. (A) The location of the layer interfaces for H = 0.025 at various times.
From Baker and Shelley (1990). (B) Thin-vortex-layer-solutions. The core region
of the layer interfaces for various times and thicknesses. From Baker and Shelley
(1990).

core seems to collapse to a point with no circulation but infinite vortex-
sheet strength. Assuming such a limit exists, it would converge to a weak
solution of the Euler equations described by DiPerna and Majda ( 1987a,b)
and Delort (1991). The cores with their trailing arms are very similar to
the structures observed by Zabusky et al. (1979) in their numerical study
of the vortex patches. The simulations also agree qualitatively with the
vortex-layer simulations done by Pozrikidis and Higdon (1985).

4.4. Vortez-in-cell method

Here we present the vortex-in-cell (VIC) method for computing vortex sheets
by Tryggvason (1989), and compare with the vortex-blob calculations by
Krasny (1986b). Usually the VIC method is used only as a device to speed up
the calculation of the velocities from the vorticity. However, the grid-particle
interpolations usually introduce some numerical smoothing. This smoothing
is generally regarded as an unpleasant property of the VIC method because
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it may suppress the small-scale interactions. On the other hand, one can
also regard the VIC method as a grid-based vortex method with the blob
size equal to the mesh size. It actually has regularisation properties similar
to the vortex-blob method.

We begin with the two-dimensional vortex method for the Euler equation
in the vorticity form:

D .
T =0 VW=-u, u=(-5v), (4.16)
where w is the vorticity, 1 is the stream function and '
D ¢
a = a +u-V

is the material derivative. In vortex methods, the vorticity field is approxi-
mated by a collection of discrete point vortices, each with circulation T;. By
(4.16), the circulation of each vortex is conserved in time. The Lagrangian
particle positions can be found by integrating
% = u(xi, t).
To find the velocity from the vorticity, we need to solve the Poisson equation
for the stream function. Traditional vortex methods make use of the Biot—
Savart kernel, and the fact that the solution can be written as a sum over
the singular point sources: '

u(x) =3 K(x —x;)Iy,

where K is the Biot-Savart kernel-

Koo = 3-8 x= (o).

Due to the singularity of the Biot-Savart kernel, there has been concern
about the possibility of producing unbounded velocity as two neighbouring
particles approach each other. To alleviate this difficulty, Chorin (1973) and
Chorin and Bernard (1973) introduced a vortex-blob method in which the
singular Biot-Savart kernel is replaced by a desingularised kernel, that is, ,

KJ(x) =K=* ¢5(X),

where ¢5(x) = ¢(x/5)/62 is an approximate Delta function, and ¢(x) is
its shape function. . For example, we can take ¢ to be Gaussian. This
modification gives a computationally more stable method than the point-
vortex method. The method has been applied and extended to a variety of
fluid-dynamical situations (Leonard, 1980). For smooth vorticity fields, it
has been proved that the vortex-blob method converges provided that the
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smoothing blob ¢ is much larger than the initial grid size h, see, for exam-
ple, Hald (1979), Beale and Majda (1982), Anderson and Greengard (1985)
and Cottet (1988) and the review paper (Hald 1991). For a long time, it
has been widely believed that the point-vortex method is numerically un-
stable without additional regularisation. In Goodman, Hou and Lowengrub
(1990), Hou and Lowengrub (1990) and Cottet, Goodman and Hou (1991),
we proved a surprising result. The point-vortex method is stable and con-
vergent with second-order accuracy for smooth vorticity fields in two and
three space dimensions.

An alternative to the direct summation methods just described are grid-
based methods, that work directly with the Poisson equation. The singular
point-vortex distribution is approximated by a smoother grid vorticity and
the elliptic equation in (4.186) is solved by a fast Poisson solver for difference
methods. The grid velocity is obtained by numerical differentiation of v over
the grid and the velocity of the point vortices is found by interpolating from
the grid. Such grid-based methods are generally referred to as vortex-in-
cell (or cloud-in-cell) methods, which were first introduced by Christiansen
(1973). Since the velocity field is calculated from a smooth grid vorticity,
vortex-in-cell methods may be considered as a type of vortex-blob method
(Tryggvason, 1989). In 1987, Cottet presented a VIC method for which he
was able to show convergence under similar conditions to the blob methods.

In Christiansen’s original VIC method, the vorticity of the point vortices
is assigned to the corners of the mesh block that each vortex is in by the so-
called area—weight rule. This corresponds to giving each vortex an effective
area of the order of one mesh block. Thus we may consider the VIC method
as a type of vortex-blob method with blob size of the same order as the mesh
size. However, since only the nearest four grid nodes are involved, vorticity
is not evenly distributed to the nearest four grid nodes. The resulting blob
is anisotropic, rather than symmetric, as the blobs in the vortex-blob meth-
ods. If the problem being simulated is sensitive to small-scale disturbances,
this anisotropy can trigger small-scale Kelvin~Helmholtz instability. This
small-scale instability has severely limited previous investigations of the ef-

“fects of grid refinements (Baker, 1979). Tryggvason (1989) overcame this
difficulty by making the blob slightly larger and spreading the vorticity over
a larger area on the grid. By doing so, the small-scale anisotropy can be
made significantly smaller. The shape function Tryggvason used is the inter-
polation function suggested by Peskin (1977) in a slightly different context.
This conversion of the singular point vortex into a smooth grid vorticity can
be viewed as approximating the §-function by a smoother function. The
smoother-shape function at the grid point (3, j) is expressed as a product of
two one-dimensional functions:

6:j(z,y) = d(z — ih)d(y — jh)
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where

h s(wr/2h), if 2h
LR N

where A is the mesh size, and the point vortex is located at (z,y). The var-
ious aspects of this approximation are discussed in detail by Peskin (1977).
Using this approximate Delta function, we approximate the vorticity field at
the grid points from the vorticity field at the Lagrangian particle positions

(zk(t), m(t)) by

w(ih, jh) = 3 d(ih — x(2))d(jh — wi(t)Jw(z(t), m(t))R2.
k,l

Conversely, we interpolate the velocity field from the grid points to the
Lagrangian particle positions by

u(zi(t), 55(1)) = 3 d(ae(t) - kh)d(y;(t) — Ih)u(kh, h)R2.

k!
- This version of the VIC method has been used successfully by Tryggvason in
his numerical study of the Rayleigh—-Taylor instability and the vortex-sheet
roll-up (Tryggvason, 1988, 1989).

In Figure 5, we present the computations of a vortex-sheet roll-up by
Tryggvason (1989) using the VIC method described above. The result is
compared with a similar calculation obtained using the vortex-blob method.
The VIC simulation in Figure 5a was on a grid with 32 meshes per wave-
length; the vortex-blob simulation in Figure 5b used 200 points and § = 0.2.
The vertical dimension of the computational box in the VIC simulation was
four times the horizontal one to keep the top and bottom boundaries well
away from the interface. The initial conditions were

. . {27 . 2w
z; = i/N + 0.05 sin (W) , ¥i = —0.05sin (F) ,

which are the same as those used by Krasny (1986) except that the amplitude
was five time larger. This larger amplitude was selected to allow comparisons
with runs made by the original four-point VIC code. It was found that the
original VIC method was very sensitive to small disturbances from the grid.
These disturbances can cause the interface to roll up into more than one
vortex. .

In Figure 6 we demonstrate the numerical calculations (non-dimensional
time equal to 1) obtained using several different methods. Figure 6a and
6b was calculated by the original four-point VIC method. In (a) 16 meshes
per wavelength were used, and in (b) 32. Figure 6¢c and 6d was calculated
by the smoother VIC method. In (c) 32 meshes per wavelength were used,
and in (d) 64. Figure 6e and 6f was calculated by a vortex-blob method
using the modified kernel Kj. In (e) 6§ = 0.2, and in (f) 6§ = 0.1. Both runs
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(A) (B)
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964/

Fig. 5. The roll-up of a vortex sheet. The dimensionless times are 0.0, 0.5, 1.0,
1.5 and 2.0. (A) Calculation with an isotropic vortex-in-cell method. The grid is
32 x 128. (B) Calculations with a vortex-blob method with 200 points and é§ = 0.2.
From Tryggvason (1989)

employed a sufficient number of points so that the results were independent
of the resolution (in () N = 200; in (f) N = 400). It is evident that the
smoother VIC method produces results very similar to those obtained by
the vortex-blob method. '

We note that several fast algorithms have been developed which give a
much faster and accurate evaluation of the particle velocity in the vortex-
blob methods. These do not introduce the grid-particle interpolation errors
that are present in the VIC method. In (1986), Anderson introduced a fast
summation algorithm based on local corrections. It has the advantage of
reducing the computational cost of the direct summation without sacrific-
ing the high-order accuracy of the vortex method. The operation count is
approximately O(M log M) + O(N), where M is a constant independent
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Fig. 6. The large-amplitude stage (at dimensionless time ¢ = 1.0) calculated in
different ways. (A) Original VIC method on a 16 x 64 grid. (B) Same as (A) but
on a 32 x 128 grid. (C) Modified (isotropic) VIC method on a 32 x 128 grid. (D)
Same as (C) but on a 64 x 256 grid. (E) Vortex-blob method 200 points and § = 0.2.
(F) Same as (E) but with 400 points and 6 = 0.1. From Tryggvason (1989).

of the number of vortices. The fast multipole summation algorithm de-
veloped by Grenngard and Rokhlin (1989) has proved to be very useful.
It reduced the operation count from the O(N?) for direct summation to
O(Mlog M) + O(N), where M is a constant independent of the number of
vortices. A similar fast algorithm has been proposed independently by van
Dommelen and Rundensteiner (1989). A somewhat slower, but more flexible
version of the fast algorithm based on Taylor expansions has been proposed
recently by Draghicescu (1994). A well-vectorised version of the fast multi-
.pole algorithm has allowed vortex-method calculations with a large number
of vortex particles. For example, in his study of flow past circular cylinders,
Koumoutsakos (1993) has used up to O(10°) vortex particles by efficiently
implementing the fast multipole algorithm for vector computer architectures.
Fast algorithms have also been used in three-dimensional applications, see,
for example, the work of Almgren, Buttke and Colella (1994).

5. Effect of surface tension

The surface tension at an interface between two immiscible fluids arises from
the imbalance of their intermolecular cohesive forces. It is one of the most
commonly used physical regularisations for interfacial flows. It is believed
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that surface tension plays a central role in determining the length scales,
selection mechanics and large time behaviour of interface dynamics. The
understanding of the stabilising effect of surface tension will enhance our
understanding of fluid phenomena such as pattern formation in Hele~-Shaw
cells, the motion of capillary waves on free surfaces, the formation of fluid
droplets and the propagation of sound waves in a porous medium.

Surface tension has been used as a physical regularisation for the Kelvin-
Helmholtz instability. With surface-tension regularisation, the interface
problem is locally well posed. Pullin (1982) was the first to study the stabil-
ising effect of surface tension for vortex sheets. Rangel and Sirignano (1988)
also studied the effect of surface tension and density ratio on the nonlinear
growth of the Kelvin—-Helmholtz instability. Numerical calculations of fluid
interfaces with surface tension are more susceptible to numerical instabili-
ties since surface tension introduces high-order spatial derivatives into the
governing equations. As in the case of water waves without surface tension,
numerical stability requires a certain compatibility between the choice of
quadrature rule for the singular integral and the approximation of derivative
operators. Violation of this compatibility condition will lead to numerical
instability.

5.1. Spatial discretisation

Here we only describe the time-continuous discretisation for general two-
density interface problems. Similar discretisation applies to Hele-Shaw
flows. Recall that the equations of motion for general two-density fluid
interfaces are given by

E L )
dt — 2ni) z(e,t) - z(ed,t)

dy d?z 1 72

E = 24 (Re {@ZQ} + -S-Ba (m + 9VYa | + TKa,

Define the derivative operator D,(f ) as in the case of water waves; see (3.2).
Further, we discretise the singular integral by the alternating-point-trape-
zoidal rule. The numerical algorithm for which we can prove stability and
convergence is given by

_ (o) _ (p)
- = — Yy cot | ~————— | 2h; (5.1)
dt  4ni (k—3)edd 2

(o) €))]
dy _ D;(;p) dye (% — %
= —2A Re ( - E 3t cot — 2h (5.2)
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(p) z(_p) _ z(p)
+2A Re (D—" > Psec? (% “((z3)e = (2k)e)2h

(k~j)odd

: (5.3)
_Ape (7 N 24gDPy; 4 7DP . (5.4)

AN 1™ h = h T '

h %
where

K = (Dgp):z:;")(D,(‘p))zyj —D,(f)yj(-")(D,(lp))zxj) /((D’(lp)zj(q)y + (D,(f)yj(-ﬂ):’/z

(5.5)

and £f = p(kh)z) and &] = q(kh)z, where g(z) = %(zp(x)).

The use of 9,39 in the curvature computation is to balance the aliasing
errors in the high modes due to the non-linearity of the curvature term. Its
use is determined by the discrete product rule

DIP(fz) = fDP: + (DY )39 + hAg(2) (5.6)
for any smooth function f. To illustrate the algorithm for a practical ex-
ample, we take the second-order finite-difference derivative operator as an
example. Note that p(z) = sin(z)/z and q(z) = ces(z) if D,(f ) corresponds
to the second-order centred difference derivative. It is easy to see that

f]= %(fjﬂ + fi-1), (5'7)
DY = ﬁ%ﬁ = DY)f,. (5.8)
(D@2, = fi2= 2}3;: + iz (5.9)

Thus, equations (5.8)—(5.9) imply that we should simply use every other
grid point when discretising the curvature.
In the presence of surface tension, a higher-order norm is used to estimate
the growth rate of the errors. This requires a better control of aliasing errors
- introduced in the approximation of the singular integrals. For finite-order
derivative approximations, p'(£7) # 0 in general, and so the natural filtering
associated with D,(f) is not strong enough to control the aliasing errors. We
will need to apply an additional filtering to achieve this result. In equations
(5.2)~(5.4), we need to replace fo ) by D, where

DPz; = DP)z? and 3§ = s(kh)ay (5.10)
where s satisfies
|s(kh) - 1} < C(kh)",s(kh) >0 and s(xm) = 0. (5.11)

The evaluation of the curvature remains unchanged. It is computed exactly
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the same as in equation (5.5). With these modifications, we can prove
the convergence of the algorithm defined by (5.1)-(5.5) (Beale, Hou and
Lowerigrub, to appear).

Theorem 2 Convergence with Surface Tension Assume that z(-,t),
¢(-,t) € C™*3[0,27] and 7(:,t) € C™*?[0,2n]) for t < T and m > 4. If Dy,
corresponds to an rth-order derivative operator, with r > 4 and h < ho(T"),
then

l2.(t) — 2(-. )l < C(THAT, (5.12)
@) =¥ )l gare < C(T)r1, (5.13)
where
II¢II§,1/2= 3" (1 +klp(kh))idel* and |I¢II§¢=II¢|Iz2=+IIDh¢II?z-(5-14)
b |klsN/2

If D,(lp) corresponds to a spectral derivative approximation, the result is the
same with r replaced by m.

As we can see, there are many choices of quadrature rule and derivative
rule. Also, it is not clear which term needs to be smoothed, and which
term need not be smoothed. Our analysis indicates that the combination
of these choices must satisfy certain compatibility conditions in order to be
stable. These compatibility conditions can be determined by performing
linear stability analysis around the arbitrary smooth solution of the inter-
face. In principle, such analysis is non-trivial and could be very messy. By
studying the leading-order linear singular operators and projecting them
into the appropriate local coordinates, a simplified system can be derived
from which stability of the numerical method becomes apparent. We note
that with surface-tension regularisation, the interface is locally well-posed
(Craig, 1985; Beale, Hou and Lowengrub, 1993a). The sign of gravity plays
no role. The convergence result holds even if the fluid is unstably stratified.

The proof of Theorem 2 relies on an estimate of the linearised error in the
curvature. Let

Kj = Kj — k(o). (5.15)

Using the discrete product rule and the fact that (fg)? = gf9 + hAg(f) for
any smooth g, we can show that the linear part of %; is given by

et po |1 peun 7 N |
5= sl O [ala) 5 | T A+ Aele). (5.16)

We refer the reader to Beale, Hou and Lowengrub (to appear) for details.
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Performing a linear stability analysis similar to that for water waves, we
obtain

j‘f * 2 DO+ Ao( +9) + As (E), (5.17)

% = 20D - 7‘2’ L_DiP'g — 470 DP§ + Ao( + ) + A_1(D), (5.18)
2 . . . .

31; = TUD(p) ( (? - Ah) 1/J) + Ao(¢+ 4 + 1), (5.19)

where o = 1/5, and D,(f) and Ay, are defined as in (3.2) and (3.9). Here ¢
denotes a variant of D(p )3T 4 denotes a variant of AxtV and I" denotes a

variant of 4. Recall that the operator Ay, is positive, that is, D(p) |k|o(kh).
In deriving equations (5.17)-(5.19), we have changed va.na.bl&s so that the
coupling between ¢ and 9 changes from elliptic to hyperbolic. By doing this,
we have successfully put the term responsible for the Kelvin—-Helmholtz in-
stability to the third equation. It appears as y2c /47 that is added to —Ay.
The A, term represents the dispersive effect of surface tension. We can see
that the dispersive regularisation dominates the destabilising term for those
wavenumbers & satisfying |k| > max,{y?0/47}. This observation leads to
our energy estimate and convergence proof. The details are given in Beale,
Hou and Lowengrub (to appear); see also Beale, Hou and Lowengrub (to
appear).

We remark that the numerical approximations discussed for two-density
interfaces can easily be generalised for Hele—Shaw flows and other multi-fluid
interfaces.

5.2. Removing the stiffness of surface tension for interfacial flows

It turns out that it is difficult to obtain a stable and efficient time inte-
gration scheme for fluid interfaces with surface tension. If an explicit time
discretisation is used, there is a severe time-step stability constraint. This
constraint arises because of the presence of surface tension, and is a ma-
jor obstacle to performing high-resolution, long-time numerical simulations.
In this section, we present a new approach that successfully removes the
high-order time-step constraint induced by surface tension. This approach
was developed in detail, and demonstrated through numerical simulations,
in Hou, Lowengrub, and Shelley (1994a). Using our method, it is possible to
perform accurate and large time integration of fluid interfaces with surface
tension. Many previously untenable problems now become possible using
our approach. The application of these methods has led to the discovery
of interesting new phenomena. For example, numerical calculations of the
vortex-sheet roll-up with surface tension, using up to 8192 points, reveal the
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late time self-intersection of the interface, which creates trapped bubbles of
fluid. This is very interesting. A collision of interfaces is a singularity in
the evolution, and is of a type that has not been observed previously for
such flows in 2-D. We will describe this further below. Our methods have
also been applied recently to problems of topological singularity formation
in Hele~Shaw flows (Goldstein, Pesci and Shelley 1993) and to studies of the
effect of anisotropy in quasi-static solidification (Almgren, Dai and Hakim,
1993).

By stiffness, we mean the presence of strict time-step stability constraints.
The stiffness is introduced by the curvature term in the Laplace-Young
boundary condition. For incompressible fluid interfaces, it is especially dif-
ficult to remove the stiffness of surface tension because the stiffness enters
non-linearly and non-locally. Straightforward implicit discretisation would
not work since it could be as expensive to solve for the implicit solution. By
performing the frozen coefficient Fourier analysis of the interface equations,
we can derive the dynamic stability constraint

At < C - (54h)%?/, (5.20)

where 5, = min,s,. Therefore, the stability constraint is determined by
the minimum grid spacing in arclength (As = hs,), which is strongly time
dependent. Our experience is that the Lagrangian motion of the points can
lead to ‘point clustering’ and hence to very stiff systems, even for flows in
which the interface is smooth and the surface tension is small. For example,
in previous calculations of the motion of vortex sheets with surface tension,
a fourth-order (explicit) Runge-Kutta method was used to advance the sys-
tem. An adaptive time-stepping strategy was used to satisfy the stability
constraint. With N = 256, the time step had become as small as 10-6,
and soon thereafter the computation became too expensive to continue. For
Hele-Shaw flows the situation is even worse. A similar analysis gives the
constraint

At < C- (54h)3 /7. (5.21)

Our approach relies on two key observations. The first is to introduce a
new set of variables for which curvature can be evaluated ‘linearly’ through
these new variables. The second observation is to factor out the leading-
order singular linear operators from the non-linear and non-local system.
This gives rise to a much simplified leading-order system to which stan-
dard implicit methods such as the Crank-Nicholson scheme can be trivially
applied.

Our new set of dynamical variables consists of the tangent angle, 6, and
arclength metric, sq, of the interface. This is strongly motivated by the
formula ¥ = g, = 0a/sa. Furthermore, we would like to impose a as an
arclength variable. This is equivalent to imposing s, is a function of time
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alone. By doing this, we need to reparameterise the interface dynamically,
which amounts to a change of frame in time by introducing a particular
tangential velocity T. ‘

Given an equation of motion of a free interface,

(z(a,t), y(a,t)): = Un + T3,

where n and § are the unit local normal and tangential vectors, respectively
and U and T are the local normal and tangential components of the interface
velocity. Define the tangent angle 8 and the arclength metric s, as tan § =
Yo/Ta, Sa = /T2 + vi. Itis easy to derive an equivalent equation of motion
for 6 and s, ~

(sa)t = Ta = 67, (5.22)
6, = (si) (Ua +6aT). (5.23)

For most interface problems of practical interest, the motion of the interface
is determined only by the normal velocity. The tangential velocity would de-
termine the frame or parameterisation of the interface, but it does not affect
the shape of the interface. We will exploit this degree of freedom in choos-
ing T to derive a simpler evolution equation for Sq-and 8. Ideally, we would
like to choose a frame such that the moving particles {(z(a;,t), y(ej, t)};
are equally spaced at all times if they are so initially. This corresponds to
-imposing s, to be independent of «, varying with time only. To achieve
this, we choose the tangential velocity T such that

1 27
To—6aU = 5 /0 (Ta — 6,U)da.

Since T is periodic with respect to a, we get

27

Q
T(a,t) = T(0, t) + f buoUdd — = [ g Udd.  (5.24)
0 27 Jo

This expresses T entirely in terms of § and U. The spatial constant T(0, ¢)
Just gives an overall temporal shift in frame. With this choice of T, the
evolution equations for 6 and s, reduce to

1 2
1
6, = (s—) (Ua +6,T). (5.26)

This system should be solved, together with the evolution equations gov-
erning other dynamical variables, such as vortex-sheet strength, velocity
potential, etc. This is a complete reformulation of the evolution problem.
Once we obtain s, and 6 in time, we can recover the interface position (z,y)
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by an integration (up to a constant of integration). This formulation of plane
curve motion is not new. See, for example, Strain (1989) in the context of
unstable solidification. '

Next we would like to factor out the leading-order linear singular operators
in the evolution equations. To illustrate the idea, we take vortex sheets with
surface tension as an example. It is important to note that the time-step
stability constraint is a result of high-order derivative and singular operators.
They enter only at small spatial scales or high-frequency components of the
solution. Thus it is essential to single out the leading singular operators and
high-order derivative terms, and treat these terms implicitly. Although the
Birkhkoff-Rott equation is highly non-linear and non-local, its leading-order
approximation at small scales is extremely simple. It can be expressed in
terms of the Hilbert transform. With some manipulation, we find that for
a vortex-sheet flow with surface tension, the normal velocity U behaves at
small scales as

1 /27
U~ (F) i,
while for ~,
. Y~ Thqg'

It is worth noting that the Hilbert transform is diagonalisable under the
Fourier transform. Now we can recompose the equations of motion to a
form suitable for applying implicit time-integration methods. We will sepa-
rate the leading-order singular operators from the smoother and lower-order
operators. The leading-order terms dominate at small scales, and will be
treated implicitly. The smoother and lower-order terms are non-linear and
non-local. We will treat them explicitly. There is no stiffness in the equa-
tion for s, since only the space-averaged quantity enters the equation. The
stiffness of the system is in the coupling of the # and + equations. The
recomposed system for 8 and v is given by

6, = (é) H [a] + P, (5.27)
7= (5) bea+ @ (5.28)

The first term in each equation is the leading-order term, dominant at small
scales. P and @ represent the smoother and lower-order terms. They are
obtained by subtracting off the leading-order terms from the right-hand
sides of the # and 7 equations respectively. We term this form of the
equations of evolution Small Scale Decomposition (SSD). It is the leading
terms that introduce the stiffness into the system. These leading terms
diagonalise under the Fourier transform, and can be treated implicitly
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very easily. A very similar, and simpler, recomposition can be found for
Hele-Shaw flows. _

A stable second-order integration can be obtained by discretising the
leading-order stiff terms implicitly using a Crank-Nicholson discretisation,
and leap-frogging on the non-linear terms. To simplify the notation, we
denote 27s, by L(t). It is the total arclength of the interface. In Fourier
space, this gives

én-i-l _ o"n—l |k| 29 \2 e o \2 e R
—m— =1 () 7 () ) e, e

:yn-!-l _ ;?n—l _ T .o ntl 2r . - '
T = 5k (L,mo + o )+Q (k). (5-30)
Given L™+, §"+1(k) and 4°+1(k) can be found explicitly by inverting a 2 x 2
matrix. By using an explicit method to integrate L (a non-stiff ODE), L*+!
is found before updating # and 4. At most, a first-order CFL condition
must be satisfied because of transport terms in the # and v evolutions. And
indeed, numerical simulations of the fully non-linear flow show no high-order
time-step constraint from the surface tension, but do reveal a first-order CFL
constraint. Further details on implementation are found in Hou, Lowengrub
and Shelley (1994). Recently, we have been able to prove convergence of
the above reformulated boundary-integral method for general two-density
interface problems with surface tension (Ciniceros and Hou, to appear).
This includes Hele-Shaw flows and water waves.
A fourth-order implicit discretisation
We can also design a fourth-order implicit multistep discretisation in time.
Motivated by the work of Ascher, Ruuth and Wetton (to appear), we propose
the following fourth-order implicit discretisation in time:

(25/12)8™*1 — 46™ 4 3™ — (4/3)6™% + (1/4)6™3
Ikl 2 an+t1 Hn
— At( (Ln+1) A+ 4 pr(k)
~ 6 P71(k) +4P"72(k) — PP(b))

(25/12)4"+! — 44" + 35" — (4/3)7" 2 + (1/4)5™ 3
= At (—713 g™+ 4 4Q™ (k)

Lt
— 6 Q"1 (k) + 40"2(k) - Q" 3(:»))

We have tested this fourth-order version of implicit discretisation. It in-
deed gave a fourth-order convergence with a CFL stability constraint which
is about half of that in the second-order Crank-Nicholson discretisation
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(Hou, Lowengrub and Shelley, to appear). The improved order of accuracy
in time is very important for large time integration of free interfaces. And it
is especially useful in our study of the formation of topological singularities;
see; Hou, Lowengrub and Shelley (to appear).

We would like to emphasise that the equal arclength frame we described
above is one convenient choice. This choice leads to a constant coefficient
system to the leading order which makes the inversion explicit by using the
fast Fourier transform. But there are other situations where we may want to
choose a non-equal arclength frame that is adapted to the local property of
the interface. For example, we may want to cluster computational particles
near a singular region. This can be carried out in a similar way. In this
case, the implicit solutions become a variable coefficient problem, which can
be solved by some iterative methods such as the preconditioned conjugate
gradient method. We refer to Hou, Lowengrub and Shelley (1994; to appear)
for more discussions of the formulation and implementation issues.

5.3. Numerical ezamples

In this section, we present some very interesting numerical simulations that
serve to demonstrate the utility of the SSD. The numerical methods are
based on the Crank-Nicholson discretisation discussed above. This yields
a stable, second-order in time, infinite-order in space discretisation. We
are interested in understanding the competing effects of surface tension and
the Kelvin-Helmholtz instability on the motion of a vortex sheet. In our
calculation, 7 = 0.005, with the initial condition

zo(a) = @ + 0.01sin 27a, yp(a) = —0.01 sin 27a, yo(a) = 1. (6.31)

This initial data was used by Krasny (1986a,b) in the absence of surface
tension to study singularity formation through the Kelvin-Helmholtz insta-
bility. In the case of zero surface tension, a curvature singularity was shown
to occur at the centre (@ = 1/2) at ¢t ~ 0.375. With r = 0.005, the linear
dispersion analysis gives approximately 16 linearly growing modes above
k = 0. Modes higher than 16 are all linearly stable and are dispersively
regularised by surface tension.

Figure 7 shows a sequence of interface positions, starting from the ini-
tial condition (Figure 7A). At early times, the interface steepens and be-
haves similarly to the zero-surface-tension case. However, it passes smoothly
through the 7 = 0 singularity time, and becomes vertical at the centre at
t = 0.45. At about this time, dispersive waves are generated at the centre
and propagate outwards. By t = 0.6 (Figure 7B) the interface has rolled
over and has begun to roll-up into a spiral. However, at later times (see
Figure 7C and D), sections of interface within the inner turns of the spiral
appear to be attracted towards one another, and in the process appear to
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Fig. 7. Point-vortex-method solution of vortex sheets with surface tension, 7 =
0.005, N = 1024, At = 1.25 x 10~4. (A) ¢t = 0; (B) ¢ = 0.6; (C) t = 0.8; (D)t=1.2
(E) t = 1.4; (F) close-up of top pinching region, ¢ = 1.4. From Hou, Lowengrub
and Shelley (1994)

pinch off interior ‘bubbles’ of fluid (see Figure 7E). A close-up of the pinch
region is shown in Figure 7F.

These sections of interface in the pinching region appear to collide at a
finite time. Figure 8 shows the minimum distance between the two sections
of interface in the pinching region as a function of time for several spatial and
temporal resolutions. Figure 8B shows that the total energy is conserved up
to 6-digit accuracy very close to the time of pinching for N < 2048. This
figure suggests strongly that the pinching occurs at a finite time. Moreover,
the width apparently vanishes with infinite slope, which indicates that the
pinching rate intensifies as the width narrows.

We remark that this apparent singularity is of a completely different type
from that of the 7 = O singularity. This singularity is a topological sin-
gularity. Beyond the pinching singularity, change in the topology of the
flow may occur. More fundamentally, with 7 = 0 the singularity occurs
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Fig. 8. Pinching in, and accuracy in the energy of, the inertial vortex sheet: (A)
minimum width of the top pinching region, 7 = 0.005, N = 1024 with At =
2.5 x 1074, N = 2048 with At = 1.25 x 1074, N = 4096 with At = 6.25 x 1073,
N = 8192 with At = 3.125 x 10~5; (B) number of accurate digits in the energy,
7 0.005, N = 512, N = 1024, N = 2048 with At = 1.25 x 1074, and N = 1024 with
At =3.125 x 107°(1024ext). From Hou, Lowengrub and Shelley (1994).

through a rapid compression of vorticity along the sheet at a single iso-
lated point (Moore, 1979; Krasny, 1986; Baker and Shelley, 1990; Shelley,
1992). -Here the singularity occurs through a rapid production of vortic-
ity that is associated with the surface tension. And indeed, the maximum
vortex-sheet strength appears to diverge at the singularity time, unlike the
7 = 0 case. Further details, physical interpretation and modelling are given
in Hou, Lowengrub and Shelley (1994) and Hou, Lowengrub and Shelley (to
appear).

The second example we consider is the expanding bubble. This is a cal-
culation of a gas bubble expanding into a Hele-Shaw fluid; see Figure 9.
The dynamics of expanding bubbles in the radial geometry have attracted a
great deal of attention due to the formation of striking patterns observed in
experiments. In our set-up, the viscosity inside the bubble is set to zero, but
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the viscosity outside the bubble is equal to 1. Therefore, there is a viscosity
contrast A, = 1. Thus the v equation now reads

= —ZA“SQUT + TKa,

where U7 is the tangential velocity component of the interface velocity (u, v).
In this case, v is defined implicitly through an integral relation. An iterative
scheme is needed to solve for «y. The initial condition is given by

(zo(@), yo(a)) = r(a)(cosa,sin ),
with r(a) = 1+ 0.1sin2a + 0.1cos 3a.

See the innermost curve in Figure 9. This choice of initial condition is
to avoid particular symmetry in the initial interface. The value of surface
tension is 7 = 0.001, the time step is At = 0.001 and N = 4096. Figure 9
shows the expansion of this bubble from ¢t = 0 to ¢ = 20, printed at unit
intervals of time. We can see that the interface develops oscillations in the
moving front, and subsequently produces many fingers and pedals as time
evolves. These petals expand outwards and eventually tip-split into two
petals. This process repeats itself. In performing this calculation, we have
done a careful resolution study. This calculation agrees very well with lower-
resolution calculations. It is quite remarkable that we can now use such a
large time step At = 0.001 for N = 4096. Without the new formulation, the
time step would have been at least one thousand times smaller to achieve
stability for an explicit method.

5.4. A note on computing beyond the singularity time

Topological changes or formation of singularities in free interfaces occur in
many physical applications. For example , in crystal growth and thin-film
growth, an initial smooth front can develop cusps and crack-like singular-
ities, and isolated islands of film material can merge (Gray, Chisholm and
Kaplan, 1993; Sethian, 1985; Snyder et al., 1991; Spencer, Vorhees and
Davis, 1991). Computing beyond the singularity time using front tracking
methods is usually very difficult and complicated. Local grid surgery is re-
quired to reconnect the Lagrangian particles near the singularity region; see,
for example, Unverdi and Tryggvason (1992). Also, how we reconnect the
interfaces may affect the solution at later times. So it would be highly desir-
able to develop a more systematic framework for boundary-integral methods
to compute beyond the (topological) singularity time. In the next section,
we will discuss front capturing methods based on the level-set approach. But
here we would like to exploit further what we can do within the framework
of boundary-integral methods.

Here we propose a new approach to continue our boundary-integral cal-
culation beyond the topological singularity. This borrows ideas from the
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Fig. 9. An expanding Hele-Shaw bubble. N = 4096,At = 0.001,7 = 0.001,
t=0,1,2,...,20. From Hou, Lowengrub and Shelley (1994).

level-set approach (see the next section). The idea is to use curvature reg-
ularisation, as has been successfully used for the level-set approach. By
curvature regularisation, we mean that we add to the normal velocity com-
ponent a term proportional to the local mean curvature, that is, U/ = U+ex.
Here U is the normal component of the interface velocity, x is the (mean)
curvature and U’ is the regularised normal velocity. We are interested in
studying the limiting solution as e — 0%, beyond the singularity time.

To illustrate the idea, we take the example of motion by mean curvature.
The normal velocity is given by U = 1 + €&, where k is local curvature.
In the limit of € = 0, the equal arclength frame would choose a tangential
velocity T = #. With this choice of T', our reformulated system of equations
for 8 and s, becomes a variant of the viscous Burgers equation:

(sa)r =1- f(ga)z/sua (5.32)
g =Py (9—"') . (5.33)

Sa  Sa \Sa
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In the limit of € = 0, the # equation becomes the inviscid Burgers equation,
and s, becomes constant (positive) in space. Now it is clear that a cusp
or topological singularity corresponds to a shock discontinuity in the tan-
gent angle. It is well known that an entropy condition is required to select
the physical weak solution beyond the time a shock discontinuity is formed.
For positive €, the curvature regularisation plays exactly the same role as
the viscosity regularisation. Thus using an upwinding scheme or high-order
Godonov scheme for computing # would give the correct continuation be-
yond the singularity. By applying curvature regularisation to a free surface
directly, we do not need to introduce one extra space dimension as in the
level-set approach. More accurate numerical methods can be designed since
we only deal with the free surface and don’t have to differentiate across the
free surface. Also, the stiffness can be removed easily using our reformulated
system.

We have used our formulation to reproduce some of the calculations pre-
sented in Osher and Sethian (1988) using the level-set formulation. We
obtained the same results for computations of the cusp and corner singu-
larities. In Figure 10, we -plot the evolution of a sinusoidal initial condition
propagating with unit normal velocity. The initial condition is given by
z(a,0) = a,y(a,0) = —0.05sin(27rc). N = 128, and an upwinding scheme
was used to integrate the @ equation in time. Since the curve propagates into
itself with unit normal velocity, a corner singularity is formed at later times.
It is clear that applying an upwinding scheme to our reformulated system
produced the entropy-satisfying continuation beyond the singularity time.

Merging of interfaces can also be handled similarly. We can determine
accurately the time of merging by monitoring the minimum distance be-
tween the two interfaces, as we did for the vortex-sheet calculation. At the
time of merging, we need to reparameterise the merged interface. This can
be done by combining the original parameterisation of the two interfaces.
For the merged interface, there is a jump discontinuity for # at the point of
contact. This will generate a cusp or corner singularity after the merging of
the two interfaces. But using the curvature regularisation described above,
the reformulated method can capture the cusp or corner singularities with
no additional effort. And the entropy condition is satisfied automatically.,
Apparently, this idea can be applied to water waves, interaction of fluid bub-
bles and droplet formation. Detailed description and computational results
will be presented elsewhere (Hou and Osher, 1994). Generalisation of this
idea to three space dimensional problems is our active on-going research.

We would like to emphasise that curvature regularisation is a geometric
(or topological) regularisation. It is frame-independent, and consequently it
is an intrinsic regularisation. It has an important property of preserving the
index of a curve. As a consequence, a curve cannot cross itself under the
curvature regularisation. Of course, if we use curvature regularisation in the



394 T.Y. Hou

0.03 T : . v T —— ' . .
0.02}
0.01}

0
0.01F N .
-0.02 \ ’ i 4
-0.03 7 .
-0.04 ' .

-0.05 N

-0.06 _ .

I A 1 1 1 1 [ 1 1
0'070 0.1 0.2 03 0.4 0S5 - 06 0.7 0.8 0.9 1

Fig. 10. Motion by mean curvature using reformulated front tracking method with
curvature regularisation. The normal velocity U = 1. The initial condition is
z = a,y = 0.05sin(27a). N = 128. The upwinding scheme was used to integrate
in time. From Hou and Osher (1994)

original Lagrangian frame, the differential point clustering of particles will
result in a very stiff system to solve. So it is essential to apply curvature
regularisation to our reformulated system in which an equal arclength frame
is imposed dynamically. The curvature regularisation can also be used to
regularise ill-posed problems. Using the point-vortex method approximation
" with curvature regularisation, we can compute beyond the Kelvin-Helmholtz
singularity, and obtain a roll-up solution of vortex sheets. But it is more
effective if a small vortex blob of the order of the mesh size is used. In Figure
11A, we present our vortex-sheet calculation using the point-vortex method
and the curvature regularisation. The same initial condition as Krasny’s
was used. The curvature regularisation coefficient is 0.01. The solution is
plotted at ¢t = 1.24 with N = 256. This clearly gives a vortex-sheet roll-up
solution. But it seems to require more resolutions to compute further in
time. In Figure 11B, we present the same vortex-sheet calculation using a
small blob. The blob size is equal to 0.01. The vortex-sheet positions at
three different times are shown in Fig. 11B, with N = 512. The solutions
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Fig. 11A. Vortex-sheet roll-up calculation using the point-vortex method and the
curvature regularisation. Thé same initial condition as Krasny’s was used. The
curvature regularisation coefficient is 0.01. The solution is plotted at t = 1.24.
N = 256. From Hou and Osher (1994).

are very similar to those obtained by Krasny using vortex-blob calculations
with larger blobs. By using the curvature regularisation, it is possible to
study the limiting solution as the regularisation parameters tend to zero
simultaneously with the mesh size.

‘Curvature regularisation introduces a dissipative regularisation for the 8
equation with respect to the arclength variable. It is important that such
dissipative regularisation is with respect to the arclength variable. If we
naively add a dissipative regularisation in the original Lagrangian frame a,
the result is quite different. Such Lagrangian regularisation would allow
interface self-crossing, producing a non-physical continuation beyond the
Kelvin—-Helmholtz singularity time (Hou and Osher, 1994).

6. The Level-Set Approach

The level-set approach is an effective front capturing method for computing
free surfaces. It was originally introduced by Osher and Sethian in 1988.
The basic idea is to consider the free surface as a zeroth-level set of some
smooth function which is defined in one higher space dimension than the
free surface. So advancing the free surface is reduced to advancing the level-
set function. Since only the zeroth-level set is physically relevant to the
free surface, there is a lot of freedom in advancing the level-set function
away from the zeroth-level set. Such freedom can be exploited to design a
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Fig. 11B. Vortex-sheet roll-up calculation using the curvature regularisation with a
small vortex blob. The same initial condition as Krasny’s was used. The curvature
regularisation coefficient and the blob size are equal to 0.01. N = 512. The
solutions are plotted at ¢ = 1.0,1.2,1.4. The frame dimension of each plot is
0<z<1,-4 <y<04. From Hou and Osher (1994).

smooth level-set function throughout the numerical computation. Thus, a
free surface may develop a topological singularity such as a cusp, a corner
or merging of two surfaces; the level-set function remains relatively smooth
(the level-set function is Lipschitz continuous at the singularity of the in-
terface). Moreover, the level-set function satisfies a Hamilton-J acobi-type
equation, and curvature regularisation corresponds to an entropy condition.
Therefore, high-order Godonov methods developed for hyperbolic conserva-
tion laws can be used to compute the level-set function. Unlike the front
tracking approach, no special effort is required at the interface singular-
ity. The interface is recovered at the end of the computation by locating
the zeroth-level set. Generalisation to three space dimensional problems
requires no additional effort.

In this section, we describe the level-set algorithm for propagating a curve
or union of curves I'(t). We assume that the motions of these curves are
completely determined by the normal velocity, V. Let B be a fixed domain
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which contains the union of curves in all times of interest. The main idea is
to construct a function ¢(z,t) defined on B, such that the level set {¢ = 0}
corresponds to the moving curves I'(¢), that is,

I'(t) = {z: ¢(z,t) = 0}.

We now derive a partial differential equation for ¢, which holds on B x [0, T7].
First, we need to construct a smooth extension of the normal velocity, V, of
the curves to the entire domain of B such that

F(z,t) =V(z,t) for zeTl(t).

Now consider the motion of an arbitrary level set {¢(x,t) = C}. We will
follow the derivation of Osher and Sethian (1988). Let x(a,t) be the La-
grangian trajectory of this level-set. This implies that

¢(x(a,t),t) = C.
Differentiating the above relation with respect to time, we get

ax
— - V¢=0.
| ¢ + T ¢
Note that V¢ is normal to the level set {¢(x,t) = C}, and % -n = F,
where n = V¢/|V¢| is the unit normal vector to the level set ¢ = C. This
consideration implies that the evolution equation for the level-set function

¢ is given by

¢ + F|Ve| =0, (6.1)
&(z,0) = given. (6.2)

Equation (6.1) yields the motion of I'(t) with normal velocity V on the level
set ¢ = 0. We refer to equation (6.1) as the level-set ‘Hamilton-Jacobi’
formulation.

One essential property of the level-set function is that it always remains a
function, even if the free surface (corresponding to ¢ = 0) changes topology,
breaks, merges or forms sharp corners. Parameterisations of the boundary
‘become multivalued or singular in these cases. Furthermore, since the level-
set formulation is completely Eulerian, finite-difference approximations over
a fixed grid may be used to discretise the equation in space and time. Thus,
there is no need to explicitly track the free surface during a numerical cal-
culation. The free surface is recovered only at the end of the computation.

To illustrate, suppose we wish to follow an initial curve I'(¢ = 0) propa-
gating with normal velocity V = 1 - ¢k, where & is the local curvature of the
boundary. The curvature of the level curve passing through a point (z,y,t)
is given by

=V. (E) _ _$ybec — 26:¢yday + $2dyy
[Vl (62 + 2372 :
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The minus sign occurs because we have initialised the surface so that Vo
points inwards and we want x to be positive. for a circle. The smooth
extension of V' to F is straightforward, and equation (6.1) becomes

-/ V
bt @2+ = v ()

é(z,y,t = 0) = xdistance from (z,y) to I'(t = 0).

As shown in Sethian (1985), for € > 0, the parabolic right-hand side diffuses
sharp gradients and forces ¢ to stay smooth for all time. This is not true
fore=0and F = 1. A corner singularity must develop in time.

Thus the goal is to produce approximations to the spatial derivative that
(1) do not smooth sharp corners artificially and (2) pick up the correct
entropy solution when singularities develop. The schemes are motivated by
the fact (Osher and Sethian 1988) that the entropy condition for propagating
boundaries is identical to the one for hyperbolic conservation laws, where
stable, consistent, entropy-satisfying algorithms have a rich history.

In discretising the term F|V¢)|, we decompose F into two components:

F=Fy+ Fg.

Here, F4 is an advection term containing that part of the velocity that is
independent of the moving boundary, and Fg contains those terms that de-
pend on the geometric properties of the boundary, such as the curvature and
normal. We begin by splitting the influence of F, and rewrite the equation
for ¢ as

¢ = —(Fa|Vé| + F5|V4)).

In two space dimensions, one can easily devise an iterative type of scheme
based on dimension-by-dimension splitting (Osher and Sethian, 1988; Osher
and Shu, 1991):
+
n+1 n - )/— + 2
¢ = ¢ — Falffmax(Dy ¢i5,0))¥(min( D7 ¢;;,0))

+(max(D; ¢s;, (%(\min(D;'qﬁ,-j, O)ﬁé AtF5|V4).

Here we have not approximated the final term Fg|Vé|; one may use a
straightforward centred difference approximation to this term. This is the
first-order multi-dimensional algorithm described in Osher and Sethian
(1988). High-order schemes have also been derived, see Osher and Shu
(1991). In Figure 12 we show this technique applied to the case of a star
propagating outwards with speed F = 1, At = 0.01, and a mesh size of 50
points in each direction in a box. The cusp singularities were captured prop-
erly. The curve became circular as it evolved (Osher and Sethian, 1988).
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Fig. 12. Expanding star, F(x) = 1, t = 0.0,0.7(0.01). N = 50. From Osher and
Sethian (1988). ‘

6.1. Crystal growth and solidification

We have described the boundary-integral formulation in Subsection 2.4.
Here we describe how to extend the velocity V' to a globally defined speed
function F. Such an extension is needed to use the level-set formulation.
What we will describe below is contained in the paper by Sethian and Strain
(1992).

The most natural extension makes direct use of the integral equation

t
exk+eyV+U+H / Kz, t - )V (' t)de'dt =0, (6.3)
0 Jre

for z € I'(t). Each term in (6.3) can be evaluated anywhere in B, once V
is known on I'(') for 0 < #/ < t and ¢ is known on B. Thus, given the set
I'(t), plus all its previous positions and velocities for 0 < t' < ¢, one could
first solve an integral equation to find the velocity V for all points on I'(t)
and then find F(z,t) by solving the equation

exk(z,t) + ey F(z,t)
t
+U(z,t)+ H / / o K@=V, #dz'd’ = 0,
0 JI(t
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for F' throughout B. The curvature away from I'(t) is evaluated by

n:V-(%):V-n, n=l%%|.

These expressions make sense everywhere in B. This defines the extension
of V away from I'(2).

Furthermore, it was observed by Greengard and Strain (1990) that one
can decompose the single-layer potential into a history part S5V and a local
part SV as follows:

t—6
SV(z,t) = fo [ K@ ot — )V (', t')dz'dt
' t
+ / K(z,2',t —tV(z,t')dz'dt’
t—6 JT(t)
= S;V + SLV.

Here 6 is a small regularisation parameter. Heuristically, we try to separate
the local part, which is causing the jump in the normal derivative of the
potential, from the history part, which is smooth and independent of current
velocity. It was shown (Sethian and Strain, 1992; Greengard and Strain,
1990) that the local part SpV can be approximated by

SLV(z,t) = \/6/7V (z,T) + O(6%?),

at point z on I'(t). The history part SV’ depends only on values of V
at times ¢ bounded away from the current time, t' < ¢ — 6. This is a
smooth function. A fast summation method has been developed to evaluate
the history part efficiently, requiring only O(M 2) calculations per time step.
Finite-difference approximations can also be used to obtain a fast evaluation
of the history part; see Brattkus and Meiron (1992). Now we can define the
extended velocity F' explicitly through the history part of the single-layer
potential:
F= L ek + U+ HSLV].

ev(n) + H/8/x

'We have reduced the equation of motion, with an O(6%/2) error, to a pair of
equations on fixed domain B:

¢ + F|V¢| =0,

- ev(n)+ H

Numerical approximation of these coupled equations gives rise to a robust
algorithm which can handle topological singularities, cusps, and corners.
In Figure 13, we plot a sequence of fingered growth under mesh refinement

® HSL V).
m[en+U+ SLV]
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(A) (B)

Fig. 13. Fingered crystal: effect of refining both grid size and time step, H = 1LA=
0,ex = 0.001, ey = 0.001,k4 = 0: (A) 32 x 32 mesh, At = 0.005; (B) 48 x 48 mesh,
At = 0.005; (C) 96 x 96 mesh, At = 0.00125; (D) 128 x 128 mesh, At = 0.00125.
From Sethian and Strain (1992).

(Sethian and Strain, 1992). Here the physical parameters were specified as
follows: ey = 0.001,ex = 0.001, H = 1. There was no anisotropy in the
coefficient, and the constant undercooling was set to be —1. In Figure 13A,
a 32 x 32 grid was used with At = 0.005. In Figure 13B, a 48 x 48 grid
was used with A¢ = 0.005. In Figure 13C, a 96 x 96 grid was used with
At = 0.00125. In Figure 13D, a 128 x 128 grid was used with At = 0.001 25.
On the coarsest mesh (32 x 32) only the gross features of the fingering and
tip-splitting process are seen. As the numerical parameters are refined, the
basic pattern emerges. It is clear that the resulting shapes are qualitatively
the same, and there is little qualitative difference between Figure 13c¢ and
Figure 13d. We refer to Sethian and Strain (1992) for more details.

One disadvantage of this approach is that computing the normal veloc-
ity at each time step requires solving the boundary-integral problem. So
it is not a completely Eulerian formulation. Since the boundary-integral
problem is history dependent and the integration is non-local in space, it is
usually very expensive. Even using the fast algorithm for heat potentials
developed by Greengard and Strain (1990), numerical calculations by this
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approach are still slower compared with finite-difference approximations for
the heat equation. Recently, Osher and his co-workers (private communica-
tion) have developed a completely Eulerian level-set formulation to compute
solidification problems. The method is in principle as fast as standard finite-
difference methods for the heat equation. The preliminary results seem to
be very encouraging.

Numerical study of unstable solidification has been a very active research
area in the past decade. Other numerical studies of solidification prob-
Jems include the works of Meiron (1986), Kessler and Levine (1986), Langer
(1980), Karma (1986), Voorhees et al. (1988), Almgren (1993), Bratkkus

and Meiron (1992), Greenbaum et al. (1993).

6.2. Level-set formulation for incompressible-fluid surfaces

We have described a number of boundary-integral methods for computing
fluid interfaces in previous sections. We can see that they are very effec-
tive as long as the interface stays smooth. However, when the interface
develops pinching singularity, as seen in Subsection 5.2, corners and topo-
logical changes, boundary-integral methods are difficult to compute beyond
time singularities. Here we would like to present a level-set formulation for
incompressible-fluid interfaces with discontinuous densities and viscosities.
Detailed derivation can be found in Chang et al. (to appear). Here we just
present the result in our reformulation.

The equations governing the motion of an unsteady, viscous, incompress-
ible, immiscible two-fluid system are the Navier-Stokes equations. In con-
servation form, the equations are

p(ug + V - (uu)) = —Vp + pg + V - (2uD),

where u is velocity and p and p are discontinuous density and viscosity
fields respectively. D is the rate-of-deformation tensor whose components
are D;; = 3(ui; + ujz)- The density and viscosity are purely convected by
the fluid velocity:

%(pHV'(up) =0,

2w+ =0.
These equations are coupled to the incompressibility condition
V-u=0.
Denote the stress tensor by o(x), which is given by
o(x) = —pl + 2uD,
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where. I is the identity matrix, D is the deformation tensor and p is the
pressure. We let I' denote the fluid interface. The effect of surface tension
is to balance the jump of the normal stress along the fluid interface. This
gives rise to a free-boundary condition for the discontinuity of the normal
stress across I’

- [oiiny) Ir= TrN4, (6.4)

where [p] denotes the jump of p across the interface, s is the curvature of
I, 7 is the surface-tension coefficient and n is a unit outward normal vector
along I'. Note that in the case of inviscid flows, the above jump condition
is reduced to

[p] Ir= 7. (6.5)

In this case, the effect of surface tension is to introduce a discontinuity in
pressure across the interface proportional to the (mean) curvature.

Our level-set formulation is based on the following observation. The effect
of surface tension can be expressed in terms of a singular source function
that is defined by our level-set function. This is similar in spirit to Peskin’s
formulation for the immersed boundary-value problem for blood flows
through a heart valve (Peskin, 1977); see also Unverdi and Tryggvason
(1992). Let us denote by ¢ the level-set function. The fluid interface T
corresponds to the zero-level set of ¢. In Chang et al. (to appear), we

derived a completely Eulerian level-set formulation for multi-fuid interface
- problems with surface tension. The evolution equations are given by

p(ug+V -uu) = —~Vp+pg + V- (2uD) + 7(¢)Ve6(4),  (6.6)
%d) +u-V¢ =0, (6.7)

where 6(¢) is a one-dimensional Dirac Delta function and ¢ is chosen in such
way that V¢ is in the outward normal direction when evaluated on I". The
curvature K(¢) can be expressed by ¢ and its derivatives

¢§¢zx - 2¢z¢y¢zy + ¢g¢yy

- 4 .
(¢ + 423

Our level-set formulation was partially motivated by the work of Unverdi
and Tryggvason (1992). The work of Unverdi and Tryggvason was formu-
lated as a vortex-in-cell method. The free surface is tracked explicitly by
following the Lagrangian markers of the free surface. A fixed underlying grid
is used to invert the Poisson equation. The interface velocity is obtained by
grid/particle interpolation, in the same way as we described in the previ-
ous section on the VIC method. But in this semi-Lagrangian formulation,

the coupling between the Delta function source term and the momentum
equations is non-local. If x(s,t) is a parameterisation of the fluid inter-

. &(P) = (6.8)
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face I', with s being the arclength variable and t being the time variable,
and §(x) is the two-dimensional Dirac Delta function, then the momentum
equations become

p(u+ V- (uu)) = -Vp+pg+ V- (2uD)
+_/r“1'n(x(s,t))6(x — x(s,t))nds. (6.9)

Note that the singular source term is a 2-D Delta function and it is non-
local. This is in contrast with the local and 1-D Delta function source term.
In fact, equation (6.9) was not derived explicitly in Unverdi and Tryggvason
(1992). It was based on our derivation of the level-set reformulation that
we gave an independent derivation of (6.9). Also, consistency of equation
(6.9) with the original interface problem requires s to be an arclength vari-
able. Since x(s,t) is advected by the fluid velocity, s will not remain as an
arclength variable even if it is so chosen initially. Therefore, if a Lagrangian
variable a is used to parameterise the interface, that is, x(q, t), then a factor
x| should be added on to the integration with respect to a. This point
was not clearly stated before, and it caused some confusion in the literature.

After the completion of our work on the level-set formulation, the work
of Brackbill, Kothe and Zemach ( 1992) was brought to our attention. They
have derived a continuum method for modelling surface tension for multi-
fluid flows which is almost the same as our formulation if we replace the
Dirac Delta function by a regularised one. Brackbill et al. used a ‘colour’
function to describe the smoothed interface. The colour function changes
continuously in the transition region of finite thickness. Brackhill et al.’s
derivation was based on a physical argument.

We now describe how to discretise the level-set formulation. Assume that
we have chosen the initial level-set function such that @ < 0 defines region 1
of the fluid, and ¢ > 0 defines region 2. Further, we assume that p; and P2
are the constant densities in region 1 and region 2, respectively, and p; and
#2 are the constant viscosities in region 1 and region 2 respectively. Then
we have p = py + (p; — p1)H(¢), where H is the Heaviside function that
satisfies H(z) = 1 for £ > 0 and H(z) = 0 for z < 0. Similarly, we have
#= w1+ (p2 — p1)H(¢). In numerical computations, we approximate H by
a regularised Heaviside function, and approximate 6 by a regularised Delta
function, just as in Peskin (1977). The regularised Delta function 0¢(z) has
support in {|z| < €}. Typically, we choose € = 44 in our calculations.

The evolution equations can be solved by a projection method. In its
most basic form, the projection method requires the solution of advection-
diffusion equations, which are then projected onto the space of divergence-
free vector fields. The projection uses the Hodge decomposition which states
that any vector V can be uniquely decomposed into a divergence-free field
V4 and a gradient field Vp, that is, V. = V4 4 Vp. Moreover Vy is or-
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thogonal to the gradient field. For more detailed descriptions of projection
methods and their applications, we refer to Chorin (1968) and Bell, Colella
and Glaz (1989) and the review paper by Gresho and Sani (1987). For our
problem, density is not a constant in the entire domain. A modification
of the standard projection method is required. A second-order projection
method for variable density has been introduced by Bell and Marcus (1992),
and it has been applied successfully to a number of interesting multi-fluid
interface problems.

From the evolution equations (6.7), we have u, = Lu — Vp/p. As in Bell
and Marcus (1992), we introduce a density-weighted inner product such that
we can decompose V into Vg and Vp/p. In the density-weighted norm, V4
is orthogonal to Vp. Given a vector V, we define our projection operator as
P4(V) = V. Since the Hodge decomposition is unique and u, is divergence
free, we have u; = Pg(Lu). In order to compute the projection, we take the
divergence of both sides of the equation V = V4 4+ Vp/p to obtain

1
v-(-v)=v-v.
: P P

The orthogonality condition implies the boundary condition 8p/8n = 0 on
the boundary. Another way to compute the projection is to take the curl
of both sides of the equation V = V4 + Vp/p. This also gives a variable
elliptic problem for p with a different boundary condition. We refer to Bell
and Marcus (1992) for more detailed discussions.

The convection terms can be approximated by high-order ENO schemes
Harten et ol (1987) or by other high-order Godunov schemes. Appar-
ently, our level-set formulation works for both two-dimensional and three-
dimensional problems. There are no additional complications to extend the
method to three-dimensional problems.

To obtain an effective method, it is important to keep the level-set func-
tion as smooth as possible at all times. For this reason, it is desirable to
keep the level-set function as a signed distance function from the moving
_ surface. This also ensures that the regularised surface has a finite thickness
of order ¢ for all time. However, even if we initialise the level-set function ¢
as a signed distance from the free surface, the level-set function in general
will not remain a distance function at later times. In Sussman, Smereka and
Osher (to appear), an iterative procedure was proposed to reinitialise the
level-set function at each time step so that the reinitialised level-set func-
tion remains a distance function from the front. Specifically, given a level-set
function, ¢y, at time ¢, solve for the steady-state solution of the equation

2 6 = sen(gu)(1 - [V9)),

¢(x1 0) = ¢0(X),
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Fig. 14. Fourth-order difference approximations for two-fluid bubbles with different
densities. The density ratio is 1:60:3600, with the bottom bubble being the lightest.
The viscosity is equal to 0.000125 in all fluids. ¢t = 0.1,0.15,0.2 for the first row
(N = 256), and ¢ = 0.275,0.325,0.35 for the second row (N = 512). From Chang
et al. (to appear).

- where sgn is the sign function. The solution ¢ has the same zero-level set
as ¢p, and satisfies |[V¢| = 1, and so is a distance function for the front.
It was found in Sussman, Smereka and Osher (to appear) that such reini-
tialisation is crucial in maintaining the accuracy of large-time integrations,
especially when the density ratio between the two fluids is large. In Sussman,
Smereka and Osher, the motion of bubbles in water and falling water drops
in air were studied numerically using our level-set formulation, together
with the reinitialisation procedure described above. The density ratio is 1 to
1000. The numerical results were in good agreement with some experimental
results.

In Figure 14, we illustrate the method by considering the interaction of
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two fluid bubbles with different densities using 256 x 256 grid points. The
density for the bubble on the top is 60, the density for the bubble on the
bottom is 1 and the background density is 3600. The initial interfaces of
the bubbles are elliptical in shape. A Bousinesqu approximation was used
in these calculations. We assume that viscosities are the same in all fluids
and are equal to 0.000125. The problem is set up in such a way that both
bubbles rise in time and the bottom bubble rises the fastest. As the bottom
bubble rises in time, we see that the top portions of the bubble interfaces are
almost in contact. But they cannot merge into a single bubble in this case
because the densities are different for these two bubbles. In this calculation,
we labelled the two interfaces with two different level-set values. That is,
I’y corresponds to ¢ = ¢; and I'; corresponds to ¢ = ¢y, with c1 # ¢y In
the mean time, the bubble in the bottom develops a roll-up. We plot the
solutions at ¢ = 0.1,0.15,0.2,0.275,0.325,0.35. We increase our numerical
resolutions to 512 x 512 for times larger than t = 0.2. Part of the interface
that has rolled up pinches off before ¢ = 0.275: two smaller bubbles are
detached from the bottom bubble, and have their own dynamics. As the
region between the top portions of two bubbles becomes thinner and thinner
in time, they eventually pinch off at ¢ = 0.325 and ¢ = 0.35 respectively. In
the process, many small-scale structures are produced due to the unstable
stratification of the fluids.
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